
Vulkan® 1.3.280 - A Specification (with
all registered extensions)

The Khronos® Vulkan Working Group

Version 1.3.280, 2024-03-08 12:38:58Z: from git branch: github-main commit:
69ba4fefbafa045d0fd1b07060b768b3b1c115cc

Table of Contents
1. Preamble. 1

2. Introduction. 3

2.1. Document Conventions . 3

3. Fundamentals . 6

3.1. Host and Device Environment. 6

3.2. Execution Model . 6

3.3. Object Model . 8

3.4. Application Binary Interface . 12

3.5. Command Syntax and Duration . 13

3.6. Threading Behavior . 15

3.7. Valid Usage . 36

3.8. VkResult Return Codes . 43

3.9. Numeric Representation and Computation . 48

3.10. Fixed-Point Data Conversions . 50

3.11. Common Object Types. 51

3.12. API Name Aliases . 102

4. Initialization . 103

4.1. Command Function Pointers. 103

4.2. Instances. 106

5. Devices and Queues. 123

5.1. Physical Devices . 123

5.2. Devices . 172

5.3. Queues. 196

6. Command Buffers . 207

6.1. Command Buffer Lifecycle. 207

6.2. Command Pools . 209

6.3. Command Buffer Allocation and Management . 216

6.4. Command Buffer Recording . 221

6.5. Command Buffer Submission . 235

6.6. Queue Forward Progress . 262

6.7. Secondary Command Buffer Execution . 263

6.8. Nested Command Buffers. 271

6.9. Command Buffer Device Mask . 272

7. Synchronization and Cache Control . 275

7.1. Execution and Memory Dependencies . 275

7.2. Implicit Synchronization Guarantees . 312

7.3. Fences . 314

7.4. Semaphores . 340

7.5. Events . 375

7.6. Pipeline Barriers. 402

7.7. Memory Barriers . 413

7.8. Wait Idle Operations . 472

7.9. Host Write Ordering Guarantees . 474

7.10. Synchronization and Multiple Physical Devices. 474

7.11. Calibrated Timestamps . 474

8. Render Pass . 479

8.1. Render Pass Objects . 506

8.2. Render Pass Creation. 508

8.3. Render Pass Compatibility . 576

8.4. Framebuffers. 577

8.5. Render Pass Load Operations . 589

8.6. Render Pass Store Operations . 590

8.7. Render Pass Multisample Resolve Operations . 592

8.8. Render Pass Commands . 594

8.9. Render Pass Creation Feedback . 626

8.10. Common Render Pass Data Races (Informative) . 630

9. Shaders . 632

9.1. Shader Objects. 632

9.2. Shader Modules . 655

9.3. Shader Module Identifiers . 660

9.4. Binding Shaders . 662

9.5. Shader Execution . 663

9.6. Shader Memory Access Ordering . 664

9.7. Shader Inputs and Outputs . 665

9.8. Task Shaders . 665

9.9. Mesh Shaders . 666

9.10. Cluster Culling Shaders. 666

9.11. Vertex Shaders . 667

9.12. Tessellation Control Shaders . 667

9.13. Tessellation Evaluation Shaders. 669

9.14. Geometry Shaders . 669

9.15. Fragment Shaders . 670

9.16. Compute Shaders . 670

9.17. Ray Generation Shaders . 670

9.18. Intersection Shaders . 671

9.19. Any-Hit Shaders . 671

9.20. Closest Hit Shaders. 671

9.21. Miss Shaders . 672

9.22. Callable Shaders . 672

9.23. Interpolation Decorations . 672

9.24. Static Use . 673

9.25. Scope . 673

9.26. Group Operations. 679

9.27. Quad Group Operations . 681

9.28. Derivative Operations . 681

9.29. Helper Invocations. 683

9.30. Cooperative Matrices. 684

9.31. Validation Cache. 690

9.32. CUDA Modules. 697

10. Pipelines. 705

10.1. Multiple Pipeline Creation . 707

10.2. Compute Pipelines . 707

10.3. Graphics Pipelines . 730

10.4. Ray Tracing Pipelines . 803

10.5. Pipeline Destruction . 829

10.6. Pipeline Derivatives. 830

10.7. Pipeline Cache. 830

10.8. Specialization Constants. 839

10.9. Pipeline Libraries . 843

10.10. Pipeline Binding . 844

10.11. Dynamic State . 850

10.12. Pipeline Properties and Shader Information . 851

10.13. Pipeline Compiler Control . 865

10.14. Pipeline Creation Feedback . 866

11. Memory Allocation . 870

11.1. Host Memory. 870

11.2. Device Memory. 877

12. Resource Creation . 986

12.1. Buffers. 986

12.2. Buffer Views . 1004

12.3. Images. 1009

12.4. Image Layouts. 1064

12.5. Image Views . 1070

12.6. Acceleration Structures . 1098

12.7. Micromaps . 1130

12.8. Resource Memory Association . 1138

12.9. Resource Sharing Mode . 1176

12.10. Memory Aliasing . 1178

12.11. Buffer Collections. 1181

13. Samplers . 1197

13.1. Sampler Y′CBCR Conversion . 1211

14. Resource Descriptors . 1225

14.1. Descriptor Types . 1225

14.2. Descriptor Sets . 1231

14.3. Physical Storage Buffer Access . 1333

14.4. Descriptor Buffers . 1336

15. Shader Interfaces. 1374

15.1. Shader Input and Output Interfaces . 1374

15.2. Vertex Input Interface. 1378

15.3. Fragment Output Interface . 1378

15.4. Legacy Dithering . 1382

15.5. Fragment Tile Image Interface . 1383

15.6. Fragment Input Attachment Interface . 1383

15.7. Ray Tracing Pipeline Interface . 1388

15.8. Shader Resource Interface. 1389

15.9. Built-In Variables . 1398

16. Image Operations. 1453

16.1. Image Operations Overview . 1453

16.2. Conversion Formulas . 1458

16.3. Texel Input Operations . 1460

16.4. Texel Output Operations . 1478

16.5. Normalized Texel Coordinate Operations . 1480

16.6. Unnormalized Texel Coordinate Operations. 1487

16.7. Integer Texel Coordinate Operations . 1489

16.8. Image Sample Operations . 1489

16.9. Texel Footprint Evaluation . 1495

16.10. Weight Image Sampling . 1498

16.11. Block Matching. 1503

16.12. Box Filter Sampling . 1508

16.13. Image Operation Steps . 1510

16.14. Image Query Instructions . 1511

17. Fragment Density Map Operations . 1512

17.1. Fragment Density Map Operations Overview. 1512

17.2. Fetch Density Value . 1512

17.3. Fragment Area Conversion . 1513

18. Queries . 1515

18.1. Query Pools . 1515

18.2. Query Operation. 1522

18.3. Occlusion Queries . 1551

18.4. Pipeline Statistics Queries . 1551

18.5. Timestamp Queries . 1554

18.6. Performance Queries . 1561

18.7. Transform Feedback Queries . 1565

18.8. Primitives Generated Queries. 1565

18.9. Mesh Shader Queries . 1566

18.10. Intel Performance Queries . 1566

18.11. Result Status Queries . 1580

18.12. Video Encode Feedback Queries . 1580

19. Clear Commands . 1583

19.1. Clearing Images Outside a Render Pass Instance. 1583

19.2. Clearing Images Inside a Render Pass Instance . 1588

19.3. Clear Values . 1593

19.4. Filling Buffers . 1594

19.5. Updating Buffers . 1596

20. Copy Commands . 1600

20.1. Copying Data Between Buffers . 1600

20.2. Copying Data Between Images . 1607

20.3. Copying Data Between Buffers and Images. 1626

20.4. Indirect Copies . 1675

20.5. Image Copies With Scaling. 1681

20.6. Resolving Multisample Images . 1700

20.7. Buffer Markers . 1712

21. Drawing Commands . 1719

21.1. Primitive Topologies . 1722

21.2. Primitive Order . 1733

21.3. Programmable Primitive Shading . 1734

21.4. Conditional Rendering . 2175

21.5. Programmable Mesh Shading. 2180

21.6. Programmable Cluster Culling Shading . 2460

22. Fixed-Function Vertex Processing . 2552

22.1. Vertex Attributes . 2552

22.2. Vertex Input Description . 2556

22.3. Vertex Attribute Divisor in Instanced Rendering. 2569

22.4. Vertex Input Address Calculation . 2571

23. Tessellation . 2574

23.1. Tessellator . 2574

23.2. Tessellator Patch Discard . 2577

23.3. Tessellator Spacing . 2578

23.4. Tessellation Primitive Ordering . 2578

23.5. Tessellator Vertex Winding Order . 2579

23.6. Triangle Tessellation . 2579

23.7. Quad Tessellation. 2581

23.8. Isoline Tessellation . 2583

23.9. Tessellation Point Mode . 2583

23.10. Tessellation Pipeline State . 2584

24. Geometry Shading . 2588

24.1. Geometry Shader Input Primitives . 2588

24.2. Geometry Shader Output Primitives . 2589

24.3. Multiple Invocations of Geometry Shaders . 2589

24.4. Geometry Shader Primitive Ordering. 2589

24.5. Geometry Shader Passthrough . 2589

25. Mesh Shading . 2592

25.1. Task Shader Input . 2592

25.2. Task Shader Output . 2592

25.3. Mesh Generation . 2592

25.4. Mesh Shader Input. 2592

25.5. Mesh Shader Output . 2593

25.6. Mesh Shader Per-View Outputs . 2594

25.7. Mesh Shader Primitive Ordering . 2594

26. Cluster Culling Shading . 2595

26.1. Cluster Culling Shader Input . 2595

26.2. Cluster Culling Shader Output . 2595

26.3. Cluster Culling Shader Cluster Ordering . 2595

26.4. Cluster Culling Shader Primitive Ordering . 2596

27. Fixed-Function Vertex Post-Processing . 2597

27.1. Transform Feedback . 2597

27.2. Viewport Swizzle . 2606

27.3. Flat Shading. 2610

27.4. Primitive Clipping . 2613

27.5. Clipping Shader Outputs . 2620

27.6. Controlling Viewport W Scaling . 2621

27.7. Coordinate Transformations . 2624

27.8. Render Pass Transform . 2625

27.9. Controlling the Viewport . 2626

28. Rasterization. 2637

28.1. Discarding Primitives Before Rasterization . 2642

28.2. Controlling the Vertex Stream Used for Rasterization . 2644

28.3. Rasterization Order . 2647

28.4. Multisampling. 2648

28.5. Custom Sample Locations . 2654

28.6. Fragment Shading Rates. 2659

28.7. Shading Rate Image . 2673

28.8. Sample Shading . 2688

28.9. Barycentric Interpolation . 2689

28.10. Points . 2691

28.11. Line Segments. 2692

28.12. Polygons . 2705

29. Fragment Operations . 2728

29.1. Discard Rectangles Test . 2730

29.2. Scissor Test. 2736

29.3. Exclusive Scissor Test . 2738

29.4. Sample Mask Test. 2743

29.5. Fragment Shading . 2745

29.6. Multisample Coverage . 2749

29.7. Depth and Stencil Operations . 2752

29.8. Depth Bounds Test . 2756

29.9. Stencil Test . 2759

29.10. Depth Test . 2769

29.11. Representative Fragment Test . 2774

29.12. Sample Counting . 2776

29.13. Fragment Coverage to Color . 2776

29.14. Coverage Reduction. 2780

30. The Framebuffer . 2792

30.1. Blending . 2792

30.2. Logical Operations . 2821

30.3. Color Write Mask . 2826

30.4. Color Write Enable . 2827

30.5. Framebuffer Query Instructions . 2829

31. Dispatching Commands . 2831

31.1. Dispatch Command for CUDA PTX Kernels . 2866

32. Device-Generated Commands. 2872

32.1. Indirect Commands Layout . 2872

32.2. Indirect Commands Generation and Execution . 2889

33. Sparse Resources . 2948

33.1. Sparse Resource Features . 2948

33.2. Sparse Buffers and Fully-Resident Images. 2949

33.3. Sparse Partially-Resident Buffers. 2950

33.4. Sparse Partially-Resident Images. 2950

33.5. Sparse Memory Aliasing. 2958

33.6. Sparse Resource Implementation Guidelines (Informative) . 2959

33.7. Sparse Resource API . 2961

34. Window System Integration (WSI) . 2989

34.1. WSI Platform. 2989

34.2. WSI Surface . 2989

34.3. Presenting Directly to Display Devices . 3019

34.4. Querying for WSI Support . 3050

34.5. Surface Queries . 3056

34.6. Full Screen Exclusive Control . 3089

34.7. Device Group Queries . 3091

34.8. Display Timing Queries . 3097

34.9. Present Wait . 3103

34.10. WSI Swapchain. 3103

34.11. Hdr Metadata . 3157

34.12. Present Barrier . 3159

35. Deferred Host Operations . 3161

35.1. Requesting Deferral. 3161

35.2. Deferred Host Operations API. 3162

36. Private Data. 3168

37. Acceleration Structures . 3175

37.1. Acceleration Structures . 3175

37.2. Host Acceleration Structure Operations. 3242

38. Micromap . 3258

38.1. Micromaps . 3258

38.2. Host Micromap Operations . 3278

39. Ray Traversal . 3291

39.1. Ray Intersection Candidate Determination . 3291

39.2. Ray Intersection Culling . 3294

39.3. Ray Intersection Confirmation . 3298

39.4. Ray Closest Hit Determination . 3300

39.5. Ray Result Determination . 3300

40. Ray Tracing . 3302

40.1. Shader Call Instructions . 3302

40.2. Ray Tracing Commands . 3304

40.3. Shader Binding Table . 3354

40.4. Ray Tracing Pipeline Stack. 3357

40.5. Ray Tracing Capture Replay . 3358

40.6. Ray Tracing Validation . 3358

41. Memory Decompression . 3360

42. Video Coding . 3366

42.1. Video Picture Resources . 3366

42.2. Decoded Picture Buffer. 3368

42.3. Video Profiles . 3370

42.4. Video Capabilities . 3379

42.5. Video Sessions. 3388

42.6. Video Profile Compatibility . 3400

42.7. Video Session Parameters . 3402

42.8. Video Coding Scope . 3422

42.9. Video Coding Control . 3432

42.10. Inline Queries . 3436

42.11. Video Decode Operations. 3437

42.12. H.264 Decode Operations. 3454

42.13. H.265 Decode Operations. 3467

42.14. AV1 Decode Operations . 3481

42.15. Video Encode Operations. 3492

42.16. Video Encode Rate Control . 3521

42.17. H.264 Encode Operations. 3530

42.18. H.265 Encode Operations. 3563

43. Optical Flow . 3602

43.1. Optical Flow Queues . 3602

43.2. Optical Flow Image Formats . 3602

43.3. Optical Flow Session . 3605

44. Execution Graphs. 3617

44.1. Pipeline Creation . 3617

44.2. Initializing Scratch Memory . 3624

44.3. Dispatching a Graph . 3627

44.4. Shader Enqueue . 3658

45. Low Latency 2. 3660

45.1. Latency Reduction . 3660

46. Extending Vulkan . 3672

46.1. Instance and Device Functionality . 3672

46.2. Core Versions . 3672

46.3. Layers . 3676

46.4. Extensions . 3680

46.5. Extension Dependencies . 3684

46.6. Compatibility Guarantees (Informative) . 3685

47. Features . 3690

47.1. Feature Requirements . 3854

47.2. Profile Features . 3861

48. Limits . 3864

48.1. Limit Requirements. 3949

48.2. Additional Multisampling Capabilities . 3975

48.3. Profile Limits. 3976

49. Formats . 3979

49.1. Format Definition. 3979

49.2. Format Properties . 4031

49.3. Required Format Support . 4052

50. Additional Capabilities . 4074

50.1. Additional Image Capabilities . 4074

50.2. Additional Buffer Capabilities. 4100

50.3. Optional Semaphore Capabilities. 4103

50.4. Optional Fence Capabilities . 4109

50.5. Timestamp Calibration Capabilities . 4115

51. Debugging . 4117

51.1. Debug Utilities. 4120

51.2. Debug Markers . 4143

51.3. Debug Report Callbacks . 4151

51.4. Device Loss Debugging . 4160

51.5. Active Tooling Information . 4172

51.6. Frame Boundary . 4175

Appendix A: Vulkan Environment for SPIR-V. 4178

Versions and Formats . 4178

Capabilities . 4178

Validation Rules Within a Module. 4193

Precision and Operation of SPIR-V Instructions . 4223

Signedness of SPIR-V Image Accesses . 4229

Image Format and Type Matching. 4230

Compatibility Between SPIR-V Image Formats and Vulkan Formats . 4231

Ray Query Precision and Operation . 4232

Appendix B: Memory Model . 4234

Agent. 4234

Memory Location . 4234

Allocation. 4234

Memory Operation . 4235

Reference. 4235

Program-Order . 4235

Shader Call Related . 4236

Shader Call Order . 4236

Scope. 4236

Atomic Operation . 4237

Scoped Modification Order . 4237

Memory Semantics . 4238

Release Sequence. 4239

Synchronizes-With . 4240

System-Synchronizes-With . 4242

Private vs. Non-Private. 4242

Inter-Thread-Happens-Before . 4243

Happens-Before . 4243

Availability and Visibility . 4243

Availability, Visibility, and Domain Operations . 4245

Availability and Visibility Semantics . 4246

Per-Instruction Availability and Visibility Semantics. 4247

Location-Ordered . 4247

Data Race . 4248

Visible-To . 4249

Acyclicity . 4249

Shader I/O . 4250

Deallocation . 4250

Descriptions (Informative) . 4250

Tessellation Output Ordering . 4251

Cooperative Matrix Memory Access . 4251

Appendix C: Compressed Image Formats. 4253

Block-Compressed Image Formats . 4254

ETC Compressed Image Formats . 4255

ASTC Compressed Image Formats . 4256

PVRTC Compressed Image Formats. 4259

Appendix D: Core Revisions (Informative) . 4260

Version 1.3 . 4260

Version 1.2 . 4269

Version 1.1 . 4277

Version 1.0 . 4289

Appendix E: Layers & Extensions (Informative) . 4303

Extension Dependencies . 4303

Extension Interactions . 4303

List of Current Extensions . 4304

List of Provisional Extensions . 4983

List of Deprecated Extensions . 4993

Appendix F: Vulkan Roadmap Milestones . 5233

Roadmap 2022 . 5233

Roadmap 2024 . 5237

Appendix G: API Boilerplate . 5240

Vulkan Header Files . 5240

Window System-Specific Header Control (Informative) . 5244

Provisional Extension Header Control (Informative). 5246

Video Std Headers . 5246

Appendix H: Invariance . 5248

Repeatability. 5248

Multi-pass Algorithms . 5248

Invariance Rules . 5248

Tessellation Invariance . 5250

Appendix I: Lexicon. 5252

Glossary . 5252

Common Abbreviations . 5280

Video-Specific Abbreviations . 5282

Prefixes . 5283

Appendix J: Credits (Informative) . 5285

Working Group Contributors to Vulkan. 5285

Other Credits. 5293

Chapter 1. Preamble
Copyright 2014-2024 The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos.
Except as described by these terms, it or any components may not be reproduced, republished,
distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the
express prior written permission of Khronos.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification
for any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other
intellectual property rights are granted under these terms.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this Specification, including, without limitation: merchantability, fitness for a particular
purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,
timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters,
Contributors or Members, or their respective partners, officers, directors, employees, agents or
representatives be liable for any damages, whether direct, indirect, special or consequential
damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

This document contains extensions which are not ratified by Khronos, and as such is not a ratified
Specification, though it contains text from (and is a superset of) the ratified Vulkan Specification.
The ratified versions of the Vulkan Specification can be found at https://registry.khronos.org/
vulkan/specs/1.3/html/vkspec.html (core only) and https://registry.khronos.org/vulkan/specs/1.3-khr-
extensions/html/vkspec.html (core with all ratified extensions) .

This Specification contains substantially unmodified functionality from, and is a successor to,
Khronos specifications including OpenGL, OpenGL ES and OpenCL.

The Khronos Intellectual Property Rights Policy defines the terms 'Scope', 'Compliant Portion', and
'Necessary Patent Claims'.

Some parts of this Specification are purely informative and so are EXCLUDED the Scope of this
Specification. The Document Conventions section of the Introduction defines how these parts of the
Specification are identified.

Where this Specification uses technical terminology, defined in the Glossary or otherwise, that refer
to enabling technologies that are not expressly set forth in this Specification, those enabling
technologies are EXCLUDED from the Scope of this Specification. For clarity, enabling technologies
not disclosed with particularity in this Specification (e.g. semiconductor manufacturing technology,
hardware architecture, processor architecture or microarchitecture, memory architecture,
compiler technology, object oriented technology, basic operating system technology, compression
technology, algorithms, and so on) are NOT to be considered expressly set forth; only those
application program interfaces and data structures disclosed with particularity are included in the
Scope of this Specification.

For purposes of the Khronos Intellectual Property Rights Policy as it relates to the definition of

1

https://registry.khronos.org/vulkan/specs/1.3/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/vkspec.html

Necessary Patent Claims, all recommended or optional features, behaviors and functionality set
forth in this Specification, if implemented, are considered to be included as Compliant Portions.

Where this Specification identifies specific sections of external references, only those specifically
identified sections define normative functionality. The Khronos Intellectual Property Rights Policy
excludes external references to materials and associated enabling technology not created by
Khronos from the Scope of this Specification, and any licenses that may be required to implement
such referenced materials and associated technologies must be obtained separately and may
involve royalty payments.

Khronos and Vulkan are registered trademarks, and SPIR-V is a trademark of The Khronos Group
Inc. OpenCL is a trademark of Apple Inc., used under license by Khronos. OpenGL is a registered
trademark and the OpenGL ES logo is a trademark of Hewlett Packard Enterprise, used under
license by Khronos. ASTC is a trademark of ARM Holdings PLC. All other product names,
trademarks, and/or company names are used solely for identification and belong to their respective
owners.

2

Chapter 2. Introduction
This document, referred to as the “Vulkan Specification” or just the “Specification” hereafter,
describes the Vulkan Application Programming Interface (API). Vulkan is a C99 API designed for
explicit control of low-level graphics and compute functionality.

The canonical version of the Specification is available in the official Vulkan Registry
(https://registry.khronos.org/vulkan/). The source files used to generate the Vulkan specification are
stored in the Vulkan Documentation Repository (https://github.com/KhronosGroup/Vulkan-Docs).

The source repository additionally has a public issue tracker and allows the submission of pull
requests that improve the specification.

2.1. Document Conventions
The Vulkan specification is intended for use by both implementors of the API and application
developers seeking to make use of the API, forming a contract between these parties. Specification
text may address either party; typically the intended audience can be inferred from context, though
some sections are defined to address only one of these parties. (For example, Valid Usage sections
only address application developers). Any requirements, prohibitions, recommendations or options
defined by normative terminology are imposed only on the audience of that text.

Note

Structure and enumerated types defined in extensions that were promoted to core
in a later version of Vulkan are now defined in terms of the equivalent Vulkan
core interfaces. This affects the Vulkan Specification, the Vulkan header files, and
the corresponding XML Registry.

2.1.1. Ratification

Ratification of a Vulkan core version or extension is a status conferred by vote of the Khronos
Board of Promoters, bringing that core version or extension under the umbrella of the Khronos IP
Policy.

All Vulkan core versions and KHR extensions (including provisional specifications) are ratified, as
are some multi-vendor EXT extensions. Ratification status of extensions is described in the Layers &
Extensions (Informative) appendix.

Note

Ratification status is primarily of interest to IHVs developing GPU hardware and
Vulkan implementations

For developers, ratification does not necessarily mean that an extension is
“better”; has a more stable API; or is more widely supported than alternative ways
of achieving that functionality.

Interactions between ratified and non-ratified extensions are not themselves

3

http://www.open-std.org/jtc1/sc22/wg14/www/standards
https://registry.khronos.org/vulkan/
https://registry.khronos.org/vulkan/
https://github.com/KhronosGroup/Vulkan-Docs
https://github.com/KhronosGroup/Vulkan-Docs

ratified.

2.1.2. Informative Language

Some language in the specification is purely informative, intended to give background or
suggestions to implementors or developers.

If an entire chapter or section contains only informative language, its title will be suffixed with
“(Informative)”.

All NOTEs are implicitly informative.

2.1.3. Normative Terminology

Within this specification, the key words must, required, should, recommended, may, and
optional are to be interpreted as described in RFC 2119 - Key words for use in RFCs to Indicate
Requirement Levels (https://www.ietf.org/rfc/rfc2119.txt). The additional key word optionally is an
alternate form of optional, for use where grammatically appropriate.

These key words are highlighted in the specification for clarity. In text addressing application
developers, their use expresses requirements that apply to application behavior. In text addressing
implementors, their use expresses requirements that apply to implementations.

In text addressing application developers, the additional key words can and cannot are to be
interpreted as describing the capabilities of an application, as follows:

can

This word means that the application is able to perform the action described.

cannot

This word means that the API and/or the execution environment provide no mechanism through
which the application can express or accomplish the action described.

These key words are never used in text addressing implementors.

Note

There is an important distinction between cannot and must not, as used in this
Specification. Cannot means something the application literally is unable to
express or accomplish through the API, while must not means something that the
application is capable of expressing through the API, but that the consequences of
doing so are undefined and potentially unrecoverable for the implementation (see
Valid Usage).

Unless otherwise noted in the section heading, all sections and appendices in this document are
normative.

2.1.4. Technical Terminology

The Vulkan Specification makes use of common engineering and graphics terms such as Pipeline,

4

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

Shader, and Host to identify and describe Vulkan API constructs and their attributes, states, and
behaviors. The Glossary defines the basic meanings of these terms in the context of the
Specification. The Specification text provides fuller definitions of the terms and may elaborate,
extend, or clarify the Glossary definitions. When a term defined in the Glossary is used in
normative language within the Specification, the definitions within the Specification govern and
supersede any meanings the terms may have in other technical contexts (i.e. outside the
Specification).

2.1.5. Normative References

References to external documents are considered normative references if the Specification uses any
of the normative terms defined in Normative Terminology to refer to them or their requirements,
either as a whole or in part.

The following documents are referenced by normative sections of the specification:

IEEE. August, 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008.
https://dx.doi.org/10.1109/IEEESTD.2008.4610935 .

Andrew Garrard. Khronos Data Format Specification, version 1.3. https://registry.khronos.org/
DataFormat/specs/1.3/dataformat.1.3.html .

John Kessenich. SPIR-V Extended Instructions for GLSL, Version 1.00 (February 10, 2016).
https://registry.khronos.org/spir-v/ .

John Kessenich, Boaz Ouriel, and Raun Krisch. SPIR-V Specification, Version 1.5, Revision 3, Unified
(April 24, 2020). https://registry.khronos.org/spir-v/ .

ITU-T. H.264 Advanced Video Coding for Generic Audiovisual Services (August, 2021).
https://www.itu.int/rec/T-REC-H.264-202108-I/ .

ITU-T. H.265 High Efficiency Video Coding (August, 2021). https://www.itu.int/rec/T-REC-H.265-
202108-S/ .

Alliance for Open Media. AV1 Bitstream & Decoding Process Specification (January 8, 2019).
https://aomediacodec.github.io/av1-spec/av1-spec.pdf .

Jon Leech. The Khronos Vulkan API Registry (February 26, 2023). https://registry.khronos.org/
vulkan/specs/1.3/registry.html .

Jon Leech and Tobias Hector. Vulkan Documentation and Extensions: Procedures and Conventions
(February 26, 2023). https://registry.khronos.org/vulkan/specs/1.3/styleguide.html .

Architecture of the Vulkan Loader Interfaces (October, 2021). https://github.com/KhronosGroup/
Vulkan-Loader/blob/master/docs/LoaderInterfaceArchitecture.md .

5

https://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://registry.khronos.org/DataFormat/specs/1.3/dataformat.1.3.html
https://registry.khronos.org/DataFormat/specs/1.3/dataformat.1.3.html
https://registry.khronos.org/spir-v/
https://registry.khronos.org/spir-v/
https://www.itu.int/rec/T-REC-H.264-202108-I/
https://www.itu.int/rec/T-REC-H.265-202108-S/
https://www.itu.int/rec/T-REC-H.265-202108-S/
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://registry.khronos.org/vulkan/specs/1.3/registry.html
https://registry.khronos.org/vulkan/specs/1.3/registry.html
https://registry.khronos.org/vulkan/specs/1.3/styleguide.html
https://github.com/KhronosGroup/Vulkan-Loader/blob/master/docs/LoaderInterfaceArchitecture.md
https://github.com/KhronosGroup/Vulkan-Loader/blob/master/docs/LoaderInterfaceArchitecture.md

Chapter 3. Fundamentals
This chapter introduces fundamental concepts including the Vulkan architecture and execution
model, API syntax, queues, pipeline configurations, numeric representation, state and state queries,
and the different types of objects and shaders. It provides a framework for interpreting more
specific descriptions of commands and behavior in the remainder of the Specification.

3.1. Host and Device Environment
The Vulkan Specification assumes and requires: the following properties of the host environment
with respect to Vulkan implementations:

• The host must have runtime support for 8, 16, 32 and 64-bit signed and unsigned twos-
complement integers, all addressable at the granularity of their size in bytes.

• The host must have runtime support for 32- and 64-bit floating-point types satisfying the range
and precision constraints in the Floating Point Computation section.

• The representation and endianness of these types on the host must match the representation
and endianness of the same types on every physical device supported.

Note

Since a variety of data types and structures in Vulkan may be accessible by both
host and physical device operations, the implementation should be able to access
such data efficiently in both paths in order to facilitate writing portable and
performant applications.

3.2. Execution Model
This section outlines the execution model of a Vulkan system.

Vulkan exposes one or more devices, each of which exposes one or more queues which may process
work asynchronously to one another. The set of queues supported by a device is partitioned into
families. Each family supports one or more types of functionality and may contain multiple queues
with similar characteristics. Queues within a single family are considered compatible with one
another, and work produced for a family of queues can be executed on any queue within that
family. This specification defines the following types of functionality that queues may support:
graphics, compute, video decode, video encode, protected memory management, sparse memory
management, and transfer.

Note

A single device may report multiple similar queue families rather than, or as well
as, reporting multiple members of one or more of those families. This indicates
that while members of those families have similar capabilities, they are not
directly compatible with one another.

Device memory is explicitly managed by the application. Each device may advertise one or more

6

heaps, representing different areas of memory. Memory heaps are either device-local or host-local,
but are always visible to the device. Further detail about memory heaps is exposed via memory
types available on that heap. Examples of memory areas that may be available on an
implementation include:

• device-local is memory that is physically connected to the device.

• device-local, host visible is device-local memory that is visible to the host.

• host-local, host visible is memory that is local to the host and visible to the device and host.

On other architectures, there may only be a single heap that can be used for any purpose.

3.2.1. Queue Operation

Vulkan queues provide an interface to the execution engines of a device. Commands for these
execution engines are recorded into command buffers ahead of execution time, and then submitted
to a queue for execution. Once submitted to a queue, command buffers will begin and complete
execution without further application intervention, though the order of this execution is dependent
on a number of implicit and explicit ordering constraints.

Work is submitted to queues using queue submission commands that typically take the form
vkQueue* (e.g. vkQueueSubmit , vkQueueBindSparse), and can take a list of semaphores upon which
to wait before work begins and a list of semaphores to signal once work has completed. The work
itself, as well as signaling and waiting on the semaphores are all queue operations. Queue
submission commands return control to the application once queue operations have been
submitted - they do not wait for completion.

There are no implicit ordering constraints between queue operations on different queues, or
between queues and the host, so these may operate in any order with respect to each other. Explicit
ordering constraints between different queues or with the host can be expressed with semaphores
and fences.

Command buffer submissions to a single queue respect submission order and other implicit
ordering guarantees, but otherwise may overlap or execute out of order. Other types of batches and
queue submissions against a single queue (e.g. sparse memory binding) have no implicit ordering
constraints with any other queue submission or batch. Additional explicit ordering constraints
between queue submissions and individual batches can be expressed with semaphores and fences.

Before a fence or semaphore is signaled, it is guaranteed that any previously submitted queue
operations have completed execution, and that memory writes from those queue operations are
available to future queue operations. Waiting on a signaled semaphore or fence guarantees that
previous writes that are available are also visible to subsequent commands.

Command buffer boundaries, both between primary command buffers of the same or different
batches or submissions as well as between primary and secondary command buffers, do not
introduce any additional ordering constraints. In other words, submitting the set of command
buffers (which can include executing secondary command buffers) between any semaphore or
fence operations execute the recorded commands as if they had all been recorded into a single
primary command buffer, except that the current state is reset on each boundary. Explicit ordering
constraints can be expressed with explicit synchronization primitives.

7

There are a few implicit ordering guarantees between commands within a command buffer, but
only covering a subset of execution. Additional explicit ordering constraints can be expressed with
the various explicit synchronization primitives.

Note

Implementations have significant freedom to overlap execution of work submitted
to a queue, and this is common due to deep pipelining and parallelism in Vulkan
devices.

Commands recorded in command buffers can perform actions, set state that persists across
commands, synchronize other commands, or indirectly launch other commands, with some
commands fulfilling several of these roles. The “Command Properties” section for each such
command lists which of these roles the command takes:

Action

Action commands perform operations that can update values in memory. E.g. draw commands,
dispatch commands.

State

State setting commands update the current state of a command buffer, affecting the operation of
future action commands.

Synchronization

Synchronization commands impose ordering constraints on action commands, by introducing
explicit execution and memory dependencies.

Indirection

Indirection commands execute other commands which were not directly recorded in the same
command buffer.

Note

In the absence of explicit synchronization or implicit ordering guarantees, action
commands may overlap execution or execute out of order, potentially leading to
data races. However, such reordering does not affect the current state observed by
any action command. Each action command uses the state in effect at the point
where the command occurs in the command buffer, regardless of when it is
executed.

3.3. Object Model
The devices, queues, and other entities in Vulkan are represented by Vulkan objects. At the API
level, all objects are referred to by handles. There are two classes of handles, dispatchable and non-
dispatchable. Dispatchable handle types are a pointer to an opaque type. This pointer may be used
by layers as part of intercepting API commands, and thus each API command takes a dispatchable
type as its first parameter. Each object of a dispatchable type must have a unique handle value
during its lifetime.

8

Non-dispatchable handle types are a 64-bit integer type whose meaning is implementation-
dependent. If the privateData feature is enabled for a VkDevice, each object of a non-dispatchable
type created on that device must have a handle value that is unique among objects created on that
device, for the duration of the object’s lifetime. Otherwise, non-dispatchable handles may encode
object information directly in the handle rather than acting as a reference to an underlying object,
and thus may not have unique handle values. If handle values are not unique, then destroying one
such handle must not cause identical handles of other types to become invalid, and must not cause
identical handles of the same type to become invalid if that handle value has been created more
times than it has been destroyed.

All objects created or allocated from a VkDevice (i.e. with a VkDevice as the first parameter) are
private to that device, and must not be used on other devices.

3.3.1. Object Lifetime

Objects are created or allocated by vkCreate* and vkAllocate* commands, respectively. Once an
object is created or allocated, its “structure” is considered to be immutable, though the contents of
certain object types is still free to change. Objects are destroyed or freed by vkDestroy* and vkFree*
commands, respectively.

Objects that are allocated (rather than created) take resources from an existing pool object or
memory heap, and when freed return resources to that pool or heap. While object creation and
destruction are generally expected to be low-frequency occurrences during runtime, allocating and
freeing objects can occur at high frequency. Pool objects help accommodate improved performance
of the allocations and frees.

It is an application’s responsibility to track the lifetime of Vulkan objects, and not to destroy them
while they are still in use.

The ownership of application-owned memory is immediately acquired by any Vulkan command it
is passed into. Ownership of such memory must be released back to the application at the end of
the duration of the command, unless that command was deferred, so that the application can alter
or free this memory as soon as all the commands that acquired it have returned. If the command
was deferred, ownership of such memory is released back to the application when the deferred
operation is complete.

The following object types are consumed when they are passed into a Vulkan command and not
further accessed by the objects they are used to create. They must not be destroyed in the duration
of any API command they are passed into:

• VkShaderModule

• VkPipelineCache

• VkValidationCacheEXT

A VkRenderPass or VkPipelineLayout object passed as a parameter to create another object is not
further accessed by that object after the duration of the command it is passed into. A VkRenderPass
used in a command buffer follows the rules described below.

VkDescriptorSetLayout objects may be accessed by commands that operate on descriptor sets

9

allocated using that layout, and those descriptor sets must not be updated with
vkUpdateDescriptorSets after the descriptor set layout has been destroyed. Otherwise, a
VkDescriptorSetLayout object passed as a parameter to create another object is not further accessed
by that object after the duration of the command it is passed into.

The application must not destroy any other type of Vulkan object until all uses of that object by the
device (such as via command buffer execution) have completed.

The following Vulkan objects must not be destroyed while any command buffers using the object
are in the pending state:

• VkEvent

• VkQueryPool

• VkBuffer

• VkBufferView

• VkImage

• VkImageView

• VkPipeline

• VkSampler

• VkSamplerYcbcrConversion

• VkDescriptorPool

• VkFramebuffer

• VkRenderPass

• VkCommandBuffer

• VkCommandPool

• VkDeviceMemory

• VkDescriptorSet

• VkIndirectCommandsLayoutNV

• VkAccelerationStructureNV

• VkAccelerationStructureKHR

• VkVideoSessionKHR

• VkVideoSessionParametersKHR

Destroying these objects will move any command buffers that are in the recording or executable
state, and are using those objects, to the invalid state.

The following Vulkan objects must not be destroyed while any queue is executing commands that
use the object:

• VkFence

• VkSemaphore

10

• VkCommandBuffer

• VkCommandPool

In general, objects can be destroyed or freed in any order, even if the object being freed is involved
in the use of another object (e.g. use of a resource in a view, use of a view in a descriptor set, use of
a pipeline library in another pipeline, use of a referenced pipeline for additional graphics shader
groups in another pipeline, use of a bottom level acceleration structure in an instance referenced
by a top level acceleration structure, use of an object in a command buffer, binding of a memory
allocation to a resource), as long as any object that uses the freed object is not further used in any
way except to be destroyed or to be reset in such a way that it no longer uses the other object (such
as resetting a command buffer). If the object has been reset, then it can be used as if it never used
the freed object. An exception to this is when there is a parent/child relationship between objects.
In this case, the application must not destroy a parent object before its children, except when the
parent is explicitly defined to free its children when it is destroyed (e.g. for pool objects, as defined
below).

VkCommandPool objects are parents of VkCommandBuffer objects. VkDescriptorPool objects are parents of
VkDescriptorSet objects. VkDevice objects are parents of many object types (all that take a VkDevice
as a parameter to their creation).

The following Vulkan objects have specific restrictions for when they can be destroyed:

• VkQueue objects cannot be explicitly destroyed. Instead, they are implicitly destroyed when the
VkDevice object they are retrieved from is destroyed.

• Destroying a pool object implicitly frees all objects allocated from that pool. Specifically,
destroying VkCommandPool frees all VkCommandBuffer objects that were allocated from it, and
destroying VkDescriptorPool frees all VkDescriptorSet objects that were allocated from it.

• VkDevice objects can be destroyed when all VkQueue objects retrieved from them are idle, and all
objects created from them have been destroyed.

◦ This includes the following objects:

▪ VkFence

▪ VkSemaphore

▪ VkEvent

▪ VkQueryPool

▪ VkBuffer

▪ VkBufferView

▪ VkImage

▪ VkImageView

▪ VkShaderModule

▪ VkPipelineCache

▪ VkPipeline

▪ VkPipelineLayout

11

▪ VkSampler

▪ VkSamplerYcbcrConversion

▪ VkDescriptorSetLayout

▪ VkDescriptorPool

▪ VkFramebuffer

▪ VkRenderPass

▪ VkCommandPool

▪ VkCommandBuffer

▪ VkDeviceMemory

▪ VkValidationCacheEXT

▪ VkAccelerationStructureNV

▪ VkAccelerationStructureKHR

▪ VkVideoSessionKHR

▪ VkVideoSessionParametersKHR

• VkPhysicalDevice objects cannot be explicitly destroyed. Instead, they are implicitly destroyed
when the VkInstance object they are retrieved from is destroyed.

• VkInstance objects can be destroyed once all VkDevice objects created from any of its
VkPhysicalDevice objects have been destroyed.

3.3.2. External Object Handles

As defined above, the scope of object handles created or allocated from a VkDevice is limited to that
logical device. Objects which are not in scope are said to be external. To bring an external object
into scope, an external handle must be exported from the object in the source scope and imported
into the destination scope.

Note

The scope of external handles and their associated resources may vary according
to their type, but they can generally be shared across process and API boundaries.

3.4. Application Binary Interface
The mechanism by which Vulkan is made available to applications is platform- or implementation-
defined. On many platforms the C interface described in this Specification is provided by a shared
library. Since shared libraries can be changed independently of the applications that use them, they
present particular compatibility challenges, and this Specification places some requirements on
them.

Shared library implementations must use the default Application Binary Interface (ABI) of the
standard C compiler for the platform, or provide customized API headers that cause application
code to use the implementation’s non-default ABI. An ABI in this context means the size, alignment,

12

and layout of C data types; the procedure calling convention; and the naming convention for shared
library symbols corresponding to C functions. Customizing the calling convention for a platform is
usually accomplished by defining calling convention macros appropriately in vk_platform.h.

On platforms where Vulkan is provided as a shared library, library symbols beginning with “vk”
and followed by a digit or uppercase letter are reserved for use by the implementation.
Applications which use Vulkan must not provide definitions of these symbols. This allows the
Vulkan shared library to be updated with additional symbols for new API versions or extensions
without causing symbol conflicts with existing applications.

Shared library implementations should provide library symbols for commands in the highest
version of this Specification they support, and for Window System Integration extensions relevant
to the platform. They may also provide library symbols for commands defined by additional
extensions.

Note

These requirements and recommendations are intended to allow implementors to
take advantage of platform-specific conventions for SDKs, ABIs, library versioning
mechanisms, etc. while still minimizing the code changes necessary to port
applications or libraries between platforms. Platform vendors, or providers of the
de facto standard Vulkan shared library for a platform, are encouraged to
document what symbols the shared library provides and how it will be versioned
when new symbols are added.

Applications should only rely on shared library symbols for commands in the
minimum core version required by the application. vkGetInstanceProcAddr and
vkGetDeviceProcAddr should be used to obtain function pointers for commands in
core versions beyond the application’s minimum required version.

3.5. Command Syntax and Duration
The Specification describes Vulkan commands as functions or procedures using C99 syntax.
Language bindings for other languages such as C++ and JavaScript may allow for stricter parameter
passing, or object-oriented interfaces.

Vulkan uses the standard C types for the base type of scalar parameters (e.g. types from <stdint.h>),
with exceptions described below, or elsewhere in the text when appropriate:

VkBool32 represents boolean True and False values, since C does not have a sufficiently portable
built-in boolean type:

// Provided by VK_VERSION_1_0
typedef uint32_t VkBool32;

VK_TRUE represents a boolean True (unsigned integer 1) value, and VK_FALSE a boolean False
(unsigned integer 0) value.

13

All values returned from a Vulkan implementation in a VkBool32 will be either VK_TRUE or VK_FALSE.

Applications must not pass any other values than VK_TRUE or VK_FALSE into a Vulkan implementation
where a VkBool32 is expected.

VK_TRUE is a constant representing a VkBool32 True value.

#define VK_TRUE 1U

VK_FALSE is a constant representing a VkBool32 False value.

#define VK_FALSE 0U

VkDeviceSize represents device memory size and offset values:

// Provided by VK_VERSION_1_0
typedef uint64_t VkDeviceSize;

VkDeviceAddress represents device buffer address values:

// Provided by VK_VERSION_1_0
typedef uint64_t VkDeviceAddress;

Commands that create Vulkan objects are of the form vkCreate* and take Vk*CreateInfo structures
with the parameters needed to create the object. These Vulkan objects are destroyed with
commands of the form vkDestroy*.

The last in-parameter to each command that creates or destroys a Vulkan object is pAllocator. The
pAllocator parameter can be set to a non-NULL value such that allocations for the given object are
delegated to an application provided callback; refer to the Memory Allocation chapter for further
details.

Commands that allocate Vulkan objects owned by pool objects are of the form vkAllocate*, and take
Vk*AllocateInfo structures. These Vulkan objects are freed with commands of the form vkFree*.
These objects do not take allocators; if host memory is needed, they will use the allocator that was
specified when their parent pool was created.

Commands are recorded into a command buffer by calling API commands of the form vkCmd*. Each
such command may have different restrictions on where it can be used: in a primary and/or
secondary command buffer, inside and/or outside a render pass, and in one or more of the
supported queue types. These restrictions are documented together with the definition of each such
command.

The duration of a Vulkan command refers to the interval between calling the command and its
return to the caller.

14

3.5.1. Lifetime of Retrieved Results

Information is retrieved from the implementation with commands of the form vkGet* and
vkEnumerate*.

Unless otherwise specified for an individual command, the results are invariant; that is, they will
remain unchanged when retrieved again by calling the same command with the same parameters,
so long as those parameters themselves all remain valid.

3.6. Threading Behavior
Vulkan is intended to provide scalable performance when used on multiple host threads. All
commands support being called concurrently from multiple threads, but certain parameters, or
components of parameters are defined to be externally synchronized. This means that the caller
must guarantee that no more than one thread is using such a parameter at a given time.

More precisely, Vulkan commands use simple stores to update the state of Vulkan objects. A
parameter declared as externally synchronized may have its contents updated at any time during
the host execution of the command. If two commands operate on the same object and at least one of
the commands declares the object to be externally synchronized, then the caller must guarantee
not only that the commands do not execute simultaneously, but also that the two commands are
separated by an appropriate memory barrier (if needed).

Note

Memory barriers are particularly relevant for hosts based on the ARM CPU
architecture, which is more weakly ordered than many developers are accustomed
to from x86/x64 programming. Fortunately, most higher-level synchronization
primitives (like the pthread library) perform memory barriers as a part of mutual
exclusion, so mutexing Vulkan objects via these primitives will have the desired
effect.

Similarly the application must avoid any potential data hazard of application-owned memory that
has its ownership temporarily acquired by a Vulkan command. While the ownership of application-
owned memory remains acquired by a command the implementation may read the memory at any
point, and it may write non-const qualified memory at any point. Parameters referring to non-const
qualified application-owned memory are not marked explicitly as externally synchronized in the
Specification.

If an application is using deferred host operations in a command, and that operation is successfully
deferred, object parameters and application-owned memory passed to that command may be
accessed at any time until the deferred operation is complete.

Many object types are immutable, meaning the objects cannot change once they have been created.
These types of objects never need external synchronization, except that they must not be destroyed
while they are in use on another thread. In certain special cases mutable object parameters are
internally synchronized, making external synchronization unnecessary. Any command parameters
that are not labeled as externally synchronized are either not mutated by the command or are
internally synchronized. Additionally, certain objects related to a command’s parameters (e.g.

15

command pools and descriptor pools) may be affected by a command, and must also be externally
synchronized. These implicit parameters are documented as described below.

Parameters of commands that are externally synchronized are listed below.

Externally Synchronized Parameters

• The instance parameter in vkDestroyInstance

• The device parameter in vkDestroyDevice

• The queue parameter in vkQueueSubmit

• The fence parameter in vkQueueSubmit

• The queue parameter in vkQueueWaitIdle

• The memory parameter in vkFreeMemory

• The memory parameter in vkMapMemory

• The memory parameter in vkUnmapMemory

• The buffer parameter in vkBindBufferMemory

• The image parameter in vkBindImageMemory

• The queue parameter in vkQueueBindSparse

• The fence parameter in vkQueueBindSparse

• The fence parameter in vkDestroyFence

• The semaphore parameter in vkDestroySemaphore

• The event parameter in vkDestroyEvent

• The event parameter in vkSetEvent

• The event parameter in vkResetEvent

• The queryPool parameter in vkDestroyQueryPool

• The buffer parameter in vkDestroyBuffer

• The bufferView parameter in vkDestroyBufferView

• The image parameter in vkDestroyImage

• The imageView parameter in vkDestroyImageView

• The shaderModule parameter in vkDestroyShaderModule

• The pipelineCache parameter in vkDestroyPipelineCache

• The dstCache parameter in vkMergePipelineCaches

• The pipeline parameter in vkDestroyPipeline

• The pipelineLayout parameter in vkDestroyPipelineLayout

• The sampler parameter in vkDestroySampler

• The descriptorSetLayout parameter in vkDestroyDescriptorSetLayout

16

• The descriptorPool parameter in vkDestroyDescriptorPool

• The descriptorPool parameter in vkResetDescriptorPool

• The descriptorPool member of the pAllocateInfo parameter in vkAllocateDescriptorSets

• The descriptorPool parameter in vkFreeDescriptorSets

• The framebuffer parameter in vkDestroyFramebuffer

• The renderPass parameter in vkDestroyRenderPass

• The commandPool parameter in vkDestroyCommandPool

• The commandPool parameter in vkResetCommandPool

• The commandPool member of the pAllocateInfo parameter in vkAllocateCommandBuffers

• The commandPool parameter in vkFreeCommandBuffers

• The commandBuffer parameter in vkBeginCommandBuffer

• The commandBuffer parameter in vkEndCommandBuffer

• The commandBuffer parameter in vkResetCommandBuffer

• The commandBuffer parameter in vkCmdBindPipeline

• The commandBuffer parameter in vkCmdSetViewport

• The commandBuffer parameter in vkCmdSetScissor

• The commandBuffer parameter in vkCmdSetLineWidth

• The commandBuffer parameter in vkCmdSetDepthBias

• The commandBuffer parameter in vkCmdSetBlendConstants

• The commandBuffer parameter in vkCmdSetDepthBounds

• The commandBuffer parameter in vkCmdSetStencilCompareMask

• The commandBuffer parameter in vkCmdSetStencilWriteMask

• The commandBuffer parameter in vkCmdSetStencilReference

• The commandBuffer parameter in vkCmdBindDescriptorSets

• The commandBuffer parameter in vkCmdBindIndexBuffer

• The commandBuffer parameter in vkCmdBindVertexBuffers

• The commandBuffer parameter in vkCmdDraw

• The commandBuffer parameter in vkCmdDrawIndexed

• The commandBuffer parameter in vkCmdDrawIndirect

• The commandBuffer parameter in vkCmdDrawIndexedIndirect

• The commandBuffer parameter in vkCmdDispatch

• The commandBuffer parameter in vkCmdDispatchIndirect

• The commandBuffer parameter in vkCmdCopyBuffer

• The commandBuffer parameter in vkCmdCopyImage

• The commandBuffer parameter in vkCmdBlitImage

17

• The commandBuffer parameter in vkCmdCopyBufferToImage

• The commandBuffer parameter in vkCmdCopyImageToBuffer

• The commandBuffer parameter in vkCmdUpdateBuffer

• The commandBuffer parameter in vkCmdFillBuffer

• The commandBuffer parameter in vkCmdClearColorImage

• The commandBuffer parameter in vkCmdClearDepthStencilImage

• The commandBuffer parameter in vkCmdClearAttachments

• The commandBuffer parameter in vkCmdResolveImage

• The commandBuffer parameter in vkCmdSetEvent

• The commandBuffer parameter in vkCmdResetEvent

• The commandBuffer parameter in vkCmdWaitEvents

• The commandBuffer parameter in vkCmdPipelineBarrier

• The commandBuffer parameter in vkCmdBeginQuery

• The commandBuffer parameter in vkCmdEndQuery

• The commandBuffer parameter in vkCmdResetQueryPool

• The commandBuffer parameter in vkCmdWriteTimestamp

• The commandBuffer parameter in vkCmdCopyQueryPoolResults

• The commandBuffer parameter in vkCmdPushConstants

• The commandBuffer parameter in vkCmdBeginRenderPass

• The commandBuffer parameter in vkCmdNextSubpass

• The commandBuffer parameter in vkCmdEndRenderPass

• The commandBuffer parameter in vkCmdExecuteCommands

• The commandBuffer parameter in vkCmdSetDeviceMask

• The commandBuffer parameter in vkCmdDispatchBase

• The commandPool parameter in vkTrimCommandPool

• The ycbcrConversion parameter in vkDestroySamplerYcbcrConversion

• The descriptorUpdateTemplate parameter in vkDestroyDescriptorUpdateTemplate

• The commandBuffer parameter in vkCmdDrawIndirectCount

• The commandBuffer parameter in vkCmdDrawIndexedIndirectCount

• The commandBuffer parameter in vkCmdBeginRenderPass2

• The commandBuffer parameter in vkCmdNextSubpass2

• The commandBuffer parameter in vkCmdEndRenderPass2

• The privateDataSlot parameter in vkDestroyPrivateDataSlot

• The commandBuffer parameter in vkCmdSetEvent2

• The commandBuffer parameter in vkCmdResetEvent2

18

• The commandBuffer parameter in vkCmdWaitEvents2

• The commandBuffer parameter in vkCmdPipelineBarrier2

• The commandBuffer parameter in vkCmdWriteTimestamp2

• The queue parameter in vkQueueSubmit2

• The fence parameter in vkQueueSubmit2

• The commandBuffer parameter in vkCmdCopyBuffer2

• The commandBuffer parameter in vkCmdCopyImage2

• The commandBuffer parameter in vkCmdCopyBufferToImage2

• The commandBuffer parameter in vkCmdCopyImageToBuffer2

• The commandBuffer parameter in vkCmdBlitImage2

• The commandBuffer parameter in vkCmdResolveImage2

• The commandBuffer parameter in vkCmdBeginRendering

• The commandBuffer parameter in vkCmdEndRendering

• The commandBuffer parameter in vkCmdSetCullMode

• The commandBuffer parameter in vkCmdSetFrontFace

• The commandBuffer parameter in vkCmdSetPrimitiveTopology

• The commandBuffer parameter in vkCmdSetViewportWithCount

• The commandBuffer parameter in vkCmdSetScissorWithCount

• The commandBuffer parameter in vkCmdBindVertexBuffers2

• The commandBuffer parameter in vkCmdSetDepthTestEnable

• The commandBuffer parameter in vkCmdSetDepthWriteEnable

• The commandBuffer parameter in vkCmdSetDepthCompareOp

• The commandBuffer parameter in vkCmdSetDepthBoundsTestEnable

• The commandBuffer parameter in vkCmdSetStencilTestEnable

• The commandBuffer parameter in vkCmdSetStencilOp

• The commandBuffer parameter in vkCmdSetRasterizerDiscardEnable

• The commandBuffer parameter in vkCmdSetDepthBiasEnable

• The commandBuffer parameter in vkCmdSetPrimitiveRestartEnable

• The surface parameter in vkDestroySurfaceKHR

• The surface member of the pCreateInfo parameter in vkCreateSwapchainKHR

• The oldSwapchain member of the pCreateInfo parameter in vkCreateSwapchainKHR

• The swapchain parameter in vkDestroySwapchainKHR

• The swapchain parameter in vkAcquireNextImageKHR

• The semaphore parameter in vkAcquireNextImageKHR

• The fence parameter in vkAcquireNextImageKHR

19

• The queue parameter in vkQueuePresentKHR

• The surface parameter in vkGetDeviceGroupSurfacePresentModesKHR

• The surface parameter in vkGetPhysicalDevicePresentRectanglesKHR

• The display parameter in vkCreateDisplayModeKHR

• The mode parameter in vkGetDisplayPlaneCapabilitiesKHR

• The videoSession parameter in vkDestroyVideoSessionKHR

• The videoSession parameter in vkBindVideoSessionMemoryKHR

• The videoSessionParameters parameter in vkDestroyVideoSessionParametersKHR

• The commandBuffer parameter in vkCmdBeginVideoCodingKHR

• The commandBuffer parameter in vkCmdEndVideoCodingKHR

• The commandBuffer parameter in vkCmdControlVideoCodingKHR

• The commandBuffer parameter in vkCmdDecodeVideoKHR

• The commandBuffer parameter in vkCmdBeginRenderingKHR

• The commandBuffer parameter in vkCmdEndRenderingKHR

• The commandBuffer parameter in vkCmdSetDeviceMaskKHR

• The commandBuffer parameter in vkCmdDispatchBaseKHR

• The commandPool parameter in vkTrimCommandPoolKHR

• The commandBuffer parameter in vkCmdPushDescriptorSetKHR

• The commandBuffer parameter in vkCmdPushDescriptorSetWithTemplateKHR

• The descriptorUpdateTemplate parameter in vkDestroyDescriptorUpdateTemplateKHR

• The commandBuffer parameter in vkCmdBeginRenderPass2KHR

• The commandBuffer parameter in vkCmdNextSubpass2KHR

• The commandBuffer parameter in vkCmdEndRenderPass2KHR

• The swapchain parameter in vkGetSwapchainStatusKHR

• The ycbcrConversion parameter in vkDestroySamplerYcbcrConversionKHR

• The commandBuffer parameter in vkCmdDrawIndirectCountKHR

• The commandBuffer parameter in vkCmdDrawIndexedIndirectCountKHR

• The commandBuffer parameter in vkCmdSetFragmentShadingRateKHR

• The commandBuffer parameter in vkCmdSetRenderingAttachmentLocationsKHR

• The commandBuffer parameter in vkCmdSetRenderingInputAttachmentIndicesKHR

• The swapchain parameter in vkWaitForPresentKHR

• The operation parameter in vkDestroyDeferredOperationKHR

• The commandBuffer parameter in vkCmdEncodeVideoKHR

• The commandBuffer parameter in vkCmdSetEvent2KHR

• The commandBuffer parameter in vkCmdResetEvent2KHR

20

• The commandBuffer parameter in vkCmdWaitEvents2KHR

• The commandBuffer parameter in vkCmdPipelineBarrier2KHR

• The commandBuffer parameter in vkCmdWriteTimestamp2KHR

• The queue parameter in vkQueueSubmit2KHR

• The fence parameter in vkQueueSubmit2KHR

• The commandBuffer parameter in vkCmdWriteBufferMarker2AMD

• The commandBuffer parameter in vkCmdCopyBuffer2KHR

• The commandBuffer parameter in vkCmdCopyImage2KHR

• The commandBuffer parameter in vkCmdCopyBufferToImage2KHR

• The commandBuffer parameter in vkCmdCopyImageToBuffer2KHR

• The commandBuffer parameter in vkCmdBlitImage2KHR

• The commandBuffer parameter in vkCmdResolveImage2KHR

• The commandBuffer parameter in vkCmdTraceRaysIndirect2KHR

• The commandBuffer parameter in vkCmdBindIndexBuffer2KHR

• The commandBuffer parameter in vkCmdSetLineStippleKHR

• The commandBuffer parameter in vkCmdBindDescriptorSets2KHR

• The commandBuffer parameter in vkCmdPushConstants2KHR

• The commandBuffer parameter in vkCmdPushDescriptorSet2KHR

• The commandBuffer parameter in vkCmdPushDescriptorSetWithTemplate2KHR

• The commandBuffer parameter in vkCmdSetDescriptorBufferOffsets2EXT

• The commandBuffer parameter in vkCmdBindDescriptorBufferEmbeddedSamplers2EXT

• The callback parameter in vkDestroyDebugReportCallbackEXT

• The object member of the pTagInfo parameter in vkDebugMarkerSetObjectTagEXT

• The object member of the pNameInfo parameter in vkDebugMarkerSetObjectNameEXT

• The commandBuffer parameter in vkCmdDebugMarkerBeginEXT

• The commandBuffer parameter in vkCmdDebugMarkerEndEXT

• The commandBuffer parameter in vkCmdDebugMarkerInsertEXT

• The commandBuffer parameter in vkCmdBindTransformFeedbackBuffersEXT

• The commandBuffer parameter in vkCmdBeginTransformFeedbackEXT

• The commandBuffer parameter in vkCmdEndTransformFeedbackEXT

• The commandBuffer parameter in vkCmdBeginQueryIndexedEXT

• The commandBuffer parameter in vkCmdEndQueryIndexedEXT

• The commandBuffer parameter in vkCmdDrawIndirectByteCountEXT

• The commandBuffer parameter in vkCmdDrawIndirectCountAMD

• The commandBuffer parameter in vkCmdDrawIndexedIndirectCountAMD

21

• The commandBuffer parameter in vkCmdBeginConditionalRenderingEXT

• The commandBuffer parameter in vkCmdEndConditionalRenderingEXT

• The commandBuffer parameter in vkCmdSetViewportWScalingNV

• The swapchain parameter in vkGetRefreshCycleDurationGOOGLE

• The swapchain parameter in vkGetPastPresentationTimingGOOGLE

• The commandBuffer parameter in vkCmdSetDiscardRectangleEXT

• The commandBuffer parameter in vkCmdSetDiscardRectangleEnableEXT

• The commandBuffer parameter in vkCmdSetDiscardRectangleModeEXT

• The objectHandle member of the pNameInfo parameter in vkSetDebugUtilsObjectNameEXT

• The objectHandle member of the pTagInfo parameter in vkSetDebugUtilsObjectTagEXT

• The commandBuffer parameter in vkCmdBeginDebugUtilsLabelEXT

• The commandBuffer parameter in vkCmdEndDebugUtilsLabelEXT

• The commandBuffer parameter in vkCmdInsertDebugUtilsLabelEXT

• The messenger parameter in vkDestroyDebugUtilsMessengerEXT

• The commandBuffer parameter in vkCmdSetSampleLocationsEXT

• The validationCache parameter in vkDestroyValidationCacheEXT

• The dstCache parameter in vkMergeValidationCachesEXT

• The commandBuffer parameter in vkCmdBindShadingRateImageNV

• The commandBuffer parameter in vkCmdSetViewportShadingRatePaletteNV

• The commandBuffer parameter in vkCmdSetCoarseSampleOrderNV

• The accelerationStructure parameter in vkDestroyAccelerationStructureNV

• The commandBuffer parameter in vkCmdBuildAccelerationStructureNV

• The commandBuffer parameter in vkCmdCopyAccelerationStructureNV

• The commandBuffer parameter in vkCmdTraceRaysNV

• The commandBuffer parameter in vkCmdWriteAccelerationStructuresPropertiesNV

• The commandBuffer parameter in vkCmdWriteBufferMarkerAMD

• The commandBuffer parameter in vkCmdDrawMeshTasksNV

• The commandBuffer parameter in vkCmdDrawMeshTasksIndirectNV

• The commandBuffer parameter in vkCmdDrawMeshTasksIndirectCountNV

• The commandBuffer parameter in vkCmdSetExclusiveScissorEnableNV

• The commandBuffer parameter in vkCmdSetExclusiveScissorNV

• The commandBuffer parameter in vkCmdSetCheckpointNV

• The commandBuffer parameter in vkCmdSetPerformanceMarkerINTEL

• The commandBuffer parameter in vkCmdSetPerformanceStreamMarkerINTEL

• The commandBuffer parameter in vkCmdSetPerformanceOverrideINTEL

22

• The configuration parameter in vkReleasePerformanceConfigurationINTEL

• The commandBuffer parameter in vkCmdSetLineStippleEXT

• The commandBuffer parameter in vkCmdSetCullModeEXT

• The commandBuffer parameter in vkCmdSetFrontFaceEXT

• The commandBuffer parameter in vkCmdSetPrimitiveTopologyEXT

• The commandBuffer parameter in vkCmdSetViewportWithCountEXT

• The commandBuffer parameter in vkCmdSetScissorWithCountEXT

• The commandBuffer parameter in vkCmdBindVertexBuffers2EXT

• The commandBuffer parameter in vkCmdSetDepthTestEnableEXT

• The commandBuffer parameter in vkCmdSetDepthWriteEnableEXT

• The commandBuffer parameter in vkCmdSetDepthCompareOpEXT

• The commandBuffer parameter in vkCmdSetDepthBoundsTestEnableEXT

• The commandBuffer parameter in vkCmdSetStencilTestEnableEXT

• The commandBuffer parameter in vkCmdSetStencilOpEXT

• The commandBuffer parameter in vkCmdPreprocessGeneratedCommandsNV

• The commandBuffer parameter in vkCmdExecuteGeneratedCommandsNV

• The commandBuffer parameter in vkCmdBindPipelineShaderGroupNV

• The indirectCommandsLayout parameter in vkDestroyIndirectCommandsLayoutNV

• The commandBuffer parameter in vkCmdSetDepthBias2EXT

• The privateDataSlot parameter in vkDestroyPrivateDataSlotEXT

• The commandBuffer parameter in vkCmdBindDescriptorBuffersEXT

• The commandBuffer parameter in vkCmdSetDescriptorBufferOffsetsEXT

• The commandBuffer parameter in vkCmdBindDescriptorBufferEmbeddedSamplersEXT

• The commandBuffer parameter in vkCmdSetFragmentShadingRateEnumNV

• The commandBuffer parameter in vkCmdSetVertexInputEXT

• The commandBuffer parameter in vkCmdSubpassShadingHUAWEI

• The commandBuffer parameter in vkCmdBindInvocationMaskHUAWEI

• The commandBuffer parameter in vkCmdSetPatchControlPointsEXT

• The commandBuffer parameter in vkCmdSetRasterizerDiscardEnableEXT

• The commandBuffer parameter in vkCmdSetDepthBiasEnableEXT

• The commandBuffer parameter in vkCmdSetLogicOpEXT

• The commandBuffer parameter in vkCmdSetPrimitiveRestartEnableEXT

• The commandBuffer parameter in vkCmdSetColorWriteEnableEXT

• The commandBuffer parameter in vkCmdDrawMultiEXT

• The commandBuffer parameter in vkCmdDrawMultiIndexedEXT

23

• The micromap parameter in vkDestroyMicromapEXT

• The commandBuffer parameter in vkCmdBuildMicromapsEXT

• The commandBuffer parameter in vkCmdCopyMicromapEXT

• The commandBuffer parameter in vkCmdCopyMicromapToMemoryEXT

• The commandBuffer parameter in vkCmdCopyMemoryToMicromapEXT

• The commandBuffer parameter in vkCmdWriteMicromapsPropertiesEXT

• The commandBuffer parameter in vkCmdDrawClusterHUAWEI

• The commandBuffer parameter in vkCmdDrawClusterIndirectHUAWEI

• The commandBuffer parameter in vkCmdCopyMemoryIndirectNV

• The commandBuffer parameter in vkCmdCopyMemoryToImageIndirectNV

• The commandBuffer parameter in vkCmdDecompressMemoryNV

• The commandBuffer parameter in vkCmdDecompressMemoryIndirectCountNV

• The commandBuffer parameter in vkCmdUpdatePipelineIndirectBufferNV

• The commandBuffer parameter in vkCmdSetDepthClampEnableEXT

• The commandBuffer parameter in vkCmdSetPolygonModeEXT

• The commandBuffer parameter in vkCmdSetRasterizationSamplesEXT

• The commandBuffer parameter in vkCmdSetSampleMaskEXT

• The commandBuffer parameter in vkCmdSetAlphaToCoverageEnableEXT

• The commandBuffer parameter in vkCmdSetAlphaToOneEnableEXT

• The commandBuffer parameter in vkCmdSetLogicOpEnableEXT

• The commandBuffer parameter in vkCmdSetColorBlendEnableEXT

• The commandBuffer parameter in vkCmdSetColorBlendEquationEXT

• The commandBuffer parameter in vkCmdSetColorWriteMaskEXT

• The commandBuffer parameter in vkCmdSetTessellationDomainOriginEXT

• The commandBuffer parameter in vkCmdSetRasterizationStreamEXT

• The commandBuffer parameter in vkCmdSetConservativeRasterizationModeEXT

• The commandBuffer parameter in vkCmdSetExtraPrimitiveOverestimationSizeEXT

• The commandBuffer parameter in vkCmdSetDepthClipEnableEXT

• The commandBuffer parameter in vkCmdSetSampleLocationsEnableEXT

• The commandBuffer parameter in vkCmdSetColorBlendAdvancedEXT

• The commandBuffer parameter in vkCmdSetProvokingVertexModeEXT

• The commandBuffer parameter in vkCmdSetLineRasterizationModeEXT

• The commandBuffer parameter in vkCmdSetLineStippleEnableEXT

• The commandBuffer parameter in vkCmdSetDepthClipNegativeOneToOneEXT

• The commandBuffer parameter in vkCmdSetViewportWScalingEnableNV

24

• The commandBuffer parameter in vkCmdSetViewportSwizzleNV

• The commandBuffer parameter in vkCmdSetCoverageToColorEnableNV

• The commandBuffer parameter in vkCmdSetCoverageToColorLocationNV

• The commandBuffer parameter in vkCmdSetCoverageModulationModeNV

• The commandBuffer parameter in vkCmdSetCoverageModulationTableEnableNV

• The commandBuffer parameter in vkCmdSetCoverageModulationTableNV

• The commandBuffer parameter in vkCmdSetShadingRateImageEnableNV

• The commandBuffer parameter in vkCmdSetRepresentativeFragmentTestEnableNV

• The commandBuffer parameter in vkCmdSetCoverageReductionModeNV

• The shader parameter in vkDestroyShaderEXT

• The commandBuffer parameter in vkCmdBindShadersEXT

• The commandBuffer parameter in vkCmdSetAttachmentFeedbackLoopEnableEXT

• The accelerationStructure parameter in vkDestroyAccelerationStructureKHR

• The commandBuffer parameter in vkCmdBuildAccelerationStructuresKHR

• The commandBuffer parameter in vkCmdBuildAccelerationStructuresIndirectKHR

• The commandBuffer parameter in vkCmdCopyAccelerationStructureKHR

• The commandBuffer parameter in vkCmdCopyAccelerationStructureToMemoryKHR

• The commandBuffer parameter in vkCmdCopyMemoryToAccelerationStructureKHR

• The commandBuffer parameter in vkCmdWriteAccelerationStructuresPropertiesKHR

• The commandBuffer parameter in vkCmdTraceRaysKHR

• The commandBuffer parameter in vkCmdTraceRaysIndirectKHR

• The commandBuffer parameter in vkCmdSetRayTracingPipelineStackSizeKHR

• The commandBuffer parameter in vkCmdDrawMeshTasksEXT

• The commandBuffer parameter in vkCmdDrawMeshTasksIndirectEXT

• The commandBuffer parameter in vkCmdDrawMeshTasksIndirectCountEXT

For VkPipelineCache objects created with flags containing
VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT, the above table is extended with the
pipelineCache parameter to vkCreate*Pipelines being externally synchronized.

There are also a few instances where a command can take in a user allocated list whose contents
are externally synchronized parameters. In these cases, the caller must guarantee that at most one
thread is using a given element within the list at a given time. These parameters are listed below.

Externally Synchronized Parameter Lists

• Each element of the pFences parameter in vkResetFences

25

• Each element of the pDescriptorSets parameter in vkFreeDescriptorSets

• Each element of the pCommandBuffers parameter in vkFreeCommandBuffers

• Each element of the pWaitSemaphores member of the pPresentInfo parameter in
vkQueuePresentKHR

• Each element of the pSwapchains member of the pPresentInfo parameter in
vkQueuePresentKHR

• The surface member of each element of the pCreateInfos parameter in
vkCreateSharedSwapchainsKHR

• The oldSwapchain member of each element of the pCreateInfos parameter in
vkCreateSharedSwapchainsKHR

In addition, there are some implicit parameters that need to be externally synchronized. For
example, when a commandBuffer parameter needs to be externally synchronized, it implies that the
commandPool from which that command buffer was allocated also needs to be externally
synchronized. The implicit parameters and their associated object are listed below.

Implicit Externally Synchronized Parameters

• All VkPhysicalDevice objects enumerated from instance in vkDestroyInstance

• All VkQueue objects created from device in vkDestroyDevice

• All VkQueue objects created from device in vkDeviceWaitIdle

• Any VkDescriptorSet objects allocated from descriptorPool in vkResetDescriptorPool

• The VkCommandPool that commandBuffer was allocated from in vkBeginCommandBuffer

• The VkCommandPool that commandBuffer was allocated from in vkEndCommandBuffer

• The VkCommandPool that commandBuffer was allocated from in vkResetCommandBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindPipeline

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewport

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetScissor

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLineWidth

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBias

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetBlendConstants

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBounds

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetStencilCompareMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilWriteMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilReference

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindDescriptorSets

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindIndexBuffer

26

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindVertexBuffers

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDraw

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexed

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexedIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatch

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBlitImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBufferToImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImageToBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdUpdateBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdFillBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearColorImage

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdClearDepthStencilImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearAttachments

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResolveImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPipelineBarrier

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginQuery

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndQuery

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetQueryPool

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyQueryPoolResults

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPushConstants

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdNextSubpass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdExecuteCommands

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDeviceMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchBase

27

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndirectCount

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawIndexedIndirectCount

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdNextSubpass2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPipelineBarrier2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBuffer2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImage2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBufferToImage2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImageToBuffer2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBlitImage2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResolveImage2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRendering

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRendering

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetCullMode

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetFrontFace

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetPrimitiveTopology

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewportWithCount

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetScissorWithCount

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindVertexBuffers2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthTestEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthWriteEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthCompareOp

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthBoundsTestEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilTestEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilOp

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRasterizerDiscardEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBiasEnable

28

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetPrimitiveRestartEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginVideoCodingKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndVideoCodingKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdControlVideoCodingKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDecodeVideoKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderingKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderingKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDeviceMaskKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchBaseKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPushDescriptorSetKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdPushDescriptorSetWithTemplateKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdNextSubpass2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass2KHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawIndirectCountKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawIndexedIndirectCountKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetFragmentShadingRateKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRenderingAttachmentLocationsKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRenderingInputAttachmentIndicesKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEncodeVideoKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPipelineBarrier2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp2KHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdWriteBufferMarker2AMD

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBuffer2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImage2KHR

29

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyBufferToImage2KHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyImageToBuffer2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBlitImage2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResolveImage2KHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdTraceRaysIndirect2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindIndexBuffer2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLineStippleKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindDescriptorSets2KHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPushConstants2KHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdPushDescriptorSet2KHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdPushDescriptorSetWithTemplate2KHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDescriptorBufferOffsets2EXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindDescriptorBufferEmbeddedSamplers2EXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDebugMarkerBeginEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDebugMarkerEndEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDebugMarkerInsertEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindTransformFeedbackBuffersEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBeginTransformFeedbackEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdEndTransformFeedbackEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBeginQueryIndexedEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndQueryIndexedEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawIndirectByteCountEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCuLaunchKernelNVX

• The VkCommandPool that commandBuffer was allocated from, in

30

vkCmdDrawIndirectCountAMD

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawIndexedIndirectCountAMD

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBeginConditionalRenderingEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdEndConditionalRenderingEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetViewportWScalingNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDiscardRectangleEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDiscardRectangleEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDiscardRectangleModeEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBeginDebugUtilsLabelEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdEndDebugUtilsLabelEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdInsertDebugUtilsLabelEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdInitializeGraphScratchMemoryAMDX

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchGraphAMDX

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDispatchGraphIndirectAMDX

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDispatchGraphIndirectCountAMDX

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetSampleLocationsEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindShadingRateImageNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetViewportShadingRatePaletteNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetCoarseSampleOrderNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBuildAccelerationStructureNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyAccelerationStructureNV

31

• The VkCommandPool that commandBuffer was allocated from, in vkCmdTraceRaysNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdWriteAccelerationStructuresPropertiesNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdWriteBufferMarkerAMD

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawMeshTasksNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawMeshTasksIndirectNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawMeshTasksIndirectCountNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetExclusiveScissorEnableNV

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetExclusiveScissorNV

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetCheckpointNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetPerformanceMarkerINTEL

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetPerformanceStreamMarkerINTEL

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetPerformanceOverrideINTEL

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLineStippleEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetCullModeEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetFrontFaceEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetPrimitiveTopologyEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetViewportWithCountEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetScissorWithCountEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindVertexBuffers2EXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthTestEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthWriteEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthCompareOpEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthBoundsTestEnableEXT

32

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetStencilTestEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilOpEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdPreprocessGeneratedCommandsNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdExecuteGeneratedCommandsNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindPipelineShaderGroupNV

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBias2EXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCudaLaunchKernelNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindDescriptorBuffersEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDescriptorBufferOffsetsEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindDescriptorBufferEmbeddedSamplersEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetFragmentShadingRateEnumNV

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetVertexInputEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSubpassShadingHUAWEI

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBindInvocationMaskHUAWEI

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetPatchControlPointsEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRasterizerDiscardEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthBiasEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLogicOpEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetPrimitiveRestartEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetColorWriteEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawMultiEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawMultiIndexedEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBuildMicromapsEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyMicromapEXT

33

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyMicromapToMemoryEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyMemoryToMicromapEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdWriteMicromapsPropertiesEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawClusterHUAWEI

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawClusterIndirectHUAWEI

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyMemoryIndirectNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyMemoryToImageIndirectNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDecompressMemoryNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDecompressMemoryIndirectCountNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdUpdatePipelineIndirectBufferNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthClampEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetPolygonModeEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRasterizationSamplesEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetSampleMaskEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetAlphaToCoverageEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetAlphaToOneEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLogicOpEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetColorBlendEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetColorBlendEquationEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetColorWriteMaskEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetTessellationDomainOriginEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRasterizationStreamEXT

34

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetConservativeRasterizationModeEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetExtraPrimitiveOverestimationSizeEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthClipEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetSampleLocationsEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetColorBlendAdvancedEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetProvokingVertexModeEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetLineRasterizationModeEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetLineStippleEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthClipNegativeOneToOneEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetViewportWScalingEnableNV

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewportSwizzleNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetCoverageToColorEnableNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetCoverageToColorLocationNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetCoverageModulationModeNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetCoverageModulationTableEnableNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetCoverageModulationTableNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetShadingRateImageEnableNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRepresentativeFragmentTestEnableNV

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetCoverageReductionModeNV

• The VkCommandPool that commandBuffer was allocated from, in vkCmdOpticalFlowExecuteNV

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindShadersEXT

• The VkCommandPool that commandBuffer was allocated from, in

35

vkCmdSetAttachmentFeedbackLoopEnableEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBuildAccelerationStructuresKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdBuildAccelerationStructuresIndirectKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyAccelerationStructureKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyAccelerationStructureToMemoryKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdCopyMemoryToAccelerationStructureKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdWriteAccelerationStructuresPropertiesKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdTraceRaysKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdTraceRaysIndirectKHR

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRayTracingPipelineStackSizeKHR

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawMeshTasksEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawMeshTasksIndirectEXT

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawMeshTasksIndirectCountEXT

3.7. Valid Usage
Valid usage defines a set of conditions which must be met in order to achieve well-defined runtime
behavior in an application. These conditions depend only on Vulkan state, and the parameters or
objects whose usage is constrained by the condition.

The core layer assumes applications are using the API correctly. Except as documented elsewhere in
the Specification, the behavior of the core layer to an application using the API incorrectly is
undefined, and may include program termination. However, implementations must ensure that
incorrect usage by an application does not affect the integrity of the operating system, the Vulkan
implementation, or other Vulkan client applications in the system. In particular, any guarantees
made by an operating system about whether memory from one process can be visible to another
process or not must not be violated by a Vulkan implementation for any memory allocation.
Vulkan implementations are not required to make additional security or integrity guarantees
beyond those provided by the OS unless explicitly directed by the application’s use of a particular
feature or extension.

Note

For instance, if an operating system guarantees that data in all its memory

36

allocations are set to zero when newly allocated, the Vulkan implementation must
make the same guarantees for any allocations it controls (e.g. VkDeviceMemory).

Similarly, if an operating system guarantees that use-after-free of host allocations
will not result in values written by another process becoming visible, the same
guarantees must be made by the Vulkan implementation for device memory.

If the protectedMemory feature is supported, the implementation provides additional guarantees
when invalid usage occurs to prevent values in protected memory from being accessed or inferred
outside of protected operations, as described in Protected Memory Access Rules.

Some valid usage conditions have dependencies on runtime limits or feature availability. It is
possible to validate these conditions against Vulkan’s minimum supported values for these limits
and features, or some subset of other known values.

Valid usage conditions do not cover conditions where well-defined behavior (including returning
an error code) exists.

Valid usage conditions should apply to the command or structure where complete information
about the condition would be known during execution of an application. This is such that a
validation layer or linter can be written directly against these statements at the point they are
specified.

Note

This does lead to some non-obvious places for valid usage statements. For instance,
the valid values for a structure might depend on a separate value in the calling
command. In this case, the structure itself will not reference this valid usage as it is
impossible to determine validity from the structure that it is invalid - instead this
valid usage would be attached to the calling command.

Another example is draw state - the state setters are independent, and can cause a
legitimately invalid state configuration between draw calls; so the valid usage
statements are attached to the place where all state needs to be valid - at the
drawing command.

Valid usage conditions are described in a block labelled “Valid Usage” following each command or
structure they apply to.

3.7.1. Usage Validation

Vulkan is a layered API. The lowest layer is the core Vulkan layer, as defined by this Specification.
The application can use additional layers above the core for debugging, validation, and other
purposes.

One of the core principles of Vulkan is that building and submitting command buffers should be
highly efficient. Thus error checking and validation of state in the core layer is minimal, although
more rigorous validation can be enabled through the use of layers.

Validation of correct API usage is left to validation layers. Applications should be developed with

37

validation layers enabled, to help catch and eliminate errors. Once validated, released applications
should not enable validation layers by default.

3.7.2. Implicit Valid Usage

Some valid usage conditions apply to all commands and structures in the API, unless explicitly
denoted otherwise for a specific command or structure. These conditions are considered implicit,
and are described in a block labelled “Valid Usage (Implicit)” following each command or structure
they apply to. Implicit valid usage conditions are described in detail below.

Valid Usage for Object Handles

Any input parameter to a command that is an object handle must be a valid object handle, unless
otherwise specified. An object handle is valid if:

• It has been created or allocated by a previous, successful call to the API. Such calls are noted in
the Specification.

• It has not been deleted or freed by a previous call to the API. Such calls are noted in the
Specification.

• Any objects used by that object, either as part of creation or execution, must also be valid.

The reserved values VK_NULL_HANDLE and NULL can be used in place of valid non-dispatchable
handles and dispatchable handles, respectively, when explicitly called out in the Specification. Any
command that creates an object successfully must not return these values. It is valid to pass these
values to vkDestroy* or vkFree* commands, which will silently ignore these values.

Valid Usage for Pointers

Any parameter that is a pointer must be a valid pointer only if it is explicitly called out by a Valid
Usage statement.

A pointer is “valid” if it points at memory containing values of the number and type(s) expected by
the command, and all fundamental types accessed through the pointer (e.g. as elements of an array
or as members of a structure) satisfy the alignment requirements of the host processor.

Valid Usage for Strings

Any parameter that is a pointer to char must be a finite sequence of values terminated by a null
character, or if explicitly called out in the Specification, can be NULL.

Valid Usage for Enumerated Types

Any parameter of an enumerated type must be a valid enumerant for that type. Use of an
enumerant is valid if the following conditions are true:

• The enumerant is defined as part of the enumerated type.

• The enumerant is not a value suffixed with _MAX_ENUM.

◦ This value exists only to ensure that C enum types are 32 bits in size and must not be used by
applications.

38

• If the enumerant is used in a function that has a VkInstance as its first parameter and either:

◦ it was added by a core version that is supported (as reported by
vkEnumerateInstanceVersion) and the value of VkApplicationInfo::apiVersion is greater
than or equal to the version that added it; or

◦ it was added by an instance extension that was enabled for the instance.

• If the enumerant is used in a function that has a VkPhysicalDevice object as its first parameter
and either:

◦ it was added by a core version that is supported by that device (as reported by
VkPhysicalDeviceProperties::apiVersion);

◦ it was added by an instance extension that was enabled for the instance; or

◦ it was added by a device extension that is supported by that device.

• If the enumerant is used in a function that has any other dispatchable object as its first
parameter and either:

◦ it was added by a core version that is supported for the device (as reported by
VkPhysicalDeviceProperties::apiVersion); or

◦ it was added by a device extension that was enabled for the device.

Additionally, if maintenance5 is supported, any integer value representable in the range valid for the
defined type is valid when used in a function that has a VkPhysicalDevice object as its first
parameter. Physical device queries will either return results indicating lack of support, or ignore
unsupported values when used as a bit flag in a Vk*Flags* parameter.

Any enumerated type returned from a query command or otherwise output from Vulkan to the
application must not have a reserved value. Reserved values are values not defined by any
extension for that enumerated type.

Note

In some special cases, an enumerant is only meaningful if a feature defined by an
extension is also enabled, as well as the extension itself. The global “valid
enumerant” rule described here does not address such cases.

Note

This language is intended to accommodate cases such as “hidden” extensions
known only to driver internals, or layers enabling extensions without knowledge
of the application, without allowing return of values not defined by any extension.

Note

Application developers are encouraged to be careful when using switch statements
with Vulkan API enums. This is because new extensions can add new values to
existing enums. Using a default: statement within a switch may avoid future
compilation issues.

This is particularly true for enums such as VkDriverId, which may have values

39

added that do not belong to a corresponding new extension.

Valid Usage for Flags

A collection of flags is represented by a bitmask using the type VkFlags:

// Provided by VK_VERSION_1_0
typedef uint32_t VkFlags;

Bitmasks are passed to many commands and structures to compactly represent options, but
VkFlags is not used directly in the API. Instead, a Vk*Flags type which is an alias of VkFlags, and
whose name matches the corresponding Vk*FlagBits that are valid for that type, is used.

Any Vk*Flags member or parameter used in the API as an input must be a valid combination of bit
flags. A valid combination is either zero or the bitwise OR of valid bit flags.

An individual bit flag is valid for a Vk*Flags type if it would be a valid enumerant when used with
the equivalent Vk*FlagBits type, where the bits type is obtained by taking the flag type and
replacing the trailing Flags with FlagBits. For example, a flag value of type VkColorComponentFlags
must contain only bit flags defined by VkColorComponentFlagBits.

Any Vk*Flags member or parameter returned from a query command or otherwise output from
Vulkan to the application may contain bit flags undefined in its corresponding Vk*FlagBits type. An
application cannot rely on the state of these unspecified bits.

Only the low-order 31 bits (bit positions zero through 30) are available for use as flag bits.

Note

This restriction is due to poorly defined behavior by C compilers given a C
enumerant value of 0x80000000. In some cases adding this enumerant value may
increase the size of the underlying Vk*FlagBits type, breaking the ABI.

A collection of 64-bit flags is represented by a bitmask using the type VkFlags64:

// Provided by VK_VERSION_1_3, VK_KHR_synchronization2
typedef uint64_t VkFlags64;

When the 31 bits available in VkFlags are insufficient, the VkFlags64 type can be passed to
commands and structures to represent up to 64 options. VkFlags64 is not used directly in the API.
Instead, a Vk*Flags2 type which is an alias of VkFlags64, and whose name matches the
corresponding Vk*FlagBits2 that are valid for that type, is used.

Any Vk*Flags2 member or parameter used in the API as an input must be a valid combination of bit
flags. A valid combination is either zero or the bitwise OR of valid bit flags.

An individual bit flag is valid for a Vk*Flags2 type if it would be a valid enumerant when used with
the equivalent Vk*FlagBits2 type, where the bits type is obtained by taking the flag type and

40

replacing the trailing Flags2 with FlagBits2. For example, a flag value of type VkAccessFlags2KHR
must contain only bit flags defined by VkAccessFlagBits2KHR.

Any Vk*Flags2 member or parameter returned from a query command or otherwise output from
Vulkan to the application may contain bit flags undefined in its corresponding Vk*FlagBits2 type.
An application cannot rely on the state of these unspecified bits.

Note

Both the Vk*FlagBits2 type, and the individual bits defined for that type, are
defined as uint64_t integers in the C API. This is in contrast to the 32-bit types,
where the Vk*FlagBits type is defined as a C enum and the individual bits as
enumerants belonging to that enum. As a result, there is less compile time type
checking possible for the 64-bit types. This is unavoidable since there is no
sufficiently portable way to define a 64-bit enum type in C99.

Valid Usage for Structure Types

Any parameter that is a structure containing a sType member must have a value of sType which is a
valid VkStructureType value matching the type of the structure.

Valid Usage for Structure Pointer Chains

Any parameter that is a structure containing a void* pNext member must have a value of pNext that
is either NULL, or is a pointer to a valid extending structure, containing sType and pNext members as
described in the Vulkan Documentation and Extensions document in the section “Extending
Structures”. The set of structures connected by pNext pointers is referred to as a pNext chain.

Each structure included in the pNext chain must be defined at runtime by either:

• a core version which is supported

• an extension which is enabled

• a supported device extension in the case of physical-device-level functionality added by the
device extension

Each type of extending structure must not appear more than once in a pNext chain, including any
aliases. This general rule may be explicitly overridden for specific structures.

Any component of the implementation (the loader, any enabled layers, and drivers) must skip over,
without processing (other than reading the sType and pNext members) any extending structures in
the chain not defined by core versions or extensions supported by that component.

As a convenience to implementations and layers needing to iterate through a structure pointer
chain, the Vulkan API provides two base structures. These structures allow for some type safety, and
can be used by Vulkan API functions that operate on generic inputs and outputs.

The VkBaseInStructure structure is defined as:

// Provided by VK_VERSION_1_0

41

typedef struct VkBaseInStructure {
 VkStructureType sType;
 const struct VkBaseInStructure* pNext;
} VkBaseInStructure;

• sType is the structure type of the structure being iterated through.

• pNext is NULL or a pointer to the next structure in a structure chain.

VkBaseInStructure can be used to facilitate iterating through a read-only structure pointer chain.

The VkBaseOutStructure structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBaseOutStructure {
 VkStructureType sType;
 struct VkBaseOutStructure* pNext;
} VkBaseOutStructure;

• sType is the structure type of the structure being iterated through.

• pNext is NULL or a pointer to the next structure in a structure chain.

VkBaseOutStructure can be used to facilitate iterating through a structure pointer chain that returns
data back to the application.

Valid Usage for Nested Structures

The above conditions also apply recursively to members of structures provided as input to a
command, either as a direct argument to the command, or themselves a member of another
structure.

Specifics on valid usage of each command are covered in their individual sections.

Valid Usage for Extensions

Instance-level functionality or behavior added by an instance extension to the API must not be
used unless that extension is supported by the instance as determined by
vkEnumerateInstanceExtensionProperties, and that extension is enabled in VkInstanceCreateInfo.

Physical-device-level functionality or behavior added by an instance extension to the API must not
be used unless that extension is supported by the instance as determined by
vkEnumerateInstanceExtensionProperties, and that extension is enabled in VkInstanceCreateInfo.

Physical-device-level functionality or behavior added by a device extension to the API must not be
used unless the conditions described in Extending Physical Device Core Functionality are met.

Device-level functionality added by a device extension that is dispatched from a VkDevice, or from
a child object of a VkDevice must not be used unless that extension is supported by the device as
determined by vkEnumerateDeviceExtensionProperties, and that extension is enabled in

42

VkDeviceCreateInfo.

Valid Usage for Newer Core Versions

Instance-level functionality or behavior added by a new core version of the API must not be used
unless it is supported by the instance as determined by vkEnumerateInstanceVersion and the
specified version of VkApplicationInfo::apiVersion.

Physical-device-level functionality or behavior added by a new core version of the API must not be
used unless it is supported by the physical device as determined by VkPhysicalDeviceProperties
::apiVersion and the specified version of VkApplicationInfo::apiVersion.

Device-level functionality or behavior added by a new core version of the API must not be used
unless it is supported by the device as determined by VkPhysicalDeviceProperties::apiVersion and
the specified version of VkApplicationInfo::apiVersion.

3.8. VkResult Return Codes
While the core Vulkan API is not designed to capture incorrect usage, some circumstances still
require return codes. Commands in Vulkan return their status via return codes that are in one of
two categories:

• Successful completion codes are returned when a command needs to communicate success or
status information. All successful completion codes are non-negative values.

• Run time error codes are returned when a command needs to communicate a failure that could
only be detected at runtime. All runtime error codes are negative values.

All return codes in Vulkan are reported via VkResult return values. The possible codes are:

// Provided by VK_VERSION_1_0
typedef enum VkResult {
 VK_SUCCESS = 0,
 VK_NOT_READY = 1,
 VK_TIMEOUT = 2,
 VK_EVENT_SET = 3,
 VK_EVENT_RESET = 4,
 VK_INCOMPLETE = 5,
 VK_ERROR_OUT_OF_HOST_MEMORY = -1,
 VK_ERROR_OUT_OF_DEVICE_MEMORY = -2,
 VK_ERROR_INITIALIZATION_FAILED = -3,
 VK_ERROR_DEVICE_LOST = -4,
 VK_ERROR_MEMORY_MAP_FAILED = -5,
 VK_ERROR_LAYER_NOT_PRESENT = -6,
 VK_ERROR_EXTENSION_NOT_PRESENT = -7,
 VK_ERROR_FEATURE_NOT_PRESENT = -8,
 VK_ERROR_INCOMPATIBLE_DRIVER = -9,
 VK_ERROR_TOO_MANY_OBJECTS = -10,
 VK_ERROR_FORMAT_NOT_SUPPORTED = -11,
 VK_ERROR_FRAGMENTED_POOL = -12,

43

 VK_ERROR_UNKNOWN = -13,
 // Provided by VK_VERSION_1_1
 VK_ERROR_OUT_OF_POOL_MEMORY = -1000069000,
 // Provided by VK_VERSION_1_1
 VK_ERROR_INVALID_EXTERNAL_HANDLE = -1000072003,
 // Provided by VK_VERSION_1_2
 VK_ERROR_FRAGMENTATION = -1000161000,
 // Provided by VK_VERSION_1_2
 VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS = -1000257000,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_COMPILE_REQUIRED = 1000297000,
 // Provided by VK_KHR_surface
 VK_ERROR_SURFACE_LOST_KHR = -1000000000,
 // Provided by VK_KHR_surface
 VK_ERROR_NATIVE_WINDOW_IN_USE_KHR = -1000000001,
 // Provided by VK_KHR_swapchain
 VK_SUBOPTIMAL_KHR = 1000001003,
 // Provided by VK_KHR_swapchain
 VK_ERROR_OUT_OF_DATE_KHR = -1000001004,
 // Provided by VK_KHR_display_swapchain
 VK_ERROR_INCOMPATIBLE_DISPLAY_KHR = -1000003001,
 // Provided by VK_EXT_debug_report
 VK_ERROR_VALIDATION_FAILED_EXT = -1000011001,
 // Provided by VK_NV_glsl_shader
 VK_ERROR_INVALID_SHADER_NV = -1000012000,
 // Provided by VK_KHR_video_queue
 VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR = -1000023000,
 // Provided by VK_KHR_video_queue
 VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR = -1000023001,
 // Provided by VK_KHR_video_queue
 VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR = -1000023002,
 // Provided by VK_KHR_video_queue
 VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR = -1000023003,
 // Provided by VK_KHR_video_queue
 VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR = -1000023004,
 // Provided by VK_KHR_video_queue
 VK_ERROR_VIDEO_STD_VERSION_NOT_SUPPORTED_KHR = -1000023005,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT = -1000158000,
 // Provided by VK_KHR_global_priority
 VK_ERROR_NOT_PERMITTED_KHR = -1000174001,
 // Provided by VK_EXT_full_screen_exclusive
 VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT = -1000255000,
 // Provided by VK_KHR_deferred_host_operations
 VK_THREAD_IDLE_KHR = 1000268000,
 // Provided by VK_KHR_deferred_host_operations
 VK_THREAD_DONE_KHR = 1000268001,
 // Provided by VK_KHR_deferred_host_operations
 VK_OPERATION_DEFERRED_KHR = 1000268002,
 // Provided by VK_KHR_deferred_host_operations
 VK_OPERATION_NOT_DEFERRED_KHR = 1000268003,

44

 // Provided by VK_KHR_video_encode_queue
 VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR = -1000299000,
 // Provided by VK_EXT_image_compression_control
 VK_ERROR_COMPRESSION_EXHAUSTED_EXT = -1000338000,
 // Provided by VK_EXT_shader_object
 VK_INCOMPATIBLE_SHADER_BINARY_EXT = 1000482000,
 // Provided by VK_KHR_maintenance1
 VK_ERROR_OUT_OF_POOL_MEMORY_KHR = VK_ERROR_OUT_OF_POOL_MEMORY,
 // Provided by VK_KHR_external_memory
 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR = VK_ERROR_INVALID_EXTERNAL_HANDLE,
 // Provided by VK_EXT_descriptor_indexing
 VK_ERROR_FRAGMENTATION_EXT = VK_ERROR_FRAGMENTATION,
 // Provided by VK_EXT_global_priority
 VK_ERROR_NOT_PERMITTED_EXT = VK_ERROR_NOT_PERMITTED_KHR,
 // Provided by VK_EXT_buffer_device_address
 VK_ERROR_INVALID_DEVICE_ADDRESS_EXT = VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS,
 // Provided by VK_KHR_buffer_device_address
 VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR =
VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS,
 // Provided by VK_EXT_pipeline_creation_cache_control
 VK_PIPELINE_COMPILE_REQUIRED_EXT = VK_PIPELINE_COMPILE_REQUIRED,
 // Provided by VK_EXT_pipeline_creation_cache_control
 VK_ERROR_PIPELINE_COMPILE_REQUIRED_EXT = VK_PIPELINE_COMPILE_REQUIRED,
 // Provided by VK_EXT_shader_object
 VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT = VK_INCOMPATIBLE_SHADER_BINARY_EXT,
} VkResult;

Success Codes

• VK_SUCCESS Command successfully completed

• VK_NOT_READY A fence or query has not yet completed

• VK_TIMEOUT A wait operation has not completed in the specified time

• VK_EVENT_SET An event is signaled

• VK_EVENT_RESET An event is unsignaled

• VK_INCOMPLETE A return array was too small for the result

• VK_SUBOPTIMAL_KHR A swapchain no longer matches the surface properties exactly, but can still be
used to present to the surface successfully.

• VK_THREAD_IDLE_KHR A deferred operation is not complete but there is currently no work for this
thread to do at the time of this call.

• VK_THREAD_DONE_KHR A deferred operation is not complete but there is no work remaining to
assign to additional threads.

• VK_OPERATION_DEFERRED_KHR A deferred operation was requested and at least some of the work
was deferred.

• VK_OPERATION_NOT_DEFERRED_KHR A deferred operation was requested and no operations were
deferred.

45

• VK_PIPELINE_COMPILE_REQUIRED A requested pipeline creation would have required compilation,
but the application requested compilation to not be performed.

• VK_INCOMPATIBLE_SHADER_BINARY_EXT The provided binary shader code is not compatible with this
device.

Note

In the initial version of the VK_EXT_shader_object extension, this return code
was named VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT and improperly
described as an error code. The name has been changed, but the old name is
retained as an alias for compatibility with old code.

Error codes

• VK_ERROR_OUT_OF_HOST_MEMORY A host memory allocation has failed.

• VK_ERROR_OUT_OF_DEVICE_MEMORY A device memory allocation has failed.

• VK_ERROR_INITIALIZATION_FAILED Initialization of an object could not be completed for
implementation-specific reasons.

• VK_ERROR_DEVICE_LOST The logical or physical device has been lost. See Lost Device

• VK_ERROR_MEMORY_MAP_FAILED Mapping of a memory object has failed.

• VK_ERROR_LAYER_NOT_PRESENT A requested layer is not present or could not be loaded.

• VK_ERROR_EXTENSION_NOT_PRESENT A requested extension is not supported.

• VK_ERROR_FEATURE_NOT_PRESENT A requested feature is not supported.

• VK_ERROR_INCOMPATIBLE_DRIVER The requested version of Vulkan is not supported by the driver or
is otherwise incompatible for implementation-specific reasons.

• VK_ERROR_TOO_MANY_OBJECTS Too many objects of the type have already been created.

• VK_ERROR_FORMAT_NOT_SUPPORTED A requested format is not supported on this device.

• VK_ERROR_FRAGMENTED_POOL A pool allocation has failed due to fragmentation of the pool’s
memory. This must only be returned if no attempt to allocate host or device memory was made
to accommodate the new allocation. This should be returned in preference to
VK_ERROR_OUT_OF_POOL_MEMORY, but only if the implementation is certain that the pool allocation
failure was due to fragmentation.

• VK_ERROR_SURFACE_LOST_KHR A surface is no longer available.

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR The requested window is already in use by Vulkan or
another API in a manner which prevents it from being used again.

• VK_ERROR_OUT_OF_DATE_KHR A surface has changed in such a way that it is no longer compatible
with the swapchain, and further presentation requests using the swapchain will fail.
Applications must query the new surface properties and recreate their swapchain if they wish
to continue presenting to the surface.

• VK_ERROR_INCOMPATIBLE_DISPLAY_KHR The display used by a swapchain does not use the same
presentable image layout, or is incompatible in a way that prevents sharing an image.

• VK_ERROR_INVALID_SHADER_NV One or more shaders failed to compile or link. More details are
reported back to the application via VK_EXT_debug_report if enabled.

46

• VK_ERROR_OUT_OF_POOL_MEMORY A pool memory allocation has failed. This must only be returned if
no attempt to allocate host or device memory was made to accommodate the new allocation. If
the failure was definitely due to fragmentation of the pool, VK_ERROR_FRAGMENTED_POOL should be
returned instead.

• VK_ERROR_INVALID_EXTERNAL_HANDLE An external handle is not a valid handle of the specified type.

• VK_ERROR_FRAGMENTATION A descriptor pool creation has failed due to fragmentation.

• VK_ERROR_INVALID_DEVICE_ADDRESS_EXT A buffer creation failed because the requested address is
not available.

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS A buffer creation or memory allocation failed because
the requested address is not available. A shader group handle assignment failed because the
requested shader group handle information is no longer valid.

• VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT An operation on a swapchain created with
VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT failed as it did not have exclusive full-
screen access. This may occur due to implementation-dependent reasons, outside of the
application’s control.

• VK_ERROR_VALIDATION_FAILED_EXT A command failed because invalid usage was detected by the
implementation or a validation-layer.

• VK_ERROR_COMPRESSION_EXHAUSTED_EXT An image creation failed because internal resources
required for compression are exhausted. This must only be returned when fixed-rate
compression is requested.

• VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR The requested VkImageUsageFlags are not supported.

• VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR The requested video picture layout is not
supported.

• VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR A video profile operation specified via
VkVideoProfileInfoKHR::videoCodecOperation is not supported.

• VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR Format parameters in a requested
VkVideoProfileInfoKHR chain are not supported.

• VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR Codec-specific parameters in a requested
VkVideoProfileInfoKHR chain are not supported.

• VK_ERROR_VIDEO_STD_VERSION_NOT_SUPPORTED_KHR The specified video Std header version is not
supported.

• VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR The specified Video Std parameters do not adhere to
the syntactic or semantic requirements of the used video compression standard, or values
derived from parameters according to the rules defined by the used video compression
standard do not adhere to the capabilities of the video compression standard or the
implementation.

• VK_ERROR_UNKNOWN An unknown error has occurred; either the application has provided invalid
input, or an implementation failure has occurred.

If a command returns a runtime error, unless otherwise specified any output parameters will have
undefined contents, except that if the output parameter is a structure with sType and pNext fields,
those fields will be unmodified. Any structures chained from pNext will also have undefined

47

contents, except that sType and pNext will be unmodified.

VK_ERROR_OUT_OF_*_MEMORY errors do not modify any currently existing Vulkan objects. Objects that
have already been successfully created can still be used by the application.

Note

As a general rule, Free, Release, and Reset commands do not return
VK_ERROR_OUT_OF_HOST_MEMORY, while any other command with a return code may
return it. Any exceptions from this rule are described for those commands.

VK_ERROR_UNKNOWN will be returned by an implementation when an unexpected error occurs that
cannot be attributed to valid behavior of the application and implementation. Under these
conditions, it may be returned from any command returning a VkResult.

Note

VK_ERROR_UNKNOWN is not expected to ever be returned if the application behavior is
valid, and if the implementation is bug-free. If VK_ERROR_UNKNOWN is received, the
application should be checked against the latest validation layers to verify correct
behavior as much as possible. If no issues are identified it could be an
implementation issue, and the implementor should be contacted for support.

Any command returning a VkResult may return VK_ERROR_VALIDATION_FAILED_EXT if a violation of
valid usage is detected, even though commands do not explicitly list this as a possible return code.

Performance-critical commands generally do not have return codes. If a runtime error occurs in
such commands, the implementation will defer reporting the error until a specified point. For
commands that record into command buffers (vkCmd*) runtime errors are reported by
vkEndCommandBuffer.

3.9. Numeric Representation and Computation
Implementations normally perform computations in floating-point, and must meet the range and
precision requirements defined under “Floating-Point Computation” below.

These requirements only apply to computations performed in Vulkan operations outside of shader
execution, such as texture image specification and sampling, and per-fragment operations. Range
and precision requirements during shader execution differ and are specified by the Precision and
Operation of SPIR-V Instructions section.

In some cases, the representation and/or precision of operations is implicitly limited by the
specified format of vertex or texel data consumed by Vulkan. Specific floating-point formats are
described later in this section.

3.9.1. Floating-Point Computation

Most floating-point computation is performed in SPIR-V shader modules. The properties of
computation within shaders are constrained as defined by the Precision and Operation of SPIR-V
Instructions section.

48

Some floating-point computation is performed outside of shaders, such as viewport and depth
range calculations. For these computations, we do not specify how floating-point numbers are to be
represented, or the details of how operations on them are performed, but only place minimal
requirements on representation and precision as described in the remainder of this section.

We require simply that numbers’ floating-point parts contain enough bits and that their exponent
fields are large enough so that individual results of floating-point operations are accurate to about 1
part in 105. The maximum representable magnitude for all floating-point values must be at least 232.

x × 0 = 0 × x = 0 for any non-infinite and non-NaN x.

1 × x = x × 1 = x.

x + 0 = 0 + x = x.

00 = 1.

Occasionally, further requirements will be specified. Most single-precision floating-point formats
meet these requirements.

The special values Inf and -Inf encode values with magnitudes too large to be represented; the
special value NaN encodes “Not A Number” values resulting from undefined arithmetic operations
such as 0 / 0. Implementations may support Inf and NaN in their floating-point computations. Any
computation which does not support either Inf or NaN, for which that value is an input or output
will yield an undefined value.

3.9.2. Floating-Point Format Conversions

When a value is converted to a defined floating-point representation, finite values falling between
two representable finite values are rounded to one or the other. The rounding mode is not defined.
Finite values whose magnitude is larger than that of any representable finite value may be rounded
either to the closest representable finite value or to the appropriately signed infinity. For unsigned
destination formats any negative values are converted to zero. Positive infinity is converted to
positive infinity; negative infinity is converted to negative infinity in signed formats and to zero in
unsigned formats; and any NaN is converted to a NaN.

3.9.3. 16-Bit Floating-Point Numbers

16-bit floating point numbers are defined in the “16-bit floating point numbers” section of the
Khronos Data Format Specification.

3.9.4. Unsigned 11-Bit Floating-Point Numbers

Unsigned 11-bit floating point numbers are defined in the “Unsigned 11-bit floating point numbers”
section of the Khronos Data Format Specification.

49

3.9.5. Unsigned 10-Bit Floating-Point Numbers

Unsigned 10-bit floating point numbers are defined in the “Unsigned 10-bit floating point numbers”
section of the Khronos Data Format Specification.

3.9.6. General Requirements

Any representable floating-point value in the appropriate format is legal as input to a Vulkan
command that requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to Vulkan interruption or
termination. For example, providing a negative zero (where applicable) or a denormalized number
to a Vulkan command must yield deterministic results, while providing a NaN or Inf yields
unspecified results.

Some calculations require division. In such cases (including implied divisions performed by vector
normalization), division by zero produces an unspecified result but must not lead to Vulkan
interruption or termination.

3.10. Fixed-Point Data Conversions
When generic vertex attributes and pixel color or depth components are represented as integers,
they are often (but not always) considered to be normalized. Normalized integer values are treated
specially when being converted to and from floating-point values, and are usually referred to as
normalized fixed-point.

In the remainder of this section, b denotes the bit width of the fixed-point integer representation.
When the integer is one of the types defined by the API, b is the bit width of that type. When the
integer comes from an image containing color or depth component texels, b is the number of bits
allocated to that component in its specified image format.

The signed and unsigned fixed-point representations are assumed to be b-bit binary two’s-
complement integers and binary unsigned integers, respectively.

3.10.1. Conversion From Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0,1]. The conversion
from an unsigned normalized fixed-point value c to the corresponding floating-point value f is
defined as

Signed normalized fixed-point integers represent numbers in the range [-1,1]. The conversion from
a signed normalized fixed-point value c to the corresponding floating-point value f is performed
using

Only the range [-2b-1 + 1, 2b-1 - 1] is used to represent signed fixed-point values in the range [-1,1]. For

50

example, if b = 8, then the integer value -127 corresponds to -1.0 and the value 127 corresponds to
1.0. This equation is used everywhere that signed normalized fixed-point values are converted to
floating-point.

Note that while zero is exactly expressible in this representation, one value (-128 in the example) is
outside the representable range, and implementations must clamp it to -1.0. Where the value is
subject to further processing by the implementation, e.g. during texture filtering, values less than
-1.0 may be used but the result must be clamped before the value is returned to shaders.

3.10.2. Conversion From Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned normalized fixed-point
value c is defined by first clamping f to the range [0,1], then computing

c = convertFloatToUint(f × (2b - 1), b)

where convertFloatToUint(r,b) returns one of the two unsigned binary integer values with exactly b
bits which are closest to the floating-point value r. Implementations should round to nearest. If r is
equal to an integer, then that integer value must be returned. In particular, if f is equal to 0.0 or 1.0,
then c must be assigned 0 or 2b - 1, respectively.

The conversion from a floating-point value f to the corresponding signed normalized fixed-point
value c is performed by clamping f to the range [-1,1], then computing

c = convertFloatToInt(f × (2b-1 - 1), b)

where convertFloatToInt(r,b) returns one of the two signed two’s-complement binary integer
values with exactly b bits which are closest to the floating-point value r. Implementations should
round to nearest. If r is equal to an integer, then that integer value must be returned. In particular,
if f is equal to -1.0, 0.0, or 1.0, then c must be assigned -(2b-1 - 1), 0, or 2b-1 - 1, respectively.

This equation is used everywhere that floating-point values are converted to signed normalized
fixed-point.

3.11. Common Object Types
Some types of Vulkan objects are used in many different structures and command parameters, and
are described here. These types include offsets, extents, and rectangles.

3.11.1. Offsets

Offsets are used to describe a pixel location within an image or framebuffer, as an (x,y) location for
two-dimensional images, or an (x,y,z) location for three-dimensional images.

A two-dimensional offset is defined by the structure:

// Provided by VK_VERSION_1_0

51

typedef struct VkOffset2D {
 int32_t x;
 int32_t y;
} VkOffset2D;

• x is the x offset.

• y is the y offset.

A three-dimensional offset is defined by the structure:

// Provided by VK_VERSION_1_0
typedef struct VkOffset3D {
 int32_t x;
 int32_t y;
 int32_t z;
} VkOffset3D;

• x is the x offset.

• y is the y offset.

• z is the z offset.

3.11.2. Extents

Extents are used to describe the size of a rectangular region of pixels within an image or
framebuffer, as (width,height) for two-dimensional images, or as (width,height,depth) for three-
dimensional images.

A two-dimensional extent is defined by the structure:

// Provided by VK_VERSION_1_0
typedef struct VkExtent2D {
 uint32_t width;
 uint32_t height;
} VkExtent2D;

• width is the width of the extent.

• height is the height of the extent.

A three-dimensional extent is defined by the structure:

// Provided by VK_VERSION_1_0
typedef struct VkExtent3D {
 uint32_t width;
 uint32_t height;
 uint32_t depth;

52

} VkExtent3D;

• width is the width of the extent.

• height is the height of the extent.

• depth is the depth of the extent.

3.11.3. Rectangles

Rectangles are used to describe a specified rectangular region of pixels within an image or
framebuffer. Rectangles include both an offset and an extent of the same dimensionality, as
described above. Two-dimensional rectangles are defined by the structure

// Provided by VK_VERSION_1_0
typedef struct VkRect2D {
 VkOffset2D offset;
 VkExtent2D extent;
} VkRect2D;

• offset is a VkOffset2D specifying the rectangle offset.

• extent is a VkExtent2D specifying the rectangle extent.

3.11.4. Structure Types

Each value corresponds to a particular structure with a sType member with a matching name. As a
general rule, the name of each VkStructureType value is obtained by taking the name of the
structure, stripping the leading Vk, prefixing each capital letter with _, converting the entire
resulting string to upper case, and prefixing it with VK_STRUCTURE_TYPE_. For example, structures of
type VkImageCreateInfo correspond to a VkStructureType value of
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, and thus a structure of this type must have its sType member
set to this value before it is passed to the API.

The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and
VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for internal use by the loader, and do
not have corresponding Vulkan structures in this Specification.

Structure types supported by the Vulkan API include:

// Provided by VK_VERSION_1_0
typedef enum VkStructureType {
 VK_STRUCTURE_TYPE_APPLICATION_INFO = 0,
 VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO = 1,
 VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO = 2,
 VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO = 3,
 VK_STRUCTURE_TYPE_SUBMIT_INFO = 4,
 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO = 5,
 VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE = 6,

53

 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO = 7,
 VK_STRUCTURE_TYPE_FENCE_CREATE_INFO = 8,
 VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO = 9,
 VK_STRUCTURE_TYPE_EVENT_CREATE_INFO = 10,
 VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO = 11,
 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO = 12,
 VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO = 13,
 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO = 14,
 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO = 15,
 VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO = 16,
 VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO = 17,
 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO = 18,
 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO = 19,
 VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO = 20,
 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO = 21,
 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO = 22,
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO = 23,
 VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO = 24,
 VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO = 25,
 VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO = 26,
 VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO = 27,
 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO = 28,
 VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO = 29,
 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO = 30,
 VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO = 31,
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO = 32,
 VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO = 33,
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO = 34,
 VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET = 35,
 VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET = 36,
 VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO = 37,
 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO = 38,
 VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO = 39,
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO = 40,
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO = 41,
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO = 42,
 VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO = 43,
 VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER = 44,
 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER = 45,
 VK_STRUCTURE_TYPE_MEMORY_BARRIER = 46,
 VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO = 47,
 VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO = 48,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES = 1000094000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO = 1000157000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO = 1000157001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES = 1000083000,
 // Provided by VK_VERSION_1_1

54

 VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS = 1000127000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO = 1000127001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO = 1000060000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO = 1000060003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO = 1000060004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO = 1000060005,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO = 1000060006,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO = 1000060013,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO = 1000060014,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES = 1000070000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO = 1000070001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2 = 1000146000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2 = 1000146001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2 = 1000146002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2 = 1000146003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2 = 1000146004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2 = 1000059000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2 = 1000059001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2 = 1000059002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2 = 1000059003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2 = 1000059004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2 = 1000059005,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2 = 1000059006,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2 = 1000059007,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2 = 1000059008,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES = 1000117000,

55

 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO = 1000117001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO = 1000117002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO =
1000117003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO = 1000053000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES = 1000053001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES = 1000053002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES = 1000120000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO = 1000145000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES = 1000145001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES = 1000145002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2 = 1000145003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO = 1000156000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO = 1000156001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO = 1000156002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO = 1000156003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES = 1000156004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES = 1000156005,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO = 1000085000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO = 1000071000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES = 1000071001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO = 1000071002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES = 1000071003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES = 1000071004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO = 1000072000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO = 1000072001,

56

 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO = 1000072002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO = 1000112000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES = 1000112001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO = 1000113000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO = 1000077000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO = 1000076000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES = 1000076001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES = 1000168000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT = 1000168001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES = 1000063000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES = 49,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES = 50,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES = 51,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES = 52,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO = 1000147000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2 = 1000109000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2 = 1000109001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2 = 1000109002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2 = 1000109003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2 = 1000109004,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO = 1000109005,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_END_INFO = 1000109006,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES = 1000177000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES = 1000196000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES = 1000180000,
 // Provided by VK_VERSION_1_2

57

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES = 1000082000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES = 1000197000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO = 1000161000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES = 1000161001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES = 1000161002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO =
1000161003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT =
1000161004,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES = 1000199000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE = 1000199001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES = 1000221000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO = 1000246000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES = 1000130000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO = 1000130001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES = 1000211000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES = 1000108000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO = 1000108001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO = 1000108002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO = 1000108003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES =
1000253000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES =
1000175000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES =
1000241000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT = 1000241001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT = 1000241002,
 // Provided by VK_VERSION_1_2

58

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES = 1000261000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES = 1000207000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES = 1000207001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO = 1000207002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO = 1000207003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO = 1000207004,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO = 1000207005,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES = 1000257000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO = 1000244001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO = 1000257002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO = 1000257003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO = 1000257004,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES = 53,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES = 54,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO = 1000192000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES =
1000215000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES = 1000245000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES =
1000276000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES = 1000295000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO = 1000295001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO = 1000295002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES =
1000297000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_MEMORY_BARRIER_2 = 1000314000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2 = 1000314001,
 // Provided by VK_VERSION_1_3

59

 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2 = 1000314002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DEPENDENCY_INFO = 1000314003,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_SUBMIT_INFO_2 = 1000314004,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO = 1000314005,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO = 1000314006,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES = 1000314007,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES =
1000325000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES = 1000335000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2 = 1000337000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2 = 1000337001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2 = 1000337002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2 = 1000337003,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2 = 1000337004,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2 = 1000337005,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_BUFFER_COPY_2 = 1000337006,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_IMAGE_COPY_2 = 1000337007,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_IMAGE_BLIT_2 = 1000337008,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2 = 1000337009,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2 = 1000337010,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES = 1000225000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO =
1000225001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES = 1000225002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES = 1000138000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES = 1000138001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK = 1000138002,

60

 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO = 1000138003,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES =
1000066000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_RENDERING_INFO = 1000044000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO = 1000044001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO = 1000044002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES = 1000044003,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO = 1000044004,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES =
1000280000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES =
1000280001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES = 1000281001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3 = 1000360000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES = 1000413000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES = 1000413001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS = 1000413002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS = 1000413003,
 // Provided by VK_KHR_swapchain
 VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR = 1000001000,
 // Provided by VK_KHR_swapchain
 VK_STRUCTURE_TYPE_PRESENT_INFO_KHR = 1000001001,
 // Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_surface
 VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR = 1000060007,
 // Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
 VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR = 1000060008,
 // Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
 VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR = 1000060009,
 // Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
 VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR = 1000060010,
 // Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain

61

 VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR = 1000060011,
 // Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
 VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR = 1000060012,
 // Provided by VK_KHR_display
 VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR = 1000002000,
 // Provided by VK_KHR_display
 VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR = 1000002001,
 // Provided by VK_KHR_display_swapchain
 VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR = 1000003000,
 // Provided by VK_KHR_xlib_surface
 VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR = 1000004000,
 // Provided by VK_KHR_xcb_surface
 VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR = 1000005000,
 // Provided by VK_KHR_wayland_surface
 VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR = 1000006000,
 // Provided by VK_KHR_android_surface
 VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR = 1000008000,
 // Provided by VK_KHR_win32_surface
 VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR = 1000009000,
 // Provided by VK_EXT_debug_report
 VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT = 1000011000,
 // Provided by VK_AMD_rasterization_order
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD =
1000018000,
 // Provided by VK_EXT_debug_marker
 VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT = 1000022000,
 // Provided by VK_EXT_debug_marker
 VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT = 1000022001,
 // Provided by VK_EXT_debug_marker
 VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT = 1000022002,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_PROFILE_INFO_KHR = 1000023000,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_CAPABILITIES_KHR = 1000023001,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_PICTURE_RESOURCE_INFO_KHR = 1000023002,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_SESSION_MEMORY_REQUIREMENTS_KHR = 1000023003,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_BIND_VIDEO_SESSION_MEMORY_INFO_KHR = 1000023004,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_SESSION_CREATE_INFO_KHR = 1000023005,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_SESSION_PARAMETERS_CREATE_INFO_KHR = 1000023006,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_SESSION_PARAMETERS_UPDATE_INFO_KHR = 1000023007,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_BEGIN_CODING_INFO_KHR = 1000023008,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_END_CODING_INFO_KHR = 1000023009,

62

 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_CODING_CONTROL_INFO_KHR = 1000023010,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_REFERENCE_SLOT_INFO_KHR = 1000023011,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_VIDEO_PROPERTIES_KHR = 1000023012,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_PROFILE_LIST_INFO_KHR = 1000023013,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_FORMAT_INFO_KHR = 1000023014,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_VIDEO_FORMAT_PROPERTIES_KHR = 1000023015,
 // Provided by VK_KHR_video_queue
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_QUERY_RESULT_STATUS_PROPERTIES_KHR = 1000023016,
 // Provided by VK_KHR_video_decode_queue
 VK_STRUCTURE_TYPE_VIDEO_DECODE_INFO_KHR = 1000024000,
 // Provided by VK_KHR_video_decode_queue
 VK_STRUCTURE_TYPE_VIDEO_DECODE_CAPABILITIES_KHR = 1000024001,
 // Provided by VK_KHR_video_decode_queue
 VK_STRUCTURE_TYPE_VIDEO_DECODE_USAGE_INFO_KHR = 1000024002,
 // Provided by VK_NV_dedicated_allocation
 VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV = 1000026000,
 // Provided by VK_NV_dedicated_allocation
 VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV = 1000026001,
 // Provided by VK_NV_dedicated_allocation
 VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV = 1000026002,
 // Provided by VK_EXT_transform_feedback
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT = 1000028000,
 // Provided by VK_EXT_transform_feedback
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT = 1000028001,
 // Provided by VK_EXT_transform_feedback
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT =
1000028002,
 // Provided by VK_NVX_binary_import
 VK_STRUCTURE_TYPE_CU_MODULE_CREATE_INFO_NVX = 1000029000,
 // Provided by VK_NVX_binary_import
 VK_STRUCTURE_TYPE_CU_FUNCTION_CREATE_INFO_NVX = 1000029001,
 // Provided by VK_NVX_binary_import
 VK_STRUCTURE_TYPE_CU_LAUNCH_INFO_NVX = 1000029002,
 // Provided by VK_NVX_image_view_handle
 VK_STRUCTURE_TYPE_IMAGE_VIEW_HANDLE_INFO_NVX = 1000030000,
 // Provided by VK_NVX_image_view_handle
 VK_STRUCTURE_TYPE_IMAGE_VIEW_ADDRESS_PROPERTIES_NVX = 1000030001,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_CAPABILITIES_KHR = 1000038000,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_CREATE_INFO_KHR =
1000038001,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_ADD_INFO_KHR = 1000038002,
 // Provided by VK_KHR_video_encode_h264

63

 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PICTURE_INFO_KHR = 1000038003,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_DPB_SLOT_INFO_KHR = 1000038004,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_NALU_SLICE_INFO_KHR = 1000038005,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_GOP_REMAINING_FRAME_INFO_KHR = 1000038006,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PROFILE_INFO_KHR = 1000038007,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_RATE_CONTROL_INFO_KHR = 1000038008,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_RATE_CONTROL_LAYER_INFO_KHR = 1000038009,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_CREATE_INFO_KHR = 1000038010,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_QUALITY_LEVEL_PROPERTIES_KHR = 1000038011,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_GET_INFO_KHR = 1000038012,
 // Provided by VK_KHR_video_encode_h264
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_FEEDBACK_INFO_KHR =
1000038013,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_CAPABILITIES_KHR = 1000039000,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_CREATE_INFO_KHR =
1000039001,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_ADD_INFO_KHR = 1000039002,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_PICTURE_INFO_KHR = 1000039003,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_DPB_SLOT_INFO_KHR = 1000039004,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_NALU_SLICE_SEGMENT_INFO_KHR = 1000039005,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_GOP_REMAINING_FRAME_INFO_KHR = 1000039006,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_PROFILE_INFO_KHR = 1000039007,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_RATE_CONTROL_INFO_KHR = 1000039009,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_RATE_CONTROL_LAYER_INFO_KHR = 1000039010,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_CREATE_INFO_KHR = 1000039011,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_QUALITY_LEVEL_PROPERTIES_KHR = 1000039012,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_GET_INFO_KHR = 1000039013,
 // Provided by VK_KHR_video_encode_h265
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_FEEDBACK_INFO_KHR =

64

1000039014,
 // Provided by VK_KHR_video_decode_h264
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_CAPABILITIES_KHR = 1000040000,
 // Provided by VK_KHR_video_decode_h264
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_PICTURE_INFO_KHR = 1000040001,
 // Provided by VK_KHR_video_decode_h264
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_PROFILE_INFO_KHR = 1000040003,
 // Provided by VK_KHR_video_decode_h264
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_SESSION_PARAMETERS_CREATE_INFO_KHR =
1000040004,
 // Provided by VK_KHR_video_decode_h264
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_SESSION_PARAMETERS_ADD_INFO_KHR = 1000040005,
 // Provided by VK_KHR_video_decode_h264
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_DPB_SLOT_INFO_KHR = 1000040006,
 // Provided by VK_AMD_texture_gather_bias_lod
 VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD = 1000041000,
 // Provided by VK_KHR_dynamic_rendering with VK_KHR_fragment_shading_rate
 VK_STRUCTURE_TYPE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR =
1000044006,
 // Provided by VK_KHR_dynamic_rendering with VK_EXT_fragment_density_map
 VK_STRUCTURE_TYPE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT = 1000044007,
 // Provided by VK_KHR_dynamic_rendering with VK_AMD_mixed_attachment_samples
 VK_STRUCTURE_TYPE_ATTACHMENT_SAMPLE_COUNT_INFO_AMD = 1000044008,
 // Provided by VK_KHR_dynamic_rendering with VK_NVX_multiview_per_view_attributes
 VK_STRUCTURE_TYPE_MULTIVIEW_PER_VIEW_ATTRIBUTES_INFO_NVX = 1000044009,
 // Provided by VK_GGP_stream_descriptor_surface
 VK_STRUCTURE_TYPE_STREAM_DESCRIPTOR_SURFACE_CREATE_INFO_GGP = 1000049000,
 // Provided by VK_NV_corner_sampled_image
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CORNER_SAMPLED_IMAGE_FEATURES_NV = 1000050000,
 // Provided by VK_NV_external_memory
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV = 1000056000,
 // Provided by VK_NV_external_memory
 VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV = 1000056001,
 // Provided by VK_NV_external_memory_win32
 VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV = 1000057000,
 // Provided by VK_NV_external_memory_win32
 VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV = 1000057001,
 // Provided by VK_NV_win32_keyed_mutex
 VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV = 1000058000,
 // Provided by VK_EXT_validation_flags
 VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT = 1000061000,
 // Provided by VK_NN_vi_surface
 VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN = 1000062000,
 // Provided by VK_EXT_astc_decode_mode
 VK_STRUCTURE_TYPE_IMAGE_VIEW_ASTC_DECODE_MODE_EXT = 1000067000,
 // Provided by VK_EXT_astc_decode_mode
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ASTC_DECODE_FEATURES_EXT = 1000067001,
 // Provided by VK_EXT_pipeline_robustness
 VK_STRUCTURE_TYPE_PIPELINE_ROBUSTNESS_CREATE_INFO_EXT = 1000068000,
 // Provided by VK_EXT_pipeline_robustness
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT = 1000068001,

65

 // Provided by VK_EXT_pipeline_robustness
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_PROPERTIES_EXT = 1000068002,
 // Provided by VK_KHR_external_memory_win32
 VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR = 1000073000,
 // Provided by VK_KHR_external_memory_win32
 VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR = 1000073001,
 // Provided by VK_KHR_external_memory_win32
 VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR = 1000073002,
 // Provided by VK_KHR_external_memory_win32
 VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR = 1000073003,
 // Provided by VK_KHR_external_memory_fd
 VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR = 1000074000,
 // Provided by VK_KHR_external_memory_fd
 VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR = 1000074001,
 // Provided by VK_KHR_external_memory_fd
 VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR = 1000074002,
 // Provided by VK_KHR_win32_keyed_mutex
 VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR = 1000075000,
 // Provided by VK_KHR_external_semaphore_win32
 VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR = 1000078000,
 // Provided by VK_KHR_external_semaphore_win32
 VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR = 1000078001,
 // Provided by VK_KHR_external_semaphore_win32
 VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR = 1000078002,
 // Provided by VK_KHR_external_semaphore_win32
 VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR = 1000078003,
 // Provided by VK_KHR_external_semaphore_fd
 VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR = 1000079000,
 // Provided by VK_KHR_external_semaphore_fd
 VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR = 1000079001,
 // Provided by VK_KHR_push_descriptor
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR = 1000080000,
 // Provided by VK_EXT_conditional_rendering
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT =
1000081000,
 // Provided by VK_EXT_conditional_rendering
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT = 1000081001,
 // Provided by VK_EXT_conditional_rendering
 VK_STRUCTURE_TYPE_CONDITIONAL_RENDERING_BEGIN_INFO_EXT = 1000081002,
 // Provided by VK_KHR_incremental_present
 VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR = 1000084000,
 // Provided by VK_NV_clip_space_w_scaling
 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV = 1000087000,
 // Provided by VK_EXT_display_surface_counter
 VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT = 1000090000,
 // Provided by VK_EXT_display_control
 VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT = 1000091000,
 // Provided by VK_EXT_display_control
 VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT = 1000091001,
 // Provided by VK_EXT_display_control
 VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT = 1000091002,

66

 // Provided by VK_EXT_display_control
 VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT = 1000091003,
 // Provided by VK_GOOGLE_display_timing
 VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE = 1000092000,
 // Provided by VK_NVX_multiview_per_view_attributes
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX =
1000097000,
 // Provided by VK_NV_viewport_swizzle
 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV = 1000098000,
 // Provided by VK_EXT_discard_rectangles
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT = 1000099000,
 // Provided by VK_EXT_discard_rectangles
 VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT = 1000099001,
 // Provided by VK_EXT_conservative_rasterization
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT =
1000101000,
 // Provided by VK_EXT_conservative_rasterization
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT =
1000101001,
 // Provided by VK_EXT_depth_clip_enable
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT = 1000102000,
 // Provided by VK_EXT_depth_clip_enable
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT =
1000102001,
 // Provided by VK_EXT_hdr_metadata
 VK_STRUCTURE_TYPE_HDR_METADATA_EXT = 1000105000,
 // Provided by VK_IMG_relaxed_line_rasterization
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RELAXED_LINE_RASTERIZATION_FEATURES_IMG =
1000110000,
 // Provided by VK_KHR_shared_presentable_image
 VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR = 1000111000,
 // Provided by VK_KHR_external_fence_win32
 VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR = 1000114000,
 // Provided by VK_KHR_external_fence_win32
 VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR = 1000114001,
 // Provided by VK_KHR_external_fence_win32
 VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR = 1000114002,
 // Provided by VK_KHR_external_fence_fd
 VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR = 1000115000,
 // Provided by VK_KHR_external_fence_fd
 VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR = 1000115001,
 // Provided by VK_KHR_performance_query
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR = 1000116000,
 // Provided by VK_KHR_performance_query
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR = 1000116001,
 // Provided by VK_KHR_performance_query
 VK_STRUCTURE_TYPE_QUERY_POOL_PERFORMANCE_CREATE_INFO_KHR = 1000116002,
 // Provided by VK_KHR_performance_query
 VK_STRUCTURE_TYPE_PERFORMANCE_QUERY_SUBMIT_INFO_KHR = 1000116003,
 // Provided by VK_KHR_performance_query
 VK_STRUCTURE_TYPE_ACQUIRE_PROFILING_LOCK_INFO_KHR = 1000116004,

67

 // Provided by VK_KHR_performance_query
 VK_STRUCTURE_TYPE_PERFORMANCE_COUNTER_KHR = 1000116005,
 // Provided by VK_KHR_performance_query
 VK_STRUCTURE_TYPE_PERFORMANCE_COUNTER_DESCRIPTION_KHR = 1000116006,
 // Provided by VK_KHR_get_surface_capabilities2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR = 1000119000,
 // Provided by VK_KHR_get_surface_capabilities2
 VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR = 1000119001,
 // Provided by VK_KHR_get_surface_capabilities2
 VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR = 1000119002,
 // Provided by VK_KHR_get_display_properties2
 VK_STRUCTURE_TYPE_DISPLAY_PROPERTIES_2_KHR = 1000121000,
 // Provided by VK_KHR_get_display_properties2
 VK_STRUCTURE_TYPE_DISPLAY_PLANE_PROPERTIES_2_KHR = 1000121001,
 // Provided by VK_KHR_get_display_properties2
 VK_STRUCTURE_TYPE_DISPLAY_MODE_PROPERTIES_2_KHR = 1000121002,
 // Provided by VK_KHR_get_display_properties2
 VK_STRUCTURE_TYPE_DISPLAY_PLANE_INFO_2_KHR = 1000121003,
 // Provided by VK_KHR_get_display_properties2
 VK_STRUCTURE_TYPE_DISPLAY_PLANE_CAPABILITIES_2_KHR = 1000121004,
 // Provided by VK_MVK_ios_surface
 VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK = 1000122000,
 // Provided by VK_MVK_macos_surface
 VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK = 1000123000,
 // Provided by VK_EXT_debug_utils
 VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT = 1000128000,
 // Provided by VK_EXT_debug_utils
 VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_TAG_INFO_EXT = 1000128001,
 // Provided by VK_EXT_debug_utils
 VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT = 1000128002,
 // Provided by VK_EXT_debug_utils
 VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT = 1000128003,
 // Provided by VK_EXT_debug_utils
 VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT = 1000128004,
 // Provided by VK_ANDROID_external_memory_android_hardware_buffer
 VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID = 1000129000,
 // Provided by VK_ANDROID_external_memory_android_hardware_buffer
 VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID = 1000129001,
 // Provided by VK_ANDROID_external_memory_android_hardware_buffer
 VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID = 1000129002,
 // Provided by VK_ANDROID_external_memory_android_hardware_buffer
 VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID = 1000129003,
 // Provided by VK_ANDROID_external_memory_android_hardware_buffer
 VK_STRUCTURE_TYPE_MEMORY_GET_ANDROID_HARDWARE_BUFFER_INFO_ANDROID = 1000129004,
 // Provided by VK_ANDROID_external_memory_android_hardware_buffer
 VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID = 1000129005,
 // Provided by VK_KHR_format_feature_flags2 with
VK_ANDROID_external_memory_android_hardware_buffer
 VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_2_ANDROID =
1000129006,
#ifdef VK_ENABLE_BETA_EXTENSIONS

68

 // Provided by VK_AMDX_shader_enqueue
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ENQUEUE_FEATURES_AMDX = 1000134000,
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_AMDX_shader_enqueue
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ENQUEUE_PROPERTIES_AMDX = 1000134001,
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_AMDX_shader_enqueue
 VK_STRUCTURE_TYPE_EXECUTION_GRAPH_PIPELINE_SCRATCH_SIZE_AMDX = 1000134002,
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_AMDX_shader_enqueue
 VK_STRUCTURE_TYPE_EXECUTION_GRAPH_PIPELINE_CREATE_INFO_AMDX = 1000134003,
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_AMDX_shader_enqueue
 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_NODE_CREATE_INFO_AMDX = 1000134004,
#endif
 // Provided by VK_EXT_sample_locations
 VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT = 1000143000,
 // Provided by VK_EXT_sample_locations
 VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT = 1000143001,
 // Provided by VK_EXT_sample_locations
 VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT = 1000143002,
 // Provided by VK_EXT_sample_locations
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT = 1000143003,
 // Provided by VK_EXT_sample_locations
 VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT = 1000143004,
 // Provided by VK_EXT_blend_operation_advanced
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT =
1000148000,
 // Provided by VK_EXT_blend_operation_advanced
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT =
1000148001,
 // Provided by VK_EXT_blend_operation_advanced
 VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_ADVANCED_STATE_CREATE_INFO_EXT =
1000148002,
 // Provided by VK_NV_fragment_coverage_to_color
 VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_TO_COLOR_STATE_CREATE_INFO_NV = 1000149000,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR = 1000150007,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR = 1000150000,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR = 1000150002,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR = 1000150003,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR = 1000150004,
 // Provided by VK_KHR_acceleration_structure

69

 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR = 1000150005,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR = 1000150006,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_VERSION_INFO_KHR = 1000150009,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_COPY_ACCELERATION_STRUCTURE_INFO_KHR = 1000150010,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_COPY_ACCELERATION_STRUCTURE_TO_MEMORY_INFO_KHR = 1000150011,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_COPY_MEMORY_TO_ACCELERATION_STRUCTURE_INFO_KHR = 1000150012,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR =
1000150013,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR =
1000150014,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR = 1000150017,
 // Provided by VK_KHR_acceleration_structure
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR = 1000150020,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR = 1000347000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR =
1000347001,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR = 1000150015,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR = 1000150016,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_INTERFACE_CREATE_INFO_KHR = 1000150018,
 // Provided by VK_KHR_ray_query
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR = 1000348013,
 // Provided by VK_NV_framebuffer_mixed_samples
 VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV = 1000152000,
 // Provided by VK_NV_shader_sm_builtins
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SM_BUILTINS_FEATURES_NV = 1000154000,
 // Provided by VK_NV_shader_sm_builtins
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SM_BUILTINS_PROPERTIES_NV = 1000154001,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_EXT = 1000158000,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT = 1000158002,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT = 1000158003,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT = 1000158004,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT = 1000158005,
 // Provided by VK_KHR_format_feature_flags2 with VK_EXT_image_drm_format_modifier

70

 VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_2_EXT = 1000158006,
 // Provided by VK_EXT_validation_cache
 VK_STRUCTURE_TYPE_VALIDATION_CACHE_CREATE_INFO_EXT = 1000160000,
 // Provided by VK_EXT_validation_cache
 VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT = 1000160001,
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_KHR_portability_subset
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PORTABILITY_SUBSET_FEATURES_KHR = 1000163000,
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_KHR_portability_subset
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PORTABILITY_SUBSET_PROPERTIES_KHR = 1000163001,
#endif
 // Provided by VK_NV_shading_rate_image
 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SHADING_RATE_IMAGE_STATE_CREATE_INFO_NV =
1000164000,
 // Provided by VK_NV_shading_rate_image
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_FEATURES_NV = 1000164001,
 // Provided by VK_NV_shading_rate_image
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_PROPERTIES_NV = 1000164002,
 // Provided by VK_NV_shading_rate_image
 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_COARSE_SAMPLE_ORDER_STATE_CREATE_INFO_NV =
1000164005,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_NV = 1000165000,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_NV = 1000165001,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_GEOMETRY_NV = 1000165003,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_GEOMETRY_TRIANGLES_NV = 1000165004,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_GEOMETRY_AABB_NV = 1000165005,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_BIND_ACCELERATION_STRUCTURE_MEMORY_INFO_NV = 1000165006,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_NV = 1000165007,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_NV = 1000165008,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PROPERTIES_NV = 1000165009,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_NV = 1000165011,
 // Provided by VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_INFO_NV = 1000165012,
 // Provided by VK_NV_representative_fragment_test
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_REPRESENTATIVE_FRAGMENT_TEST_FEATURES_NV =
1000166000,
 // Provided by VK_NV_representative_fragment_test
 VK_STRUCTURE_TYPE_PIPELINE_REPRESENTATIVE_FRAGMENT_TEST_STATE_CREATE_INFO_NV =
1000166001,

71

 // Provided by VK_EXT_filter_cubic
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_IMAGE_FORMAT_INFO_EXT = 1000170000,
 // Provided by VK_EXT_filter_cubic
 VK_STRUCTURE_TYPE_FILTER_CUBIC_IMAGE_VIEW_IMAGE_FORMAT_PROPERTIES_EXT =
1000170001,
 // Provided by VK_EXT_external_memory_host
 VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT = 1000178000,
 // Provided by VK_EXT_external_memory_host
 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT = 1000178001,
 // Provided by VK_EXT_external_memory_host
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT =
1000178002,
 // Provided by VK_KHR_shader_clock
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR = 1000181000,
 // Provided by VK_AMD_pipeline_compiler_control
 VK_STRUCTURE_TYPE_PIPELINE_COMPILER_CONTROL_CREATE_INFO_AMD = 1000183000,
 // Provided by VK_AMD_shader_core_properties
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD = 1000185000,
 // Provided by VK_KHR_video_decode_h265
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_CAPABILITIES_KHR = 1000187000,
 // Provided by VK_KHR_video_decode_h265
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_SESSION_PARAMETERS_CREATE_INFO_KHR =
1000187001,
 // Provided by VK_KHR_video_decode_h265
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_SESSION_PARAMETERS_ADD_INFO_KHR = 1000187002,
 // Provided by VK_KHR_video_decode_h265
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_PROFILE_INFO_KHR = 1000187003,
 // Provided by VK_KHR_video_decode_h265
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_PICTURE_INFO_KHR = 1000187004,
 // Provided by VK_KHR_video_decode_h265
 VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_DPB_SLOT_INFO_KHR = 1000187005,
 // Provided by VK_KHR_global_priority
 VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR = 1000174000,
 // Provided by VK_KHR_global_priority
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR = 1000388000,
 // Provided by VK_KHR_global_priority
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR = 1000388001,
 // Provided by VK_AMD_memory_overallocation_behavior
 VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD = 1000189000,
 // Provided by VK_EXT_vertex_attribute_divisor
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT =
1000190000,
 // Provided by VK_GGP_frame_token
 VK_STRUCTURE_TYPE_PRESENT_FRAME_TOKEN_GGP = 1000191000,
 // Provided by VK_NV_compute_shader_derivatives
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV =
1000201000,
 // Provided by VK_NV_mesh_shader
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV = 1000202000,
 // Provided by VK_NV_mesh_shader
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV = 1000202001,

72

 // Provided by VK_NV_shader_image_footprint
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_FOOTPRINT_FEATURES_NV = 1000204000,
 // Provided by VK_NV_scissor_exclusive
 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_EXCLUSIVE_SCISSOR_STATE_CREATE_INFO_NV =
1000205000,
 // Provided by VK_NV_scissor_exclusive
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXCLUSIVE_SCISSOR_FEATURES_NV = 1000205002,
 // Provided by VK_NV_device_diagnostic_checkpoints
 VK_STRUCTURE_TYPE_CHECKPOINT_DATA_NV = 1000206000,
 // Provided by VK_NV_device_diagnostic_checkpoints
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_CHECKPOINT_PROPERTIES_NV = 1000206001,
 // Provided by VK_INTEL_shader_integer_functions2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL =
1000209000,
 // Provided by VK_INTEL_performance_query
 VK_STRUCTURE_TYPE_QUERY_POOL_PERFORMANCE_QUERY_CREATE_INFO_INTEL = 1000210000,
 // Provided by VK_INTEL_performance_query
 VK_STRUCTURE_TYPE_INITIALIZE_PERFORMANCE_API_INFO_INTEL = 1000210001,
 // Provided by VK_INTEL_performance_query
 VK_STRUCTURE_TYPE_PERFORMANCE_MARKER_INFO_INTEL = 1000210002,
 // Provided by VK_INTEL_performance_query
 VK_STRUCTURE_TYPE_PERFORMANCE_STREAM_MARKER_INFO_INTEL = 1000210003,
 // Provided by VK_INTEL_performance_query
 VK_STRUCTURE_TYPE_PERFORMANCE_OVERRIDE_INFO_INTEL = 1000210004,
 // Provided by VK_INTEL_performance_query
 VK_STRUCTURE_TYPE_PERFORMANCE_CONFIGURATION_ACQUIRE_INFO_INTEL = 1000210005,
 // Provided by VK_EXT_pci_bus_info
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT = 1000212000,
 // Provided by VK_AMD_display_native_hdr
 VK_STRUCTURE_TYPE_DISPLAY_NATIVE_HDR_SURFACE_CAPABILITIES_AMD = 1000213000,
 // Provided by VK_AMD_display_native_hdr
 VK_STRUCTURE_TYPE_SWAPCHAIN_DISPLAY_NATIVE_HDR_CREATE_INFO_AMD = 1000213001,
 // Provided by VK_FUCHSIA_imagepipe_surface
 VK_STRUCTURE_TYPE_IMAGEPIPE_SURFACE_CREATE_INFO_FUCHSIA = 1000214000,
 // Provided by VK_EXT_metal_surface
 VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT = 1000217000,
 // Provided by VK_EXT_fragment_density_map
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_FEATURES_EXT = 1000218000,
 // Provided by VK_EXT_fragment_density_map
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_PROPERTIES_EXT =
1000218001,
 // Provided by VK_EXT_fragment_density_map
 VK_STRUCTURE_TYPE_RENDER_PASS_FRAGMENT_DENSITY_MAP_CREATE_INFO_EXT = 1000218002,
 // Provided by VK_KHR_fragment_shading_rate
 VK_STRUCTURE_TYPE_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR = 1000226000,
 // Provided by VK_KHR_fragment_shading_rate
 VK_STRUCTURE_TYPE_PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR =
1000226001,
 // Provided by VK_KHR_fragment_shading_rate
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR =
1000226002,

73

 // Provided by VK_KHR_fragment_shading_rate
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR = 1000226003,
 // Provided by VK_KHR_fragment_shading_rate
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_KHR = 1000226004,
 // Provided by VK_AMD_shader_core_properties2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD = 1000227000,
 // Provided by VK_AMD_device_coherent_memory
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD = 1000229000,
 // Provided by VK_KHR_dynamic_rendering_local_read
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_LOCAL_READ_FEATURES_KHR =
1000232000,
 // Provided by VK_KHR_dynamic_rendering_local_read
 VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_LOCATION_INFO_KHR = 1000232001,
 // Provided by VK_KHR_dynamic_rendering_local_read
 VK_STRUCTURE_TYPE_RENDERING_INPUT_ATTACHMENT_INDEX_INFO_KHR = 1000232002,
 // Provided by VK_EXT_shader_image_atomic_int64
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_ATOMIC_INT64_FEATURES_EXT =
1000234000,
 // Provided by VK_KHR_shader_quad_control
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_QUAD_CONTROL_FEATURES_KHR = 1000235000,
 // Provided by VK_EXT_memory_budget
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT = 1000237000,
 // Provided by VK_EXT_memory_priority
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT = 1000238000,
 // Provided by VK_EXT_memory_priority
 VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT = 1000238001,
 // Provided by VK_KHR_surface_protected_capabilities
 VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR = 1000239000,
 // Provided by VK_NV_dedicated_allocation_image_aliasing
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEDICATED_ALLOCATION_IMAGE_ALIASING_FEATURES_NV
= 1000240000,
 // Provided by VK_EXT_buffer_device_address
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT = 1000244000,
 // Provided by VK_EXT_buffer_device_address
 VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_CREATE_INFO_EXT = 1000244002,
 // Provided by VK_EXT_validation_features
 VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT = 1000247000,
 // Provided by VK_KHR_present_wait
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_WAIT_FEATURES_KHR = 1000248000,
 // Provided by VK_NV_cooperative_matrix
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_NV = 1000249000,
 // Provided by VK_NV_cooperative_matrix
 VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_NV = 1000249001,
 // Provided by VK_NV_cooperative_matrix
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_PROPERTIES_NV = 1000249002,
 // Provided by VK_NV_coverage_reduction_mode
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COVERAGE_REDUCTION_MODE_FEATURES_NV =
1000250000,
 // Provided by VK_NV_coverage_reduction_mode
 VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_REDUCTION_STATE_CREATE_INFO_NV = 1000250001,
 // Provided by VK_NV_coverage_reduction_mode

74

 VK_STRUCTURE_TYPE_FRAMEBUFFER_MIXED_SAMPLES_COMBINATION_NV = 1000250002,
 // Provided by VK_EXT_fragment_shader_interlock
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT =
1000251000,
 // Provided by VK_EXT_ycbcr_image_arrays
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT = 1000252000,
 // Provided by VK_EXT_provoking_vertex
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT = 1000254000,
 // Provided by VK_EXT_provoking_vertex
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_PROVOKING_VERTEX_STATE_CREATE_INFO_EXT =
1000254001,
 // Provided by VK_EXT_provoking_vertex
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT = 1000254002,
 // Provided by VK_EXT_full_screen_exclusive
 VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_INFO_EXT = 1000255000,
 // Provided by VK_EXT_full_screen_exclusive
 VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT = 1000255002,
 // Provided by VK_KHR_win32_surface with VK_EXT_full_screen_exclusive
 VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT = 1000255001,
 // Provided by VK_EXT_headless_surface
 VK_STRUCTURE_TYPE_HEADLESS_SURFACE_CREATE_INFO_EXT = 1000256000,
 // Provided by VK_EXT_shader_atomic_float
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT = 1000260000,
 // Provided by VK_EXT_extended_dynamic_state
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT =
1000267000,
 // Provided by VK_KHR_pipeline_executable_properties
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR =
1000269000,
 // Provided by VK_KHR_pipeline_executable_properties
 VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR = 1000269001,
 // Provided by VK_KHR_pipeline_executable_properties
 VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_PROPERTIES_KHR = 1000269002,
 // Provided by VK_KHR_pipeline_executable_properties
 VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_INFO_KHR = 1000269003,
 // Provided by VK_KHR_pipeline_executable_properties
 VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_STATISTIC_KHR = 1000269004,
 // Provided by VK_KHR_pipeline_executable_properties
 VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_INTERNAL_REPRESENTATION_KHR = 1000269005,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_FEATURES_EXT = 1000270000,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_PROPERTIES_EXT = 1000270001,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_MEMORY_TO_IMAGE_COPY_EXT = 1000270002,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_IMAGE_TO_MEMORY_COPY_EXT = 1000270003,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_COPY_IMAGE_TO_MEMORY_INFO_EXT = 1000270004,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_COPY_MEMORY_TO_IMAGE_INFO_EXT = 1000270005,

75

 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_HOST_IMAGE_LAYOUT_TRANSITION_INFO_EXT = 1000270006,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_COPY_IMAGE_TO_IMAGE_INFO_EXT = 1000270007,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_SUBRESOURCE_HOST_MEMCPY_SIZE_EXT = 1000270008,
 // Provided by VK_EXT_host_image_copy
 VK_STRUCTURE_TYPE_HOST_IMAGE_COPY_DEVICE_PERFORMANCE_QUERY_EXT = 1000270009,
 // Provided by VK_KHR_map_memory2
 VK_STRUCTURE_TYPE_MEMORY_MAP_INFO_KHR = 1000271000,
 // Provided by VK_KHR_map_memory2
 VK_STRUCTURE_TYPE_MEMORY_UNMAP_INFO_KHR = 1000271001,
 // Provided by VK_EXT_map_memory_placed
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAP_MEMORY_PLACED_FEATURES_EXT = 1000272000,
 // Provided by VK_EXT_map_memory_placed
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAP_MEMORY_PLACED_PROPERTIES_EXT = 1000272001,
 // Provided by VK_EXT_map_memory_placed
 VK_STRUCTURE_TYPE_MEMORY_MAP_PLACED_INFO_EXT = 1000272002,
 // Provided by VK_EXT_shader_atomic_float2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT = 1000273000,
 // Provided by VK_EXT_surface_maintenance1
 VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT = 1000274000,
 // Provided by VK_EXT_surface_maintenance1
 VK_STRUCTURE_TYPE_SURFACE_PRESENT_SCALING_CAPABILITIES_EXT = 1000274001,
 // Provided by VK_EXT_surface_maintenance1
 VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_COMPATIBILITY_EXT = 1000274002,
 // Provided by VK_EXT_swapchain_maintenance1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SWAPCHAIN_MAINTENANCE_1_FEATURES_EXT =
1000275000,
 // Provided by VK_EXT_swapchain_maintenance1
 VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_FENCE_INFO_EXT = 1000275001,
 // Provided by VK_EXT_swapchain_maintenance1
 VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODES_CREATE_INFO_EXT = 1000275002,
 // Provided by VK_EXT_swapchain_maintenance1
 VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODE_INFO_EXT = 1000275003,
 // Provided by VK_EXT_swapchain_maintenance1
 VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_SCALING_CREATE_INFO_EXT = 1000275004,
 // Provided by VK_EXT_swapchain_maintenance1
 VK_STRUCTURE_TYPE_RELEASE_SWAPCHAIN_IMAGES_INFO_EXT = 1000275005,
 // Provided by VK_NV_device_generated_commands
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_PROPERTIES_NV =
1000277000,
 // Provided by VK_NV_device_generated_commands
 VK_STRUCTURE_TYPE_GRAPHICS_SHADER_GROUP_CREATE_INFO_NV = 1000277001,
 // Provided by VK_NV_device_generated_commands
 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_SHADER_GROUPS_CREATE_INFO_NV = 1000277002,
 // Provided by VK_NV_device_generated_commands
 VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_TOKEN_NV = 1000277003,
 // Provided by VK_NV_device_generated_commands
 VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NV = 1000277004,
 // Provided by VK_NV_device_generated_commands

76

 VK_STRUCTURE_TYPE_GENERATED_COMMANDS_INFO_NV = 1000277005,
 // Provided by VK_NV_device_generated_commands
 VK_STRUCTURE_TYPE_GENERATED_COMMANDS_MEMORY_REQUIREMENTS_INFO_NV = 1000277006,
 // Provided by VK_NV_device_generated_commands
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_FEATURES_NV =
1000277007,
 // Provided by VK_NV_inherited_viewport_scissor
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INHERITED_VIEWPORT_SCISSOR_FEATURES_NV =
1000278000,
 // Provided by VK_NV_inherited_viewport_scissor
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_VIEWPORT_SCISSOR_INFO_NV =
1000278001,
 // Provided by VK_EXT_texel_buffer_alignment
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT =
1000281000,
 // Provided by VK_QCOM_render_pass_transform
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDER_PASS_TRANSFORM_INFO_QCOM =
1000282000,
 // Provided by VK_QCOM_render_pass_transform
 VK_STRUCTURE_TYPE_RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM = 1000282001,
 // Provided by VK_EXT_depth_bias_control
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_BIAS_CONTROL_FEATURES_EXT = 1000283000,
 // Provided by VK_EXT_depth_bias_control
 VK_STRUCTURE_TYPE_DEPTH_BIAS_INFO_EXT = 1000283001,
 // Provided by VK_EXT_depth_bias_control
 VK_STRUCTURE_TYPE_DEPTH_BIAS_REPRESENTATION_INFO_EXT = 1000283002,
 // Provided by VK_EXT_device_memory_report
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_MEMORY_REPORT_FEATURES_EXT = 1000284000,
 // Provided by VK_EXT_device_memory_report
 VK_STRUCTURE_TYPE_DEVICE_DEVICE_MEMORY_REPORT_CREATE_INFO_EXT = 1000284001,
 // Provided by VK_EXT_device_memory_report
 VK_STRUCTURE_TYPE_DEVICE_MEMORY_REPORT_CALLBACK_DATA_EXT = 1000284002,
 // Provided by VK_EXT_robustness2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT = 1000286000,
 // Provided by VK_EXT_robustness2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT = 1000286001,
 // Provided by VK_EXT_custom_border_color
 VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT = 1000287000,
 // Provided by VK_EXT_custom_border_color
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT = 1000287001,
 // Provided by VK_EXT_custom_border_color
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT = 1000287002,
 // Provided by VK_KHR_pipeline_library
 VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR = 1000290000,
 // Provided by VK_NV_present_barrier
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_BARRIER_FEATURES_NV = 1000292000,
 // Provided by VK_NV_present_barrier
 VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_PRESENT_BARRIER_NV = 1000292001,
 // Provided by VK_NV_present_barrier
 VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_BARRIER_CREATE_INFO_NV = 1000292002,
 // Provided by VK_KHR_present_id

77

 VK_STRUCTURE_TYPE_PRESENT_ID_KHR = 1000294000,
 // Provided by VK_KHR_present_id
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_ID_FEATURES_KHR = 1000294001,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_INFO_KHR = 1000299000,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_RATE_CONTROL_INFO_KHR = 1000299001,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_RATE_CONTROL_LAYER_INFO_KHR = 1000299002,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_CAPABILITIES_KHR = 1000299003,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_USAGE_INFO_KHR = 1000299004,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_QUERY_POOL_VIDEO_ENCODE_FEEDBACK_CREATE_INFO_KHR = 1000299005,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_ENCODE_QUALITY_LEVEL_INFO_KHR =
1000299006,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_QUALITY_LEVEL_PROPERTIES_KHR = 1000299007,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_QUALITY_LEVEL_INFO_KHR = 1000299008,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_SESSION_PARAMETERS_GET_INFO_KHR = 1000299009,
 // Provided by VK_KHR_video_encode_queue
 VK_STRUCTURE_TYPE_VIDEO_ENCODE_SESSION_PARAMETERS_FEEDBACK_INFO_KHR = 1000299010,
 // Provided by VK_NV_device_diagnostics_config
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DIAGNOSTICS_CONFIG_FEATURES_NV = 1000300000,
 // Provided by VK_NV_device_diagnostics_config
 VK_STRUCTURE_TYPE_DEVICE_DIAGNOSTICS_CONFIG_CREATE_INFO_NV = 1000300001,
 // Provided by VK_NV_cuda_kernel_launch
 VK_STRUCTURE_TYPE_CUDA_MODULE_CREATE_INFO_NV = 1000307000,
 // Provided by VK_NV_cuda_kernel_launch
 VK_STRUCTURE_TYPE_CUDA_FUNCTION_CREATE_INFO_NV = 1000307001,
 // Provided by VK_NV_cuda_kernel_launch
 VK_STRUCTURE_TYPE_CUDA_LAUNCH_INFO_NV = 1000307002,
 // Provided by VK_NV_cuda_kernel_launch
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUDA_KERNEL_LAUNCH_FEATURES_NV = 1000307003,
 // Provided by VK_NV_cuda_kernel_launch
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUDA_KERNEL_LAUNCH_PROPERTIES_NV = 1000307004,
 // Provided by VK_NV_low_latency
 VK_STRUCTURE_TYPE_QUERY_LOW_LATENCY_SUPPORT_NV = 1000310000,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_EXPORT_METAL_OBJECT_CREATE_INFO_EXT = 1000311000,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_EXPORT_METAL_OBJECTS_INFO_EXT = 1000311001,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_EXPORT_METAL_DEVICE_INFO_EXT = 1000311002,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_EXPORT_METAL_COMMAND_QUEUE_INFO_EXT = 1000311003,
 // Provided by VK_EXT_metal_objects

78

 VK_STRUCTURE_TYPE_EXPORT_METAL_BUFFER_INFO_EXT = 1000311004,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_IMPORT_METAL_BUFFER_INFO_EXT = 1000311005,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_EXPORT_METAL_TEXTURE_INFO_EXT = 1000311006,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_IMPORT_METAL_TEXTURE_INFO_EXT = 1000311007,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_EXPORT_METAL_IO_SURFACE_INFO_EXT = 1000311008,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_IMPORT_METAL_IO_SURFACE_INFO_EXT = 1000311009,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_EXPORT_METAL_SHARED_EVENT_INFO_EXT = 1000311010,
 // Provided by VK_EXT_metal_objects
 VK_STRUCTURE_TYPE_IMPORT_METAL_SHARED_EVENT_INFO_EXT = 1000311011,
 // Provided by VK_KHR_synchronization2 with VK_NV_device_diagnostic_checkpoints
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_CHECKPOINT_PROPERTIES_2_NV = 1000314008,
 // Provided by VK_KHR_synchronization2 with VK_NV_device_diagnostic_checkpoints
 VK_STRUCTURE_TYPE_CHECKPOINT_DATA_2_NV = 1000314009,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_PROPERTIES_EXT = 1000316000,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_DENSITY_MAP_PROPERTIES_EXT =
1000316001,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_FEATURES_EXT = 1000316002,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_DESCRIPTOR_ADDRESS_INFO_EXT = 1000316003,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_DESCRIPTOR_GET_INFO_EXT = 1000316004,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_BUFFER_CAPTURE_DESCRIPTOR_DATA_INFO_EXT = 1000316005,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_IMAGE_CAPTURE_DESCRIPTOR_DATA_INFO_EXT = 1000316006,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_IMAGE_VIEW_CAPTURE_DESCRIPTOR_DATA_INFO_EXT = 1000316007,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_SAMPLER_CAPTURE_DESCRIPTOR_DATA_INFO_EXT = 1000316008,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_OPAQUE_CAPTURE_DESCRIPTOR_DATA_CREATE_INFO_EXT = 1000316010,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_DESCRIPTOR_BUFFER_BINDING_INFO_EXT = 1000316011,
 // Provided by VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_DESCRIPTOR_BUFFER_BINDING_PUSH_DESCRIPTOR_BUFFER_HANDLE_EXT =
1000316012,
 // Provided by VK_EXT_descriptor_buffer with VK_KHR_acceleration_structure or
VK_NV_ray_tracing
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CAPTURE_DESCRIPTOR_DATA_INFO_EXT =
1000316009,
 // Provided by VK_EXT_graphics_pipeline_library
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_FEATURES_EXT =

79

1000320000,
 // Provided by VK_EXT_graphics_pipeline_library
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_PROPERTIES_EXT =
1000320001,
 // Provided by VK_EXT_graphics_pipeline_library
 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT = 1000320002,
 // Provided by VK_AMD_shader_early_and_late_fragment_tests

VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_EARLY_AND_LATE_FRAGMENT_TESTS_FEATURES_AMD =
1000321000,
 // Provided by VK_KHR_fragment_shader_barycentric
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_FEATURES_KHR =
1000203000,
 // Provided by VK_KHR_fragment_shader_barycentric
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_PROPERTIES_KHR =
1000322000,
 // Provided by VK_KHR_shader_subgroup_uniform_control_flow

VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR =
1000323000,
 // Provided by VK_NV_fragment_shading_rate_enums
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_ENUMS_PROPERTIES_NV =
1000326000,
 // Provided by VK_NV_fragment_shading_rate_enums
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_ENUMS_FEATURES_NV =
1000326001,
 // Provided by VK_NV_fragment_shading_rate_enums
 VK_STRUCTURE_TYPE_PIPELINE_FRAGMENT_SHADING_RATE_ENUM_STATE_CREATE_INFO_NV =
1000326002,
 // Provided by VK_NV_ray_tracing_motion_blur
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_MOTION_TRIANGLES_DATA_NV =
1000327000,
 // Provided by VK_NV_ray_tracing_motion_blur
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MOTION_BLUR_FEATURES_NV =
1000327001,
 // Provided by VK_NV_ray_tracing_motion_blur
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MOTION_INFO_NV = 1000327002,
 // Provided by VK_EXT_mesh_shader
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_EXT = 1000328000,
 // Provided by VK_EXT_mesh_shader
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_EXT = 1000328001,
 // Provided by VK_EXT_ycbcr_2plane_444_formats
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_2_PLANE_444_FORMATS_FEATURES_EXT =
1000330000,
 // Provided by VK_EXT_fragment_density_map2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_2_FEATURES_EXT =
1000332000,
 // Provided by VK_EXT_fragment_density_map2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_2_PROPERTIES_EXT =
1000332001,
 // Provided by VK_QCOM_rotated_copy_commands

80

 VK_STRUCTURE_TYPE_COPY_COMMAND_TRANSFORM_INFO_QCOM = 1000333000,
 // Provided by VK_KHR_workgroup_memory_explicit_layout
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR =
1000336000,
 // Provided by VK_EXT_image_compression_control
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT =
1000338000,
 // Provided by VK_EXT_image_compression_control
 VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT = 1000338001,
 // Provided by VK_EXT_image_compression_control
 VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT = 1000338004,
 // Provided by VK_EXT_attachment_feedback_loop_layout
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT =
1000339000,
 // Provided by VK_EXT_4444_formats
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT = 1000340000,
 // Provided by VK_EXT_device_fault
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FAULT_FEATURES_EXT = 1000341000,
 // Provided by VK_EXT_device_fault
 VK_STRUCTURE_TYPE_DEVICE_FAULT_COUNTS_EXT = 1000341001,
 // Provided by VK_EXT_device_fault
 VK_STRUCTURE_TYPE_DEVICE_FAULT_INFO_EXT = 1000341002,
 // Provided by VK_EXT_rgba10x6_formats
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RGBA10X6_FORMATS_FEATURES_EXT = 1000344000,
 // Provided by VK_EXT_directfb_surface
 VK_STRUCTURE_TYPE_DIRECTFB_SURFACE_CREATE_INFO_EXT = 1000346000,
 // Provided by VK_EXT_vertex_input_dynamic_state
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT =
1000352000,
 // Provided by VK_EXT_shader_object, VK_EXT_vertex_input_dynamic_state
 VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT = 1000352001,
 // Provided by VK_EXT_shader_object, VK_EXT_vertex_input_dynamic_state
 VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT = 1000352002,
 // Provided by VK_EXT_physical_device_drm
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT = 1000353000,
 // Provided by VK_EXT_device_address_binding_report
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ADDRESS_BINDING_REPORT_FEATURES_EXT =
1000354000,
 // Provided by VK_EXT_device_address_binding_report
 VK_STRUCTURE_TYPE_DEVICE_ADDRESS_BINDING_CALLBACK_DATA_EXT = 1000354001,
 // Provided by VK_EXT_depth_clip_control
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT = 1000355000,
 // Provided by VK_EXT_depth_clip_control
 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_DEPTH_CLIP_CONTROL_CREATE_INFO_EXT =
1000355001,
 // Provided by VK_EXT_primitive_topology_list_restart
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT =
1000356000,
 // Provided by VK_FUCHSIA_external_memory
 VK_STRUCTURE_TYPE_IMPORT_MEMORY_ZIRCON_HANDLE_INFO_FUCHSIA = 1000364000,
 // Provided by VK_FUCHSIA_external_memory

81

 VK_STRUCTURE_TYPE_MEMORY_ZIRCON_HANDLE_PROPERTIES_FUCHSIA = 1000364001,
 // Provided by VK_FUCHSIA_external_memory
 VK_STRUCTURE_TYPE_MEMORY_GET_ZIRCON_HANDLE_INFO_FUCHSIA = 1000364002,
 // Provided by VK_FUCHSIA_external_semaphore
 VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_ZIRCON_HANDLE_INFO_FUCHSIA = 1000365000,
 // Provided by VK_FUCHSIA_external_semaphore
 VK_STRUCTURE_TYPE_SEMAPHORE_GET_ZIRCON_HANDLE_INFO_FUCHSIA = 1000365001,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_BUFFER_COLLECTION_CREATE_INFO_FUCHSIA = 1000366000,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_IMPORT_MEMORY_BUFFER_COLLECTION_FUCHSIA = 1000366001,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_BUFFER_COLLECTION_IMAGE_CREATE_INFO_FUCHSIA = 1000366002,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_BUFFER_COLLECTION_PROPERTIES_FUCHSIA = 1000366003,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_BUFFER_CONSTRAINTS_INFO_FUCHSIA = 1000366004,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_BUFFER_COLLECTION_BUFFER_CREATE_INFO_FUCHSIA = 1000366005,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_IMAGE_CONSTRAINTS_INFO_FUCHSIA = 1000366006,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_IMAGE_FORMAT_CONSTRAINTS_INFO_FUCHSIA = 1000366007,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_SYSMEM_COLOR_SPACE_FUCHSIA = 1000366008,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_STRUCTURE_TYPE_BUFFER_COLLECTION_CONSTRAINTS_INFO_FUCHSIA = 1000366009,
 // Provided by VK_HUAWEI_subpass_shading
 VK_STRUCTURE_TYPE_SUBPASS_SHADING_PIPELINE_CREATE_INFO_HUAWEI = 1000369000,
 // Provided by VK_HUAWEI_subpass_shading
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_SHADING_FEATURES_HUAWEI = 1000369001,
 // Provided by VK_HUAWEI_subpass_shading
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_SHADING_PROPERTIES_HUAWEI = 1000369002,
 // Provided by VK_HUAWEI_invocation_mask
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INVOCATION_MASK_FEATURES_HUAWEI = 1000370000,
 // Provided by VK_NV_external_memory_rdma
 VK_STRUCTURE_TYPE_MEMORY_GET_REMOTE_ADDRESS_INFO_NV = 1000371000,
 // Provided by VK_NV_external_memory_rdma
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_RDMA_FEATURES_NV = 1000371001,
 // Provided by VK_EXT_pipeline_properties
 VK_STRUCTURE_TYPE_PIPELINE_PROPERTIES_IDENTIFIER_EXT = 1000372000,
 // Provided by VK_EXT_pipeline_properties
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_PROPERTIES_FEATURES_EXT = 1000372001,
 // Provided by VK_EXT_frame_boundary
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAME_BOUNDARY_FEATURES_EXT = 1000375000,
 // Provided by VK_EXT_frame_boundary
 VK_STRUCTURE_TYPE_FRAME_BOUNDARY_EXT = 1000375001,
 // Provided by VK_EXT_multisampled_render_to_single_sampled

VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_FEATURES_EXT =
1000376000,

82

 // Provided by VK_EXT_multisampled_render_to_single_sampled
 VK_STRUCTURE_TYPE_SUBPASS_RESOLVE_PERFORMANCE_QUERY_EXT = 1000376001,
 // Provided by VK_EXT_multisampled_render_to_single_sampled
 VK_STRUCTURE_TYPE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_INFO_EXT = 1000376002,
 // Provided by VK_EXT_extended_dynamic_state2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT =
1000377000,
 // Provided by VK_QNX_screen_surface
 VK_STRUCTURE_TYPE_SCREEN_SURFACE_CREATE_INFO_QNX = 1000378000,
 // Provided by VK_EXT_color_write_enable
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT = 1000381000,
 // Provided by VK_EXT_color_write_enable
 VK_STRUCTURE_TYPE_PIPELINE_COLOR_WRITE_CREATE_INFO_EXT = 1000381001,
 // Provided by VK_EXT_primitives_generated_query
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT =
1000382000,
 // Provided by VK_KHR_ray_tracing_maintenance1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MAINTENANCE_1_FEATURES_KHR =
1000386000,
 // Provided by VK_EXT_image_view_min_lod
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT = 1000391000,
 // Provided by VK_EXT_image_view_min_lod
 VK_STRUCTURE_TYPE_IMAGE_VIEW_MIN_LOD_CREATE_INFO_EXT = 1000391001,
 // Provided by VK_EXT_multi_draw
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT = 1000392000,
 // Provided by VK_EXT_multi_draw
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT = 1000392001,
 // Provided by VK_EXT_image_2d_view_of_3d
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT = 1000393000,
 // Provided by VK_EXT_shader_tile_image
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TILE_IMAGE_FEATURES_EXT = 1000395000,
 // Provided by VK_EXT_shader_tile_image
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TILE_IMAGE_PROPERTIES_EXT = 1000395001,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_MICROMAP_BUILD_INFO_EXT = 1000396000,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_MICROMAP_VERSION_INFO_EXT = 1000396001,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_COPY_MICROMAP_INFO_EXT = 1000396002,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_COPY_MICROMAP_TO_MEMORY_INFO_EXT = 1000396003,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_COPY_MEMORY_TO_MICROMAP_INFO_EXT = 1000396004,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPACITY_MICROMAP_FEATURES_EXT = 1000396005,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPACITY_MICROMAP_PROPERTIES_EXT = 1000396006,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_MICROMAP_CREATE_INFO_EXT = 1000396007,
 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_MICROMAP_BUILD_SIZES_INFO_EXT = 1000396008,

83

 // Provided by VK_EXT_opacity_micromap
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_TRIANGLES_OPACITY_MICROMAP_EXT =
1000396009,
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_NV_displacement_micromap
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISPLACEMENT_MICROMAP_FEATURES_NV = 1000397000,
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_NV_displacement_micromap
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISPLACEMENT_MICROMAP_PROPERTIES_NV =
1000397001,
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_NV_displacement_micromap
 VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_TRIANGLES_DISPLACEMENT_MICROMAP_NV =
1000397002,
#endif
 // Provided by VK_HUAWEI_cluster_culling_shader
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_FEATURES_HUAWEI =
1000404000,
 // Provided by VK_HUAWEI_cluster_culling_shader
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_PROPERTIES_HUAWEI =
1000404001,
 // Provided by VK_HUAWEI_cluster_culling_shader
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_VRS_FEATURES_HUAWEI =
1000404002,
 // Provided by VK_EXT_border_color_swizzle
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT = 1000411000,
 // Provided by VK_EXT_border_color_swizzle
 VK_STRUCTURE_TYPE_SAMPLER_BORDER_COLOR_COMPONENT_MAPPING_CREATE_INFO_EXT =
1000411001,
 // Provided by VK_EXT_pageable_device_local_memory
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PAGEABLE_DEVICE_LOCAL_MEMORY_FEATURES_EXT =
1000412000,
 // Provided by VK_ARM_shader_core_properties
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_ARM = 1000415000,
 // Provided by VK_KHR_shader_subgroup_rotate
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_ROTATE_FEATURES_KHR =
1000416000,
 // Provided by VK_ARM_scheduling_controls
 VK_STRUCTURE_TYPE_DEVICE_QUEUE_SHADER_CORE_CONTROL_CREATE_INFO_ARM = 1000417000,
 // Provided by VK_ARM_scheduling_controls
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_FEATURES_ARM = 1000417001,
 // Provided by VK_ARM_scheduling_controls
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_PROPERTIES_ARM = 1000417002,
 // Provided by VK_EXT_image_sliced_view_of_3d
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_SLICED_VIEW_OF_3D_FEATURES_EXT =
1000418000,
 // Provided by VK_EXT_image_sliced_view_of_3d
 VK_STRUCTURE_TYPE_IMAGE_VIEW_SLICED_CREATE_INFO_EXT = 1000418001,
 // Provided by VK_VALVE_descriptor_set_host_mapping

84

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_SET_HOST_MAPPING_FEATURES_VALVE =
1000420000,
 // Provided by VK_VALVE_descriptor_set_host_mapping
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_BINDING_REFERENCE_VALVE = 1000420001,
 // Provided by VK_VALVE_descriptor_set_host_mapping
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_HOST_MAPPING_INFO_VALVE = 1000420002,
 // Provided by VK_EXT_depth_clamp_zero_one
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLAMP_ZERO_ONE_FEATURES_EXT = 1000421000,
 // Provided by VK_EXT_non_seamless_cube_map
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT = 1000422000,
 // Provided by VK_ARM_render_pass_striped
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RENDER_PASS_STRIPED_FEATURES_ARM = 1000424000,
 // Provided by VK_ARM_render_pass_striped
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RENDER_PASS_STRIPED_PROPERTIES_ARM = 1000424001,
 // Provided by VK_ARM_render_pass_striped
 VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_BEGIN_INFO_ARM = 1000424002,
 // Provided by VK_ARM_render_pass_striped
 VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_INFO_ARM = 1000424003,
 // Provided by VK_ARM_render_pass_striped
 VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_SUBMIT_INFO_ARM = 1000424004,
 // Provided by VK_QCOM_fragment_density_map_offset
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_OFFSET_FEATURES_QCOM =
1000425000,
 // Provided by VK_QCOM_fragment_density_map_offset
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_OFFSET_PROPERTIES_QCOM =
1000425001,
 // Provided by VK_QCOM_fragment_density_map_offset
 VK_STRUCTURE_TYPE_SUBPASS_FRAGMENT_DENSITY_MAP_OFFSET_END_INFO_QCOM = 1000425002,
 // Provided by VK_NV_copy_memory_indirect
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COPY_MEMORY_INDIRECT_FEATURES_NV = 1000426000,
 // Provided by VK_NV_copy_memory_indirect
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COPY_MEMORY_INDIRECT_PROPERTIES_NV = 1000426001,
 // Provided by VK_NV_memory_decompression
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_DECOMPRESSION_FEATURES_NV = 1000427000,
 // Provided by VK_NV_memory_decompression
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_DECOMPRESSION_PROPERTIES_NV = 1000427001,
 // Provided by VK_NV_device_generated_commands_compute
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_COMPUTE_FEATURES_NV =
1000428000,
 // Provided by VK_NV_device_generated_commands_compute
 VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_INDIRECT_BUFFER_INFO_NV = 1000428001,
 // Provided by VK_NV_device_generated_commands_compute
 VK_STRUCTURE_TYPE_PIPELINE_INDIRECT_DEVICE_ADDRESS_INFO_NV = 1000428002,
 // Provided by VK_NV_linear_color_attachment
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINEAR_COLOR_ATTACHMENT_FEATURES_NV =
1000430000,
 // Provided by VK_KHR_shader_maximal_reconvergence
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MAXIMAL_RECONVERGENCE_FEATURES_KHR =
1000434000,
 // Provided by VK_EXT_image_compression_control_swapchain
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_FEATURES_EXT

85

= 1000437000,
 // Provided by VK_QCOM_image_processing
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_FEATURES_QCOM = 1000440000,
 // Provided by VK_QCOM_image_processing
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_PROPERTIES_QCOM = 1000440001,
 // Provided by VK_QCOM_image_processing
 VK_STRUCTURE_TYPE_IMAGE_VIEW_SAMPLE_WEIGHT_CREATE_INFO_QCOM = 1000440002,
 // Provided by VK_EXT_nested_command_buffer
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NESTED_COMMAND_BUFFER_FEATURES_EXT = 1000451000,
 // Provided by VK_EXT_nested_command_buffer
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NESTED_COMMAND_BUFFER_PROPERTIES_EXT =
1000451001,
 // Provided by VK_EXT_external_memory_acquire_unmodified
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_ACQUIRE_UNMODIFIED_EXT = 1000453000,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_FEATURES_EXT =
1000455000,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_PROPERTIES_EXT =
1000455001,
 // Provided by VK_EXT_subpass_merge_feedback
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_MERGE_FEEDBACK_FEATURES_EXT =
1000458000,
 // Provided by VK_EXT_subpass_merge_feedback
 VK_STRUCTURE_TYPE_RENDER_PASS_CREATION_CONTROL_EXT = 1000458001,
 // Provided by VK_EXT_subpass_merge_feedback
 VK_STRUCTURE_TYPE_RENDER_PASS_CREATION_FEEDBACK_CREATE_INFO_EXT = 1000458002,
 // Provided by VK_EXT_subpass_merge_feedback
 VK_STRUCTURE_TYPE_RENDER_PASS_SUBPASS_FEEDBACK_CREATE_INFO_EXT = 1000458003,
 // Provided by VK_LUNARG_direct_driver_loading
 VK_STRUCTURE_TYPE_DIRECT_DRIVER_LOADING_INFO_LUNARG = 1000459000,
 // Provided by VK_LUNARG_direct_driver_loading
 VK_STRUCTURE_TYPE_DIRECT_DRIVER_LOADING_LIST_LUNARG = 1000459001,
 // Provided by VK_EXT_shader_module_identifier
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT =
1000462000,
 // Provided by VK_EXT_shader_module_identifier
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT =
1000462001,
 // Provided by VK_EXT_shader_module_identifier
 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT =
1000462002,
 // Provided by VK_EXT_shader_module_identifier
 VK_STRUCTURE_TYPE_SHADER_MODULE_IDENTIFIER_EXT = 1000462003,
 // Provided by VK_EXT_rasterization_order_attachment_access

VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT =
1000342000,
 // Provided by VK_NV_optical_flow
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPTICAL_FLOW_FEATURES_NV = 1000464000,
 // Provided by VK_NV_optical_flow

86

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPTICAL_FLOW_PROPERTIES_NV = 1000464001,
 // Provided by VK_NV_optical_flow
 VK_STRUCTURE_TYPE_OPTICAL_FLOW_IMAGE_FORMAT_INFO_NV = 1000464002,
 // Provided by VK_NV_optical_flow
 VK_STRUCTURE_TYPE_OPTICAL_FLOW_IMAGE_FORMAT_PROPERTIES_NV = 1000464003,
 // Provided by VK_NV_optical_flow
 VK_STRUCTURE_TYPE_OPTICAL_FLOW_SESSION_CREATE_INFO_NV = 1000464004,
 // Provided by VK_NV_optical_flow
 VK_STRUCTURE_TYPE_OPTICAL_FLOW_EXECUTE_INFO_NV = 1000464005,
 // Provided by VK_NV_optical_flow
 VK_STRUCTURE_TYPE_OPTICAL_FLOW_SESSION_CREATE_PRIVATE_DATA_INFO_NV = 1000464010,
 // Provided by VK_EXT_legacy_dithering
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LEGACY_DITHERING_FEATURES_EXT = 1000465000,
 // Provided by VK_EXT_pipeline_protected_access
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_PROTECTED_ACCESS_FEATURES_EXT =
1000466000,
 // Provided by VK_ANDROID_external_format_resolve
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FORMAT_RESOLVE_FEATURES_ANDROID =
1000468000,
 // Provided by VK_ANDROID_external_format_resolve
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FORMAT_RESOLVE_PROPERTIES_ANDROID =
1000468001,
 // Provided by VK_ANDROID_external_format_resolve
 VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_RESOLVE_PROPERTIES_ANDROID =
1000468002,
 // Provided by VK_KHR_maintenance5
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_5_FEATURES_KHR = 1000470000,
 // Provided by VK_KHR_maintenance5
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_5_PROPERTIES_KHR = 1000470001,
 // Provided by VK_KHR_maintenance5
 VK_STRUCTURE_TYPE_RENDERING_AREA_INFO_KHR = 1000470003,
 // Provided by VK_KHR_maintenance5
 VK_STRUCTURE_TYPE_DEVICE_IMAGE_SUBRESOURCE_INFO_KHR = 1000470004,
 // Provided by VK_KHR_maintenance5
 VK_STRUCTURE_TYPE_SUBRESOURCE_LAYOUT_2_KHR = 1000338002,
 // Provided by VK_KHR_maintenance5
 VK_STRUCTURE_TYPE_IMAGE_SUBRESOURCE_2_KHR = 1000338003,
 // Provided by VK_KHR_maintenance5
 VK_STRUCTURE_TYPE_PIPELINE_CREATE_FLAGS_2_CREATE_INFO_KHR = 1000470005,
 // Provided by VK_KHR_maintenance5
 VK_STRUCTURE_TYPE_BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR = 1000470006,
 // Provided by VK_KHR_ray_tracing_position_fetch
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_POSITION_FETCH_FEATURES_KHR =
1000481000,
 // Provided by VK_EXT_shader_object
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_FEATURES_EXT = 1000482000,
 // Provided by VK_EXT_shader_object
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_PROPERTIES_EXT = 1000482001,
 // Provided by VK_EXT_shader_object
 VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT = 1000482002,
 // Provided by VK_QCOM_tile_properties

87

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TILE_PROPERTIES_FEATURES_QCOM = 1000484000,
 // Provided by VK_QCOM_tile_properties
 VK_STRUCTURE_TYPE_TILE_PROPERTIES_QCOM = 1000484001,
 // Provided by VK_SEC_amigo_profiling
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_AMIGO_PROFILING_FEATURES_SEC = 1000485000,
 // Provided by VK_SEC_amigo_profiling
 VK_STRUCTURE_TYPE_AMIGO_PROFILING_SUBMIT_INFO_SEC = 1000485001,
 // Provided by VK_QCOM_multiview_per_view_viewports
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_VIEWPORTS_FEATURES_QCOM =
1000488000,
 // Provided by VK_NV_ray_tracing_invocation_reorder
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_INVOCATION_REORDER_FEATURES_NV =
1000490000,
 // Provided by VK_NV_ray_tracing_invocation_reorder
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_INVOCATION_REORDER_PROPERTIES_NV =
1000490001,
 // Provided by VK_NV_extended_sparse_address_space
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_SPARSE_ADDRESS_SPACE_FEATURES_NV =
1000492000,
 // Provided by VK_NV_extended_sparse_address_space
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_SPARSE_ADDRESS_SPACE_PROPERTIES_NV =
1000492001,
 // Provided by VK_EXT_mutable_descriptor_type
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_EXT =
1000351000,
 // Provided by VK_EXT_mutable_descriptor_type
 VK_STRUCTURE_TYPE_MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT = 1000351002,
 // Provided by VK_EXT_layer_settings
 VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT = 1000496000,
 // Provided by VK_ARM_shader_core_builtins
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_BUILTINS_FEATURES_ARM = 1000497000,
 // Provided by VK_ARM_shader_core_builtins
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_BUILTINS_PROPERTIES_ARM =
1000497001,
 // Provided by VK_EXT_pipeline_library_group_handles
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_LIBRARY_GROUP_HANDLES_FEATURES_EXT =
1000498000,
 // Provided by VK_EXT_dynamic_rendering_unused_attachments

VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_UNUSED_ATTACHMENTS_FEATURES_EXT =
1000499000,
 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_LATENCY_SLEEP_MODE_INFO_NV = 1000505000,
 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_LATENCY_SLEEP_INFO_NV = 1000505001,
 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_SET_LATENCY_MARKER_INFO_NV = 1000505002,
 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_GET_LATENCY_MARKER_INFO_NV = 1000505003,
 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_LATENCY_TIMINGS_FRAME_REPORT_NV = 1000505004,

88

 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_LATENCY_SUBMISSION_PRESENT_ID_NV = 1000505005,
 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_OUT_OF_BAND_QUEUE_TYPE_INFO_NV = 1000505006,
 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_SWAPCHAIN_LATENCY_CREATE_INFO_NV = 1000505007,
 // Provided by VK_NV_low_latency2
 VK_STRUCTURE_TYPE_LATENCY_SURFACE_CAPABILITIES_NV = 1000505008,
 // Provided by VK_KHR_cooperative_matrix
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR = 1000506000,
 // Provided by VK_KHR_cooperative_matrix
 VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR = 1000506001,
 // Provided by VK_KHR_cooperative_matrix
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_PROPERTIES_KHR = 1000506002,
 // Provided by VK_QCOM_multiview_per_view_render_areas
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_RENDER_AREAS_FEATURES_QCOM =
1000510000,
 // Provided by VK_QCOM_multiview_per_view_render_areas
 VK_STRUCTURE_TYPE_MULTIVIEW_PER_VIEW_RENDER_AREAS_RENDER_PASS_BEGIN_INFO_QCOM =
1000510001,
 // Provided by VK_KHR_video_decode_av1
 VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_CAPABILITIES_KHR = 1000512000,
 // Provided by VK_KHR_video_decode_av1
 VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_PICTURE_INFO_KHR = 1000512001,
 // Provided by VK_KHR_video_decode_av1
 VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_PROFILE_INFO_KHR = 1000512003,
 // Provided by VK_KHR_video_decode_av1
 VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_SESSION_PARAMETERS_CREATE_INFO_KHR =
1000512004,
 // Provided by VK_KHR_video_decode_av1
 VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_DPB_SLOT_INFO_KHR = 1000512005,
 // Provided by VK_KHR_video_maintenance1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_MAINTENANCE_1_FEATURES_KHR = 1000515000,
 // Provided by VK_KHR_video_maintenance1
 VK_STRUCTURE_TYPE_VIDEO_INLINE_QUERY_INFO_KHR = 1000515001,
 // Provided by VK_NV_per_stage_descriptor_set
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PER_STAGE_DESCRIPTOR_SET_FEATURES_NV =
1000516000,
 // Provided by VK_QCOM_image_processing2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_2_FEATURES_QCOM = 1000518000,
 // Provided by VK_QCOM_image_processing2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_2_PROPERTIES_QCOM = 1000518001,
 // Provided by VK_QCOM_image_processing2
 VK_STRUCTURE_TYPE_SAMPLER_BLOCK_MATCH_WINDOW_CREATE_INFO_QCOM = 1000518002,
 // Provided by VK_QCOM_filter_cubic_weights
 VK_STRUCTURE_TYPE_SAMPLER_CUBIC_WEIGHTS_CREATE_INFO_QCOM = 1000519000,
 // Provided by VK_QCOM_filter_cubic_weights
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUBIC_WEIGHTS_FEATURES_QCOM = 1000519001,
 // Provided by VK_QCOM_filter_cubic_weights
 VK_STRUCTURE_TYPE_BLIT_IMAGE_CUBIC_WEIGHTS_INFO_QCOM = 1000519002,
 // Provided by VK_QCOM_ycbcr_degamma

89

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_DEGAMMA_FEATURES_QCOM = 1000520000,
 // Provided by VK_QCOM_ycbcr_degamma
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_YCBCR_DEGAMMA_CREATE_INFO_QCOM =
1000520001,
 // Provided by VK_QCOM_filter_cubic_clamp
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUBIC_CLAMP_FEATURES_QCOM = 1000521000,
 // Provided by VK_EXT_attachment_feedback_loop_dynamic_state

VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_DYNAMIC_STATE_FEATURES_EXT
= 1000524000,
 // Provided by VK_KHR_vertex_attribute_divisor
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_KHR =
1000525000,
 // Provided by VK_KHR_vertex_attribute_divisor
 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_KHR =
1000190001,
 // Provided by VK_KHR_vertex_attribute_divisor
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_KHR =
1000190002,
 // Provided by VK_KHR_shader_float_controls2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT_CONTROLS_2_FEATURES_KHR =
1000528000,
 // Provided by VK_QNX_external_memory_screen_buffer
 VK_STRUCTURE_TYPE_SCREEN_BUFFER_PROPERTIES_QNX = 1000529000,
 // Provided by VK_QNX_external_memory_screen_buffer
 VK_STRUCTURE_TYPE_SCREEN_BUFFER_FORMAT_PROPERTIES_QNX = 1000529001,
 // Provided by VK_QNX_external_memory_screen_buffer
 VK_STRUCTURE_TYPE_IMPORT_SCREEN_BUFFER_INFO_QNX = 1000529002,
 // Provided by VK_QNX_external_memory_screen_buffer
 VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_QNX = 1000529003,
 // Provided by VK_QNX_external_memory_screen_buffer
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_SCREEN_BUFFER_FEATURES_QNX =
1000529004,
 // Provided by VK_MSFT_layered_driver
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LAYERED_DRIVER_PROPERTIES_MSFT = 1000530000,
 // Provided by VK_KHR_index_type_uint8
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_KHR = 1000265000,
 // Provided by VK_KHR_line_rasterization
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_KHR = 1000259000,
 // Provided by VK_KHR_line_rasterization
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_KHR = 1000259001,
 // Provided by VK_KHR_line_rasterization
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_KHR = 1000259002,
 // Provided by VK_KHR_calibrated_timestamps
 VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_KHR = 1000184000,
 // Provided by VK_KHR_shader_expect_assume
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_EXPECT_ASSUME_FEATURES_KHR = 1000544000,
 // Provided by VK_KHR_maintenance6
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_6_FEATURES_KHR = 1000545000,
 // Provided by VK_KHR_maintenance6
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_6_PROPERTIES_KHR = 1000545001,

90

 // Provided by VK_KHR_maintenance6
 VK_STRUCTURE_TYPE_BIND_MEMORY_STATUS_KHR = 1000545002,
 // Provided by VK_KHR_maintenance6
 VK_STRUCTURE_TYPE_BIND_DESCRIPTOR_SETS_INFO_KHR = 1000545003,
 // Provided by VK_KHR_maintenance6
 VK_STRUCTURE_TYPE_PUSH_CONSTANTS_INFO_KHR = 1000545004,
 // Provided by VK_KHR_maintenance6 with VK_KHR_push_descriptor
 VK_STRUCTURE_TYPE_PUSH_DESCRIPTOR_SET_INFO_KHR = 1000545005,
 // Provided by VK_KHR_maintenance6 with VK_KHR_push_descriptor
 VK_STRUCTURE_TYPE_PUSH_DESCRIPTOR_SET_WITH_TEMPLATE_INFO_KHR = 1000545006,
 // Provided by VK_KHR_maintenance6 with VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_SET_DESCRIPTOR_BUFFER_OFFSETS_INFO_EXT = 1000545007,
 // Provided by VK_KHR_maintenance6 with VK_EXT_descriptor_buffer
 VK_STRUCTURE_TYPE_BIND_DESCRIPTOR_BUFFER_EMBEDDED_SAMPLERS_INFO_EXT = 1000545008,
 // Provided by VK_NV_descriptor_pool_overallocation
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_POOL_OVERALLOCATION_FEATURES_NV =
1000546000,
 // Provided by VK_NV_raw_access_chains
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAW_ACCESS_CHAINS_FEATURES_NV = 1000555000,
 // Provided by VK_NV_shader_atomic_float16_vector
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT16_VECTOR_FEATURES_NV =
1000563000,
 // Provided by VK_NV_ray_tracing_validation
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_VALIDATION_FEATURES_NV = 1000568000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES,
 // Provided by VK_EXT_debug_report
 VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT,
 // Provided by VK_KHR_dynamic_rendering
 VK_STRUCTURE_TYPE_RENDERING_INFO_KHR = VK_STRUCTURE_TYPE_RENDERING_INFO,
 // Provided by VK_KHR_dynamic_rendering
 VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR =
VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
 // Provided by VK_KHR_dynamic_rendering
 VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
 // Provided by VK_KHR_dynamic_rendering
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES,
 // Provided by VK_KHR_dynamic_rendering
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO_KHR =
VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO,
 // Provided by VK_KHR_dynamic_rendering with VK_NV_framebuffer_mixed_samples
 VK_STRUCTURE_TYPE_ATTACHMENT_SAMPLE_COUNT_INFO_NV =
VK_STRUCTURE_TYPE_ATTACHMENT_SAMPLE_COUNT_INFO_AMD,
 // Provided by VK_KHR_multiview

91

 VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO,
 // Provided by VK_KHR_multiview
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES,
 // Provided by VK_KHR_multiview
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR =
VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR =
VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR =
VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2,
 // Provided by VK_KHR_get_physical_device_properties2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2,
 // Provided by VK_KHR_device_group
 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR =
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO,
 // Provided by VK_KHR_device_group
 VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO_KHR =
VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO,
 // Provided by VK_KHR_device_group
 VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO_KHR =
VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO,
 // Provided by VK_KHR_device_group
 VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO_KHR =
VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO,
 // Provided by VK_KHR_device_group
 VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR =
VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO,
 // Provided by VK_KHR_bind_memory2 with VK_KHR_device_group
 VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO_KHR =

92

VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO,
 // Provided by VK_KHR_bind_memory2 with VK_KHR_device_group
 VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO_KHR =
VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES,
 // Provided by VK_KHR_device_group_creation
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES,
 // Provided by VK_KHR_device_group_creation
 VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO,
 // Provided by VK_KHR_external_memory_capabilities
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO,
 // Provided by VK_KHR_external_memory_capabilities
 VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES,
 // Provided by VK_KHR_external_memory_capabilities
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO,
 // Provided by VK_KHR_external_memory_capabilities
 VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES,
 // Provided by VK_KHR_external_fence_capabilities,
VK_KHR_external_memory_capabilities, VK_KHR_external_semaphore_capabilities
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES,
 // Provided by VK_KHR_external_memory
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO,
 // Provided by VK_KHR_external_memory
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO,
 // Provided by VK_KHR_external_memory
 VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR =
VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES,
 // Provided by VK_KHR_external_semaphore
 VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO,
 // Provided by VK_KHR_shader_float16_int8
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES,
 // Provided by VK_KHR_shader_float16_int8

93

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES,
 // Provided by VK_KHR_16bit_storage
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES,
 // Provided by VK_KHR_descriptor_update_template
 VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO,
 // Provided by VK_EXT_display_surface_counter
 VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES2_EXT =
VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT,
 // Provided by VK_KHR_imageless_framebuffer
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES,
 // Provided by VK_KHR_imageless_framebuffer
 VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO,
 // Provided by VK_KHR_imageless_framebuffer
 VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO_KHR =
VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO,
 // Provided by VK_KHR_imageless_framebuffer
 VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR =
VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO,
 // Provided by VK_KHR_create_renderpass2
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR =
VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
 // Provided by VK_KHR_create_renderpass2
 VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR =
VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
 // Provided by VK_KHR_create_renderpass2
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR =
VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
 // Provided by VK_KHR_create_renderpass2
 VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2_KHR =
VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
 // Provided by VK_KHR_create_renderpass2
 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR =
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
 // Provided by VK_KHR_create_renderpass2
 VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO_KHR = VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO,
 // Provided by VK_KHR_create_renderpass2
 VK_STRUCTURE_TYPE_SUBPASS_END_INFO_KHR = VK_STRUCTURE_TYPE_SUBPASS_END_INFO,
 // Provided by VK_KHR_external_fence_capabilities
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO,
 // Provided by VK_KHR_external_fence_capabilities
 VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES,
 // Provided by VK_KHR_external_fence
 VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO,

94

 // Provided by VK_KHR_maintenance2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES,
 // Provided by VK_KHR_maintenance2
 VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO,
 // Provided by VK_KHR_maintenance2
 VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO,
 // Provided by VK_KHR_maintenance2
 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO,
 // Provided by VK_KHR_variable_pointers
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES,
 // Provided by VK_KHR_variable_pointers
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES_KHR,
 // Provided by VK_KHR_dedicated_allocation
 VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR =
VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS,
 // Provided by VK_KHR_dedicated_allocation
 VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR =
VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO,
 // Provided by VK_EXT_sampler_filter_minmax
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES,
 // Provided by VK_EXT_sampler_filter_minmax
 VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO,
 // Provided by VK_EXT_inline_uniform_block
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES,
 // Provided by VK_EXT_inline_uniform_block
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES,
 // Provided by VK_EXT_inline_uniform_block
 VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT =
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK,
 // Provided by VK_EXT_inline_uniform_block
 VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO,
 // Provided by VK_KHR_get_memory_requirements2
 VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR =
VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
 // Provided by VK_KHR_get_memory_requirements2
 VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR =
VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
 // Provided by VK_KHR_get_memory_requirements2
 VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2_KHR =
VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2,

95

 // Provided by VK_KHR_get_memory_requirements2
 VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR =
VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
 // Provided by VK_KHR_get_memory_requirements2
 VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2_KHR =
VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2,
 // Provided by VK_KHR_image_format_list
 VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO_KHR =
VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR =
VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR =
VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES,
 // Provided by VK_KHR_bind_memory2
 VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR =
VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
 // Provided by VK_KHR_bind_memory2
 VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR =
VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO,
 // Provided by VK_EXT_descriptor_indexing
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO,
 // Provided by VK_EXT_descriptor_indexing
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES,
 // Provided by VK_EXT_descriptor_indexing
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES,
 // Provided by VK_EXT_descriptor_indexing
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT =
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO,
 // Provided by VK_EXT_descriptor_indexing
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT =
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT,
 // Provided by VK_KHR_maintenance3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES,

96

 // Provided by VK_KHR_maintenance3
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT_KHR =
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT,
 // Provided by VK_EXT_global_priority
 VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR,
 // Provided by VK_KHR_shader_subgroup_extended_types
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES,
 // Provided by VK_KHR_8bit_storage
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES,
 // Provided by VK_KHR_shader_atomic_int64
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES,
 // Provided by VK_EXT_calibrated_timestamps
 VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_EXT =
VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_KHR,
 // Provided by VK_EXT_vertex_attribute_divisor
 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_KHR,
 // Provided by VK_EXT_vertex_attribute_divisor
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_KHR,
 // Provided by VK_EXT_pipeline_creation_feedback
 VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO,
 // Provided by VK_KHR_driver_properties
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES,
 // Provided by VK_KHR_shader_float_controls
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES,
 // Provided by VK_KHR_depth_stencil_resolve
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES,
 // Provided by VK_KHR_depth_stencil_resolve
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE_KHR =
VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE,
 // Provided by VK_NV_fragment_shader_barycentric
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_FEATURES_NV =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_FEATURES_KHR,
 // Provided by VK_KHR_timeline_semaphore
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES,
 // Provided by VK_KHR_timeline_semaphore
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES,
 // Provided by VK_KHR_timeline_semaphore
 VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO,

97

 // Provided by VK_KHR_timeline_semaphore
 VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR =
VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO,
 // Provided by VK_KHR_timeline_semaphore
 VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO_KHR = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO,
 // Provided by VK_KHR_timeline_semaphore
 VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO_KHR =
VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO,
 // Provided by VK_INTEL_performance_query
 VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO_INTEL =
VK_STRUCTURE_TYPE_QUERY_POOL_PERFORMANCE_QUERY_CREATE_INFO_INTEL,
 // Provided by VK_KHR_vulkan_memory_model
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES,
 // Provided by VK_KHR_shader_terminate_invocation
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES,
 // Provided by VK_EXT_scalar_block_layout
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES,
 // Provided by VK_EXT_subgroup_size_control
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES,
 // Provided by VK_EXT_subgroup_size_control
 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO,
 // Provided by VK_EXT_subgroup_size_control
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES,
 // Provided by VK_KHR_separate_depth_stencil_layouts
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES,
 // Provided by VK_KHR_separate_depth_stencil_layouts
 VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT_KHR =
VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT,
 // Provided by VK_KHR_separate_depth_stencil_layouts
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT_KHR =
VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT,
 // Provided by VK_EXT_buffer_device_address
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_ADDRESS_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT,
 // Provided by VK_EXT_buffer_device_address
 VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_EXT =
VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO,
 // Provided by VK_EXT_tooling_info
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES,
 // Provided by VK_EXT_separate_stencil_usage
 VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO,
 // Provided by VK_KHR_uniform_buffer_standard_layout

98

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES,
 // Provided by VK_KHR_buffer_device_address
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES,
 // Provided by VK_KHR_buffer_device_address
 VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_KHR =
VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO,
 // Provided by VK_KHR_buffer_device_address
 VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO_KHR =
VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO,
 // Provided by VK_KHR_buffer_device_address
 VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR =
VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO,
 // Provided by VK_KHR_buffer_device_address
 VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO_KHR =
VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO,
 // Provided by VK_EXT_line_rasterization
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_KHR,
 // Provided by VK_EXT_line_rasterization
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_KHR,
 // Provided by VK_EXT_line_rasterization
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_KHR,
 // Provided by VK_EXT_host_query_reset
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES,
 // Provided by VK_EXT_index_type_uint8
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_KHR,
 // Provided by VK_EXT_shader_demote_to_helper_invocation
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT
= VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES,
 // Provided by VK_KHR_shader_integer_dot_product
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES,
 // Provided by VK_KHR_shader_integer_dot_product
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES,
 // Provided by VK_EXT_texel_buffer_alignment
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES,
 // Provided by VK_EXT_private_data
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES,
 // Provided by VK_EXT_private_data
 VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO,
 // Provided by VK_EXT_private_data

99

 VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO,
 // Provided by VK_EXT_pipeline_creation_cache_control
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES,
 // Provided by VK_KHR_synchronization2
 VK_STRUCTURE_TYPE_MEMORY_BARRIER_2_KHR = VK_STRUCTURE_TYPE_MEMORY_BARRIER_2,
 // Provided by VK_KHR_synchronization2
 VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2_KHR =
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,
 // Provided by VK_KHR_synchronization2
 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2_KHR =
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
 // Provided by VK_KHR_synchronization2
 VK_STRUCTURE_TYPE_DEPENDENCY_INFO_KHR = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
 // Provided by VK_KHR_synchronization2
 VK_STRUCTURE_TYPE_SUBMIT_INFO_2_KHR = VK_STRUCTURE_TYPE_SUBMIT_INFO_2,
 // Provided by VK_KHR_synchronization2
 VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR =
VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO,
 // Provided by VK_KHR_synchronization2
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO_KHR =
VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO,
 // Provided by VK_KHR_synchronization2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES,
 // Provided by VK_KHR_zero_initialize_workgroup_memory
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES,
 // Provided by VK_EXT_image_robustness
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2_KHR = VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2_KHR = VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2_KHR =
VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2_KHR =
VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2_KHR = VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2_KHR =
VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_BUFFER_COPY_2_KHR = VK_STRUCTURE_TYPE_BUFFER_COPY_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_IMAGE_COPY_2_KHR = VK_STRUCTURE_TYPE_IMAGE_COPY_2,

100

 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_IMAGE_BLIT_2_KHR = VK_STRUCTURE_TYPE_IMAGE_BLIT_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2_KHR = VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2,
 // Provided by VK_KHR_copy_commands2
 VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2_KHR = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2,
 // Provided by VK_EXT_image_compression_control
 VK_STRUCTURE_TYPE_SUBRESOURCE_LAYOUT_2_EXT =
VK_STRUCTURE_TYPE_SUBRESOURCE_LAYOUT_2_KHR,
 // Provided by VK_EXT_image_compression_control
 VK_STRUCTURE_TYPE_IMAGE_SUBRESOURCE_2_EXT =
VK_STRUCTURE_TYPE_IMAGE_SUBRESOURCE_2_KHR,
 // Provided by VK_ARM_rasterization_order_attachment_access

VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_ARM =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT,
 // Provided by VK_VALVE_mutable_descriptor_type
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_VALVE =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_EXT,
 // Provided by VK_VALVE_mutable_descriptor_type
 VK_STRUCTURE_TYPE_MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE =
VK_STRUCTURE_TYPE_MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT,
 // Provided by VK_KHR_format_feature_flags2
 VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3_KHR = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3,
 // Provided by VK_EXT_pipeline_properties
 VK_STRUCTURE_TYPE_PIPELINE_INFO_EXT = VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR,
 // Provided by VK_EXT_global_priority_query
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_EXT =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR,
 // Provided by VK_EXT_global_priority_query
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_EXT =
VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR,
 // Provided by VK_KHR_maintenance4
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES,
 // Provided by VK_KHR_maintenance4
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES_KHR =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES,
 // Provided by VK_KHR_maintenance4
 VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS_KHR =
VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS,
 // Provided by VK_KHR_maintenance4
 VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS_KHR =
VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS,
 // Provided by VK_EXT_shader_object
 VK_STRUCTURE_TYPE_SHADER_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT =
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO,
} VkStructureType;

101

3.12. API Name Aliases
A small number of APIs did not follow the naming conventions when initially defined. For
consistency, when we discover an API name that violates the naming conventions, we rename it in
the Specification, XML, and header files. For backwards compatibility, the original (incorrect) name
is retained as a “typo alias”. The alias is deprecated and should not be used, but will be retained
indefinitely.

Note

VK_STENCIL_FRONT_AND_BACK is an example of a typo alias. It was initially defined as
part of VkStencilFaceFlagBits. Once the naming inconsistency was noticed, it was
renamed to VK_STENCIL_FACE_FRONT_AND_BACK, and the old name was aliased to the
correct name.

102

Chapter 4. Initialization
Before using Vulkan, an application must initialize it by loading the Vulkan commands, and
creating a VkInstance object.

4.1. Command Function Pointers
Vulkan commands are not necessarily exposed by static linking on a platform. Commands to query
function pointers for Vulkan commands are described below.

Note

When extensions are promoted or otherwise incorporated into another extension
or Vulkan core version, command aliases may be included. Whilst the behavior of
each command alias is identical, the behavior of retrieving each alias’s function
pointer is not. A function pointer for a given alias can only be retrieved if the
extension or version that introduced that alias is supported and enabled,
irrespective of whether any other alias is available.

Function pointers for all Vulkan commands can be obtained by calling:

// Provided by VK_VERSION_1_0
PFN_vkVoidFunction vkGetInstanceProcAddr(
 VkInstance instance,
 const char* pName);

• instance is the instance that the function pointer will be compatible with, or NULL for commands
not dependent on any instance.

• pName is the name of the command to obtain.

vkGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the
loader library will export this command as a function symbol, so applications can link against the
loader library, or load it dynamically and look up the symbol using platform-specific APIs.

The table below defines the various use cases for vkGetInstanceProcAddr and expected return value
(“fp” is “function pointer”) for each case. A valid returned function pointer (“fp”) must not be NULL.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the
command being queried before use.

Table 1. vkGetInstanceProcAddr behavior

instance pName return value

*1 NULL undefined

invalid non-NULL instance *1 undefined

NULL global command2 fp

103

instance pName return value

NULL vkGetInstanceProcAddr fp5

instance vkGetInstanceProcAddr fp

instance core dispatchable
command

fp3

instance enabled instance
extension dispatchable
command for instance

fp3

instance available device
extension4 dispatchable
command for instance

fp3

any other case, not covered above NULL

1

"*" means any representable value for the parameter (including valid values, invalid values, and
NULL).

2

The global commands are: vkEnumerateInstanceVersion,
vkEnumerateInstanceExtensionProperties, vkEnumerateInstanceLayerProperties, and
vkCreateInstance. Dispatchable commands are all other commands which are not global.

3

The returned function pointer must only be called with a dispatchable object (the first
parameter) that is instance or a child of instance, e.g. VkInstance, VkPhysicalDevice, VkDevice,
VkQueue, or VkCommandBuffer.

4

An “available device extension” is a device extension supported by any physical device
enumerated by instance.

5

Starting with Vulkan 1.2, vkGetInstanceProcAddr can resolve itself with a NULL instance pointer.

Valid Usage (Implicit)

• VUID-vkGetInstanceProcAddr-instance-parameter
If instance is not NULL, instance must be a valid VkInstance handle

• VUID-vkGetInstanceProcAddr-pName-parameter
pName must be a null-terminated UTF-8 string

In order to support systems with multiple Vulkan implementations, the function pointers returned
by vkGetInstanceProcAddr may point to dispatch code that calls a different real implementation for
different VkDevice objects or their child objects. The overhead of the internal dispatch for VkDevice

104

objects can be avoided by obtaining device-specific function pointers for any commands that use a
device or device-child object as their dispatchable object. Such function pointers can be obtained by
calling:

// Provided by VK_VERSION_1_0
PFN_vkVoidFunction vkGetDeviceProcAddr(
 VkDevice device,
 const char* pName);

The table below defines the various use cases for vkGetDeviceProcAddr and expected return value
(“fp” is “function pointer”) for each case. A valid returned function pointer (“fp”) must not be NULL.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the
command being queried before use. The function pointer must only be called with a dispatchable
object (the first parameter) that is device or a child of device.

Table 2. vkGetDeviceProcAddr behavior

device pName return value

NULL *1 undefined

invalid device *1 undefined

device NULL undefined

device requested core version2

device-level dispatchable
command3

fp4

device enabled extension
device-level dispatchable
command3

fp4

any other case, not covered above NULL

1

"*" means any representable value for the parameter (including valid values, invalid values, and
NULL).

2

Device-level commands which are part of the core version specified by VkApplicationInfo
::apiVersion when creating the instance will always return a valid function pointer. If the
maintenance5 feature is enabled, core commands beyond that version which are supported by the
implementation will return NULL, otherwise the implementation may either return NULL or a
function pointer. If a function pointer is returned, it must not be called.

3

In this function, device-level excludes all physical-device-level commands.

4

The returned function pointer must only be called with a dispatchable object (the first

105

parameter) that is device or a child of device e.g. VkDevice, VkQueue, or VkCommandBuffer.

Valid Usage (Implicit)

• VUID-vkGetDeviceProcAddr-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceProcAddr-pName-parameter
pName must be a null-terminated UTF-8 string

The definition of PFN_vkVoidFunction is:

// Provided by VK_VERSION_1_0
typedef void (VKAPI_PTR *PFN_vkVoidFunction)(void);

This type is returned from command function pointer queries, and must be cast to an actual
command function pointer before use.

4.1.1. Extending Physical Device Core Functionality

New core physical-device-level functionality can be used when the physical-device version is
greater than or equal to the version of Vulkan that added the new functionality. The Vulkan version
supported by a physical device can be obtained by calling vkGetPhysicalDeviceProperties.

4.1.2. Extending Physical Device From Device Extensions

When the VK_KHR_get_physical_device_properties2 extension is enabled, or when both the instance
and the physical-device versions are at least 1.1, physical-device-level functionality of a device
extension can be used with a physical device if the corresponding extension is enumerated by
vkEnumerateDeviceExtensionProperties for that physical device, even before a logical device has
been created.

To obtain a function pointer for a physical-device-level command from a device extension, an
application can use vkGetInstanceProcAddr. This function pointer may point to dispatch code,
which calls a different real implementation for different VkPhysicalDevice objects. Applications
must not use a VkPhysicalDevice in any command added by an extension or core version that is not
supported by that physical device.

Device extensions may define structures that can be added to the pNext chain of physical-device-
level commands.

4.2. Instances
There is no global state in Vulkan and all per-application state is stored in a VkInstance object.
Creating a VkInstance object initializes the Vulkan library and allows the application to pass
information about itself to the implementation.

106

Instances are represented by VkInstance handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkInstance)

To query the version of instance-level functionality supported by the implementation, call:

// Provided by VK_VERSION_1_1
VkResult vkEnumerateInstanceVersion(
 uint32_t* pApiVersion);

• pApiVersion is a pointer to a uint32_t, which is the version of Vulkan supported by instance-level
functionality, encoded as described in Version Numbers.

Note

The intended behaviour of vkEnumerateInstanceVersion is that an
implementation should not need to perform memory allocations and should
unconditionally return VK_SUCCESS. The loader, and any enabled layers, may return
VK_ERROR_OUT_OF_HOST_MEMORY in the case of a failed memory allocation.

Valid Usage (Implicit)

• VUID-vkEnumerateInstanceVersion-pApiVersion-parameter
pApiVersion must be a valid pointer to a uint32_t value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

To create an instance object, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateInstance(
 const VkInstanceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkInstance* pInstance);

• pCreateInfo is a pointer to a VkInstanceCreateInfo structure controlling creation of the instance.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

107

• pInstance points a VkInstance handle in which the resulting instance is returned.

vkCreateInstance verifies that the requested layers exist. If not, vkCreateInstance will return
VK_ERROR_LAYER_NOT_PRESENT. Next vkCreateInstance verifies that the requested extensions are
supported (e.g. in the implementation or in any enabled instance layer) and if any requested
extension is not supported, vkCreateInstance must return VK_ERROR_EXTENSION_NOT_PRESENT. After
verifying and enabling the instance layers and extensions the VkInstance object is created and
returned to the application. If a requested extension is only supported by a layer, both the layer and
the extension need to be specified at vkCreateInstance time for the creation to succeed.

Valid Usage

• VUID-vkCreateInstance-ppEnabledExtensionNames-01388
All required extensions for each extension in the VkInstanceCreateInfo
::ppEnabledExtensionNames list must also be present in that list

Valid Usage (Implicit)

• VUID-vkCreateInstance-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkInstanceCreateInfo structure

• VUID-vkCreateInstance-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateInstance-pInstance-parameter
pInstance must be a valid pointer to a VkInstance handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_LAYER_NOT_PRESENT

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_INCOMPATIBLE_DRIVER

The VkInstanceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0

108

typedef struct VkInstanceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkInstanceCreateFlags flags;
 const VkApplicationInfo* pApplicationInfo;
 uint32_t enabledLayerCount;
 const char* const* ppEnabledLayerNames;
 uint32_t enabledExtensionCount;
 const char* const* ppEnabledExtensionNames;
} VkInstanceCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkInstanceCreateFlagBits indicating the behavior of the instance.

• pApplicationInfo is NULL or a pointer to a VkApplicationInfo structure. If not NULL, this
information helps implementations recognize behavior inherent to classes of applications.
VkApplicationInfo is defined in detail below.

• enabledLayerCount is the number of global layers to enable.

• ppEnabledLayerNames is a pointer to an array of enabledLayerCount null-terminated UTF-8 strings
containing the names of layers to enable for the created instance. The layers are loaded in the
order they are listed in this array, with the first array element being the closest to the
application, and the last array element being the closest to the driver. See the Layers section for
further details.

• enabledExtensionCount is the number of global extensions to enable.

• ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8
strings containing the names of extensions to enable.

To capture events that occur while creating or destroying an instance, an application can link a
VkDebugReportCallbackCreateInfoEXT structure or a VkDebugUtilsMessengerCreateInfoEXT
structure to the pNext element of the VkInstanceCreateInfo structure given to vkCreateInstance. This
callback is only valid for the duration of the vkCreateInstance and the vkDestroyInstance call. Use
vkCreateDebugReportCallbackEXT or vkCreateDebugUtilsMessengerEXT to create persistent
callback objects.

An application can add additional drivers by including the VkDirectDriverLoadingListLUNARG
struct to the pNext element of the VkInstanceCreateInfo structure given to vkCreateInstance.

Note

VkDirectDriverLoadingListLUNARG allows applications to ship drivers with
themselves. Only drivers that are designed to work with it should be used, such as
drivers that implement Vulkan in software or that implement Vulkan by
translating it to a different API. Any driver that requires installation should not be
used, such as hardware drivers.

109

Valid Usage

• VUID-VkInstanceCreateInfo-pNext-04925
If the pNext chain of VkInstanceCreateInfo includes a VkDebugReportCallbackCreateInfoEXT
structure, the list of enabled extensions in ppEnabledExtensionNames must contain
VK_EXT_debug_report

• VUID-VkInstanceCreateInfo-pNext-04926
If the pNext chain of VkInstanceCreateInfo includes a VkDebugUtilsMessengerCreateInfoEXT
structure, the list of enabled extensions in ppEnabledExtensionNames must contain
VK_EXT_debug_utils

• VUID-VkInstanceCreateInfo-pNext-06779
If the pNext chain includes a VkExportMetalObjectCreateInfoEXT structure, its
exportObjectType member must be either
VK_EXPORT_METAL_OBJECT_TYPE_METAL_DEVICE_BIT_EXT or
VK_EXPORT_METAL_OBJECT_TYPE_METAL_COMMAND_QUEUE_BIT_EXT

• VUID-VkInstanceCreateInfo-flags-06559
If flags has the VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR bit set, the list of
enabled extensions in ppEnabledExtensionNames must contain
VK_KHR_portability_enumeration

• VUID-VkInstanceCreateInfo-pNext-09400
If the pNext chain of VkInstanceCreateInfo includes a VkDirectDriverLoadingListLUNARG
structure, the list of enabled extensions in ppEnabledExtensionNames must contain
VK_LUNARG_direct_driver_loading

Valid Usage (Implicit)

• VUID-VkInstanceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO

• VUID-VkInstanceCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDebugReportCallbackCreateInfoEXT,
VkDebugUtilsMessengerCreateInfoEXT, VkDirectDriverLoadingListLUNARG,
VkExportMetalObjectCreateInfoEXT, VkLayerSettingsCreateInfoEXT,
VkValidationFeaturesEXT, or VkValidationFlagsEXT

• VUID-VkInstanceCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkDebugUtilsMessengerCreateInfoEXT,
VkExportMetalObjectCreateInfoEXT, or VkLayerSettingsCreateInfoEXT

• VUID-VkInstanceCreateInfo-flags-parameter
flags must be a valid combination of VkInstanceCreateFlagBits values

• VUID-VkInstanceCreateInfo-pApplicationInfo-parameter
If pApplicationInfo is not NULL, pApplicationInfo must be a valid pointer to a valid
VkApplicationInfo structure

110

• VUID-VkInstanceCreateInfo-ppEnabledLayerNames-parameter
If enabledLayerCount is not 0, ppEnabledLayerNames must be a valid pointer to an array of
enabledLayerCount null-terminated UTF-8 strings

• VUID-VkInstanceCreateInfo-ppEnabledExtensionNames-parameter
If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a valid pointer to an
array of enabledExtensionCount null-terminated UTF-8 strings

// Provided by VK_VERSION_1_0
typedef enum VkInstanceCreateFlagBits {
 // Provided by VK_KHR_portability_enumeration
 VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR = 0x00000001,
} VkInstanceCreateFlagBits;

• VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR specifies that the instance will enumerate
available Vulkan Portability-compliant physical devices and groups in addition to the Vulkan
physical devices and groups that are enumerated by default.

// Provided by VK_VERSION_1_0
typedef VkFlags VkInstanceCreateFlags;

VkInstanceCreateFlags is a bitmask type for setting a mask of zero or more
VkInstanceCreateFlagBits.

When creating a Vulkan instance for which you wish to disable validation checks, add a
VkValidationFlagsEXT structure to the pNext chain of the VkInstanceCreateInfo structure, specifying
the checks to be disabled.

// Provided by VK_EXT_validation_flags
typedef struct VkValidationFlagsEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t disabledValidationCheckCount;
 const VkValidationCheckEXT* pDisabledValidationChecks;
} VkValidationFlagsEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• disabledValidationCheckCount is the number of checks to disable.

• pDisabledValidationChecks is a pointer to an array of VkValidationCheckEXT values specifying
the validation checks to be disabled.

111

Valid Usage (Implicit)

• VUID-VkValidationFlagsEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT

• VUID-VkValidationFlagsEXT-pDisabledValidationChecks-parameter
pDisabledValidationChecks must be a valid pointer to an array of
disabledValidationCheckCount valid VkValidationCheckEXT values

• VUID-VkValidationFlagsEXT-disabledValidationCheckCount-arraylength
disabledValidationCheckCount must be greater than 0

Possible values of elements of the VkValidationFlagsEXT::pDisabledValidationChecks array,
specifying validation checks to be disabled, are:

// Provided by VK_EXT_validation_flags
typedef enum VkValidationCheckEXT {
 VK_VALIDATION_CHECK_ALL_EXT = 0,
 VK_VALIDATION_CHECK_SHADERS_EXT = 1,
} VkValidationCheckEXT;

• VK_VALIDATION_CHECK_ALL_EXT specifies that all validation checks are disabled.

• VK_VALIDATION_CHECK_SHADERS_EXT specifies that shader validation is disabled.

When creating a Vulkan instance for which you wish to enable or disable specific validation
features, add a VkValidationFeaturesEXT structure to the pNext chain of the VkInstanceCreateInfo
structure, specifying the features to be enabled or disabled.

// Provided by VK_EXT_validation_features
typedef struct VkValidationFeaturesEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t enabledValidationFeatureCount;
 const VkValidationFeatureEnableEXT* pEnabledValidationFeatures;
 uint32_t disabledValidationFeatureCount;
 const VkValidationFeatureDisableEXT* pDisabledValidationFeatures;
} VkValidationFeaturesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• enabledValidationFeatureCount is the number of features to enable.

• pEnabledValidationFeatures is a pointer to an array of VkValidationFeatureEnableEXT values
specifying the validation features to be enabled.

• disabledValidationFeatureCount is the number of features to disable.

• pDisabledValidationFeatures is a pointer to an array of VkValidationFeatureDisableEXT values

112

specifying the validation features to be disabled.

Valid Usage

• VUID-VkValidationFeaturesEXT-pEnabledValidationFeatures-02967
If the pEnabledValidationFeatures array contains
VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_RESERVE_BINDING_SLOT_EXT, then it must also
contain VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT

• VUID-VkValidationFeaturesEXT-pEnabledValidationFeatures-02968
If the pEnabledValidationFeatures array contains
VK_VALIDATION_FEATURE_ENABLE_DEBUG_PRINTF_EXT, then it must not contain
VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT

Valid Usage (Implicit)

• VUID-VkValidationFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT

• VUID-VkValidationFeaturesEXT-pEnabledValidationFeatures-parameter
If enabledValidationFeatureCount is not 0, pEnabledValidationFeatures must be a valid
pointer to an array of enabledValidationFeatureCount valid VkValidationFeatureEnableEXT
values

• VUID-VkValidationFeaturesEXT-pDisabledValidationFeatures-parameter
If disabledValidationFeatureCount is not 0, pDisabledValidationFeatures must be a valid
pointer to an array of disabledValidationFeatureCount valid
VkValidationFeatureDisableEXT values

Possible values of elements of the VkValidationFeaturesEXT::pEnabledValidationFeatures array,
specifying validation features to be enabled, are:

// Provided by VK_EXT_validation_features
typedef enum VkValidationFeatureEnableEXT {
 VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT = 0,
 VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_RESERVE_BINDING_SLOT_EXT = 1,
 VK_VALIDATION_FEATURE_ENABLE_BEST_PRACTICES_EXT = 2,
 VK_VALIDATION_FEATURE_ENABLE_DEBUG_PRINTF_EXT = 3,
 VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT = 4,
} VkValidationFeatureEnableEXT;

• VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT specifies that GPU-assisted validation is enabled.
Activating this feature instruments shader programs to generate additional diagnostic data. This
feature is disabled by default.

• VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_RESERVE_BINDING_SLOT_EXT specifies that the
validation layers reserve a descriptor set binding slot for their own use. The layer reports a
value for VkPhysicalDeviceLimits::maxBoundDescriptorSets that is one less than the value

113

reported by the device. If the device supports the binding of only one descriptor set, the
validation layer does not perform GPU-assisted validation. This feature is disabled by default.

• VK_VALIDATION_FEATURE_ENABLE_BEST_PRACTICES_EXT specifies that Vulkan best-practices validation
is enabled. Activating this feature enables the output of warnings related to common misuse of
the API, but which are not explicitly prohibited by the specification. This feature is disabled by
default.

• VK_VALIDATION_FEATURE_ENABLE_DEBUG_PRINTF_EXT specifies that the layers will process
debugPrintfEXT operations in shaders and send the resulting output to the debug callback. This
feature is disabled by default.

• VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT specifies that Vulkan
synchronization validation is enabled. This feature reports resource access conflicts due to
missing or incorrect synchronization operations between actions (Draw, Copy, Dispatch, Blit)
reading or writing the same regions of memory. This feature is disabled by default.

Possible values of elements of the VkValidationFeaturesEXT::pDisabledValidationFeatures array,
specifying validation features to be disabled, are:

// Provided by VK_EXT_validation_features
typedef enum VkValidationFeatureDisableEXT {
 VK_VALIDATION_FEATURE_DISABLE_ALL_EXT = 0,
 VK_VALIDATION_FEATURE_DISABLE_SHADERS_EXT = 1,
 VK_VALIDATION_FEATURE_DISABLE_THREAD_SAFETY_EXT = 2,
 VK_VALIDATION_FEATURE_DISABLE_API_PARAMETERS_EXT = 3,
 VK_VALIDATION_FEATURE_DISABLE_OBJECT_LIFETIMES_EXT = 4,
 VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT = 5,
 VK_VALIDATION_FEATURE_DISABLE_UNIQUE_HANDLES_EXT = 6,
 VK_VALIDATION_FEATURE_DISABLE_SHADER_VALIDATION_CACHE_EXT = 7,
} VkValidationFeatureDisableEXT;

• VK_VALIDATION_FEATURE_DISABLE_ALL_EXT specifies that all validation checks are disabled.

• VK_VALIDATION_FEATURE_DISABLE_SHADERS_EXT specifies that shader validation is disabled. This
feature is enabled by default.

• VK_VALIDATION_FEATURE_DISABLE_THREAD_SAFETY_EXT specifies that thread safety validation is
disabled. This feature is enabled by default.

• VK_VALIDATION_FEATURE_DISABLE_API_PARAMETERS_EXT specifies that stateless parameter validation
is disabled. This feature is enabled by default.

• VK_VALIDATION_FEATURE_DISABLE_OBJECT_LIFETIMES_EXT specifies that object lifetime validation is
disabled. This feature is enabled by default.

• VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT specifies that core validation checks are
disabled. This feature is enabled by default. If this feature is disabled, the shader validation and
GPU-assisted validation features are also disabled.

• VK_VALIDATION_FEATURE_DISABLE_UNIQUE_HANDLES_EXT specifies that protection against duplicate
non-dispatchable object handles is disabled. This feature is enabled by default.

• VK_VALIDATION_FEATURE_DISABLE_SHADER_VALIDATION_CACHE_EXT specifies that there will be no

114

caching of shader validation results and every shader will be validated on every application
execution. Shader validation caching is enabled by default.

Note

Disabling checks such as parameter validation and object lifetime validation
prevents the reporting of error conditions that can cause other validation checks
to behave incorrectly or crash. Some validation checks assume that their inputs
are already valid and do not always revalidate them.

Note

The VK_EXT_validation_features extension subsumes all the functionality provided
in the VK_EXT_validation_flags extension.

To create a Vulkan instance with a specific configuration of layer settings, add
VkLayerSettingsCreateInfoEXT structures to the pNext chain of the VkInstanceCreateInfo structure,
specifying the settings to be configured.

// Provided by VK_EXT_layer_settings
typedef struct VkLayerSettingsCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t settingCount;
 const VkLayerSettingEXT* pSettings;
} VkLayerSettingsCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• settingCount is the number of settings to configure.

• pSettings is a pointer to an array of settingCount VkLayerSettingEXT values specifying the
setting to be configured.

Valid Usage (Implicit)

• VUID-VkLayerSettingsCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT

• VUID-VkLayerSettingsCreateInfoEXT-pSettings-parameter
If settingCount is not 0, pSettings must be a valid pointer to an array of settingCount valid
VkLayerSettingEXT structures

The values of elements of the VkLayerSettingsCreateInfoEXT::pSettings array, specifying layer
settings to be configured, are:

// Provided by VK_EXT_layer_settings
typedef struct VkLayerSettingEXT {

115

 const char* pLayerName;
 const char* pSettingName;
 VkLayerSettingTypeEXT type;
 uint32_t valueCount;
 const void* pValues;
} VkLayerSettingEXT;

• pLayerName is a pointer to a null-terminated UTF-8 string naming the layer to configure the
setting from.

• pSettingName is a pointer to a null-terminated UTF-8 string naming the setting to configure.
Unknown pSettingName by the layer are ignored.

• type is a VkLayerSettingTypeEXT value specifying the type of the pValues values.

• count is the number of values used to configure the layer setting.

• pValues is a pointer to an array of count values of the type indicated by type to configure the
layer setting.

When multiple VkLayerSettingsCreateInfoEXT structures are chained and the same pSettingName is
referenced for the same pLayerName, the value of the first reference of the layer setting is used.

Valid Usage (Implicit)

• VUID-VkLayerSettingEXT-pLayerName-parameter
pLayerName must be a null-terminated UTF-8 string

• VUID-VkLayerSettingEXT-pSettingName-parameter
pSettingName must be a null-terminated UTF-8 string

• VUID-VkLayerSettingEXT-type-parameter
type must be a valid VkLayerSettingTypeEXT value

• VUID-VkLayerSettingEXT-pValues-parameter
If valueCount is not 0, pValues must be a valid pointer to an array of valueCount bytes

Possible values of VkLayerSettingEXT::type, specifying the type of the data returned in
VkLayerSettingEXT::pValues, are:

// Provided by VK_EXT_layer_settings
typedef enum VkLayerSettingTypeEXT {
 VK_LAYER_SETTING_TYPE_BOOL32_EXT = 0,
 VK_LAYER_SETTING_TYPE_INT32_EXT = 1,
 VK_LAYER_SETTING_TYPE_INT64_EXT = 2,
 VK_LAYER_SETTING_TYPE_UINT32_EXT = 3,
 VK_LAYER_SETTING_TYPE_UINT64_EXT = 4,
 VK_LAYER_SETTING_TYPE_FLOAT32_EXT = 5,
 VK_LAYER_SETTING_TYPE_FLOAT64_EXT = 6,
 VK_LAYER_SETTING_TYPE_STRING_EXT = 7,
} VkLayerSettingTypeEXT;

116

• VK_LAYER_SETTING_TYPE_BOOL32_EXT specifies that the layer setting’s type is VkBool32.

• VK_LAYER_SETTING_TYPE_INT32_EXT specifies that the layer setting’s type is signed 32-bit integer.

• VK_LAYER_SETTING_TYPE_INT64_EXT specifies that the layer setting’s type is signed 64-bit integer.

• VK_LAYER_SETTING_TYPE_UINT32_EXT specifies that the layer setting’s type is unsigned 32-bit
integer.

• VK_LAYER_SETTING_TYPE_UINT64_EXT specifies that the layer setting’s type is unsigned 64-bit
integer.

• VK_LAYER_SETTING_TYPE_FLOAT32_EXT specifies that the layer setting’s type is 32-bit floating-point.

• VK_LAYER_SETTING_TYPE_FLOAT64_EXT specifies that the layer setting’s type is 64-bit floating-point.

• VK_LAYER_SETTING_TYPE_STRING_EXT specifies that the layer setting’s type is a pointer to a null-
terminated UTF-8 string.

The VkDirectDriverLoadingListLUNARG structure is defined as:

// Provided by VK_LUNARG_direct_driver_loading
typedef struct VkDirectDriverLoadingListLUNARG {
 VkStructureType sType;
 const void* pNext;
 VkDirectDriverLoadingModeLUNARG mode;
 uint32_t driverCount;
 const VkDirectDriverLoadingInfoLUNARG* pDrivers;
} VkDirectDriverLoadingListLUNARG;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• mode controls the mode in which to load the provided drivers.

• driverCount is the number of driver manifest paths.

• pDrivers is a pointer to an array of driverCount VkDirectDriverLoadingInfoLUNARG structures.

When creating a Vulkan instance for which additional drivers are to be included, add a
VkDirectDriverLoadingListLUNARG structure to the pNext chain of the VkInstanceCreateInfo
structure, and include in it the list of VkDirectDriverLoadingInfoLUNARG structures which contain the
information necessary to load additional drivers.

Valid Usage (Implicit)

• VUID-VkDirectDriverLoadingListLUNARG-sType-sType
sType must be VK_STRUCTURE_TYPE_DIRECT_DRIVER_LOADING_LIST_LUNARG

• VUID-VkDirectDriverLoadingListLUNARG-mode-parameter
mode must be a valid VkDirectDriverLoadingModeLUNARG value

• VUID-VkDirectDriverLoadingListLUNARG-pDrivers-parameter
pDrivers must be a valid pointer to an array of driverCount valid

117

VkDirectDriverLoadingInfoLUNARG structures

• VUID-VkDirectDriverLoadingListLUNARG-driverCount-arraylength
driverCount must be greater than 0

The VkDirectDriverLoadingInfoLUNARG structure is defined as:

// Provided by VK_LUNARG_direct_driver_loading
typedef struct VkDirectDriverLoadingInfoLUNARG {
 VkStructureType sType;
 void* pNext;
 VkDirectDriverLoadingFlagsLUNARG flags;
 PFN_vkGetInstanceProcAddrLUNARG pfnGetInstanceProcAddr;
} VkDirectDriverLoadingInfoLUNARG;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• pfnGetInstanceProcAddr is a PFN_vkGetInstanceProcAddrLUNARG pointer to the driver
vkGetInstanceProcAddr function.

Valid Usage (Implicit)

• VUID-VkDirectDriverLoadingInfoLUNARG-sType-sType
sType must be VK_STRUCTURE_TYPE_DIRECT_DRIVER_LOADING_INFO_LUNARG

• VUID-VkDirectDriverLoadingInfoLUNARG-flags-zerobitmask
flags must be 0

Possible values of VkDirectDriverLoadingListLUNARG::mode, specifying the mode in which drivers
are used, are:

// Provided by VK_LUNARG_direct_driver_loading
typedef enum VkDirectDriverLoadingModeLUNARG {
 VK_DIRECT_DRIVER_LOADING_MODE_EXCLUSIVE_LUNARG = 0,
 VK_DIRECT_DRIVER_LOADING_MODE_INCLUSIVE_LUNARG = 1,
} VkDirectDriverLoadingModeLUNARG;

• VK_DIRECT_DRIVER_LOADING_MODE_EXCLUSIVE_LUNARG specifies that the provided drivers are used
instead of the system-loaded drivers.

• VK_DIRECT_DRIVER_LOADING_MODE_INCLUSIVE_LUNARG specifies that the provided drivers are used in
addition to the system-loaded drivers.

// Provided by VK_LUNARG_direct_driver_loading

118

typedef VkFlags VkDirectDriverLoadingFlagsLUNARG;

VkDirectDriverLoadingFlagsLUNARG is a bitmask type for setting a mask, but is currently reserved for
future use.

The type of PFN_vkGetInstanceProcAddrLUNARG is:

// Provided by VK_LUNARG_direct_driver_loading
typedef PFN_vkVoidFunction (VKAPI_PTR *PFN_vkGetInstanceProcAddrLUNARG)(
 VkInstance instance, const char* pName);

• instance is a VkInstance handle.

• pName is the name of a Vulkan command.

This type is compatible with the type of a pointer to the vkGetInstanceProcAddr command, but is
used only to specify device driver addresses in VkDirectDriverLoadingInfoLUNARG
::pfnGetInstanceProcAddr.

Note

This type exists only because of limitations in the XML schema and processing
scripts, and its name may change in the future. Ideally we would use the
PFN_vkGetInstanceProcAddr type generated in the vulkan_core.h header.

The VkApplicationInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkApplicationInfo {
 VkStructureType sType;
 const void* pNext;
 const char* pApplicationName;
 uint32_t applicationVersion;
 const char* pEngineName;
 uint32_t engineVersion;
 uint32_t apiVersion;
} VkApplicationInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pApplicationName is NULL or is a pointer to a null-terminated UTF-8 string containing the name of
the application.

• applicationVersion is an unsigned integer variable containing the developer-supplied version
number of the application.

• pEngineName is NULL or is a pointer to a null-terminated UTF-8 string containing the name of the
engine (if any) used to create the application.

119

• engineVersion is an unsigned integer variable containing the developer-supplied version
number of the engine used to create the application.

• apiVersion must be the highest version of Vulkan that the application is designed to use,
encoded as described in Version Numbers. The patch version number specified in apiVersion is
ignored when creating an instance object. The variant version of the instance must match that
requested in apiVersion.

Vulkan 1.0 implementations were required to return VK_ERROR_INCOMPATIBLE_DRIVER if apiVersion
was larger than 1.0. Implementations that support Vulkan 1.1 or later must not return
VK_ERROR_INCOMPATIBLE_DRIVER for any value of apiVersion .

Note

Because Vulkan 1.0 implementations may fail with VK_ERROR_INCOMPATIBLE_DRIVER,
applications should determine the version of Vulkan available before calling
vkCreateInstance. If the vkGetInstanceProcAddr returns NULL for
vkEnumerateInstanceVersion, it is a Vulkan 1.0 implementation. Otherwise, the
application can call vkEnumerateInstanceVersion to determine the version of
Vulkan.

As long as the instance supports at least Vulkan 1.1, an application can use different versions of
Vulkan with an instance than it does with a device or physical device.

Note

The Khronos validation layers will treat apiVersion as the highest API version the
application targets, and will validate API usage against the minimum of that
version and the implementation version (instance or device, depending on
context). If an application tries to use functionality from a greater version than
this, a validation error will be triggered.

For example, if the instance supports Vulkan 1.1 and three physical devices
support Vulkan 1.0, Vulkan 1.1, and Vulkan 1.2, respectively, and if the application
sets apiVersion to 1.2, the application can use the following versions of Vulkan:

• Vulkan 1.0 can be used with the instance and with all physical devices.

• Vulkan 1.1 can be used with the instance and with the physical devices that
support Vulkan 1.1 and Vulkan 1.2.

• Vulkan 1.2 can be used with the physical device that supports Vulkan 1.2.

If we modify the above example so that the application sets apiVersion to 1.1, then
the application must not use Vulkan 1.2 functionality on the physical device that
supports Vulkan 1.2.

Note

Providing a NULL VkInstanceCreateInfo::pApplicationInfo or providing an
apiVersion of 0 is equivalent to providing an apiVersion of
VK_MAKE_API_VERSION(0,1,0,0).

120

Valid Usage

• VUID-VkApplicationInfo-apiVersion-04010
If apiVersion is not 0, then it must be greater than or equal to VK_API_VERSION_1_0

Valid Usage (Implicit)

• VUID-VkApplicationInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_APPLICATION_INFO

• VUID-VkApplicationInfo-pNext-pNext
pNext must be NULL

• VUID-VkApplicationInfo-pApplicationName-parameter
If pApplicationName is not NULL, pApplicationName must be a null-terminated UTF-8 string

• VUID-VkApplicationInfo-pEngineName-parameter
If pEngineName is not NULL, pEngineName must be a null-terminated UTF-8 string

To destroy an instance, call:

// Provided by VK_VERSION_1_0
void vkDestroyInstance(
 VkInstance instance,
 const VkAllocationCallbacks* pAllocator);

• instance is the handle of the instance to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyInstance-instance-00629
All child objects created using instance must have been destroyed prior to destroying
instance

• VUID-vkDestroyInstance-instance-00630
If VkAllocationCallbacks were provided when instance was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyInstance-instance-00631
If no VkAllocationCallbacks were provided when instance was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyInstance-instance-parameter

121

If instance is not NULL, instance must be a valid VkInstance handle

• VUID-vkDestroyInstance-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

Host Synchronization

• Host access to instance must be externally synchronized

• Host access to all VkPhysicalDevice objects enumerated from instance must be externally
synchronized

122

Chapter 5. Devices and Queues
Once Vulkan is initialized, devices and queues are the primary objects used to interact with a
Vulkan implementation.

Vulkan separates the concept of physical and logical devices. A physical device usually represents a
single complete implementation of Vulkan (excluding instance-level functionality) available to the
host, of which there are a finite number. A logical device represents an instance of that
implementation with its own state and resources independent of other logical devices.

Physical devices are represented by VkPhysicalDevice handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkPhysicalDevice)

5.1. Physical Devices
To retrieve a list of physical device objects representing the physical devices installed in the system,
call:

// Provided by VK_VERSION_1_0
VkResult vkEnumeratePhysicalDevices(
 VkInstance instance,
 uint32_t* pPhysicalDeviceCount,
 VkPhysicalDevice* pPhysicalDevices);

• instance is a handle to a Vulkan instance previously created with vkCreateInstance.

• pPhysicalDeviceCount is a pointer to an integer related to the number of physical devices
available or queried, as described below.

• pPhysicalDevices is either NULL or a pointer to an array of VkPhysicalDevice handles.

If pPhysicalDevices is NULL, then the number of physical devices available is returned in
pPhysicalDeviceCount. Otherwise, pPhysicalDeviceCount must point to a variable set by the user to
the number of elements in the pPhysicalDevices array, and on return the variable is overwritten
with the number of handles actually written to pPhysicalDevices. If pPhysicalDeviceCount is less
than the number of physical devices available, at most pPhysicalDeviceCount structures will be
written, and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the
available physical devices were returned.

Valid Usage (Implicit)

• VUID-vkEnumeratePhysicalDevices-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkEnumeratePhysicalDevices-pPhysicalDeviceCount-parameter

123

pPhysicalDeviceCount must be a valid pointer to a uint32_t value

• VUID-vkEnumeratePhysicalDevices-pPhysicalDevices-parameter
If the value referenced by pPhysicalDeviceCount is not 0, and pPhysicalDevices is not NULL,
pPhysicalDevices must be a valid pointer to an array of pPhysicalDeviceCount
VkPhysicalDevice handles

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

To query general properties of physical devices once enumerated, call:

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceProperties(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceProperties* pProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pProperties is a pointer to a VkPhysicalDeviceProperties structure in which properties are
returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceProperties-pProperties-parameter
pProperties must be a valid pointer to a VkPhysicalDeviceProperties structure

The VkPhysicalDeviceProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceProperties {
 uint32_t apiVersion;
 uint32_t driverVersion;
 uint32_t vendorID;

124

 uint32_t deviceID;
 VkPhysicalDeviceType deviceType;
 char deviceName[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
 uint8_t pipelineCacheUUID[VK_UUID_SIZE];
 VkPhysicalDeviceLimits limits;
 VkPhysicalDeviceSparseProperties sparseProperties;
} VkPhysicalDeviceProperties;

• apiVersion is the version of Vulkan supported by the device, encoded as described in Version
Numbers.

• driverVersion is the vendor-specified version of the driver.

• vendorID is a unique identifier for the vendor (see below) of the physical device.

• deviceID is a unique identifier for the physical device among devices available from the vendor.

• deviceType is a VkPhysicalDeviceType specifying the type of device.

• deviceName is an array of VK_MAX_PHYSICAL_DEVICE_NAME_SIZE char containing a null-terminated
UTF-8 string which is the name of the device.

• pipelineCacheUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the device.

• limits is the VkPhysicalDeviceLimits structure specifying device-specific limits of the physical
device. See Limits for details.

• sparseProperties is the VkPhysicalDeviceSparseProperties structure specifying various sparse
related properties of the physical device. See Sparse Properties for details.

Note

The value of apiVersion may be different than the version returned by
vkEnumerateInstanceVersion; either higher or lower. In such cases, the
application must not use functionality that exceeds the version of Vulkan
associated with a given object. The pApiVersion parameter returned by
vkEnumerateInstanceVersion is the version associated with a VkInstance and its
children, except for a VkPhysicalDevice and its children.
VkPhysicalDeviceProperties::apiVersion is the version associated with a
VkPhysicalDevice and its children.

Note

The encoding of driverVersion is implementation-defined. It may not use the same
encoding as apiVersion. Applications should follow information from the vendor
on how to extract the version information from driverVersion.

On implementations that claim support for the Roadmap 2022 profile, the major and minor version
expressed by apiVersion must be at least Vulkan 1.3.

The vendorID and deviceID fields are provided to allow applications to adapt to device
characteristics that are not adequately exposed by other Vulkan queries.

125

Note

These may include performance profiles, hardware errata, or other
characteristics.

The vendor identified by vendorID is the entity responsible for the most salient characteristics of the
underlying implementation of the VkPhysicalDevice being queried.

Note

For example, in the case of a discrete GPU implementation, this should be the GPU
chipset vendor. In the case of a hardware accelerator integrated into a system-on-
chip (SoC), this should be the supplier of the silicon IP used to create the
accelerator.

If the vendor has a PCI vendor ID, the low 16 bits of vendorID must contain that PCI vendor ID, and
the remaining bits must be set to zero. Otherwise, the value returned must be a valid Khronos
vendor ID, obtained as described in the Vulkan Documentation and Extensions: Procedures and
Conventions document in the section “Registering a Vendor ID with Khronos”. Khronos vendor IDs
are allocated starting at 0x10000, to distinguish them from the PCI vendor ID namespace. Khronos
vendor IDs are symbolically defined in the VkVendorId type.

The vendor is also responsible for the value returned in deviceID. If the implementation is driven
primarily by a PCI device with a PCI device ID, the low 16 bits of deviceID must contain that PCI
device ID, and the remaining bits must be set to zero. Otherwise, the choice of what values to
return may be dictated by operating system or platform policies - but should uniquely identify
both the device version and any major configuration options (for example, core count in the case of
multicore devices).

Note

The same device ID should be used for all physical implementations of that device
version and configuration. For example, all uses of a specific silicon IP GPU version
and configuration should use the same device ID, even if those uses occur in
different SoCs.

Khronos vendor IDs which may be returned in VkPhysicalDeviceProperties::vendorID are:

// Provided by VK_VERSION_1_0
typedef enum VkVendorId {
 VK_VENDOR_ID_VIV = 0x10001,
 VK_VENDOR_ID_VSI = 0x10002,
 VK_VENDOR_ID_KAZAN = 0x10003,
 VK_VENDOR_ID_CODEPLAY = 0x10004,
 VK_VENDOR_ID_MESA = 0x10005,
 VK_VENDOR_ID_POCL = 0x10006,
 VK_VENDOR_ID_MOBILEYE = 0x10007,
} VkVendorId;

126

https://pcisig.com/membership/member-companies
https://pcisig.com/
https://pcisig.com/

Note

Khronos vendor IDs may be allocated by vendors at any time. Only the latest
canonical versions of this Specification, of the corresponding vk.xml API Registry,
and of the corresponding vulkan_core.h header file must contain all reserved
Khronos vendor IDs.

Only Khronos vendor IDs are given symbolic names at present. PCI vendor IDs
returned by the implementation can be looked up in the PCI-SIG database.

VK_MAX_PHYSICAL_DEVICE_NAME_SIZE is the length in char values of an array containing a physical
device name string, as returned in VkPhysicalDeviceProperties::deviceName.

#define VK_MAX_PHYSICAL_DEVICE_NAME_SIZE 256U

The physical device types which may be returned in VkPhysicalDeviceProperties::deviceType are:

// Provided by VK_VERSION_1_0
typedef enum VkPhysicalDeviceType {
 VK_PHYSICAL_DEVICE_TYPE_OTHER = 0,
 VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU = 1,
 VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU = 2,
 VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU = 3,
 VK_PHYSICAL_DEVICE_TYPE_CPU = 4,
} VkPhysicalDeviceType;

• VK_PHYSICAL_DEVICE_TYPE_OTHER - the device does not match any other available types.

• VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU - the device is typically one embedded in or tightly
coupled with the host.

• VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU - the device is typically a separate processor connected to
the host via an interlink.

• VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU - the device is typically a virtual node in a virtualization
environment.

• VK_PHYSICAL_DEVICE_TYPE_CPU - the device is typically running on the same processors as the host.

The physical device type is advertised for informational purposes only, and does not directly affect
the operation of the system. However, the device type may correlate with other advertised
properties or capabilities of the system, such as how many memory heaps there are.

To query general properties of physical devices once enumerated, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceProperties2(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceProperties2* pProperties);

127

or the equivalent command

// Provided by VK_KHR_get_physical_device_properties2
void vkGetPhysicalDeviceProperties2KHR(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceProperties2* pProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pProperties is a pointer to a VkPhysicalDeviceProperties2 structure in which properties are
returned.

Each structure in pProperties and its pNext chain contains members corresponding to
implementation-dependent properties, behaviors, or limits. vkGetPhysicalDeviceProperties2 fills in
each member to specify the corresponding value for the implementation.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceProperties2-pProperties-parameter
pProperties must be a valid pointer to a VkPhysicalDeviceProperties2 structure

The VkPhysicalDeviceProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceProperties2 {
 VkStructureType sType;
 void* pNext;
 VkPhysicalDeviceProperties properties;
} VkPhysicalDeviceProperties2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkPhysicalDeviceProperties2 VkPhysicalDeviceProperties2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• properties is a VkPhysicalDeviceProperties structure describing properties of the physical
device. This structure is written with the same values as if it were written by
vkGetPhysicalDeviceProperties.

The pNext chain of this structure is used to extend the structure with properties defined by
extensions.

128

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2

• VUID-VkPhysicalDeviceProperties2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of
VkPhysicalDeviceAccelerationStructurePropertiesKHR,
VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT,
VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI,
VkPhysicalDeviceConservativeRasterizationPropertiesEXT,
VkPhysicalDeviceCooperativeMatrixPropertiesKHR,
VkPhysicalDeviceCooperativeMatrixPropertiesNV,
VkPhysicalDeviceCopyMemoryIndirectPropertiesNV,
VkPhysicalDeviceCudaKernelLaunchPropertiesNV,
VkPhysicalDeviceCustomBorderColorPropertiesEXT,
VkPhysicalDeviceDepthStencilResolveProperties,
VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT,
VkPhysicalDeviceDescriptorBufferPropertiesEXT,
VkPhysicalDeviceDescriptorIndexingProperties,
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV,
VkPhysicalDeviceDiscardRectanglePropertiesEXT,
VkPhysicalDeviceDisplacementMicromapPropertiesNV,
VkPhysicalDeviceDriverProperties, VkPhysicalDeviceDrmPropertiesEXT,
VkPhysicalDeviceExtendedDynamicState3PropertiesEXT,
VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV,
VkPhysicalDeviceExternalFormatResolvePropertiesANDROID,
VkPhysicalDeviceExternalMemoryHostPropertiesEXT,
VkPhysicalDeviceFloatControlsProperties,
VkPhysicalDeviceFragmentDensityMap2PropertiesEXT,
VkPhysicalDeviceFragmentDensityMapOffsetPropertiesQCOM,
VkPhysicalDeviceFragmentDensityMapPropertiesEXT,
VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR,
VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV,
VkPhysicalDeviceFragmentShadingRatePropertiesKHR,
VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT,
VkPhysicalDeviceHostImageCopyPropertiesEXT, VkPhysicalDeviceIDProperties,
VkPhysicalDeviceImageProcessing2PropertiesQCOM,
VkPhysicalDeviceImageProcessingPropertiesQCOM,
VkPhysicalDeviceInlineUniformBlockProperties,
VkPhysicalDeviceLayeredDriverPropertiesMSFT,
VkPhysicalDeviceLineRasterizationPropertiesKHR,
VkPhysicalDeviceMaintenance3Properties, VkPhysicalDeviceMaintenance4Properties,
VkPhysicalDeviceMaintenance5PropertiesKHR,
VkPhysicalDeviceMaintenance6PropertiesKHR,
VkPhysicalDeviceMapMemoryPlacedPropertiesEXT,
VkPhysicalDeviceMemoryDecompressionPropertiesNV,

129

VkPhysicalDeviceMeshShaderPropertiesEXT, VkPhysicalDeviceMeshShaderPropertiesNV,
VkPhysicalDeviceMultiDrawPropertiesEXT,
VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX,
VkPhysicalDeviceMultiviewProperties,
VkPhysicalDeviceNestedCommandBufferPropertiesEXT,
VkPhysicalDeviceOpacityMicromapPropertiesEXT,
VkPhysicalDeviceOpticalFlowPropertiesNV, VkPhysicalDevicePCIBusInfoPropertiesEXT,
VkPhysicalDevicePerformanceQueryPropertiesKHR,
VkPhysicalDevicePipelineRobustnessPropertiesEXT,
VkPhysicalDevicePointClippingProperties,
VkPhysicalDevicePortabilitySubsetPropertiesKHR,
VkPhysicalDeviceProtectedMemoryProperties,
VkPhysicalDeviceProvokingVertexPropertiesEXT,
VkPhysicalDevicePushDescriptorPropertiesKHR,
VkPhysicalDeviceRayTracingInvocationReorderPropertiesNV,
VkPhysicalDeviceRayTracingPipelinePropertiesKHR,
VkPhysicalDeviceRayTracingPropertiesNV,
VkPhysicalDeviceRenderPassStripedPropertiesARM,
VkPhysicalDeviceRobustness2PropertiesEXT,
VkPhysicalDeviceSampleLocationsPropertiesEXT,
VkPhysicalDeviceSamplerFilterMinmaxProperties,
VkPhysicalDeviceSchedulingControlsPropertiesARM,
VkPhysicalDeviceShaderCoreBuiltinsPropertiesARM,
VkPhysicalDeviceShaderCoreProperties2AMD,
VkPhysicalDeviceShaderCorePropertiesAMD,
VkPhysicalDeviceShaderCorePropertiesARM,
VkPhysicalDeviceShaderEnqueuePropertiesAMDX,
VkPhysicalDeviceShaderIntegerDotProductProperties,
VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT,
VkPhysicalDeviceShaderObjectPropertiesEXT,
VkPhysicalDeviceShaderSMBuiltinsPropertiesNV,
VkPhysicalDeviceShaderTileImagePropertiesEXT,
VkPhysicalDeviceShadingRateImagePropertiesNV, VkPhysicalDeviceSubgroupProperties,
VkPhysicalDeviceSubgroupSizeControlProperties,
VkPhysicalDeviceSubpassShadingPropertiesHUAWEI,
VkPhysicalDeviceTexelBufferAlignmentProperties,
VkPhysicalDeviceTimelineSemaphoreProperties,
VkPhysicalDeviceTransformFeedbackPropertiesEXT,
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT,
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR,
VkPhysicalDeviceVulkan11Properties, VkPhysicalDeviceVulkan12Properties, or
VkPhysicalDeviceVulkan13Properties

• VUID-VkPhysicalDeviceProperties2-sType-unique
The sType value of each struct in the pNext chain must be unique

The VkPhysicalDeviceVulkan11Properties structure is defined as:

130

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkan11Properties {
 VkStructureType sType;
 void* pNext;
 uint8_t deviceUUID[VK_UUID_SIZE];
 uint8_t driverUUID[VK_UUID_SIZE];
 uint8_t deviceLUID[VK_LUID_SIZE];
 uint32_t deviceNodeMask;
 VkBool32 deviceLUIDValid;
 uint32_t subgroupSize;
 VkShaderStageFlags subgroupSupportedStages;
 VkSubgroupFeatureFlags subgroupSupportedOperations;
 VkBool32 subgroupQuadOperationsInAllStages;
 VkPointClippingBehavior pointClippingBehavior;
 uint32_t maxMultiviewViewCount;
 uint32_t maxMultiviewInstanceIndex;
 VkBool32 protectedNoFault;
 uint32_t maxPerSetDescriptors;
 VkDeviceSize maxMemoryAllocationSize;
} VkPhysicalDeviceVulkan11Properties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the device.

• driverUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the driver build in use by the device.

• deviceLUID is an array of VK_LUID_SIZE uint8_t values representing a locally unique identifier for
the device.

• deviceNodeMask is a uint32_t bitfield identifying the node within a linked device adapter
corresponding to the device.

• deviceLUIDValid is a boolean value that will be VK_TRUE if deviceLUID contains a valid LUID and
deviceNodeMask contains a valid node mask, and VK_FALSE if they do not.

• subgroupSize is the default number of invocations in each subgroup. subgroupSize is at least 1 if
any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.
subgroupSize is a power-of-two.

• subgroupSupportedStages is a bitfield of VkShaderStageFlagBits describing the shader stages that
group operations with subgroup scope are supported in. subgroupSupportedStages will have the
VK_SHADER_STAGE_COMPUTE_BIT bit set if any of the physical device’s queues support
VK_QUEUE_COMPUTE_BIT.

• subgroupSupportedOperations is a bitmask of VkSubgroupFeatureFlagBits specifying the sets of
group operations with subgroup scope supported on this device. subgroupSupportedOperations
will have the VK_SUBGROUP_FEATURE_BASIC_BIT bit set if any of the physical device’s queues
support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.

131

• subgroupQuadOperationsInAllStages is a boolean specifying whether quad group operations are
available in all stages, or are restricted to fragment and compute stages.

• pointClippingBehavior is a VkPointClippingBehavior value specifying the point clipping
behavior supported by the implementation.

• maxMultiviewViewCount is one greater than the maximum view index that can be used in a
subpass.

• maxMultiviewInstanceIndex is the maximum valid value of instance index allowed to be
generated by a drawing command recorded within a subpass of a multiview render pass
instance.

• protectedNoFault specifies how an implementation behaves when an application attempts to
write to unprotected memory in a protected queue operation, read from protected memory in
an unprotected queue operation, or perform a query in a protected queue operation. If this limit
is VK_TRUE, such writes will be discarded or have undefined values written, reads and queries
will return undefined values. If this limit is VK_FALSE, applications must not perform these
operations. See Protected Memory Access Rules for more information.

• maxPerSetDescriptors is a maximum number of descriptors (summed over all descriptor types)
in a single descriptor set that is guaranteed to satisfy any implementation-dependent
constraints on the size of a descriptor set itself. Applications can query whether a descriptor set
that goes beyond this limit is supported using vkGetDescriptorSetLayoutSupport.

• maxMemoryAllocationSize is the maximum size of a memory allocation that can be created, even
if there is more space available in the heap.

If the VkPhysicalDeviceVulkan11Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These properties correspond to Vulkan 1.1 functionality.

The members of VkPhysicalDeviceVulkan11Properties have the same values as the corresponding
members of VkPhysicalDeviceIDProperties, VkPhysicalDeviceSubgroupProperties,
VkPhysicalDevicePointClippingProperties, VkPhysicalDeviceMultiviewProperties,
VkPhysicalDeviceProtectedMemoryProperties, and VkPhysicalDeviceMaintenance3Properties.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan11Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES

The VkPhysicalDeviceVulkan12Properties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkan12Properties {
 VkStructureType sType;
 void* pNext;
 VkDriverId driverID;

132

 char driverName[VK_MAX_DRIVER_NAME_SIZE];
 char driverInfo[VK_MAX_DRIVER_INFO_SIZE];
 VkConformanceVersion conformanceVersion;
 VkShaderFloatControlsIndependence denormBehaviorIndependence;
 VkShaderFloatControlsIndependence roundingModeIndependence;
 VkBool32 shaderSignedZeroInfNanPreserveFloat16;
 VkBool32 shaderSignedZeroInfNanPreserveFloat32;
 VkBool32 shaderSignedZeroInfNanPreserveFloat64;
 VkBool32 shaderDenormPreserveFloat16;
 VkBool32 shaderDenormPreserveFloat32;
 VkBool32 shaderDenormPreserveFloat64;
 VkBool32 shaderDenormFlushToZeroFloat16;
 VkBool32 shaderDenormFlushToZeroFloat32;
 VkBool32 shaderDenormFlushToZeroFloat64;
 VkBool32 shaderRoundingModeRTEFloat16;
 VkBool32 shaderRoundingModeRTEFloat32;
 VkBool32 shaderRoundingModeRTEFloat64;
 VkBool32 shaderRoundingModeRTZFloat16;
 VkBool32 shaderRoundingModeRTZFloat32;
 VkBool32 shaderRoundingModeRTZFloat64;
 uint32_t maxUpdateAfterBindDescriptorsInAllPools;
 VkBool32
shaderUniformBufferArrayNonUniformIndexingNative;
 VkBool32
shaderSampledImageArrayNonUniformIndexingNative;
 VkBool32
shaderStorageBufferArrayNonUniformIndexingNative;
 VkBool32
shaderStorageImageArrayNonUniformIndexingNative;
 VkBool32
shaderInputAttachmentArrayNonUniformIndexingNative;
 VkBool32 robustBufferAccessUpdateAfterBind;
 VkBool32 quadDivergentImplicitLod;
 uint32_t maxPerStageDescriptorUpdateAfterBindSamplers;
 uint32_t
maxPerStageDescriptorUpdateAfterBindUniformBuffers;
 uint32_t
maxPerStageDescriptorUpdateAfterBindStorageBuffers;
 uint32_t
maxPerStageDescriptorUpdateAfterBindSampledImages;
 uint32_t
maxPerStageDescriptorUpdateAfterBindStorageImages;
 uint32_t
maxPerStageDescriptorUpdateAfterBindInputAttachments;
 uint32_t maxPerStageUpdateAfterBindResources;
 uint32_t maxDescriptorSetUpdateAfterBindSamplers;
 uint32_t
maxDescriptorSetUpdateAfterBindUniformBuffers;
 uint32_t
maxDescriptorSetUpdateAfterBindUniformBuffersDynamic;
 uint32_t

133

maxDescriptorSetUpdateAfterBindStorageBuffers;
 uint32_t
maxDescriptorSetUpdateAfterBindStorageBuffersDynamic;
 uint32_t maxDescriptorSetUpdateAfterBindSampledImages;
 uint32_t maxDescriptorSetUpdateAfterBindStorageImages;
 uint32_t
maxDescriptorSetUpdateAfterBindInputAttachments;
 VkResolveModeFlags supportedDepthResolveModes;
 VkResolveModeFlags supportedStencilResolveModes;
 VkBool32 independentResolveNone;
 VkBool32 independentResolve;
 VkBool32 filterMinmaxSingleComponentFormats;
 VkBool32 filterMinmaxImageComponentMapping;
 uint64_t maxTimelineSemaphoreValueDifference;
 VkSampleCountFlags framebufferIntegerColorSampleCounts;
} VkPhysicalDeviceVulkan12Properties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• driverID is a unique identifier for the driver of the physical device.

• driverName is an array of VK_MAX_DRIVER_NAME_SIZE char containing a null-terminated UTF-8 string
which is the name of the driver.

• driverInfo is an array of VK_MAX_DRIVER_INFO_SIZE char containing a null-terminated UTF-8 string
with additional information about the driver.

• conformanceVersion is the latest version of the Vulkan conformance test that the implementor
has successfully tested this driver against prior to release (see VkConformanceVersion).

• denormBehaviorIndependence is a VkShaderFloatControlsIndependence value indicating whether,
and how, denorm behavior can be set independently for different bit widths.

• roundingModeIndependence is a VkShaderFloatControlsIndependence value indicating whether,
and how, rounding modes can be set independently for different bit widths.

• shaderSignedZeroInfNanPreserveFloat16 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 16-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 16-bit floating-point types.

• shaderSignedZeroInfNanPreserveFloat32 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 32-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 32-bit floating-point types.

• shaderSignedZeroInfNanPreserveFloat64 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 64-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 64-bit floating-point types.

• shaderDenormPreserveFloat16 is a boolean value indicating whether denormals can be preserved
in 16-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 16-bit floating-point types.

• shaderDenormPreserveFloat32 is a boolean value indicating whether denormals can be preserved

134

in 32-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 32-bit floating-point types.

• shaderDenormPreserveFloat64 is a boolean value indicating whether denormals can be preserved
in 64-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 64-bit floating-point types.

• shaderDenormFlushToZeroFloat16 is a boolean value indicating whether denormals can be flushed
to zero in 16-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 16-bit floating-point types.

• shaderDenormFlushToZeroFloat32 is a boolean value indicating whether denormals can be flushed
to zero in 32-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 32-bit floating-point types.

• shaderDenormFlushToZeroFloat64 is a boolean value indicating whether denormals can be flushed
to zero in 64-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 64-bit floating-point types.

• shaderRoundingModeRTEFloat16 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 16-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 16-bit floating-point types.

• shaderRoundingModeRTEFloat32 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 32-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 32-bit floating-point types.

• shaderRoundingModeRTEFloat64 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 64-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 64-bit floating-point types.

• shaderRoundingModeRTZFloat16 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 16-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 16-bit floating-point types.

• shaderRoundingModeRTZFloat32 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 32-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 32-bit floating-point types.

• shaderRoundingModeRTZFloat64 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 64-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 64-bit floating-point types.

• maxUpdateAfterBindDescriptorsInAllPools is the maximum number of descriptors (summed over
all descriptor types) that can be created across all pools that are created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit set. Pool creation may fail when this limit
is exceeded, or when the space this limit represents is unable to satisfy a pool creation due to
fragmentation.

135

• shaderUniformBufferArrayNonUniformIndexingNative is a boolean value indicating whether
uniform buffer descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of uniform
buffers may execute multiple times in order to access all the descriptors.

• shaderSampledImageArrayNonUniformIndexingNative is a boolean value indicating whether
sampler and image descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of samplers or
images may execute multiple times in order to access all the descriptors.

• shaderStorageBufferArrayNonUniformIndexingNative is a boolean value indicating whether
storage buffer descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of storage buffers
may execute multiple times in order to access all the descriptors.

• shaderStorageImageArrayNonUniformIndexingNative is a boolean value indicating whether storage
image descriptors natively support nonuniform indexing. If this is VK_FALSE, then a single
dynamic instance of an instruction that nonuniformly indexes an array of storage images may
execute multiple times in order to access all the descriptors.

• shaderInputAttachmentArrayNonUniformIndexingNative is a boolean value indicating whether
input attachment descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of input
attachments may execute multiple times in order to access all the descriptors.

• robustBufferAccessUpdateAfterBind is a boolean value indicating whether robustBufferAccess
can be enabled on a device simultaneously with
descriptorBindingUniformBufferUpdateAfterBind, descriptorBindingStorageBufferUpdateAfterBind,
descriptorBindingUniformTexelBufferUpdateAfterBind, and/or
descriptorBindingStorageTexelBufferUpdateAfterBind. If this is VK_FALSE, then either
robustBufferAccess must be disabled or all of these update-after-bind features must be disabled.

• quadDivergentImplicitLod is a boolean value indicating whether implicit LOD calculations for
image operations have well-defined results when the image and/or sampler objects used for the
instruction are not uniform within a quad. See Derivative Image Operations.

• maxPerStageDescriptorUpdateAfterBindSamplers is similar to maxPerStageDescriptorSamplers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindUniformBuffers is similar to
maxPerStageDescriptorUniformBuffers but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindStorageBuffers is similar to
maxPerStageDescriptorStorageBuffers but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindSampledImages is similar to
maxPerStageDescriptorSampledImages but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindStorageImages is similar to
maxPerStageDescriptorStorageImages but counts descriptors from descriptor sets created with or

136

without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindInputAttachments is similar to
maxPerStageDescriptorInputAttachments but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageUpdateAfterBindResources is similar to maxPerStageResources but counts descriptors
from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindSamplers is similar to maxDescriptorSetSamplers but counts
descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindUniformBuffers is similar to maxDescriptorSetUniformBuffers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindUniformBuffersDynamic is similar to
maxDescriptorSetUniformBuffersDynamic but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set. While an
application can allocate dynamic uniform buffer descriptors from a pool created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, bindings for these descriptors
must not be present in any descriptor set layout that includes bindings created with
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT.

• maxDescriptorSetUpdateAfterBindStorageBuffers is similar to maxDescriptorSetStorageBuffers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindStorageBuffersDynamic is similar to
maxDescriptorSetStorageBuffersDynamic but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set. While an
application can allocate dynamic storage buffer descriptors from a pool created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, bindings for these descriptors
must not be present in any descriptor set layout that includes bindings created with
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT.

• maxDescriptorSetUpdateAfterBindSampledImages is similar to maxDescriptorSetSampledImages but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindStorageImages is similar to maxDescriptorSetStorageImages but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindInputAttachments is similar to maxDescriptorSetInputAttachments
but counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• supportedDepthResolveModes is a bitmask of VkResolveModeFlagBits indicating the set of
supported depth resolve modes. VK_RESOLVE_MODE_SAMPLE_ZERO_BIT must be included in the set
but implementations may support additional modes.

• supportedStencilResolveModes is a bitmask of VkResolveModeFlagBits indicating the set of

137

supported stencil resolve modes. VK_RESOLVE_MODE_SAMPLE_ZERO_BIT must be included in the set
but implementations may support additional modes. VK_RESOLVE_MODE_AVERAGE_BIT must not be
included in the set.

• independentResolveNone is VK_TRUE if the implementation supports setting the depth and stencil
resolve modes to different values when one of those modes is VK_RESOLVE_MODE_NONE. Otherwise
the implementation only supports setting both modes to the same value.

• independentResolve is VK_TRUE if the implementation supports all combinations of the supported
depth and stencil resolve modes, including setting either depth or stencil resolve mode to
VK_RESOLVE_MODE_NONE. An implementation that supports independentResolve must also support
independentResolveNone.

• filterMinmaxSingleComponentFormats is a boolean value indicating whether a minimum set of
required formats support min/max filtering.

• filterMinmaxImageComponentMapping is a boolean value indicating whether the implementation
supports non-identity component mapping of the image when doing min/max filtering.

• maxTimelineSemaphoreValueDifference indicates the maximum difference allowed by the
implementation between the current value of a timeline semaphore and any pending signal or
wait operations.

• framebufferIntegerColorSampleCounts is a bitmask of VkSampleCountFlagBits indicating the color
sample counts that are supported for all framebuffer color attachments with integer formats.

If the VkPhysicalDeviceVulkan12Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These properties correspond to Vulkan 1.2 functionality.

The members of VkPhysicalDeviceVulkan12Properties must have the same values as the
corresponding members of VkPhysicalDeviceDriverProperties,
VkPhysicalDeviceFloatControlsProperties, VkPhysicalDeviceDescriptorIndexingProperties,
VkPhysicalDeviceDepthStencilResolveProperties,
VkPhysicalDeviceSamplerFilterMinmaxProperties, and
VkPhysicalDeviceTimelineSemaphoreProperties.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan12Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES

The VkPhysicalDeviceVulkan13Properties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceVulkan13Properties {
 VkStructureType sType;
 void* pNext;
 uint32_t minSubgroupSize;

138

 uint32_t maxSubgroupSize;
 uint32_t maxComputeWorkgroupSubgroups;
 VkShaderStageFlags requiredSubgroupSizeStages;
 uint32_t maxInlineUniformBlockSize;
 uint32_t maxPerStageDescriptorInlineUniformBlocks;
 uint32_t maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks;
 uint32_t maxDescriptorSetInlineUniformBlocks;
 uint32_t maxDescriptorSetUpdateAfterBindInlineUniformBlocks;
 uint32_t maxInlineUniformTotalSize;
 VkBool32 integerDotProduct8BitUnsignedAccelerated;
 VkBool32 integerDotProduct8BitSignedAccelerated;
 VkBool32 integerDotProduct8BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct4x8BitPackedUnsignedAccelerated;
 VkBool32 integerDotProduct4x8BitPackedSignedAccelerated;
 VkBool32 integerDotProduct4x8BitPackedMixedSignednessAccelerated;
 VkBool32 integerDotProduct16BitUnsignedAccelerated;
 VkBool32 integerDotProduct16BitSignedAccelerated;
 VkBool32 integerDotProduct16BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct32BitUnsignedAccelerated;
 VkBool32 integerDotProduct32BitSignedAccelerated;
 VkBool32 integerDotProduct32BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct64BitUnsignedAccelerated;
 VkBool32 integerDotProduct64BitSignedAccelerated;
 VkBool32 integerDotProduct64BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating8BitUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating8BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitUnsignedAccelerated;
 VkBool32

139

integerDotProductAccumulatingSaturating64BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated;
 VkDeviceSize storageTexelBufferOffsetAlignmentBytes;
 VkBool32 storageTexelBufferOffsetSingleTexelAlignment;
 VkDeviceSize uniformTexelBufferOffsetAlignmentBytes;
 VkBool32 uniformTexelBufferOffsetSingleTexelAlignment;
 VkDeviceSize maxBufferSize;
} VkPhysicalDeviceVulkan13Properties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minSubgroupSize is the minimum subgroup size supported by this device. minSubgroupSize is at
least one if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT. minSubgroupSize is a power-of-two. minSubgroupSize is less than or equal to
maxSubgroupSize. minSubgroupSize is less than or equal to subgroupSize.

• maxSubgroupSize is the maximum subgroup size supported by this device. maxSubgroupSize is at
least one if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT. maxSubgroupSize is a power-of-two. maxSubgroupSize is greater than or
equal to minSubgroupSize. maxSubgroupSize is greater than or equal to subgroupSize.

• maxComputeWorkgroupSubgroups is the maximum number of subgroups supported by the
implementation within a workgroup.

• requiredSubgroupSizeStages is a bitfield of what shader stages support having a required
subgroup size specified.

• maxInlineUniformBlockSize is the maximum size in bytes of an inline uniform block binding.

• maxPerStageDescriptorInlineUniformBlocks is the maximum number of inline uniform block
bindings that can be accessible to a single shader stage in a pipeline layout. Descriptor bindings
with a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit. Only
descriptor bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks is similar to
maxPerStageDescriptorInlineUniformBlocks but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetInlineUniformBlocks is the maximum number of inline uniform block bindings
that can be included in descriptor bindings in a pipeline layout across all pipeline shader stages
and descriptor set numbers. Descriptor bindings with a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit. Only descriptor bindings in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxDescriptorSetUpdateAfterBindInlineUniformBlocks is similar to
maxDescriptorSetInlineUniformBlocks but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxInlineUniformTotalSize is the maximum total size in bytes of all inline uniform block

140

bindings, across all pipeline shader stages and descriptor set numbers, that can be included in a
pipeline layout. Descriptor bindings with a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit.

• integerDotProduct8BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for 8-
bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct8BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 8-bit
signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as defined
below.

• integerDotProduct8BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the support
for 8-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V instruction is
accelerated as defined below.

• integerDotProduct4x8BitPackedUnsignedAccelerated is a boolean that will be VK_TRUE if the
support for 8-bit unsigned dot product operations from operands packed into 32-bit integers
using the OpUDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct4x8BitPackedSignedAccelerated is a boolean that will be VK_TRUE if the support
for 8-bit signed dot product operations from operands packed into 32-bit integers using the
OpSDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct4x8BitPackedMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 8-bit mixed signedness dot product operations from operands packed into 32-bit
integers using the OpSUDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct16BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
16-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct16BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 16-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct16BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 16-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProduct32BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
32-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct32BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 32-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct32BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 32-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProduct64BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
64-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

141

• integerDotProduct64BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 64-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct64BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 64-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 8-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitSignedAccelerated is a boolean that will be VK_TRUE
if the support for 8-bit signed accumulating saturating dot product operations using the
OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 8-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated is a boolean that will
be VK_TRUE if the support for 8-bit unsigned accumulating saturating dot product operations
from operands packed into 32-bit integers using the OpUDotAccSatKHR SPIR-V instruction is
accelerated as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated is a boolean that will be
VK_TRUE if the support for 8-bit signed accumulating saturating dot product operations from
operands packed into 32-bit integers using the OpSDotAccSatKHR SPIR-V instruction is accelerated
as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated is a boolean
that will be VK_TRUE if the support for 8-bit mixed signedness accumulating saturating dot
product operations from operands packed into 32-bit integers using the OpSUDotAccSatKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 16-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 16-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 16-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 32-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 32-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated is a boolean that will

142

be VK_TRUE if the support for 32-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 64-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 64-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 64-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• storageTexelBufferOffsetAlignmentBytes is a byte alignment that is sufficient for a storage texel
buffer of any format. The value must be a power of two.

• storageTexelBufferOffsetSingleTexelAlignment indicates whether single texel alignment is
sufficient for a storage texel buffer of any format.

• uniformTexelBufferOffsetAlignmentBytes is a byte alignment that is sufficient for a uniform texel
buffer of any format. The value must be a power of two.

• uniformTexelBufferOffsetSingleTexelAlignment indicates whether single texel alignment is
sufficient for a uniform texel buffer of any format.

• maxBufferSize is the maximum size VkBuffer that can be created.

If the VkPhysicalDeviceVulkan13Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These properties correspond to Vulkan 1.3 functionality.

The members of VkPhysicalDeviceVulkan13Properties must have the same values as the
corresponding members of VkPhysicalDeviceInlineUniformBlockProperties and
VkPhysicalDeviceSubgroupSizeControlProperties.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan13Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES

The VkPhysicalDeviceIDProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceIDProperties {
 VkStructureType sType;
 void* pNext;
 uint8_t deviceUUID[VK_UUID_SIZE];
 uint8_t driverUUID[VK_UUID_SIZE];

143

 uint8_t deviceLUID[VK_LUID_SIZE];
 uint32_t deviceNodeMask;
 VkBool32 deviceLUIDValid;
} VkPhysicalDeviceIDProperties;

or the equivalent

// Provided by VK_KHR_external_fence_capabilities,
VK_KHR_external_memory_capabilities, VK_KHR_external_semaphore_capabilities
typedef VkPhysicalDeviceIDProperties VkPhysicalDeviceIDPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the device.

• driverUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the driver build in use by the device.

• deviceLUID is an array of VK_LUID_SIZE uint8_t values representing a locally unique identifier for
the device.

• deviceNodeMask is a uint32_t bitfield identifying the node within a linked device adapter
corresponding to the device.

• deviceLUIDValid is a boolean value that will be VK_TRUE if deviceLUID contains a valid LUID and
deviceNodeMask contains a valid node mask, and VK_FALSE if they do not.

If the VkPhysicalDeviceIDProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

deviceUUID must be immutable for a given device across instances, processes, driver APIs, driver
versions, and system reboots.

Applications can compare the driverUUID value across instance and process boundaries, and can
make similar queries in external APIs to determine whether they are capable of sharing memory
objects and resources using them with the device.

deviceUUID and/or driverUUID must be used to determine whether a particular external object can
be shared between driver components, where such a restriction exists as defined in the
compatibility table for the particular object type:

• External memory handle types compatibility

• External semaphore handle types compatibility

• External fence handle types compatibility

If deviceLUIDValid is VK_FALSE, the values of deviceLUID and deviceNodeMask are undefined. If
deviceLUIDValid is VK_TRUE and Vulkan is running on the Windows operating system, the contents of

144

deviceLUID can be cast to an LUID object and must be equal to the locally unique identifier of a
IDXGIAdapter1 object that corresponds to physicalDevice. If deviceLUIDValid is VK_TRUE,
deviceNodeMask must contain exactly one bit. If Vulkan is running on an operating system that
supports the Direct3D 12 API and physicalDevice corresponds to an individual device in a linked
device adapter, deviceNodeMask identifies the Direct3D 12 node corresponding to physicalDevice.
Otherwise, deviceNodeMask must be 1.

Note

Although they have identical descriptions, VkPhysicalDeviceIDProperties
::deviceUUID may differ from VkPhysicalDeviceProperties2::pipelineCacheUUID. The
former is intended to identify and correlate devices across API and driver
boundaries, while the latter is used to identify a compatible device and driver
combination to use when serializing and de-serializing pipeline state.

Implementations should return deviceUUID values which are likely to be unique
even in the presence of multiple Vulkan implementations (such as a GPU driver
and a software renderer; two drivers for different GPUs; or the same Vulkan
driver running on two logically different devices).

Khronos' conformance testing is unable to guarantee that deviceUUID values are
actually unique, so implementors should make their own best efforts to ensure
this. In particular, hard-coded deviceUUID values, especially all-0 bits, should never
be used.

A combination of values unique to the vendor, the driver, and the hardware
environment can be used to provide a deviceUUID which is unique to a high degree
of certainty. Some possible inputs to such a computation are:

• Information reported by vkGetPhysicalDeviceProperties

• PCI device ID (if defined)

• PCI bus ID, or similar system configuration information.

• Driver binary checksums.

Note

While VkPhysicalDeviceIDProperties::deviceUUID is specified to remain consistent
across driver versions and system reboots, it is not intended to be usable as a
serializable persistent identifier for a device. It may change when a device is
physically added to, removed from, or moved to a different connector in a system
while that system is powered down. Further, there is no reasonable way to verify
with conformance testing that a given device retains the same UUID in a given
system across all driver versions supported in that system. While implementations
should make every effort to report consistent device UUIDs across driver versions,
applications should avoid relying on the persistence of this value for uses other
than identifying compatible devices for external object sharing purposes.

145

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceIDProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES

VK_UUID_SIZE is the length in uint8_t values of an array containing a universally unique device or
driver build identifier, as returned in VkPhysicalDeviceIDProperties::deviceUUID and
VkPhysicalDeviceIDProperties::driverUUID.

#define VK_UUID_SIZE 16U

VK_LUID_SIZE is the length in uint8_t values of an array containing a locally unique device identifier,
as returned in VkPhysicalDeviceIDProperties::deviceLUID.

#define VK_LUID_SIZE 8U

or the equivalent

#define VK_LUID_SIZE_KHR VK_LUID_SIZE

The VkPhysicalDeviceDriverProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceDriverProperties {
 VkStructureType sType;
 void* pNext;
 VkDriverId driverID;
 char driverName[VK_MAX_DRIVER_NAME_SIZE];
 char driverInfo[VK_MAX_DRIVER_INFO_SIZE];
 VkConformanceVersion conformanceVersion;
} VkPhysicalDeviceDriverProperties;

or the equivalent

// Provided by VK_KHR_driver_properties
typedef VkPhysicalDeviceDriverProperties VkPhysicalDeviceDriverPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• driverID is a unique identifier for the driver of the physical device.

• driverName is an array of VK_MAX_DRIVER_NAME_SIZE char containing a null-terminated UTF-8 string

146

which is the name of the driver.

• driverInfo is an array of VK_MAX_DRIVER_INFO_SIZE char containing a null-terminated UTF-8 string
with additional information about the driver.

• conformanceVersion is the latest version of the Vulkan conformance test that the implementor
has successfully tested this driver against prior to release (see VkConformanceVersion).

If the VkPhysicalDeviceDriverProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These are properties of the driver corresponding to a physical device.

driverID must be immutable for a given driver across instances, processes, driver versions, and
system reboots.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDriverProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES

Khronos driver IDs which may be returned in VkPhysicalDeviceDriverProperties::driverID are:

// Provided by VK_VERSION_1_2
typedef enum VkDriverId {
 VK_DRIVER_ID_AMD_PROPRIETARY = 1,
 VK_DRIVER_ID_AMD_OPEN_SOURCE = 2,
 VK_DRIVER_ID_MESA_RADV = 3,
 VK_DRIVER_ID_NVIDIA_PROPRIETARY = 4,
 VK_DRIVER_ID_INTEL_PROPRIETARY_WINDOWS = 5,
 VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA = 6,
 VK_DRIVER_ID_IMAGINATION_PROPRIETARY = 7,
 VK_DRIVER_ID_QUALCOMM_PROPRIETARY = 8,
 VK_DRIVER_ID_ARM_PROPRIETARY = 9,
 VK_DRIVER_ID_GOOGLE_SWIFTSHADER = 10,
 VK_DRIVER_ID_GGP_PROPRIETARY = 11,
 VK_DRIVER_ID_BROADCOM_PROPRIETARY = 12,
 VK_DRIVER_ID_MESA_LLVMPIPE = 13,
 VK_DRIVER_ID_MOLTENVK = 14,
 VK_DRIVER_ID_COREAVI_PROPRIETARY = 15,
 VK_DRIVER_ID_JUICE_PROPRIETARY = 16,
 VK_DRIVER_ID_VERISILICON_PROPRIETARY = 17,
 VK_DRIVER_ID_MESA_TURNIP = 18,
 VK_DRIVER_ID_MESA_V3DV = 19,
 VK_DRIVER_ID_MESA_PANVK = 20,
 VK_DRIVER_ID_SAMSUNG_PROPRIETARY = 21,
 VK_DRIVER_ID_MESA_VENUS = 22,
 VK_DRIVER_ID_MESA_DOZEN = 23,
 VK_DRIVER_ID_MESA_NVK = 24,

147

 VK_DRIVER_ID_IMAGINATION_OPEN_SOURCE_MESA = 25,
 VK_DRIVER_ID_MESA_AGXV = 26,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_AMD_PROPRIETARY_KHR = VK_DRIVER_ID_AMD_PROPRIETARY,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_AMD_OPEN_SOURCE_KHR = VK_DRIVER_ID_AMD_OPEN_SOURCE,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_MESA_RADV_KHR = VK_DRIVER_ID_MESA_RADV,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_NVIDIA_PROPRIETARY_KHR = VK_DRIVER_ID_NVIDIA_PROPRIETARY,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_INTEL_PROPRIETARY_WINDOWS_KHR =
VK_DRIVER_ID_INTEL_PROPRIETARY_WINDOWS,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_IMAGINATION_PROPRIETARY_KHR = VK_DRIVER_ID_IMAGINATION_PROPRIETARY,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_QUALCOMM_PROPRIETARY_KHR = VK_DRIVER_ID_QUALCOMM_PROPRIETARY,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_ARM_PROPRIETARY_KHR = VK_DRIVER_ID_ARM_PROPRIETARY,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_GOOGLE_SWIFTSHADER_KHR = VK_DRIVER_ID_GOOGLE_SWIFTSHADER,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_GGP_PROPRIETARY_KHR = VK_DRIVER_ID_GGP_PROPRIETARY,
 // Provided by VK_KHR_driver_properties
 VK_DRIVER_ID_BROADCOM_PROPRIETARY_KHR = VK_DRIVER_ID_BROADCOM_PROPRIETARY,
} VkDriverId;

or the equivalent

// Provided by VK_KHR_driver_properties
typedef VkDriverId VkDriverIdKHR;

Note

Khronos driver IDs may be allocated by vendors at any time. There may be
multiple driver IDs for the same vendor, representing different drivers (for e.g.
different platforms, proprietary or open source, etc.). Only the latest canonical
versions of this Specification, of the corresponding vk.xml API Registry, and of the
corresponding vulkan_core.h header file must contain all reserved Khronos driver
IDs.

Only driver IDs registered with Khronos are given symbolic names. There may be
unregistered driver IDs returned.

VK_MAX_DRIVER_NAME_SIZE is the length in char values of an array containing a driver name string, as
returned in VkPhysicalDeviceDriverProperties::driverName.

148

#define VK_MAX_DRIVER_NAME_SIZE 256U

or the equivalent

#define VK_MAX_DRIVER_NAME_SIZE_KHR VK_MAX_DRIVER_NAME_SIZE

VK_MAX_DRIVER_INFO_SIZE is the length in char values of an array containing a driver information
string, as returned in VkPhysicalDeviceDriverProperties::driverInfo.

#define VK_MAX_DRIVER_INFO_SIZE 256U

or the equivalent

#define VK_MAX_DRIVER_INFO_SIZE_KHR VK_MAX_DRIVER_INFO_SIZE

The conformance test suite version an implementation is compliant with is described with the
VkConformanceVersion structure:

// Provided by VK_VERSION_1_2
typedef struct VkConformanceVersion {
 uint8_t major;
 uint8_t minor;
 uint8_t subminor;
 uint8_t patch;
} VkConformanceVersion;

or the equivalent

// Provided by VK_KHR_driver_properties
typedef VkConformanceVersion VkConformanceVersionKHR;

• major is the major version number of the conformance test suite.

• minor is the minor version number of the conformance test suite.

• subminor is the subminor version number of the conformance test suite.

• patch is the patch version number of the conformance test suite.

The VkPhysicalDevicePCIBusInfoPropertiesEXT structure is defined as:

// Provided by VK_EXT_pci_bus_info
typedef struct VkPhysicalDevicePCIBusInfoPropertiesEXT {
 VkStructureType sType;
 void* pNext;

149

 uint32_t pciDomain;
 uint32_t pciBus;
 uint32_t pciDevice;
 uint32_t pciFunction;
} VkPhysicalDevicePCIBusInfoPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pciDomain is the PCI bus domain.

• pciBus is the PCI bus identifier.

• pciDevice is the PCI device identifier.

• pciFunction is the PCI device function identifier.

If the VkPhysicalDevicePCIBusInfoPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These are properties of the PCI bus information of a physical device.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePCIBusInfoPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT

The VkPhysicalDeviceDrmPropertiesEXT structure is defined as:

// Provided by VK_EXT_physical_device_drm
typedef struct VkPhysicalDeviceDrmPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 hasPrimary;
 VkBool32 hasRender;
 int64_t primaryMajor;
 int64_t primaryMinor;
 int64_t renderMajor;
 int64_t renderMinor;
} VkPhysicalDeviceDrmPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• hasPrimary is a boolean indicating whether the physical device has a DRM primary node.

• hasRender is a boolean indicating whether the physical device has a DRM render node.

• primaryMajor is the DRM primary node major number, if any.

150

• primaryMinor is the DRM primary node minor number, if any.

• renderMajor is the DRM render node major number, if any.

• renderMinor is the DRM render node minor number, if any.

If the VkPhysicalDeviceDrmPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These are properties of the DRM information of a physical device.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDrmPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT

The VkPhysicalDeviceShaderIntegerDotProductProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceShaderIntegerDotProductProperties {
 VkStructureType sType;
 void* pNext;
 VkBool32 integerDotProduct8BitUnsignedAccelerated;
 VkBool32 integerDotProduct8BitSignedAccelerated;
 VkBool32 integerDotProduct8BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct4x8BitPackedUnsignedAccelerated;
 VkBool32 integerDotProduct4x8BitPackedSignedAccelerated;
 VkBool32 integerDotProduct4x8BitPackedMixedSignednessAccelerated;
 VkBool32 integerDotProduct16BitUnsignedAccelerated;
 VkBool32 integerDotProduct16BitSignedAccelerated;
 VkBool32 integerDotProduct16BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct32BitUnsignedAccelerated;
 VkBool32 integerDotProduct32BitSignedAccelerated;
 VkBool32 integerDotProduct32BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct64BitUnsignedAccelerated;
 VkBool32 integerDotProduct64BitSignedAccelerated;
 VkBool32 integerDotProduct64BitMixedSignednessAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating8BitUnsignedAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating8BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitUnsignedAccelerated;

151

 VkBool32 integerDotProductAccumulatingSaturating16BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitUnsignedAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating32BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitUnsignedAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating64BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated;
} VkPhysicalDeviceShaderIntegerDotProductProperties;

or the equivalent

// Provided by VK_KHR_shader_integer_dot_product
typedef VkPhysicalDeviceShaderIntegerDotProductProperties
VkPhysicalDeviceShaderIntegerDotProductPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• integerDotProduct8BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for 8-
bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct8BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 8-bit
signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as defined
below.

• integerDotProduct8BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the support
for 8-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V instruction is
accelerated as defined below.

• integerDotProduct4x8BitPackedUnsignedAccelerated is a boolean that will be VK_TRUE if the
support for 8-bit unsigned dot product operations from operands packed into 32-bit integers
using the OpUDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct4x8BitPackedSignedAccelerated is a boolean that will be VK_TRUE if the support
for 8-bit signed dot product operations from operands packed into 32-bit integers using the
OpSDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct4x8BitPackedMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 8-bit mixed signedness dot product operations from operands packed into 32-bit
integers using the OpSUDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct16BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
16-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

152

• integerDotProduct16BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 16-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct16BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 16-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProduct32BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
32-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct32BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 32-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct32BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 32-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProduct64BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
64-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct64BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 64-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct64BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 64-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 8-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitSignedAccelerated is a boolean that will be VK_TRUE
if the support for 8-bit signed accumulating saturating dot product operations using the
OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 8-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated is a boolean that will
be VK_TRUE if the support for 8-bit unsigned accumulating saturating dot product operations
from operands packed into 32-bit integers using the OpUDotAccSatKHR SPIR-V instruction is
accelerated as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated is a boolean that will be
VK_TRUE if the support for 8-bit signed accumulating saturating dot product operations from
operands packed into 32-bit integers using the OpSDotAccSatKHR SPIR-V instruction is accelerated
as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated is a boolean
that will be VK_TRUE if the support for 8-bit mixed signedness accumulating saturating dot

153

product operations from operands packed into 32-bit integers using the OpSUDotAccSatKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 16-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 16-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 16-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 32-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 32-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 32-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 64-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 64-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 64-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

If the VkPhysicalDeviceShaderIntegerDotProductProperties structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

These are properties of the integer dot product acceleration information of a physical device.

Note

A dot product operation is deemed accelerated if its implementation provides a
performance advantage over application-provided code composed from
elementary instructions and/or other dot product instructions, either because the
implementation uses optimized machine code sequences whose generation from
application-provided code cannot be guaranteed or because it uses hardware
features that cannot otherwise be targeted from application-provided code.

154

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderIntegerDotProductProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES

The VkPhysicalDeviceImageProcessingPropertiesQCOM structure is defined as:

// Provided by VK_QCOM_image_processing
typedef struct VkPhysicalDeviceImageProcessingPropertiesQCOM {
 VkStructureType sType;
 void* pNext;
 uint32_t maxWeightFilterPhases;
 VkExtent2D maxWeightFilterDimension;
 VkExtent2D maxBlockMatchRegion;
 VkExtent2D maxBoxFilterBlockSize;
} VkPhysicalDeviceImageProcessingPropertiesQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxWeightFilterPhases is the maximum value that can be specified for
VkImageViewSampleWeightCreateInfoQCOM::numPhases in weight image sampling operations.

• maxWeightFilterDimension is a VkExtent2D describing the largest dimensions (width and height)
that can be specified for VkImageViewSampleWeightCreateInfoQCOM::filterSize.

• maxBlockMatchRegion is a VkExtent2D describing the largest dimensions (width and height) that
can be specified for blockSize in block matching operations.

• maxBoxFilterBlockSize is a VkExtent2D describing the maximum dimensions (width and height)
that can be specified for blocksize in box filter sampling operations.

If the VkPhysicalDeviceImageProcessingPropertiesQCOM structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These are properties of the image processing information of a physical device.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageProcessingPropertiesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_PROPERTIES_QCOM

The VkPhysicalDeviceShaderTileImagePropertiesEXT structure is defined as:

// Provided by VK_EXT_shader_tile_image
typedef struct VkPhysicalDeviceShaderTileImagePropertiesEXT {
 VkStructureType sType;

155

 void* pNext;
 VkBool32 shaderTileImageCoherentReadAccelerated;
 VkBool32 shaderTileImageReadSampleFromPixelRateInvocation;
 VkBool32 shaderTileImageReadFromHelperInvocation;
} VkPhysicalDeviceShaderTileImagePropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderTileImageCoherentReadAccelerated is a boolean that will be VK_TRUE if coherent reads of tile
image data is accelerated.

• shaderTileImageReadSampleFromPixelRateInvocation is a boolean that will be VK_TRUE if reading
from samples from a pixel rate fragment invocation is supported when
VkPipelineMultisampleStateCreateInfo::rasterizationSamples > 1.

• shaderTileImageReadFromHelperInvocation is a boolean that will be VK_TRUE if reads of tile image
data from helper fragment invocations result in valid values.

If the VkPhysicalDeviceShaderTileImagePropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These are properties of the tile image information of a physical device.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderTileImagePropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TILE_IMAGE_PROPERTIES_EXT

The VkPhysicalDeviceImageProcessing2PropertiesQCOM structure is defined as:

// Provided by VK_QCOM_image_processing2
typedef struct VkPhysicalDeviceImageProcessing2PropertiesQCOM {
 VkStructureType sType;
 void* pNext;
 VkExtent2D maxBlockMatchWindow;
} VkPhysicalDeviceImageProcessing2PropertiesQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxBlockMatchWindow is a VkExtent2D describing the largest dimensions (width and height) that
can be specified for the block match window.

If the VkPhysicalDeviceImageProcessing2PropertiesQCOM structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

156

These are properties of the image processing2 information of a physical device.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageProcessing2PropertiesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_2_PROPERTIES_QCOM

The VkPhysicalDeviceLayeredDriverPropertiesMSFT structure is defined as:

// Provided by VK_MSFT_layered_driver
typedef struct VkPhysicalDeviceLayeredDriverPropertiesMSFT {
 VkStructureType sType;
 void* pNext;
 VkLayeredDriverUnderlyingApiMSFT underlyingAPI;
} VkPhysicalDeviceLayeredDriverPropertiesMSFT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• underlyingAPI is a VkLayeredDriverUnderlyingApiMSFT value indicating which underlying API
is used to implement the layered driver, or VK_LAYERED_DRIVER_UNDERLYING_API_NONE_MSFT if the
driver is not layered.

These are properties of the driver layering information of a physical device.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceLayeredDriverPropertiesMSFT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LAYERED_DRIVER_PROPERTIES_MSFT

Underlying APIs which may be returned in VkPhysicalDeviceLayeredDriverPropertiesMSFT
::underlyingAPI are:

// Provided by VK_MSFT_layered_driver
typedef enum VkLayeredDriverUnderlyingApiMSFT {
 VK_LAYERED_DRIVER_UNDERLYING_API_NONE_MSFT = 0,
 VK_LAYERED_DRIVER_UNDERLYING_API_D3D12_MSFT = 1,
} VkLayeredDriverUnderlyingApiMSFT;

The VkPhysicalDeviceSchedulingControlsPropertiesARM structure is defined as:

// Provided by VK_ARM_scheduling_controls
typedef struct VkPhysicalDeviceSchedulingControlsPropertiesARM {
 VkStructureType sType;
 void* pNext;

157

 VkPhysicalDeviceSchedulingControlsFlagsARM schedulingControlsFlags;
} VkPhysicalDeviceSchedulingControlsPropertiesARM;

• schedulingControlsFlags specifies the specific scheduling controls that a physical device
supports.

If the VkPhysicalDeviceSchedulingControlsPropertiesARM structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSchedulingControlsPropertiesARM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_PROPERTIES_ARM

• VUID-VkPhysicalDeviceSchedulingControlsPropertiesARM-schedulingControlsFlags-
parameter
schedulingControlsFlags must be a valid combination of
VkPhysicalDeviceSchedulingControlsFlagBitsARM values

• VUID-VkPhysicalDeviceSchedulingControlsPropertiesARM-schedulingControlsFlags-
requiredbitmask
schedulingControlsFlags must not be 0

Bits which can be set in VkPhysicalDeviceSchedulingControlsPropertiesARM
::schedulingControlsFlags, specifying supported scheduling controls, are:

// Provided by VK_ARM_scheduling_controls
// Flag bits for VkPhysicalDeviceSchedulingControlsFlagBitsARM
typedef VkFlags64 VkPhysicalDeviceSchedulingControlsFlagBitsARM;
static const VkPhysicalDeviceSchedulingControlsFlagBitsARM
VK_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_SHADER_CORE_COUNT_ARM = 0x00000001ULL;

• VK_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_SHADER_CORE_COUNT_ARM indicates that a
VkDeviceQueueShaderCoreControlCreateInfoARM structure may be included in the pNext chain
of a VkDeviceQueueCreateInfo or VkDeviceCreateInfo structure.

// Provided by VK_ARM_scheduling_controls
typedef VkFlags64 VkPhysicalDeviceSchedulingControlsFlagsARM;

VkPhysicalDeviceSchedulingControlsFlagsARM is a bitmask type for setting a mask of zero or more
VkPhysicalDeviceSchedulingControlsFlagBitsARM.

To query properties of queues available on a physical device, call:

// Provided by VK_VERSION_1_0

158

void vkGetPhysicalDeviceQueueFamilyProperties(
 VkPhysicalDevice physicalDevice,
 uint32_t* pQueueFamilyPropertyCount,
 VkQueueFamilyProperties* pQueueFamilyProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pQueueFamilyPropertyCount is a pointer to an integer related to the number of queue families
available or queried, as described below.

• pQueueFamilyProperties is either NULL or a pointer to an array of VkQueueFamilyProperties
structures.

If pQueueFamilyProperties is NULL, then the number of queue families available is returned in
pQueueFamilyPropertyCount. Implementations must support at least one queue family. Otherwise,
pQueueFamilyPropertyCount must point to a variable set by the user to the number of elements in the
pQueueFamilyProperties array, and on return the variable is overwritten with the number of
structures actually written to pQueueFamilyProperties. If pQueueFamilyPropertyCount is less than the
number of queue families available, at most pQueueFamilyPropertyCount structures will be written.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceQueueFamilyProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceQueueFamilyProperties-pQueueFamilyPropertyCount-
parameter
pQueueFamilyPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceQueueFamilyProperties-pQueueFamilyProperties-parameter
If the value referenced by pQueueFamilyPropertyCount is not 0, and pQueueFamilyProperties
is not NULL, pQueueFamilyProperties must be a valid pointer to an array of
pQueueFamilyPropertyCount VkQueueFamilyProperties structures

The VkQueueFamilyProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkQueueFamilyProperties {
 VkQueueFlags queueFlags;
 uint32_t queueCount;
 uint32_t timestampValidBits;
 VkExtent3D minImageTransferGranularity;
} VkQueueFamilyProperties;

• queueFlags is a bitmask of VkQueueFlagBits indicating capabilities of the queues in this queue
family.

• queueCount is the unsigned integer count of queues in this queue family. Each queue family must
support at least one queue.

159

• timestampValidBits is the unsigned integer count of meaningful bits in the timestamps written
via vkCmdWriteTimestamp2 or vkCmdWriteTimestamp. The valid range for the count is 36 to
64 bits, or a value of 0, indicating no support for timestamps. Bits outside the valid range are
guaranteed to be zeros.

• minImageTransferGranularity is the minimum granularity supported for image transfer
operations on the queues in this queue family.

The value returned in minImageTransferGranularity has a unit of compressed texel blocks for images
having a block-compressed format, and a unit of texels otherwise.

Possible values of minImageTransferGranularity are:

• (0,0,0) specifies that only whole mip levels must be transferred using the image transfer
operations on the corresponding queues. In this case, the following restrictions apply to all
offset and extent parameters of image transfer operations:

◦ The x, y, and z members of a VkOffset3D parameter must always be zero.

◦ The width, height, and depth members of a VkExtent3D parameter must always match the
width, height, and depth of the image subresource corresponding to the parameter,
respectively.

• (Ax, Ay, Az) where Ax, Ay, and Az are all integer powers of two. In this case the following
restrictions apply to all image transfer operations:

◦ x, y, and z of a VkOffset3D parameter must be integer multiples of Ax, Ay, and Az,
respectively.

◦ width of a VkExtent3D parameter must be an integer multiple of Ax, or else x + width must
equal the width of the image subresource corresponding to the parameter.

◦ height of a VkExtent3D parameter must be an integer multiple of Ay, or else y + height must
equal the height of the image subresource corresponding to the parameter.

◦ depth of a VkExtent3D parameter must be an integer multiple of Az, or else z + depth must
equal the depth of the image subresource corresponding to the parameter.

◦ If the format of the image corresponding to the parameters is one of the block-compressed
formats then for the purposes of the above calculations the granularity must be scaled up
by the compressed texel block dimensions.

Queues supporting graphics and/or compute operations must report (1,1,1) in
minImageTransferGranularity, meaning that there are no additional restrictions on the granularity of
image transfer operations for these queues. Other queues supporting image transfer operations are
only required to support whole mip level transfers, thus minImageTransferGranularity for queues
belonging to such queue families may be (0,0,0).

The Device Memory section describes memory properties queried from the physical device.

For physical device feature queries see the Features chapter.

Bits which may be set in VkQueueFamilyProperties::queueFlags, indicating capabilities of queues in
a queue family are:

160

// Provided by VK_VERSION_1_0
typedef enum VkQueueFlagBits {
 VK_QUEUE_GRAPHICS_BIT = 0x00000001,
 VK_QUEUE_COMPUTE_BIT = 0x00000002,
 VK_QUEUE_TRANSFER_BIT = 0x00000004,
 VK_QUEUE_SPARSE_BINDING_BIT = 0x00000008,
 // Provided by VK_VERSION_1_1
 VK_QUEUE_PROTECTED_BIT = 0x00000010,
 // Provided by VK_KHR_video_decode_queue
 VK_QUEUE_VIDEO_DECODE_BIT_KHR = 0x00000020,
 // Provided by VK_KHR_video_encode_queue
 VK_QUEUE_VIDEO_ENCODE_BIT_KHR = 0x00000040,
 // Provided by VK_NV_optical_flow
 VK_QUEUE_OPTICAL_FLOW_BIT_NV = 0x00000100,
} VkQueueFlagBits;

• VK_QUEUE_GRAPHICS_BIT specifies that queues in this queue family support graphics operations.

• VK_QUEUE_COMPUTE_BIT specifies that queues in this queue family support compute operations.

• VK_QUEUE_TRANSFER_BIT specifies that queues in this queue family support transfer operations.

• VK_QUEUE_SPARSE_BINDING_BIT specifies that queues in this queue family support sparse memory
management operations (see Sparse Resources). If any of the sparse resource features are
enabled, then at least one queue family must support this bit.

• VK_QUEUE_VIDEO_DECODE_BIT_KHR specifies that queues in this queue family support video decode
operations.

• VK_QUEUE_VIDEO_ENCODE_BIT_KHR specifies that queues in this queue family support video encode
operations.

• VK_QUEUE_OPTICAL_FLOW_BIT_NV specifies that queues in this queue family support optical flow
operations.

• VK_QUEUE_PROTECTED_BIT specifies that queues in this queue family support the
VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT bit. (see Protected Memory). If the physical device
supports the protectedMemory feature, at least one of its queue families must support this bit.

If an implementation exposes any queue family that supports graphics operations, at least one
queue family of at least one physical device exposed by the implementation must support both
graphics and compute operations.

Furthermore, if the protectedMemory physical device feature is supported, then at least one queue
family of at least one physical device exposed by the implementation must support graphics
operations, compute operations, and protected memory operations.

Note

All commands that are allowed on a queue that supports transfer operations are
also allowed on a queue that supports either graphics or compute operations.
Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability

161

separately for that queue family is optional.

For further details see Queues.

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueueFlags;

VkQueueFlags is a bitmask type for setting a mask of zero or more VkQueueFlagBits.

To query properties of queues available on a physical device, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceQueueFamilyProperties2(
 VkPhysicalDevice physicalDevice,
 uint32_t* pQueueFamilyPropertyCount,
 VkQueueFamilyProperties2* pQueueFamilyProperties);

or the equivalent command

// Provided by VK_KHR_get_physical_device_properties2
void vkGetPhysicalDeviceQueueFamilyProperties2KHR(
 VkPhysicalDevice physicalDevice,
 uint32_t* pQueueFamilyPropertyCount,
 VkQueueFamilyProperties2* pQueueFamilyProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pQueueFamilyPropertyCount is a pointer to an integer related to the number of queue families
available or queried, as described in vkGetPhysicalDeviceQueueFamilyProperties.

• pQueueFamilyProperties is either NULL or a pointer to an array of VkQueueFamilyProperties2
structures.

vkGetPhysicalDeviceQueueFamilyProperties2 behaves similarly to
vkGetPhysicalDeviceQueueFamilyProperties, with the ability to return extended information in a
pNext chain of output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceQueueFamilyProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceQueueFamilyProperties2-pQueueFamilyPropertyCount-
parameter
pQueueFamilyPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceQueueFamilyProperties2-pQueueFamilyProperties-parameter
If the value referenced by pQueueFamilyPropertyCount is not 0, and pQueueFamilyProperties

162

is not NULL, pQueueFamilyProperties must be a valid pointer to an array of
pQueueFamilyPropertyCount VkQueueFamilyProperties2 structures

The VkQueueFamilyProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkQueueFamilyProperties2 {
 VkStructureType sType;
 void* pNext;
 VkQueueFamilyProperties queueFamilyProperties;
} VkQueueFamilyProperties2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkQueueFamilyProperties2 VkQueueFamilyProperties2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• queueFamilyProperties is a VkQueueFamilyProperties structure which is populated with the
same values as in vkGetPhysicalDeviceQueueFamilyProperties.

Valid Usage (Implicit)

• VUID-VkQueueFamilyProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2

• VUID-VkQueueFamilyProperties2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkQueueFamilyCheckpointProperties2NV,
VkQueueFamilyCheckpointPropertiesNV, VkQueueFamilyGlobalPriorityPropertiesKHR,
VkQueueFamilyQueryResultStatusPropertiesKHR, or VkQueueFamilyVideoPropertiesKHR

• VUID-VkQueueFamilyProperties2-sType-unique
The sType value of each struct in the pNext chain must be unique

The VkQueueFamilyGlobalPriorityPropertiesKHR structure is defined as:

// Provided by VK_KHR_global_priority
typedef struct VkQueueFamilyGlobalPriorityPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t priorityCount;
 VkQueueGlobalPriorityKHR priorities[VK_MAX_GLOBAL_PRIORITY_SIZE_KHR];
} VkQueueFamilyGlobalPriorityPropertiesKHR;

163

or the equivalent

// Provided by VK_EXT_global_priority_query
typedef VkQueueFamilyGlobalPriorityPropertiesKHR
VkQueueFamilyGlobalPriorityPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• priorityCount is the number of supported global queue priorities in this queue family, and it
must be greater than 0.

• priorities is an array of VK_MAX_GLOBAL_PRIORITY_SIZE_EXT VkQueueGlobalPriorityEXT enums
representing all supported global queue priorities in this queue family. The first priorityCount
elements of the array will be valid.

If the VkQueueFamilyGlobalPriorityPropertiesKHR structure is included in the pNext chain of the
VkQueueFamilyProperties2 structure passed to vkGetPhysicalDeviceQueueFamilyProperties2, it is
filled in with the list of supported global queue priorities for the indicated family.

The valid elements of priorities must not contain any duplicate values.

The valid elements of priorities must be a continuous sequence of VkQueueGlobalPriorityKHR
enums in the ascending order.

Note

For example, returning priorityCount as 3 with supported priorities as
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR, VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR and
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR is not allowed.

Valid Usage (Implicit)

• VUID-VkQueueFamilyGlobalPriorityPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR

VK_MAX_GLOBAL_PRIORITY_SIZE_KHR is the length of an array of VkQueueGlobalPriorityKHR
enumerants representing supported queue priorities, as returned in
VkQueueFamilyGlobalPriorityPropertiesKHR::priorities.

#define VK_MAX_GLOBAL_PRIORITY_SIZE_KHR 16U

or the equivalent

#define VK_MAX_GLOBAL_PRIORITY_SIZE_EXT VK_MAX_GLOBAL_PRIORITY_SIZE_KHR

164

The VkQueueFamilyCheckpointProperties2NV structure is defined as:

// Provided by VK_KHR_synchronization2 with VK_NV_device_diagnostic_checkpoints
typedef struct VkQueueFamilyCheckpointProperties2NV {
 VkStructureType sType;
 void* pNext;
 VkPipelineStageFlags2 checkpointExecutionStageMask;
} VkQueueFamilyCheckpointProperties2NV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• checkpointExecutionStageMask is a mask indicating which pipeline stages the implementation
can execute checkpoint markers in.

Additional queue family information can be queried by setting VkQueueFamilyProperties2::pNext to
point to a VkQueueFamilyCheckpointProperties2NV structure.

Valid Usage (Implicit)

• VUID-VkQueueFamilyCheckpointProperties2NV-sType-sType
sType must be VK_STRUCTURE_TYPE_QUEUE_FAMILY_CHECKPOINT_PROPERTIES_2_NV

The VkQueueFamilyCheckpointPropertiesNV structure is defined as:

// Provided by VK_NV_device_diagnostic_checkpoints
typedef struct VkQueueFamilyCheckpointPropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkPipelineStageFlags checkpointExecutionStageMask;
} VkQueueFamilyCheckpointPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• checkpointExecutionStageMask is a mask indicating which pipeline stages the implementation
can execute checkpoint markers in.

Additional queue family information can be queried by setting VkQueueFamilyProperties2::pNext to
point to a VkQueueFamilyCheckpointPropertiesNV structure.

Valid Usage (Implicit)

• VUID-VkQueueFamilyCheckpointPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_QUEUE_FAMILY_CHECKPOINT_PROPERTIES_NV

165

The VkQueueFamilyVideoPropertiesKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkQueueFamilyVideoPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkVideoCodecOperationFlagsKHR videoCodecOperations;
} VkQueueFamilyVideoPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• videoCodecOperations is a bitmask of VkVideoCodecOperationFlagBitsKHR that indicates the set
of video codec operations supported by the queue family.

If this structure is included in the pNext chain of the VkQueueFamilyProperties2 structure passed to
vkGetPhysicalDeviceQueueFamilyProperties2, then it is filled with the set of video codec operations
supported by the specified queue family.

Valid Usage (Implicit)

• VUID-VkQueueFamilyVideoPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_QUEUE_FAMILY_VIDEO_PROPERTIES_KHR

The VkQueueFamilyQueryResultStatusPropertiesKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkQueueFamilyQueryResultStatusPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 queryResultStatusSupport;
} VkQueueFamilyQueryResultStatusPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• queryResultStatusSupport reports VK_TRUE if query type VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR
and use of VK_QUERY_RESULT_WITH_STATUS_BIT_KHR are supported.

If this structure is included in the pNext chain of the VkQueueFamilyProperties2 structure passed to
vkGetPhysicalDeviceQueueFamilyProperties2, then it is filled with information about whether
result status queries are supported by the specified queue family.

Valid Usage (Implicit)

• VUID-VkQueueFamilyQueryResultStatusPropertiesKHR-sType-sType

166

sType must be VK_STRUCTURE_TYPE_QUEUE_FAMILY_QUERY_RESULT_STATUS_PROPERTIES_KHR

To enumerate the performance query counters available on a queue family of a physical device,
call:

// Provided by VK_KHR_performance_query
VkResult vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t queueFamilyIndex,
 uint32_t* pCounterCount,
 VkPerformanceCounterKHR* pCounters,
 VkPerformanceCounterDescriptionKHR* pCounterDescriptions);

• physicalDevice is the handle to the physical device whose queue family performance query
counter properties will be queried.

• queueFamilyIndex is the index into the queue family of the physical device we want to get
properties for.

• pCounterCount is a pointer to an integer related to the number of counters available or queried,
as described below.

• pCounters is either NULL or a pointer to an array of VkPerformanceCounterKHR structures.

• pCounterDescriptions is either NULL or a pointer to an array of
VkPerformanceCounterDescriptionKHR structures.

If pCounters is NULL and pCounterDescriptions is NULL, then the number of counters available is
returned in pCounterCount. Otherwise, pCounterCount must point to a variable set by the user to the
number of elements in the pCounters, pCounterDescriptions, or both arrays and on return the
variable is overwritten with the number of structures actually written out. If pCounterCount is less
than the number of counters available, at most pCounterCount structures will be written, and
VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the available counters
were returned.

Valid Usage (Implicit)

• VUID-vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR-
physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR-
pCounterCount-parameter
pCounterCount must be a valid pointer to a uint32_t value

• VUID-vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR-
pCounters-parameter
If the value referenced by pCounterCount is not 0, and pCounters is not NULL, pCounters must
be a valid pointer to an array of pCounterCount VkPerformanceCounterKHR structures

• VUID-vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR-

167

pCounterDescriptions-parameter
If the value referenced by pCounterCount is not 0, and pCounterDescriptions is not NULL,
pCounterDescriptions must be a valid pointer to an array of pCounterCount
VkPerformanceCounterDescriptionKHR structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

The VkPerformanceCounterKHR structure is defined as:

// Provided by VK_KHR_performance_query
typedef struct VkPerformanceCounterKHR {
 VkStructureType sType;
 void* pNext;
 VkPerformanceCounterUnitKHR unit;
 VkPerformanceCounterScopeKHR scope;
 VkPerformanceCounterStorageKHR storage;
 uint8_t uuid[VK_UUID_SIZE];
} VkPerformanceCounterKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• unit is a VkPerformanceCounterUnitKHR specifying the unit that the counter data will record.

• scope is a VkPerformanceCounterScopeKHR specifying the scope that the counter belongs to.

• storage is a VkPerformanceCounterStorageKHR specifying the storage type that the counter’s
data uses.

• uuid is an array of size VK_UUID_SIZE, containing 8-bit values that represent a universally unique
identifier for the counter of the physical device.

Valid Usage (Implicit)

• VUID-VkPerformanceCounterKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PERFORMANCE_COUNTER_KHR

• VUID-VkPerformanceCounterKHR-pNext-pNext

168

pNext must be NULL

Performance counters have an associated unit. This unit describes how to interpret the
performance counter result.

The performance counter unit types which may be returned in VkPerformanceCounterKHR::unit
are:

// Provided by VK_KHR_performance_query
typedef enum VkPerformanceCounterUnitKHR {
 VK_PERFORMANCE_COUNTER_UNIT_GENERIC_KHR = 0,
 VK_PERFORMANCE_COUNTER_UNIT_PERCENTAGE_KHR = 1,
 VK_PERFORMANCE_COUNTER_UNIT_NANOSECONDS_KHR = 2,
 VK_PERFORMANCE_COUNTER_UNIT_BYTES_KHR = 3,
 VK_PERFORMANCE_COUNTER_UNIT_BYTES_PER_SECOND_KHR = 4,
 VK_PERFORMANCE_COUNTER_UNIT_KELVIN_KHR = 5,
 VK_PERFORMANCE_COUNTER_UNIT_WATTS_KHR = 6,
 VK_PERFORMANCE_COUNTER_UNIT_VOLTS_KHR = 7,
 VK_PERFORMANCE_COUNTER_UNIT_AMPS_KHR = 8,
 VK_PERFORMANCE_COUNTER_UNIT_HERTZ_KHR = 9,
 VK_PERFORMANCE_COUNTER_UNIT_CYCLES_KHR = 10,
} VkPerformanceCounterUnitKHR;

• VK_PERFORMANCE_COUNTER_UNIT_GENERIC_KHR - the performance counter unit is a generic data point.

• VK_PERFORMANCE_COUNTER_UNIT_PERCENTAGE_KHR - the performance counter unit is a percentage (%).

• VK_PERFORMANCE_COUNTER_UNIT_NANOSECONDS_KHR - the performance counter unit is a value of
nanoseconds (ns).

• VK_PERFORMANCE_COUNTER_UNIT_BYTES_KHR - the performance counter unit is a value of bytes.

• VK_PERFORMANCE_COUNTER_UNIT_BYTES_PER_SECOND_KHR - the performance counter unit is a value of
bytes/s.

• VK_PERFORMANCE_COUNTER_UNIT_KELVIN_KHR - the performance counter unit is a temperature
reported in Kelvin.

• VK_PERFORMANCE_COUNTER_UNIT_WATTS_KHR - the performance counter unit is a value of watts (W).

• VK_PERFORMANCE_COUNTER_UNIT_VOLTS_KHR - the performance counter unit is a value of volts (V).

• VK_PERFORMANCE_COUNTER_UNIT_AMPS_KHR - the performance counter unit is a value of amps (A).

• VK_PERFORMANCE_COUNTER_UNIT_HERTZ_KHR - the performance counter unit is a value of hertz (Hz).

• VK_PERFORMANCE_COUNTER_UNIT_CYCLES_KHR - the performance counter unit is a value of cycles.

Performance counters have an associated scope. This scope describes the granularity of a
performance counter.

The performance counter scope types which may be returned in VkPerformanceCounterKHR::scope
are:

169

// Provided by VK_KHR_performance_query
typedef enum VkPerformanceCounterScopeKHR {
 VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_BUFFER_KHR = 0,
 VK_PERFORMANCE_COUNTER_SCOPE_RENDER_PASS_KHR = 1,
 VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_KHR = 2,
 VK_QUERY_SCOPE_COMMAND_BUFFER_KHR =
VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_BUFFER_KHR,
 VK_QUERY_SCOPE_RENDER_PASS_KHR = VK_PERFORMANCE_COUNTER_SCOPE_RENDER_PASS_KHR,
 VK_QUERY_SCOPE_COMMAND_KHR = VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_KHR,
} VkPerformanceCounterScopeKHR;

• VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_BUFFER_KHR - the performance counter scope is a single
complete command buffer.

• VK_PERFORMANCE_COUNTER_SCOPE_RENDER_PASS_KHR - the performance counter scope is zero or more
complete render passes. The performance query containing the performance counter must
begin and end outside a render pass instance.

• VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_KHR - the performance counter scope is zero or more
commands.

Performance counters have an associated storage. This storage describes the payload of a counter
result.

The performance counter storage types which may be returned in VkPerformanceCounterKHR
::storage are:

// Provided by VK_KHR_performance_query
typedef enum VkPerformanceCounterStorageKHR {
 VK_PERFORMANCE_COUNTER_STORAGE_INT32_KHR = 0,
 VK_PERFORMANCE_COUNTER_STORAGE_INT64_KHR = 1,
 VK_PERFORMANCE_COUNTER_STORAGE_UINT32_KHR = 2,
 VK_PERFORMANCE_COUNTER_STORAGE_UINT64_KHR = 3,
 VK_PERFORMANCE_COUNTER_STORAGE_FLOAT32_KHR = 4,
 VK_PERFORMANCE_COUNTER_STORAGE_FLOAT64_KHR = 5,
} VkPerformanceCounterStorageKHR;

• VK_PERFORMANCE_COUNTER_STORAGE_INT32_KHR - the performance counter storage is a 32-bit signed
integer.

• VK_PERFORMANCE_COUNTER_STORAGE_INT64_KHR - the performance counter storage is a 64-bit signed
integer.

• VK_PERFORMANCE_COUNTER_STORAGE_UINT32_KHR - the performance counter storage is a 32-bit
unsigned integer.

• VK_PERFORMANCE_COUNTER_STORAGE_UINT64_KHR - the performance counter storage is a 64-bit
unsigned integer.

• VK_PERFORMANCE_COUNTER_STORAGE_FLOAT32_KHR - the performance counter storage is a 32-bit
floating-point.

170

• VK_PERFORMANCE_COUNTER_STORAGE_FLOAT64_KHR - the performance counter storage is a 64-bit
floating-point.

The VkPerformanceCounterDescriptionKHR structure is defined as:

// Provided by VK_KHR_performance_query
typedef struct VkPerformanceCounterDescriptionKHR {
 VkStructureType sType;
 void* pNext;
 VkPerformanceCounterDescriptionFlagsKHR flags;
 char name[VK_MAX_DESCRIPTION_SIZE];
 char category[VK_MAX_DESCRIPTION_SIZE];
 char description[VK_MAX_DESCRIPTION_SIZE];
} VkPerformanceCounterDescriptionKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPerformanceCounterDescriptionFlagBitsKHR indicating the usage
behavior for the counter.

• name is an array of size VK_MAX_DESCRIPTION_SIZE, containing a null-terminated UTF-8 string
specifying the name of the counter.

• category is an array of size VK_MAX_DESCRIPTION_SIZE, containing a null-terminated UTF-8 string
specifying the category of the counter.

• description is an array of size VK_MAX_DESCRIPTION_SIZE, containing a null-terminated UTF-8
string specifying the description of the counter.

Valid Usage (Implicit)

• VUID-VkPerformanceCounterDescriptionKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PERFORMANCE_COUNTER_DESCRIPTION_KHR

• VUID-VkPerformanceCounterDescriptionKHR-pNext-pNext
pNext must be NULL

Bits which can be set in VkPerformanceCounterDescriptionKHR::flags, specifying usage behavior
of a performance counter, are:

// Provided by VK_KHR_performance_query
typedef enum VkPerformanceCounterDescriptionFlagBitsKHR {
 VK_PERFORMANCE_COUNTER_DESCRIPTION_PERFORMANCE_IMPACTING_BIT_KHR = 0x00000001,
 VK_PERFORMANCE_COUNTER_DESCRIPTION_CONCURRENTLY_IMPACTED_BIT_KHR = 0x00000002,
 VK_PERFORMANCE_COUNTER_DESCRIPTION_PERFORMANCE_IMPACTING_KHR =
VK_PERFORMANCE_COUNTER_DESCRIPTION_PERFORMANCE_IMPACTING_BIT_KHR,
 VK_PERFORMANCE_COUNTER_DESCRIPTION_CONCURRENTLY_IMPACTED_KHR =
VK_PERFORMANCE_COUNTER_DESCRIPTION_CONCURRENTLY_IMPACTED_BIT_KHR,

171

} VkPerformanceCounterDescriptionFlagBitsKHR;

• VK_PERFORMANCE_COUNTER_DESCRIPTION_PERFORMANCE_IMPACTING_BIT_KHR specifies that recording the
counter may have a noticeable performance impact.

• VK_PERFORMANCE_COUNTER_DESCRIPTION_CONCURRENTLY_IMPACTED_BIT_KHR specifies that concurrently
recording the counter while other submitted command buffers are running may impact the
accuracy of the recording.

// Provided by VK_KHR_performance_query
typedef VkFlags VkPerformanceCounterDescriptionFlagsKHR;

VkPerformanceCounterDescriptionFlagsKHR is a bitmask type for setting a mask of zero or more
VkPerformanceCounterDescriptionFlagBitsKHR.

5.2. Devices
Device objects represent logical connections to physical devices. Each device exposes a number of
queue families each having one or more queues. All queues in a queue family support the same
operations.

As described in Physical Devices, a Vulkan application will first query for all physical devices in a
system. Each physical device can then be queried for its capabilities, including its queue and queue
family properties. Once an acceptable physical device is identified, an application will create a
corresponding logical device. The created logical device is then the primary interface to the
physical device.

How to enumerate the physical devices in a system and query those physical devices for their
queue family properties is described in the Physical Device Enumeration section above.

A single logical device can be created from multiple physical devices, if those physical devices
belong to the same device group. A device group is a set of physical devices that support accessing
each other’s memory and recording a single command buffer that can be executed on all the
physical devices. Device groups are enumerated by calling vkEnumeratePhysicalDeviceGroups, and
a logical device is created from a subset of the physical devices in a device group by passing the
physical devices through VkDeviceGroupDeviceCreateInfo. For two physical devices to be in the
same device group, they must support identical extensions, features, and properties.

Note

Physical devices in the same device group must be so similar because there are no
rules for how different features/properties would interact. They must return the
same values for nearly every invariant vkGetPhysicalDevice* feature, property,
capability, etc., but could potentially differ for certain queries based on things like
having a different display connected, or a different compositor. The specification
does not attempt to enumerate which state is in each category, because such a list
would quickly become out of date.

172

To retrieve a list of the device groups present in the system, call:

// Provided by VK_VERSION_1_1
VkResult vkEnumeratePhysicalDeviceGroups(
 VkInstance instance,
 uint32_t* pPhysicalDeviceGroupCount,
 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties);

or the equivalent command

// Provided by VK_KHR_device_group_creation
VkResult vkEnumeratePhysicalDeviceGroupsKHR(
 VkInstance instance,
 uint32_t* pPhysicalDeviceGroupCount,
 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties);

• instance is a handle to a Vulkan instance previously created with vkCreateInstance.

• pPhysicalDeviceGroupCount is a pointer to an integer related to the number of device groups
available or queried, as described below.

• pPhysicalDeviceGroupProperties is either NULL or a pointer to an array of
VkPhysicalDeviceGroupProperties structures.

If pPhysicalDeviceGroupProperties is NULL, then the number of device groups available is returned in
pPhysicalDeviceGroupCount. Otherwise, pPhysicalDeviceGroupCount must point to a variable set by the
user to the number of elements in the pPhysicalDeviceGroupProperties array, and on return the
variable is overwritten with the number of structures actually written to
pPhysicalDeviceGroupProperties. If pPhysicalDeviceGroupCount is less than the number of device
groups available, at most pPhysicalDeviceGroupCount structures will be written, and VK_INCOMPLETE
will be returned instead of VK_SUCCESS, to indicate that not all the available device groups were
returned.

Every physical device must be in exactly one device group.

Valid Usage (Implicit)

• VUID-vkEnumeratePhysicalDeviceGroups-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkEnumeratePhysicalDeviceGroups-pPhysicalDeviceGroupCount-parameter
pPhysicalDeviceGroupCount must be a valid pointer to a uint32_t value

• VUID-vkEnumeratePhysicalDeviceGroups-pPhysicalDeviceGroupProperties-parameter
If the value referenced by pPhysicalDeviceGroupCount is not 0, and
pPhysicalDeviceGroupProperties is not NULL, pPhysicalDeviceGroupProperties must be a
valid pointer to an array of pPhysicalDeviceGroupCount VkPhysicalDeviceGroupProperties
structures

173

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

The VkPhysicalDeviceGroupProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceGroupProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t physicalDeviceCount;
 VkPhysicalDevice physicalDevices[VK_MAX_DEVICE_GROUP_SIZE];
 VkBool32 subsetAllocation;
} VkPhysicalDeviceGroupProperties;

or the equivalent

// Provided by VK_KHR_device_group_creation
typedef VkPhysicalDeviceGroupProperties VkPhysicalDeviceGroupPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• physicalDeviceCount is the number of physical devices in the group.

• physicalDevices is an array of VK_MAX_DEVICE_GROUP_SIZE VkPhysicalDevice handles representing
all physical devices in the group. The first physicalDeviceCount elements of the array will be
valid.

• subsetAllocation specifies whether logical devices created from the group support allocating
device memory on a subset of devices, via the deviceMask member of the
VkMemoryAllocateFlagsInfo. If this is VK_FALSE, then all device memory allocations are made
across all physical devices in the group. If physicalDeviceCount is 1, then subsetAllocation must
be VK_FALSE.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceGroupProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES

174

• VUID-VkPhysicalDeviceGroupProperties-pNext-pNext
pNext must be NULL

VK_MAX_DEVICE_GROUP_SIZE is the length of an array containing VkPhysicalDevice handle values
representing all physical devices in a group, as returned in VkPhysicalDeviceGroupProperties
::physicalDevices.

#define VK_MAX_DEVICE_GROUP_SIZE 32U

or the equivalent

#define VK_MAX_DEVICE_GROUP_SIZE_KHR VK_MAX_DEVICE_GROUP_SIZE

5.2.1. Device Creation

Logical devices are represented by VkDevice handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkDevice)

A logical device is created as a connection to a physical device. To create a logical device, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateDevice(
 VkPhysicalDevice physicalDevice,
 const VkDeviceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDevice* pDevice);

• physicalDevice must be one of the device handles returned from a call to
vkEnumeratePhysicalDevices (see Physical Device Enumeration).

• pCreateInfo is a pointer to a VkDeviceCreateInfo structure containing information about how to
create the device.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDevice is a pointer to a handle in which the created VkDevice is returned.

vkCreateDevice verifies that extensions and features requested in the ppEnabledExtensionNames and
pEnabledFeatures members of pCreateInfo, respectively, are supported by the implementation. If any
requested extension is not supported, vkCreateDevice must return VK_ERROR_EXTENSION_NOT_PRESENT.
If any requested feature is not supported, vkCreateDevice must return
VK_ERROR_FEATURE_NOT_PRESENT. Support for extensions can be checked before creating a device by
querying vkEnumerateDeviceExtensionProperties. Support for features can similarly be checked
by querying vkGetPhysicalDeviceFeatures.

175

After verifying and enabling the extensions the VkDevice object is created and returned to the
application.

Multiple logical devices can be created from the same physical device. Logical device creation may
fail due to lack of device-specific resources (in addition to other errors). If that occurs,
vkCreateDevice will return VK_ERROR_TOO_MANY_OBJECTS.

Valid Usage

• VUID-vkCreateDevice-ppEnabledExtensionNames-01387
All required device extensions for each extension in the VkDeviceCreateInfo
::ppEnabledExtensionNames list must also be present in that list

Valid Usage (Implicit)

• VUID-vkCreateDevice-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkCreateDevice-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDeviceCreateInfo structure

• VUID-vkCreateDevice-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDevice-pDevice-parameter
pDevice must be a valid pointer to a VkDevice handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_FEATURE_NOT_PRESENT

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_DEVICE_LOST

The VkDeviceCreateInfo structure is defined as:

176

// Provided by VK_VERSION_1_0
typedef struct VkDeviceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDeviceCreateFlags flags;
 uint32_t queueCreateInfoCount;
 const VkDeviceQueueCreateInfo* pQueueCreateInfos;
 uint32_t enabledLayerCount;
 const char* const* ppEnabledLayerNames;
 uint32_t enabledExtensionCount;
 const char* const* ppEnabledExtensionNames;
 const VkPhysicalDeviceFeatures* pEnabledFeatures;
} VkDeviceCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• queueCreateInfoCount is the unsigned integer size of the pQueueCreateInfos array. Refer to the
Queue Creation section below for further details.

• pQueueCreateInfos is a pointer to an array of VkDeviceQueueCreateInfo structures describing the
queues that are requested to be created along with the logical device. Refer to the Queue
Creation section below for further details.

• enabledLayerCount is deprecated and ignored.

• ppEnabledLayerNames is deprecated and ignored. See Device Layer Deprecation.

• enabledExtensionCount is the number of device extensions to enable.

• ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8
strings containing the names of extensions to enable for the created device. See the Extensions
section for further details.

• pEnabledFeatures is NULL or a pointer to a VkPhysicalDeviceFeatures structure containing
boolean indicators of all the features to be enabled. Refer to the Features section for further
details.

Valid Usage

• VUID-VkDeviceCreateInfo-queueFamilyIndex-02802
The queueFamilyIndex member of each element of pQueueCreateInfos must be unique
within pQueueCreateInfos , except that two members can share the same queueFamilyIndex
if one describes protected-capable queues and one describes queues that are not
protected-capable

• VUID-VkDeviceCreateInfo-pQueueCreateInfos-06755
If multiple elements of pQueueCreateInfos share the same queueFamilyIndex, the sum of
their queueCount members must be less than or equal to the queueCount member of the
VkQueueFamilyProperties structure, as returned by

177

vkGetPhysicalDeviceQueueFamilyProperties in the
pQueueFamilyProperties[queueFamilyIndex]

• VUID-VkDeviceCreateInfo-pQueueCreateInfos-06654
If multiple elements of pQueueCreateInfos share the same queueFamilyIndex, then all of
such elements must have the same global priority level, which can be specified explicitly
by the including a VkDeviceQueueGlobalPriorityCreateInfoKHR structure in the pNext
chain, or by the implicit default value

• VUID-VkDeviceCreateInfo-pNext-00373
If the pNext chain includes a VkPhysicalDeviceFeatures2 structure, then pEnabledFeatures
must be NULL

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-01840
If VkPhysicalDeviceProperties::apiVersion advertises Vulkan 1.1 or later,
ppEnabledExtensionNames must not contain VK_AMD_negative_viewport_height

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-00374
ppEnabledExtensionNames must not contain both VK_KHR_maintenance1 and
VK_AMD_negative_viewport_height

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-03328
ppEnabledExtensionNames must not contain both VK_KHR_buffer_device_address and
VK_EXT_buffer_device_address

• VUID-VkDeviceCreateInfo-pNext-04748
If the pNext chain includes a VkPhysicalDeviceVulkan12Features structure and
VkPhysicalDeviceVulkan12Features::bufferDeviceAddress is VK_TRUE,
ppEnabledExtensionNames must not contain VK_EXT_buffer_device_address

• VUID-VkDeviceCreateInfo-pNext-02829
If the pNext chain includes a VkPhysicalDeviceVulkan11Features structure, then it must
not include a VkPhysicalDevice16BitStorageFeatures,
VkPhysicalDeviceMultiviewFeatures, VkPhysicalDeviceVariablePointersFeatures,
VkPhysicalDeviceProtectedMemoryFeatures,
VkPhysicalDeviceSamplerYcbcrConversionFeatures, or
VkPhysicalDeviceShaderDrawParametersFeatures structure

• VUID-VkDeviceCreateInfo-pNext-02830
If the pNext chain includes a VkPhysicalDeviceVulkan12Features structure, then it must
not include a VkPhysicalDevice8BitStorageFeatures,
VkPhysicalDeviceShaderAtomicInt64Features,
VkPhysicalDeviceShaderFloat16Int8Features,
VkPhysicalDeviceDescriptorIndexingFeatures,
VkPhysicalDeviceScalarBlockLayoutFeatures,
VkPhysicalDeviceImagelessFramebufferFeatures,
VkPhysicalDeviceUniformBufferStandardLayoutFeatures,
VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures,
VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures,
VkPhysicalDeviceHostQueryResetFeatures,
VkPhysicalDeviceTimelineSemaphoreFeatures,
VkPhysicalDeviceBufferDeviceAddressFeatures, or
VkPhysicalDeviceVulkanMemoryModelFeatures structure

178

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-04476
If ppEnabledExtensionNames contains "VK_KHR_shader_draw_parameters" and the pNext chain
includes a VkPhysicalDeviceVulkan11Features structure, then
VkPhysicalDeviceVulkan11Features::shaderDrawParameters must be VK_TRUE

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-02831
If ppEnabledExtensionNames contains "VK_KHR_draw_indirect_count" and the pNext chain
includes a VkPhysicalDeviceVulkan12Features structure, then
VkPhysicalDeviceVulkan12Features::drawIndirectCount must be VK_TRUE

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-02832
If ppEnabledExtensionNames contains "VK_KHR_sampler_mirror_clamp_to_edge" and the pNext
chain includes a VkPhysicalDeviceVulkan12Features structure, then
VkPhysicalDeviceVulkan12Features::samplerMirrorClampToEdge must be VK_TRUE

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-02833
If ppEnabledExtensionNames contains "VK_EXT_descriptor_indexing" and the pNext chain
includes a VkPhysicalDeviceVulkan12Features structure, then
VkPhysicalDeviceVulkan12Features::descriptorIndexing must be VK_TRUE

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-02834
If ppEnabledExtensionNames contains "VK_EXT_sampler_filter_minmax" and the pNext chain
includes a VkPhysicalDeviceVulkan12Features structure, then
VkPhysicalDeviceVulkan12Features::samplerFilterMinmax must be VK_TRUE

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-02835
If ppEnabledExtensionNames contains "VK_EXT_shader_viewport_index_layer" and the pNext
chain includes a VkPhysicalDeviceVulkan12Features structure, then
VkPhysicalDeviceVulkan12Features::shaderOutputViewportIndex and
VkPhysicalDeviceVulkan12Features::shaderOutputLayer must both be VK_TRUE

• VUID-VkDeviceCreateInfo-pNext-06532
If the pNext chain includes a VkPhysicalDeviceVulkan13Features structure, then it must
not include a VkPhysicalDeviceDynamicRenderingFeatures,
VkPhysicalDeviceImageRobustnessFeatures,
VkPhysicalDeviceInlineUniformBlockFeatures, VkPhysicalDeviceMaintenance4Features,
VkPhysicalDevicePipelineCreationCacheControlFeatures,
VkPhysicalDevicePrivateDataFeatures,
VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures,
VkPhysicalDeviceShaderIntegerDotProductFeatures,
VkPhysicalDeviceShaderTerminateInvocationFeatures,
VkPhysicalDeviceSubgroupSizeControlFeatures,
VkPhysicalDeviceSynchronization2Features,
VkPhysicalDeviceTextureCompressionASTCHDRFeatures, or
VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures structure

• VUID-VkDeviceCreateInfo-pProperties-04451
If the VK_KHR_portability_subset extension is included in pProperties of
vkEnumerateDeviceExtensionProperties, ppEnabledExtensionNames must include
"VK_KHR_portability_subset"

• VUID-VkDeviceCreateInfo-shadingRateImage-04478
If the shadingRateImage feature is enabled, the pipelineFragmentShadingRate feature must

179

not be enabled

• VUID-VkDeviceCreateInfo-shadingRateImage-04479
If the shadingRateImage feature is enabled, the primitiveFragmentShadingRate feature must
not be enabled

• VUID-VkDeviceCreateInfo-shadingRateImage-04480
If the shadingRateImage feature is enabled, the attachmentFragmentShadingRate feature must
not be enabled

• VUID-VkDeviceCreateInfo-fragmentDensityMap-04481
If the fragmentDensityMap feature is enabled, the pipelineFragmentShadingRate feature must
not be enabled

• VUID-VkDeviceCreateInfo-fragmentDensityMap-04482
If the fragmentDensityMap feature is enabled, the primitiveFragmentShadingRate feature
must not be enabled

• VUID-VkDeviceCreateInfo-fragmentDensityMap-04483
If the fragmentDensityMap feature is enabled, the attachmentFragmentShadingRate feature
must not be enabled

• VUID-VkDeviceCreateInfo-None-04896
If sparseImageInt64Atomics is enabled, shaderImageInt64Atomics must be enabled

• VUID-VkDeviceCreateInfo-None-04897
If sparseImageFloat32Atomics is enabled, shaderImageFloat32Atomics must be enabled

• VUID-VkDeviceCreateInfo-None-04898
If sparseImageFloat32AtomicAdd is enabled, shaderImageFloat32AtomicAdd must be enabled

• VUID-VkDeviceCreateInfo-sparseImageFloat32AtomicMinMax-04975
If sparseImageFloat32AtomicMinMax is enabled, shaderImageFloat32AtomicMinMax must be
enabled

• VUID-VkDeviceCreateInfo-None-08095
If descriptorBuffer is enabled, ppEnabledExtensionNames must not contain
VK_AMD_shader_fragment_mask

• VUID-VkDeviceCreateInfo-pNext-09396
If the pNext chain includes a VkDeviceQueueShaderCoreControlCreateInfoARM structure,
then it must not be included in the pNext chain of any of the VkDeviceQueueCreateInfo
structures in pQueueCreateInfos.

• VUID-VkDeviceCreateInfo-pNext-09397
If the pNext chain includes a VkDeviceQueueShaderCoreControlCreateInfoARM structure
then VkPhysicalDeviceSchedulingControlsPropertiesARM::schedulingControlsFlags must
contain VK_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_SHADER_CORE_COUNT_ARM.

Valid Usage (Implicit)

• VUID-VkDeviceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO

• VUID-VkDeviceCreateInfo-pNext-pNext

180

Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceDeviceMemoryReportCreateInfoEXT,
VkDeviceDiagnosticsConfigCreateInfoNV, VkDeviceGroupDeviceCreateInfo,
VkDeviceMemoryOverallocationCreateInfoAMD, VkDevicePrivateDataCreateInfo,
VkDeviceQueueShaderCoreControlCreateInfoARM,
VkPhysicalDevice16BitStorageFeatures, VkPhysicalDevice4444FormatsFeaturesEXT,
VkPhysicalDevice8BitStorageFeatures, VkPhysicalDeviceASTCDecodeFeaturesEXT,
VkPhysicalDeviceAccelerationStructureFeaturesKHR,
VkPhysicalDeviceAddressBindingReportFeaturesEXT,
VkPhysicalDeviceAmigoProfilingFeaturesSEC,
VkPhysicalDeviceAttachmentFeedbackLoopDynamicStateFeaturesEXT,
VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT,
VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT,
VkPhysicalDeviceBorderColorSwizzleFeaturesEXT,
VkPhysicalDeviceBufferDeviceAddressFeatures,
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT,
VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI,
VkPhysicalDeviceCoherentMemoryFeaturesAMD,
VkPhysicalDeviceColorWriteEnableFeaturesEXT,
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV,
VkPhysicalDeviceConditionalRenderingFeaturesEXT,
VkPhysicalDeviceCooperativeMatrixFeaturesKHR,
VkPhysicalDeviceCooperativeMatrixFeaturesNV,
VkPhysicalDeviceCopyMemoryIndirectFeaturesNV,
VkPhysicalDeviceCornerSampledImageFeaturesNV,
VkPhysicalDeviceCoverageReductionModeFeaturesNV,
VkPhysicalDeviceCubicClampFeaturesQCOM,
VkPhysicalDeviceCubicWeightsFeaturesQCOM,
VkPhysicalDeviceCudaKernelLaunchFeaturesNV,
VkPhysicalDeviceCustomBorderColorFeaturesEXT,
VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV,
VkPhysicalDeviceDepthBiasControlFeaturesEXT,
VkPhysicalDeviceDepthClampZeroOneFeaturesEXT,
VkPhysicalDeviceDepthClipControlFeaturesEXT,
VkPhysicalDeviceDepthClipEnableFeaturesEXT,
VkPhysicalDeviceDescriptorBufferFeaturesEXT,
VkPhysicalDeviceDescriptorIndexingFeatures,
VkPhysicalDeviceDescriptorPoolOverallocationFeaturesNV,
VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE,
VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV,
VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV,
VkPhysicalDeviceDeviceMemoryReportFeaturesEXT,
VkPhysicalDeviceDiagnosticsConfigFeaturesNV,
VkPhysicalDeviceDisplacementMicromapFeaturesNV,
VkPhysicalDeviceDynamicRenderingFeatures,
VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR,
VkPhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT,
VkPhysicalDeviceExclusiveScissorFeaturesNV,

181

VkPhysicalDeviceExtendedDynamicState2FeaturesEXT,
VkPhysicalDeviceExtendedDynamicState3FeaturesEXT,
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT,
VkPhysicalDeviceExtendedSparseAddressSpaceFeaturesNV,
VkPhysicalDeviceExternalFormatResolveFeaturesANDROID,
VkPhysicalDeviceExternalMemoryRDMAFeaturesNV,
VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX,
VkPhysicalDeviceFaultFeaturesEXT, VkPhysicalDeviceFeatures2,
VkPhysicalDeviceFragmentDensityMap2FeaturesEXT,
VkPhysicalDeviceFragmentDensityMapFeaturesEXT,
VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM,
VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR,
VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT,
VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV,
VkPhysicalDeviceFragmentShadingRateFeaturesKHR,
VkPhysicalDeviceFrameBoundaryFeaturesEXT,
VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR,
VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT,
VkPhysicalDeviceHostImageCopyFeaturesEXT, VkPhysicalDeviceHostQueryResetFeatures,
VkPhysicalDeviceImage2DViewOf3DFeaturesEXT,
VkPhysicalDeviceImageCompressionControlFeaturesEXT,
VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT,
VkPhysicalDeviceImageProcessing2FeaturesQCOM,
VkPhysicalDeviceImageProcessingFeaturesQCOM,
VkPhysicalDeviceImageRobustnessFeatures,
VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT,
VkPhysicalDeviceImageViewMinLodFeaturesEXT,
VkPhysicalDeviceImagelessFramebufferFeatures,
VkPhysicalDeviceIndexTypeUint8FeaturesKHR,
VkPhysicalDeviceInheritedViewportScissorFeaturesNV,
VkPhysicalDeviceInlineUniformBlockFeatures,
VkPhysicalDeviceInvocationMaskFeaturesHUAWEI,
VkPhysicalDeviceLegacyDitheringFeaturesEXT,
VkPhysicalDeviceLineRasterizationFeaturesKHR,
VkPhysicalDeviceLinearColorAttachmentFeaturesNV,
VkPhysicalDeviceMaintenance4Features, VkPhysicalDeviceMaintenance5FeaturesKHR,
VkPhysicalDeviceMaintenance6FeaturesKHR,
VkPhysicalDeviceMapMemoryPlacedFeaturesEXT,
VkPhysicalDeviceMemoryDecompressionFeaturesNV,
VkPhysicalDeviceMemoryPriorityFeaturesEXT,
VkPhysicalDeviceMeshShaderFeaturesEXT, VkPhysicalDeviceMeshShaderFeaturesNV,
VkPhysicalDeviceMultiDrawFeaturesEXT,
VkPhysicalDeviceMultisampledRenderToSingleSampledFeaturesEXT,
VkPhysicalDeviceMultiviewFeatures,
VkPhysicalDeviceMultiviewPerViewRenderAreasFeaturesQCOM,
VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM,
VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT,
VkPhysicalDeviceNestedCommandBufferFeaturesEXT,

182

VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT,
VkPhysicalDeviceOpacityMicromapFeaturesEXT,
VkPhysicalDeviceOpticalFlowFeaturesNV,
VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT,
VkPhysicalDevicePerStageDescriptorSetFeaturesNV,
VkPhysicalDevicePerformanceQueryFeaturesKHR,
VkPhysicalDevicePipelineCreationCacheControlFeatures,
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR,
VkPhysicalDevicePipelineLibraryGroupHandlesFeaturesEXT,
VkPhysicalDevicePipelinePropertiesFeaturesEXT,
VkPhysicalDevicePipelineProtectedAccessFeaturesEXT,
VkPhysicalDevicePipelineRobustnessFeaturesEXT,
VkPhysicalDevicePortabilitySubsetFeaturesKHR,
VkPhysicalDevicePresentBarrierFeaturesNV, VkPhysicalDevicePresentIdFeaturesKHR,
VkPhysicalDevicePresentWaitFeaturesKHR,
VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT,
VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT,
VkPhysicalDevicePrivateDataFeatures, VkPhysicalDeviceProtectedMemoryFeatures,
VkPhysicalDeviceProvokingVertexFeaturesEXT,
VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT,
VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT,
VkPhysicalDeviceRawAccessChainsFeaturesNV, VkPhysicalDeviceRayQueryFeaturesKHR,
VkPhysicalDeviceRayTracingInvocationReorderFeaturesNV,
VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR,
VkPhysicalDeviceRayTracingMotionBlurFeaturesNV,
VkPhysicalDeviceRayTracingPipelineFeaturesKHR,
VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR,
VkPhysicalDeviceRayTracingValidationFeaturesNV,
VkPhysicalDeviceRelaxedLineRasterizationFeaturesIMG,
VkPhysicalDeviceRenderPassStripedFeaturesARM,
VkPhysicalDeviceRepresentativeFragmentTestFeaturesNV,
VkPhysicalDeviceRobustness2FeaturesEXT,
VkPhysicalDeviceSamplerYcbcrConversionFeatures,
VkPhysicalDeviceScalarBlockLayoutFeatures,
VkPhysicalDeviceSchedulingControlsFeaturesARM,
VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures,
VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV,
VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT,
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT,
VkPhysicalDeviceShaderAtomicInt64Features,
VkPhysicalDeviceShaderClockFeaturesKHR,
VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM,
VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures,
VkPhysicalDeviceShaderDrawParametersFeatures,
VkPhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD,
VkPhysicalDeviceShaderEnqueueFeaturesAMDX,
VkPhysicalDeviceShaderExpectAssumeFeaturesKHR,
VkPhysicalDeviceShaderFloat16Int8Features,

183

VkPhysicalDeviceShaderFloatControls2FeaturesKHR,
VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT,
VkPhysicalDeviceShaderImageFootprintFeaturesNV,
VkPhysicalDeviceShaderIntegerDotProductFeatures,
VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL,
VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR,
VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT,
VkPhysicalDeviceShaderObjectFeaturesEXT,
VkPhysicalDeviceShaderQuadControlFeaturesKHR,
VkPhysicalDeviceShaderSMBuiltinsFeaturesNV,
VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures,
VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR,
VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR,
VkPhysicalDeviceShaderTerminateInvocationFeatures,
VkPhysicalDeviceShaderTileImageFeaturesEXT,
VkPhysicalDeviceShadingRateImageFeaturesNV,
VkPhysicalDeviceSubgroupSizeControlFeatures,
VkPhysicalDeviceSubpassMergeFeedbackFeaturesEXT,
VkPhysicalDeviceSubpassShadingFeaturesHUAWEI,
VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT,
VkPhysicalDeviceSynchronization2Features,
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT,
VkPhysicalDeviceTextureCompressionASTCHDRFeatures,
VkPhysicalDeviceTilePropertiesFeaturesQCOM,
VkPhysicalDeviceTimelineSemaphoreFeatures,
VkPhysicalDeviceTransformFeedbackFeaturesEXT,
VkPhysicalDeviceUniformBufferStandardLayoutFeatures,
VkPhysicalDeviceVariablePointersFeatures,
VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR,
VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT,
VkPhysicalDeviceVideoMaintenance1FeaturesKHR, VkPhysicalDeviceVulkan11Features,
VkPhysicalDeviceVulkan12Features, VkPhysicalDeviceVulkan13Features,
VkPhysicalDeviceVulkanMemoryModelFeatures,
VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR,
VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT,
VkPhysicalDeviceYcbcrDegammaFeaturesQCOM,
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT, or
VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures

• VUID-VkDeviceCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkDeviceDeviceMemoryReportCreateInfoEXT or
VkDevicePrivateDataCreateInfo

• VUID-VkDeviceCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkDeviceCreateInfo-pQueueCreateInfos-parameter
pQueueCreateInfos must be a valid pointer to an array of queueCreateInfoCount valid

184

VkDeviceQueueCreateInfo structures

• VUID-VkDeviceCreateInfo-ppEnabledLayerNames-parameter
If enabledLayerCount is not 0, ppEnabledLayerNames must be a valid pointer to an array of
enabledLayerCount null-terminated UTF-8 strings

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-parameter
If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a valid pointer to an
array of enabledExtensionCount null-terminated UTF-8 strings

• VUID-VkDeviceCreateInfo-pEnabledFeatures-parameter
If pEnabledFeatures is not NULL, pEnabledFeatures must be a valid pointer to a valid
VkPhysicalDeviceFeatures structure

• VUID-VkDeviceCreateInfo-queueCreateInfoCount-arraylength
queueCreateInfoCount must be greater than 0

// Provided by VK_VERSION_1_0
typedef VkFlags VkDeviceCreateFlags;

VkDeviceCreateFlags is a bitmask type for setting a mask, but is currently reserved for future use.

A logical device can be created that connects to one or more physical devices by adding a
VkDeviceGroupDeviceCreateInfo structure to the pNext chain of VkDeviceCreateInfo. The
VkDeviceGroupDeviceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupDeviceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t physicalDeviceCount;
 const VkPhysicalDevice* pPhysicalDevices;
} VkDeviceGroupDeviceCreateInfo;

or the equivalent

// Provided by VK_KHR_device_group_creation
typedef VkDeviceGroupDeviceCreateInfo VkDeviceGroupDeviceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• physicalDeviceCount is the number of elements in the pPhysicalDevices array.

• pPhysicalDevices is a pointer to an array of physical device handles belonging to the same
device group.

The elements of the pPhysicalDevices array are an ordered list of the physical devices that the
logical device represents. These must be a subset of a single device group, and need not be in the

185

same order as they were enumerated. The order of the physical devices in the pPhysicalDevices
array determines the device index of each physical device, with element i being assigned a device
index of i. Certain commands and structures refer to one or more physical devices by using device
indices or device masks formed using device indices.

A logical device created without using VkDeviceGroupDeviceCreateInfo, or with physicalDeviceCount
equal to zero, is equivalent to a physicalDeviceCount of one and pPhysicalDevices pointing to the
physicalDevice parameter to vkCreateDevice. In particular, the device index of that physical device
is zero.

Valid Usage

• VUID-VkDeviceGroupDeviceCreateInfo-pPhysicalDevices-00375
Each element of pPhysicalDevices must be unique

• VUID-VkDeviceGroupDeviceCreateInfo-pPhysicalDevices-00376
All elements of pPhysicalDevices must be in the same device group as enumerated by
vkEnumeratePhysicalDeviceGroups

• VUID-VkDeviceGroupDeviceCreateInfo-physicalDeviceCount-00377
If physicalDeviceCount is not 0, the physicalDevice parameter of vkCreateDevice must be
an element of pPhysicalDevices

Valid Usage (Implicit)

• VUID-VkDeviceGroupDeviceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO

• VUID-VkDeviceGroupDeviceCreateInfo-pPhysicalDevices-parameter
If physicalDeviceCount is not 0, pPhysicalDevices must be a valid pointer to an array of
physicalDeviceCount valid VkPhysicalDevice handles

To specify whether device memory allocation is allowed beyond the size reported by
VkPhysicalDeviceMemoryProperties, add a VkDeviceMemoryOverallocationCreateInfoAMD
structure to the pNext chain of the VkDeviceCreateInfo structure. If this structure is not specified, it
is as if the VK_MEMORY_OVERALLOCATION_BEHAVIOR_DEFAULT_AMD value is used.

// Provided by VK_AMD_memory_overallocation_behavior
typedef struct VkDeviceMemoryOverallocationCreateInfoAMD {
 VkStructureType sType;
 const void* pNext;
 VkMemoryOverallocationBehaviorAMD overallocationBehavior;
} VkDeviceMemoryOverallocationCreateInfoAMD;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

186

• overallocationBehavior is the desired overallocation behavior.

Valid Usage (Implicit)

• VUID-VkDeviceMemoryOverallocationCreateInfoAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD

• VUID-VkDeviceMemoryOverallocationCreateInfoAMD-overallocationBehavior-parameter
overallocationBehavior must be a valid VkMemoryOverallocationBehaviorAMD value

Possible values for VkDeviceMemoryOverallocationCreateInfoAMD::overallocationBehavior
include:

// Provided by VK_AMD_memory_overallocation_behavior
typedef enum VkMemoryOverallocationBehaviorAMD {
 VK_MEMORY_OVERALLOCATION_BEHAVIOR_DEFAULT_AMD = 0,
 VK_MEMORY_OVERALLOCATION_BEHAVIOR_ALLOWED_AMD = 1,
 VK_MEMORY_OVERALLOCATION_BEHAVIOR_DISALLOWED_AMD = 2,
} VkMemoryOverallocationBehaviorAMD;

• VK_MEMORY_OVERALLOCATION_BEHAVIOR_DEFAULT_AMD lets the implementation decide if overallocation
is allowed.

• VK_MEMORY_OVERALLOCATION_BEHAVIOR_ALLOWED_AMD specifies overallocation is allowed if platform
permits.

• VK_MEMORY_OVERALLOCATION_BEHAVIOR_DISALLOWED_AMD specifies the application is not allowed to
allocate device memory beyond the heap sizes reported by VkPhysicalDeviceMemoryProperties.
Allocations that are not explicitly made by the application within the scope of the Vulkan
instance are not accounted for.

When using the Nsight™ Aftermath SDK, to configure how device crash dumps are created, add a
VkDeviceDiagnosticsConfigCreateInfoNV structure to the pNext chain of the VkDeviceCreateInfo
structure.

// Provided by VK_NV_device_diagnostics_config
typedef struct VkDeviceDiagnosticsConfigCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkDeviceDiagnosticsConfigFlagsNV flags;
} VkDeviceDiagnosticsConfigCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkDeviceDiagnosticsConfigFlagBitsNV specifying additional parameters for
configuring diagnostic tools.

187

Valid Usage (Implicit)

• VUID-VkDeviceDiagnosticsConfigCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_DIAGNOSTICS_CONFIG_CREATE_INFO_NV

• VUID-VkDeviceDiagnosticsConfigCreateInfoNV-flags-parameter
flags must be a valid combination of VkDeviceDiagnosticsConfigFlagBitsNV values

Bits which can be set in VkDeviceDiagnosticsConfigCreateInfoNV::flags include:

// Provided by VK_NV_device_diagnostics_config
typedef enum VkDeviceDiagnosticsConfigFlagBitsNV {
 VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_SHADER_DEBUG_INFO_BIT_NV = 0x00000001,
 VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_RESOURCE_TRACKING_BIT_NV = 0x00000002,
 VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_AUTOMATIC_CHECKPOINTS_BIT_NV = 0x00000004,
 VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_SHADER_ERROR_REPORTING_BIT_NV = 0x00000008,
} VkDeviceDiagnosticsConfigFlagBitsNV;

• VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_SHADER_DEBUG_INFO_BIT_NV enables the generation of debug
information for shaders.

• VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_RESOURCE_TRACKING_BIT_NV enables driver side tracking of
resources (images, buffers, etc.) used to augment the device fault information.

• VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_AUTOMATIC_CHECKPOINTS_BIT_NV enables automatic insertion
of diagnostic checkpoints for draw calls, dispatches, trace rays, and copies. The CPU call stack at
the time of the command will be associated as the marker data for the automatically inserted
checkpoints.

• VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_SHADER_ERROR_REPORTING_BIT_NV enables shader error
reporting.

// Provided by VK_NV_device_diagnostics_config
typedef VkFlags VkDeviceDiagnosticsConfigFlagsNV;

VkDeviceDiagnosticsConfigFlagsNV is a bitmask type for setting a mask of zero or more
VkDeviceDiagnosticsConfigFlagBitsNV.

To register callbacks for underlying device memory events of type
VkDeviceMemoryReportEventTypeEXT, add one or multiple
VkDeviceDeviceMemoryReportCreateInfoEXT structures to the pNext chain of the
VkDeviceCreateInfo structure.

// Provided by VK_EXT_device_memory_report
typedef struct VkDeviceDeviceMemoryReportCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemoryReportFlagsEXT flags;

188

 PFN_vkDeviceMemoryReportCallbackEXT pfnUserCallback;
 void* pUserData;
} VkDeviceDeviceMemoryReportCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is 0 and reserved for future use.

• pfnUserCallback is the application callback function to call.

• pUserData is user data to be passed to the callback.

The callback may be called from multiple threads simultaneously.

The callback must be called only once by the implementation when a
VkDeviceMemoryReportEventTypeEXT event occurs.

Note

The callback could be called from a background thread other than the thread
calling the Vulkan commands.

Valid Usage (Implicit)

• VUID-VkDeviceDeviceMemoryReportCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_DEVICE_MEMORY_REPORT_CREATE_INFO_EXT

• VUID-VkDeviceDeviceMemoryReportCreateInfoEXT-flags-zerobitmask
flags must be 0

• VUID-VkDeviceDeviceMemoryReportCreateInfoEXT-pfnUserCallback-parameter
pfnUserCallback must be a valid PFN_vkDeviceMemoryReportCallbackEXT value

• VUID-VkDeviceDeviceMemoryReportCreateInfoEXT-pUserData-parameter
pUserData must be a pointer value

The prototype for the VkDeviceDeviceMemoryReportCreateInfoEXT::pfnUserCallback function
implemented by the application is:

// Provided by VK_EXT_device_memory_report
typedef void (VKAPI_PTR *PFN_vkDeviceMemoryReportCallbackEXT)(
 const VkDeviceMemoryReportCallbackDataEXT* pCallbackData,
 void* pUserData);

• pCallbackData contains all the callback related data in the
VkDeviceMemoryReportCallbackDataEXT structure.

• pUserData is the user data provided when the VkDeviceDeviceMemoryReportCreateInfoEXT was
created.

189

The callback must not make calls to any Vulkan commands.

The definition of VkDeviceMemoryReportCallbackDataEXT is:

// Provided by VK_EXT_device_memory_report
typedef struct VkDeviceMemoryReportCallbackDataEXT {
 VkStructureType sType;
 void* pNext;
 VkDeviceMemoryReportFlagsEXT flags;
 VkDeviceMemoryReportEventTypeEXT type;
 uint64_t memoryObjectId;
 VkDeviceSize size;
 VkObjectType objectType;
 uint64_t objectHandle;
 uint32_t heapIndex;
} VkDeviceMemoryReportCallbackDataEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is 0 and reserved for future use.

• type is a VkDeviceMemoryReportEventTypeEXT type specifying the type of event reported in
this VkDeviceMemoryReportCallbackDataEXT structure.

• memoryObjectId is the unique id for the underlying memory object as described below.

• size is the size of the memory object in bytes. If type is
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATE_EXT,
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_IMPORT_EXT or
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATION_FAILED_EXT, size is a valid VkDeviceSize value.
Otherwise, size is undefined.

• objectType is a VkObjectType value specifying the type of the object associated with this device
memory report event. If type is VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATE_EXT,
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_FREE_EXT, VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_IMPORT_EXT,
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_UNIMPORT_EXT or
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATION_FAILED_EXT, objectType is a valid VkObjectType
enum. Otherwise, objectType is undefined.

• objectHandle is the object this device memory report event is attributed to. If type is
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATE_EXT, VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_FREE_EXT,
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_IMPORT_EXT or
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_UNIMPORT_EXT, objectHandle is a valid Vulkan handle of the
type associated with objectType as defined in the VkObjectType and Vulkan Handle Relationship
table. Otherwise, objectHandle is undefined.

• heapIndex describes which memory heap this device memory allocation is made from. If type is
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATE_EXT or
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATION_FAILED_EXT, heapIndex corresponds to one of the
valid heaps from the VkPhysicalDeviceMemoryProperties structure. Otherwise, heapIndex is
undefined.

190

memoryObjectId is used to avoid double-counting on the same memory object.

If an internally-allocated device memory object or a VkDeviceMemory cannot be exported,
memoryObjectId must be unique in the VkDevice.

If an internally-allocated device memory object or a VkDeviceMemory supports being exported,
memoryObjectId must be unique system wide.

If an internal device memory object or a VkDeviceMemory is backed by an imported external
memory object, memoryObjectId must be unique system wide.

Implementor’s Note

If the heap backing an internally-allocated device memory cannot be used to back
VkDeviceMemory, implementations can advertise that heap with no types.

Note

This structure should only be considered valid during the lifetime of the triggered
callback.

For VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATE_EXT and
VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_IMPORT_EXT events, objectHandle usually will
not yet exist when the application or tool receives the callback. objectHandle will
only exist when the create or allocate call that triggered the event returns, and if
the allocation or import ends up failing objectHandle will not ever exist.

Valid Usage (Implicit)

• VUID-VkDeviceMemoryReportCallbackDataEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_MEMORY_REPORT_CALLBACK_DATA_EXT

• VUID-VkDeviceMemoryReportCallbackDataEXT-pNext-pNext
pNext must be NULL

// Provided by VK_EXT_device_memory_report
typedef VkFlags VkDeviceMemoryReportFlagsEXT;

VkDeviceMemoryReportFlagsEXT is a bitmask type for setting a mask, but is currently reserved for
future use.

Possible values of VkDeviceMemoryReportCallbackDataEXT::type, specifying event types which
cause the device driver to call the callback, are:

// Provided by VK_EXT_device_memory_report
typedef enum VkDeviceMemoryReportEventTypeEXT {
 VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATE_EXT = 0,

191

 VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_FREE_EXT = 1,
 VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_IMPORT_EXT = 2,
 VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_UNIMPORT_EXT = 3,
 VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATION_FAILED_EXT = 4,
} VkDeviceMemoryReportEventTypeEXT;

• VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATE_EXT specifies this event corresponds to the
allocation of an internal device memory object or a VkDeviceMemory.

• VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_FREE_EXT specifies this event corresponds to the
deallocation of an internally-allocated device memory object or a VkDeviceMemory.

• VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_IMPORT_EXT specifies this event corresponds to the import of
an external memory object.

• VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_UNIMPORT_EXT specifies this event is the release of an
imported external memory object.

• VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATION_FAILED_EXT specifies this event corresponds to
the failed allocation of an internal device memory object or a VkDeviceMemory.

To reserve private data storage slots, add a VkDevicePrivateDataCreateInfo structure to the pNext
chain of the VkDeviceCreateInfo structure. Reserving slots in this manner is not strictly necessary,
but doing so may improve performance.

// Provided by VK_VERSION_1_3
typedef struct VkDevicePrivateDataCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t privateDataSlotRequestCount;
} VkDevicePrivateDataCreateInfo;

or the equivalent

// Provided by VK_EXT_private_data
typedef VkDevicePrivateDataCreateInfo VkDevicePrivateDataCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• privateDataSlotRequestCount is the amount of slots to reserve.

Valid Usage (Implicit)

• VUID-VkDevicePrivateDataCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO

The number of shader cores used by all the queues of a device can be controlled by adding a

192

VkDeviceQueueShaderCoreControlCreateInfoARM structure to the pNext chain of the VkDeviceCreateInfo
structure.

5.2.2. Device Use

The following is a high-level list of VkDevice uses along with references on where to find more
information:

• Creation of queues. See the Queues section below for further details.

• Creation and tracking of various synchronization constructs. See Synchronization and Cache
Control for further details.

• Allocating, freeing, and managing memory. See Memory Allocation and Resource Creation for
further details.

• Creation and destruction of command buffers and command buffer pools. See Command
Buffers for further details.

• Creation, destruction, and management of graphics state. See Pipelines and Resource
Descriptors, among others, for further details.

5.2.3. Lost Device

A logical device may become lost for a number of implementation-specific reasons, indicating that
pending and future command execution may fail and cause resources and backing memory to
become undefined.

Note

Typical reasons for device loss will include things like execution timing out (to
prevent denial of service), power management events, platform resource
management, implementation errors.

Applications not adhering to valid usage may also result in device loss being
reported, however this is not guaranteed. Even if device loss is reported, the
system may be in an unrecoverable state, and further usage of the API is still
considered invalid.

When this happens, certain commands will return VK_ERROR_DEVICE_LOST. After any such event, the
logical device is considered lost. It is not possible to reset the logical device to a non-lost state,
however the lost state is specific to a logical device (VkDevice), and the corresponding physical
device (VkPhysicalDevice) may be otherwise unaffected.

In some cases, the physical device may also be lost, and attempting to create a new logical device
will fail, returning VK_ERROR_DEVICE_LOST. This is usually indicative of a problem with the underlying
implementation, or its connection to the host. If the physical device has not been lost, and a new
logical device is successfully created from that physical device, it must be in the non-lost state.

Note

Whilst logical device loss may be recoverable, in the case of physical device loss, it
is unlikely that an application will be able to recover unless additional, unaffected

193

physical devices exist on the system. The error is largely informational and
intended only to inform the user that a platform issue has occurred, and should be
investigated further. For example, underlying hardware may have developed a
fault or become physically disconnected from the rest of the system. In many
cases, physical device loss may cause other more serious issues such as the
operating system crashing; in which case it may not be reported via the Vulkan
API.

When a device is lost, its child objects are not implicitly destroyed and their handles are still valid.
Those objects must still be destroyed before their parents or the device can be destroyed (see the
Object Lifetime section). The host address space corresponding to device memory mapped using
vkMapMemory is still valid, and host memory accesses to these mapped regions are still valid, but
the contents are undefined. It is still legal to call any API command on the device and child objects.

Once a device is lost, command execution may fail, and certain commands that return a VkResult
may return VK_ERROR_DEVICE_LOST. These commands can be identified by the inclusion of
VK_ERROR_DEVICE_LOST in the Return Codes section for each command. Commands that do not allow
runtime errors must still operate correctly for valid usage and, if applicable, return valid data.

Commands that wait indefinitely for device execution (namely vkDeviceWaitIdle, vkQueueWaitIdle,
vkWaitForFences or vkAcquireNextImageKHR with a maximum timeout, and
vkGetQueryPoolResults with the VK_QUERY_RESULT_WAIT_BIT bit set in flags) must return in finite
time even in the case of a lost device, and return either VK_SUCCESS or VK_ERROR_DEVICE_LOST. For any
command that may return VK_ERROR_DEVICE_LOST, for the purpose of determining whether a
command buffer is in the pending state, or whether resources are considered in-use by the device,
a return value of VK_ERROR_DEVICE_LOST is equivalent to VK_SUCCESS.

If a device was created with the maintenance5 feature enabled, and any device command returns
VK_ERROR_DEVICE_LOST, then all device commands for which VK_ERROR_DEVICE_LOST is a valid return
value and which happen-after it on the same host thread must return VK_ERROR_DEVICE_LOST.

Device commands executing on other threads must begin returning VK_ERROR_DEVICE_LOST within
finite time.

The content of any external memory objects that have been exported from or imported to a lost
device become undefined. Objects on other logical devices or in other APIs which are associated
with the same underlying memory resource as the external memory objects on the lost device are
unaffected other than their content becoming undefined. The layout of subresources of images on
other logical devices that are bound to VkDeviceMemory objects associated with the same underlying
memory resources as external memory objects on the lost device becomes
VK_IMAGE_LAYOUT_UNDEFINED.

The state of VkSemaphore objects on other logical devices created by importing a semaphore payload
with temporary permanence which was exported from the lost device is undefined. The state of
VkSemaphore objects on other logical devices that permanently share a semaphore payload with a
VkSemaphore object on the lost device is undefined, and remains undefined following any
subsequent signal operations. Implementations must ensure pending and subsequently submitted
wait operations on such semaphores behave as defined in Semaphore State Requirements For Wait
Operations for external semaphores not in a valid state for a wait operation.

194

5.2.4. Device Destruction

To destroy a device, call:

// Provided by VK_VERSION_1_0
void vkDestroyDevice(
 VkDevice device,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

To ensure that no work is active on the device, vkDeviceWaitIdle can be used to gate the
destruction of the device. Prior to destroying a device, an application is responsible for
destroying/freeing any Vulkan objects that were created using that device as the first parameter of
the corresponding vkCreate* or vkAllocate* command.

Note

The lifetime of each of these objects is bound by the lifetime of the VkDevice object.
Therefore, to avoid resource leaks, it is critical that an application explicitly free
all of these resources prior to calling vkDestroyDevice.

Valid Usage

• VUID-vkDestroyDevice-device-05137
All child objects created on device must have been destroyed prior to destroying device

• VUID-vkDestroyDevice-device-00379
If VkAllocationCallbacks were provided when device was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyDevice-device-00380
If no VkAllocationCallbacks were provided when device was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyDevice-device-parameter
If device is not NULL, device must be a valid VkDevice handle

• VUID-vkDestroyDevice-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

195

Host Synchronization

• Host access to device must be externally synchronized

• Host access to all VkQueue objects created from device must be externally synchronized

5.3. Queues

5.3.1. Queue Family Properties

As discussed in the Physical Device Enumeration section above, the
vkGetPhysicalDeviceQueueFamilyProperties command is used to retrieve details about the queue
families and queues supported by a device.

Each index in the pQueueFamilyProperties array returned by
vkGetPhysicalDeviceQueueFamilyProperties describes a unique queue family on that physical
device. These indices are used when creating queues, and they correspond directly with the
queueFamilyIndex that is passed to the vkCreateDevice command via the VkDeviceQueueCreateInfo
structure as described in the Queue Creation section below.

Grouping of queue families within a physical device is implementation-dependent.

Note

The general expectation is that a physical device groups all queues of matching
capabilities into a single family. However, while implementations should do this, it
is possible that a physical device may return two separate queue families with the
same capabilities.

Once an application has identified a physical device with the queue(s) that it desires to use, it will
create those queues in conjunction with a logical device. This is described in the following section.

5.3.2. Queue Creation

Creating a logical device also creates the queues associated with that device. The queues to create
are described by a set of VkDeviceQueueCreateInfo structures that are passed to vkCreateDevice in
pQueueCreateInfos.

Queues are represented by VkQueue handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkQueue)

The VkDeviceQueueCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDeviceQueueCreateInfo {

196

 VkStructureType sType;
 const void* pNext;
 VkDeviceQueueCreateFlags flags;
 uint32_t queueFamilyIndex;
 uint32_t queueCount;
 const float* pQueuePriorities;
} VkDeviceQueueCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask indicating behavior of the queues.

• queueFamilyIndex is an unsigned integer indicating the index of the queue family in which to
create the queues on this device. This index corresponds to the index of an element of the
pQueueFamilyProperties array that was returned by vkGetPhysicalDeviceQueueFamilyProperties.

• queueCount is an unsigned integer specifying the number of queues to create in the queue family
indicated by queueFamilyIndex, and with the behavior specified by flags.

• pQueuePriorities is a pointer to an array of queueCount normalized floating point values,
specifying priorities of work that will be submitted to each created queue. See Queue Priority
for more information.

Valid Usage

• VUID-VkDeviceQueueCreateInfo-queueFamilyIndex-00381
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties

• VUID-VkDeviceQueueCreateInfo-queueCount-00382
queueCount must be less than or equal to the queueCount member of the
VkQueueFamilyProperties structure, as returned by
vkGetPhysicalDeviceQueueFamilyProperties in the
pQueueFamilyProperties[queueFamilyIndex]

• VUID-VkDeviceQueueCreateInfo-pQueuePriorities-00383
Each element of pQueuePriorities must be between 0.0 and 1.0 inclusive

• VUID-VkDeviceQueueCreateInfo-flags-02861
If the protectedMemory feature is not enabled, the VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT bit
of flags must not be set

• VUID-VkDeviceQueueCreateInfo-flags-06449
If flags includes VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT, queueFamilyIndex must be the
index of a queue family that includes the VK_QUEUE_PROTECTED_BIT capability

• VUID-VkDeviceQueueCreateInfo-pNext-09398
If the pNext chain includes a VkDeviceQueueShaderCoreControlCreateInfoARM structure
then VkPhysicalDeviceSchedulingControlsPropertiesARM::schedulingControlsFlags must
contain VK_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_SHADER_CORE_COUNT_ARM.

197

Valid Usage (Implicit)

• VUID-VkDeviceQueueCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO

• VUID-VkDeviceQueueCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceQueueGlobalPriorityCreateInfoKHR or
VkDeviceQueueShaderCoreControlCreateInfoARM

• VUID-VkDeviceQueueCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkDeviceQueueCreateInfo-flags-parameter
flags must be a valid combination of VkDeviceQueueCreateFlagBits values

• VUID-VkDeviceQueueCreateInfo-pQueuePriorities-parameter
pQueuePriorities must be a valid pointer to an array of queueCount float values

• VUID-VkDeviceQueueCreateInfo-queueCount-arraylength
queueCount must be greater than 0

Bits which can be set in VkDeviceQueueCreateInfo::flags, specifying usage behavior of a queue,
are:

// Provided by VK_VERSION_1_1
typedef enum VkDeviceQueueCreateFlagBits {
 // Provided by VK_VERSION_1_1
 VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT = 0x00000001,
} VkDeviceQueueCreateFlagBits;

• VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT specifies that the device queue is a protected-capable
queue.

// Provided by VK_VERSION_1_0
typedef VkFlags VkDeviceQueueCreateFlags;

VkDeviceQueueCreateFlags is a bitmask type for setting a mask of zero or more
VkDeviceQueueCreateFlagBits.

Queues can be created with a system-wide priority by adding a
VkDeviceQueueGlobalPriorityCreateInfoKHR structure to the pNext chain of
VkDeviceQueueCreateInfo.

The VkDeviceQueueGlobalPriorityCreateInfoKHR structure is defined as:

// Provided by VK_KHR_global_priority
typedef struct VkDeviceQueueGlobalPriorityCreateInfoKHR {

198

 VkStructureType sType;
 const void* pNext;
 VkQueueGlobalPriorityKHR globalPriority;
} VkDeviceQueueGlobalPriorityCreateInfoKHR;

or the equivalent

// Provided by VK_EXT_global_priority
typedef VkDeviceQueueGlobalPriorityCreateInfoKHR
VkDeviceQueueGlobalPriorityCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• globalPriority is the system-wide priority associated to these queues as specified by
VkQueueGlobalPriorityEXT

Queues created without specifying VkDeviceQueueGlobalPriorityCreateInfoKHR will default to
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR.

Valid Usage (Implicit)

• VUID-VkDeviceQueueGlobalPriorityCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR

• VUID-VkDeviceQueueGlobalPriorityCreateInfoKHR-globalPriority-parameter
globalPriority must be a valid VkQueueGlobalPriorityKHR value

Possible values of VkDeviceQueueGlobalPriorityCreateInfoKHR::globalPriority, specifying a
system-wide priority level are:

// Provided by VK_KHR_global_priority
typedef enum VkQueueGlobalPriorityKHR {
 VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR = 128,
 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR = 256,
 VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR = 512,
 VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR = 1024,
 VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT = VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT = VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
 VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT = VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
 VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT = VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
} VkQueueGlobalPriorityKHR;

or the equivalent

// Provided by VK_EXT_global_priority

199

typedef VkQueueGlobalPriorityKHR VkQueueGlobalPriorityEXT;

Priority values are sorted in ascending order. A comparison operation on the enum values can be
used to determine the priority order.

• VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR is below the system default. Useful for non-interactive tasks.

• VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR is the system default priority.

• VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR is above the system default.

• VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR is the highest priority. Useful for critical tasks.

Queues with higher system priority may be allotted more processing time than queues with lower
priority. An implementation may allow a higher-priority queue to starve a lower-priority queue
until the higher-priority queue has no further commands to execute.

Priorities imply no ordering or scheduling constraints.

No specific guarantees are made about higher priority queues receiving more processing time or
better quality of service than lower priority queues.

The global priority level of a queue takes precedence over the per-process queue priority
(VkDeviceQueueCreateInfo::pQueuePriorities).

Abuse of this feature may result in starving the rest of the system of implementation resources.
Therefore, the driver implementation may deny requests to acquire a priority above the default
priority (VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR) if the caller does not have sufficient privileges. In
this scenario VK_ERROR_NOT_PERMITTED_KHR is returned.

The driver implementation may fail the queue allocation request if resources required to complete
the operation have been exhausted (either by the same process or a different process). In this
scenario VK_ERROR_INITIALIZATION_FAILED is returned.

If the globalPriorityQuery feature is enabled and the requested global priority is not reported via
VkQueueFamilyGlobalPriorityPropertiesKHR, the driver implementation must fail the queue
creation. In this scenario, VK_ERROR_INITIALIZATION_FAILED is returned.

The number of shader cores used by a queue can be controlled by adding a
VkDeviceQueueShaderCoreControlCreateInfoARM structure to the pNext chain of
VkDeviceQueueCreateInfo structures.

The VkDeviceQueueShaderCoreControlCreateInfoARM structure is defined as:

// Provided by VK_ARM_scheduling_controls
typedef struct VkDeviceQueueShaderCoreControlCreateInfoARM {
 VkStructureType sType;
 void* pNext;
 uint32_t shaderCoreCount;
} VkDeviceQueueShaderCoreControlCreateInfoARM;

200

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderCoreCount is the number of shader cores this queue uses.

Queues created without specifying VkDeviceQueueShaderCoreControlCreateInfoARM will default to
using all the shader cores available.

Valid Usage

• VUID-VkDeviceQueueShaderCoreControlCreateInfoARM-shaderCoreCount-09399
shaderCoreCount must be greater than 0 and less than or equal to the total number of
shader cores as reported via VkPhysicalDeviceShaderCoreBuiltinsPropertiesARM
::shaderCoreCount.

Valid Usage (Implicit)

• VUID-VkDeviceQueueShaderCoreControlCreateInfoARM-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_SHADER_CORE_CONTROL_CREATE_INFO_ARM

To retrieve a handle to a VkQueue object, call:

// Provided by VK_VERSION_1_0
void vkGetDeviceQueue(
 VkDevice device,
 uint32_t queueFamilyIndex,
 uint32_t queueIndex,
 VkQueue* pQueue);

• device is the logical device that owns the queue.

• queueFamilyIndex is the index of the queue family to which the queue belongs.

• queueIndex is the index within this queue family of the queue to retrieve.

• pQueue is a pointer to a VkQueue object that will be filled with the handle for the requested
queue.

vkGetDeviceQueue must only be used to get queues that were created with the flags parameter of
VkDeviceQueueCreateInfo set to zero. To get queues that were created with a non-zero flags
parameter use vkGetDeviceQueue2.

Valid Usage

• VUID-vkGetDeviceQueue-queueFamilyIndex-00384
queueFamilyIndex must be one of the queue family indices specified when device was
created, via the VkDeviceQueueCreateInfo structure

201

• VUID-vkGetDeviceQueue-queueIndex-00385
queueIndex must be less than the value of VkDeviceQueueCreateInfo::queueCount for the
queue family indicated by queueFamilyIndex when device was created

• VUID-vkGetDeviceQueue-flags-01841
VkDeviceQueueCreateInfo::flags must have been set to zero when device was created

Valid Usage (Implicit)

• VUID-vkGetDeviceQueue-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceQueue-pQueue-parameter
pQueue must be a valid pointer to a VkQueue handle

To retrieve a handle to a VkQueue object with specific VkDeviceQueueCreateFlags creation flags,
call:

// Provided by VK_VERSION_1_1
void vkGetDeviceQueue2(
 VkDevice device,
 const VkDeviceQueueInfo2* pQueueInfo,
 VkQueue* pQueue);

• device is the logical device that owns the queue.

• pQueueInfo is a pointer to a VkDeviceQueueInfo2 structure, describing parameters of the device
queue to be retrieved.

• pQueue is a pointer to a VkQueue object that will be filled with the handle for the requested
queue.

Valid Usage (Implicit)

• VUID-vkGetDeviceQueue2-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceQueue2-pQueueInfo-parameter
pQueueInfo must be a valid pointer to a valid VkDeviceQueueInfo2 structure

• VUID-vkGetDeviceQueue2-pQueue-parameter
pQueue must be a valid pointer to a VkQueue handle

The VkDeviceQueueInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceQueueInfo2 {
 VkStructureType sType;

202

 const void* pNext;
 VkDeviceQueueCreateFlags flags;
 uint32_t queueFamilyIndex;
 uint32_t queueIndex;
} VkDeviceQueueInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure. The pNext chain of
VkDeviceQueueInfo2 can be used to provide additional device queue parameters to
vkGetDeviceQueue2.

• flags is a VkDeviceQueueCreateFlags value indicating the flags used to create the device queue.

• queueFamilyIndex is the index of the queue family to which the queue belongs.

• queueIndex is the index of the queue to retrieve from within the set of queues that share both the
queue family and flags specified.

The queue returned by vkGetDeviceQueue2 must have the same flags value from this structure as
that used at device creation time in a VkDeviceQueueCreateInfo structure.

Note

Normally, if you create both protected-capable and non-protected-capable queues
with the same family, they are treated as separate lists of queues and queueIndex is
relative to the start of the list of queues specified by both queueFamilyIndex and
flags. However, for historical reasons, some implementations may exhibit
different behavior. These divergent implementations instead concatenate the lists
of queues and treat queueIndex as relative to the start of the first list of queues with
the given queueFamilyIndex. This only matters in cases where an application has
created both protected-capable and non-protected-capable queues from the same
queue family.

For such divergent implementations, the maximum value of queueIndex is equal to
the sum of VkDeviceQueueCreateInfo::queueCount minus one, for all
VkDeviceQueueCreateInfo structures that share a common queueFamilyIndex.

Such implementations will return NULL for either the protected or unprotected
queues when calling vkGetDeviceQueue2 with queueIndex in the range zero to
VkDeviceQueueCreateInfo::queueCount minus one. In cases where these
implementations returned NULL, the corresponding queues are instead located in
the extended range described in the preceding two paragraphs.

This behaviour will not be observed on any driver that has passed Vulkan
conformance test suite version 1.3.3.0, or any subsequent version. This
information can be found by querying VkPhysicalDeviceDriverProperties
::conformanceVersion.

203

Valid Usage

• VUID-VkDeviceQueueInfo2-queueFamilyIndex-01842
queueFamilyIndex must be one of the queue family indices specified when device was
created, via the VkDeviceQueueCreateInfo structure

• VUID-VkDeviceQueueInfo2-flags-06225
flags must be equal to VkDeviceQueueCreateInfo::flags for a VkDeviceQueueCreateInfo
structure for the queue family indicated by queueFamilyIndex when device was created

• VUID-VkDeviceQueueInfo2-queueIndex-01843
queueIndex must be less than VkDeviceQueueCreateInfo::queueCount for the corresponding
queue family and flags indicated by queueFamilyIndex and flags when device was created

Valid Usage (Implicit)

• VUID-VkDeviceQueueInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2

• VUID-VkDeviceQueueInfo2-pNext-pNext
pNext must be NULL

• VUID-VkDeviceQueueInfo2-flags-parameter
flags must be a valid combination of VkDeviceQueueCreateFlagBits values

5.3.3. Queue Family Index

The queue family index is used in multiple places in Vulkan in order to tie operations to a specific
family of queues.

When retrieving a handle to the queue via vkGetDeviceQueue, the queue family index is used to
select which queue family to retrieve the VkQueue handle from as described in the previous section.

When creating a VkCommandPool object (see Command Pools), a queue family index is specified in the
VkCommandPoolCreateInfo structure. Command buffers from this pool can only be submitted on
queues corresponding to this queue family.

When creating VkImage (see Images) and VkBuffer (see Buffers) resources, a set of queue families is
included in the VkImageCreateInfo and VkBufferCreateInfo structures to specify the queue families
that can access the resource.

When inserting a VkBufferMemoryBarrier or VkImageMemoryBarrier (see Pipeline Barriers), a
source and destination queue family index is specified to allow the ownership of a buffer or image
to be transferred from one queue family to another. See the Resource Sharing section for details.

5.3.4. Queue Priority

Each queue is assigned a priority, as set in the VkDeviceQueueCreateInfo structures when creating
the device. The priority of each queue is a normalized floating point value between 0.0 and 1.0,

204

which is then translated to a discrete priority level by the implementation. Higher values indicate a
higher priority, with 0.0 being the lowest priority and 1.0 being the highest.

Within the same device, queues with higher priority may be allotted more processing time than
queues with lower priority. The implementation makes no guarantees with regards to ordering or
scheduling among queues with the same priority, other than the constraints defined by any explicit
synchronization primitives. The implementation makes no guarantees with regards to queues
across different devices.

An implementation may allow a higher-priority queue to starve a lower-priority queue on the same
VkDevice until the higher-priority queue has no further commands to execute. The relationship of
queue priorities must not cause queues on one VkDevice to starve queues on another VkDevice.

No specific guarantees are made about higher priority queues receiving more processing time or
better quality of service than lower priority queues.

5.3.5. Queue Submission

Work is submitted to a queue via queue submission commands such as vkQueueSubmit2 or
vkQueueSubmit. Queue submission commands define a set of queue operations to be executed by
the underlying physical device, including synchronization with semaphores and fences.

Submission commands take as parameters a target queue, zero or more batches of work, and an
optional fence to signal upon completion. Each batch consists of three distinct parts:

1. Zero or more semaphores to wait on before execution of the rest of the batch.

◦ If present, these describe a semaphore wait operation.

2. Zero or more work items to execute.

◦ If present, these describe a queue operation matching the work described.

3. Zero or more semaphores to signal upon completion of the work items.

◦ If present, these describe a semaphore signal operation.

If a fence is present in a queue submission, it describes a fence signal operation.

All work described by a queue submission command must be submitted to the queue before the
command returns.

Sparse Memory Binding

In Vulkan it is possible to sparsely bind memory to buffers and images as described in the Sparse
Resource chapter. Sparse memory binding is a queue operation. A queue whose flags include the
VK_QUEUE_SPARSE_BINDING_BIT must be able to support the mapping of a virtual address to a physical
address on the device. This causes an update to the page table mappings on the device. This update
must be synchronized on a queue to avoid corrupting page table mappings during execution of
graphics commands. By binding the sparse memory resources on queues, all commands that are
dependent on the updated bindings are synchronized to only execute after the binding is updated.
See the Synchronization and Cache Control chapter for how this synchronization is accomplished.

205

5.3.6. Queue Destruction

Queues are created along with a logical device during vkCreateDevice. All queues associated with a
logical device are destroyed when vkDestroyDevice is called on that device.

206

Chapter 6. Command Buffers
Command buffers are objects used to record commands which can be subsequently submitted to a
device queue for execution. There are two levels of command buffers - primary command buffers,
which can execute secondary command buffers, and which are submitted to queues, and secondary
command buffers, which can be executed by primary command buffers, and which are not directly
submitted to queues.

Command buffers are represented by VkCommandBuffer handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkCommandBuffer)

Recorded commands include commands to bind pipelines and descriptor sets to the command
buffer, commands to modify dynamic state, commands to draw (for graphics rendering),
commands to dispatch (for compute), commands to execute secondary command buffers (for
primary command buffers only), commands to copy buffers and images, and other commands.

Each command buffer manages state independently of other command buffers. There is no
inheritance of state across primary and secondary command buffers, or between secondary
command buffers. When a command buffer begins recording, all state in that command buffer is
undefined. When secondary command buffer(s) are recorded to execute on a primary command
buffer, the secondary command buffer inherits no state from the primary command buffer, and all
state of the primary command buffer is undefined after an execute secondary command buffer
command is recorded. There is one exception to this rule - if the primary command buffer is inside
a render pass instance, then the render pass and subpass state is not disturbed by executing
secondary command buffers. For state dependent commands (such as draws and dispatches), any
state consumed by those commands must not be undefined.

VkCommandBufferInheritanceViewportScissorInfoNV defines an exception allowing limited
inheritance of dynamic viewport and scissor state.

Unless otherwise specified, and without explicit synchronization, the various commands submitted
to a queue via command buffers may execute in arbitrary order relative to each other, and/or
concurrently. Also, the memory side effects of those commands may not be directly visible to other
commands without explicit memory dependencies. This is true within a command buffer, and
across command buffers submitted to a given queue. See the synchronization chapter for
information on implicit and explicit synchronization between commands.

6.1. Command Buffer Lifecycle
Each command buffer is always in one of the following states:

Initial

When a command buffer is allocated, it is in the initial state. Some commands are able to reset a
command buffer (or a set of command buffers) back to this state from any of the executable,
recording or invalid state. Command buffers in the initial state can only be moved to the

207

recording state, or freed.

Recording

vkBeginCommandBuffer changes the state of a command buffer from the initial state to the
recording state. Once a command buffer is in the recording state, vkCmd* commands can be used
to record to the command buffer.

Executable

vkEndCommandBuffer ends the recording of a command buffer, and moves it from the
recording state to the executable state. Executable command buffers can be submitted, reset, or
recorded to another command buffer.

Pending

Queue submission of a command buffer changes the state of a command buffer from the
executable state to the pending state. Whilst in the pending state, applications must not attempt
to modify the command buffer in any way - as the device may be processing the commands
recorded to it. Once execution of a command buffer completes, the command buffer either
reverts back to the executable state, or if it was recorded with
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, it moves to the invalid state. A synchronization
command should be used to detect when this occurs.

Invalid

Some operations, such as modifying or deleting a resource that was used in a command
recorded to a command buffer, will transition the state of that command buffer into the invalid
state. Command buffers in the invalid state can only be reset or freed.

Initial

Recording

Pending Executable

Invalid

Allocate

Begin

End

Submission

Completion

Completion with
One Time Submit

Reset Reset

Invalidate

Figure 1. Lifecycle of a command buffer

Any given command that operates on a command buffer has its own requirements on what state a
command buffer must be in, which are detailed in the valid usage constraints for that command.

Resetting a command buffer is an operation that discards any previously recorded commands and
puts a command buffer in the initial state. Resetting occurs as a result of vkResetCommandBuffer or
vkResetCommandPool, or as part of vkBeginCommandBuffer (which additionally puts the
command buffer in the recording state).

208

Secondary command buffers can be recorded to a primary command buffer via
vkCmdExecuteCommands. This partially ties the lifecycle of the two command buffers together - if
the primary is submitted to a queue, both the primary and any secondaries recorded to it move to
the pending state. Once execution of the primary completes, so it does for any secondary recorded
within it. After all executions of each command buffer complete, they each move to their
appropriate completion state (either to the executable state or the invalid state, as specified above).

If a secondary moves to the invalid state or the initial state, then all primary buffers it is recorded in
move to the invalid state. A primary moving to any other state does not affect the state of a
secondary recorded in it.

Note

Resetting or freeing a primary command buffer removes the lifecycle linkage to all
secondary command buffers that were recorded into it.

6.2. Command Pools
Command pools are opaque objects that command buffer memory is allocated from, and which
allow the implementation to amortize the cost of resource creation across multiple command
buffers. Command pools are externally synchronized, meaning that a command pool must not be
used concurrently in multiple threads. That includes use via recording commands on any
command buffers allocated from the pool, as well as operations that allocate, free, and reset
command buffers or the pool itself.

Command pools are represented by VkCommandPool handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCommandPool)

To create a command pool, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateCommandPool(
 VkDevice device,
 const VkCommandPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkCommandPool* pCommandPool);

• device is the logical device that creates the command pool.

• pCreateInfo is a pointer to a VkCommandPoolCreateInfo structure specifying the state of the
command pool object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pCommandPool is a pointer to a VkCommandPool handle in which the created pool is returned.

209

Valid Usage

• VUID-vkCreateCommandPool-queueFamilyIndex-01937
pCreateInfo->queueFamilyIndex must be the index of a queue family available in the
logical device device

Valid Usage (Implicit)

• VUID-vkCreateCommandPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateCommandPool-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkCommandPoolCreateInfo structure

• VUID-vkCreateCommandPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateCommandPool-pCommandPool-parameter
pCommandPool must be a valid pointer to a VkCommandPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandPoolCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkCommandPoolCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandPoolCreateFlags flags;
 uint32_t queueFamilyIndex;
} VkCommandPoolCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkCommandPoolCreateFlagBits indicating usage behavior for the pool and
command buffers allocated from it.

210

• queueFamilyIndex designates a queue family as described in section Queue Family Properties. All
command buffers allocated from this command pool must be submitted on queues from the
same queue family.

Valid Usage

• VUID-VkCommandPoolCreateInfo-flags-02860
If the protectedMemory feature is not enabled, the VK_COMMAND_POOL_CREATE_PROTECTED_BIT bit
of flags must not be set

Valid Usage (Implicit)

• VUID-VkCommandPoolCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO

• VUID-VkCommandPoolCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkCommandPoolCreateInfo-flags-parameter
flags must be a valid combination of VkCommandPoolCreateFlagBits values

Bits which can be set in VkCommandPoolCreateInfo::flags, specifying usage behavior for a
command pool, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandPoolCreateFlagBits {
 VK_COMMAND_POOL_CREATE_TRANSIENT_BIT = 0x00000001,
 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT = 0x00000002,
 // Provided by VK_VERSION_1_1
 VK_COMMAND_POOL_CREATE_PROTECTED_BIT = 0x00000004,
} VkCommandPoolCreateFlagBits;

• VK_COMMAND_POOL_CREATE_TRANSIENT_BIT specifies that command buffers allocated from the pool
will be short-lived, meaning that they will be reset or freed in a relatively short timeframe. This
flag may be used by the implementation to control memory allocation behavior within the pool.

• VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT allows any command buffer allocated from a
pool to be individually reset to the initial state; either by calling vkResetCommandBuffer, or via
the implicit reset when calling vkBeginCommandBuffer. If this flag is not set on a pool, then
vkResetCommandBuffer must not be called for any command buffer allocated from that pool.

• VK_COMMAND_POOL_CREATE_PROTECTED_BIT specifies that command buffers allocated from the pool
are protected command buffers.

// Provided by VK_VERSION_1_0
typedef VkFlags VkCommandPoolCreateFlags;

211

VkCommandPoolCreateFlags is a bitmask type for setting a mask of zero or more
VkCommandPoolCreateFlagBits.

To trim a command pool, call:

// Provided by VK_VERSION_1_1
void vkTrimCommandPool(
 VkDevice device,
 VkCommandPool commandPool,
 VkCommandPoolTrimFlags flags);

or the equivalent command

// Provided by VK_KHR_maintenance1
void vkTrimCommandPoolKHR(
 VkDevice device,
 VkCommandPool commandPool,
 VkCommandPoolTrimFlags flags);

• device is the logical device that owns the command pool.

• commandPool is the command pool to trim.

• flags is reserved for future use.

Trimming a command pool recycles unused memory from the command pool back to the system.
Command buffers allocated from the pool are not affected by the command.

Note

This command provides applications with some control over the internal memory
allocations used by command pools.

Unused memory normally arises from command buffers that have been recorded
and later reset, such that they are no longer using the memory. On reset, a
command buffer can return memory to its command pool, but the only way to
release memory from a command pool to the system requires calling
vkResetCommandPool, which cannot be executed while any command buffers
from that pool are still in use. Subsequent recording operations into command
buffers will reuse this memory but since total memory requirements fluctuate
over time, unused memory can accumulate.

In this situation, trimming a command pool may be useful to return unused
memory back to the system, returning the total outstanding memory allocated by
the pool back to a more “average” value.

Implementations utilize many internal allocation strategies that make it
impossible to guarantee that all unused memory is released back to the system. For
instance, an implementation of a command pool may involve allocating memory
in bulk from the system and sub-allocating from that memory. In such an

212

implementation any live command buffer that holds a reference to a bulk
allocation would prevent that allocation from being freed, even if only a small
proportion of the bulk allocation is in use.

In most cases trimming will result in a reduction in allocated but unused memory,
but it does not guarantee the “ideal” behavior.

Trimming may be an expensive operation, and should not be called frequently.
Trimming should be treated as a way to relieve memory pressure after
application-known points when there exists enough unused memory that the cost
of trimming is “worth” it.

Valid Usage (Implicit)

• VUID-vkTrimCommandPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkTrimCommandPool-commandPool-parameter
commandPool must be a valid VkCommandPool handle

• VUID-vkTrimCommandPool-flags-zerobitmask
flags must be 0

• VUID-vkTrimCommandPool-commandPool-parent
commandPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to commandPool must be externally synchronized

// Provided by VK_VERSION_1_1
typedef VkFlags VkCommandPoolTrimFlags;

or the equivalent

// Provided by VK_KHR_maintenance1
typedef VkCommandPoolTrimFlags VkCommandPoolTrimFlagsKHR;

VkCommandPoolTrimFlags is a bitmask type for setting a mask, but is currently reserved for future use.

To reset a command pool, call:

// Provided by VK_VERSION_1_0
VkResult vkResetCommandPool(
 VkDevice device,
 VkCommandPool commandPool,

213

 VkCommandPoolResetFlags flags);

• device is the logical device that owns the command pool.

• commandPool is the command pool to reset.

• flags is a bitmask of VkCommandPoolResetFlagBits controlling the reset operation.

Resetting a command pool recycles all of the resources from all of the command buffers allocated
from the command pool back to the command pool. All command buffers that have been allocated
from the command pool are put in the initial state.

Any primary command buffer allocated from another VkCommandPool that is in the recording or
executable state and has a secondary command buffer allocated from commandPool recorded into it,
becomes invalid.

Valid Usage

• VUID-vkResetCommandPool-commandPool-00040
All VkCommandBuffer objects allocated from commandPool must not be in the pending state

Valid Usage (Implicit)

• VUID-vkResetCommandPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetCommandPool-commandPool-parameter
commandPool must be a valid VkCommandPool handle

• VUID-vkResetCommandPool-flags-parameter
flags must be a valid combination of VkCommandPoolResetFlagBits values

• VUID-vkResetCommandPool-commandPool-parent
commandPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to commandPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_DEVICE_MEMORY

214

Bits which can be set in vkResetCommandPool::flags, controlling the reset operation, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandPoolResetFlagBits {
 VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT = 0x00000001,
} VkCommandPoolResetFlagBits;

• VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT specifies that resetting a command pool recycles
all of the resources from the command pool back to the system.

// Provided by VK_VERSION_1_0
typedef VkFlags VkCommandPoolResetFlags;

VkCommandPoolResetFlags is a bitmask type for setting a mask of zero or more
VkCommandPoolResetFlagBits.

To destroy a command pool, call:

// Provided by VK_VERSION_1_0
void vkDestroyCommandPool(
 VkDevice device,
 VkCommandPool commandPool,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the command pool.

• commandPool is the handle of the command pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

When a pool is destroyed, all command buffers allocated from the pool are freed.

Any primary command buffer allocated from another VkCommandPool that is in the recording or
executable state and has a secondary command buffer allocated from commandPool recorded into it,
becomes invalid.

Valid Usage

• VUID-vkDestroyCommandPool-commandPool-00041
All VkCommandBuffer objects allocated from commandPool must not be in the pending state

• VUID-vkDestroyCommandPool-commandPool-00042
If VkAllocationCallbacks were provided when commandPool was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyCommandPool-commandPool-00043
If no VkAllocationCallbacks were provided when commandPool was created, pAllocator
must be NULL

215

Valid Usage (Implicit)

• VUID-vkDestroyCommandPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyCommandPool-commandPool-parameter
If commandPool is not VK_NULL_HANDLE, commandPool must be a valid VkCommandPool
handle

• VUID-vkDestroyCommandPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyCommandPool-commandPool-parent
If commandPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to commandPool must be externally synchronized

6.3. Command Buffer Allocation and Management
To allocate command buffers, call:

// Provided by VK_VERSION_1_0
VkResult vkAllocateCommandBuffers(
 VkDevice device,
 const VkCommandBufferAllocateInfo* pAllocateInfo,
 VkCommandBuffer* pCommandBuffers);

• device is the logical device that owns the command pool.

• pAllocateInfo is a pointer to a VkCommandBufferAllocateInfo structure describing parameters
of the allocation.

• pCommandBuffers is a pointer to an array of VkCommandBuffer handles in which the resulting
command buffer objects are returned. The array must be at least the length specified by the
commandBufferCount member of pAllocateInfo. Each allocated command buffer begins in the
initial state.

vkAllocateCommandBuffers can be used to allocate multiple command buffers. If the allocation of any
of those command buffers fails, the implementation must free all successfully allocated command
buffer objects from this command, set all entries of the pCommandBuffers array to NULL and return the
error.

Note

216

Filling pCommandBuffers with NULL values on failure is an exception to the default
error behavior that output parameters will have undefined contents.

When command buffers are first allocated, they are in the initial state.

Valid Usage (Implicit)

• VUID-vkAllocateCommandBuffers-device-parameter
device must be a valid VkDevice handle

• VUID-vkAllocateCommandBuffers-pAllocateInfo-parameter
pAllocateInfo must be a valid pointer to a valid VkCommandBufferAllocateInfo structure

• VUID-vkAllocateCommandBuffers-pCommandBuffers-parameter
pCommandBuffers must be a valid pointer to an array of pAllocateInfo->commandBufferCount
VkCommandBuffer handles

• VUID-vkAllocateCommandBuffers-pAllocateInfo::commandBufferCount-arraylength
pAllocateInfo->commandBufferCount must be greater than 0

Host Synchronization

• Host access to pAllocateInfo->commandPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkCommandBufferAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandPool commandPool;
 VkCommandBufferLevel level;
 uint32_t commandBufferCount;
} VkCommandBufferAllocateInfo;

• sType is a VkStructureType value identifying this structure.

217

• pNext is NULL or a pointer to a structure extending this structure.

• commandPool is the command pool from which the command buffers are allocated.

• level is a VkCommandBufferLevel value specifying the command buffer level.

• commandBufferCount is the number of command buffers to allocate from the pool.

Valid Usage (Implicit)

• VUID-VkCommandBufferAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO

• VUID-VkCommandBufferAllocateInfo-pNext-pNext
pNext must be NULL

• VUID-VkCommandBufferAllocateInfo-commandPool-parameter
commandPool must be a valid VkCommandPool handle

• VUID-VkCommandBufferAllocateInfo-level-parameter
level must be a valid VkCommandBufferLevel value

Possible values of VkCommandBufferAllocateInfo::level, specifying the command buffer level, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandBufferLevel {
 VK_COMMAND_BUFFER_LEVEL_PRIMARY = 0,
 VK_COMMAND_BUFFER_LEVEL_SECONDARY = 1,
} VkCommandBufferLevel;

• VK_COMMAND_BUFFER_LEVEL_PRIMARY specifies a primary command buffer.

• VK_COMMAND_BUFFER_LEVEL_SECONDARY specifies a secondary command buffer.

To reset a command buffer, call:

// Provided by VK_VERSION_1_0
VkResult vkResetCommandBuffer(
 VkCommandBuffer commandBuffer,
 VkCommandBufferResetFlags flags);

• commandBuffer is the command buffer to reset. The command buffer can be in any state other
than pending, and is moved into the initial state.

• flags is a bitmask of VkCommandBufferResetFlagBits controlling the reset operation.

Any primary command buffer that is in the recording or executable state and has commandBuffer
recorded into it, becomes invalid.

218

Valid Usage

• VUID-vkResetCommandBuffer-commandBuffer-00045
commandBuffer must not be in the pending state

• VUID-vkResetCommandBuffer-commandBuffer-00046
commandBuffer must have been allocated from a pool that was created with the
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT

Valid Usage (Implicit)

• VUID-vkResetCommandBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkResetCommandBuffer-flags-parameter
flags must be a valid combination of VkCommandBufferResetFlagBits values

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Bits which can be set in vkResetCommandBuffer::flags, controlling the reset operation, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandBufferResetFlagBits {
 VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT = 0x00000001,
} VkCommandBufferResetFlagBits;

• VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT specifies that most or all memory resources
currently owned by the command buffer should be returned to the parent command pool. If
this flag is not set, then the command buffer may hold onto memory resources and reuse them
when recording commands. commandBuffer is moved to the initial state.

219

// Provided by VK_VERSION_1_0
typedef VkFlags VkCommandBufferResetFlags;

VkCommandBufferResetFlags is a bitmask type for setting a mask of zero or more
VkCommandBufferResetFlagBits.

To free command buffers, call:

// Provided by VK_VERSION_1_0
void vkFreeCommandBuffers(
 VkDevice device,
 VkCommandPool commandPool,
 uint32_t commandBufferCount,
 const VkCommandBuffer* pCommandBuffers);

• device is the logical device that owns the command pool.

• commandPool is the command pool from which the command buffers were allocated.

• commandBufferCount is the length of the pCommandBuffers array.

• pCommandBuffers is a pointer to an array of handles of command buffers to free.

Any primary command buffer that is in the recording or executable state and has any element of
pCommandBuffers recorded into it, becomes invalid.

Valid Usage

• VUID-vkFreeCommandBuffers-pCommandBuffers-00047
All elements of pCommandBuffers must not be in the pending state

• VUID-vkFreeCommandBuffers-pCommandBuffers-00048
pCommandBuffers must be a valid pointer to an array of commandBufferCount VkCommandBuffer
handles, each element of which must either be a valid handle or NULL

Valid Usage (Implicit)

• VUID-vkFreeCommandBuffers-device-parameter
device must be a valid VkDevice handle

• VUID-vkFreeCommandBuffers-commandPool-parameter
commandPool must be a valid VkCommandPool handle

• VUID-vkFreeCommandBuffers-commandBufferCount-arraylength
commandBufferCount must be greater than 0

• VUID-vkFreeCommandBuffers-commandPool-parent
commandPool must have been created, allocated, or retrieved from device

• VUID-vkFreeCommandBuffers-pCommandBuffers-parent

220

Each element of pCommandBuffers that is a valid handle must have been created, allocated,
or retrieved from commandPool

Host Synchronization

• Host access to commandPool must be externally synchronized

• Host access to each member of pCommandBuffers must be externally synchronized

6.4. Command Buffer Recording
To begin recording a command buffer, call:

// Provided by VK_VERSION_1_0
VkResult vkBeginCommandBuffer(
 VkCommandBuffer commandBuffer,
 const VkCommandBufferBeginInfo* pBeginInfo);

• commandBuffer is the handle of the command buffer which is to be put in the recording state.

• pBeginInfo is a pointer to a VkCommandBufferBeginInfo structure defining additional
information about how the command buffer begins recording.

Valid Usage

• VUID-vkBeginCommandBuffer-commandBuffer-00049
commandBuffer must not be in the recording or pending state

• VUID-vkBeginCommandBuffer-commandBuffer-00050
If commandBuffer was allocated from a VkCommandPool which did not have the
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, commandBuffer must be in the
initial state

• VUID-vkBeginCommandBuffer-commandBuffer-00051
If commandBuffer is a secondary command buffer, the pInheritanceInfo member of
pBeginInfo must be a valid VkCommandBufferInheritanceInfo structure

• VUID-vkBeginCommandBuffer-commandBuffer-00052
If commandBuffer is a secondary command buffer and either the occlusionQueryEnable
member of the pInheritanceInfo member of pBeginInfo is VK_FALSE, or the
occlusionQueryPrecise feature is not enabled, then pBeginInfo->pInheritanceInfo-
>queryFlags must not contain VK_QUERY_CONTROL_PRECISE_BIT

• VUID-vkBeginCommandBuffer-commandBuffer-02840
If commandBuffer is a primary command buffer, then pBeginInfo->flags must not set both
the VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT and the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flags

221

Valid Usage (Implicit)

• VUID-vkBeginCommandBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkBeginCommandBuffer-pBeginInfo-parameter
pBeginInfo must be a valid pointer to a valid VkCommandBufferBeginInfo structure

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferBeginInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkCommandBufferBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandBufferUsageFlags flags;
 const VkCommandBufferInheritanceInfo* pInheritanceInfo;
} VkCommandBufferBeginInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkCommandBufferUsageFlagBits specifying usage behavior for the
command buffer.

• pInheritanceInfo is a pointer to a VkCommandBufferInheritanceInfo structure, used if
commandBuffer is a secondary command buffer. If this is a primary command buffer, then this
value is ignored.

222

Valid Usage

• VUID-VkCommandBufferBeginInfo-flags-09123
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the VkCommandPool
that commandBuffer was allocated from must support graphics operations

• VUID-VkCommandBufferBeginInfo-flags-00055
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the framebuffer
member of pInheritanceInfo must be either VK_NULL_HANDLE, or a valid VkFramebuffer
that is compatible with the renderPass member of pInheritanceInfo

• VUID-VkCommandBufferBeginInfo-flags-09240
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT and the
dynamicRendering feature is not enabled, the renderPass member of pInheritanceInfo must
not be VK_NULL_HANDLE

• VUID-VkCommandBufferBeginInfo-flags-06002
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT and the renderPass
member of pInheritanceInfo is VK_NULL_HANDLE, the pNext chain of pInheritanceInfo
must include a VkCommandBufferInheritanceRenderingInfo structure

• VUID-VkCommandBufferBeginInfo-flags-06003
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the renderPass
member of pInheritanceInfo is VK_NULL_HANDLE, and the pNext chain of
pInheritanceInfo includes a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, the colorAttachmentCount member of that
structure must be equal to the value of VkCommandBufferInheritanceRenderingInfo
::colorAttachmentCount

• VUID-VkCommandBufferBeginInfo-flags-06000
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT and the renderPass
member of pInheritanceInfo is not VK_NULL_HANDLE, the renderPass member of
pInheritanceInfo must be a valid VkRenderPass

• VUID-VkCommandBufferBeginInfo-flags-06001
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT and the renderPass
member of pInheritanceInfo is not VK_NULL_HANDLE, the subpass member of
pInheritanceInfo must be a valid subpass index within the renderPass member of
pInheritanceInfo

Valid Usage (Implicit)

• VUID-VkCommandBufferBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO

• VUID-VkCommandBufferBeginInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDeviceGroupCommandBufferBeginInfo

• VUID-VkCommandBufferBeginInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

223

• VUID-VkCommandBufferBeginInfo-flags-parameter
flags must be a valid combination of VkCommandBufferUsageFlagBits values

Bits which can be set in VkCommandBufferBeginInfo::flags, specifying usage behavior for a
command buffer, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandBufferUsageFlagBits {
 VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT = 0x00000001,
 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT = 0x00000002,
 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT = 0x00000004,
} VkCommandBufferUsageFlagBits;

• VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT specifies that each recording of the command
buffer will only be submitted once, and the command buffer will be reset and recorded again
between each submission.

• VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a secondary command buffer
is considered to be entirely inside a render pass. If this is a primary command buffer, then this
bit is ignored.

• VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT specifies that a command buffer can be
resubmitted to any queue of the same queue family while it is in the pending state, and recorded
into multiple primary command buffers.

// Provided by VK_VERSION_1_0
typedef VkFlags VkCommandBufferUsageFlags;

VkCommandBufferUsageFlags is a bitmask type for setting a mask of zero or more
VkCommandBufferUsageFlagBits.

If the command buffer is a secondary command buffer, then the VkCommandBufferInheritanceInfo
structure defines any state that will be inherited from the primary command buffer:

// Provided by VK_VERSION_1_0
typedef struct VkCommandBufferInheritanceInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderPass renderPass;
 uint32_t subpass;
 VkFramebuffer framebuffer;
 VkBool32 occlusionQueryEnable;
 VkQueryControlFlags queryFlags;
 VkQueryPipelineStatisticFlags pipelineStatistics;
} VkCommandBufferInheritanceInfo;

• sType is a VkStructureType value identifying this structure.

224

• pNext is NULL or a pointer to a structure extending this structure.

• renderPass is a VkRenderPass object defining which render passes the VkCommandBuffer will be
compatible with and can be executed within.

• subpass is the index of the subpass within the render pass instance that the VkCommandBuffer will
be executed within.

• framebuffer can refer to the VkFramebuffer object that the VkCommandBuffer will be rendering to
if it is executed within a render pass instance. It can be VK_NULL_HANDLE if the framebuffer is
not known.

Note

Specifying the exact framebuffer that the secondary command buffer will be
executed with may result in better performance at command buffer execution
time.

• occlusionQueryEnable specifies whether the command buffer can be executed while an
occlusion query is active in the primary command buffer. If this is VK_TRUE, then this command
buffer can be executed whether the primary command buffer has an occlusion query active or
not. If this is VK_FALSE, then the primary command buffer must not have an occlusion query
active.

• queryFlags specifies the query flags that can be used by an active occlusion query in the
primary command buffer when this secondary command buffer is executed. If this value
includes the VK_QUERY_CONTROL_PRECISE_BIT bit, then the active query can return boolean results
or actual sample counts. If this bit is not set, then the active query must not use the
VK_QUERY_CONTROL_PRECISE_BIT bit.

• pipelineStatistics is a bitmask of VkQueryPipelineStatisticFlagBits specifying the set of
pipeline statistics that can be counted by an active query in the primary command buffer when
this secondary command buffer is executed. If this value includes a given bit, then this
command buffer can be executed whether the primary command buffer has a pipeline
statistics query active that includes this bit or not. If this value excludes a given bit, then the
active pipeline statistics query must not be from a query pool that counts that statistic.

If the VkCommandBuffer will not be executed within a render pass instance, or if the render pass
instance was begun with vkCmdBeginRendering, renderPass, subpass, and framebuffer are ignored.

Valid Usage

• VUID-VkCommandBufferInheritanceInfo-occlusionQueryEnable-00056
If the inheritedQueries feature is not enabled, occlusionQueryEnable must be VK_FALSE

• VUID-VkCommandBufferInheritanceInfo-queryFlags-00057
If the inheritedQueries feature is enabled, queryFlags must be a valid combination of
VkQueryControlFlagBits values

• VUID-VkCommandBufferInheritanceInfo-queryFlags-02788
If the inheritedQueries feature is not enabled, queryFlags must be 0

• VUID-VkCommandBufferInheritanceInfo-pipelineStatistics-02789

225

If the pipelineStatisticsQuery feature is enabled, pipelineStatistics must be a valid
combination of VkQueryPipelineStatisticFlagBits values

• VUID-VkCommandBufferInheritanceInfo-pipelineStatistics-00058
If the pipelineStatisticsQuery feature is not enabled, pipelineStatistics must be 0

Valid Usage (Implicit)

• VUID-VkCommandBufferInheritanceInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO

• VUID-VkCommandBufferInheritanceInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkAttachmentSampleCountInfoAMD,
VkCommandBufferInheritanceConditionalRenderingInfoEXT,
VkCommandBufferInheritanceRenderPassTransformInfoQCOM,
VkCommandBufferInheritanceRenderingInfo,
VkCommandBufferInheritanceViewportScissorInfoNV, VkExternalFormatANDROID,
VkMultiviewPerViewAttributesInfoNVX, VkRenderingAttachmentLocationInfoKHR, or
VkRenderingInputAttachmentIndexInfoKHR

• VUID-VkCommandBufferInheritanceInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkCommandBufferInheritanceInfo-commonparent
Both of framebuffer, and renderPass that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

Note

On some implementations, not using the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT bit enables command buffers to be
patched in-place if needed, rather than creating a copy of the command buffer.

If a command buffer is in the invalid, or executable state, and the command buffer was allocated
from a command pool with the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
vkBeginCommandBuffer implicitly resets the command buffer, behaving as if vkResetCommandBuffer had
been called with VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. After the implicit reset,
commandBuffer is moved to the recording state.

If the pNext chain of VkCommandBufferInheritanceInfo includes a
VkCommandBufferInheritanceConditionalRenderingInfoEXT structure, then that structure controls
whether a command buffer can be executed while conditional rendering is active in the primary
command buffer.

The VkCommandBufferInheritanceConditionalRenderingInfoEXT structure is defined as:

// Provided by VK_EXT_conditional_rendering
typedef struct VkCommandBufferInheritanceConditionalRenderingInfoEXT {

226

 VkStructureType sType;
 const void* pNext;
 VkBool32 conditionalRenderingEnable;
} VkCommandBufferInheritanceConditionalRenderingInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• conditionalRenderingEnable specifies whether the command buffer can be executed while
conditional rendering is active in the primary command buffer. If this is VK_TRUE, then this
command buffer can be executed whether the primary command buffer has active conditional
rendering or not. If this is VK_FALSE, then the primary command buffer must not have
conditional rendering active.

If this structure is not present, the behavior is as if conditionalRenderingEnable is VK_FALSE.

Valid Usage

• VUID-VkCommandBufferInheritanceConditionalRenderingInfoEXT-
conditionalRenderingEnable-01977
If the inheritedConditionalRendering feature is not enabled, conditionalRenderingEnable
must be VK_FALSE

Valid Usage (Implicit)

• VUID-VkCommandBufferInheritanceConditionalRenderingInfoEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT

To begin recording a secondary command buffer compatible with execution inside a render pass
using render pass transform, add the
VkCommandBufferInheritanceRenderPassTransformInfoQCOM to the pNext chain of
VkCommandBufferInheritanceInfo structure passed to the vkBeginCommandBuffer command
specifying the parameters for transformed rasterization.

The VkCommandBufferInheritanceRenderPassTransformInfoQCOM structure is defined as:

// Provided by VK_QCOM_render_pass_transform
typedef struct VkCommandBufferInheritanceRenderPassTransformInfoQCOM {
 VkStructureType sType;
 void* pNext;
 VkSurfaceTransformFlagBitsKHR transform;
 VkRect2D renderArea;
} VkCommandBufferInheritanceRenderPassTransformInfoQCOM;

• sType is a VkStructureType value identifying this structure.

227

• pNext is NULL or a pointer to a structure extending this structure.

• transform is a VkSurfaceTransformFlagBitsKHR value describing the transform to be applied to
the render pass.

• renderArea is the render area that is affected by the command buffer.

When the secondary is recorded to execute within a render pass instance using
vkCmdExecuteCommands, the render pass transform parameters of the secondary command
buffer must be consistent with the render pass transform parameters specified for the render pass
instance. In particular, the transform and renderArea for command buffer must be identical to the
transform and renderArea of the render pass instance.

Valid Usage

• VUID-VkCommandBufferInheritanceRenderPassTransformInfoQCOM-transform-02864
transform must be VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR, VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR, or
VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR

Valid Usage (Implicit)

• VUID-VkCommandBufferInheritanceRenderPassTransformInfoQCOM-sType-sType
sType must be
VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDER_PASS_TRANSFORM_INFO_QCOM

The VkCommandBufferInheritanceViewportScissorInfoNV structure is defined as:

// Provided by VK_NV_inherited_viewport_scissor
typedef struct VkCommandBufferInheritanceViewportScissorInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkBool32 viewportScissor2D;
 uint32_t viewportDepthCount;
 const VkViewport* pViewportDepths;
} VkCommandBufferInheritanceViewportScissorInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• viewportScissor2D specifies whether the listed dynamic state is inherited.

• viewportDepthCount specifies the maximum number of viewports to inherit. When
viewportScissor2D is VK_FALSE, the behavior is as if this value is zero.

• pViewportDepths is a pointer to a VkViewport structure specifying the expected depth range for
each inherited viewport.

228

If the pNext chain of VkCommandBufferInheritanceInfo includes a
VkCommandBufferInheritanceViewportScissorInfoNV structure, then that structure controls whether a
command buffer can inherit the following state from other command buffers:

• VK_DYNAMIC_STATE_SCISSOR

• VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT

• VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT

• VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT

• VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT

as well as the following state, with restrictions on inherited depth values and viewport count:

• VK_DYNAMIC_STATE_VIEWPORT

• VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT

If viewportScissor2D is VK_FALSE, then the command buffer does not inherit the listed dynamic state,
and should set this state itself. If this structure is not present, the behavior is as if viewportScissor2D
is VK_FALSE.

If viewportScissor2D is VK_TRUE, then the listed dynamic state is inherited, and the command buffer
must not set this state, except that the viewport and scissor count may be set by binding a graphics
pipeline that does not specify this state as dynamic.

Note

Due to this restriction, applications should ensure either all or none of the
graphics pipelines bound in this secondary command buffer use dynamic
viewport/scissor counts.

When the command buffer is executed as part of a the execution of a vkCmdExecuteCommands
command, the inherited state (if enabled) is determined by the following procedure, performed
separately for each dynamic state, and separately for each value for dynamic state that consists of
multiple values (e.g. multiple viewports).

• With i being the index of the executed command buffer in the pCommandBuffers array of
vkCmdExecuteCommands, if i > 0 and any secondary command buffer from index 0 to i-1
modifies the state, the inherited state is provisionally set to the final value set by the last such
secondary command buffer. Binding a graphics pipeline defining the state statically is
equivalent to setting the state to an undefined value.

• Otherwise, the tentatative inherited state is that of the primary command buffer at the point the
vkCmdExecuteCommands command was recorded; if the state is undefined, then so is the
provisional inherited state.

• If the provisional inherited state is an undefined value, then the state is not inherited.

• If the provisional inherited state is a viewport, with n being its viewport index, then if n ≥
viewportDepthCount, or if either VkViewport::minDepth or VkViewport::maxDepth are not equal to
the respective values of the nth element of pViewportDepths, then the state is not inherited.

229

• If the provisional inherited state passes both checks, then it becomes the actual inherited state.

Note

There is no support for inheriting dynamic state from a secondary command
buffer executed as part of a different vkCmdExecuteCommands command.

Valid Usage

• VUID-VkCommandBufferInheritanceViewportScissorInfoNV-viewportScissor2D-04782
If the inheritedViewportScissor2D feature is not enabled, viewportScissor2D must be
VK_FALSE

• VUID-VkCommandBufferInheritanceViewportScissorInfoNV-viewportScissor2D-04783
If the multiViewport feature is not enabled and viewportScissor2D is VK_TRUE, then
viewportDepthCount must be 1

• VUID-VkCommandBufferInheritanceViewportScissorInfoNV-viewportScissor2D-04784
If viewportScissor2D is VK_TRUE, then viewportDepthCount must be greater than 0

• VUID-VkCommandBufferInheritanceViewportScissorInfoNV-viewportScissor2D-04785
If viewportScissor2D is VK_TRUE, then pViewportDepths must be a valid pointer to an array of
viewportDepthCount valid VkViewport structures, except any requirements on x, y, width,
and height do not apply

• VUID-VkCommandBufferInheritanceViewportScissorInfoNV-viewportScissor2D-04786
If viewportScissor2D is VK_TRUE, then the command buffer must be recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

Valid Usage (Implicit)

• VUID-VkCommandBufferInheritanceViewportScissorInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_VIEWPORT_SCISSOR_INFO_NV

The VkCommandBufferInheritanceRenderingInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCommandBufferInheritanceRenderingInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderingFlags flags;
 uint32_t viewMask;
 uint32_t colorAttachmentCount;
 const VkFormat* pColorAttachmentFormats;
 VkFormat depthAttachmentFormat;
 VkFormat stencilAttachmentFormat;
 VkSampleCountFlagBits rasterizationSamples;
} VkCommandBufferInheritanceRenderingInfo;

230

or the equivalent

// Provided by VK_KHR_dynamic_rendering
typedef VkCommandBufferInheritanceRenderingInfo
VkCommandBufferInheritanceRenderingInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• flags is a bitmask of VkRenderingFlagBits used by the render pass instance.

• viewMask is the view mask used for rendering.

• colorAttachmentCount is the number of color attachments specified in the render pass instance.

• pColorAttachmentFormats is a pointer to an array of VkFormat values defining the format of color
attachments.

• depthAttachmentFormat is a VkFormat value defining the format of the depth attachment.

• stencilAttachmentFormat is a VkFormat value defining the format of the stencil attachment.

• rasterizationSamples is a VkSampleCountFlagBits specifying the number of samples used in
rasterization.

If the pNext chain of VkCommandBufferInheritanceInfo includes a
VkCommandBufferInheritanceRenderingInfo structure, then that structure controls parameters of
dynamic render pass instances that the VkCommandBuffer can be executed within. If
VkCommandBufferInheritanceInfo::renderPass is not VK_NULL_HANDLE, or
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT is not specified in VkCommandBufferBeginInfo
::flags, parameters of this structure are ignored.

If colorAttachmentCount is 0 and the variableMultisampleRate feature is enabled,
rasterizationSamples is ignored.

If depthAttachmentFormat, stencilAttachmentFormat, or any element of pColorAttachmentFormats is
VK_FORMAT_UNDEFINED, it indicates that the corresponding attachment is unused within the render
pass and writes to those attachments are discarded.

Valid Usage

• VUID-VkCommandBufferInheritanceRenderingInfo-colorAttachmentCount-06004
If colorAttachmentCount is not 0, rasterizationSamples must be a valid
VkSampleCountFlagBits value

• VUID-VkCommandBufferInheritanceRenderingInfo-variableMultisampleRate-06005
If the variableMultisampleRate feature is not enabled, rasterizationSamples must be a
valid VkSampleCountFlagBits value

• VUID-VkCommandBufferInheritanceRenderingInfo-depthAttachmentFormat-06540
If depthAttachmentFormat is not VK_FORMAT_UNDEFINED, it must be a format that includes a
depth component

231

• VUID-VkCommandBufferInheritanceRenderingInfo-depthAttachmentFormat-06007
If depthAttachmentFormat is not VK_FORMAT_UNDEFINED, it must be a format with potential
format features that include VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkCommandBufferInheritanceRenderingInfo-pColorAttachmentFormats-06492
If any element of pColorAttachmentFormats is not VK_FORMAT_UNDEFINED, it must be a format
with potential format features that include VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT , or
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV if the linearColorAttachment feature
is enabled

• VUID-VkCommandBufferInheritanceRenderingInfo-stencilAttachmentFormat-06541
If stencilAttachmentFormat is not VK_FORMAT_UNDEFINED, it must be a format that includes a
stencil aspect

• VUID-VkCommandBufferInheritanceRenderingInfo-stencilAttachmentFormat-06199
If stencilAttachmentFormat is not VK_FORMAT_UNDEFINED, it must be a format with potential
format features that include VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkCommandBufferInheritanceRenderingInfo-depthAttachmentFormat-06200
If depthAttachmentFormat is not VK_FORMAT_UNDEFINED and stencilAttachmentFormat is not
VK_FORMAT_UNDEFINED, depthAttachmentFormat must equal stencilAttachmentFormat

• VUID-VkCommandBufferInheritanceRenderingInfo-multiview-06008
If the multiview feature is not enabled, viewMask must be 0

• VUID-VkCommandBufferInheritanceRenderingInfo-viewMask-06009
The index of the most significant bit in viewMask must be less than maxMultiviewViewCount

Valid Usage (Implicit)

• VUID-VkCommandBufferInheritanceRenderingInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO

• VUID-VkCommandBufferInheritanceRenderingInfo-flags-parameter
flags must be a valid combination of VkRenderingFlagBits values

• VUID-VkCommandBufferInheritanceRenderingInfo-pColorAttachmentFormats-parameter
If colorAttachmentCount is not 0, pColorAttachmentFormats must be a valid pointer to an
array of colorAttachmentCount valid VkFormat values

• VUID-VkCommandBufferInheritanceRenderingInfo-depthAttachmentFormat-parameter
depthAttachmentFormat must be a valid VkFormat value

• VUID-VkCommandBufferInheritanceRenderingInfo-stencilAttachmentFormat-parameter
stencilAttachmentFormat must be a valid VkFormat value

• VUID-VkCommandBufferInheritanceRenderingInfo-rasterizationSamples-parameter
If rasterizationSamples is not 0, rasterizationSamples must be a valid
VkSampleCountFlagBits value

The VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure is defined as:

232

// Provided by VK_KHR_dynamic_rendering with VK_AMD_mixed_attachment_samples
typedef struct VkAttachmentSampleCountInfoAMD {
 VkStructureType sType;
 const void* pNext;
 uint32_t colorAttachmentCount;
 const VkSampleCountFlagBits* pColorAttachmentSamples;
 VkSampleCountFlagBits depthStencilAttachmentSamples;
} VkAttachmentSampleCountInfoAMD;

or the equivalent

// Provided by VK_KHR_dynamic_rendering with VK_NV_framebuffer_mixed_samples
typedef VkAttachmentSampleCountInfoAMD VkAttachmentSampleCountInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• colorAttachmentCount is the number of color attachments specified in a render pass instance.

• pColorAttachmentSamples is a pointer to an array of VkSampleCountFlagBits values defining the
sample count of color attachments.

• depthStencilAttachmentSamples is a VkSampleCountFlagBits value defining the sample count of a
depth/stencil attachment.

If VkCommandBufferInheritanceInfo::renderPass is VK_NULL_HANDLE,
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT is specified in VkCommandBufferBeginInfo
::flags, and the pNext chain of VkCommandBufferInheritanceInfo includes
VkAttachmentSampleCountInfoAMD, then this structure defines the sample counts of each attachment
within the render pass instance. If VkAttachmentSampleCountInfoAMD is not included, the value of
VkCommandBufferInheritanceRenderingInfo::rasterizationSamples is used as the sample count for
each attachment. If VkCommandBufferInheritanceInfo::renderPass is not VK_NULL_HANDLE, or
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT is not specified in VkCommandBufferBeginInfo
::flags, parameters of this structure are ignored.

VkAttachmentSampleCountInfoAMD can also be included in the pNext chain of
VkGraphicsPipelineCreateInfo. When a graphics pipeline is created without a VkRenderPass, if this
structure is included in the pNext chain of VkGraphicsPipelineCreateInfo, it specifies the sample
count of attachments used for rendering. If this structure is not specified, and the pipeline does not
include a VkRenderPass, the value of VkPipelineMultisampleStateCreateInfo::rasterizationSamples
is used as the sample count for each attachment. If a graphics pipeline is created with a valid
VkRenderPass, parameters of this structure are ignored.

Valid Usage (Implicit)

• VUID-VkAttachmentSampleCountInfoAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_SAMPLE_COUNT_INFO_AMD

233

Once recording starts, an application records a sequence of commands (vkCmd*) to set state in the
command buffer, draw, dispatch, and other commands.

Several commands can also be recorded indirectly from VkBuffer content, see Device-Generated
Commands.

To complete recording of a command buffer, call:

// Provided by VK_VERSION_1_0
VkResult vkEndCommandBuffer(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer to complete recording.

The command buffer must have been in the recording state, and, if successful, is moved to the
executable state.

If there was an error during recording, the application will be notified by an unsuccessful return
code returned by vkEndCommandBuffer, and the command buffer will be moved to the invalid state.

In case the application recorded one or more video encode operations into the command buffer,
implementations may return the VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR error if any of the
specified Video Std parameters do not adhere to the syntactic or semantic requirements of the used
video compression standard, or if values derived from parameters according to the rules defined by
the used video compression standard do not adhere to the capabilities of the video compression
standard or the implementation.

Note

Applications should not rely on the VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR
error being returned by any command as a means to verify Video Std parameters,
as implementations are not required to report the error in any specific set of cases.

Valid Usage

• VUID-vkEndCommandBuffer-commandBuffer-00059
commandBuffer must be in the recording state

• VUID-vkEndCommandBuffer-commandBuffer-00060
If commandBuffer is a primary command buffer, there must not be an active render pass
instance

• VUID-vkEndCommandBuffer-commandBuffer-00061
All queries made active during the recording of commandBuffer must have been made
inactive

• VUID-vkEndCommandBuffer-None-01978
Conditional rendering must not be active

• VUID-vkEndCommandBuffer-None-06991
There must be no video session object bound

234

• VUID-vkEndCommandBuffer-commandBuffer-01815
If commandBuffer is a secondary command buffer, there must not be an outstanding
vkCmdBeginDebugUtilsLabelEXT command recorded to commandBuffer that has not
previously been ended by a call to vkCmdEndDebugUtilsLabelEXT

• VUID-vkEndCommandBuffer-commandBuffer-00062
If commandBuffer is a secondary command buffer, there must not be an outstanding
vkCmdDebugMarkerBeginEXT command recorded to commandBuffer that has not
previously been ended by a call to vkCmdDebugMarkerEndEXT

Valid Usage (Implicit)

• VUID-vkEndCommandBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR

When a command buffer is in the executable state, it can be submitted to a queue for execution.

6.5. Command Buffer Submission

Note

Submission can be a high overhead operation, and applications should attempt to
batch work together into as few calls to vkQueueSubmit or vkQueueSubmit2 as
possible.

To submit command buffers to a queue, call:

235

// Provided by VK_VERSION_1_3
VkResult vkQueueSubmit2(
 VkQueue queue,
 uint32_t submitCount,
 const VkSubmitInfo2* pSubmits,
 VkFence fence);

or the equivalent command

// Provided by VK_KHR_synchronization2
VkResult vkQueueSubmit2KHR(
 VkQueue queue,
 uint32_t submitCount,
 const VkSubmitInfo2* pSubmits,
 VkFence fence);

• queue is the queue that the command buffers will be submitted to.

• submitCount is the number of elements in the pSubmits array.

• pSubmits is a pointer to an array of VkSubmitInfo2 structures, each specifying a command
buffer submission batch.

• fence is an optional handle to a fence to be signaled once all submitted command buffers have
completed execution. If fence is not VK_NULL_HANDLE, it defines a fence signal operation.

vkQueueSubmit2 is a queue submission command, with each batch defined by an element of pSubmits.

Semaphore operations submitted with vkQueueSubmit2 have additional ordering constraints
compared to other submission commands, with dependencies involving previous and subsequent
queue operations. Information about these additional constraints can be found in the semaphore
section of the synchronization chapter.

If any command buffer submitted to this queue is in the executable state, it is moved to the pending
state. Once execution of all submissions of a command buffer complete, it moves from the pending
state, back to the executable state. If a command buffer was recorded with the
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT flag, it instead moves back to the invalid state.

If vkQueueSubmit2 fails, it may return VK_ERROR_OUT_OF_HOST_MEMORY or VK_ERROR_OUT_OF_DEVICE_MEMORY.
If it does, the implementation must ensure that the state and contents of any resources or
synchronization primitives referenced by the submitted command buffers and any semaphores
referenced by pSubmits is unaffected by the call or its failure. If vkQueueSubmit2 fails in such a way
that the implementation is unable to make that guarantee, the implementation must return
VK_ERROR_DEVICE_LOST. See Lost Device.

Valid Usage

• VUID-vkQueueSubmit2-fence-04894
If fence is not VK_NULL_HANDLE, fence must be unsignaled

236

• VUID-vkQueueSubmit2-fence-04895
If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue
command that has not yet completed execution on that queue

• VUID-vkQueueSubmit2-synchronization2-03866
The synchronization2 feature must be enabled

• VUID-vkQueueSubmit2-commandBuffer-03867
If a command recorded into the commandBuffer member of any element of the
pCommandBufferInfos member of any element of pSubmits referenced a VkEvent, that event
must not be referenced by a command that has been submitted to another queue and is
still in the pending state

• VUID-vkQueueSubmit2-semaphore-03868
The semaphore member of any binary semaphore element of the pSignalSemaphoreInfos
member of any element of pSubmits must be unsignaled when the semaphore signal
operation it defines is executed on the device

• VUID-vkQueueSubmit2-stageMask-03869
The stageMask member of any element of the pSignalSemaphoreInfos member of any
element of pSubmits must only include pipeline stages that are supported by the queue
family which queue belongs to

• VUID-vkQueueSubmit2-stageMask-03870
The stageMask member of any element of the pWaitSemaphoreInfos member of any element
of pSubmits must only include pipeline stages that are supported by the queue family
which queue belongs to

• VUID-vkQueueSubmit2-semaphore-03871
When a semaphore wait operation for a binary semaphore is executed, as defined by the
semaphore member of any element of the pWaitSemaphoreInfos member of any element of
pSubmits, there must be no other queues waiting on the same semaphore

• VUID-vkQueueSubmit2-semaphore-03873
The semaphore member of any element of the pWaitSemaphoreInfos member of any element
of pSubmits that was created with a VkSemaphoreTypeKHR of
VK_SEMAPHORE_TYPE_BINARY_KHR must reference a semaphore signal operation that has been
submitted for execution and any semaphore signal operations on which it depends must
have also been submitted for execution

• VUID-vkQueueSubmit2-commandBuffer-03874
The commandBuffer member of any element of the pCommandBufferInfos member of any
element of pSubmits must be in the pending or executable state

• VUID-vkQueueSubmit2-commandBuffer-03875
If a command recorded into the commandBuffer member of any element of the
pCommandBufferInfos member of any element of pSubmits was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the pending state

• VUID-vkQueueSubmit2-commandBuffer-03876
Any secondary command buffers recorded into the commandBuffer member of any element
of the pCommandBufferInfos member of any element of pSubmits must be in the pending or
executable state

237

• VUID-vkQueueSubmit2-commandBuffer-03877
If any secondary command buffers recorded into the commandBuffer member of any
element of the pCommandBufferInfos member of any element of pSubmits was not recorded
with the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the pending
state

• VUID-vkQueueSubmit2-commandBuffer-03878
The commandBuffer member of any element of the pCommandBufferInfos member of any
element of pSubmits must have been allocated from a VkCommandPool that was created for
the same queue family queue belongs to

• VUID-vkQueueSubmit2-commandBuffer-03879
If a command recorded into the commandBuffer member of any element of the
pCommandBufferInfos member of any element of pSubmits includes a Queue Family
Ownership Transfer Acquire Operation, there must exist a previously submitted Queue
Family Ownership Transfer Release Operation on a queue in the queue family identified
by the acquire operation, with parameters matching the acquire operation as defined in
the definition of such acquire operations, and which happens before the acquire
operation

• VUID-vkQueueSubmit2-commandBuffer-03880
If a command recorded into the commandBuffer member of any element of the
pCommandBufferInfos member of any element of pSubmits was a vkCmdBeginQuery whose
queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, the
profiling lock must have been held continuously on the VkDevice that queue was retrieved
from, throughout recording of those command buffers

• VUID-vkQueueSubmit2-queue-06447
If queue was not created with VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT, the flags member of
any element of pSubmits must not include VK_SUBMIT_PROTECTED_BIT_KHR

Valid Usage (Implicit)

• VUID-vkQueueSubmit2-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueSubmit2-pSubmits-parameter
If submitCount is not 0, pSubmits must be a valid pointer to an array of submitCount valid
VkSubmitInfo2 structures

• VUID-vkQueueSubmit2-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkQueueSubmit2-commonparent
Both of fence, and queue that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to queue must be externally synchronized

238

• Host access to fence must be externally synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkSubmitInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkSubmitInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkSubmitFlags flags;
 uint32_t waitSemaphoreInfoCount;
 const VkSemaphoreSubmitInfo* pWaitSemaphoreInfos;
 uint32_t commandBufferInfoCount;
 const VkCommandBufferSubmitInfo* pCommandBufferInfos;
 uint32_t signalSemaphoreInfoCount;
 const VkSemaphoreSubmitInfo* pSignalSemaphoreInfos;
} VkSubmitInfo2;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkSubmitInfo2 VkSubmitInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSubmitFlagBits.

• waitSemaphoreInfoCount is the number of elements in pWaitSemaphoreInfos.

239

• pWaitSemaphoreInfos is a pointer to an array of VkSemaphoreSubmitInfo structures defining
semaphore wait operations.

• commandBufferInfoCount is the number of elements in pCommandBufferInfos and the number of
command buffers to execute in the batch.

• pCommandBufferInfos is a pointer to an array of VkCommandBufferSubmitInfo structures
describing command buffers to execute in the batch.

• signalSemaphoreInfoCount is the number of elements in pSignalSemaphoreInfos.

• pSignalSemaphoreInfos is a pointer to an array of VkSemaphoreSubmitInfo describing
semaphore signal operations.

Valid Usage

• VUID-VkSubmitInfo2-semaphore-03881
If the same semaphore is used as the semaphore member of both an element of
pSignalSemaphoreInfos and pWaitSemaphoreInfos, and that semaphore is a timeline
semaphore, the value member of the pSignalSemaphoreInfos element must be greater than
the value member of the pWaitSemaphoreInfos element

• VUID-VkSubmitInfo2-semaphore-03882
If the semaphore member of any element of pSignalSemaphoreInfos is a timeline semaphore,
the value member of that element must have a value greater than the current value of the
semaphore when the semaphore signal operation is executed

• VUID-VkSubmitInfo2-semaphore-03883
If the semaphore member of any element of pSignalSemaphoreInfos is a timeline semaphore,
the value member of that element must have a value which does not differ from the
current value of the semaphore or the value of any outstanding semaphore wait or signal
operation on that semaphore by more than maxTimelineSemaphoreValueDifference

• VUID-VkSubmitInfo2-semaphore-03884
If the semaphore member of any element of pWaitSemaphoreInfos is a timeline semaphore,
the value member of that element must have a value which does not differ from the
current value of the semaphore or the value of any outstanding semaphore wait or signal
operation on that semaphore by more than maxTimelineSemaphoreValueDifference

• VUID-VkSubmitInfo2-flags-03886
If flags includes VK_SUBMIT_PROTECTED_BIT, all elements of pCommandBuffers must be
protected command buffers

• VUID-VkSubmitInfo2-flags-03887
If flags does not include VK_SUBMIT_PROTECTED_BIT, each element of pCommandBuffers must
not be a protected command buffer

• VUID-VkSubmitInfo2KHR-commandBuffer-06192
If any commandBuffer member of an element of pCommandBufferInfos contains any resumed
render pass instances, they must be suspended by a render pass instance earlier in
submission order within pCommandBufferInfos

• VUID-VkSubmitInfo2KHR-commandBuffer-06010
If any commandBuffer member of an element of pCommandBufferInfos contains any

240

suspended render pass instances, they must be resumed by a render pass instance later
in submission order within pCommandBufferInfos

• VUID-VkSubmitInfo2KHR-commandBuffer-06011
If any commandBuffer member of an element of pCommandBufferInfos contains any
suspended render pass instances, there must be no action or synchronization commands
between that render pass instance and the render pass instance that resumes it

• VUID-VkSubmitInfo2KHR-commandBuffer-06012
If any commandBuffer member of an element of pCommandBufferInfos contains any
suspended render pass instances, there must be no render pass instances between that
render pass instance and the render pass instance that resumes it

• VUID-VkSubmitInfo2KHR-variableSampleLocations-06013
If the variableSampleLocations limit is not supported, and any commandBuffer member of an
element of pCommandBufferInfos contains any suspended render pass instances, where a
graphics pipeline has been bound, any pipelines bound in the render pass instance that
resumes it, or any subsequent render pass instances that resume from that one and so on,
must use the same sample locations

Valid Usage (Implicit)

• VUID-VkSubmitInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBMIT_INFO_2

• VUID-VkSubmitInfo2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkFrameBoundaryEXT,
VkLatencySubmissionPresentIdNV, VkPerformanceQuerySubmitInfoKHR,
VkWin32KeyedMutexAcquireReleaseInfoKHR, or
VkWin32KeyedMutexAcquireReleaseInfoNV

• VUID-VkSubmitInfo2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSubmitInfo2-flags-parameter
flags must be a valid combination of VkSubmitFlagBits values

• VUID-VkSubmitInfo2-pWaitSemaphoreInfos-parameter
If waitSemaphoreInfoCount is not 0, pWaitSemaphoreInfos must be a valid pointer to an array
of waitSemaphoreInfoCount valid VkSemaphoreSubmitInfo structures

• VUID-VkSubmitInfo2-pCommandBufferInfos-parameter
If commandBufferInfoCount is not 0, pCommandBufferInfos must be a valid pointer to an array
of commandBufferInfoCount valid VkCommandBufferSubmitInfo structures

• VUID-VkSubmitInfo2-pSignalSemaphoreInfos-parameter
If signalSemaphoreInfoCount is not 0, pSignalSemaphoreInfos must be a valid pointer to an
array of signalSemaphoreInfoCount valid VkSemaphoreSubmitInfo structures

Bits which can be set in VkSubmitInfo2::flags, specifying submission behavior, are:

241

// Provided by VK_VERSION_1_3
typedef enum VkSubmitFlagBits {
 VK_SUBMIT_PROTECTED_BIT = 0x00000001,
 VK_SUBMIT_PROTECTED_BIT_KHR = VK_SUBMIT_PROTECTED_BIT,
} VkSubmitFlagBits;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkSubmitFlagBits VkSubmitFlagBitsKHR;

• VK_SUBMIT_PROTECTED_BIT specifies that this batch is a protected submission.

// Provided by VK_VERSION_1_3
typedef VkFlags VkSubmitFlags;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkSubmitFlags VkSubmitFlagsKHR;

VkSubmitFlags is a bitmask type for setting a mask of zero or more VkSubmitFlagBits.

The VkSemaphoreSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkSemaphoreSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 uint64_t value;
 VkPipelineStageFlags2 stageMask;
 uint32_t deviceIndex;
} VkSemaphoreSubmitInfo;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkSemaphoreSubmitInfo VkSemaphoreSubmitInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is a VkSemaphore affected by this operation.

242

• value is either the value used to signal semaphore or the value waited on by semaphore, if
semaphore is a timeline semaphore. Otherwise it is ignored.

• stageMask is a VkPipelineStageFlags2 mask of pipeline stages which limit the first
synchronization scope of a semaphore signal operation, or second synchronization scope of a
semaphore wait operation as described in the semaphore wait operation and semaphore signal
operation sections of the synchronization chapter.

• deviceIndex is the index of the device within a device group that executes the semaphore wait or
signal operation.

Whether this structure defines a semaphore wait or signal operation is defined by how it is used.

Valid Usage

• VUID-VkSemaphoreSubmitInfo-stageMask-03929
If the geometryShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkSemaphoreSubmitInfo-stageMask-03930
If the tessellationShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSemaphoreSubmitInfo-stageMask-03931
If the conditionalRendering feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkSemaphoreSubmitInfo-stageMask-03932
If the fragmentDensityMap feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkSemaphoreSubmitInfo-stageMask-03933
If the transformFeedback feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkSemaphoreSubmitInfo-stageMask-03934
If the meshShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-VkSemaphoreSubmitInfo-stageMask-03935
If the taskShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-VkSemaphoreSubmitInfo-stageMask-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled, stageMask
must not contain VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkSemaphoreSubmitInfo-stageMask-04957
If the subpassShading feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-VkSemaphoreSubmitInfo-stageMask-04995
If the invocationMask feature is not enabled, stageMask must not contain

243

VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkSemaphoreSubmitInfo-stageMask-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
stageMask must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkSemaphoreSubmitInfo-device-03888
If the device that semaphore was created on is not a device group, deviceIndex must be 0

• VUID-VkSemaphoreSubmitInfo-device-03889
If the device that semaphore was created on is a device group, deviceIndex must be a valid
device index

Valid Usage (Implicit)

• VUID-VkSemaphoreSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO

• VUID-VkSemaphoreSubmitInfo-pNext-pNext
pNext must be NULL

• VUID-VkSemaphoreSubmitInfo-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-VkSemaphoreSubmitInfo-stageMask-parameter
stageMask must be a valid combination of VkPipelineStageFlagBits2 values

The VkCommandBufferSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCommandBufferSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandBuffer commandBuffer;
 uint32_t deviceMask;
} VkCommandBufferSubmitInfo;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkCommandBufferSubmitInfo VkCommandBufferSubmitInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• commandBuffer is a VkCommandBuffer to be submitted for execution.

• deviceMask is a bitmask indicating which devices in a device group execute the command buffer.
A deviceMask of 0 is equivalent to setting all bits corresponding to valid devices in the group to 1.

244

Valid Usage

• VUID-VkCommandBufferSubmitInfo-commandBuffer-03890
commandBuffer must not have been allocated with VK_COMMAND_BUFFER_LEVEL_SECONDARY

• VUID-VkCommandBufferSubmitInfo-deviceMask-03891
If deviceMask is not 0, it must be a valid device mask

• VUID-VkCommandBufferSubmitInfo-commandBuffer-09445
If any render pass instance in commandBuffer was recorded with a
VkRenderPassStripeBeginInfoARM structure in its pNext chain, a
VkRenderPassStripeSubmitInfoARM must be included in the pNext chain

• VUID-VkCommandBufferSubmitInfo-pNext-09446
If a VkRenderPassStripeSubmitInfoARM is included in the pNext chain, the value of
VkRenderPassStripeSubmitInfoARM::stripeSemaphoreInfoCount must be equal to the sum
of the VkRenderPassStripeBeginInfoARM::stripeInfoCount parameters provided to render
pass instances recorded in commandBuffer

Valid Usage (Implicit)

• VUID-VkCommandBufferSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO

• VUID-VkCommandBufferSubmitInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkRenderPassStripeSubmitInfoARM

• VUID-VkCommandBufferSubmitInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkCommandBufferSubmitInfo-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

The VkRenderPassStripeSubmitInfoARM structure is defined as:

// Provided by VK_ARM_render_pass_striped
typedef struct VkRenderPassStripeSubmitInfoARM {
 VkStructureType sType;
 const void* pNext;
 uint32_t stripeSemaphoreInfoCount;
 const VkSemaphoreSubmitInfo* pStripeSemaphoreInfos;
} VkRenderPassStripeSubmitInfoARM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stripeSemaphoreInfoCount is the number of semaphores used to signal stripe completion in the
render pass instances in the submitted command buffer.

• pStripeSemaphoreInfos is a pointer to an array of stripeSemaphoreInfoCount

245

VkSemaphoreSubmitInfo structures describing the semaphores used to signal stripe
completion.

This structure can be included in the pNext chain of VkCommandBufferSubmitInfo to provide a set
of semaphores to be signaled for each striped render pass instance.

The elements of pStripeSemaphoreInfos are mapped to render pass instances in
VkCommandBufferSubmitInfo::commandBuffer in submission order and in stripe order within each
render pass instance. Each semaphore in pStripeSemaphoreInfos is signaled when the
implementation has completed execution of the associated stripe. In a render pass instance that has
multiview enabled, the stripe includes all views in the view mask. In a render pass instance with
layerCount greater than 1, the stripe includes all layers.

Valid Usage

• VUID-VkRenderPassStripeSubmitInfoARM-semaphore-09447
The semaphore member of each element of pStripeSemaphoreInfos must have been created
with a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY

Valid Usage (Implicit)

• VUID-VkRenderPassStripeSubmitInfoARM-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_SUBMIT_INFO_ARM

• VUID-VkRenderPassStripeSubmitInfoARM-pStripeSemaphoreInfos-parameter
pStripeSemaphoreInfos must be a valid pointer to an array of stripeSemaphoreInfoCount
valid VkSemaphoreSubmitInfo structures

• VUID-VkRenderPassStripeSubmitInfoARM-stripeSemaphoreInfoCount-arraylength
stripeSemaphoreInfoCount must be greater than 0

To submit command buffers to a queue, call:

// Provided by VK_VERSION_1_0
VkResult vkQueueSubmit(
 VkQueue queue,
 uint32_t submitCount,
 const VkSubmitInfo* pSubmits,
 VkFence fence);

• queue is the queue that the command buffers will be submitted to.

• submitCount is the number of elements in the pSubmits array.

• pSubmits is a pointer to an array of VkSubmitInfo structures, each specifying a command buffer
submission batch.

• fence is an optional handle to a fence to be signaled once all submitted command buffers have
completed execution. If fence is not VK_NULL_HANDLE, it defines a fence signal operation.

246

vkQueueSubmit is a queue submission command, with each batch defined by an element of pSubmits.
Batches begin execution in the order they appear in pSubmits, but may complete out of order.

Fence and semaphore operations submitted with vkQueueSubmit have additional ordering
constraints compared to other submission commands, with dependencies involving previous and
subsequent queue operations. Information about these additional constraints can be found in the
semaphore and fence sections of the synchronization chapter.

Details on the interaction of pWaitDstStageMask with synchronization are described in the
semaphore wait operation section of the synchronization chapter.

The order that batches appear in pSubmits is used to determine submission order, and thus all the
implicit ordering guarantees that respect it. Other than these implicit ordering guarantees and any
explicit synchronization primitives, these batches may overlap or otherwise execute out of order.

If any command buffer submitted to this queue is in the executable state, it is moved to the pending
state. Once execution of all submissions of a command buffer complete, it moves from the pending
state, back to the executable state. If a command buffer was recorded with the
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT flag, it instead moves to the invalid state.

If vkQueueSubmit fails, it may return VK_ERROR_OUT_OF_HOST_MEMORY or VK_ERROR_OUT_OF_DEVICE_MEMORY.
If it does, the implementation must ensure that the state and contents of any resources or
synchronization primitives referenced by the submitted command buffers and any semaphores
referenced by pSubmits is unaffected by the call or its failure. If vkQueueSubmit fails in such a way
that the implementation is unable to make that guarantee, the implementation must return
VK_ERROR_DEVICE_LOST. See Lost Device.

Valid Usage

• VUID-vkQueueSubmit-fence-00063
If fence is not VK_NULL_HANDLE, fence must be unsignaled

• VUID-vkQueueSubmit-fence-00064
If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue
command that has not yet completed execution on that queue

• VUID-vkQueueSubmit-pCommandBuffers-00065
Any calls to vkCmdSetEvent, vkCmdResetEvent or vkCmdWaitEvents that have been
recorded into any of the command buffer elements of the pCommandBuffers member of any
element of pSubmits, must not reference any VkEvent that is referenced by any of those
commands in a command buffer that has been submitted to another queue and is still in
the pending state

• VUID-vkQueueSubmit-pWaitDstStageMask-00066
Any stage flag included in any element of the pWaitDstStageMask member of any element
of pSubmits must be a pipeline stage supported by one of the capabilities of queue, as
specified in the table of supported pipeline stages

• VUID-vkQueueSubmit-pSignalSemaphores-00067
Each binary semaphore element of the pSignalSemaphores member of any element of
pSubmits must be unsignaled when the semaphore signal operation it defines is executed

247

on the device

• VUID-vkQueueSubmit-pWaitSemaphores-00068
When a semaphore wait operation referring to a binary semaphore defined by any
element of the pWaitSemaphores member of any element of pSubmits executes on queue,
there must be no other queues waiting on the same semaphore

• VUID-vkQueueSubmit-pWaitSemaphores-03238
All elements of the pWaitSemaphores member of all elements of pSubmits created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY must reference a semaphore signal
operation that has been submitted for execution and any semaphore signal operations on
which it depends must have also been submitted for execution

• VUID-vkQueueSubmit-pCommandBuffers-00070
Each element of the pCommandBuffers member of each element of pSubmits must be in the
pending or executable state

• VUID-vkQueueSubmit-pCommandBuffers-00071
If any element of the pCommandBuffers member of any element of pSubmits was not
recorded with the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the
pending state

• VUID-vkQueueSubmit-pCommandBuffers-00072
Any secondary command buffers recorded into any element of the pCommandBuffers
member of any element of pSubmits must be in the pending or executable state

• VUID-vkQueueSubmit-pCommandBuffers-00073
If any secondary command buffers recorded into any element of the pCommandBuffers
member of any element of pSubmits was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the pending state

• VUID-vkQueueSubmit-pCommandBuffers-00074
Each element of the pCommandBuffers member of each element of pSubmits must have been
allocated from a VkCommandPool that was created for the same queue family queue belongs
to

• VUID-vkQueueSubmit-pSubmits-02207
If any element of pSubmits->pCommandBuffers includes a Queue Family Ownership Transfer
Acquire Operation, there must exist a previously submitted Queue Family Ownership
Transfer Release Operation on a queue in the queue family identified by the acquire
operation, with parameters matching the acquire operation as defined in the definition of
such acquire operations, and which happens-before the acquire operation

• VUID-vkQueueSubmit-pCommandBuffers-03220
If a command recorded into any element of pCommandBuffers was a vkCmdBeginQuery
whose queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, the
profiling lock must have been held continuously on the VkDevice that queue was retrieved
from, throughout recording of those command buffers

• VUID-vkQueueSubmit-pSubmits-02808
Any resource created with VK_SHARING_MODE_EXCLUSIVE that is read by an operation
specified by pSubmits must not be owned by any queue family other than the one which
queue belongs to, at the time it is executed

248

• VUID-vkQueueSubmit-pSubmits-04626
Any resource created with VK_SHARING_MODE_CONCURRENT that is accessed by an operation
specified by pSubmits must have included the queue family of queue at resource creation
time

• VUID-vkQueueSubmit-queue-06448
If queue was not created with VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT, there must be no
element of pSubmits that includes a VkProtectedSubmitInfo structure in its pNext chain
with protectedSubmit equal to VK_TRUE

Valid Usage (Implicit)

• VUID-vkQueueSubmit-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueSubmit-pSubmits-parameter
If submitCount is not 0, pSubmits must be a valid pointer to an array of submitCount valid
VkSubmitInfo structures

• VUID-vkQueueSubmit-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkQueueSubmit-commonparent
Both of fence, and queue that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

249

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 const VkPipelineStageFlags* pWaitDstStageMask;
 uint32_t commandBufferCount;
 const VkCommandBuffer* pCommandBuffers;
 uint32_t signalSemaphoreCount;
 const VkSemaphore* pSignalSemaphores;
} VkSubmitInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreCount is the number of semaphores upon which to wait before executing the
command buffers for the batch.

• pWaitSemaphores is a pointer to an array of VkSemaphore handles upon which to wait before the
command buffers for this batch begin execution. If semaphores to wait on are provided, they
define a semaphore wait operation.

• pWaitDstStageMask is a pointer to an array of pipeline stages at which each corresponding
semaphore wait will occur.

• commandBufferCount is the number of command buffers to execute in the batch.

• pCommandBuffers is a pointer to an array of VkCommandBuffer handles to execute in the batch.

• signalSemaphoreCount is the number of semaphores to be signaled once the commands specified
in pCommandBuffers have completed execution.

• pSignalSemaphores is a pointer to an array of VkSemaphore handles which will be signaled when
the command buffers for this batch have completed execution. If semaphores to be signaled are
provided, they define a semaphore signal operation.

The order that command buffers appear in pCommandBuffers is used to determine submission order,
and thus all the implicit ordering guarantees that respect it. Other than these implicit ordering
guarantees and any explicit synchronization primitives, these command buffers may overlap or
otherwise execute out of order.

Valid Usage

• VUID-VkSubmitInfo-pWaitDstStageMask-04090

250

If the geometryShader feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubmitInfo-pWaitDstStageMask-04091
If the tessellationShader feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubmitInfo-pWaitDstStageMask-04092
If the conditionalRendering feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkSubmitInfo-pWaitDstStageMask-04093
If the fragmentDensityMap feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkSubmitInfo-pWaitDstStageMask-04094
If the transformFeedback feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkSubmitInfo-pWaitDstStageMask-04095
If the meshShader feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-VkSubmitInfo-pWaitDstStageMask-04096
If the taskShader feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-VkSubmitInfo-pWaitDstStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkSubmitInfo-pWaitDstStageMask-03937
If the synchronization2 feature is not enabled, pWaitDstStageMask must not be 0

• VUID-VkSubmitInfo-pWaitDstStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
pWaitDstStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkSubmitInfo-pCommandBuffers-00075
Each element of pCommandBuffers must not have been allocated with
VK_COMMAND_BUFFER_LEVEL_SECONDARY

• VUID-VkSubmitInfo-pWaitDstStageMask-00078
Each element of pWaitDstStageMask must not include VK_PIPELINE_STAGE_HOST_BIT

• VUID-VkSubmitInfo-pWaitSemaphores-03239
If any element of pWaitSemaphores or pSignalSemaphores was created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE, then the pNext chain must include a
VkTimelineSemaphoreSubmitInfo structure

• VUID-VkSubmitInfo-pNext-03240
If the pNext chain of this structure includes a VkTimelineSemaphoreSubmitInfo structure
and any element of pWaitSemaphores was created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE, then its waitSemaphoreValueCount member must equal

251

waitSemaphoreCount

• VUID-VkSubmitInfo-pNext-03241
If the pNext chain of this structure includes a VkTimelineSemaphoreSubmitInfo structure
and any element of pSignalSemaphores was created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE, then its signalSemaphoreValueCount member must equal
signalSemaphoreCount

• VUID-VkSubmitInfo-pSignalSemaphores-03242
For each element of pSignalSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pSignalSemaphoreValues must have a value greater
than the current value of the semaphore when the semaphore signal operation is
executed

• VUID-VkSubmitInfo-pWaitSemaphores-03243
For each element of pWaitSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pWaitSemaphoreValues must have a value which does
not differ from the current value of the semaphore or the value of any outstanding
semaphore wait or signal operation on that semaphore by more than
maxTimelineSemaphoreValueDifference

• VUID-VkSubmitInfo-pSignalSemaphores-03244
For each element of pSignalSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pSignalSemaphoreValues must have a value which does
not differ from the current value of the semaphore or the value of any outstanding
semaphore wait or signal operation on that semaphore by more than
maxTimelineSemaphoreValueDifference

• VUID-VkSubmitInfo-pNext-04120
If the pNext chain of this structure does not include a VkProtectedSubmitInfo structure with
protectedSubmit set to VK_TRUE, then each element of the pCommandBuffers array must be an
unprotected command buffer

• VUID-VkSubmitInfo-pNext-04148
If the pNext chain of this structure includes a VkProtectedSubmitInfo structure with
protectedSubmit set to VK_TRUE, then each element of the pCommandBuffers array must be a
protected command buffer

• VUID-VkSubmitInfo-pCommandBuffers-06193
If pCommandBuffers contains any resumed render pass instances, they must be suspended
by a render pass instance earlier in submission order within pCommandBuffers

• VUID-VkSubmitInfo-pCommandBuffers-06014
If pCommandBuffers contains any suspended render pass instances, they must be resumed
by a render pass instance later in submission order within pCommandBuffers

• VUID-VkSubmitInfo-pCommandBuffers-06015
If pCommandBuffers contains any suspended render pass instances, there must be no action
or synchronization commands executed in a primary or secondary command buffer
between that render pass instance and the render pass instance that resumes it

252

• VUID-VkSubmitInfo-pCommandBuffers-06016
If pCommandBuffers contains any suspended render pass instances, there must be no
render pass instances between that render pass instance and the render pass instance
that resumes it

• VUID-VkSubmitInfo-variableSampleLocations-06017
If the variableSampleLocations limit is not supported, and any element of pCommandBuffers
contains any suspended render pass instances, where a graphics pipeline has been bound,
any pipelines bound in the render pass instance that resumes it, or any subsequent
render pass instances that resume from that one and so on, must use the same sample
locations

Valid Usage (Implicit)

• VUID-VkSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBMIT_INFO

• VUID-VkSubmitInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkAmigoProfilingSubmitInfoSEC,
VkD3D12FenceSubmitInfoKHR, VkDeviceGroupSubmitInfo, VkFrameBoundaryEXT,
VkLatencySubmissionPresentIdNV, VkPerformanceQuerySubmitInfoKHR,
VkProtectedSubmitInfo, VkTimelineSemaphoreSubmitInfo,
VkWin32KeyedMutexAcquireReleaseInfoKHR, or
VkWin32KeyedMutexAcquireReleaseInfoNV

• VUID-VkSubmitInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSubmitInfo-pWaitSemaphores-parameter
If waitSemaphoreCount is not 0, pWaitSemaphores must be a valid pointer to an array of
waitSemaphoreCount valid VkSemaphore handles

• VUID-VkSubmitInfo-pWaitDstStageMask-parameter
If waitSemaphoreCount is not 0, pWaitDstStageMask must be a valid pointer to an array of
waitSemaphoreCount valid combinations of VkPipelineStageFlagBits values

• VUID-VkSubmitInfo-pCommandBuffers-parameter
If commandBufferCount is not 0, pCommandBuffers must be a valid pointer to an array of
commandBufferCount valid VkCommandBuffer handles

• VUID-VkSubmitInfo-pSignalSemaphores-parameter
If signalSemaphoreCount is not 0, pSignalSemaphores must be a valid pointer to an array of
signalSemaphoreCount valid VkSemaphore handles

• VUID-VkSubmitInfo-commonparent
Each of the elements of pCommandBuffers, the elements of pSignalSemaphores, and the
elements of pWaitSemaphores that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

To specify the values to use when waiting for and signaling semaphores created with a

253

VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE, add a VkTimelineSemaphoreSubmitInfo
structure to the pNext chain of the VkSubmitInfo structure when using vkQueueSubmit or the
VkBindSparseInfo structure when using vkQueueBindSparse . The VkTimelineSemaphoreSubmitInfo
structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkTimelineSemaphoreSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreValueCount;
 const uint64_t* pWaitSemaphoreValues;
 uint32_t signalSemaphoreValueCount;
 const uint64_t* pSignalSemaphoreValues;
} VkTimelineSemaphoreSubmitInfo;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkTimelineSemaphoreSubmitInfo VkTimelineSemaphoreSubmitInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreValueCount is the number of semaphore wait values specified in
pWaitSemaphoreValues.

• pWaitSemaphoreValues is a pointer to an array of waitSemaphoreValueCount values for the
corresponding semaphores in VkSubmitInfo::pWaitSemaphores to wait for.

• signalSemaphoreValueCount is the number of semaphore signal values specified in
pSignalSemaphoreValues.

• pSignalSemaphoreValues is a pointer to an array signalSemaphoreValueCount values for the
corresponding semaphores in VkSubmitInfo::pSignalSemaphores to set when signaled.

If the semaphore in VkSubmitInfo::pWaitSemaphores or VkSubmitInfo::pSignalSemaphores
corresponding to an entry in pWaitSemaphoreValues or pSignalSemaphoreValues respectively was not
created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE, the implementation must ignore
the value in the pWaitSemaphoreValues or pSignalSemaphoreValues entry.

Valid Usage (Implicit)

• VUID-VkTimelineSemaphoreSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO

• VUID-VkTimelineSemaphoreSubmitInfo-pWaitSemaphoreValues-parameter
If waitSemaphoreValueCount is not 0, and pWaitSemaphoreValues is not NULL,
pWaitSemaphoreValues must be a valid pointer to an array of waitSemaphoreValueCount
uint64_t values

254

• VUID-VkTimelineSemaphoreSubmitInfo-pSignalSemaphoreValues-parameter
If signalSemaphoreValueCount is not 0, and pSignalSemaphoreValues is not NULL,
pSignalSemaphoreValues must be a valid pointer to an array of signalSemaphoreValueCount
uint64_t values

To specify the values to use when waiting for and signaling semaphores whose current payload
refers to a Direct3D 12 fence, add a VkD3D12FenceSubmitInfoKHR structure to the pNext chain of
the VkSubmitInfo structure. The VkD3D12FenceSubmitInfoKHR structure is defined as:

// Provided by VK_KHR_external_semaphore_win32
typedef struct VkD3D12FenceSubmitInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreValuesCount;
 const uint64_t* pWaitSemaphoreValues;
 uint32_t signalSemaphoreValuesCount;
 const uint64_t* pSignalSemaphoreValues;
} VkD3D12FenceSubmitInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreValuesCount is the number of semaphore wait values specified in
pWaitSemaphoreValues.

• pWaitSemaphoreValues is a pointer to an array of waitSemaphoreValuesCount values for the
corresponding semaphores in VkSubmitInfo::pWaitSemaphores to wait for.

• signalSemaphoreValuesCount is the number of semaphore signal values specified in
pSignalSemaphoreValues.

• pSignalSemaphoreValues is a pointer to an array of signalSemaphoreValuesCount values for the
corresponding semaphores in VkSubmitInfo::pSignalSemaphores to set when signaled.

If the semaphore in VkSubmitInfo::pWaitSemaphores or VkSubmitInfo::pSignalSemaphores
corresponding to an entry in pWaitSemaphoreValues or pSignalSemaphoreValues respectively does not
currently have a payload referring to a Direct3D 12 fence, the implementation must ignore the
value in the pWaitSemaphoreValues or pSignalSemaphoreValues entry.

Note

As the introduction of the external semaphore handle type
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT predates that of timeline
semaphores, support for importing semaphore payloads from external handles of
that type into semaphores created (implicitly or explicitly) with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY is preserved for backwards
compatibility. However, applications should prefer importing such handle types
into semaphores created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE,
and use the VkTimelineSemaphoreSubmitInfo structure instead of the
VkD3D12FenceSubmitInfoKHR structure to specify the values to use when waiting for

255

and signaling such semaphores.

Valid Usage

• VUID-VkD3D12FenceSubmitInfoKHR-waitSemaphoreValuesCount-00079
waitSemaphoreValuesCount must be the same value as VkSubmitInfo::waitSemaphoreCount,
where this structure is in the pNext chain of a VkSubmitInfo structure

• VUID-VkD3D12FenceSubmitInfoKHR-signalSemaphoreValuesCount-00080
signalSemaphoreValuesCount must be the same value as VkSubmitInfo::
signalSemaphoreCount, where this structure is in the pNext chain of a VkSubmitInfo structure

Valid Usage (Implicit)

• VUID-VkD3D12FenceSubmitInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR

• VUID-VkD3D12FenceSubmitInfoKHR-pWaitSemaphoreValues-parameter
If waitSemaphoreValuesCount is not 0, and pWaitSemaphoreValues is not NULL,
pWaitSemaphoreValues must be a valid pointer to an array of waitSemaphoreValuesCount
uint64_t values

• VUID-VkD3D12FenceSubmitInfoKHR-pSignalSemaphoreValues-parameter
If signalSemaphoreValuesCount is not 0, and pSignalSemaphoreValues is not NULL,
pSignalSemaphoreValues must be a valid pointer to an array of signalSemaphoreValuesCount
uint64_t values

When submitting work that operates on memory imported from a Direct3D 11 resource to a queue,
the keyed mutex mechanism may be used in addition to Vulkan semaphores to synchronize the
work. Keyed mutexes are a property of a properly created shareable Direct3D 11 resource. They
can only be used if the imported resource was created with the
D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX flag.

To acquire keyed mutexes before submitted work and/or release them after, add a
VkWin32KeyedMutexAcquireReleaseInfoKHR structure to the pNext chain of the VkSubmitInfo
structure.

The VkWin32KeyedMutexAcquireReleaseInfoKHR structure is defined as:

// Provided by VK_KHR_win32_keyed_mutex
typedef struct VkWin32KeyedMutexAcquireReleaseInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t acquireCount;
 const VkDeviceMemory* pAcquireSyncs;
 const uint64_t* pAcquireKeys;
 const uint32_t* pAcquireTimeouts;
 uint32_t releaseCount;

256

 const VkDeviceMemory* pReleaseSyncs;
 const uint64_t* pReleaseKeys;
} VkWin32KeyedMutexAcquireReleaseInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• acquireCount is the number of entries in the pAcquireSyncs, pAcquireKeys, and pAcquireTimeouts
arrays.

• pAcquireSyncs is a pointer to an array of VkDeviceMemory objects which were imported from
Direct3D 11 resources.

• pAcquireKeys is a pointer to an array of mutex key values to wait for prior to beginning the
submitted work. Entries refer to the keyed mutex associated with the corresponding entries in
pAcquireSyncs.

• pAcquireTimeouts is a pointer to an array of timeout values, in millisecond units, for each
acquire specified in pAcquireKeys.

• releaseCount is the number of entries in the pReleaseSyncs and pReleaseKeys arrays.

• pReleaseSyncs is a pointer to an array of VkDeviceMemory objects which were imported from
Direct3D 11 resources.

• pReleaseKeys is a pointer to an array of mutex key values to set when the submitted work has
completed. Entries refer to the keyed mutex associated with the corresponding entries in
pReleaseSyncs.

Valid Usage

• VUID-VkWin32KeyedMutexAcquireReleaseInfoKHR-pAcquireSyncs-00081
Each member of pAcquireSyncs and pReleaseSyncs must be a device memory object
imported by setting VkImportMemoryWin32HandleInfoKHR::handleType to
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT

Valid Usage (Implicit)

• VUID-VkWin32KeyedMutexAcquireReleaseInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR

• VUID-VkWin32KeyedMutexAcquireReleaseInfoKHR-pAcquireSyncs-parameter
If acquireCount is not 0, pAcquireSyncs must be a valid pointer to an array of acquireCount
valid VkDeviceMemory handles

• VUID-VkWin32KeyedMutexAcquireReleaseInfoKHR-pAcquireKeys-parameter
If acquireCount is not 0, pAcquireKeys must be a valid pointer to an array of acquireCount
uint64_t values

• VUID-VkWin32KeyedMutexAcquireReleaseInfoKHR-pAcquireTimeouts-parameter
If acquireCount is not 0, pAcquireTimeouts must be a valid pointer to an array of

257

acquireCount uint32_t values

• VUID-VkWin32KeyedMutexAcquireReleaseInfoKHR-pReleaseSyncs-parameter
If releaseCount is not 0, pReleaseSyncs must be a valid pointer to an array of releaseCount
valid VkDeviceMemory handles

• VUID-VkWin32KeyedMutexAcquireReleaseInfoKHR-pReleaseKeys-parameter
If releaseCount is not 0, pReleaseKeys must be a valid pointer to an array of releaseCount
uint64_t values

• VUID-VkWin32KeyedMutexAcquireReleaseInfoKHR-commonparent
Both of the elements of pAcquireSyncs, and the elements of pReleaseSyncs that are valid
handles of non-ignored parameters must have been created, allocated, or retrieved from
the same VkDevice

When submitting work that operates on memory imported from a Direct3D 11 resource to a queue,
the keyed mutex mechanism may be used in addition to Vulkan semaphores to synchronize the
work. Keyed mutexes are a property of a properly created shareable Direct3D 11 resource. They
can only be used if the imported resource was created with the
D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX flag.

To acquire keyed mutexes before submitted work and/or release them after, add a
VkWin32KeyedMutexAcquireReleaseInfoNV structure to the pNext chain of the VkSubmitInfo
structure.

The VkWin32KeyedMutexAcquireReleaseInfoNV structure is defined as:

// Provided by VK_NV_win32_keyed_mutex
typedef struct VkWin32KeyedMutexAcquireReleaseInfoNV {
 VkStructureType sType;
 const void* pNext;
 uint32_t acquireCount;
 const VkDeviceMemory* pAcquireSyncs;
 const uint64_t* pAcquireKeys;
 const uint32_t* pAcquireTimeoutMilliseconds;
 uint32_t releaseCount;
 const VkDeviceMemory* pReleaseSyncs;
 const uint64_t* pReleaseKeys;
} VkWin32KeyedMutexAcquireReleaseInfoNV;

• acquireCount is the number of entries in the pAcquireSyncs, pAcquireKeys, and
pAcquireTimeoutMilliseconds arrays.

• pAcquireSyncs is a pointer to an array of VkDeviceMemory objects which were imported from
Direct3D 11 resources.

• pAcquireKeys is a pointer to an array of mutex key values to wait for prior to beginning the
submitted work. Entries refer to the keyed mutex associated with the corresponding entries in
pAcquireSyncs.

• pAcquireTimeoutMilliseconds is a pointer to an array of timeout values, in millisecond units, for

258

each acquire specified in pAcquireKeys.

• releaseCount is the number of entries in the pReleaseSyncs and pReleaseKeys arrays.

• pReleaseSyncs is a pointer to an array of VkDeviceMemory objects which were imported from
Direct3D 11 resources.

• pReleaseKeys is a pointer to an array of mutex key values to set when the submitted work has
completed. Entries refer to the keyed mutex associated with the corresponding entries in
pReleaseSyncs.

Valid Usage (Implicit)

• VUID-VkWin32KeyedMutexAcquireReleaseInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV

• VUID-VkWin32KeyedMutexAcquireReleaseInfoNV-pAcquireSyncs-parameter
If acquireCount is not 0, pAcquireSyncs must be a valid pointer to an array of acquireCount
valid VkDeviceMemory handles

• VUID-VkWin32KeyedMutexAcquireReleaseInfoNV-pAcquireKeys-parameter
If acquireCount is not 0, pAcquireKeys must be a valid pointer to an array of acquireCount
uint64_t values

• VUID-VkWin32KeyedMutexAcquireReleaseInfoNV-pAcquireTimeoutMilliseconds-
parameter
If acquireCount is not 0, pAcquireTimeoutMilliseconds must be a valid pointer to an array of
acquireCount uint32_t values

• VUID-VkWin32KeyedMutexAcquireReleaseInfoNV-pReleaseSyncs-parameter
If releaseCount is not 0, pReleaseSyncs must be a valid pointer to an array of releaseCount
valid VkDeviceMemory handles

• VUID-VkWin32KeyedMutexAcquireReleaseInfoNV-pReleaseKeys-parameter
If releaseCount is not 0, pReleaseKeys must be a valid pointer to an array of releaseCount
uint64_t values

• VUID-VkWin32KeyedMutexAcquireReleaseInfoNV-commonparent
Both of the elements of pAcquireSyncs, and the elements of pReleaseSyncs that are valid
handles of non-ignored parameters must have been created, allocated, or retrieved from
the same VkDevice

If the pNext chain of VkSubmitInfo includes a VkProtectedSubmitInfo structure, then the structure
indicates whether the batch is protected. The VkProtectedSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkProtectedSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 VkBool32 protectedSubmit;
} VkProtectedSubmitInfo;

259

• protectedSubmit specifies whether the batch is protected. If protectedSubmit is VK_TRUE, the batch
is protected. If protectedSubmit is VK_FALSE, the batch is unprotected. If the VkSubmitInfo::pNext
chain does not include this structure, the batch is unprotected.

Valid Usage (Implicit)

• VUID-VkProtectedSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO

If the pNext chain of VkSubmitInfo includes a VkDeviceGroupSubmitInfo structure, then that structure
includes device indices and masks specifying which physical devices execute semaphore operations
and command buffers.

The VkDeviceGroupSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const uint32_t* pWaitSemaphoreDeviceIndices;
 uint32_t commandBufferCount;
 const uint32_t* pCommandBufferDeviceMasks;
 uint32_t signalSemaphoreCount;
 const uint32_t* pSignalSemaphoreDeviceIndices;
} VkDeviceGroupSubmitInfo;

or the equivalent

// Provided by VK_KHR_device_group
typedef VkDeviceGroupSubmitInfo VkDeviceGroupSubmitInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreCount is the number of elements in the pWaitSemaphoreDeviceIndices array.

• pWaitSemaphoreDeviceIndices is a pointer to an array of waitSemaphoreCount device indices
indicating which physical device executes the semaphore wait operation in the corresponding
element of VkSubmitInfo::pWaitSemaphores.

• commandBufferCount is the number of elements in the pCommandBufferDeviceMasks array.

• pCommandBufferDeviceMasks is a pointer to an array of commandBufferCount device masks indicating
which physical devices execute the command buffer in the corresponding element of
VkSubmitInfo::pCommandBuffers. A physical device executes the command buffer if the
corresponding bit is set in the mask.

• signalSemaphoreCount is the number of elements in the pSignalSemaphoreDeviceIndices array.

260

• pSignalSemaphoreDeviceIndices is a pointer to an array of signalSemaphoreCount device indices
indicating which physical device executes the semaphore signal operation in the corresponding
element of VkSubmitInfo::pSignalSemaphores.

If this structure is not present, semaphore operations and command buffers execute on device
index zero.

Valid Usage

• VUID-VkDeviceGroupSubmitInfo-waitSemaphoreCount-00082
waitSemaphoreCount must equal VkSubmitInfo::waitSemaphoreCount

• VUID-VkDeviceGroupSubmitInfo-commandBufferCount-00083
commandBufferCount must equal VkSubmitInfo::commandBufferCount

• VUID-VkDeviceGroupSubmitInfo-signalSemaphoreCount-00084
signalSemaphoreCount must equal VkSubmitInfo::signalSemaphoreCount

• VUID-VkDeviceGroupSubmitInfo-pWaitSemaphoreDeviceIndices-00085
All elements of pWaitSemaphoreDeviceIndices and pSignalSemaphoreDeviceIndices must be
valid device indices

• VUID-VkDeviceGroupSubmitInfo-pCommandBufferDeviceMasks-00086
All elements of pCommandBufferDeviceMasks must be valid device masks

Valid Usage (Implicit)

• VUID-VkDeviceGroupSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO

• VUID-VkDeviceGroupSubmitInfo-pWaitSemaphoreDeviceIndices-parameter
If waitSemaphoreCount is not 0, pWaitSemaphoreDeviceIndices must be a valid pointer to an
array of waitSemaphoreCount uint32_t values

• VUID-VkDeviceGroupSubmitInfo-pCommandBufferDeviceMasks-parameter
If commandBufferCount is not 0, pCommandBufferDeviceMasks must be a valid pointer to an
array of commandBufferCount uint32_t values

• VUID-VkDeviceGroupSubmitInfo-pSignalSemaphoreDeviceIndices-parameter
If signalSemaphoreCount is not 0, pSignalSemaphoreDeviceIndices must be a valid pointer to
an array of signalSemaphoreCount uint32_t values

If the pNext chain of VkSubmitInfo includes a VkPerformanceQuerySubmitInfoKHR structure, then
the structure indicates which counter pass is active for the batch in that submit.

The VkPerformanceQuerySubmitInfoKHR structure is defined as:

// Provided by VK_KHR_performance_query
typedef struct VkPerformanceQuerySubmitInfoKHR {
 VkStructureType sType;

261

 const void* pNext;
 uint32_t counterPassIndex;
} VkPerformanceQuerySubmitInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• counterPassIndex specifies which counter pass index is active.

If the VkSubmitInfo::pNext chain does not include this structure, the batch defaults to use counter
pass index 0.

Valid Usage

• VUID-VkPerformanceQuerySubmitInfoKHR-counterPassIndex-03221
counterPassIndex must be less than the number of counter passes required by any queries
within the batch. The required number of counter passes for a performance query is
obtained by calling vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR

Valid Usage (Implicit)

• VUID-VkPerformanceQuerySubmitInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PERFORMANCE_QUERY_SUBMIT_INFO_KHR

6.6. Queue Forward Progress
When using binary semaphores, the application must ensure that command buffer submissions
will be able to complete without any subsequent operations by the application on any queue. After
any call to vkQueueSubmit (or other queue operation), for every queued wait on a semaphore created
with a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY there must be a prior signal of that
semaphore that will not be consumed by a different wait on the semaphore.

When using timeline semaphores, wait-before-signal behavior is well-defined and applications can
submit work via vkQueueSubmit defining a timeline semaphore wait operation before submitting a
corresponding semaphore signal operation. For each timeline semaphore wait operation defined by
a call to vkQueueSubmit, the application must ensure that a corresponding semaphore signal
operation is executed before forward progress can be made.

If a command buffer submission waits for any events to be signaled, the application must ensure
that command buffer submissions will be able to complete without any subsequent operations by
the application. Events signaled by the host must be signaled before the command buffer waits on
those events.

Note

The ability for commands to wait on the host to set an events was originally added
to allow low-latency updates to resources between host and device. However, to

262

ensure quality of service, implementations would necessarily detect extended
stalls in execution and timeout after a short period. As this period is not defined in
the Vulkan specification, it is impossible to correctly validate any application with
any wait period. Since the original users of this functionality were highly limited
and platform-specific, this functionality is now considered defunct and should not
be used.

6.7. Secondary Command Buffer Execution
Secondary command buffers must not be directly submitted to a queue. To record a secondary
command buffer to execute as part of a primary command buffer, call:

// Provided by VK_VERSION_1_0
void vkCmdExecuteCommands(
 VkCommandBuffer commandBuffer,
 uint32_t commandBufferCount,
 const VkCommandBuffer* pCommandBuffers);

• commandBuffer is a handle to a primary command buffer that the secondary command buffers
are executed in.

• commandBufferCount is the length of the pCommandBuffers array.

• pCommandBuffers is a pointer to an array of commandBufferCount secondary command buffer
handles, which are recorded to execute in the primary command buffer in the order they are
listed in the array.

If any element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, and it was recorded into any other primary
command buffer which is currently in the executable or recording state, that primary command
buffer becomes invalid.

If the nestedCommandBuffer feature is enabled it is valid usage for vkCmdExecuteCommands to also be
recorded to a secondary command buffer.

Valid Usage

• VUID-vkCmdExecuteCommands-pCommandBuffers-00088
Each element of pCommandBuffers must have been allocated with a level of
VK_COMMAND_BUFFER_LEVEL_SECONDARY

• VUID-vkCmdExecuteCommands-pCommandBuffers-00089
Each element of pCommandBuffers must be in the pending or executable state

• VUID-vkCmdExecuteCommands-pCommandBuffers-00091
If any element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not be in the pending state

• VUID-vkCmdExecuteCommands-pCommandBuffers-00092
If any element of pCommandBuffers was not recorded with the

263

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not have already been
recorded to commandBuffer

• VUID-vkCmdExecuteCommands-pCommandBuffers-00093
If any element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not appear more than once in
pCommandBuffers

• VUID-vkCmdExecuteCommands-pCommandBuffers-00094
Each element of pCommandBuffers must have been allocated from a VkCommandPool that was
created for the same queue family as the VkCommandPool from which commandBuffer was
allocated

• VUID-vkCmdExecuteCommands-pCommandBuffers-00096
If vkCmdExecuteCommands is being called within a render pass instance, each element of
pCommandBuffers must have been recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

• VUID-vkCmdExecuteCommands-pCommandBuffers-00099
If vkCmdExecuteCommands is being called within a render pass instance, and any element of
pCommandBuffers was recorded with VkCommandBufferInheritanceInfo::framebuffer not
equal to VK_NULL_HANDLE, that VkFramebuffer must match the VkFramebuffer used in the
current render pass instance

• VUID-vkCmdExecuteCommands-contents-06018
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRenderPass, its contents parameter must have been set to
VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS , or
VK_SUBPASS_CONTENTS_INLINE_AND_SECONDARY_COMMAND_BUFFERS_EXT

• VUID-vkCmdExecuteCommands-pCommandBuffers-06019
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRenderPass, each element of pCommandBuffers must have been recorded with
VkCommandBufferInheritanceInfo::subpass set to the index of the subpass which the
given command buffer will be executed in

• VUID-vkCmdExecuteCommands-pBeginInfo-06020
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRenderPass, the render passes specified in the pBeginInfo->pInheritanceInfo-
>renderPass members of the vkBeginCommandBuffer commands used to begin recording
each element of pCommandBuffers must be compatible with the current render pass

• VUID-vkCmdExecuteCommands-pNext-02865
If vkCmdExecuteCommands is being called within a render pass instance that included
VkRenderPassTransformBeginInfoQCOM in the pNext chain of VkRenderPassBeginInfo,
then each element of pCommandBuffers must have been recorded with
VkCommandBufferInheritanceRenderPassTransformInfoQCOM in the pNext chain of
VkCommandBufferBeginInfo

• VUID-vkCmdExecuteCommands-pNext-02866
If vkCmdExecuteCommands is being called within a render pass instance that included
VkRenderPassTransformBeginInfoQCOM in the pNext chain of VkRenderPassBeginInfo,
then each element of pCommandBuffers must have been recorded with

264

VkCommandBufferInheritanceRenderPassTransformInfoQCOM::transform identical to
VkRenderPassTransformBeginInfoQCOM::transform

• VUID-vkCmdExecuteCommands-pNext-02867
If vkCmdExecuteCommands is being called within a render pass instance that included
VkRenderPassTransformBeginInfoQCOM in the pNext chain of VkRenderPassBeginInfo,
then each element of pCommandBuffers must have been recorded with
VkCommandBufferInheritanceRenderPassTransformInfoQCOM::renderArea identical to
VkRenderPassBeginInfo::renderArea

• VUID-vkCmdExecuteCommands-pCommandBuffers-00100
If vkCmdExecuteCommands is not being called within a render pass instance, each element of
pCommandBuffers must not have been recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

• VUID-vkCmdExecuteCommands-commandBuffer-00101
If the inheritedQueries feature is not enabled, commandBuffer must not have any queries
active

• VUID-vkCmdExecuteCommands-commandBuffer-00102
If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
::occlusionQueryEnable set to VK_TRUE

• VUID-vkCmdExecuteCommands-commandBuffer-00103
If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
::queryFlags having all bits set that are set for the query

• VUID-vkCmdExecuteCommands-commandBuffer-00104
If commandBuffer has a VK_QUERY_TYPE_PIPELINE_STATISTICS query active, then each element
of pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
::pipelineStatistics having all bits set that are set in the VkQueryPool the query uses

• VUID-vkCmdExecuteCommands-pCommandBuffers-00105
Each element of pCommandBuffers must not begin any query types that are active in
commandBuffer

• VUID-vkCmdExecuteCommands-commandBuffer-07594
commandBuffer must not have any queries other than VK_QUERY_TYPE_OCCLUSION and
VK_QUERY_TYPE_PIPELINE_STATISTICS active

• VUID-vkCmdExecuteCommands-commandBuffer-01820
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
each element of pCommandBuffers must be a protected command buffer

• VUID-vkCmdExecuteCommands-commandBuffer-01821
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
each element of pCommandBuffers must be an unprotected command buffer

• VUID-vkCmdExecuteCommands-None-02286
This command must not be recorded when transform feedback is active

• VUID-vkCmdExecuteCommands-commandBuffer-06533
If vkCmdExecuteCommands is being called within a render pass instance and any recorded

265

command in commandBuffer in the current subpass will write to an image subresource as
an attachment, commands recorded in elements of pCommandBuffers must not read from
the memory backing that image subresource in any other way

• VUID-vkCmdExecuteCommands-commandBuffer-06534
If vkCmdExecuteCommands is being called within a render pass instance and any recorded
command in commandBuffer in the current subpass will read from an image subresource
used as an attachment in any way other than as an attachment, commands recorded in
elements of pCommandBuffers must not write to that image subresource as an attachment

• VUID-vkCmdExecuteCommands-pCommandBuffers-06535
If vkCmdExecuteCommands is being called within a render pass instance and any recorded
command in a given element of pCommandBuffers will write to an image subresource as an
attachment, commands recorded in elements of pCommandBuffers at a higher index must
not read from the memory backing that image subresource in any other way

• VUID-vkCmdExecuteCommands-pCommandBuffers-06536
If vkCmdExecuteCommands is being called within a render pass instance and any recorded
command in a given element of pCommandBuffers will read from an image subresource
used as an attachment in any way other than as an attachment, commands recorded in
elements of pCommandBuffers at a higher index must not write to that image subresource
as an attachment

• VUID-vkCmdExecuteCommands-pCommandBuffers-06021
If pCommandBuffers contains any suspended render pass instances, there must be no action
or synchronization commands between that render pass instance and any render pass
instance that resumes it

• VUID-vkCmdExecuteCommands-pCommandBuffers-06022
If pCommandBuffers contains any suspended render pass instances, there must be no
render pass instances between that render pass instance and any render pass instance
that resumes it

• VUID-vkCmdExecuteCommands-variableSampleLocations-06023
If the variableSampleLocations limit is not supported, and any element of pCommandBuffers
contains any suspended render pass instances, where a graphics pipeline has been bound,
any pipelines bound in the render pass instance that resumes it, or any subsequent
render pass instances that resume from that one and so on, must use the same sample
locations

• VUID-vkCmdExecuteCommands-flags-06024
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, its VkRenderingInfo::flags parameter must have included
VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT

• VUID-vkCmdExecuteCommands-pBeginInfo-06025
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the render passes specified in the pBeginInfo->pInheritanceInfo-
>renderPass members of the vkBeginCommandBuffer commands used to begin recording
each element of pCommandBuffers must be VK_NULL_HANDLE

• VUID-vkCmdExecuteCommands-flags-06026
If vkCmdExecuteCommands is being called within a render pass instance begun with

266

vkCmdBeginRendering, the flags member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be equal to the VkRenderingInfo::flags parameter to
vkCmdBeginRendering, excluding VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT

• VUID-vkCmdExecuteCommands-colorAttachmentCount-06027
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the colorAttachmentCount member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be equal to the VkRenderingInfo::colorAttachmentCount parameter
to vkCmdBeginRendering

• VUID-vkCmdExecuteCommands-imageView-06028
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, if the imageView member of an element of the VkRenderingInfo
::pColorAttachments parameter to vkCmdBeginRendering is not VK_NULL_HANDLE, the
corresponding element of the pColorAttachmentFormats member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be equal to the format used to create that image view

• VUID-vkCmdExecuteCommands-imageView-07606
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, if the imageView member of an element of the VkRenderingInfo
::pColorAttachments parameter to vkCmdBeginRendering is VK_NULL_HANDLE, the
corresponding element of the pColorAttachmentFormats member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteCommands-pDepthAttachment-06029
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, if the VkRenderingInfo::pDepthAttachment->imageView parameter to
vkCmdBeginRendering is not VK_NULL_HANDLE, the value of the depthAttachmentFormat
member of the VkCommandBufferInheritanceRenderingInfo structure included in the
pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording
each element of pCommandBuffers must be equal to the format used to create that image
view

• VUID-vkCmdExecuteCommands-pStencilAttachment-06030
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, if the VkRenderingInfo::pStencilAttachment->imageView parameter
to vkCmdBeginRendering is not VK_NULL_HANDLE, the value of the
stencilAttachmentFormat member of the VkCommandBufferInheritanceRenderingInfo
structure included in the pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo
used to begin recording each element of pCommandBuffers must be equal to the format used
to create that image view

• VUID-vkCmdExecuteCommands-pDepthAttachment-06774

267

If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the VkRenderingInfo::pDepthAttachment->imageView parameter
to vkCmdBeginRendering was VK_NULL_HANDLE, the value of the depthAttachmentFormat
member of the VkCommandBufferInheritanceRenderingInfo structure included in the
pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording
each element of pCommandBuffers must be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteCommands-pStencilAttachment-06775
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the VkRenderingInfo::pStencilAttachment->imageView
parameter to vkCmdBeginRendering was VK_NULL_HANDLE, the value of the
stencilAttachmentFormat member of the VkCommandBufferInheritanceRenderingInfo
structure included in the pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo
used to begin recording each element of pCommandBuffers must be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteCommands-viewMask-06031
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the viewMask member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be equal to the VkRenderingInfo::viewMask parameter to
vkCmdBeginRendering

• VUID-vkCmdExecuteCommands-pNext-06032
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the pNext chain of VkCommandBufferInheritanceInfo includes
a VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, if
the imageView member of an element of the VkRenderingInfo::pColorAttachments
parameter to vkCmdBeginRendering is not VK_NULL_HANDLE, the corresponding
element of the pColorAttachmentSamples member of the
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure
included in the pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo used to
begin recording each element of pCommandBuffers must be equal to the sample count used
to create that image view

• VUID-vkCmdExecuteCommands-pNext-06033
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the pNext chain of VkCommandBufferInheritanceInfo includes
a VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, if
the VkRenderingInfo::pDepthAttachment->imageView parameter to vkCmdBeginRendering is
not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples member of the
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure
included in the pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo used to
begin recording each element of pCommandBuffers must be equal to the sample count used
to create that image view

• VUID-vkCmdExecuteCommands-pNext-06034
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the pNext chain of VkCommandBufferInheritanceInfo includes
a VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, if
the VkRenderingInfo::pStencilAttachment->imageView parameter to vkCmdBeginRendering

268

is not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples member of the
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure
included in the pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo used to
begin recording each element of pCommandBuffers must be equal to the sample count used
to create that image view

• VUID-vkCmdExecuteCommands-pNext-06035
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the pNext chain of VkCommandBufferInheritanceInfo does
not include a VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
structure, if the imageView member of an element of the VkRenderingInfo
::pColorAttachments parameter to vkCmdBeginRendering is not VK_NULL_HANDLE, the
value of VkCommandBufferInheritanceRenderingInfo::rasterizationSamples must be
equal to the sample count used to create that image view

• VUID-vkCmdExecuteCommands-pNext-06036
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the pNext chain of VkCommandBufferInheritanceInfo does
not include a VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
structure, if the VkRenderingInfo::pDepthAttachment->imageView parameter to
vkCmdBeginRendering is not VK_NULL_HANDLE, the value of
VkCommandBufferInheritanceRenderingInfo::rasterizationSamples must be equal to the
sample count used to create that image view

• VUID-vkCmdExecuteCommands-pNext-06037
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the pNext chain of VkCommandBufferInheritanceInfo does
not include a VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
structure, if the VkRenderingInfo::pStencilAttachment->imageView parameter to
vkCmdBeginRendering is not VK_NULL_HANDLE, the value of
VkCommandBufferInheritanceRenderingInfo::rasterizationSamples must be equal to the
sample count used to create that image view

• VUID-vkCmdExecuteCommands-pNext-09299
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, with any color attachment using a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, the pNext chain of
VkCommandBufferInheritanceInfo used to create each element of pCommandBuffers must
include a VkExternalFormatANDROID structure with an externalFormat matching that
used to create the resolve attachment in the render pass

• VUID-vkCmdExecuteCommands-pNext-09300
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering with any color attachment using a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and the pNext chain of
VkCommandBufferInheritanceInfo does not include a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, the
value of VkCommandBufferInheritanceRenderingInfo::rasterizationSamples must be
VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdExecuteCommands-commandBuffer-09375

269

commandBuffer must not be a secondary command buffer unless the nestedCommandBuffer
feature is enabled

• VUID-vkCmdExecuteCommands-nestedCommandBuffer-09376
If the nestedCommandBuffer feature is enabled, the command buffer nesting level of each
element of pCommandBuffers must be less than maxCommandBufferNestingLevel

• VUID-vkCmdExecuteCommands-nestedCommandBufferRendering-09377
If the nestedCommandBufferRendering feature is not enabled, and commandBuffer is a
secondary command buffer, commandBuffer must not have been recorded with
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

• VUID-vkCmdExecuteCommands-nestedCommandBufferSimultaneousUse-09378
If the nestedCommandBufferSimultaneousUse feature is not enabled, and commandBuffer is a
secondary command buffer, each element of pCommandBuffers must not have been
recorded with VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT

• VUID-vkCmdExecuteCommands-pCommandBuffers-09504
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the color attachment mapping state specified by
VkRenderingAttachmentLocationInfoKHR in the inheritance info of each element of
pCommandBuffers and in the current state of commandBuffer must match

• VUID-vkCmdExecuteCommands-pCommandBuffers-09505
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the input attachment mapping state specified by
VkRenderingInputAttachmentIndexInfoKHR in the inheritance info of each element of
pCommandBuffers and in the current state of commandBuffer must match

Valid Usage (Implicit)

• VUID-vkCmdExecuteCommands-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdExecuteCommands-pCommandBuffers-parameter
pCommandBuffers must be a valid pointer to an array of commandBufferCount valid
VkCommandBuffer handles

• VUID-vkCmdExecuteCommands-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdExecuteCommands-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdExecuteCommands-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdExecuteCommands-commandBufferCount-arraylength
commandBufferCount must be greater than 0

• VUID-vkCmdExecuteCommands-commonparent
Both of commandBuffer, and the elements of pCommandBuffers must have been created,

270

allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Transfer
Graphics
Compute

Indirection

6.8. Nested Command Buffers
In addition to secondary command buffer execution from primary command buffers, an
implementation may support nested command buffers, which enable secondary command buffers
to be executed from other secondary command buffers. If the nestedCommandBuffer feature is
enabled, the implementation supports nested command buffers.

Nested command buffer execution works the same as primary-to-secondary execution, except that
it is subject to some additional implementation-defined limits.

Each secondary command buffer has a command buffer nesting level, which is determined at
vkEndCommandBuffer time and evaluated at vkCmdExecuteCommands time. A secondary
command buffer that executes no other secondary command buffers has a command buffer
nesting level of zero. Otherwise, the command buffer nesting level of a secondary command buffer
is equal to the maximum nesting level of all secondary command buffers executed by that
command buffer plus one. Some implementations may have a limit on the maximum nesting level
of secondary command buffers that can be recorded. This limit is advertised in
maxCommandBufferNestingLevel.

If the nestedCommandBufferRendering feature is enabled, the implementation supports calling
vkCmdExecuteCommands inside secondary command buffers recorded with
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT. If the nestedCommandBufferSimultaneousUse
feature is enabled, the implementation supports calling vkCmdExecuteCommands with secondary
command buffers recorded with VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT.

Whenever vkCmdExecuteCommands is recorded inside a secondary command buffer recorded
with VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, each member of pCommandBuffers must
have been recorded with a VkCommandBufferBeginInfo with VkCommandBufferInheritanceInfo

271

compatible with the VkCommandBufferInheritanceInfo of the command buffer into which the
vkCmdExecuteCommands call is being recorded. The VkCommandBufferInheritanceRenderingInfo
structures are compatible when the VkCommandBufferInheritanceRenderingInfo::renderpass are
compatible, or if they are VK_NULL_HANDLE then the
VkCommandBufferInheritanceRenderingInfo members match, and all other members of
VkCommandBufferInheritanceRenderingInfo match. This requirement applies recursively, down to the
most nested command buffer and up to the command buffer where the render pass was originally
begun.

6.9. Command Buffer Device Mask
Each command buffer has a piece of state storing the current device mask of the command buffer.
This mask controls which physical devices within the logical device all subsequent commands will
execute on, including state-setting commands, action commands, and synchronization commands.

Scissor, exclusive scissor, and viewport state (excluding the count of each) can be set to different
values on each physical device (only when set as dynamic state), and each physical device will
render using its local copy of the state. Other state is shared between physical devices, such that all
physical devices use the most recently set values for the state. However, when recording an action
command that uses a piece of state, the most recent command that set that state must have
included all physical devices that execute the action command in its current device mask.

The command buffer’s device mask is orthogonal to the pCommandBufferDeviceMasks member of
VkDeviceGroupSubmitInfo. Commands only execute on a physical device if the device index is set
in both device masks.

If the pNext chain of VkCommandBufferBeginInfo includes a VkDeviceGroupCommandBufferBeginInfo
structure, then that structure includes an initial device mask for the command buffer.

The VkDeviceGroupCommandBufferBeginInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupCommandBufferBeginInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t deviceMask;
} VkDeviceGroupCommandBufferBeginInfo;

or the equivalent

// Provided by VK_KHR_device_group
typedef VkDeviceGroupCommandBufferBeginInfo VkDeviceGroupCommandBufferBeginInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceMask is the initial value of the command buffer’s device mask.

272

The initial device mask also acts as an upper bound on the set of devices that can ever be in the
device mask in the command buffer.

If this structure is not present, the initial value of a command buffer’s device mask is set to include
all physical devices in the logical device when the command buffer begins recording.

Valid Usage

• VUID-VkDeviceGroupCommandBufferBeginInfo-deviceMask-00106
deviceMask must be a valid device mask value

• VUID-VkDeviceGroupCommandBufferBeginInfo-deviceMask-00107
deviceMask must not be zero

Valid Usage (Implicit)

• VUID-VkDeviceGroupCommandBufferBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO

To update the current device mask of a command buffer, call:

// Provided by VK_VERSION_1_1
void vkCmdSetDeviceMask(
 VkCommandBuffer commandBuffer,
 uint32_t deviceMask);

or the equivalent command

// Provided by VK_KHR_device_group
void vkCmdSetDeviceMaskKHR(
 VkCommandBuffer commandBuffer,
 uint32_t deviceMask);

• commandBuffer is command buffer whose current device mask is modified.

• deviceMask is the new value of the current device mask.

deviceMask is used to filter out subsequent commands from executing on all physical devices whose
bit indices are not set in the mask, except commands beginning a render pass instance, commands
transitioning to the next subpass in the render pass instance, and commands ending a render pass
instance, which always execute on the set of physical devices whose bit indices are included in the
deviceMask member of the VkDeviceGroupRenderPassBeginInfo structure passed to the command
beginning the corresponding render pass instance.

273

Valid Usage

• VUID-vkCmdSetDeviceMask-deviceMask-00108
deviceMask must be a valid device mask value

• VUID-vkCmdSetDeviceMask-deviceMask-00109
deviceMask must not be zero

• VUID-vkCmdSetDeviceMask-deviceMask-00110
deviceMask must not include any set bits that were not in the
VkDeviceGroupCommandBufferBeginInfo::deviceMask value when the command buffer
began recording

• VUID-vkCmdSetDeviceMask-deviceMask-00111
If vkCmdSetDeviceMask is called inside a render pass instance, deviceMask must not include
any set bits that were not in the VkDeviceGroupRenderPassBeginInfo::deviceMask value
when the render pass instance began recording

Valid Usage (Implicit)

• VUID-vkCmdSetDeviceMask-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDeviceMask-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDeviceMask-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
or transfer operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Graphics
Compute
Transfer

State

274

Chapter 7. Synchronization and Cache
Control
Synchronization of access to resources is primarily the responsibility of the application in Vulkan.
The order of execution of commands with respect to the host and other commands on the device
has few implicit guarantees, and needs to be explicitly specified. Memory caches and other
optimizations are also explicitly managed, requiring that the flow of data through the system is
largely under application control.

Whilst some implicit guarantees exist between commands, five explicit synchronization
mechanisms are exposed by Vulkan:

Fences

Fences can be used to communicate to the host that execution of some task on the device has
completed, controlling resource access between host and device.

Semaphores

Semaphores can be used to control resource access across multiple queues.

Events

Events provide a fine-grained synchronization primitive which can be signaled either within a
command buffer or by the host, and can be waited upon within a command buffer or queried
on the host. Events can be used to control resource access within a single queue.

Pipeline Barriers

Pipeline barriers also provide synchronization control within a command buffer, but at a single
point, rather than with separate signal and wait operations. Pipeline barriers can be used to
control resource access within a single queue.

Render Pass Objects

Render pass objects provide a synchronization framework for rendering tasks, built upon the
concepts in this chapter. Many cases that would otherwise need an application to use other
synchronization primitives can be expressed more efficiently as part of a render pass. Render
pass objects can be used to control resource access within a single queue.

7.1. Execution and Memory Dependencies
An operation is an arbitrary amount of work to be executed on the host, a device, or an external
entity such as a presentation engine. Synchronization commands introduce explicit execution
dependencies, and memory dependencies between two sets of operations defined by the command’s
two synchronization scopes.

The synchronization scopes define which other operations a synchronization command is able to
create execution dependencies with. Any type of operation that is not in a synchronization
command’s synchronization scopes will not be included in the resulting dependency. For example,
for many synchronization commands, the synchronization scopes can be limited to just operations
executing in specific pipeline stages, which allows other pipeline stages to be excluded from a

275

dependency. Other scoping options are possible, depending on the particular command.

An execution dependency is a guarantee that for two sets of operations, the first set must happen-
before the second set. If an operation happens-before another operation, then the first operation
must complete before the second operation is initiated. More precisely:

• Let Ops1 and Ops2 be separate sets of operations.

• Let Sync be a synchronization command.

• Let Scope1st and Scope2nd be the synchronization scopes of Sync.

• Let ScopedOps1 be the intersection of sets Ops1 and Scope1st.

• Let ScopedOps2 be the intersection of sets Ops2 and Scope2nd.

• Submitting Ops1, Sync and Ops2 for execution, in that order, will result in execution
dependency ExeDep between ScopedOps1 and ScopedOps2.

• Execution dependency ExeDep guarantees that ScopedOps1 happen-before ScopedOps2.

An execution dependency chain is a sequence of execution dependencies that form a happens-before
relation between the first dependency’s ScopedOps1 and the final dependency’s ScopedOps2. For
each consecutive pair of execution dependencies, a chain exists if the intersection of Scope2nd in the
first dependency and Scope1st in the second dependency is not an empty set. The formation of a
single execution dependency from an execution dependency chain can be described by substituting
the following in the description of execution dependencies:

• Let Sync be a set of synchronization commands that generate an execution dependency chain.

• Let Scope1st be the first synchronization scope of the first command in Sync.

• Let Scope2nd be the second synchronization scope of the last command in Sync.

Execution dependencies alone are not sufficient to guarantee that values resulting from writes in
one set of operations can be read from another set of operations.

Three additional types of operations are used to control memory access. Availability operations
cause the values generated by specified memory write accesses to become available to a memory
domain for future access. Any available value remains available until a subsequent write to the
same memory location occurs (whether it is made available or not) or the memory is freed. Memory
domain operations cause writes that are available to a source memory domain to become available
to a destination memory domain (an example of this is making writes available to the host domain
available to the device domain). Visibility operations cause values available to a memory domain to
become visible to specified memory accesses.

Availability, visibility, memory domains, and memory domain operations are formally defined in
the Availability and Visibility section of the Memory Model chapter. Which API operations perform
each of these operations is defined in Availability, Visibility, and Domain Operations.

A memory dependency is an execution dependency which includes availability and visibility
operations such that:

• The first set of operations happens-before the availability operation.

276

• The availability operation happens-before the visibility operation.

• The visibility operation happens-before the second set of operations.

Once written values are made visible to a particular type of memory access, they can be read or
written by that type of memory access. Most synchronization commands in Vulkan define a
memory dependency.

The specific memory accesses that are made available and visible are defined by the access scopes
of a memory dependency. Any type of access that is in a memory dependency’s first access scope
and occurs in ScopedOps1 is made available. Any type of access that is in a memory dependency’s
second access scope and occurs in ScopedOps2 has any available writes made visible to it. Any type
of operation that is not in a synchronization command’s access scopes will not be included in the
resulting dependency.

A memory dependency enforces availability and visibility of memory accesses and execution order
between two sets of operations. Adding to the description of execution dependency chains:

• Let MemOps1 be the set of memory accesses performed by ScopedOps1.

• Let MemOps2 be the set of memory accesses performed by ScopedOps2.

• Let AccessScope1st be the first access scope of the first command in the Sync chain.

• Let AccessScope2nd be the second access scope of the last command in the Sync chain.

• Let ScopedMemOps1 be the intersection of sets MemOps1 and AccessScope1st.

• Let ScopedMemOps2 be the intersection of sets MemOps2 and AccessScope2nd.

• Submitting Ops1, Sync, and Ops2 for execution, in that order, will result in a memory
dependency MemDep between ScopedOps1 and ScopedOps2.

• Memory dependency MemDep guarantees that:

◦ Memory writes in ScopedMemOps1 are made available.

◦ Available memory writes, including those from ScopedMemOps1, are made visible to
ScopedMemOps2.

Note

Execution and memory dependencies are used to solve data hazards, i.e. to ensure
that read and write operations occur in a well-defined order. Write-after-read
hazards can be solved with just an execution dependency, but read-after-write and
write-after-write hazards need appropriate memory dependencies to be included
between them. If an application does not include dependencies to solve these
hazards, the results and execution orders of memory accesses are undefined.

7.1.1. Image Layout Transitions

Image subresources can be transitioned from one layout to another as part of a memory
dependency (e.g. by using an image memory barrier). When a layout transition is specified in a
memory dependency, it happens-after the availability operations in the memory dependency, and
happens-before the visibility operations. Image layout transitions may perform read and write

277

accesses on all memory bound to the image subresource range, so applications must ensure that all
memory writes have been made available before a layout transition is executed. Available memory
is automatically made visible to a layout transition, and writes performed by a layout transition are
automatically made available.

Layout transitions always apply to a particular image subresource range, and specify both an old
layout and new layout. The old layout must either be VK_IMAGE_LAYOUT_UNDEFINED, or match the
current layout of the image subresource range. If the old layout matches the current layout of the
image subresource range, the transition preserves the contents of that range. If the old layout is
VK_IMAGE_LAYOUT_UNDEFINED, the contents of that range may be discarded.

Note

Image layout transitions with VK_IMAGE_LAYOUT_UNDEFINED allow the implementation
to discard the image subresource range, which can provide performance or power
benefits. Tile-based architectures may be able to avoid flushing tile data to
memory, and immediate style renderers may be able to achieve fast metadata
clears to reinitialize frame buffer compression state, or similar.

If the contents of an attachment are not needed after a render pass completes,
then applications should use VK_ATTACHMENT_STORE_OP_DONT_CARE.

As image layout transitions may perform read and write accesses on the memory bound to the
image, if the image subresource affected by the layout transition is bound to peer memory for any
device in the current device mask then the memory heap the bound memory comes from must
support the VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT and VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT
capabilities as returned by vkGetDeviceGroupPeerMemoryFeatures.

Note

Applications must ensure that layout transitions happen-after all operations
accessing the image with the old layout, and happen-before any operations that
will access the image with the new layout. Layout transitions are potentially
read/write operations, so not defining appropriate memory dependencies to
guarantee this will result in a data race.

Image layout transitions interact with memory aliasing.

Layout transitions that are performed via image memory barriers execute in their entirety in
submission order, relative to other image layout transitions submitted to the same queue, including
those performed by render passes. In effect there is an implicit execution dependency from each
such layout transition to all layout transitions previously submitted to the same queue.

The image layout of each image subresource of a depth/stencil image created with
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT is dependent on the last sample
locations used to render to the image subresource as a depth/stencil attachment, thus when the
image member of an image memory barrier is an image created with this flag the application can
chain a VkSampleLocationsInfoEXT structure to the pNext chain of VkImageMemoryBarrier2 or
VkImageMemoryBarrier to specify the sample locations to use during any image layout transition.

278

If the VkSampleLocationsInfoEXT structure does not match the sample location state last used to
render to the image subresource range specified by subresourceRange, or if no
VkSampleLocationsInfoEXT structure is present, then the contents of the given image subresource
range becomes undefined as if oldLayout would equal VK_IMAGE_LAYOUT_UNDEFINED.

7.1.2. Pipeline Stages

The work performed by an action command consists of multiple operations, which are performed
as a sequence of logically independent steps known as pipeline stages. The exact pipeline stages
executed depend on the particular command that is used, and current command buffer state when
the command was recorded.

Note

Operations performed by synchronization commands (e.g. availability and
visibility operations) are not executed by a defined pipeline stage. However other
commands can still synchronize with them by using the synchronization scopes to
create a dependency chain.

Execution of operations across pipeline stages must adhere to implicit ordering guarantees,
particularly including pipeline stage order. Otherwise, execution across pipeline stages may
overlap or execute out of order with regards to other stages, unless otherwise enforced by an
execution dependency.

Several of the synchronization commands include pipeline stage parameters, restricting the
synchronization scopes for that command to just those stages. This allows fine grained control over
the exact execution dependencies and accesses performed by action commands. Implementations
should use these pipeline stages to avoid unnecessary stalls or cache flushing.

Bits which can be set in a VkPipelineStageFlags2 mask, specifying stages of execution, are:

// Provided by VK_VERSION_1_3
// Flag bits for VkPipelineStageFlagBits2
typedef VkFlags64 VkPipelineStageFlagBits2;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_NONE = 0ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_NONE_KHR = 0ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT =
0x00000001ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT_KHR =
0x00000001ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT =
0x00000002ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT_KHR =
0x00000002ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT =
0x00000004ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT_KHR =
0x00000004ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT =
0x00000008ULL;

279

static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT_KHR =
0x00000008ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT_KHR = 0x00000010ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT_KHR = 0x00000020ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT =
0x00000040ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT_KHR =
0x00000040ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT =
0x00000080ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR =
0x00000080ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT =
0x00000100ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT_KHR
= 0x00000100ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT =
0x00000200ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT_KHR
= 0x00000200ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
= 0x00000400ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT_KHR = 0x00000400ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT =
0x00000800ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT_KHR =
0x00000800ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT =
0x00001000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT_KHR =
0x00001000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TRANSFER_BIT =
0x00001000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TRANSFER_BIT_KHR =
0x00001000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT =
0x00002000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT_KHR =
0x00002000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_HOST_BIT = 0x00004000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_HOST_BIT_KHR =
0x00004000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT =
0x00008000ULL;

280

static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT_KHR =
0x00008000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT =
0x00010000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR =
0x00010000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COPY_BIT = 0x100000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COPY_BIT_KHR =
0x100000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_RESOLVE_BIT =
0x200000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_RESOLVE_BIT_KHR =
0x200000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_BLIT_BIT = 0x400000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_BLIT_BIT_KHR =
0x400000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_CLEAR_BIT = 0x800000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_CLEAR_BIT_KHR =
0x800000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT =
0x1000000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT_KHR =
0x1000000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT =
0x2000000000ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT_KHR = 0x2000000000ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT = 0x4000000000ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT_KHR = 0x4000000000ULL;
// Provided by VK_KHR_video_decode_queue
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR =
0x04000000ULL;
// Provided by VK_KHR_video_encode_queue
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR =
0x08000000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_transform_feedback
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT =
0x01000000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_conditional_rendering
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT = 0x00040000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_device_generated_commands
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV =
0x00020000ULL;
// Provided by VK_KHR_fragment_shading_rate with VK_KHR_synchronization2
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR = 0x00400000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_shading_rate_image
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV =

281

0x00400000ULL;
// Provided by VK_KHR_acceleration_structure with VK_KHR_synchronization2
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR = 0x02000000ULL;
// Provided by VK_KHR_ray_tracing_pipeline with VK_KHR_synchronization2
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR =
0x00200000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_ray_tracing
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_NV =
0x00200000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_ray_tracing
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_NV = 0x02000000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_fragment_density_map
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT = 0x00800000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_mesh_shader
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_NV =
0x00080000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_mesh_shader
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_NV =
0x00100000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_mesh_shader
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT =
0x00080000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_mesh_shader
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT =
0x00100000ULL;
// Provided by VK_HUAWEI_subpass_shading
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI =
0x8000000000ULL;
// Provided by VK_HUAWEI_subpass_shading
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_SUBPASS_SHADING_BIT_HUAWEI =
0x8000000000ULL;
// Provided by VK_HUAWEI_invocation_mask
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI =
0x10000000000ULL;
// Provided by VK_KHR_ray_tracing_maintenance1 with VK_KHR_synchronization2
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR = 0x10000000ULL;
// Provided by VK_EXT_opacity_micromap
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT =
0x40000000ULL;
// Provided by VK_HUAWEI_cluster_culling_shader
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT_HUAWEI = 0x20000000000ULL;
// Provided by VK_NV_optical_flow
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV =
0x20000000ULL;

282

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkPipelineStageFlagBits2 VkPipelineStageFlagBits2KHR;

• VK_PIPELINE_STAGE_2_NONE specifies no stages of execution.

• VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT specifies the stage of the pipeline where indirect
command parameters are consumed. This stage also includes reading commands written by
vkCmdPreprocessGeneratedCommandsNV.

• VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT specifies the task shader stage.

• VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT specifies the mesh shader stage.

• VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT specifies the stage of the pipeline where index buffers are
consumed.

• VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT specifies the stage of the pipeline where vertex
buffers are consumed.

• VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT is equivalent to the logical OR of:

◦ VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT

◦ VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT

• VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT specifies the vertex shader stage.

• VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT specifies the tessellation control shader
stage.

• VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT specifies the tessellation evaluation
shader stage.

• VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT specifies the geometry shader stage.

• VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT is equivalent to specifying all supported
pre-rasterization shader stages:

◦ VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

◦ VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

◦ VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT_HUAWEI

• VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT specifies the fragment shader stage.

• VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where early
fragment tests (depth and stencil tests before fragment shading) are performed. This stage also
includes render pass load operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where late

283

fragment tests (depth and stencil tests after fragment shading) are performed. This stage also
includes render pass store operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT specifies the stage of the pipeline where final
color values are output from the pipeline. This stage includes blending, logic operations, render
pass load and store operations for color attachments, render pass multisample resolve
operations, and vkCmdClearAttachments.

• VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT specifies the compute shader stage.

• VK_PIPELINE_STAGE_2_HOST_BIT specifies a pseudo-stage indicating execution on the host of
reads/writes of device memory. This stage is not invoked by any commands recorded in a
command buffer.

• VK_PIPELINE_STAGE_2_COPY_BIT specifies the execution of all copy commands, including
vkCmdCopyQueryPoolResults.

• VK_PIPELINE_STAGE_2_BLIT_BIT specifies the execution of vkCmdBlitImage.

• VK_PIPELINE_STAGE_2_RESOLVE_BIT specifies the execution of vkCmdResolveImage.

• VK_PIPELINE_STAGE_2_CLEAR_BIT specifies the execution of clear commands, with the exception of
vkCmdClearAttachments.

• VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT is equivalent to specifying all of:

◦ VK_PIPELINE_STAGE_2_COPY_BIT

◦ VK_PIPELINE_STAGE_2_BLIT_BIT

◦ VK_PIPELINE_STAGE_2_RESOLVE_BIT

◦ VK_PIPELINE_STAGE_2_CLEAR_BIT

◦ VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR

• VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR specifies the execution of the ray tracing
shader stages.

• VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR specifies the execution of
acceleration structure commands or acceleration structure copy commands.

• VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR specifies the execution of
acceleration structure copy commands.

• VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT specifies the execution of all graphics pipeline stages, and
is equivalent to the logical OR of:

◦ VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT

◦ VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

◦ VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

◦ VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT

◦ VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

284

◦ VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT

◦ VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

◦ VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

◦ VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

◦ VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

◦ VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

◦ VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

◦ VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT_HUAWEI

• VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT specifies all operations performed by all commands
supported on the queue it is used with.

• VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT specifies the stage of the pipeline where the
predicate of conditional rendering is consumed.

• VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT specifies the stage of the pipeline where vertex
attribute output values are written to the transform feedback buffers.

• VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV specifies the stage of the pipeline where device-
side generation of commands via vkCmdPreprocessGeneratedCommandsNV is handled.

• VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR specifies the stage of the
pipeline where the fragment shading rate attachment or shading rate image is read to
determine the fragment shading rate for portions of a rasterized primitive.

• VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT specifies the stage of the pipeline where
the fragment density map is read to generate the fragment areas.

• VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI specifies the stage of the pipeline where the
invocation mask image is read by the implementation to optimize the ray dispatch.

• VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR specifies the execution of video decode operations.

• VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR specifies the execution of video encode operations.

• VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV specifies the stage of the pipeline where optical flow
operation are performed.

• VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI specifies the subpass shading shader stage.

• VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT specifies the execution of micromap commands.

• VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT_HUAWEI specifies the cluster culling shader
stage.

• VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with
VkAccessFlags2 set to 0 when specified in the second synchronization scope, but equivalent to
VK_PIPELINE_STAGE_2_NONE in the first scope.

• VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

285

with VkAccessFlags2 set to 0 when specified in the first synchronization scope, but equivalent to
VK_PIPELINE_STAGE_2_NONE in the second scope.

Note

The TOP and BOTTOM pipeline stages are deprecated, and applications should prefer
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT and VK_PIPELINE_STAGE_2_NONE.

Note

The VkPipelineStageFlags2 bitmask goes beyond the 31 individual bit flags
allowable within a C99 enum, which is how VkPipelineStageFlagBits is defined.
The first 31 values are common to both, and are interchangeable.

VkPipelineStageFlags2 is a bitmask type for setting a mask of zero or more VkPipelineStageFlagBits2
flags:

// Provided by VK_VERSION_1_3
typedef VkFlags64 VkPipelineStageFlags2;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkPipelineStageFlags2 VkPipelineStageFlags2KHR;

Bits which can be set in a VkPipelineStageFlags mask, specifying stages of execution, are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineStageFlagBits {
 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,
 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
 VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,
 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,
 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
 VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,
 VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,
 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_STAGE_NONE = 0,

286

 // Provided by VK_EXT_transform_feedback
 VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT = 0x01000000,
 // Provided by VK_EXT_conditional_rendering
 VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT = 0x00040000,
 // Provided by VK_KHR_acceleration_structure
 VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR = 0x02000000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR = 0x00200000,
 // Provided by VK_EXT_fragment_density_map
 VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT = 0x00800000,
 // Provided by VK_KHR_fragment_shading_rate
 VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR = 0x00400000,
 // Provided by VK_NV_device_generated_commands
 VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV = 0x00020000,
 // Provided by VK_EXT_mesh_shader
 VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT = 0x00080000,
 // Provided by VK_EXT_mesh_shader
 VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT = 0x00100000,
 // Provided by VK_NV_shading_rate_image
 VK_PIPELINE_STAGE_SHADING_RATE_IMAGE_BIT_NV =
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_NV =
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV =
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
 // Provided by VK_NV_mesh_shader
 VK_PIPELINE_STAGE_TASK_SHADER_BIT_NV = VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT,
 // Provided by VK_NV_mesh_shader
 VK_PIPELINE_STAGE_MESH_SHADER_BIT_NV = VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT,
 // Provided by VK_KHR_synchronization2
 VK_PIPELINE_STAGE_NONE_KHR = VK_PIPELINE_STAGE_NONE,
} VkPipelineStageFlagBits;

These values all have the same meaning as the equivalently named values for
VkPipelineStageFlags2.

• VK_PIPELINE_STAGE_NONE specifies no stages of execution.

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT specifies the stage of the pipeline where VkDrawIndirect* /
VkDispatchIndirect* / VkTraceRaysIndirect* data structures are consumed. This stage also
includes reading commands written by vkCmdExecuteGeneratedCommandsNV.

• VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT specifies the task shader stage.

• VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT specifies the mesh shader stage.

• VK_PIPELINE_STAGE_VERTEX_INPUT_BIT specifies the stage of the pipeline where vertex and index
buffers are consumed.

• VK_PIPELINE_STAGE_VERTEX_SHADER_BIT specifies the vertex shader stage.

287

• VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT specifies the tessellation control shader
stage.

• VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT specifies the tessellation evaluation
shader stage.

• VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT specifies the geometry shader stage.

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT specifies the fragment shader stage.

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where early
fragment tests (depth and stencil tests before fragment shading) are performed. This stage also
includes render pass load operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where late
fragment tests (depth and stencil tests after fragment shading) are performed. This stage also
includes render pass store operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT specifies the stage of the pipeline after blending
where the final color values are output from the pipeline. This stage includes blending, logic
operations, render pass load and store operations for color attachments, render pass
multisample resolve operations, and vkCmdClearAttachments.

• VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT specifies the execution of a compute shader.

• VK_PIPELINE_STAGE_TRANSFER_BIT specifies the following commands:

◦ All copy commands, including vkCmdCopyQueryPoolResults

◦ vkCmdBlitImage2 and vkCmdBlitImage

◦ vkCmdResolveImage2 and vkCmdResolveImage

◦ All clear commands, with the exception of vkCmdClearAttachments

• VK_PIPELINE_STAGE_HOST_BIT specifies a pseudo-stage indicating execution on the host of
reads/writes of device memory. This stage is not invoked by any commands recorded in a
command buffer.

• VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR specifies the execution of
vkCmdBuildAccelerationStructureNV, vkCmdCopyAccelerationStructureNV,
vkCmdWriteAccelerationStructuresPropertiesNV , vkCmdBuildAccelerationStructuresKHR,
vkCmdBuildAccelerationStructuresIndirectKHR, vkCmdCopyAccelerationStructureKHR,
vkCmdCopyAccelerationStructureToMemoryKHR,
vkCmdCopyMemoryToAccelerationStructureKHR, and
vkCmdWriteAccelerationStructuresPropertiesKHR.

• VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR specifies the execution of the ray tracing shader
stages, via vkCmdTraceRaysNV , vkCmdTraceRaysKHR, or vkCmdTraceRaysIndirectKHR

• VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT specifies the execution of all graphics pipeline stages, and is
equivalent to the logical OR of:

◦ VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

◦ VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

◦ VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

◦ VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

288

◦ VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

◦ VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT

◦ VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

◦ VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

◦ VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

◦ VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

◦ VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

◦ VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

◦ VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

◦ VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VK_PIPELINE_STAGE_ALL_COMMANDS_BIT specifies all operations performed by all commands
supported on the queue it is used with.

• VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT specifies the stage of the pipeline where the
predicate of conditional rendering is consumed.

• VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT specifies the stage of the pipeline where vertex
attribute output values are written to the transform feedback buffers.

• VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV specifies the stage of the pipeline where device-
side preprocessing for generated commands via vkCmdPreprocessGeneratedCommandsNV is
handled.

• VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR specifies the stage of the pipeline
where the fragment shading rate attachment or shading rate image is read to determine the
fragment shading rate for portions of a rasterized primitive.

• VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT specifies the stage of the pipeline where
the fragment density map is read to generate the fragment areas.

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT is equivalent to VK_PIPELINE_STAGE_ALL_COMMANDS_BIT with
VkAccessFlags set to 0 when specified in the second synchronization scope, but specifies no
stage of execution when specified in the first scope.

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT is equivalent to VK_PIPELINE_STAGE_ALL_COMMANDS_BIT with
VkAccessFlags set to 0 when specified in the first synchronization scope, but specifies no stage
of execution when specified in the second scope.

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineStageFlags;

VkPipelineStageFlags is a bitmask type for setting a mask of zero or more VkPipelineStageFlagBits.

If a synchronization command includes a source stage mask, its first synchronization scope only
includes execution of the pipeline stages specified in that mask and any logically earlier stages. Its

289

first access scope only includes memory accesses performed by pipeline stages explicitly specified
in the source stage mask.

If a synchronization command includes a destination stage mask, its second synchronization scope
only includes execution of the pipeline stages specified in that mask and any logically later stages.
Its second access scope only includes memory accesses performed by pipeline stages explicitly
specified in the destination stage mask.

Note

Note that access scopes do not interact with the logically earlier or later stages for
either scope - only the stages the app specifies are considered part of each access
scope.

Certain pipeline stages are only available on queues that support a particular set of operations. The
following table lists, for each pipeline stage flag, which queue capability flag must be supported by
the queue. When multiple flags are enumerated in the second column of the table, it means that the
pipeline stage is supported on the queue if it supports any of the listed capability flags. For further
details on queue capabilities see Physical Device Enumeration and Queues.

Table 3. Supported pipeline stage flags

Pipeline stage flag Required queue capability
flag

VK_PIPELINE_STAGE_2_NONE None required

VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT None required

VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT None required

VK_PIPELINE_STAGE_2_HOST_BIT None required

VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT None required

290

Pipeline stage flag Required queue capability
flag

VK_PIPELINE_STAGE_2_COPY_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_RESOLVE_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_BLIT_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_CLEAR_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR VK_QUEUE_VIDEO_DECODE_BIT_K
HR

VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR VK_QUEUE_VIDEO_ENCODE_BIT_K
HR

VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT_HUAWEI VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV VK_QUEUE_OPTICAL_FLOW_BIT_N
V

Pipeline stages that execute as a result of a command logically complete execution in a specific

291

order, such that completion of a logically later pipeline stage must not happen-before completion of
a logically earlier stage. This means that including any stage in the source stage mask for a
particular synchronization command also implies that any logically earlier stages are included in
Scope1st for that command.

Similarly, initiation of a logically earlier pipeline stage must not happen-after initiation of a
logically later pipeline stage. Including any given stage in the destination stage mask for a
particular synchronization command also implies that any logically later stages are included in
Scope2nd for that command.

Note

Implementations may not support synchronization at every pipeline stage for
every synchronization operation. If a pipeline stage that an implementation does
not support synchronization for appears in a source stage mask, it may substitute
any logically later stage in its place for the first synchronization scope. If a pipeline
stage that an implementation does not support synchronization for appears in a
destination stage mask, it may substitute any logically earlier stage in its place for
the second synchronization scope.

For example, if an implementation is unable to signal an event immediately after
vertex shader execution is complete, it may instead signal the event after color
attachment output has completed.

If an implementation makes such a substitution, it must not affect the semantics of
execution or memory dependencies or image and buffer memory barriers.

Graphics pipelines are executable on queues supporting VK_QUEUE_GRAPHICS_BIT. Stages executed by
graphics pipelines can only be specified in commands recorded for queues supporting
VK_QUEUE_GRAPHICS_BIT.

The graphics primitive pipeline executes the following stages, with the logical ordering of the stages
matching the order specified here:

• VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT

• VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT

• VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT

• VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT

• VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT

292

• VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT

The graphics mesh pipeline executes the following stages, with the logical ordering of the stages
matching the order specified here:

• VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT

For the compute pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT

For the subpass shading pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

For graphics pipeline commands executing in a render pass with a fragment density map
attachment, the following pipeline stage where the fragment density map read happens has no
particular order relative to the other stages, except that it is logically earlier than
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT:

• VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

The conditional rendering stage is formally part of both the graphics, and the compute pipeline.
The pipeline stage where the predicate read happens has unspecified order relative to other stages
of these pipelines:

• VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

For the transfer pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_2_TRANSFER_BIT

For host operations, only one pipeline stage occurs, so no order is guaranteed:

• VK_PIPELINE_STAGE_2_HOST_BIT

For the command preprocessing pipeline, the following stages occur in this order:

293

• VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV

For acceleration structure build operations, only one pipeline stage occurs, so no order is
guaranteed:

• VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

For acceleration structure copy operations, only one pipeline stage occurs, so no order is
guaranteed:

• VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR

For opacity micromap build operations, only one pipeline stage occurs, so no order is guaranteed:

• VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

For the ray tracing pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

For the video decode pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

For the video encode pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

7.1.3. Access Types

Memory in Vulkan can be accessed from within shader invocations and via some fixed-function
stages of the pipeline. The access type is a function of the descriptor type used, or how a fixed-
function stage accesses memory.

Some synchronization commands take sets of access types as parameters to define the access
scopes of a memory dependency. If a synchronization command includes a source access mask, its
first access scope only includes accesses via the access types specified in that mask. Similarly, if a
synchronization command includes a destination access mask, its second access scope only includes
accesses via the access types specified in that mask.

Bits which can be set in the srcAccessMask and dstAccessMask members of VkMemoryBarrier2KHR,
VkImageMemoryBarrier2KHR, and VkBufferMemoryBarrier2KHR, specifying access behavior, are:

// Provided by VK_VERSION_1_3
// Flag bits for VkAccessFlagBits2
typedef VkFlags64 VkAccessFlagBits2;
static const VkAccessFlagBits2 VK_ACCESS_2_NONE = 0ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_NONE_KHR = 0ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT = 0x00000001ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT_KHR =

294

0x00000001ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INDEX_READ_BIT = 0x00000002ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INDEX_READ_BIT_KHR = 0x00000002ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT_KHR =
0x00000004ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_UNIFORM_READ_BIT = 0x00000008ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_UNIFORM_READ_BIT_KHR = 0x00000008ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT = 0x00000010ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT_KHR =
0x00000010ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_READ_BIT = 0x00000020ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_READ_BIT_KHR = 0x00000020ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_WRITE_BIT = 0x00000040ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_WRITE_BIT_KHR = 0x00000040ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT = 0x00000080ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT_KHR =
0x00000080ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT = 0x00000100ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT_KHR =
0x00000100ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT =
0x00000200ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT_KHR =
0x00000200ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT =
0x00000400ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT_KHR =
0x00000400ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFER_READ_BIT = 0x00000800ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFER_READ_BIT_KHR = 0x00000800ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFER_WRITE_BIT = 0x00001000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFER_WRITE_BIT_KHR = 0x00001000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_HOST_READ_BIT = 0x00002000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_HOST_READ_BIT_KHR = 0x00002000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_HOST_WRITE_BIT = 0x00004000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_HOST_WRITE_BIT_KHR = 0x00004000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_MEMORY_READ_BIT = 0x00008000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_MEMORY_READ_BIT_KHR = 0x00008000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_MEMORY_WRITE_BIT = 0x00010000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_MEMORY_WRITE_BIT_KHR = 0x00010000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_SAMPLED_READ_BIT = 0x100000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_SAMPLED_READ_BIT_KHR =
0x100000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_STORAGE_READ_BIT = 0x200000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_STORAGE_READ_BIT_KHR =
0x200000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT = 0x400000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT_KHR =
0x400000000ULL;
// Provided by VK_KHR_video_decode_queue

295

static const VkAccessFlagBits2 VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR = 0x800000000ULL;
// Provided by VK_KHR_video_decode_queue
static const VkAccessFlagBits2 VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR =
0x1000000000ULL;
// Provided by VK_KHR_video_encode_queue
static const VkAccessFlagBits2 VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR =
0x2000000000ULL;
// Provided by VK_KHR_video_encode_queue
static const VkAccessFlagBits2 VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR =
0x4000000000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_transform_feedback
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT =
0x02000000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_transform_feedback
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT =
0x04000000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_transform_feedback
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT =
0x08000000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_conditional_rendering
static const VkAccessFlagBits2 VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT =
0x00100000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_device_generated_commands
static const VkAccessFlagBits2 VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV =
0x00020000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_device_generated_commands
static const VkAccessFlagBits2 VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV =
0x00040000ULL;
// Provided by VK_KHR_fragment_shading_rate with VK_KHR_synchronization2
static const VkAccessFlagBits2
VK_ACCESS_2_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR = 0x00800000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_shading_rate_image
static const VkAccessFlagBits2 VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV =
0x00800000ULL;
// Provided by VK_KHR_acceleration_structure with VK_KHR_synchronization2
static const VkAccessFlagBits2 VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR =
0x00200000ULL;
// Provided by VK_KHR_acceleration_structure with VK_KHR_synchronization2
static const VkAccessFlagBits2 VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR =
0x00400000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_ray_tracing
static const VkAccessFlagBits2 VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_NV =
0x00200000ULL;
// Provided by VK_KHR_synchronization2 with VK_NV_ray_tracing
static const VkAccessFlagBits2 VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_NV =
0x00400000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_fragment_density_map
static const VkAccessFlagBits2 VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT =
0x01000000ULL;
// Provided by VK_KHR_synchronization2 with VK_EXT_blend_operation_advanced
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT =

296

0x00080000ULL;
// Provided by VK_EXT_descriptor_buffer
static const VkAccessFlagBits2 VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT =
0x20000000000ULL;
// Provided by VK_HUAWEI_invocation_mask
static const VkAccessFlagBits2 VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI =
0x8000000000ULL;
// Provided by VK_KHR_ray_tracing_maintenance1 with VK_KHR_synchronization2 and
VK_KHR_ray_tracing_pipeline
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR =
0x10000000000ULL;
// Provided by VK_EXT_opacity_micromap
static const VkAccessFlagBits2 VK_ACCESS_2_MICROMAP_READ_BIT_EXT = 0x100000000000ULL;
// Provided by VK_EXT_opacity_micromap
static const VkAccessFlagBits2 VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT = 0x200000000000ULL;
// Provided by VK_NV_optical_flow
static const VkAccessFlagBits2 VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV =
0x40000000000ULL;
// Provided by VK_NV_optical_flow
static const VkAccessFlagBits2 VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV =
0x80000000000ULL;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkAccessFlagBits2 VkAccessFlagBits2KHR;

• VK_ACCESS_2_NONE specifies no accesses.

• VK_ACCESS_2_MEMORY_READ_BIT specifies all read accesses. It is always valid in any access mask,
and is treated as equivalent to setting all READ access flags that are valid where it is used.

• VK_ACCESS_2_MEMORY_WRITE_BIT specifies all write accesses. It is always valid in any access mask,
and is treated as equivalent to setting all WRITE access flags that are valid where it is used.

• VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT specifies read access to command data read from
indirect buffers as part of an indirect build, trace, drawing or dispatch command. Such access
occurs in the VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT pipeline stage.

• VK_ACCESS_2_INDEX_READ_BIT specifies read access to an index buffer as part of an indexed
drawing command, bound by vkCmdBindIndexBuffer2KHR and vkCmdBindIndexBuffer. Such
access occurs in the VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT pipeline stage.

• VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT specifies read access to a vertex buffer as part of a
drawing command, bound by vkCmdBindVertexBuffers. Such access occurs in the
VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT pipeline stage.

• VK_ACCESS_2_UNIFORM_READ_BIT specifies read access to a uniform buffer in any shader pipeline
stage.

• VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT specifies read access to an input attachment within a
render pass during subpass shading or fragment shading. Such access occurs in the

297

VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI or VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT
pipeline stage.

• VK_ACCESS_2_SHADER_SAMPLED_READ_BIT specifies read access to a uniform texel buffer or sampled
image in any shader pipeline stage.

• VK_ACCESS_2_SHADER_STORAGE_READ_BIT specifies read access to a storage buffer, physical storage
buffer, storage texel buffer, or storage image in any shader pipeline stage.

• VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR specifies read access to a shader binding table
in any shader pipeline stage.

• VK_ACCESS_2_SHADER_READ_BIT is equivalent to the logical OR of:

◦ VK_ACCESS_2_SHADER_SAMPLED_READ_BIT

◦ VK_ACCESS_2_SHADER_STORAGE_READ_BIT

◦ VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR

• VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT specifies write access to a storage buffer, physical storage
buffer, storage texel buffer, or storage image in any shader pipeline stage.

• VK_ACCESS_2_SHADER_WRITE_BIT is equivalent to VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT.

• VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT specifies read access to a color attachment, such as via
blending (other than advanced blend operations), logic operations or certain render pass load
operations in the VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage or via
fragment shader tile image reads in the VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT pipeline stage.

• VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT specifies write access to a color attachment during a
render pass or via certain render pass load, store, and multisample resolve operations. Such
access occurs in the VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

• VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT specifies read access to a depth/stencil
attachment, via depth or stencil operations or certain render pass load operations in the
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT or VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT
pipeline stages or via fragment shader tile image reads in the
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT pipeline stage.

• VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT specifies write access to a depth/stencil
attachment, via depth or stencil operations or certain render pass load and store operations.
Such access occurs in the VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT or
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT pipeline stages.

• VK_ACCESS_2_TRANSFER_READ_BIT specifies read access to an image or buffer in a copy operation.
Such access occurs in the VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT, or
VK_PIPELINE_STAGE_2_RESOLVE_BIT pipeline stages.

• VK_ACCESS_2_TRANSFER_WRITE_BIT specifies write access to an image or buffer in a clear or copy
operation. Such access occurs in the VK_PIPELINE_STAGE_2_COPY_BIT,
VK_PIPELINE_STAGE_2_BLIT_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT, or
VK_PIPELINE_STAGE_2_RESOLVE_BIT pipeline stages.

• VK_ACCESS_2_HOST_READ_BIT specifies read access by a host operation. Accesses of this type are not
performed through a resource, but directly on memory. Such access occurs in the
VK_PIPELINE_STAGE_2_HOST_BIT pipeline stage.

298

• VK_ACCESS_2_HOST_WRITE_BIT specifies write access by a host operation. Accesses of this type are
not performed through a resource, but directly on memory. Such access occurs in the
VK_PIPELINE_STAGE_2_HOST_BIT pipeline stage.

• VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT specifies read access to a predicate as part of
conditional rendering. Such access occurs in the
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT pipeline stage.

• VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT specifies write access to a transform feedback
buffer made when transform feedback is active. Such access occurs in the
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT pipeline stage.

• VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT specifies read access to a transform
feedback counter buffer which is read when vkCmdBeginTransformFeedbackEXT executes.
Such access occurs in the VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT pipeline stage.

• VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT specifies write access to a transform
feedback counter buffer which is written when vkCmdEndTransformFeedbackEXT executes.
Such access occurs in the VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT pipeline stage.

• VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV specifies reads from buffer inputs to
vkCmdPreprocessGeneratedCommandsNV. Such access occurs in the
VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV pipeline stage.

• VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV specifies writes to the target command buffer
preprocess outputs. Such access occurs in the VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV
pipeline stage.

• VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT specifies read access to color
attachments, including advanced blend operations. Such access occurs in the
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

• VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI specifies read access to a invocation mask image
in the VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI pipeline stage.

• VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR specifies read access to an acceleration
structure as part of a trace, build, or copy command, or to an acceleration structure scratch
buffer as part of a build command. Such access occurs in the
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR pipeline stage or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage.

• VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR specifies write access to an acceleration
structure or acceleration structure scratch buffer as part of a build or copy command. Such
access occurs in the VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage.

• VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT specifies read access to a fragment density map
attachment during dynamic fragment density map operations. Such access occurs in the
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT pipeline stage.

• VK_ACCESS_2_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR specifies read access to a fragment
shading rate attachment during rasterization. Such access occurs in the
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR pipeline stage.

• VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV specifies read access to a shading rate image
during rasterization. Such access occurs in the VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV
pipeline stage. It is equivalent to VK_ACCESS_2_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR.

299

• VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR specifies read access to an image or buffer resource in a
video decode operation. Such access occurs in the VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR
pipeline stage.

• VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR specifies write access to an image or buffer resource in
a video decode operation. Such access occurs in the VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR
pipeline stage.

• VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR specifies read access to an image or buffer resource in a
video encode operation. Such access occurs in the VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR
pipeline stage.

• VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR specifies write access to an image or buffer resource in
a video encode operation. Such access occurs in the VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR
pipeline stage.

• VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT specifies read access to a descriptor buffer in any
shader pipeline stage.

• VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV specifies read access to an image or buffer resource as
part of a optical flow operation. Such access occurs in the
VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV pipeline stage.

• VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV specifies write access to an image or buffer resource as
part of a optical flow operation. Such access occurs in the
VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV pipeline stage.

• VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT specifies write access to a micromap object. Such access
occurs in the VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT pipeline stage.

• VK_ACCESS_2_MICROMAP_READ_BIT_EXT specifies read access to a micromap object. Such access
occurs in the VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT and
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stages.

Note

In situations where an application wishes to select all access types for a given set
of pipeline stages, VK_ACCESS_2_MEMORY_READ_BIT or VK_ACCESS_2_MEMORY_WRITE_BIT
can be used. This is particularly useful when specifying stages that only have a
single access type.

Note

The VkAccessFlags2 bitmask goes beyond the 31 individual bit flags allowable
within a C99 enum, which is how VkAccessFlagBits is defined. The first 31 values
are common to both, and are interchangeable.

VkAccessFlags2 is a bitmask type for setting a mask of zero or more VkAccessFlagBits2:

// Provided by VK_VERSION_1_3
typedef VkFlags64 VkAccessFlags2;

or the equivalent

300

// Provided by VK_KHR_synchronization2
typedef VkAccessFlags2 VkAccessFlags2KHR;

Bits which can be set in the srcAccessMask and dstAccessMask members of VkSubpassDependency,
VkSubpassDependency2, VkMemoryBarrier, VkBufferMemoryBarrier, and
VkImageMemoryBarrier, specifying access behavior, are:

// Provided by VK_VERSION_1_0
typedef enum VkAccessFlagBits {
 VK_ACCESS_INDIRECT_COMMAND_READ_BIT = 0x00000001,
 VK_ACCESS_INDEX_READ_BIT = 0x00000002,
 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004,
 VK_ACCESS_UNIFORM_READ_BIT = 0x00000008,
 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT = 0x00000010,
 VK_ACCESS_SHADER_READ_BIT = 0x00000020,
 VK_ACCESS_SHADER_WRITE_BIT = 0x00000040,
 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT = 0x00000080,
 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT = 0x00000100,
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT = 0x00000200,
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT = 0x00000400,
 VK_ACCESS_TRANSFER_READ_BIT = 0x00000800,
 VK_ACCESS_TRANSFER_WRITE_BIT = 0x00001000,
 VK_ACCESS_HOST_READ_BIT = 0x00002000,
 VK_ACCESS_HOST_WRITE_BIT = 0x00004000,
 VK_ACCESS_MEMORY_READ_BIT = 0x00008000,
 VK_ACCESS_MEMORY_WRITE_BIT = 0x00010000,
 // Provided by VK_VERSION_1_3
 VK_ACCESS_NONE = 0,
 // Provided by VK_EXT_transform_feedback
 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT = 0x02000000,
 // Provided by VK_EXT_transform_feedback
 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT = 0x04000000,
 // Provided by VK_EXT_transform_feedback
 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT = 0x08000000,
 // Provided by VK_EXT_conditional_rendering
 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT = 0x00100000,
 // Provided by VK_EXT_blend_operation_advanced
 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT = 0x00080000,
 // Provided by VK_KHR_acceleration_structure
 VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR = 0x00200000,
 // Provided by VK_KHR_acceleration_structure
 VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR = 0x00400000,
 // Provided by VK_EXT_fragment_density_map
 VK_ACCESS_FRAGMENT_DENSITY_MAP_READ_BIT_EXT = 0x01000000,
 // Provided by VK_KHR_fragment_shading_rate
 VK_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR = 0x00800000,
 // Provided by VK_NV_device_generated_commands
 VK_ACCESS_COMMAND_PREPROCESS_READ_BIT_NV = 0x00020000,
 // Provided by VK_NV_device_generated_commands

301

 VK_ACCESS_COMMAND_PREPROCESS_WRITE_BIT_NV = 0x00040000,
 // Provided by VK_NV_shading_rate_image
 VK_ACCESS_SHADING_RATE_IMAGE_READ_BIT_NV =
VK_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_NV =
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_NV =
VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
 // Provided by VK_KHR_synchronization2
 VK_ACCESS_NONE_KHR = VK_ACCESS_NONE,
} VkAccessFlagBits;

These values all have the same meaning as the equivalently named values for VkAccessFlags2.

• VK_ACCESS_NONE specifies no accesses.

• VK_ACCESS_MEMORY_READ_BIT specifies all read accesses. It is always valid in any access mask, and
is treated as equivalent to setting all READ access flags that are valid where it is used.

• VK_ACCESS_MEMORY_WRITE_BIT specifies all write accesses. It is always valid in any access mask,
and is treated as equivalent to setting all WRITE access flags that are valid where it is used.

• VK_ACCESS_INDIRECT_COMMAND_READ_BIT specifies read access to indirect command data read as
part of an indirect build, trace, drawing or dispatching command. Such access occurs in the
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT pipeline stage.

• VK_ACCESS_INDEX_READ_BIT specifies read access to an index buffer as part of an indexed drawing
command, bound by vkCmdBindIndexBuffer2KHR and vkCmdBindIndexBuffer. Such access
occurs in the VK_PIPELINE_STAGE_VERTEX_INPUT_BIT pipeline stage.

• VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT specifies read access to a vertex buffer as part of a
drawing command, bound by vkCmdBindVertexBuffers. Such access occurs in the
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT pipeline stage.

• VK_ACCESS_UNIFORM_READ_BIT specifies read access to a uniform buffer in any shader pipeline
stage.

• VK_ACCESS_INPUT_ATTACHMENT_READ_BIT specifies read access to an input attachment within a
render pass during subpass shading or fragment shading. Such access occurs in the
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI or VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
pipeline stage.

• VK_ACCESS_SHADER_READ_BIT specifies read access to a uniform texel buffer, sampled image,
storage buffer, physical storage buffer, shader binding table, storage texel buffer, or storage
image in any shader pipeline stage.

• VK_ACCESS_SHADER_WRITE_BIT specifies write access to a storage buffer, physical storage buffer,
storage texel buffer, or storage image in any shader pipeline stage.

• VK_ACCESS_COLOR_ATTACHMENT_READ_BIT specifies read access to a color attachment, such as via
blending (other than advanced blend operations), logic operations or certain render pass load
operations in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage or via fragment

302

shader tile image reads in the VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT pipeline stage.

• VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT specifies write access to a color, resolve, or depth/stencil
resolve attachment during a render pass or via certain render pass load and store operations.
Such access occurs in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT specifies read access to a depth/stencil
attachment, via depth or stencil operations or certain render pass load operations in the
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT or VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT
pipeline stages or via fragment shader tile image reads in the
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT pipeline stage.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT specifies write access to a depth/stencil
attachment, via depth or stencil operations or certain render pass load and store operations.
Such access occurs in the VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT or
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stages.

• VK_ACCESS_TRANSFER_READ_BIT specifies read access to an image or buffer in a copy operation.
Such access occurs in the VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT pipeline stage.

• VK_ACCESS_TRANSFER_WRITE_BIT specifies write access to an image or buffer in a clear or copy
operation. Such access occurs in the VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT pipeline stage.

• VK_ACCESS_HOST_READ_BIT specifies read access by a host operation. Accesses of this type are not
performed through a resource, but directly on memory. Such access occurs in the
VK_PIPELINE_STAGE_HOST_BIT pipeline stage.

• VK_ACCESS_HOST_WRITE_BIT specifies write access by a host operation. Accesses of this type are not
performed through a resource, but directly on memory. Such access occurs in the
VK_PIPELINE_STAGE_HOST_BIT pipeline stage.

• VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT specifies read access to a predicate as part of
conditional rendering. Such access occurs in the
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT pipeline stage.

• VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT specifies write access to a transform feedback
buffer made when transform feedback is active. Such access occurs in the
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT pipeline stage.

• VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT specifies read access to a transform
feedback counter buffer which is read when vkCmdBeginTransformFeedbackEXT executes. Such
access occurs in the VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT pipeline stage.

• VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT specifies write access to a transform
feedback counter buffer which is written when vkCmdEndTransformFeedbackEXT executes. Such
access occurs in the VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT pipeline stage.

• VK_ACCESS_COMMAND_PREPROCESS_READ_BIT_NV specifies reads from buffer inputs to
vkCmdPreprocessGeneratedCommandsNV. Such access occurs in the
VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV pipeline stage.

• VK_ACCESS_COMMAND_PREPROCESS_WRITE_BIT_NV specifies writes to the target command buffer
preprocess outputs in vkCmdPreprocessGeneratedCommandsNV. Such access occurs in the
VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV pipeline stage.

• VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT specifies read access to color attachments,

303

including advanced blend operations. Such access occurs in the
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

• VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI specifies read access to a invocation mask image
in the VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI pipeline stage.

• VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR specifies read access to an acceleration
structure as part of a trace, build, or copy command, or to an acceleration structure scratch
buffer as part of a build command. Such access occurs in the
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR pipeline stage or
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage.

• VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR specifies write access to an acceleration
structure or acceleration structure scratch buffer as part of a build or copy command. Such
access occurs in the VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage.

• VK_ACCESS_FRAGMENT_DENSITY_MAP_READ_BIT_EXT specifies read access to a fragment density map
attachment during dynamic fragment density map operations Such access occurs in the
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT pipeline stage.

• VK_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR specifies read access to a fragment
shading rate attachment during rasterization. Such access occurs in the
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR pipeline stage.

• VK_ACCESS_SHADING_RATE_IMAGE_READ_BIT_NV specifies read access to a shading rate image during
rasterization. Such access occurs in the VK_PIPELINE_STAGE_SHADING_RATE_IMAGE_BIT_NV pipeline
stage. It is equivalent to VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR.

Certain access types are only performed by a subset of pipeline stages. Any synchronization
command that takes both stage masks and access masks uses both to define the access scopes - only
the specified access types performed by the specified stages are included in the access scope. An
application must not specify an access flag in a synchronization command if it does not include a
pipeline stage in the corresponding stage mask that is able to perform accesses of that type. The
following table lists, for each access flag, which pipeline stages can perform that type of access.

Table 4. Supported access types

Access flag Supported pipeline stages

VK_ACCESS_2_NONE Any

VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUI
LD_BIT_KHR

VK_ACCESS_2_INDEX_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT

VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT

304

Access flag Supported pipeline stages

VK_ACCESS_2_UNIFORM_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI

VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

VK_ACCESS_2_SHADER_READ_BIT VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUI
LD_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT,
VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI

VK_ACCESS_2_SHADER_WRITE_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI

305

Access flag Supported pipeline stages

VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BI
T

VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BI
T

VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

VK_ACCESS_2_TRANSFER_READ_BIT VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_COPY_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT,
VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUI
LD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COP
Y_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

VK_ACCESS_2_TRANSFER_WRITE_BIT VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_COPY_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT,
VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUI
LD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COP
Y_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

VK_ACCESS_2_HOST_READ_BIT VK_PIPELINE_STAGE_2_HOST_BIT

VK_ACCESS_2_HOST_WRITE_BIT VK_PIPELINE_STAGE_2_HOST_BIT

VK_ACCESS_2_MEMORY_READ_BIT Any

VK_ACCESS_2_MEMORY_WRITE_BIT Any

306

Access flag Supported pipeline stages

VK_ACCESS_2_SHADER_SAMPLED_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI

VK_ACCESS_2_SHADER_STORAGE_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI

VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI

VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

307

Access flag Supported pipeline stages

VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BI
T_EXT

VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_B
IT_EXT

VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_
EXT

VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV

VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV

VK_ACCESS_2_FRAGMENT_SHADING_RATE_ATTACHMENT_R
EAD_BIT_KHR

VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTA
CHMENT_BIT_KHR

VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KH
R

VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUI
LD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COP
Y_BIT_KHR,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_K
HR

VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUI
LD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COP
Y_BIT_KHR

VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_B
IT_EXT

VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_
BIT_EXT

VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BI
T

308

Access flag Supported pipeline stages

VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI

VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR,
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI,
VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT
_HUAWEI

VK_ACCESS_2_MICROMAP_READ_BIT_EXT VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUI
LD_BIT_KHR

VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

// Provided by VK_VERSION_1_0
typedef VkFlags VkAccessFlags;

VkAccessFlags is a bitmask type for setting a mask of zero or more VkAccessFlagBits.

If a memory object does not have the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property, then
vkFlushMappedMemoryRanges must be called in order to guarantee that writes to the memory
object from the host are made available to the host domain, where they can be further made
available to the device domain via a domain operation. Similarly,
vkInvalidateMappedMemoryRanges must be called to guarantee that writes which are available to

309

the host domain are made visible to host operations.

If the memory object does have the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property flag, writes to
the memory object from the host are automatically made available to the host domain. Similarly,
writes made available to the host domain are automatically made visible to the host.

Note

Queue submission commands automatically perform a domain operation from
host to device for all writes performed before the command executes, so in most
cases an explicit memory barrier is not needed for this case. In the few
circumstances where a submit does not occur between the host write and the
device read access, writes can be made available by using an explicit memory
barrier.

7.1.4. Framebuffer Region Dependencies

Pipeline stages that operate on, or with respect to, the framebuffer are collectively the framebuffer-
space pipeline stages. These stages are:

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

For these pipeline stages, an execution or memory dependency from the first set of operations to
the second set can either be a single framebuffer-global dependency, or split into multiple
framebuffer-local dependencies. A dependency with non-framebuffer-space pipeline stages is
neither framebuffer-global nor framebuffer-local.

A framebuffer region is a subset of the entire framebuffer, and can either be:

• A sample region, which is set of sample (x, y, layer, sample) coordinates that is a subset of the
entire framebuffer, or

• A fragment region, which is a set of fragment (x, y, layer) coordinates that is a subset of the
entire framebuffer.

Both synchronization scopes of a framebuffer-local dependency include only the operations
performed within corresponding framebuffer regions (as defined below). No ordering guarantees
are made between different framebuffer regions for a framebuffer-local dependency.

Both synchronization scopes of a framebuffer-global dependency include operations on all
framebuffer-regions.

If the first synchronization scope includes operations on pixels/fragments with N samples and the
second synchronization scope includes operations on pixels/fragments with M samples, where N
does not equal M, then a framebuffer region containing all samples at a given (x, y, layer)
coordinate in the first synchronization scope corresponds to a region containing all samples at the
same coordinate in the second synchronization scope. In other words, the framebuffer region is a

310

fragment region and it is a pixel granularity dependency. If N equals M, and if the
VkSubpassDescription::flags does not specify the VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM
flag, then a framebuffer region containing a single (x, y, layer, sample) coordinate in the first
synchronization scope corresponds to a region containing the same sample at the same coordinate
in the second synchronization scope. In other words, the framebuffer region is a sample region and
it is a sample granularity dependency.

If the pipeline performing the operation was created with
VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT,
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT, or
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EXT,
the framebuffer region is a fragment region and it is a pixel granularity dependency.

Note

Since fragment shader invocations are not specified to run in any particular
groupings, the size of a framebuffer region is implementation-dependent, not
known to the application, and must be assumed to be no larger than specified
above.

Note

Practically, the pixel vs. sample granularity dependency means that if an input
attachment has a different number of samples than the pipeline’s
rasterizationSamples, then a fragment can access any sample in the input
attachment’s pixel even if it only uses framebuffer-local dependencies. If the input
attachment has the same number of samples, then the fragment can only access
the covered samples in its input SampleMask (i.e. the fragment operations happen-
after a framebuffer-local dependency for each sample the fragment covers). To
access samples that are not covered, either the VkSubpassDescription::flags
VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM flag is required, or a
framebuffer-global dependency is required.

If a synchronization command includes a dependencyFlags parameter, and specifies the
VK_DEPENDENCY_BY_REGION_BIT flag, then it defines framebuffer-local dependencies for the
framebuffer-space pipeline stages in that synchronization command, for all framebuffer regions. If
no dependencyFlags parameter is included, or the VK_DEPENDENCY_BY_REGION_BIT flag is not specified,
then a framebuffer-global dependency is specified for those stages. The
VK_DEPENDENCY_BY_REGION_BIT flag does not affect the dependencies between non-framebuffer-space
pipeline stages, nor does it affect the dependencies between framebuffer-space and non-
framebuffer-space pipeline stages.

Note

Framebuffer-local dependencies are more efficient for most architectures;
particularly tile-based architectures - which can keep framebuffer-regions entirely
in on-chip registers and thus avoid external bandwidth across such a dependency.
Including a framebuffer-global dependency in your rendering will usually force all
implementations to flush data to memory, or to a higher level cache, breaking any
potential locality optimizations.

311

7.1.5. View-Local Dependencies

In a render pass instance that has multiview enabled, dependencies can be either view-local or
view-global.

A view-local dependency only includes operations from a single source view from the source
subpass in the first synchronization scope, and only includes operations from a single destination
view from the destination subpass in the second synchronization scope. A view-global dependency
includes all views in the view mask of the source and destination subpasses in the corresponding
synchronization scopes.

If a synchronization command includes a dependencyFlags parameter and specifies the
VK_DEPENDENCY_VIEW_LOCAL_BIT flag, then it defines view-local dependencies for that synchronization
command, for all views. If no dependencyFlags parameter is included or the
VK_DEPENDENCY_VIEW_LOCAL_BIT flag is not specified, then a view-global dependency is specified.

7.1.6. Device-Local Dependencies

Dependencies can be either device-local or non-device-local. A device-local dependency acts as
multiple separate dependencies, one for each physical device that executes the synchronization
command, where each dependency only includes operations from that physical device in both
synchronization scopes. A non-device-local dependency is a single dependency where both
synchronization scopes include operations from all physical devices that participate in the
synchronization command. For subpass dependencies, all physical devices in the
VkDeviceGroupRenderPassBeginInfo::deviceMask participate in the dependency, and for pipeline
barriers all physical devices that are set in the command buffer’s current device mask participate
in the dependency.

If a synchronization command includes a dependencyFlags parameter and specifies the
VK_DEPENDENCY_DEVICE_GROUP_BIT flag, then it defines a non-device-local dependency for that
synchronization command. If no dependencyFlags parameter is included or the
VK_DEPENDENCY_DEVICE_GROUP_BIT flag is not specified, then it defines device-local dependencies for
that synchronization command, for all participating physical devices.

Semaphore and event dependencies are device-local and only execute on the one physical device
that performs the dependency.

7.2. Implicit Synchronization Guarantees
A small number of implicit ordering guarantees are provided by Vulkan, ensuring that the order in
which commands are submitted is meaningful, and avoiding unnecessary complexity in common
operations.

Submission order is a fundamental ordering in Vulkan, giving meaning to the order in which action
and synchronization commands are recorded and submitted to a single queue. Explicit and implicit
ordering guarantees between commands in Vulkan all work on the premise that this ordering is
meaningful. This order does not itself define any execution or memory dependencies;
synchronization commands and other orderings within the API use this ordering to define their
scopes.

312

Submission order for any given set of commands is based on the order in which they were
recorded to command buffers and then submitted. This order is determined as follows:

1. The initial order is determined by the order in which vkQueueSubmit and vkQueueSubmit2
commands are executed on the host, for a single queue, from first to last.

2. The order in which VkSubmitInfo structures are specified in the pSubmits parameter of
vkQueueSubmit, or in which VkSubmitInfo2 structures are specified in the pSubmits parameter
of vkQueueSubmit2, from lowest index to highest.

3. The order in which command buffers are specified in the pCommandBuffers member of
VkSubmitInfo or VkSubmitInfo2 from lowest index to highest.

4. The order in which commands outside of a render pass were recorded to a command buffer on
the host, from first to last.

5. The order in which commands inside a single subpass were recorded to a command buffer on
the host, from first to last.

Note

When using a render pass object with multiple subpasses, commands in different
subpasses have no defined submission order relative to each other, regardless of
the order in which the subpasses were recorded. Commands within a subpass are
still ordered relative to other commands in the same subpass, and those outside of
the render pass.

State commands do not execute any operations on the device, instead they set the state of the
command buffer when they execute on the host, in the order that they are recorded. Action
commands consume the current state of the command buffer when they are recorded, and will
execute state changes on the device as required to match the recorded state.

The order of primitives passing through the graphics pipeline and image layout transitions as part
of an image memory barrier provide additional guarantees based on submission order.

Execution of pipeline stages within a given command also has a loose ordering, dependent only on
a single command.

Signal operation order is a fundamental ordering in Vulkan, giving meaning to the order in which
semaphore and fence signal operations occur when submitted to a single queue. The signal
operation order for queue operations is determined as follows:

1. The initial order is determined by the order in which vkQueueSubmit and vkQueueSubmit2
commands are executed on the host, for a single queue, from first to last.

2. The order in which VkSubmitInfo structures are specified in the pSubmits parameter of
vkQueueSubmit, or in which VkSubmitInfo2 structures are specified in the pSubmits parameter
of vkQueueSubmit2, from lowest index to highest.

3. The fence signal operation defined by the fence parameter of a vkQueueSubmit or
vkQueueSubmit2 or vkQueueBindSparse command is ordered after all semaphore signal
operations defined by that command.

313

Semaphore signal operations defined by a single VkSubmitInfo or VkSubmitInfo2 or
VkBindSparseInfo structure are unordered with respect to other semaphore signal operations
defined within the same structure.

The vkSignalSemaphore command does not execute on a queue but instead performs the signal
operation from the host. The semaphore signal operation defined by executing a
vkSignalSemaphore command happens-after the vkSignalSemaphore command is invoked and
happens-before the command returns.

Note

When signaling timeline semaphores, it is the responsibility of the application to
ensure that they are ordered such that the semaphore value is strictly increasing.
Because the first synchronization scope for a semaphore signal operation contains
all semaphore signal operations which occur earlier in submission order, all
semaphore signal operations contained in any given batch are guaranteed to
happen-after all semaphore signal operations contained in any previous batches.
However, no ordering guarantee is provided between the semaphore signal
operations defined within a single batch. This, combined with the requirement
that timeline semaphore values strictly increase, means that it is invalid to signal
the same timeline semaphore twice within a single batch.

If an application wishes to ensure that some semaphore signal operation happens-
after some other semaphore signal operation, it can submit a separate batch
containing only semaphore signal operations, which will happen-after the
semaphore signal operations in any earlier batches.

When signaling a semaphore from the host, the only ordering guarantee is that the
signal operation happens-after when vkSignalSemaphore is called and happens-
before it returns. Therefore, it is invalid to call vkSignalSemaphore while there are
any outstanding signal operations on that semaphore from any queue submissions
unless those queue submissions have some dependency which ensures that they
happen-after the host signal operation. One example of this would be if the
pending signal operation is, itself, waiting on the same semaphore at a lower value
and the call to vkSignalSemaphore signals that lower value. Furthermore, if there
are two or more processes or threads signaling the same timeline semaphore from
the host, the application must ensure that the vkSignalSemaphore with the lower
semaphore value returns before vkSignalSemaphore is called with the higher value.

7.3. Fences
Fences are a synchronization primitive that can be used to insert a dependency from a queue to the
host. Fences have two states - signaled and unsignaled. A fence can be signaled as part of the
execution of a queue submission command. Fences can be unsignaled on the host with
vkResetFences. Fences can be waited on by the host with the vkWaitForFences command, and the
current state can be queried with vkGetFenceStatus.

The internal data of a fence may include a reference to any resources and pending work associated
with signal or unsignal operations performed on that fence object, collectively referred to as the

314

fence’s payload. Mechanisms to import and export that internal data to and from fences are
provided below. These mechanisms indirectly enable applications to share fence state between two
or more fences and other synchronization primitives across process and API boundaries.

Fences are represented by VkFence handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFence)

To create a fence, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateFence(
 VkDevice device,
 const VkFenceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFence* pFence);

• device is the logical device that creates the fence.

• pCreateInfo is a pointer to a VkFenceCreateInfo structure containing information about how the
fence is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFence is a pointer to a handle in which the resulting fence object is returned.

Valid Usage (Implicit)

• VUID-vkCreateFence-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateFence-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkFenceCreateInfo structure

• VUID-vkCreateFence-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateFence-pFence-parameter
pFence must be a valid pointer to a VkFence handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

315

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFenceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkFenceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkFenceCreateFlags flags;
} VkFenceCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkFenceCreateFlagBits specifying the initial state and behavior of the
fence.

Valid Usage (Implicit)

• VUID-VkFenceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO

• VUID-VkFenceCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExportFenceCreateInfo or
VkExportFenceWin32HandleInfoKHR

• VUID-VkFenceCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkFenceCreateInfo-flags-parameter
flags must be a valid combination of VkFenceCreateFlagBits values

// Provided by VK_VERSION_1_0
typedef enum VkFenceCreateFlagBits {
 VK_FENCE_CREATE_SIGNALED_BIT = 0x00000001,
} VkFenceCreateFlagBits;

• VK_FENCE_CREATE_SIGNALED_BIT specifies that the fence object is created in the signaled state.
Otherwise, it is created in the unsignaled state.

// Provided by VK_VERSION_1_0
typedef VkFlags VkFenceCreateFlags;

VkFenceCreateFlags is a bitmask type for setting a mask of zero or more VkFenceCreateFlagBits.

316

To create a fence whose payload can be exported to external handles, add a
VkExportFenceCreateInfo structure to the pNext chain of the VkFenceCreateInfo structure. The
VkExportFenceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExportFenceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalFenceHandleTypeFlags handleTypes;
} VkExportFenceCreateInfo;

or the equivalent

// Provided by VK_KHR_external_fence
typedef VkExportFenceCreateInfo VkExportFenceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is a bitmask of VkExternalFenceHandleTypeFlagBits specifying one or more fence
handle types the application can export from the resulting fence. The application can request
multiple handle types for the same fence.

Valid Usage

• VUID-VkExportFenceCreateInfo-handleTypes-01446
The bits in handleTypes must be supported and compatible, as reported by
VkExternalFenceProperties

Valid Usage (Implicit)

• VUID-VkExportFenceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO

• VUID-VkExportFenceCreateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalFenceHandleTypeFlagBits values

To specify additional attributes of NT handles exported from a fence, add a
VkExportFenceWin32HandleInfoKHR structure to the pNext chain of the VkFenceCreateInfo
structure. The VkExportFenceWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_fence_win32
typedef struct VkExportFenceWin32HandleInfoKHR {
 VkStructureType sType;
 const void* pNext;

317

 const SECURITY_ATTRIBUTES* pAttributes;
 DWORD dwAccess;
 LPCWSTR name;
} VkExportFenceWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pAttributes is a pointer to a Windows SECURITY_ATTRIBUTES structure specifying security
attributes of the handle.

• dwAccess is a DWORD specifying access rights of the handle.

• name is a null-terminated UTF-16 string to associate with the underlying synchronization
primitive referenced by NT handles exported from the created fence.

If VkExportFenceCreateInfo is not included in the same pNext chain, this structure is ignored.

If VkExportFenceCreateInfo is included in the pNext chain of VkFenceCreateInfo with a Windows
handleType, but either VkExportFenceWin32HandleInfoKHR is not included in the pNext chain, or it is
included but pAttributes is set to NULL, default security descriptor values will be used, and child
processes created by the application will not inherit the handle, as described in the MSDN
documentation for “Synchronization Object Security and Access Rights”1. Further, if the structure is
not present, the access rights will be

DXGI_SHARED_RESOURCE_READ | DXGI_SHARED_RESOURCE_WRITE

for handles of the following types:

VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT

1

https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-
access-rights

Valid Usage

• VUID-VkExportFenceWin32HandleInfoKHR-handleTypes-01447
If VkExportFenceCreateInfo::handleTypes does not include
VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT, a VkExportFenceWin32HandleInfoKHR
structure must not be included in the pNext chain of VkFenceCreateInfo

Valid Usage (Implicit)

• VUID-VkExportFenceWin32HandleInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR

• VUID-VkExportFenceWin32HandleInfoKHR-pAttributes-parameter
If pAttributes is not NULL, pAttributes must be a valid pointer to a valid
SECURITY_ATTRIBUTES value

318

https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-access-rights
https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-access-rights

To export a Windows handle representing the state of a fence, call:

// Provided by VK_KHR_external_fence_win32
VkResult vkGetFenceWin32HandleKHR(
 VkDevice device,
 const VkFenceGetWin32HandleInfoKHR* pGetWin32HandleInfo,
 HANDLE* pHandle);

• device is the logical device that created the fence being exported.

• pGetWin32HandleInfo is a pointer to a VkFenceGetWin32HandleInfoKHR structure containing
parameters of the export operation.

• pHandle will return the Windows handle representing the fence state.

For handle types defined as NT handles, the handles returned by vkGetFenceWin32HandleKHR are
owned by the application. To avoid leaking resources, the application must release ownership of
them using the CloseHandle system call when they are no longer needed.

Exporting a Windows handle from a fence may have side effects depending on the transference of
the specified handle type, as described in Importing Fence Payloads.

Valid Usage (Implicit)

• VUID-vkGetFenceWin32HandleKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetFenceWin32HandleKHR-pGetWin32HandleInfo-parameter
pGetWin32HandleInfo must be a valid pointer to a valid VkFenceGetWin32HandleInfoKHR
structure

• VUID-vkGetFenceWin32HandleKHR-pHandle-parameter
pHandle must be a valid pointer to a HANDLE value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkFenceGetWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_fence_win32
typedef struct VkFenceGetWin32HandleInfoKHR {
 VkStructureType sType;

319

 const void* pNext;
 VkFence fence;
 VkExternalFenceHandleTypeFlagBits handleType;
} VkFenceGetWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fence is the fence from which state will be exported.

• handleType is a VkExternalFenceHandleTypeFlagBits value specifying the type of handle
requested.

The properties of the handle returned depend on the value of handleType. See
VkExternalFenceHandleTypeFlagBits for a description of the properties of the defined external
fence handle types.

Valid Usage

• VUID-VkFenceGetWin32HandleInfoKHR-handleType-01448
handleType must have been included in VkExportFenceCreateInfo::handleTypes when the
fence’s current payload was created

• VUID-VkFenceGetWin32HandleInfoKHR-handleType-01449
If handleType is defined as an NT handle, vkGetFenceWin32HandleKHR must be called no
more than once for each valid unique combination of fence and handleType

• VUID-VkFenceGetWin32HandleInfoKHR-fence-01450
fence must not currently have its payload replaced by an imported payload as described
below in Importing Fence Payloads unless that imported payload’s handle type was
included in VkExternalFenceProperties::exportFromImportedHandleTypes for handleType

• VUID-VkFenceGetWin32HandleInfoKHR-handleType-01451
If handleType refers to a handle type with copy payload transference semantics, fence
must be signaled, or have an associated fence signal operation pending execution

• VUID-VkFenceGetWin32HandleInfoKHR-handleType-01452
handleType must be defined as an NT handle or a global share handle

Valid Usage (Implicit)

• VUID-VkFenceGetWin32HandleInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR

• VUID-VkFenceGetWin32HandleInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkFenceGetWin32HandleInfoKHR-fence-parameter
fence must be a valid VkFence handle

• VUID-VkFenceGetWin32HandleInfoKHR-handleType-parameter

320

handleType must be a valid VkExternalFenceHandleTypeFlagBits value

To export a POSIX file descriptor representing the payload of a fence, call:

// Provided by VK_KHR_external_fence_fd
VkResult vkGetFenceFdKHR(
 VkDevice device,
 const VkFenceGetFdInfoKHR* pGetFdInfo,
 int* pFd);

• device is the logical device that created the fence being exported.

• pGetFdInfo is a pointer to a VkFenceGetFdInfoKHR structure containing parameters of the
export operation.

• pFd will return the file descriptor representing the fence payload.

Each call to vkGetFenceFdKHR must create a new file descriptor and transfer ownership of it to the
application. To avoid leaking resources, the application must release ownership of the file
descriptor when it is no longer needed.

Note

Ownership can be released in many ways. For example, the application can call
close() on the file descriptor, or transfer ownership back to Vulkan by using the
file descriptor to import a fence payload.

If pGetFdInfo->handleType is VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT and the fence is signaled at
the time vkGetFenceFdKHR is called, pFd may return the value -1 instead of a valid file descriptor.

Where supported by the operating system, the implementation must set the file descriptor to be
closed automatically when an execve system call is made.

Exporting a file descriptor from a fence may have side effects depending on the transference of the
specified handle type, as described in Importing Fence State.

Valid Usage (Implicit)

• VUID-vkGetFenceFdKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetFenceFdKHR-pGetFdInfo-parameter
pGetFdInfo must be a valid pointer to a valid VkFenceGetFdInfoKHR structure

• VUID-vkGetFenceFdKHR-pFd-parameter
pFd must be a valid pointer to an int value

321

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkFenceGetFdInfoKHR structure is defined as:

// Provided by VK_KHR_external_fence_fd
typedef struct VkFenceGetFdInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkFence fence;
 VkExternalFenceHandleTypeFlagBits handleType;
} VkFenceGetFdInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fence is the fence from which state will be exported.

• handleType is a VkExternalFenceHandleTypeFlagBits value specifying the type of handle
requested.

The properties of the file descriptor returned depend on the value of handleType. See
VkExternalFenceHandleTypeFlagBits for a description of the properties of the defined external
fence handle types.

Valid Usage

• VUID-VkFenceGetFdInfoKHR-handleType-01453
handleType must have been included in VkExportFenceCreateInfo::handleTypes when
fence’s current payload was created

• VUID-VkFenceGetFdInfoKHR-handleType-01454
If handleType refers to a handle type with copy payload transference semantics, fence
must be signaled, or have an associated fence signal operation pending execution

• VUID-VkFenceGetFdInfoKHR-fence-01455
fence must not currently have its payload replaced by an imported payload as described
below in Importing Fence Payloads unless that imported payload’s handle type was
included in VkExternalFenceProperties::exportFromImportedHandleTypes for handleType

• VUID-VkFenceGetFdInfoKHR-handleType-01456
handleType must be defined as a POSIX file descriptor handle

322

Valid Usage (Implicit)

• VUID-VkFenceGetFdInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR

• VUID-VkFenceGetFdInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkFenceGetFdInfoKHR-fence-parameter
fence must be a valid VkFence handle

• VUID-VkFenceGetFdInfoKHR-handleType-parameter
handleType must be a valid VkExternalFenceHandleTypeFlagBits value

To destroy a fence, call:

// Provided by VK_VERSION_1_0
void vkDestroyFence(
 VkDevice device,
 VkFence fence,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the fence.

• fence is the handle of the fence to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyFence-fence-01120
All queue submission commands that refer to fence must have completed execution

• VUID-vkDestroyFence-fence-01121
If VkAllocationCallbacks were provided when fence was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyFence-fence-01122
If no VkAllocationCallbacks were provided when fence was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyFence-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyFence-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkDestroyFence-pAllocator-parameter

323

If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyFence-fence-parent
If fence is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to fence must be externally synchronized

To query the status of a fence from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkGetFenceStatus(
 VkDevice device,
 VkFence fence);

• device is the logical device that owns the fence.

• fence is the handle of the fence to query.

Upon success, vkGetFenceStatus returns the status of the fence object, with the following return
codes:

Table 5. Fence Object Status Codes

Status Meaning

VK_SUCCESS The fence specified by fence is
signaled.

VK_NOT_READY The fence specified by fence is
unsignaled.

VK_ERROR_DEVICE_LOST The device has been lost. See Lost
Device.

If a queue submission command is pending execution, then the value returned by this command
may immediately be out of date.

If the device has been lost (see Lost Device), vkGetFenceStatus may return any of the above status
codes. If the device has been lost and vkGetFenceStatus is called repeatedly, it will eventually return
either VK_SUCCESS or VK_ERROR_DEVICE_LOST.

Valid Usage (Implicit)

• VUID-vkGetFenceStatus-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetFenceStatus-fence-parameter

324

fence must be a valid VkFence handle

• VUID-vkGetFenceStatus-fence-parent
fence must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To set the state of fences to unsignaled from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkResetFences(
 VkDevice device,
 uint32_t fenceCount,
 const VkFence* pFences);

• device is the logical device that owns the fences.

• fenceCount is the number of fences to reset.

• pFences is a pointer to an array of fence handles to reset.

If any member of pFences currently has its payload imported with temporary permanence, that
fence’s prior permanent payload is first restored. The remaining operations described therefore
operate on the restored payload.

When vkResetFences is executed on the host, it defines a fence unsignal operation for each fence,
which resets the fence to the unsignaled state.

If any member of pFences is already in the unsignaled state when vkResetFences is executed, then
vkResetFences has no effect on that fence.

Valid Usage

• VUID-vkResetFences-pFences-01123
Each element of pFences must not be currently associated with any queue command that
has not yet completed execution on that queue

325

Valid Usage (Implicit)

• VUID-vkResetFences-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetFences-pFences-parameter
pFences must be a valid pointer to an array of fenceCount valid VkFence handles

• VUID-vkResetFences-fenceCount-arraylength
fenceCount must be greater than 0

• VUID-vkResetFences-pFences-parent
Each element of pFences must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to each member of pFences must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_DEVICE_MEMORY

When a fence is submitted to a queue as part of a queue submission command, it defines a memory
dependency on the batches that were submitted as part of that command, and defines a fence signal
operation which sets the fence to the signaled state.

The first synchronization scope includes every batch submitted in the same queue submission
command. Fence signal operations that are defined by vkQueueSubmit or vkQueueSubmit2
additionally include in the first synchronization scope all commands that occur earlier in
submission order. Fence signal operations that are defined by vkQueueSubmit or vkQueueSubmit2
or vkQueueBindSparse additionally include in the first synchronization scope any semaphore and
fence signal operations that occur earlier in signal operation order.

The second synchronization scope only includes the fence signal operation.

The first access scope includes all memory access performed by the device.

The second access scope is empty.

To wait for one or more fences to enter the signaled state on the host, call:

// Provided by VK_VERSION_1_0
VkResult vkWaitForFences(

326

 VkDevice device,
 uint32_t fenceCount,
 const VkFence* pFences,
 VkBool32 waitAll,
 uint64_t timeout);

• device is the logical device that owns the fences.

• fenceCount is the number of fences to wait on.

• pFences is a pointer to an array of fenceCount fence handles.

• waitAll is the condition that must be satisfied to successfully unblock the wait. If waitAll is
VK_TRUE, then the condition is that all fences in pFences are signaled. Otherwise, the condition is
that at least one fence in pFences is signaled.

• timeout is the timeout period in units of nanoseconds. timeout is adjusted to the closest value
allowed by the implementation-dependent timeout accuracy, which may be substantially longer
than one nanosecond, and may be longer than the requested period.

If the condition is satisfied when vkWaitForFences is called, then vkWaitForFences returns
immediately. If the condition is not satisfied at the time vkWaitForFences is called, then
vkWaitForFences will block and wait until the condition is satisfied or the timeout has expired,
whichever is sooner.

If timeout is zero, then vkWaitForFences does not wait, but simply returns the current state of the
fences. VK_TIMEOUT will be returned in this case if the condition is not satisfied, even though no
actual wait was performed.

If the condition is satisfied before the timeout has expired, vkWaitForFences returns VK_SUCCESS.
Otherwise, vkWaitForFences returns VK_TIMEOUT after the timeout has expired.

If device loss occurs (see Lost Device) before the timeout has expired, vkWaitForFences must return
in finite time with either VK_SUCCESS or VK_ERROR_DEVICE_LOST.

Note

While we guarantee that vkWaitForFences must return in finite time, no guarantees
are made that it returns immediately upon device loss. However, the client can
reasonably expect that the delay will be on the order of seconds and that calling
vkWaitForFences will not result in a permanently (or seemingly permanently) dead
process.

Valid Usage (Implicit)

• VUID-vkWaitForFences-device-parameter
device must be a valid VkDevice handle

• VUID-vkWaitForFences-pFences-parameter
pFences must be a valid pointer to an array of fenceCount valid VkFence handles

• VUID-vkWaitForFences-fenceCount-arraylength

327

fenceCount must be greater than 0

• VUID-vkWaitForFences-pFences-parent
Each element of pFences must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_TIMEOUT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

An execution dependency is defined by waiting for a fence to become signaled, either via
vkWaitForFences or by polling on vkGetFenceStatus.

The first synchronization scope includes only the fence signal operation.

The second synchronization scope includes the host operations of vkWaitForFences or
vkGetFenceStatus indicating that the fence has become signaled.

Note

Signaling a fence and waiting on the host does not guarantee that the results of
memory accesses will be visible to the host, as the access scope of a memory
dependency defined by a fence only includes device access. A memory barrier or
other memory dependency must be used to guarantee this. See the description of
host access types for more information.

7.3.1. Alternate Methods to Signal Fences

Besides submitting a fence to a queue as part of a queue submission command, a fence may also be
signaled when a particular event occurs on a device or display.

To create a fence that will be signaled when an event occurs on a device, call:

// Provided by VK_EXT_display_control
VkResult vkRegisterDeviceEventEXT(
 VkDevice device,
 const VkDeviceEventInfoEXT* pDeviceEventInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFence* pFence);

• device is a logical device on which the event may occur.

328

• pDeviceEventInfo is a pointer to a VkDeviceEventInfoEXT structure describing the event of
interest to the application.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFence is a pointer to a handle in which the resulting fence object is returned.

Valid Usage (Implicit)

• VUID-vkRegisterDeviceEventEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkRegisterDeviceEventEXT-pDeviceEventInfo-parameter
pDeviceEventInfo must be a valid pointer to a valid VkDeviceEventInfoEXT structure

• VUID-vkRegisterDeviceEventEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkRegisterDeviceEventEXT-pFence-parameter
pFence must be a valid pointer to a VkFence handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkDeviceEventInfoEXT structure is defined as:

// Provided by VK_EXT_display_control
typedef struct VkDeviceEventInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDeviceEventTypeEXT deviceEvent;
} VkDeviceEventInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• device is a VkDeviceEventTypeEXT value specifying when the fence will be signaled.

Valid Usage (Implicit)

• VUID-VkDeviceEventInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT

329

• VUID-VkDeviceEventInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDeviceEventInfoEXT-deviceEvent-parameter
deviceEvent must be a valid VkDeviceEventTypeEXT value

Possible values of VkDeviceEventInfoEXT::device, specifying when a fence will be signaled, are:

// Provided by VK_EXT_display_control
typedef enum VkDeviceEventTypeEXT {
 VK_DEVICE_EVENT_TYPE_DISPLAY_HOTPLUG_EXT = 0,
} VkDeviceEventTypeEXT;

• VK_DEVICE_EVENT_TYPE_DISPLAY_HOTPLUG_EXT specifies that the fence is signaled when a display is
plugged into or unplugged from the specified device. Applications can use this notification to
determine when they need to re-enumerate the available displays on a device.

To create a fence that will be signaled when an event occurs on a VkDisplayKHR object, call:

// Provided by VK_EXT_display_control
VkResult vkRegisterDisplayEventEXT(
 VkDevice device,
 VkDisplayKHR display,
 const VkDisplayEventInfoEXT* pDisplayEventInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFence* pFence);

• device is a logical device associated with display

• display is the display on which the event may occur.

• pDisplayEventInfo is a pointer to a VkDisplayEventInfoEXT structure describing the event of
interest to the application.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFence is a pointer to a handle in which the resulting fence object is returned.

Valid Usage (Implicit)

• VUID-vkRegisterDisplayEventEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkRegisterDisplayEventEXT-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkRegisterDisplayEventEXT-pDisplayEventInfo-parameter
pDisplayEventInfo must be a valid pointer to a valid VkDisplayEventInfoEXT structure

• VUID-vkRegisterDisplayEventEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid

330

VkAllocationCallbacks structure

• VUID-vkRegisterDisplayEventEXT-pFence-parameter
pFence must be a valid pointer to a VkFence handle

• VUID-vkRegisterDisplayEventEXT-commonparent
Both of device, and display must have been created, allocated, or retrieved from the same
VkPhysicalDevice

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkDisplayEventInfoEXT structure is defined as:

// Provided by VK_EXT_display_control
typedef struct VkDisplayEventInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDisplayEventTypeEXT displayEvent;
} VkDisplayEventInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• displayEvent is a VkDisplayEventTypeEXT specifying when the fence will be signaled.

Valid Usage (Implicit)

• VUID-VkDisplayEventInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT

• VUID-VkDisplayEventInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDisplayEventInfoEXT-displayEvent-parameter
displayEvent must be a valid VkDisplayEventTypeEXT value

Possible values of VkDisplayEventInfoEXT::displayEvent, specifying when a fence will be signaled,
are:

// Provided by VK_EXT_display_control
typedef enum VkDisplayEventTypeEXT {

331

 VK_DISPLAY_EVENT_TYPE_FIRST_PIXEL_OUT_EXT = 0,
} VkDisplayEventTypeEXT;

• VK_DISPLAY_EVENT_TYPE_FIRST_PIXEL_OUT_EXT specifies that the fence is signaled when the first
pixel of the next display refresh cycle leaves the display engine for the display.

7.3.2. Importing Fence Payloads

Applications can import a fence payload into an existing fence using an external fence handle. The
effects of the import operation will be either temporary or permanent, as specified by the
application. If the import is temporary, the fence will be restored to its permanent state the next
time that fence is passed to vkResetFences.

Note

Restoring a fence to its prior permanent payload is a distinct operation from
resetting a fence payload. See vkResetFences for more detail.

Performing a subsequent temporary import on a fence before resetting it has no effect on this
requirement; the next unsignal of the fence must still restore its last permanent state. A permanent
payload import behaves as if the target fence was destroyed, and a new fence was created with the
same handle but the imported payload. Because importing a fence payload temporarily or
permanently detaches the existing payload from a fence, similar usage restrictions to those applied
to vkDestroyFence are applied to any command that imports a fence payload. Which of these import
types is used is referred to as the import operation’s permanence. Each handle type supports either
one or both types of permanence.

The implementation must perform the import operation by either referencing or copying the
payload referred to by the specified external fence handle, depending on the handle’s type. The
import method used is referred to as the handle type’s transference. When using handle types with
reference transference, importing a payload to a fence adds the fence to the set of all fences sharing
that payload. This set includes the fence from which the payload was exported. Fence signaling,
waiting, and resetting operations performed on any fence in the set must behave as if the set were
a single fence. Importing a payload using handle types with copy transference creates a duplicate
copy of the payload at the time of import, but makes no further reference to it. Fence signaling,
waiting, and resetting operations performed on the target of copy imports must not affect any
other fence or payload.

Export operations have the same transference as the specified handle type’s import operations.
Additionally, exporting a fence payload to a handle with copy transference has the same side effects
on the source fence’s payload as executing a fence reset operation. If the fence was using a
temporarily imported payload, the fence’s prior permanent payload will be restored.

Note

The tables Handle Types Supported by VkImportFenceWin32HandleInfoKHR and
Handle Types Supported by VkImportFenceFdInfoKHR define the permanence and
transference of each handle type.

332

External synchronization allows implementations to modify an object’s internal state, i.e. payload,
without internal synchronization. However, for fences sharing a payload across processes,
satisfying the external synchronization requirements of VkFence parameters as if all fences in the
set were the same object is sometimes infeasible. Satisfying valid usage constraints on the state of a
fence would similarly require impractical coordination or levels of trust between processes.
Therefore, these constraints only apply to a specific fence handle, not to its payload. For distinct
fence objects which share a payload:

• If multiple commands which queue a signal operation, or which unsignal a fence, are called
concurrently, behavior will be as if the commands were called in an arbitrary sequential order.

• If a queue submission command is called with a fence that is sharing a payload, and the payload
is already associated with another queue command that has not yet completed execution, either
one or both of the commands will cause the fence to become signaled when they complete
execution.

• If a fence payload is reset while it is associated with a queue command that has not yet
completed execution, the payload will become unsignaled, but may become signaled again
when the command completes execution.

• In the preceding cases, any of the devices associated with the fences sharing the payload may be
lost, or any of the queue submission or fence reset commands may return
VK_ERROR_INITIALIZATION_FAILED.

Other than these non-deterministic results, behavior is well defined. In particular:

• The implementation must not crash or enter an internally inconsistent state where future valid
Vulkan commands might cause undefined results,

• Timeouts on future wait commands on fences sharing the payload must be effective.

Note

These rules allow processes to synchronize access to shared memory without
trusting each other. However, such processes must still be cautious not to use the
shared fence for more than synchronizing access to the shared memory. For
example, a process should not use a fence with shared payload to tell when
commands it submitted to a queue have completed and objects used by those
commands may be destroyed, since the other process can accidentally or
maliciously cause the fence to signal before the commands actually complete.

When a fence is using an imported payload, its VkExportFenceCreateInfo::handleTypes value is
specified when creating the fence from which the payload was exported, rather than specified
when creating the fence. Additionally, VkExternalFenceProperties::exportFromImportedHandleTypes
restricts which handle types can be exported from such a fence based on the specific handle type
used to import the current payload. Passing a fence to vkAcquireNextImageKHR is equivalent to
temporarily importing a fence payload to that fence.

Note

Because the exportable handle types of an imported fence correspond to its
current imported payload, and vkAcquireNextImageKHR behaves the same as a

333

temporary import operation for which the source fence is opaque to the
application, applications have no way of determining whether any external handle
types can be exported from a fence in this state. Therefore, applications must not
attempt to export handles from fences using a temporarily imported payload from
vkAcquireNextImageKHR.

When importing a fence payload, it is the responsibility of the application to ensure the external
handles meet all valid usage requirements. However, implementations must perform sufficient
validation of external handles to ensure that the operation results in a valid fence which will not
cause program termination, device loss, queue stalls, host thread stalls, or corruption of other
resources when used as allowed according to its import parameters. If the external handle
provided does not meet these requirements, the implementation must fail the fence payload import
operation with the error code VK_ERROR_INVALID_EXTERNAL_HANDLE.

To import a fence payload from a Windows handle, call:

// Provided by VK_KHR_external_fence_win32
VkResult vkImportFenceWin32HandleKHR(
 VkDevice device,
 const VkImportFenceWin32HandleInfoKHR* pImportFenceWin32HandleInfo);

• device is the logical device that created the fence.

• pImportFenceWin32HandleInfo is a pointer to a VkImportFenceWin32HandleInfoKHR structure
specifying the fence and import parameters.

Importing a fence payload from Windows handles does not transfer ownership of the handle to the
Vulkan implementation. For handle types defined as NT handles, the application must release
ownership using the CloseHandle system call when the handle is no longer needed.

Applications can import the same fence payload into multiple instances of Vulkan, into the same
instance from which it was exported, and multiple times into a given Vulkan instance.

Valid Usage

• VUID-vkImportFenceWin32HandleKHR-fence-04448
fence must not be associated with any queue command that has not yet completed
execution on that queue

Valid Usage (Implicit)

• VUID-vkImportFenceWin32HandleKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkImportFenceWin32HandleKHR-pImportFenceWin32HandleInfo-parameter
pImportFenceWin32HandleInfo must be a valid pointer to a valid
VkImportFenceWin32HandleInfoKHR structure

334

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkImportFenceWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_fence_win32
typedef struct VkImportFenceWin32HandleInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkFence fence;
 VkFenceImportFlags flags;
 VkExternalFenceHandleTypeFlagBits handleType;
 HANDLE handle;
 LPCWSTR name;
} VkImportFenceWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fence is the fence into which the state will be imported.

• flags is a bitmask of VkFenceImportFlagBits specifying additional parameters for the fence
payload import operation.

• handleType is a VkExternalFenceHandleTypeFlagBits value specifying the type of handle.

• handle is NULL or the external handle to import.

• name is NULL or a null-terminated UTF-16 string naming the underlying synchronization
primitive to import.

The handle types supported by handleType are:

Table 6. Handle Types Supported by VkImportFenceWin32HandleInfoKHR

Handle Type Transference Permanence Supported

VK_EXTERNAL_FENCE_HANDLE
_TYPE_OPAQUE_WIN32_BIT

Reference Temporary,Permanent

VK_EXTERNAL_FENCE_HANDLE
_TYPE_OPAQUE_WIN32_KMT_B
IT

Reference Temporary,Permanent

335

Valid Usage

• VUID-VkImportFenceWin32HandleInfoKHR-handleType-01457
handleType must be a value included in the Handle Types Supported by
VkImportFenceWin32HandleInfoKHR table

• VUID-VkImportFenceWin32HandleInfoKHR-handleType-01459
If handleType is not VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT, name must be NULL

• VUID-VkImportFenceWin32HandleInfoKHR-handleType-01460
If handle is NULL, name must name a valid synchronization primitive of the type specified
by handleType

• VUID-VkImportFenceWin32HandleInfoKHR-handleType-01461
If name is NULL, handle must be a valid handle of the type specified by handleType

• VUID-VkImportFenceWin32HandleInfoKHR-handle-01462
If handle is not NULL, name must be NULL

• VUID-VkImportFenceWin32HandleInfoKHR-handle-01539
If handle is not NULL, it must obey any requirements listed for handleType in external fence
handle types compatibility

• VUID-VkImportFenceWin32HandleInfoKHR-name-01540
If name is not NULL, it must obey any requirements listed for handleType in external fence
handle types compatibility

Valid Usage (Implicit)

• VUID-VkImportFenceWin32HandleInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR

• VUID-VkImportFenceWin32HandleInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkImportFenceWin32HandleInfoKHR-fence-parameter
fence must be a valid VkFence handle

• VUID-VkImportFenceWin32HandleInfoKHR-flags-parameter
flags must be a valid combination of VkFenceImportFlagBits values

Host Synchronization

• Host access to fence must be externally synchronized

To import a fence payload from a POSIX file descriptor, call:

// Provided by VK_KHR_external_fence_fd
VkResult vkImportFenceFdKHR(
 VkDevice device,

336

 const VkImportFenceFdInfoKHR* pImportFenceFdInfo);

• device is the logical device that created the fence.

• pImportFenceFdInfo is a pointer to a VkImportFenceFdInfoKHR structure specifying the fence
and import parameters.

Importing a fence payload from a file descriptor transfers ownership of the file descriptor from the
application to the Vulkan implementation. The application must not perform any operations on the
file descriptor after a successful import.

Applications can import the same fence payload into multiple instances of Vulkan, into the same
instance from which it was exported, and multiple times into a given Vulkan instance.

Valid Usage

• VUID-vkImportFenceFdKHR-fence-01463
fence must not be associated with any queue command that has not yet completed
execution on that queue

Valid Usage (Implicit)

• VUID-vkImportFenceFdKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkImportFenceFdKHR-pImportFenceFdInfo-parameter
pImportFenceFdInfo must be a valid pointer to a valid VkImportFenceFdInfoKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkImportFenceFdInfoKHR structure is defined as:

// Provided by VK_KHR_external_fence_fd
typedef struct VkImportFenceFdInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkFence fence;
 VkFenceImportFlags flags;
 VkExternalFenceHandleTypeFlagBits handleType;

337

 int fd;
} VkImportFenceFdInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fence is the fence into which the payload will be imported.

• flags is a bitmask of VkFenceImportFlagBits specifying additional parameters for the fence
payload import operation.

• handleType is a VkExternalFenceHandleTypeFlagBits value specifying the type of fd.

• fd is the external handle to import.

The handle types supported by handleType are:

Table 7. Handle Types Supported by VkImportFenceFdInfoKHR

Handle Type Transference Permanence Supported

VK_EXTERNAL_FENCE_HANDLE
_TYPE_OPAQUE_FD_BIT

Reference Temporary,Permanent

VK_EXTERNAL_FENCE_HANDLE
_TYPE_SYNC_FD_BIT

Copy Temporary

Valid Usage

• VUID-VkImportFenceFdInfoKHR-handleType-01464
handleType must be a value included in the Handle Types Supported by
VkImportFenceFdInfoKHR table

• VUID-VkImportFenceFdInfoKHR-fd-01541
fd must obey any requirements listed for handleType in external fence handle types
compatibility

• VUID-VkImportFenceFdInfoKHR-handleType-07306
If handleType refers to a handle type with copy payload transference semantics, flags
must contain VK_FENCE_IMPORT_TEMPORARY_BIT

If handleType is VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT, the special value -1 for fd is treated like
a valid sync file descriptor referring to an object that has already signaled. The import operation
will succeed and the VkFence will have a temporarily imported payload as if a valid file descriptor
had been provided.

Note

This special behavior for importing an invalid sync file descriptor allows easier
interoperability with other system APIs which use the convention that an invalid
sync file descriptor represents work that has already completed and does not need
to be waited for. It is consistent with the option for implementations to return a -1
file descriptor when exporting a VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT from

338

a VkFence which is signaled.

Valid Usage (Implicit)

• VUID-VkImportFenceFdInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR

• VUID-VkImportFenceFdInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkImportFenceFdInfoKHR-fence-parameter
fence must be a valid VkFence handle

• VUID-VkImportFenceFdInfoKHR-flags-parameter
flags must be a valid combination of VkFenceImportFlagBits values

• VUID-VkImportFenceFdInfoKHR-handleType-parameter
handleType must be a valid VkExternalFenceHandleTypeFlagBits value

Host Synchronization

• Host access to fence must be externally synchronized

Bits which can be set in

• VkImportFenceWin32HandleInfoKHR::flags

• VkImportFenceFdInfoKHR::flags

specifying additional parameters of a fence import operation are:

// Provided by VK_VERSION_1_1
typedef enum VkFenceImportFlagBits {
 VK_FENCE_IMPORT_TEMPORARY_BIT = 0x00000001,
 // Provided by VK_KHR_external_fence
 VK_FENCE_IMPORT_TEMPORARY_BIT_KHR = VK_FENCE_IMPORT_TEMPORARY_BIT,
} VkFenceImportFlagBits;

or the equivalent

// Provided by VK_KHR_external_fence
typedef VkFenceImportFlagBits VkFenceImportFlagBitsKHR;

• VK_FENCE_IMPORT_TEMPORARY_BIT specifies that the fence payload will be imported only
temporarily, as described in Importing Fence Payloads, regardless of the permanence of
handleType.

339

// Provided by VK_VERSION_1_1
typedef VkFlags VkFenceImportFlags;

or the equivalent

// Provided by VK_KHR_external_fence
typedef VkFenceImportFlags VkFenceImportFlagsKHR;

VkFenceImportFlags is a bitmask type for setting a mask of zero or more VkFenceImportFlagBits.

7.4. Semaphores
Semaphores are a synchronization primitive that can be used to insert a dependency between
queue operations or between a queue operation and the host. Binary semaphores have two states -
signaled and unsignaled. Timeline semaphores have a strictly increasing 64-bit unsigned integer
payload and are signaled with respect to a particular reference value. A semaphore can be signaled
after execution of a queue operation is completed, and a queue operation can wait for a semaphore
to become signaled before it begins execution. A timeline semaphore can additionally be signaled
from the host with the vkSignalSemaphore command and waited on from the host with the
vkWaitSemaphores command.

The internal data of a semaphore may include a reference to any resources and pending work
associated with signal or unsignal operations performed on that semaphore object, collectively
referred to as the semaphore’s payload. Mechanisms to import and export that internal data to and
from semaphores are provided below. These mechanisms indirectly enable applications to share
semaphore state between two or more semaphores and other synchronization primitives across
process and API boundaries.

Semaphores are represented by VkSemaphore handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSemaphore)

To create a semaphore, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateSemaphore(
 VkDevice device,
 const VkSemaphoreCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSemaphore* pSemaphore);

• device is the logical device that creates the semaphore.

• pCreateInfo is a pointer to a VkSemaphoreCreateInfo structure containing information about

340

how the semaphore is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSemaphore is a pointer to a handle in which the resulting semaphore object is returned.

Valid Usage (Implicit)

• VUID-vkCreateSemaphore-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateSemaphore-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkSemaphoreCreateInfo structure

• VUID-vkCreateSemaphore-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateSemaphore-pSemaphore-parameter
pSemaphore must be a valid pointer to a VkSemaphore handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSemaphoreCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSemaphoreCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphoreCreateFlags flags;
} VkSemaphoreCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

Valid Usage

• VUID-VkSemaphoreCreateInfo-pNext-06789
If the pNext chain includes a VkExportMetalObjectCreateInfoEXT structure, its

341

exportObjectType member must be
VK_EXPORT_METAL_OBJECT_TYPE_METAL_SHARED_EVENT_BIT_EXT

Valid Usage (Implicit)

• VUID-VkSemaphoreCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO

• VUID-VkSemaphoreCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExportMetalObjectCreateInfoEXT,
VkExportSemaphoreCreateInfo, VkExportSemaphoreWin32HandleInfoKHR,
VkImportMetalSharedEventInfoEXT, VkQueryLowLatencySupportNV, or
VkSemaphoreTypeCreateInfo

• VUID-VkSemaphoreCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkExportMetalObjectCreateInfoEXT

• VUID-VkSemaphoreCreateInfo-flags-zerobitmask
flags must be 0

// Provided by VK_VERSION_1_0
typedef VkFlags VkSemaphoreCreateFlags;

VkSemaphoreCreateFlags is a bitmask type for setting a mask, but is currently reserved for future use.

The VkSemaphoreTypeCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSemaphoreTypeCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphoreType semaphoreType;
 uint64_t initialValue;
} VkSemaphoreTypeCreateInfo;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkSemaphoreTypeCreateInfo VkSemaphoreTypeCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphoreType is a VkSemaphoreType value specifying the type of the semaphore.

342

• initialValue is the initial payload value if semaphoreType is VK_SEMAPHORE_TYPE_TIMELINE.

To create a semaphore of a specific type, add a VkSemaphoreTypeCreateInfo structure to the
VkSemaphoreCreateInfo::pNext chain.

If no VkSemaphoreTypeCreateInfo structure is included in the pNext chain of VkSemaphoreCreateInfo,
then the created semaphore will have a default VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY.

Valid Usage

• VUID-VkSemaphoreTypeCreateInfo-timelineSemaphore-03252
If the timelineSemaphore feature is not enabled, semaphoreType must not equal
VK_SEMAPHORE_TYPE_TIMELINE

• VUID-VkSemaphoreTypeCreateInfo-semaphoreType-03279
If semaphoreType is VK_SEMAPHORE_TYPE_BINARY, initialValue must be zero

Valid Usage (Implicit)

• VUID-VkSemaphoreTypeCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO

• VUID-VkSemaphoreTypeCreateInfo-semaphoreType-parameter
semaphoreType must be a valid VkSemaphoreType value

Possible values of VkSemaphoreTypeCreateInfo::semaphoreType, specifying the type of a semaphore,
are:

// Provided by VK_VERSION_1_2
typedef enum VkSemaphoreType {
 VK_SEMAPHORE_TYPE_BINARY = 0,
 VK_SEMAPHORE_TYPE_TIMELINE = 1,
 // Provided by VK_KHR_timeline_semaphore
 VK_SEMAPHORE_TYPE_BINARY_KHR = VK_SEMAPHORE_TYPE_BINARY,
 // Provided by VK_KHR_timeline_semaphore
 VK_SEMAPHORE_TYPE_TIMELINE_KHR = VK_SEMAPHORE_TYPE_TIMELINE,
} VkSemaphoreType;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkSemaphoreType VkSemaphoreTypeKHR;

• VK_SEMAPHORE_TYPE_BINARY specifies a binary semaphore type that has a boolean payload
indicating whether the semaphore is currently signaled or unsignaled. When created, the
semaphore is in the unsignaled state.

343

• VK_SEMAPHORE_TYPE_TIMELINE specifies a timeline semaphore type that has a strictly increasing 64-
bit unsigned integer payload indicating whether the semaphore is signaled with respect to a
particular reference value. When created, the semaphore payload has the value given by the
initialValue field of VkSemaphoreTypeCreateInfo.

To create a semaphore whose payload can be exported to external handles, add a
VkExportSemaphoreCreateInfo structure to the pNext chain of the VkSemaphoreCreateInfo
structure. The VkExportSemaphoreCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExportSemaphoreCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalSemaphoreHandleTypeFlags handleTypes;
} VkExportSemaphoreCreateInfo;

or the equivalent

// Provided by VK_KHR_external_semaphore
typedef VkExportSemaphoreCreateInfo VkExportSemaphoreCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is a bitmask of VkExternalSemaphoreHandleTypeFlagBits specifying one or more
semaphore handle types the application can export from the resulting semaphore. The
application can request multiple handle types for the same semaphore.

Valid Usage

• VUID-VkExportSemaphoreCreateInfo-handleTypes-01124
The bits in handleTypes must be supported and compatible, as reported by
VkExternalSemaphoreProperties

Valid Usage (Implicit)

• VUID-VkExportSemaphoreCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO

• VUID-VkExportSemaphoreCreateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalSemaphoreHandleTypeFlagBits
values

To specify additional attributes of NT handles exported from a semaphore, add a
VkExportSemaphoreWin32HandleInfoKHR structure to the pNext chain of the VkSemaphoreCreateInfo

344

structure. The VkExportSemaphoreWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_semaphore_win32
typedef struct VkExportSemaphoreWin32HandleInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const SECURITY_ATTRIBUTES* pAttributes;
 DWORD dwAccess;
 LPCWSTR name;
} VkExportSemaphoreWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pAttributes is a pointer to a Windows SECURITY_ATTRIBUTES structure specifying security
attributes of the handle.

• dwAccess is a DWORD specifying access rights of the handle.

• name is a null-terminated UTF-16 string to associate with the underlying synchronization
primitive referenced by NT handles exported from the created semaphore.

If VkExportSemaphoreCreateInfo is not included in the same pNext chain, this structure is ignored.

If VkExportSemaphoreCreateInfo is included in the pNext chain of VkSemaphoreCreateInfo with a
Windows handleType, but either VkExportSemaphoreWin32HandleInfoKHR is not included in the pNext
chain, or it is included but pAttributes is set to NULL, default security descriptor values will be used,
and child processes created by the application will not inherit the handle, as described in the MSDN
documentation for “Synchronization Object Security and Access Rights”1. Further, if the structure is
not present, the access rights used depend on the handle type.

For handles of the following types:

VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT

The implementation must ensure the access rights allow both signal and wait operations on the
semaphore.

For handles of the following types:

VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT

The access rights must be:

GENERIC_ALL

1

https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-
access-rights

345

https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-access-rights
https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-access-rights

Valid Usage

• VUID-VkExportSemaphoreWin32HandleInfoKHR-handleTypes-01125
If VkExportSemaphoreCreateInfo::handleTypes does not include
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT or
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT, VkExportSemaphoreWin32HandleInfoKHR
must not be included in the pNext chain of VkSemaphoreCreateInfo

Valid Usage (Implicit)

• VUID-VkExportSemaphoreWin32HandleInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR

• VUID-VkExportSemaphoreWin32HandleInfoKHR-pAttributes-parameter
If pAttributes is not NULL, pAttributes must be a valid pointer to a valid
SECURITY_ATTRIBUTES value

To export a Windows handle representing the payload of a semaphore, call:

// Provided by VK_KHR_external_semaphore_win32
VkResult vkGetSemaphoreWin32HandleKHR(
 VkDevice device,
 const VkSemaphoreGetWin32HandleInfoKHR* pGetWin32HandleInfo,
 HANDLE* pHandle);

• device is the logical device that created the semaphore being exported.

• pGetWin32HandleInfo is a pointer to a VkSemaphoreGetWin32HandleInfoKHR structure
containing parameters of the export operation.

• pHandle will return the Windows handle representing the semaphore state.

For handle types defined as NT handles, the handles returned by vkGetSemaphoreWin32HandleKHR are
owned by the application. To avoid leaking resources, the application must release ownership of
them using the CloseHandle system call when they are no longer needed.

Exporting a Windows handle from a semaphore may have side effects depending on the
transference of the specified handle type, as described in Importing Semaphore Payloads.

Valid Usage (Implicit)

• VUID-vkGetSemaphoreWin32HandleKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSemaphoreWin32HandleKHR-pGetWin32HandleInfo-parameter
pGetWin32HandleInfo must be a valid pointer to a valid
VkSemaphoreGetWin32HandleInfoKHR structure

346

• VUID-vkGetSemaphoreWin32HandleKHR-pHandle-parameter
pHandle must be a valid pointer to a HANDLE value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkSemaphoreGetWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_semaphore_win32
typedef struct VkSemaphoreGetWin32HandleInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 VkExternalSemaphoreHandleTypeFlagBits handleType;
} VkSemaphoreGetWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is the semaphore from which state will be exported.

• handleType is a VkExternalSemaphoreHandleTypeFlagBits value specifying the type of handle
requested.

The properties of the handle returned depend on the value of handleType. See
VkExternalSemaphoreHandleTypeFlagBits for a description of the properties of the defined
external semaphore handle types.

Valid Usage

• VUID-VkSemaphoreGetWin32HandleInfoKHR-handleType-01126
handleType must have been included in VkExportSemaphoreCreateInfo::handleTypes when
the semaphore’s current payload was created

• VUID-VkSemaphoreGetWin32HandleInfoKHR-handleType-01127
If handleType is defined as an NT handle, vkGetSemaphoreWin32HandleKHR must be
called no more than once for each valid unique combination of semaphore and handleType

• VUID-VkSemaphoreGetWin32HandleInfoKHR-semaphore-01128
semaphore must not currently have its payload replaced by an imported payload as
described below in Importing Semaphore Payloads unless that imported payload’s handle

347

type was included in VkExternalSemaphoreProperties::exportFromImportedHandleTypes for
handleType

• VUID-VkSemaphoreGetWin32HandleInfoKHR-handleType-01129
If handleType refers to a handle type with copy payload transference semantics, as defined
below in Importing Semaphore Payloads, there must be no queue waiting on semaphore

• VUID-VkSemaphoreGetWin32HandleInfoKHR-handleType-01130
If handleType refers to a handle type with copy payload transference semantics, semaphore
must be signaled, or have an associated semaphore signal operation pending execution

• VUID-VkSemaphoreGetWin32HandleInfoKHR-handleType-01131
handleType must be defined as an NT handle or a global share handle

Valid Usage (Implicit)

• VUID-VkSemaphoreGetWin32HandleInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR

• VUID-VkSemaphoreGetWin32HandleInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkSemaphoreGetWin32HandleInfoKHR-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-VkSemaphoreGetWin32HandleInfoKHR-handleType-parameter
handleType must be a valid VkExternalSemaphoreHandleTypeFlagBits value

The VkQueryLowLatencySupportNV structure is defined as:

// Provided by VK_NV_low_latency
typedef struct VkQueryLowLatencySupportNV {
 VkStructureType sType;
 const void* pNext;
 void* pQueriedLowLatencyData;
} VkQueryLowLatencySupportNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pQueriedLowLatencyData is used for NVIDIA Reflex Support.

Valid Usage (Implicit)

• VUID-VkQueryLowLatencySupportNV-sType-sType
sType must be VK_STRUCTURE_TYPE_QUERY_LOW_LATENCY_SUPPORT_NV

• VUID-VkQueryLowLatencySupportNV-pQueriedLowLatencyData-parameter

348

pQueriedLowLatencyData must be a pointer value

To export a POSIX file descriptor representing the payload of a semaphore, call:

// Provided by VK_KHR_external_semaphore_fd
VkResult vkGetSemaphoreFdKHR(
 VkDevice device,
 const VkSemaphoreGetFdInfoKHR* pGetFdInfo,
 int* pFd);

• device is the logical device that created the semaphore being exported.

• pGetFdInfo is a pointer to a VkSemaphoreGetFdInfoKHR structure containing parameters of the
export operation.

• pFd will return the file descriptor representing the semaphore payload.

Each call to vkGetSemaphoreFdKHR must create a new file descriptor and transfer ownership of it to
the application. To avoid leaking resources, the application must release ownership of the file
descriptor when it is no longer needed.

Note

Ownership can be released in many ways. For example, the application can call
close() on the file descriptor, or transfer ownership back to Vulkan by using the
file descriptor to import a semaphore payload.

Where supported by the operating system, the implementation must set the file descriptor to be
closed automatically when an execve system call is made.

Exporting a file descriptor from a semaphore may have side effects depending on the transference
of the specified handle type, as described in Importing Semaphore State.

Valid Usage (Implicit)

• VUID-vkGetSemaphoreFdKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSemaphoreFdKHR-pGetFdInfo-parameter
pGetFdInfo must be a valid pointer to a valid VkSemaphoreGetFdInfoKHR structure

• VUID-vkGetSemaphoreFdKHR-pFd-parameter
pFd must be a valid pointer to an int value

Return Codes

Success

• VK_SUCCESS

349

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkSemaphoreGetFdInfoKHR structure is defined as:

// Provided by VK_KHR_external_semaphore_fd
typedef struct VkSemaphoreGetFdInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 VkExternalSemaphoreHandleTypeFlagBits handleType;
} VkSemaphoreGetFdInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is the semaphore from which state will be exported.

• handleType is a VkExternalSemaphoreHandleTypeFlagBits value specifying the type of handle
requested.

The properties of the file descriptor returned depend on the value of handleType. See
VkExternalSemaphoreHandleTypeFlagBits for a description of the properties of the defined
external semaphore handle types.

Valid Usage

• VUID-VkSemaphoreGetFdInfoKHR-handleType-01132
handleType must have been included in VkExportSemaphoreCreateInfo::handleTypes when
semaphore’s current payload was created

• VUID-VkSemaphoreGetFdInfoKHR-semaphore-01133
semaphore must not currently have its payload replaced by an imported payload as
described below in Importing Semaphore Payloads unless that imported payload’s handle
type was included in VkExternalSemaphoreProperties::exportFromImportedHandleTypes for
handleType

• VUID-VkSemaphoreGetFdInfoKHR-handleType-01134
If handleType refers to a handle type with copy payload transference semantics, as defined
below in Importing Semaphore Payloads, there must be no queue waiting on semaphore

• VUID-VkSemaphoreGetFdInfoKHR-handleType-01135
If handleType refers to a handle type with copy payload transference semantics, semaphore
must be signaled, or have an associated semaphore signal operation pending execution

• VUID-VkSemaphoreGetFdInfoKHR-handleType-01136
handleType must be defined as a POSIX file descriptor handle

• VUID-VkSemaphoreGetFdInfoKHR-handleType-03253

350

If handleType refers to a handle type with copy payload transference semantics, semaphore
must have been created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY

• VUID-VkSemaphoreGetFdInfoKHR-handleType-03254
If handleType refers to a handle type with copy payload transference semantics, semaphore
must have an associated semaphore signal operation that has been submitted for
execution and any semaphore signal operations on which it depends must have also been
submitted for execution

Valid Usage (Implicit)

• VUID-VkSemaphoreGetFdInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR

• VUID-VkSemaphoreGetFdInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkSemaphoreGetFdInfoKHR-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-VkSemaphoreGetFdInfoKHR-handleType-parameter
handleType must be a valid VkExternalSemaphoreHandleTypeFlagBits value

To export a Zircon event handle representing the payload of a semaphore, call:

// Provided by VK_FUCHSIA_external_semaphore
VkResult vkGetSemaphoreZirconHandleFUCHSIA(
 VkDevice device,
 const VkSemaphoreGetZirconHandleInfoFUCHSIA* pGetZirconHandleInfo,
 zx_handle_t* pZirconHandle);

• device is the logical device that created the semaphore being exported.

• pGetZirconHandleInfo is a pointer to a VkSemaphoreGetZirconHandleInfoFUCHSIA structure
containing parameters of the export operation.

• pZirconHandle will return the Zircon event handle representing the semaphore payload.

Each call to vkGetSemaphoreZirconHandleFUCHSIA must create a Zircon event handle and transfer
ownership of it to the application. To avoid leaking resources, the application must release
ownership of the Zircon event handle when it is no longer needed.

Note

Ownership can be released in many ways. For example, the application can call
zx_handle_close() on the file descriptor, or transfer ownership back to Vulkan by
using the file descriptor to import a semaphore payload.

Exporting a Zircon event handle from a semaphore may have side effects depending on the
transference of the specified handle type, as described in Importing Semaphore State.

351

Valid Usage (Implicit)

• VUID-vkGetSemaphoreZirconHandleFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSemaphoreZirconHandleFUCHSIA-pGetZirconHandleInfo-parameter
pGetZirconHandleInfo must be a valid pointer to a valid
VkSemaphoreGetZirconHandleInfoFUCHSIA structure

• VUID-vkGetSemaphoreZirconHandleFUCHSIA-pZirconHandle-parameter
pZirconHandle must be a valid pointer to a zx_handle_t value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkSemaphoreGetZirconHandleInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_external_semaphore
typedef struct VkSemaphoreGetZirconHandleInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 VkExternalSemaphoreHandleTypeFlagBits handleType;
} VkSemaphoreGetZirconHandleInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is the semaphore from which state will be exported.

• handleType is a VkExternalSemaphoreHandleTypeFlagBits value specifying the type of handle
requested.

The properties of the Zircon event handle returned depend on the value of handleType. See
VkExternalSemaphoreHandleTypeFlagBits for a description of the properties of the defined
external semaphore handle types.

Valid Usage

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-handleType-04758
handleType must have been included in VkExportSemaphoreCreateInfo::handleTypes when

352

semaphore’s current payload was created

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-semaphore-04759
semaphore must not currently have its payload replaced by an imported payload as
described below in Importing Semaphore Payloads unless that imported payload’s handle
type was included in VkExternalSemaphoreProperties::exportFromImportedHandleTypes for
handleType

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-handleType-04760
If handleType refers to a handle type with copy payload transference semantics, as defined
below in Importing Semaphore Payloads, there must be no queue waiting on semaphore

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-handleType-04761
If handleType refers to a handle type with copy payload transference semantics, semaphore
must be signaled, or have an associated semaphore signal operation pending execution

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-handleType-04762
handleType must be defined as a Zircon event handle

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-semaphore-04763
semaphore must have been created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY

Valid Usage (Implicit)

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_GET_ZIRCON_HANDLE_INFO_FUCHSIA

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-pNext-pNext
pNext must be NULL

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-VkSemaphoreGetZirconHandleInfoFUCHSIA-handleType-parameter
handleType must be a valid VkExternalSemaphoreHandleTypeFlagBits value

To destroy a semaphore, call:

// Provided by VK_VERSION_1_0
void vkDestroySemaphore(
 VkDevice device,
 VkSemaphore semaphore,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the semaphore.

• semaphore is the handle of the semaphore to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

353

Valid Usage

• VUID-vkDestroySemaphore-semaphore-05149
All submitted batches that refer to semaphore must have completed execution

• VUID-vkDestroySemaphore-semaphore-01138
If VkAllocationCallbacks were provided when semaphore was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroySemaphore-semaphore-01139
If no VkAllocationCallbacks were provided when semaphore was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroySemaphore-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroySemaphore-semaphore-parameter
If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

• VUID-vkDestroySemaphore-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroySemaphore-semaphore-parent
If semaphore is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to semaphore must be externally synchronized

7.4.1. Semaphore Signaling

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be
signaled, it defines a memory dependency on the batch, and defines semaphore signal operations
which set the semaphores to the signaled state.

In case of semaphores created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE the
semaphore is considered signaled with respect to the counter value set to be signaled as specified in
VkTimelineSemaphoreSubmitInfo or VkSemaphoreSignalInfo.

The first synchronization scope includes every command submitted in the same batch. In the case
of vkQueueSubmit2, the first synchronization scope is limited to the pipeline stage specified by
VkSemaphoreSubmitInfo::stageMask. Semaphore signal operations that are defined by
vkQueueSubmit or vkQueueSubmit2 additionally include all commands that occur earlier in
submission order. Semaphore signal operations that are defined by vkQueueSubmit or

354

vkQueueSubmit2 or vkQueueBindSparse additionally include in the first synchronization scope any
semaphore and fence signal operations that occur earlier in signal operation order.

The second synchronization scope includes only the semaphore signal operation.

The first access scope includes all memory access performed by the device.

The second access scope is empty.

7.4.2. Semaphore Waiting

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be
waited on, it defines a memory dependency between prior semaphore signal operations and the
batch, and defines semaphore wait operations.

Such semaphore wait operations set the semaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_BINARY to the unsignaled state. In case of semaphores created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE a prior semaphore signal operation defines a
memory dependency with a semaphore wait operation if the value the semaphore is signaled with
is greater than or equal to the value the semaphore is waited with, thus the semaphore will
continue to be considered signaled with respect to the counter value waited on as specified in
VkTimelineSemaphoreSubmitInfo.

The first synchronization scope includes all semaphore signal operations that operate on
semaphores waited on in the same batch, and that happen-before the wait completes.

The second synchronization scope includes every command submitted in the same batch. In the
case of vkQueueSubmit, the second synchronization scope is limited to operations on the pipeline
stages determined by the destination stage mask specified by the corresponding element of
pWaitDstStageMask. In the case of vkQueueSubmit2, the second synchronization scope is limited to
the pipeline stage specified by VkSemaphoreSubmitInfo::stageMask. Also, in the case of either
vkQueueSubmit2 or vkQueueSubmit, the second synchronization scope additionally includes all
commands that occur later in submission order.

The first access scope is empty.

The second access scope includes all memory access performed by the device.

The semaphore wait operation happens-after the first set of operations in the execution
dependency, and happens-before the second set of operations in the execution dependency.

Note

Unlike timeline semaphores, fences or events, the act of waiting for a binary
semaphore also unsignals that semaphore. Applications must ensure that between
two such wait operations, the semaphore is signaled again, with execution
dependencies used to ensure these occur in order. Binary semaphore waits and
signals should thus occur in discrete 1:1 pairs.

 Note

355

A common scenario for using pWaitDstStageMask with values other than
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is when synchronizing a window system
presentation operation against subsequent command buffers which render the
next frame. In this case, a presentation image must not be overwritten until the
presentation operation completes, but other pipeline stages can execute without
waiting. A mask of VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT prevents
subsequent color attachment writes from executing until the semaphore signals.
Some implementations may be able to execute transfer operations and/or pre-
rasterization work before the semaphore is signaled.

If an image layout transition needs to be performed on a presentable image before
it is used in a framebuffer, that can be performed as the first operation submitted
to the queue after acquiring the image, and should not prevent other work from
overlapping with the presentation operation. For example, a VkImageMemoryBarrier
could use:

• srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

• srcAccessMask = 0

• dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

• dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

• newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

Alternatively, oldLayout can be VK_IMAGE_LAYOUT_UNDEFINED, if the image’s contents
need not be preserved.

This barrier accomplishes a dependency chain between previous presentation
operations and subsequent color attachment output operations, with the layout
transition performed in between, and does not introduce a dependency between
previous work and any pre-rasterization shader stages. More precisely, the
semaphore signals after the presentation operation completes, the semaphore wait
stalls the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT stage, and there is a
dependency from that same stage to itself with the layout transition performed in
between.

7.4.3. Semaphore State Requirements for Wait Operations

Before waiting on a semaphore, the application must ensure the semaphore is in a valid state for a
wait operation. Specifically, when a semaphore wait operation is submitted to a queue:

• A binary semaphore must be signaled, or have an associated semaphore signal operation that is
pending execution.

• Any semaphore signal operations on which the pending binary semaphore signal operation
depends must also be completed or pending execution.

• There must be no other queue waiting on the same binary semaphore when the operation

356

executes.

7.4.4. Host Operations on Semaphores

In addition to semaphore signal operations and semaphore wait operations submitted to device
queues, timeline semaphores support the following host operations:

• Query the current counter value of the semaphore using the vkGetSemaphoreCounterValue
command.

• Wait for a set of semaphores to reach particular counter values using the vkWaitSemaphores
command.

• Signal the semaphore with a particular counter value from the host using the
vkSignalSemaphore command.

To query the current counter value of a semaphore created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE from the host, call:

// Provided by VK_VERSION_1_2
VkResult vkGetSemaphoreCounterValue(
 VkDevice device,
 VkSemaphore semaphore,
 uint64_t* pValue);

or the equivalent command

// Provided by VK_KHR_timeline_semaphore
VkResult vkGetSemaphoreCounterValueKHR(
 VkDevice device,
 VkSemaphore semaphore,
 uint64_t* pValue);

• device is the logical device that owns the semaphore.

• semaphore is the handle of the semaphore to query.

• pValue is a pointer to a 64-bit integer value in which the current counter value of the semaphore
is returned.

Note

If a queue submission command is pending execution, then the value returned by
this command may immediately be out of date.

Valid Usage

• VUID-vkGetSemaphoreCounterValue-semaphore-03255
semaphore must have been created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE

357

Valid Usage (Implicit)

• VUID-vkGetSemaphoreCounterValue-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSemaphoreCounterValue-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-vkGetSemaphoreCounterValue-pValue-parameter
pValue must be a valid pointer to a uint64_t value

• VUID-vkGetSemaphoreCounterValue-semaphore-parent
semaphore must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To wait for a set of semaphores created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE to
reach particular counter values on the host, call:

// Provided by VK_VERSION_1_2
VkResult vkWaitSemaphores(
 VkDevice device,
 const VkSemaphoreWaitInfo* pWaitInfo,
 uint64_t timeout);

or the equivalent command

// Provided by VK_KHR_timeline_semaphore
VkResult vkWaitSemaphoresKHR(
 VkDevice device,
 const VkSemaphoreWaitInfo* pWaitInfo,
 uint64_t timeout);

• device is the logical device that owns the semaphores.

• pWaitInfo is a pointer to a VkSemaphoreWaitInfo structure containing information about the
wait condition.

• timeout is the timeout period in units of nanoseconds. timeout is adjusted to the closest value

358

allowed by the implementation-dependent timeout accuracy, which may be substantially longer
than one nanosecond, and may be longer than the requested period.

If the condition is satisfied when vkWaitSemaphores is called, then vkWaitSemaphores returns
immediately. If the condition is not satisfied at the time vkWaitSemaphores is called, then
vkWaitSemaphores will block and wait until the condition is satisfied or the timeout has expired,
whichever is sooner.

If timeout is zero, then vkWaitSemaphores does not wait, but simply returns information about the
current state of the semaphores. VK_TIMEOUT will be returned in this case if the condition is not
satisfied, even though no actual wait was performed.

If the condition is satisfied before the timeout has expired, vkWaitSemaphores returns VK_SUCCESS.
Otherwise, vkWaitSemaphores returns VK_TIMEOUT after the timeout has expired.

If device loss occurs (see Lost Device) before the timeout has expired, vkWaitSemaphores must return
in finite time with either VK_SUCCESS or VK_ERROR_DEVICE_LOST.

Valid Usage (Implicit)

• VUID-vkWaitSemaphores-device-parameter
device must be a valid VkDevice handle

• VUID-vkWaitSemaphores-pWaitInfo-parameter
pWaitInfo must be a valid pointer to a valid VkSemaphoreWaitInfo structure

Return Codes

Success

• VK_SUCCESS

• VK_TIMEOUT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkSemaphoreWaitInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSemaphoreWaitInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphoreWaitFlags flags;
 uint32_t semaphoreCount;
 const VkSemaphore* pSemaphores;

359

 const uint64_t* pValues;
} VkSemaphoreWaitInfo;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkSemaphoreWaitInfo VkSemaphoreWaitInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSemaphoreWaitFlagBits specifying additional parameters for the
semaphore wait operation.

• semaphoreCount is the number of semaphores to wait on.

• pSemaphores is a pointer to an array of semaphoreCount semaphore handles to wait on.

• pValues is a pointer to an array of semaphoreCount timeline semaphore values.

Valid Usage

• VUID-VkSemaphoreWaitInfo-pSemaphores-03256
All of the elements of pSemaphores must reference a semaphore that was created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE

Valid Usage (Implicit)

• VUID-VkSemaphoreWaitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO

• VUID-VkSemaphoreWaitInfo-pNext-pNext
pNext must be NULL

• VUID-VkSemaphoreWaitInfo-flags-parameter
flags must be a valid combination of VkSemaphoreWaitFlagBits values

• VUID-VkSemaphoreWaitInfo-pSemaphores-parameter
pSemaphores must be a valid pointer to an array of semaphoreCount valid VkSemaphore
handles

• VUID-VkSemaphoreWaitInfo-pValues-parameter
pValues must be a valid pointer to an array of semaphoreCount uint64_t values

• VUID-VkSemaphoreWaitInfo-semaphoreCount-arraylength
semaphoreCount must be greater than 0

Bits which can be set in VkSemaphoreWaitInfo::flags, specifying additional parameters of a
semaphore wait operation, are:

360

// Provided by VK_VERSION_1_2
typedef enum VkSemaphoreWaitFlagBits {
 VK_SEMAPHORE_WAIT_ANY_BIT = 0x00000001,
 // Provided by VK_KHR_timeline_semaphore
 VK_SEMAPHORE_WAIT_ANY_BIT_KHR = VK_SEMAPHORE_WAIT_ANY_BIT,
} VkSemaphoreWaitFlagBits;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkSemaphoreWaitFlagBits VkSemaphoreWaitFlagBitsKHR;

• VK_SEMAPHORE_WAIT_ANY_BIT specifies that the semaphore wait condition is that at least one of the
semaphores in VkSemaphoreWaitInfo::pSemaphores has reached the value specified by the
corresponding element of VkSemaphoreWaitInfo::pValues. If VK_SEMAPHORE_WAIT_ANY_BIT is not set,
the semaphore wait condition is that all of the semaphores in VkSemaphoreWaitInfo::pSemaphores
have reached the value specified by the corresponding element of VkSemaphoreWaitInfo::pValues.

// Provided by VK_VERSION_1_2
typedef VkFlags VkSemaphoreWaitFlags;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkSemaphoreWaitFlags VkSemaphoreWaitFlagsKHR;

VkSemaphoreWaitFlags is a bitmask type for setting a mask of zero or more
VkSemaphoreWaitFlagBits.

To signal a semaphore created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE with a
particular counter value, on the host, call:

// Provided by VK_VERSION_1_2
VkResult vkSignalSemaphore(
 VkDevice device,
 const VkSemaphoreSignalInfo* pSignalInfo);

or the equivalent command

// Provided by VK_KHR_timeline_semaphore
VkResult vkSignalSemaphoreKHR(
 VkDevice device,
 const VkSemaphoreSignalInfo* pSignalInfo);

361

• device is the logical device that owns the semaphore.

• pSignalInfo is a pointer to a VkSemaphoreSignalInfo structure containing information about the
signal operation.

When vkSignalSemaphore is executed on the host, it defines and immediately executes a semaphore
signal operation which sets the timeline semaphore to the given value.

The first synchronization scope is defined by the host execution model, but includes execution of
vkSignalSemaphore on the host and anything that happened-before it.

The second synchronization scope is empty.

Valid Usage (Implicit)

• VUID-vkSignalSemaphore-device-parameter
device must be a valid VkDevice handle

• VUID-vkSignalSemaphore-pSignalInfo-parameter
pSignalInfo must be a valid pointer to a valid VkSemaphoreSignalInfo structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSemaphoreSignalInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSemaphoreSignalInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 uint64_t value;
} VkSemaphoreSignalInfo;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkSemaphoreSignalInfo VkSemaphoreSignalInfoKHR;

• sType is a VkStructureType value identifying this structure.

362

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is the handle of the semaphore to signal.

• value is the value to signal.

Valid Usage

• VUID-VkSemaphoreSignalInfo-semaphore-03257
semaphore must have been created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE

• VUID-VkSemaphoreSignalInfo-value-03258
value must have a value greater than the current value of the semaphore

• VUID-VkSemaphoreSignalInfo-value-03259
value must be less than the value of any pending semaphore signal operations

• VUID-VkSemaphoreSignalInfo-value-03260
value must have a value which does not differ from the current value of the semaphore
or the value of any outstanding semaphore wait or signal operation on semaphore by more
than maxTimelineSemaphoreValueDifference

Valid Usage (Implicit)

• VUID-VkSemaphoreSignalInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO

• VUID-VkSemaphoreSignalInfo-pNext-pNext
pNext must be NULL

• VUID-VkSemaphoreSignalInfo-semaphore-parameter
semaphore must be a valid VkSemaphore handle

7.4.5. Importing Semaphore Payloads

Applications can import a semaphore payload into an existing semaphore using an external
semaphore handle. The effects of the import operation will be either temporary or permanent, as
specified by the application. If the import is temporary, the implementation must restore the
semaphore to its prior permanent state after submitting the next semaphore wait operation.
Performing a subsequent temporary import on a semaphore before performing a semaphore wait
has no effect on this requirement; the next wait submitted on the semaphore must still restore its
last permanent state. A permanent payload import behaves as if the target semaphore was
destroyed, and a new semaphore was created with the same handle but the imported payload.
Because importing a semaphore payload temporarily or permanently detaches the existing payload
from a semaphore, similar usage restrictions to those applied to vkDestroySemaphore are applied to
any command that imports a semaphore payload. Which of these import types is used is referred to
as the import operation’s permanence. Each handle type supports either one or both types of
permanence.

363

The implementation must perform the import operation by either referencing or copying the
payload referred to by the specified external semaphore handle, depending on the handle’s type.
The import method used is referred to as the handle type’s transference. When using handle types
with reference transference, importing a payload to a semaphore adds the semaphore to the set of
all semaphores sharing that payload. This set includes the semaphore from which the payload was
exported. Semaphore signaling and waiting operations performed on any semaphore in the set
must behave as if the set were a single semaphore. Importing a payload using handle types with
copy transference creates a duplicate copy of the payload at the time of import, but makes no
further reference to it. Semaphore signaling and waiting operations performed on the target of
copy imports must not affect any other semaphore or payload.

Export operations have the same transference as the specified handle type’s import operations.
Additionally, exporting a semaphore payload to a handle with copy transference has the same side
effects on the source semaphore’s payload as executing a semaphore wait operation. If the
semaphore was using a temporarily imported payload, the semaphore’s prior permanent payload
will be restored.

Note

The permanence and transference of handle types can be found in:

• Handle Types Supported by VkImportSemaphoreWin32HandleInfoKHR

• Handle Types Supported by VkImportSemaphoreFdInfoKHR

• Handle Types Supported by VkImportSemaphoreZirconHandleInfoFUCHSIA

External synchronization allows implementations to modify an object’s internal state, i.e. payload,
without internal synchronization. However, for semaphores sharing a payload across processes,
satisfying the external synchronization requirements of VkSemaphore parameters as if all
semaphores in the set were the same object is sometimes infeasible. Satisfying the wait operation
state requirements would similarly require impractical coordination or levels of trust between
processes. Therefore, these constraints only apply to a specific semaphore handle, not to its
payload. For distinct semaphore objects which share a payload, if the semaphores are passed to
separate queue submission commands concurrently, behavior will be as if the commands were
called in an arbitrary sequential order. If the wait operation state requirements are violated for the
shared payload by a queue submission command, or if a signal operation is queued for a shared
payload that is already signaled or has a pending signal operation, effects must be limited to one or
more of the following:

• Returning VK_ERROR_INITIALIZATION_FAILED from the command which resulted in the violation.

• Losing the logical device on which the violation occurred immediately or at a future time,
resulting in a VK_ERROR_DEVICE_LOST error from subsequent commands, including the one
causing the violation.

• Continuing execution of the violating command or operation as if the semaphore wait
completed successfully after an implementation-dependent timeout. In this case, the state of the
payload becomes undefined, and future operations on semaphores sharing the payload will be
subject to these same rules. The semaphore must be destroyed or have its payload replaced by
an import operation to again have a well-defined state.

364

Note

These rules allow processes to synchronize access to shared memory without
trusting each other. However, such processes must still be cautious not to use the
shared semaphore for more than synchronizing access to the shared memory. For
example, a process should not use a shared semaphore as part of an execution
dependency chain that, when complete, leads to objects being destroyed, if it does
not trust other processes sharing the semaphore payload.

When a semaphore is using an imported payload, its VkExportSemaphoreCreateInfo::handleTypes
value is specified when creating the semaphore from which the payload was exported, rather than
specified when creating the semaphore. Additionally, VkExternalSemaphoreProperties
::exportFromImportedHandleTypes restricts which handle types can be exported from such a
semaphore based on the specific handle type used to import the current payload. Passing a
semaphore to vkAcquireNextImageKHR is equivalent to temporarily importing a semaphore
payload to that semaphore.

Note

Because the exportable handle types of an imported semaphore correspond to its
current imported payload, and vkAcquireNextImageKHR behaves the same as a
temporary import operation for which the source semaphore is opaque to the
application, applications have no way of determining whether any external handle
types can be exported from a semaphore in this state. Therefore, applications
must not attempt to export external handles from semaphores using a temporarily
imported payload from vkAcquireNextImageKHR.

When importing a semaphore payload, it is the responsibility of the application to ensure the
external handles meet all valid usage requirements. However, implementations must perform
sufficient validation of external handles to ensure that the operation results in a valid semaphore
which will not cause program termination, device loss, queue stalls, or corruption of other
resources when used as allowed according to its import parameters, and excepting those side
effects allowed for violations of the valid semaphore state for wait operations rules. If the external
handle provided does not meet these requirements, the implementation must fail the semaphore
payload import operation with the error code VK_ERROR_INVALID_EXTERNAL_HANDLE.

In addition, when importing a semaphore payload that is not compatible with the payload type
corresponding to the VkSemaphoreType the semaphore was created with, the implementation may
fail the semaphore payload import operation with the error code VK_ERROR_INVALID_EXTERNAL_HANDLE.

Note

As the introduction of the external semaphore handle type
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT predates that of timeline
semaphores, support for importing semaphore payloads from external handles of
that type into semaphores created (implicitly or explicitly) with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY is preserved for backwards
compatibility. However, applications should prefer importing such handle types
into semaphores created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE.

365

To import a semaphore payload from a Windows handle, call:

// Provided by VK_KHR_external_semaphore_win32
VkResult vkImportSemaphoreWin32HandleKHR(
 VkDevice device,
 const VkImportSemaphoreWin32HandleInfoKHR* pImportSemaphoreWin32HandleInfo);

• device is the logical device that created the semaphore.

• pImportSemaphoreWin32HandleInfo is a pointer to a VkImportSemaphoreWin32HandleInfoKHR
structure specifying the semaphore and import parameters.

Importing a semaphore payload from Windows handles does not transfer ownership of the handle
to the Vulkan implementation. For handle types defined as NT handles, the application must
release ownership using the CloseHandle system call when the handle is no longer needed.

Applications can import the same semaphore payload into multiple instances of Vulkan, into the
same instance from which it was exported, and multiple times into a given Vulkan instance.

Valid Usage (Implicit)

• VUID-vkImportSemaphoreWin32HandleKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkImportSemaphoreWin32HandleKHR-pImportSemaphoreWin32HandleInfo-
parameter
pImportSemaphoreWin32HandleInfo must be a valid pointer to a valid
VkImportSemaphoreWin32HandleInfoKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkImportSemaphoreWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_semaphore_win32
typedef struct VkImportSemaphoreWin32HandleInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 VkSemaphoreImportFlags flags;
 VkExternalSemaphoreHandleTypeFlagBits handleType;

366

 HANDLE handle;
 LPCWSTR name;
} VkImportSemaphoreWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is the semaphore into which the payload will be imported.

• flags is a bitmask of VkSemaphoreImportFlagBits specifying additional parameters for the
semaphore payload import operation.

• handleType is a VkExternalSemaphoreHandleTypeFlagBits value specifying the type of handle.

• handle is NULL or the external handle to import.

• name is NULL or a null-terminated UTF-16 string naming the underlying synchronization
primitive to import.

The handle types supported by handleType are:

Table 8. Handle Types Supported by VkImportSemaphoreWin32HandleInfoKHR

Handle Type Transference Permanence Supported

VK_EXTERNAL_SEMAPHORE_HA
NDLE_TYPE_OPAQUE_WIN32_B
IT

Reference Temporary,Permanent

VK_EXTERNAL_SEMAPHORE_HA
NDLE_TYPE_OPAQUE_WIN32_K
MT_BIT

Reference Temporary,Permanent

VK_EXTERNAL_SEMAPHORE_HA
NDLE_TYPE_D3D12_FENCE_BI
T

Reference Temporary,Permanent

Valid Usage

• VUID-VkImportSemaphoreWin32HandleInfoKHR-handleType-01140
handleType must be a value included in the Handle Types Supported by
VkImportSemaphoreWin32HandleInfoKHR table

• VUID-VkImportSemaphoreWin32HandleInfoKHR-handleType-01466
If handleType is not VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT or
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT, name must be NULL

• VUID-VkImportSemaphoreWin32HandleInfoKHR-handleType-01467
If handle is NULL, name must name a valid synchronization primitive of the type specified
by handleType

• VUID-VkImportSemaphoreWin32HandleInfoKHR-handleType-01468
If name is NULL, handle must be a valid handle of the type specified by handleType

• VUID-VkImportSemaphoreWin32HandleInfoKHR-handle-01469
If handle is not NULL, name must be NULL

367

• VUID-VkImportSemaphoreWin32HandleInfoKHR-handle-01542
If handle is not NULL, it must obey any requirements listed for handleType in external
semaphore handle types compatibility

• VUID-VkImportSemaphoreWin32HandleInfoKHR-name-01543
If name is not NULL, it must obey any requirements listed for handleType in external
semaphore handle types compatibility

• VUID-VkImportSemaphoreWin32HandleInfoKHR-handleType-03261
If handleType is VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT or
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT, the VkSemaphoreCreateInfo
::flags field must match that of the semaphore from which handle or name was exported

• VUID-VkImportSemaphoreWin32HandleInfoKHR-handleType-03262
If handleType is VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT or
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT, the
VkSemaphoreTypeCreateInfo::semaphoreType field must match that of the semaphore from
which handle or name was exported

• VUID-VkImportSemaphoreWin32HandleInfoKHR-flags-03322
If flags contains VK_SEMAPHORE_IMPORT_TEMPORARY_BIT, the VkSemaphoreTypeCreateInfo
::semaphoreType field of the semaphore from which handle or name was exported must not
be VK_SEMAPHORE_TYPE_TIMELINE

Valid Usage (Implicit)

• VUID-VkImportSemaphoreWin32HandleInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR

• VUID-VkImportSemaphoreWin32HandleInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkImportSemaphoreWin32HandleInfoKHR-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-VkImportSemaphoreWin32HandleInfoKHR-flags-parameter
flags must be a valid combination of VkSemaphoreImportFlagBits values

Host Synchronization

• Host access to semaphore must be externally synchronized

To import a semaphore payload from a POSIX file descriptor, call:

// Provided by VK_KHR_external_semaphore_fd
VkResult vkImportSemaphoreFdKHR(
 VkDevice device,
 const VkImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo);

368

• device is the logical device that created the semaphore.

• pImportSemaphoreFdInfo is a pointer to a VkImportSemaphoreFdInfoKHR structure specifying the
semaphore and import parameters.

Importing a semaphore payload from a file descriptor transfers ownership of the file descriptor
from the application to the Vulkan implementation. The application must not perform any
operations on the file descriptor after a successful import.

Applications can import the same semaphore payload into multiple instances of Vulkan, into the
same instance from which it was exported, and multiple times into a given Vulkan instance.

Valid Usage

• VUID-vkImportSemaphoreFdKHR-semaphore-01142
semaphore must not be associated with any queue command that has not yet completed
execution on that queue

Valid Usage (Implicit)

• VUID-vkImportSemaphoreFdKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkImportSemaphoreFdKHR-pImportSemaphoreFdInfo-parameter
pImportSemaphoreFdInfo must be a valid pointer to a valid VkImportSemaphoreFdInfoKHR
structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkImportSemaphoreFdInfoKHR structure is defined as:

// Provided by VK_KHR_external_semaphore_fd
typedef struct VkImportSemaphoreFdInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 VkSemaphoreImportFlags flags;
 VkExternalSemaphoreHandleTypeFlagBits handleType;
 int fd;

369

} VkImportSemaphoreFdInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is the semaphore into which the payload will be imported.

• flags is a bitmask of VkSemaphoreImportFlagBits specifying additional parameters for the
semaphore payload import operation.

• handleType is a VkExternalSemaphoreHandleTypeFlagBits value specifying the type of fd.

• fd is the external handle to import.

The handle types supported by handleType are:

Table 9. Handle Types Supported by VkImportSemaphoreFdInfoKHR

Handle Type Transference Permanence Supported

VK_EXTERNAL_SEMAPHORE_HA
NDLE_TYPE_OPAQUE_FD_BIT

Reference Temporary,Permanent

VK_EXTERNAL_SEMAPHORE_HA
NDLE_TYPE_SYNC_FD_BIT

Copy Temporary

Valid Usage

• VUID-VkImportSemaphoreFdInfoKHR-handleType-01143
handleType must be a value included in the Handle Types Supported by
VkImportSemaphoreFdInfoKHR table

• VUID-VkImportSemaphoreFdInfoKHR-fd-01544
fd must obey any requirements listed for handleType in external semaphore handle types
compatibility

• VUID-VkImportSemaphoreFdInfoKHR-handleType-03263
If handleType is VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT, the
VkSemaphoreCreateInfo::flags field must match that of the semaphore from which fd
was exported

• VUID-VkImportSemaphoreFdInfoKHR-handleType-07307
If handleType refers to a handle type with copy payload transference semantics, flags
must contain VK_SEMAPHORE_IMPORT_TEMPORARY_BIT

• VUID-VkImportSemaphoreFdInfoKHR-handleType-03264
If handleType is VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT, the
VkSemaphoreTypeCreateInfo::semaphoreType field must match that of the semaphore from
which fd was exported

• VUID-VkImportSemaphoreFdInfoKHR-flags-03323
If flags contains VK_SEMAPHORE_IMPORT_TEMPORARY_BIT, the VkSemaphoreTypeCreateInfo
::semaphoreType field of the semaphore from which fd was exported must not be
VK_SEMAPHORE_TYPE_TIMELINE

370

If handleType is VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT, the special value -1 for fd is treated
like a valid sync file descriptor referring to an object that has already signaled. The import
operation will succeed and the VkSemaphore will have a temporarily imported payload as if a valid
file descriptor had been provided.

Note

This special behavior for importing an invalid sync file descriptor allows easier
interoperability with other system APIs which use the convention that an invalid
sync file descriptor represents work that has already completed and does not need
to be waited for. It is consistent with the option for implementations to return a -1
file descriptor when exporting a VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT
from a VkSemaphore which is signaled.

Valid Usage (Implicit)

• VUID-VkImportSemaphoreFdInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR

• VUID-VkImportSemaphoreFdInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkImportSemaphoreFdInfoKHR-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-VkImportSemaphoreFdInfoKHR-flags-parameter
flags must be a valid combination of VkSemaphoreImportFlagBits values

• VUID-VkImportSemaphoreFdInfoKHR-handleType-parameter
handleType must be a valid VkExternalSemaphoreHandleTypeFlagBits value

Host Synchronization

• Host access to semaphore must be externally synchronized

To import a semaphore payload from a Zircon event handle, call:

// Provided by VK_FUCHSIA_external_semaphore
VkResult vkImportSemaphoreZirconHandleFUCHSIA(
 VkDevice device,
 const VkImportSemaphoreZirconHandleInfoFUCHSIA* pImportSemaphoreZirconHandleInfo);

• device is the logical device that created the semaphore.

• pImportSemaphoreZirconHandleInfo is a pointer to a
VkImportSemaphoreZirconHandleInfoFUCHSIA structure specifying the semaphore and import
parameters.

Importing a semaphore payload from a Zircon event handle transfers ownership of the handle

371

from the application to the Vulkan implementation. The application must not perform any
operations on the handle after a successful import.

Applications can import the same semaphore payload into multiple instances of Vulkan, into the
same instance from which it was exported, and multiple times into a given Vulkan instance.

Valid Usage

• VUID-vkImportSemaphoreZirconHandleFUCHSIA-semaphore-04764
semaphore must not be associated with any queue command that has not yet completed
execution on that queue

Valid Usage (Implicit)

• VUID-vkImportSemaphoreZirconHandleFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkImportSemaphoreZirconHandleFUCHSIA-pImportSemaphoreZirconHandleInfo-
parameter
pImportSemaphoreZirconHandleInfo must be a valid pointer to a valid
VkImportSemaphoreZirconHandleInfoFUCHSIA structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkImportSemaphoreZirconHandleInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_external_semaphore
typedef struct VkImportSemaphoreZirconHandleInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 VkSemaphoreImportFlags flags;
 VkExternalSemaphoreHandleTypeFlagBits handleType;
 zx_handle_t zirconHandle;
} VkImportSemaphoreZirconHandleInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

372

• semaphore is the semaphore into which the payload will be imported.

• flags is a bitmask of VkSemaphoreImportFlagBits specifying additional parameters for the
semaphore payload import operation.

• handleType is a VkExternalSemaphoreHandleTypeFlagBits value specifying the type of
zirconHandle.

• zirconHandle is the external handle to import.

The handle types supported by handleType are:

Table 10. Handle Types Supported by VkImportSemaphoreZirconHandleInfoFUCHSIA

Handle Type Transference Permanence Supported

VK_EXTERNAL_SEMAPHORE_HA
NDLE_TYPE_ZIRCON_EVENT_B
IT_FUCHSIA

Reference Temporary,Permanent

Valid Usage

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-handleType-04765
handleType must be a value included in the Handle Types Supported by
VkImportSemaphoreZirconHandleInfoFUCHSIA table

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-zirconHandle-04766
zirconHandle must obey any requirements listed for handleType in external semaphore
handle types compatibility

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-zirconHandle-04767
zirconHandle must have ZX_RIGHTS_BASIC and ZX_RIGHTS_SIGNAL rights

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-semaphoreType-04768
The VkSemaphoreTypeCreateInfo::semaphoreType field must not be
VK_SEMAPHORE_TYPE_TIMELINE

Valid Usage (Implicit)

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_ZIRCON_HANDLE_INFO_FUCHSIA

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-pNext-pNext
pNext must be NULL

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-flags-parameter
flags must be a valid combination of VkSemaphoreImportFlagBits values

• VUID-VkImportSemaphoreZirconHandleInfoFUCHSIA-handleType-parameter
handleType must be a valid VkExternalSemaphoreHandleTypeFlagBits value

373

Host Synchronization

• Host access to semaphore must be externally synchronized

Bits which can be set in

• VkImportSemaphoreWin32HandleInfoKHR::flags

• VkImportSemaphoreFdInfoKHR::flags

• VkImportSemaphoreZirconHandleInfoFUCHSIA::flags

specifying additional parameters of a semaphore import operation are:

// Provided by VK_VERSION_1_1
typedef enum VkSemaphoreImportFlagBits {
 VK_SEMAPHORE_IMPORT_TEMPORARY_BIT = 0x00000001,
 // Provided by VK_KHR_external_semaphore
 VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT,
} VkSemaphoreImportFlagBits;

or the equivalent

// Provided by VK_KHR_external_semaphore
typedef VkSemaphoreImportFlagBits VkSemaphoreImportFlagBitsKHR;

These bits have the following meanings:

• VK_SEMAPHORE_IMPORT_TEMPORARY_BIT specifies that the semaphore payload will be imported only
temporarily, as described in Importing Semaphore Payloads, regardless of the permanence of
handleType.

// Provided by VK_VERSION_1_1
typedef VkFlags VkSemaphoreImportFlags;

or the equivalent

// Provided by VK_KHR_external_semaphore
typedef VkSemaphoreImportFlags VkSemaphoreImportFlagsKHR;

VkSemaphoreImportFlags is a bitmask type for setting a mask of zero or more
VkSemaphoreImportFlagBits.

374

7.5. Events
Events are a synchronization primitive that can be used to insert a fine-grained dependency
between commands submitted to the same queue, or between the host and a queue. Events must
not be used to insert a dependency between commands submitted to different queues. Events have
two states - signaled and unsignaled. An application can signal or unsignal an event either on the
host or on the device. A device can be made to wait for an event to become signaled before
executing further operations. No command exists to wait for an event to become signaled on the
host, but the current state of an event can be queried.

Events are represented by VkEvent handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkEvent)

To create an event, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateEvent(
 VkDevice device,
 const VkEventCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkEvent* pEvent);

• device is the logical device that creates the event.

• pCreateInfo is a pointer to a VkEventCreateInfo structure containing information about how the
event is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pEvent is a pointer to a handle in which the resulting event object is returned.

When created, the event object is in the unsignaled state.

Valid Usage

• VUID-vkCreateEvent-events-04468
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::events is VK_FALSE, then the
implementation does not support events, and vkCreateEvent must not be used

Valid Usage (Implicit)

• VUID-vkCreateEvent-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateEvent-pCreateInfo-parameter

375

pCreateInfo must be a valid pointer to a valid VkEventCreateInfo structure

• VUID-vkCreateEvent-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateEvent-pEvent-parameter
pEvent must be a valid pointer to a VkEvent handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkEventCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkEventCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkEventCreateFlags flags;
} VkEventCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkEventCreateFlagBits defining additional creation parameters.

Valid Usage

• VUID-VkEventCreateInfo-pNext-06790
If the pNext chain includes a VkExportMetalObjectCreateInfoEXT structure, its
exportObjectType member must be
VK_EXPORT_METAL_OBJECT_TYPE_METAL_SHARED_EVENT_BIT_EXT

Valid Usage (Implicit)

• VUID-VkEventCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO

• VUID-VkEventCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either

376

NULL or a pointer to a valid instance of VkExportMetalObjectCreateInfoEXT or
VkImportMetalSharedEventInfoEXT

• VUID-VkEventCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkExportMetalObjectCreateInfoEXT

• VUID-VkEventCreateInfo-flags-parameter
flags must be a valid combination of VkEventCreateFlagBits values

// Provided by VK_VERSION_1_0
typedef enum VkEventCreateFlagBits {
 // Provided by VK_VERSION_1_3
 VK_EVENT_CREATE_DEVICE_ONLY_BIT = 0x00000001,
 // Provided by VK_KHR_synchronization2
 VK_EVENT_CREATE_DEVICE_ONLY_BIT_KHR = VK_EVENT_CREATE_DEVICE_ONLY_BIT,
} VkEventCreateFlagBits;

• VK_EVENT_CREATE_DEVICE_ONLY_BIT specifies that host event commands will not be used with this
event.

// Provided by VK_VERSION_1_0
typedef VkFlags VkEventCreateFlags;

VkEventCreateFlags is a bitmask type for setting a mask of VkEventCreateFlagBits.

To destroy an event, call:

// Provided by VK_VERSION_1_0
void vkDestroyEvent(
 VkDevice device,
 VkEvent event,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the event.

• event is the handle of the event to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyEvent-event-01145
All submitted commands that refer to event must have completed execution

• VUID-vkDestroyEvent-event-01146
If VkAllocationCallbacks were provided when event was created, a compatible set of
callbacks must be provided here

377

• VUID-vkDestroyEvent-event-01147
If no VkAllocationCallbacks were provided when event was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyEvent-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyEvent-event-parameter
If event is not VK_NULL_HANDLE, event must be a valid VkEvent handle

• VUID-vkDestroyEvent-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyEvent-event-parent
If event is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

To query the state of an event from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkGetEventStatus(
 VkDevice device,
 VkEvent event);

• device is the logical device that owns the event.

• event is the handle of the event to query.

Upon success, vkGetEventStatus returns the state of the event object with the following return codes:

Table 11. Event Object Status Codes

Status Meaning

VK_EVENT_SET The event specified by event is
signaled.

VK_EVENT_RESET The event specified by event is
unsignaled.

If a vkCmdSetEvent or vkCmdResetEvent command is in a command buffer that is in the pending state,
then the value returned by this command may immediately be out of date.

378

The state of an event can be updated by the host. The state of the event is immediately changed,
and subsequent calls to vkGetEventStatus will return the new state. If an event is already in the
requested state, then updating it to the same state has no effect.

Valid Usage

• VUID-vkGetEventStatus-event-03940
event must not have been created with VK_EVENT_CREATE_DEVICE_ONLY_BIT

Valid Usage (Implicit)

• VUID-vkGetEventStatus-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetEventStatus-event-parameter
event must be a valid VkEvent handle

• VUID-vkGetEventStatus-event-parent
event must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_EVENT_SET

• VK_EVENT_RESET

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To set the state of an event to signaled from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkSetEvent(
 VkDevice device,
 VkEvent event);

• device is the logical device that owns the event.

• event is the event to set.

When vkSetEvent is executed on the host, it defines an event signal operation which sets the event
to the signaled state.

379

If event is already in the signaled state when vkSetEvent is executed, then vkSetEvent has no effect,
and no event signal operation occurs.

Note

If a command buffer is waiting for an event to be signaled from the host, the
application must signal the event before submitting the command buffer, as
described in the queue forward progress section.

Valid Usage

• VUID-vkSetEvent-event-03941
event must not have been created with VK_EVENT_CREATE_DEVICE_ONLY_BIT

• VUID-vkSetEvent-event-09543
event must not be waited on by a command buffer in the pending state

Valid Usage (Implicit)

• VUID-vkSetEvent-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetEvent-event-parameter
event must be a valid VkEvent handle

• VUID-vkSetEvent-event-parent
event must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To set the state of an event to unsignaled from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkResetEvent(

380

 VkDevice device,
 VkEvent event);

• device is the logical device that owns the event.

• event is the event to reset.

When vkResetEvent is executed on the host, it defines an event unsignal operation which resets the
event to the unsignaled state.

If event is already in the unsignaled state when vkResetEvent is executed, then vkResetEvent has no
effect, and no event unsignal operation occurs.

Valid Usage

• VUID-vkResetEvent-event-03821
There must be an execution dependency between vkResetEvent and the execution of any
vkCmdWaitEvents that includes event in its pEvents parameter

• VUID-vkResetEvent-event-03822
There must be an execution dependency between vkResetEvent and the execution of any
vkCmdWaitEvents2 that includes event in its pEvents parameter

• VUID-vkResetEvent-event-03823
event must not have been created with VK_EVENT_CREATE_DEVICE_ONLY_BIT

Valid Usage (Implicit)

• VUID-vkResetEvent-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetEvent-event-parameter
event must be a valid VkEvent handle

• VUID-vkResetEvent-event-parent
event must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

Return Codes

Success

• VK_SUCCESS

381

Failure

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The state of an event can also be updated on the device by commands inserted in command
buffers.

To signal an event from a device, call:

// Provided by VK_VERSION_1_3
void vkCmdSetEvent2(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 const VkDependencyInfo* pDependencyInfo);

or the equivalent command

// Provided by VK_KHR_synchronization2
void vkCmdSetEvent2KHR(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 const VkDependencyInfo* pDependencyInfo);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be signaled.

• pDependencyInfo is a pointer to a VkDependencyInfo structure defining the first scopes of this
operation.

When vkCmdSetEvent2 is submitted to a queue, it defines the first half of memory dependencies
defined by pDependencyInfo, as well as an event signal operation which sets the event to the signaled
state. A memory dependency is defined between the event signal operation and commands that
occur earlier in submission order.

The first synchronization scope and access scope are defined by the union of all the memory
dependencies defined by pDependencyInfo, and are applied to all operations that occur earlier in
submission order. Queue family ownership transfers and image layout transitions defined by
pDependencyInfo are also included in the first scopes.

The second synchronization scope includes only the event signal operation, and any queue family
ownership transfers and image layout transitions defined by pDependencyInfo.

The second access scope includes only queue family ownership transfers and image layout
transitions.

Future vkCmdWaitEvents2 commands rely on all values of each element in pDependencyInfo
matching exactly with those used to signal the corresponding event. vkCmdWaitEvents must not be
used to wait on the result of a signal operation defined by vkCmdSetEvent2.

382

Note

The extra information provided by vkCmdSetEvent2 compared to vkCmdSetEvent
allows implementations to more efficiently schedule the operations required to
satisfy the requested dependencies. With vkCmdSetEvent, the full dependency
information is not known until vkCmdWaitEvents is recorded, forcing
implementations to insert the required operations at that point and not before.

If event is already in the signaled state when vkCmdSetEvent2 is executed on the device, then
vkCmdSetEvent2 has no effect, no event signal operation occurs, and no dependency is generated.

Valid Usage

• VUID-vkCmdSetEvent2-synchronization2-03824
The synchronization2 feature must be enabled

• VUID-vkCmdSetEvent2-dependencyFlags-03825
The dependencyFlags member of pDependencyInfo must be 0

• VUID-vkCmdSetEvent2-srcStageMask-09391
The srcStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must not include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-vkCmdSetEvent2-dstStageMask-09392
The dstStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must not include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-vkCmdSetEvent2-commandBuffer-03826
The current device mask of commandBuffer must include exactly one physical device

• VUID-vkCmdSetEvent2-srcStageMask-03827
The srcStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

• VUID-vkCmdSetEvent2-dstStageMask-03828
The dstStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

Valid Usage (Implicit)

• VUID-vkCmdSetEvent2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetEvent2-event-parameter
event must be a valid VkEvent handle

383

• VUID-vkCmdSetEvent2-pDependencyInfo-parameter
pDependencyInfo must be a valid pointer to a valid VkDependencyInfo structure

• VUID-vkCmdSetEvent2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetEvent2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdSetEvent2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdSetEvent2-commonparent
Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Both Graphics
Compute
Decode
Encode

Synchronization

The VkDependencyInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkDependencyInfo {
 VkStructureType sType;
 const void* pNext;
 VkDependencyFlags dependencyFlags;
 uint32_t memoryBarrierCount;
 const VkMemoryBarrier2* pMemoryBarriers;
 uint32_t bufferMemoryBarrierCount;
 const VkBufferMemoryBarrier2* pBufferMemoryBarriers;
 uint32_t imageMemoryBarrierCount;
 const VkImageMemoryBarrier2* pImageMemoryBarriers;
} VkDependencyInfo;

384

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkDependencyInfo VkDependencyInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dependencyFlags is a bitmask of VkDependencyFlagBits specifying how execution and memory
dependencies are formed.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier2 structures defining memory
dependencies between any memory accesses.

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier2 structures defining
memory dependencies between buffer ranges.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier2 structures defining
memory dependencies between image subresources.

This structure defines a set of memory dependencies, as well as queue family ownership transfer
operations and image layout transitions.

Each member of pMemoryBarriers, pBufferMemoryBarriers, and pImageMemoryBarriers defines a
separate memory dependency.

Valid Usage (Implicit)

• VUID-VkDependencyInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEPENDENCY_INFO

• VUID-VkDependencyInfo-pNext-pNext
pNext must be NULL

• VUID-VkDependencyInfo-dependencyFlags-parameter
dependencyFlags must be a valid combination of VkDependencyFlagBits values

• VUID-VkDependencyInfo-pMemoryBarriers-parameter
If memoryBarrierCount is not 0, pMemoryBarriers must be a valid pointer to an array of
memoryBarrierCount valid VkMemoryBarrier2 structures

• VUID-VkDependencyInfo-pBufferMemoryBarriers-parameter
If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a valid pointer to an
array of bufferMemoryBarrierCount valid VkBufferMemoryBarrier2 structures

• VUID-VkDependencyInfo-pImageMemoryBarriers-parameter
If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a valid pointer to an
array of imageMemoryBarrierCount valid VkImageMemoryBarrier2 structures

385

To set the state of an event to signaled from a device, call:

// Provided by VK_VERSION_1_0
void vkCmdSetEvent(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be signaled.

• stageMask specifies the source stage mask used to determine the first synchronization scope.

vkCmdSetEvent behaves identically to vkCmdSetEvent2, except that it does not define an access
scope, and must only be used with vkCmdWaitEvents, not vkCmdWaitEvents2.

Valid Usage

• VUID-vkCmdSetEvent-stageMask-04090
If the geometryShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdSetEvent-stageMask-04091
If the tessellationShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdSetEvent-stageMask-04092
If the conditionalRendering feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdSetEvent-stageMask-04093
If the fragmentDensityMap feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdSetEvent-stageMask-04094
If the transformFeedback feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdSetEvent-stageMask-04095
If the meshShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-vkCmdSetEvent-stageMask-04096
If the taskShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-vkCmdSetEvent-stageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled, stageMask
must not contain VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdSetEvent-stageMask-03937

386

If the synchronization2 feature is not enabled, stageMask must not be 0

• VUID-vkCmdSetEvent-stageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
stageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdSetEvent-stageMask-06457
Any pipeline stage included in stageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdSetEvent-stageMask-01149
stageMask must not include VK_PIPELINE_STAGE_HOST_BIT

• VUID-vkCmdSetEvent-commandBuffer-01152
The current device mask of commandBuffer must include exactly one physical device

Valid Usage (Implicit)

• VUID-vkCmdSetEvent-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetEvent-event-parameter
event must be a valid VkEvent handle

• VUID-vkCmdSetEvent-stageMask-parameter
stageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdSetEvent-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetEvent-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdSetEvent-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdSetEvent-commonparent
Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

387

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Both Graphics
Compute
Decode
Encode

Synchronization

To unsignal the event from a device, call:

// Provided by VK_VERSION_1_3
void vkCmdResetEvent2(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags2 stageMask);

or the equivalent command

// Provided by VK_KHR_synchronization2
void vkCmdResetEvent2KHR(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags2 stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be unsignaled.

• stageMask is a VkPipelineStageFlags2 mask of pipeline stages used to determine the first
synchronization scope.

When vkCmdResetEvent2 is submitted to a queue, it defines an execution dependency on
commands that were submitted before it, and defines an event unsignal operation which resets the
event to the unsignaled state.

The first synchronization scope includes all commands that occur earlier in submission order. The
synchronization scope is limited to operations by stageMask or stages that are logically earlier than
stageMask.

The second synchronization scope includes only the event unsignal operation.

If event is already in the unsignaled state when vkCmdResetEvent2 is executed on the device, then
this command has no effect, no event unsignal operation occurs, and no execution dependency is
generated.

388

Valid Usage

• VUID-vkCmdResetEvent2-stageMask-03929
If the geometryShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-vkCmdResetEvent2-stageMask-03930
If the tessellationShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdResetEvent2-stageMask-03931
If the conditionalRendering feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdResetEvent2-stageMask-03932
If the fragmentDensityMap feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdResetEvent2-stageMask-03933
If the transformFeedback feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdResetEvent2-stageMask-03934
If the meshShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-vkCmdResetEvent2-stageMask-03935
If the taskShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-vkCmdResetEvent2-stageMask-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled, stageMask
must not contain VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdResetEvent2-stageMask-04957
If the subpassShading feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-vkCmdResetEvent2-stageMask-04995
If the invocationMask feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-vkCmdResetEvent2-stageMask-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
stageMask must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdResetEvent2-synchronization2-03829
The synchronization2 feature must be enabled

• VUID-vkCmdResetEvent2-stageMask-03830
stageMask must not include VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-vkCmdResetEvent2-event-03831
There must be an execution dependency between vkCmdResetEvent2 and the execution of

389

any vkCmdWaitEvents that includes event in its pEvents parameter

• VUID-vkCmdResetEvent2-event-03832
There must be an execution dependency between vkCmdResetEvent2 and the execution of
any vkCmdWaitEvents2 that includes event in its pEvents parameter

• VUID-vkCmdResetEvent2-commandBuffer-03833
commandBuffer’s current device mask must include exactly one physical device

Valid Usage (Implicit)

• VUID-vkCmdResetEvent2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResetEvent2-event-parameter
event must be a valid VkEvent handle

• VUID-vkCmdResetEvent2-stageMask-parameter
stageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-vkCmdResetEvent2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResetEvent2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdResetEvent2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResetEvent2-commonparent
Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Both Graphics
Compute
Decode
Encode

Synchronization

390

To set the state of an event to unsignaled from a device, call:

// Provided by VK_VERSION_1_0
void vkCmdResetEvent(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be unsignaled.

• stageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask used to
determine when the event is unsignaled.

vkCmdResetEvent behaves identically to vkCmdResetEvent2.

Valid Usage

• VUID-vkCmdResetEvent-stageMask-04090
If the geometryShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdResetEvent-stageMask-04091
If the tessellationShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdResetEvent-stageMask-04092
If the conditionalRendering feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdResetEvent-stageMask-04093
If the fragmentDensityMap feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdResetEvent-stageMask-04094
If the transformFeedback feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdResetEvent-stageMask-04095
If the meshShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-vkCmdResetEvent-stageMask-04096
If the taskShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-vkCmdResetEvent-stageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled, stageMask
must not contain VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdResetEvent-stageMask-03937

391

If the synchronization2 feature is not enabled, stageMask must not be 0

• VUID-vkCmdResetEvent-stageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
stageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdResetEvent-stageMask-06458
Any pipeline stage included in stageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdResetEvent-stageMask-01153
stageMask must not include VK_PIPELINE_STAGE_HOST_BIT

• VUID-vkCmdResetEvent-event-03834
There must be an execution dependency between vkCmdResetEvent and the execution of
any vkCmdWaitEvents that includes event in its pEvents parameter

• VUID-vkCmdResetEvent-event-03835
There must be an execution dependency between vkCmdResetEvent and the execution of
any vkCmdWaitEvents2 that includes event in its pEvents parameter

• VUID-vkCmdResetEvent-commandBuffer-01157
commandBuffer’s current device mask must include exactly one physical device

Valid Usage (Implicit)

• VUID-vkCmdResetEvent-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResetEvent-event-parameter
event must be a valid VkEvent handle

• VUID-vkCmdResetEvent-stageMask-parameter
stageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdResetEvent-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResetEvent-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdResetEvent-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResetEvent-commonparent
Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

392

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Both Graphics
Compute
Decode
Encode

Synchronization

To wait for one or more events to enter the signaled state on a device, call:

// Provided by VK_VERSION_1_3
void vkCmdWaitEvents2(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 const VkDependencyInfo* pDependencyInfos);

or the equivalent command

// Provided by VK_KHR_synchronization2
void vkCmdWaitEvents2KHR(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 const VkDependencyInfo* pDependencyInfos);

• commandBuffer is the command buffer into which the command is recorded.

• eventCount is the length of the pEvents array.

• pEvents is a pointer to an array of eventCount events to wait on.

• pDependencyInfos is a pointer to an array of eventCount VkDependencyInfo structures, defining
the second synchronization scope.

When vkCmdWaitEvents2 is submitted to a queue, it inserts memory dependencies according to the
elements of pDependencyInfos and each corresponding element of pEvents. vkCmdWaitEvents2 must
not be used to wait on event signal operations occurring on other queues, or signal operations

393

executed by vkCmdSetEvent.

The first synchronization scope and access scope of each memory dependency defined by any
element i of pDependencyInfos are applied to operations that occurred earlier in submission order
than the last event signal operation on element i of pEvents.

Signal operations for an event at index i are only included if:

• The event was signaled by a vkCmdSetEvent2 command that occurred earlier in submission
order with a dependencyInfo parameter exactly equal to the element of pDependencyInfos at index
i ; or

• The event was created without VK_EVENT_CREATE_DEVICE_ONLY_BIT, and the first synchronization
scope defined by the element of pDependencyInfos at index i only includes host operations
(VK_PIPELINE_STAGE_2_HOST_BIT).

The second synchronization scope and access scope of each memory dependency defined by any
element i of pDependencyInfos are applied to operations that occurred later in submission order
than vkCmdWaitEvents2.

Note

vkCmdWaitEvents2 is used with vkCmdSetEvent2 to define a memory dependency
between two sets of action commands, roughly in the same way as pipeline
barriers, but split into two commands such that work between the two may
execute unhindered.

Note

Applications should be careful to avoid race conditions when using events. There
is no direct ordering guarantee between vkCmdSetEvent2 and vkCmdResetEvent2,
vkCmdResetEvent, or vkCmdSetEvent. Another execution dependency (e.g. a
pipeline barrier or semaphore with VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT) is
needed to prevent such a race condition.

Valid Usage

• VUID-vkCmdWaitEvents2-synchronization2-03836
The synchronization2 feature must be enabled

• VUID-vkCmdWaitEvents2-pEvents-03837
Members of pEvents must not have been signaled by vkCmdSetEvent

• VUID-vkCmdWaitEvents2-pEvents-03838
For any element i of pEvents, if that event is signaled by vkCmdSetEvent2, that command’s
dependencyInfo parameter must be exactly equal to the ith element of pDependencyInfos

• VUID-vkCmdWaitEvents2-pEvents-03839
For any element i of pEvents, if that event is signaled by vkSetEvent, barriers in the ith
element of pDependencyInfos must include only host operations in their first
synchronization scope

394

• VUID-vkCmdWaitEvents2-pEvents-03840
For any element i of pEvents, if barriers in the ith element of pDependencyInfos include only
host operations, the ith element of pEvents must be signaled before vkCmdWaitEvents2 is
executed

• VUID-vkCmdWaitEvents2-pEvents-03841
For any element i of pEvents, if barriers in the ith element of pDependencyInfos do not
include host operations, the ith element of pEvents must be signaled by a corresponding
vkCmdSetEvent2 that occurred earlier in submission order

• VUID-vkCmdWaitEvents2-srcStageMask-03842
The srcStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfos must either include only pipeline
stages valid for the queue family that was used to create the command pool that
commandBuffer was allocated from

• VUID-vkCmdWaitEvents2-dstStageMask-03843
The dstStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfos must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

• VUID-vkCmdWaitEvents2-dependencyFlags-03844
If vkCmdWaitEvents2 is being called inside a render pass instance, the srcStageMask member
of any element of the pMemoryBarriers, pBufferMemoryBarriers, or pImageMemoryBarriers
members of pDependencyInfos must not include VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-vkCmdWaitEvents2-commandBuffer-03846
commandBuffer’s current device mask must include exactly one physical device

Valid Usage (Implicit)

• VUID-vkCmdWaitEvents2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWaitEvents2-pEvents-parameter
pEvents must be a valid pointer to an array of eventCount valid VkEvent handles

• VUID-vkCmdWaitEvents2-pDependencyInfos-parameter
pDependencyInfos must be a valid pointer to an array of eventCount valid
VkDependencyInfo structures

• VUID-vkCmdWaitEvents2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWaitEvents2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdWaitEvents2-eventCount-arraylength
eventCount must be greater than 0

• VUID-vkCmdWaitEvents2-commonparent

395

Both of commandBuffer, and the elements of pEvents must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Graphics
Compute
Decode
Encode

Synchronization

To wait for one or more events to enter the signaled state on a device, call:

// Provided by VK_VERSION_1_0
void vkCmdWaitEvents(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 uint32_t memoryBarrierCount,
 const VkMemoryBarrier* pMemoryBarriers,
 uint32_t bufferMemoryBarrierCount,
 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
 uint32_t imageMemoryBarrierCount,
 const VkImageMemoryBarrier* pImageMemoryBarriers);

• commandBuffer is the command buffer into which the command is recorded.

• eventCount is the length of the pEvents array.

• pEvents is a pointer to an array of event object handles to wait on.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

396

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

vkCmdWaitEvents is largely similar to vkCmdWaitEvents2, but can only wait on signal operations
defined by vkCmdSetEvent. As vkCmdSetEvent does not define any access scopes, vkCmdWaitEvents
defines the first access scope for each event signal operation in addition to its own access scopes.

Note

Since vkCmdSetEvent does not have any dependency information beyond a stage
mask, implementations do not have the same opportunity to perform availability
and visibility operations or image layout transitions in advance as they do with
vkCmdSetEvent2 and vkCmdWaitEvents2.

When vkCmdWaitEvents is submitted to a queue, it defines a memory dependency between prior
event signal operations on the same queue or the host, and subsequent commands. vkCmdWaitEvents
must not be used to wait on event signal operations occurring on other queues.

The first synchronization scope only includes event signal operations that operate on members of
pEvents, and the operations that happened-before the event signal operations. Event signal
operations performed by vkCmdSetEvent that occur earlier in submission order are included in the
first synchronization scope, if the logically latest pipeline stage in their stageMask parameter is
logically earlier than or equal to the logically latest pipeline stage in srcStageMask. Event signal
operations performed by vkSetEvent are only included in the first synchronization scope if
VK_PIPELINE_STAGE_HOST_BIT is included in srcStageMask.

The second synchronization scope includes all commands that occur later in submission order. The
second synchronization scope is limited to operations on the pipeline stages determined by the
destination stage mask specified by dstStageMask.

The first access scope is limited to accesses in the pipeline stages determined by the source stage
mask specified by srcStageMask. Within that, the first access scope only includes the first access
scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers
arrays, which each define a set of memory barriers. If no memory barriers are specified, then the
first access scope includes no accesses.

The second access scope is limited to accesses in the pipeline stages determined by the destination
stage mask specified by dstStageMask. Within that, the second access scope only includes the second
access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and
pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers
are specified, then the second access scope includes no accesses.

Valid Usage

• VUID-vkCmdWaitEvents-srcStageMask-04090
If the geometryShader feature is not enabled, srcStageMask must not contain

397

VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdWaitEvents-srcStageMask-04091
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWaitEvents-srcStageMask-04092
If the conditionalRendering feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdWaitEvents-srcStageMask-04093
If the fragmentDensityMap feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdWaitEvents-srcStageMask-04094
If the transformFeedback feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdWaitEvents-srcStageMask-04095
If the meshShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-vkCmdWaitEvents-srcStageMask-04096
If the taskShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-vkCmdWaitEvents-srcStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
srcStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdWaitEvents-srcStageMask-03937
If the synchronization2 feature is not enabled, srcStageMask must not be 0

• VUID-vkCmdWaitEvents-srcStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
srcStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdWaitEvents-srcAccessMask-06257
If the rayQuery feature is not enabled and a memory barrier srcAccessMask includes
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR, srcStageMask must not include any of the
VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdWaitEvents-dstStageMask-04090
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdWaitEvents-dstStageMask-04091
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWaitEvents-dstStageMask-04092

398

If the conditionalRendering feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdWaitEvents-dstStageMask-04093
If the fragmentDensityMap feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdWaitEvents-dstStageMask-04094
If the transformFeedback feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdWaitEvents-dstStageMask-04095
If the meshShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-vkCmdWaitEvents-dstStageMask-04096
If the taskShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-vkCmdWaitEvents-dstStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
dstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdWaitEvents-dstStageMask-03937
If the synchronization2 feature is not enabled, dstStageMask must not be 0

• VUID-vkCmdWaitEvents-dstStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
dstStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdWaitEvents-dstAccessMask-06257
If the rayQuery feature is not enabled and a memory barrier dstAccessMask includes
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR, dstStageMask must not include any of the
VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdWaitEvents-srcAccessMask-02815
The srcAccessMask member of each element of pMemoryBarriers must only include access
flags that are supported by one or more of the pipeline stages in srcStageMask, as specified
in the table of supported access types

• VUID-vkCmdWaitEvents-dstAccessMask-02816
The dstAccessMask member of each element of pMemoryBarriers must only include access
flags that are supported by one or more of the pipeline stages in dstStageMask, as specified
in the table of supported access types

• VUID-vkCmdWaitEvents-pBufferMemoryBarriers-02817
For any element of pBufferMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its srcQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its srcAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in srcStageMask, as specified in the table of supported access
types

399

• VUID-vkCmdWaitEvents-pBufferMemoryBarriers-02818
For any element of pBufferMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its dstQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its dstAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in dstStageMask, as specified in the table of supported access
types

• VUID-vkCmdWaitEvents-pImageMemoryBarriers-02819
For any element of pImageMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its srcQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its srcAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in srcStageMask, as specified in the table of supported access
types

• VUID-vkCmdWaitEvents-pImageMemoryBarriers-02820
For any element of pImageMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its dstQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its dstAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in dstStageMask, as specified in the table of supported access
types

• VUID-vkCmdWaitEvents-srcStageMask-06459
Any pipeline stage included in srcStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdWaitEvents-dstStageMask-06460
Any pipeline stage included in dstStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdWaitEvents-srcStageMask-01158
srcStageMask must be the bitwise OR of the stageMask parameter used in previous calls to
vkCmdSetEvent with any of the elements of pEvents and VK_PIPELINE_STAGE_HOST_BIT if any
of the elements of pEvents was set using vkSetEvent

• VUID-vkCmdWaitEvents-srcStageMask-07308
If vkCmdWaitEvents is being called inside a render pass instance, srcStageMask must not
include VK_PIPELINE_STAGE_HOST_BIT

• VUID-vkCmdWaitEvents-srcQueueFamilyIndex-02803
The srcQueueFamilyIndex and dstQueueFamilyIndex members of any element of
pBufferMemoryBarriers or pImageMemoryBarriers must be equal

• VUID-vkCmdWaitEvents-commandBuffer-01167
commandBuffer’s current device mask must include exactly one physical device

• VUID-vkCmdWaitEvents-pEvents-03847

400

Elements of pEvents must not have been signaled by vkCmdSetEvent2

Valid Usage (Implicit)

• VUID-vkCmdWaitEvents-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWaitEvents-pEvents-parameter
pEvents must be a valid pointer to an array of eventCount valid VkEvent handles

• VUID-vkCmdWaitEvents-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdWaitEvents-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdWaitEvents-pMemoryBarriers-parameter
If memoryBarrierCount is not 0, pMemoryBarriers must be a valid pointer to an array of
memoryBarrierCount valid VkMemoryBarrier structures

• VUID-vkCmdWaitEvents-pBufferMemoryBarriers-parameter
If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a valid pointer to an
array of bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

• VUID-vkCmdWaitEvents-pImageMemoryBarriers-parameter
If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a valid pointer to an
array of imageMemoryBarrierCount valid VkImageMemoryBarrier structures

• VUID-vkCmdWaitEvents-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWaitEvents-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdWaitEvents-eventCount-arraylength
eventCount must be greater than 0

• VUID-vkCmdWaitEvents-commonparent
Both of commandBuffer, and the elements of pEvents must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

401

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Graphics
Compute
Decode
Encode

Synchronization

7.6. Pipeline Barriers
To record a pipeline barrier, call:

// Provided by VK_VERSION_1_3
void vkCmdPipelineBarrier2(
 VkCommandBuffer commandBuffer,
 const VkDependencyInfo* pDependencyInfo);

or the equivalent command

// Provided by VK_KHR_synchronization2
void vkCmdPipelineBarrier2KHR(
 VkCommandBuffer commandBuffer,
 const VkDependencyInfo* pDependencyInfo);

• commandBuffer is the command buffer into which the command is recorded.

• pDependencyInfo is a pointer to a VkDependencyInfo structure defining the scopes of this
operation.

When vkCmdPipelineBarrier2 is submitted to a queue, it defines memory dependencies between
commands that were submitted to the same queue before it, and those submitted to the same queue
after it.

The first synchronization scope and access scope of each memory dependency defined by
pDependencyInfo are applied to operations that occurred earlier in submission order.

The second synchronization scope and access scope of each memory dependency defined by
pDependencyInfo are applied to operations that occurred later in submission order.

If vkCmdPipelineBarrier2 is recorded within a render pass instance, the synchronization scopes are
limited to a subset of operations within the same subpass or render pass instance.

402

Valid Usage

• VUID-vkCmdPipelineBarrier2-None-07889
If vkCmdPipelineBarrier2 is called within a render pass instance using a VkRenderPass
object, the render pass must have been created with at least one subpass dependency that
expresses a dependency from the current subpass to itself, does not include
VK_DEPENDENCY_BY_REGION_BIT if this command does not, does not include
VK_DEPENDENCY_VIEW_LOCAL_BIT if this command does not, and has synchronization scopes
and access scopes that are all supersets of the scopes defined in this command

• VUID-vkCmdPipelineBarrier2-bufferMemoryBarrierCount-01178
If vkCmdPipelineBarrier2 is called within a render pass instance using a VkRenderPass
object, it must not include any buffer memory barriers

• VUID-vkCmdPipelineBarrier2-image-04073
If vkCmdPipelineBarrier2 is called within a render pass instance using a VkRenderPass
object, the image member of any image memory barrier included in this command must
be an attachment used in the current subpass both as an input attachment, and as either a
color, color resolve, or depth/stencil attachment

• VUID-vkCmdPipelineBarrier2-image-09373
If vkCmdPipelineBarrier2 is called within a render pass instance using a VkRenderPass
object, and the image member of any image memory barrier is a color resolve attachment,
the corresponding color attachment must be VK_ATTACHMENT_UNUSED

• VUID-vkCmdPipelineBarrier2-image-09374
If vkCmdPipelineBarrier2 is called within a render pass instance using a VkRenderPass
object, and the image member of any image memory barrier is a color resolve attachment,
it must have been created with a non-zero VkExternalFormatANDROID::externalFormat
value

• VUID-vkCmdPipelineBarrier2-oldLayout-01181
If vkCmdPipelineBarrier2 is called within a render pass instance, the oldLayout and
newLayout members of any image memory barrier included in this command must be
equal

• VUID-vkCmdPipelineBarrier2-srcQueueFamilyIndex-01182
If vkCmdPipelineBarrier2 is called within a render pass instance, the srcQueueFamilyIndex
and dstQueueFamilyIndex members of any memory barrier included in this command
must be equal

• VUID-vkCmdPipelineBarrier2-None-07890
If vkCmdPipelineBarrier2 is called within a render pass instance, and the source stage
masks of any memory barriers include framebuffer-space stages, destination stage masks
of all memory barriers must only include framebuffer-space stages

• VUID-vkCmdPipelineBarrier2-dependencyFlags-07891
If vkCmdPipelineBarrier2 is called within a render pass instance, and the source stage
masks of any memory barriers include framebuffer-space stages, then dependencyFlags
must include VK_DEPENDENCY_BY_REGION_BIT

• VUID-vkCmdPipelineBarrier2-None-07892
If vkCmdPipelineBarrier2 is called within a render pass instance, the source and

403

destination stage masks of any memory barriers must only include graphics pipeline
stages

• VUID-vkCmdPipelineBarrier2-dependencyFlags-01186
If vkCmdPipelineBarrier2 is called outside of a render pass instance, the dependency flags
must not include VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-vkCmdPipelineBarrier2-None-07893
If vkCmdPipelineBarrier2 is called inside a render pass instance, and there is more than
one view in the current subpass, dependency flags must include
VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-vkCmdPipelineBarrier2-None-09553
If none of the shaderTileImageColorReadAccess, shaderTileImageStencilReadAccess, or
shaderTileImageDepthReadAccess features are enabled, and the dynamicRenderingLocalRead
feature is not enabled, vkCmdPipelineBarrier2 must not be called within a render pass
instance started with vkCmdBeginRendering

• VUID-vkCmdPipelineBarrier2-None-09554
If the dynamicRenderingLocalRead feature is not enabled, and vkCmdPipelineBarrier2 is
called within a render pass instance started with vkCmdBeginRendering, there must be
no buffer or image memory barriers specified by this command

• VUID-vkCmdPipelineBarrier2-None-09586
If the dynamicRenderingLocalRead feature is not enabled, and vkCmdPipelineBarrier2 is
called within a render pass instance started with vkCmdBeginRendering, memory
barriers specified by this command must only include
VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, or
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT in their access masks.

• VUID-vkCmdPipelineBarrier2-image-09555
If vkCmdPipelineBarrier2 is called within a render pass instance started with
vkCmdBeginRendering, and the image member of any image memory barrier is used as an
attachment in the current render pass instance, it must be in the
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR or VK_IMAGE_LAYOUT_GENERAL layout

• VUID-vkCmdPipelineBarrier2-srcStageMask-09556
If vkCmdPipelineBarrier2 is called within a render pass instance started with
vkCmdBeginRendering, this command must only specify framebuffer-space stages in
srcStageMask and dstStageMask

• VUID-vkCmdPipelineBarrier2-synchronization2-03848
The synchronization2 feature must be enabled

• VUID-vkCmdPipelineBarrier2-srcStageMask-03849
The srcStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

• VUID-vkCmdPipelineBarrier2-dstStageMask-03850
The dstStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must only include pipeline stages

404

valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

Valid Usage (Implicit)

• VUID-vkCmdPipelineBarrier2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPipelineBarrier2-pDependencyInfo-parameter
pDependencyInfo must be a valid pointer to a valid VkDependencyInfo structure

• VUID-vkCmdPipelineBarrier2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdPipelineBarrier2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
compute, decode, or encode operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Transfer
Graphics
Compute
Decode
Encode

Synchronization

To record a pipeline barrier, call:

// Provided by VK_VERSION_1_0
void vkCmdPipelineBarrier(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 VkDependencyFlags dependencyFlags,
 uint32_t memoryBarrierCount,
 const VkMemoryBarrier* pMemoryBarriers,
 uint32_t bufferMemoryBarrierCount,

405

 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
 uint32_t imageMemoryBarrierCount,
 const VkImageMemoryBarrier* pImageMemoryBarriers);

• commandBuffer is the command buffer into which the command is recorded.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stages.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stages.

• dependencyFlags is a bitmask of VkDependencyFlagBits specifying how execution and memory
dependencies are formed.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

vkCmdPipelineBarrier operates almost identically to vkCmdPipelineBarrier2, except that the scopes
and barriers are defined as direct parameters rather than being defined by a VkDependencyInfo.

When vkCmdPipelineBarrier is submitted to a queue, it defines a memory dependency between
commands that were submitted to the same queue before it, and those submitted to the same queue
after it.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the first synchronization
scope includes all commands that occur earlier in submission order. If vkCmdPipelineBarrier was
recorded inside a render pass instance, the first synchronization scope includes only commands
that occur earlier in submission order within the same subpass. In either case, the first
synchronization scope is limited to operations on the pipeline stages determined by the source
stage mask specified by srcStageMask.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the second synchronization
scope includes all commands that occur later in submission order. If vkCmdPipelineBarrier was
recorded inside a render pass instance, the second synchronization scope includes only commands
that occur later in submission order within the same subpass. In either case, the second
synchronization scope is limited to operations on the pipeline stages determined by the destination
stage mask specified by dstStageMask.

The first access scope is limited to accesses in the pipeline stages determined by the source stage
mask specified by srcStageMask. Within that, the first access scope only includes the first access
scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers
arrays, which each define a set of memory barriers. If no memory barriers are specified, then the
first access scope includes no accesses.

The second access scope is limited to accesses in the pipeline stages determined by the destination
stage mask specified by dstStageMask. Within that, the second access scope only includes the second

406

access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and
pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers
are specified, then the second access scope includes no accesses.

If dependencyFlags includes VK_DEPENDENCY_BY_REGION_BIT, then any dependency between
framebuffer-space pipeline stages is framebuffer-local - otherwise it is framebuffer-global.

Valid Usage

• VUID-vkCmdPipelineBarrier-srcStageMask-04090
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdPipelineBarrier-srcStageMask-04091
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdPipelineBarrier-srcStageMask-04092
If the conditionalRendering feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdPipelineBarrier-srcStageMask-04093
If the fragmentDensityMap feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdPipelineBarrier-srcStageMask-04094
If the transformFeedback feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdPipelineBarrier-srcStageMask-04095
If the meshShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-vkCmdPipelineBarrier-srcStageMask-04096
If the taskShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-vkCmdPipelineBarrier-srcStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
srcStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdPipelineBarrier-srcStageMask-03937
If the synchronization2 feature is not enabled, srcStageMask must not be 0

• VUID-vkCmdPipelineBarrier-srcStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
srcStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdPipelineBarrier-srcAccessMask-06257
If the rayQuery feature is not enabled and a memory barrier srcAccessMask includes
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR, srcStageMask must not include any of the

407

VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdPipelineBarrier-dstStageMask-04090
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdPipelineBarrier-dstStageMask-04091
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdPipelineBarrier-dstStageMask-04092
If the conditionalRendering feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdPipelineBarrier-dstStageMask-04093
If the fragmentDensityMap feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdPipelineBarrier-dstStageMask-04094
If the transformFeedback feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdPipelineBarrier-dstStageMask-04095
If the meshShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-vkCmdPipelineBarrier-dstStageMask-04096
If the taskShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-vkCmdPipelineBarrier-dstStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
dstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdPipelineBarrier-dstStageMask-03937
If the synchronization2 feature is not enabled, dstStageMask must not be 0

• VUID-vkCmdPipelineBarrier-dstStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
dstStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdPipelineBarrier-dstAccessMask-06257
If the rayQuery feature is not enabled and a memory barrier dstAccessMask includes
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR, dstStageMask must not include any of the
VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdPipelineBarrier-srcAccessMask-02815
The srcAccessMask member of each element of pMemoryBarriers must only include access
flags that are supported by one or more of the pipeline stages in srcStageMask, as specified
in the table of supported access types

408

• VUID-vkCmdPipelineBarrier-dstAccessMask-02816
The dstAccessMask member of each element of pMemoryBarriers must only include access
flags that are supported by one or more of the pipeline stages in dstStageMask, as specified
in the table of supported access types

• VUID-vkCmdPipelineBarrier-pBufferMemoryBarriers-02817
For any element of pBufferMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its srcQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its srcAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in srcStageMask, as specified in the table of supported access
types

• VUID-vkCmdPipelineBarrier-pBufferMemoryBarriers-02818
For any element of pBufferMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its dstQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its dstAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in dstStageMask, as specified in the table of supported access
types

• VUID-vkCmdPipelineBarrier-pImageMemoryBarriers-02819
For any element of pImageMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its srcQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its srcAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in srcStageMask, as specified in the table of supported access
types

• VUID-vkCmdPipelineBarrier-pImageMemoryBarriers-02820
For any element of pImageMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its dstQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its dstAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in dstStageMask, as specified in the table of supported access
types

• VUID-vkCmdPipelineBarrier-None-07889
If vkCmdPipelineBarrier is called within a render pass instance using a VkRenderPass
object, the render pass must have been created with at least one subpass dependency that
expresses a dependency from the current subpass to itself, does not include
VK_DEPENDENCY_BY_REGION_BIT if this command does not, does not include
VK_DEPENDENCY_VIEW_LOCAL_BIT if this command does not, and has synchronization scopes
and access scopes that are all supersets of the scopes defined in this command

• VUID-vkCmdPipelineBarrier-bufferMemoryBarrierCount-01178
If vkCmdPipelineBarrier is called within a render pass instance using a VkRenderPass
object, it must not include any buffer memory barriers

• VUID-vkCmdPipelineBarrier-image-04073
If vkCmdPipelineBarrier is called within a render pass instance using a VkRenderPass
object, the image member of any image memory barrier included in this command must

409

be an attachment used in the current subpass both as an input attachment, and as either a
color, color resolve, or depth/stencil attachment

• VUID-vkCmdPipelineBarrier-image-09373
If vkCmdPipelineBarrier is called within a render pass instance using a VkRenderPass
object, and the image member of any image memory barrier is a color resolve attachment,
the corresponding color attachment must be VK_ATTACHMENT_UNUSED

• VUID-vkCmdPipelineBarrier-image-09374
If vkCmdPipelineBarrier is called within a render pass instance using a VkRenderPass
object, and the image member of any image memory barrier is a color resolve attachment,
it must have been created with a non-zero VkExternalFormatANDROID::externalFormat
value

• VUID-vkCmdPipelineBarrier-oldLayout-01181
If vkCmdPipelineBarrier is called within a render pass instance, the oldLayout and
newLayout members of any image memory barrier included in this command must be
equal

• VUID-vkCmdPipelineBarrier-srcQueueFamilyIndex-01182
If vkCmdPipelineBarrier is called within a render pass instance, the srcQueueFamilyIndex
and dstQueueFamilyIndex members of any memory barrier included in this command
must be equal

• VUID-vkCmdPipelineBarrier-None-07890
If vkCmdPipelineBarrier is called within a render pass instance, and the source stage masks
of any memory barriers include framebuffer-space stages, destination stage masks of all
memory barriers must only include framebuffer-space stages

• VUID-vkCmdPipelineBarrier-dependencyFlags-07891
If vkCmdPipelineBarrier is called within a render pass instance, and the source stage masks
of any memory barriers include framebuffer-space stages, then dependencyFlags must
include VK_DEPENDENCY_BY_REGION_BIT

• VUID-vkCmdPipelineBarrier-None-07892
If vkCmdPipelineBarrier is called within a render pass instance, the source and destination
stage masks of any memory barriers must only include graphics pipeline stages

• VUID-vkCmdPipelineBarrier-dependencyFlags-01186
If vkCmdPipelineBarrier is called outside of a render pass instance, the dependency flags
must not include VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-vkCmdPipelineBarrier-None-07893
If vkCmdPipelineBarrier is called inside a render pass instance, and there is more than one
view in the current subpass, dependency flags must include VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-vkCmdPipelineBarrier-None-09553
If none of the shaderTileImageColorReadAccess, shaderTileImageStencilReadAccess, or
shaderTileImageDepthReadAccess features are enabled, and the dynamicRenderingLocalRead
feature is not enabled, vkCmdPipelineBarrier must not be called within a render pass
instance started with vkCmdBeginRendering

• VUID-vkCmdPipelineBarrier-None-09554
If the dynamicRenderingLocalRead feature is not enabled, and vkCmdPipelineBarrier is called

410

within a render pass instance started with vkCmdBeginRendering, there must be no
buffer or image memory barriers specified by this command

• VUID-vkCmdPipelineBarrier-None-09586
If the dynamicRenderingLocalRead feature is not enabled, and vkCmdPipelineBarrier is called
within a render pass instance started with vkCmdBeginRendering, memory barriers
specified by this command must only include VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT,
VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
or VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT in their access masks.

• VUID-vkCmdPipelineBarrier-image-09555
If vkCmdPipelineBarrier is called within a render pass instance started with
vkCmdBeginRendering, and the image member of any image memory barrier is used as an
attachment in the current render pass instance, it must be in the
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR or VK_IMAGE_LAYOUT_GENERAL layout

• VUID-vkCmdPipelineBarrier-srcStageMask-09556
If vkCmdPipelineBarrier is called within a render pass instance started with
vkCmdBeginRendering, this command must only specify framebuffer-space stages in
srcStageMask and dstStageMask

• VUID-vkCmdPipelineBarrier-srcStageMask-06461
Any pipeline stage included in srcStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdPipelineBarrier-dstStageMask-06462
Any pipeline stage included in dstStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

Valid Usage (Implicit)

• VUID-vkCmdPipelineBarrier-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPipelineBarrier-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdPipelineBarrier-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdPipelineBarrier-dependencyFlags-parameter
dependencyFlags must be a valid combination of VkDependencyFlagBits values

• VUID-vkCmdPipelineBarrier-pMemoryBarriers-parameter
If memoryBarrierCount is not 0, pMemoryBarriers must be a valid pointer to an array of
memoryBarrierCount valid VkMemoryBarrier structures

• VUID-vkCmdPipelineBarrier-pBufferMemoryBarriers-parameter
If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a valid pointer to an

411

array of bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

• VUID-vkCmdPipelineBarrier-pImageMemoryBarriers-parameter
If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a valid pointer to an
array of imageMemoryBarrierCount valid VkImageMemoryBarrier structures

• VUID-vkCmdPipelineBarrier-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdPipelineBarrier-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
compute, decode, or encode operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Transfer
Graphics
Compute
Decode
Encode

Synchronization

Bits which can be set in vkCmdPipelineBarrier::dependencyFlags, specifying how execution and
memory dependencies are formed, are:

// Provided by VK_VERSION_1_0
typedef enum VkDependencyFlagBits {
 VK_DEPENDENCY_BY_REGION_BIT = 0x00000001,
 // Provided by VK_VERSION_1_1
 VK_DEPENDENCY_DEVICE_GROUP_BIT = 0x00000004,
 // Provided by VK_VERSION_1_1
 VK_DEPENDENCY_VIEW_LOCAL_BIT = 0x00000002,
 // Provided by VK_EXT_attachment_feedback_loop_layout
 VK_DEPENDENCY_FEEDBACK_LOOP_BIT_EXT = 0x00000008,
 // Provided by VK_KHR_multiview
 VK_DEPENDENCY_VIEW_LOCAL_BIT_KHR = VK_DEPENDENCY_VIEW_LOCAL_BIT,
 // Provided by VK_KHR_device_group
 VK_DEPENDENCY_DEVICE_GROUP_BIT_KHR = VK_DEPENDENCY_DEVICE_GROUP_BIT,

412

} VkDependencyFlagBits;

• VK_DEPENDENCY_BY_REGION_BIT specifies that dependencies will be framebuffer-local.

• VK_DEPENDENCY_VIEW_LOCAL_BIT specifies that dependencies will be view-local.

• VK_DEPENDENCY_DEVICE_GROUP_BIT specifies that dependencies are non-device-local.

• VK_DEPENDENCY_FEEDBACK_LOOP_BIT_EXT specifies that the render pass will write to and read from
the same image using the VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT layout.

// Provided by VK_VERSION_1_0
typedef VkFlags VkDependencyFlags;

VkDependencyFlags is a bitmask type for setting a mask of zero or more VkDependencyFlagBits.

7.7. Memory Barriers
Memory barriers are used to explicitly control access to buffer and image subresource ranges.
Memory barriers are used to transfer ownership between queue families, change image layouts,
and define availability and visibility operations. They explicitly define the access types and buffer
and image subresource ranges that are included in the access scopes of a memory dependency that
is created by a synchronization command that includes them.

7.7.1. Global Memory Barriers

Global memory barriers apply to memory accesses involving all memory objects that exist at the
time of its execution.

The VkMemoryBarrier2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkMemoryBarrier2 {
 VkStructureType sType;
 const void* pNext;
 VkPipelineStageFlags2 srcStageMask;
 VkAccessFlags2 srcAccessMask;
 VkPipelineStageFlags2 dstStageMask;
 VkAccessFlags2 dstAccessMask;
} VkMemoryBarrier2;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkMemoryBarrier2 VkMemoryBarrier2KHR;

• sType is a VkStructureType value identifying this structure.

413

• pNext is NULL or a pointer to a structure extending this structure.

• srcStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the first
synchronization scope.

• srcAccessMask is a VkAccessFlags2 mask of access flags to be included in the first access scope.

• dstStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the second
synchronization scope.

• dstAccessMask is a VkAccessFlags2 mask of access flags to be included in the second access scope.

This structure defines a memory dependency affecting all device memory.

The first synchronization scope and access scope described by this structure include only
operations and memory accesses specified by srcStageMask and srcAccessMask.

The second synchronization scope and access scope described by this structure include only
operations and memory accesses specified by dstStageMask and dstAccessMask.

Valid Usage

• VUID-VkMemoryBarrier2-srcStageMask-03929
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkMemoryBarrier2-srcStageMask-03930
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkMemoryBarrier2-srcStageMask-03931
If the conditionalRendering feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkMemoryBarrier2-srcStageMask-03932
If the fragmentDensityMap feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkMemoryBarrier2-srcStageMask-03933
If the transformFeedback feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkMemoryBarrier2-srcStageMask-03934
If the meshShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-VkMemoryBarrier2-srcStageMask-03935
If the taskShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-VkMemoryBarrier2-srcStageMask-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
srcStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

414

• VUID-VkMemoryBarrier2-srcStageMask-04957
If the subpassShading feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-VkMemoryBarrier2-srcStageMask-04995
If the invocationMask feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkMemoryBarrier2-srcStageMask-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
srcStageMask must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkMemoryBarrier2-srcAccessMask-03900
If srcAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03901
If srcAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03902
If srcAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03903
If srcAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03904
If srcAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-03905
If srcAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-03906
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-03907
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or

415

one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-07454
If srcAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkMemoryBarrier2-srcAccessMask-03909
If srcAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-03910
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03911
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03912
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03913
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03914
If srcAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03915
If srcAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

416

• VUID-VkMemoryBarrier2-srcAccessMask-03916
If srcAccessMask includes VK_ACCESS_2_HOST_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03917
If srcAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03918
If srcAccessMask includes VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03919
If srcAccessMask includes VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03920
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-04747
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT,
or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03922
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03923
If srcAccessMask includes VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-04994
If srcAccessMask includes VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI, srcStageMask must
include VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkMemoryBarrier2-srcAccessMask-03924
If srcAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03925
If srcAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03926

417

If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03927
If srcAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkMemoryBarrier2-srcAccessMask-03928
If srcAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-06256
If the rayQuery feature is not enabled and srcAccessMask includes
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, srcStageMask must not include any of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkMemoryBarrier2-srcAccessMask-07272
If srcAccessMask includes VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT or
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkMemoryBarrier2-srcAccessMask-04858
If srcAccessMask includes VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkMemoryBarrier2-srcAccessMask-04859
If srcAccessMask includes VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkMemoryBarrier2-srcAccessMask-04860
If srcAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkMemoryBarrier2-srcAccessMask-04861
If srcAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkMemoryBarrier2-srcAccessMask-07455
If srcAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkMemoryBarrier2-srcAccessMask-07456
If srcAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkMemoryBarrier2-srcAccessMask-07457
If srcAccessMask includes VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT, srcStageMask must include

418

VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

• VUID-VkMemoryBarrier2-srcAccessMask-07458
If srcAccessMask includes VK_ACCESS_2_MICROMAP_READ_BIT_EXT, srcStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

• VUID-VkMemoryBarrier2-srcAccessMask-08118
If srcAccessMask includes VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstStageMask-03929
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkMemoryBarrier2-dstStageMask-03930
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkMemoryBarrier2-dstStageMask-03931
If the conditionalRendering feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkMemoryBarrier2-dstStageMask-03932
If the fragmentDensityMap feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkMemoryBarrier2-dstStageMask-03933
If the transformFeedback feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkMemoryBarrier2-dstStageMask-03934
If the meshShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-VkMemoryBarrier2-dstStageMask-03935
If the taskShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-VkMemoryBarrier2-dstStageMask-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
dstStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkMemoryBarrier2-dstStageMask-04957
If the subpassShading feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-VkMemoryBarrier2-dstStageMask-04995
If the invocationMask feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkMemoryBarrier2-dstStageMask-07946

419

If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
dstStageMask must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkMemoryBarrier2-dstAccessMask-03900
If dstAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03901
If dstAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03902
If dstAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03903
If dstAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03904
If dstAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-03905
If dstAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-03906
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-03907
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-07454
If dstAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

420

• VUID-VkMemoryBarrier2-dstAccessMask-03909
If dstAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-03910
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03911
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03912
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03913
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03914
If dstAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03915
If dstAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03916
If dstAccessMask includes VK_ACCESS_2_HOST_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03917
If dstAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03918

421

If dstAccessMask includes VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03919
If dstAccessMask includes VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03920
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-04747
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT,
or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03922
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03923
If dstAccessMask includes VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-04994
If dstAccessMask includes VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI, dstStageMask must
include VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkMemoryBarrier2-dstAccessMask-03924
If dstAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03925
If dstAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03926
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03927
If dstAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT

422

stages

• VUID-VkMemoryBarrier2-dstAccessMask-03928
If dstAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-06256
If the rayQuery feature is not enabled and dstAccessMask includes
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, dstStageMask must not include any of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkMemoryBarrier2-dstAccessMask-07272
If dstAccessMask includes VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT or
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkMemoryBarrier2-dstAccessMask-04858
If dstAccessMask includes VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkMemoryBarrier2-dstAccessMask-04859
If dstAccessMask includes VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkMemoryBarrier2-dstAccessMask-04860
If dstAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkMemoryBarrier2-dstAccessMask-04861
If dstAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkMemoryBarrier2-dstAccessMask-07455
If dstAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkMemoryBarrier2-dstAccessMask-07456
If dstAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkMemoryBarrier2-dstAccessMask-07457
If dstAccessMask includes VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT, dstStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

• VUID-VkMemoryBarrier2-dstAccessMask-07458
If dstAccessMask includes VK_ACCESS_2_MICROMAP_READ_BIT_EXT, dstStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

• VUID-VkMemoryBarrier2-dstAccessMask-08118
If dstAccessMask includes VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or

423

one of VK_PIPELINE_STAGE_*_SHADER_BIT stages

Valid Usage (Implicit)

• VUID-VkMemoryBarrier2-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_BARRIER_2

• VUID-VkMemoryBarrier2-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkMemoryBarrier2-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkMemoryBarrier2-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkMemoryBarrier2-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits2 values

The VkMemoryBarrier structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryBarrier {
 VkStructureType sType;
 const void* pNext;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
} VkMemoryBarrier;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

The first access scope is limited to access types in the source access mask specified by srcAccessMask.

The second access scope is limited to access types in the destination access mask specified by
dstAccessMask.

Valid Usage (Implicit)

• VUID-VkMemoryBarrier-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_BARRIER

• VUID-VkMemoryBarrier-pNext-pNext
pNext must be NULL

• VUID-VkMemoryBarrier-srcAccessMask-parameter

424

srcAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkMemoryBarrier-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits values

7.7.2. Buffer Memory Barriers

Buffer memory barriers only apply to memory accesses involving a specific buffer range. That is, a
memory dependency formed from a buffer memory barrier is scoped to access via the specified
buffer range. Buffer memory barriers can also be used to define a queue family ownership transfer
for the specified buffer range.

The VkBufferMemoryBarrier2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkBufferMemoryBarrier2 {
 VkStructureType sType;
 const void* pNext;
 VkPipelineStageFlags2 srcStageMask;
 VkAccessFlags2 srcAccessMask;
 VkPipelineStageFlags2 dstStageMask;
 VkAccessFlags2 dstAccessMask;
 uint32_t srcQueueFamilyIndex;
 uint32_t dstQueueFamilyIndex;
 VkBuffer buffer;
 VkDeviceSize offset;
 VkDeviceSize size;
} VkBufferMemoryBarrier2;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkBufferMemoryBarrier2 VkBufferMemoryBarrier2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the first
synchronization scope.

• srcAccessMask is a VkAccessFlags2 mask of access flags to be included in the first access scope.

• dstStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the second
synchronization scope.

• dstAccessMask is a VkAccessFlags2 mask of access flags to be included in the second access scope.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

425

• buffer is a handle to the buffer whose backing memory is affected by the barrier.

• offset is an offset in bytes into the backing memory for buffer; this is relative to the base offset
as bound to the buffer (see vkBindBufferMemory).

• size is a size in bytes of the affected area of backing memory for buffer, or VK_WHOLE_SIZE to use
the range from offset to the end of the buffer.

This structure defines a memory dependency limited to a range of a buffer, and can define a queue
family ownership transfer operation for that range.

The first synchronization scope and access scope described by this structure include only
operations and memory accesses specified by srcStageMask and srcAccessMask.

The second synchronization scope and access scope described by this structure include only
operations and memory accesses specified by dstStageMask and dstAccessMask.

Both access scopes are limited to only memory accesses to buffer in the range defined by offset and
size.

If buffer was created with VK_SHARING_MODE_EXCLUSIVE, and srcQueueFamilyIndex is not equal to
dstQueueFamilyIndex, this memory barrier defines a queue family ownership transfer operation.
When executed on a queue in the family identified by srcQueueFamilyIndex, this barrier defines a
queue family release operation for the specified buffer range, and the second synchronization and
access scopes do not synchronize operations on that queue. When executed on a queue in the
family identified by dstQueueFamilyIndex, this barrier defines a queue family acquire operation for
the specified buffer range, and the first synchronization and access scopes do not synchronize
operations on that queue.

A queue family ownership transfer operation is also defined if the values are not equal, and either
is one of the special queue family values reserved for external memory ownership transfers, as
described in Queue Family Ownership Transfer. A queue family release operation is defined when
dstQueueFamilyIndex is one of those values, and a queue family acquire operation is defined when
srcQueueFamilyIndex is one of those values.

Valid Usage

• VUID-VkBufferMemoryBarrier2-srcStageMask-03929
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkBufferMemoryBarrier2-srcStageMask-03930
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkBufferMemoryBarrier2-srcStageMask-03931
If the conditionalRendering feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkBufferMemoryBarrier2-srcStageMask-03932
If the fragmentDensityMap feature is not enabled, srcStageMask must not contain

426

VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkBufferMemoryBarrier2-srcStageMask-03933
If the transformFeedback feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkBufferMemoryBarrier2-srcStageMask-03934
If the meshShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-VkBufferMemoryBarrier2-srcStageMask-03935
If the taskShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-VkBufferMemoryBarrier2-srcStageMask-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
srcStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcStageMask-04957
If the subpassShading feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-VkBufferMemoryBarrier2-srcStageMask-04995
If the invocationMask feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkBufferMemoryBarrier2-srcStageMask-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
srcStageMask must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03900
If srcAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03901
If srcAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03902
If srcAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03903
If srcAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03904

427

If srcAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03905
If srcAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03906
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03907
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-07454
If srcAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03909
If srcAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03910
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03911
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03912
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03913
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03914

428

If srcAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03915
If srcAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03916
If srcAccessMask includes VK_ACCESS_2_HOST_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03917
If srcAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03918
If srcAccessMask includes VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03919
If srcAccessMask includes VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03920
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-04747
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT,
or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03922
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03923
If srcAccessMask includes VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV,

429

VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-04994
If srcAccessMask includes VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI, srcStageMask must
include VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03924
If srcAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03925
If srcAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03926
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03927
If srcAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03928
If srcAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-06256
If the rayQuery feature is not enabled and srcAccessMask includes
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, srcStageMask must not include any of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcAccessMask-07272
If srcAccessMask includes VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT or
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcAccessMask-04858
If srcAccessMask includes VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcAccessMask-04859
If srcAccessMask includes VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcAccessMask-04860

430

If srcAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcAccessMask-04861
If srcAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcAccessMask-07455
If srcAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkBufferMemoryBarrier2-srcAccessMask-07456
If srcAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkBufferMemoryBarrier2-srcAccessMask-07457
If srcAccessMask includes VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT, srcStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-07458
If srcAccessMask includes VK_ACCESS_2_MICROMAP_READ_BIT_EXT, srcStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

• VUID-VkBufferMemoryBarrier2-srcAccessMask-08118
If srcAccessMask includes VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstStageMask-03929
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkBufferMemoryBarrier2-dstStageMask-03930
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkBufferMemoryBarrier2-dstStageMask-03931
If the conditionalRendering feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkBufferMemoryBarrier2-dstStageMask-03932
If the fragmentDensityMap feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkBufferMemoryBarrier2-dstStageMask-03933
If the transformFeedback feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkBufferMemoryBarrier2-dstStageMask-03934
If the meshShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-VkBufferMemoryBarrier2-dstStageMask-03935

431

If the taskShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-VkBufferMemoryBarrier2-dstStageMask-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
dstStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstStageMask-04957
If the subpassShading feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-VkBufferMemoryBarrier2-dstStageMask-04995
If the invocationMask feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkBufferMemoryBarrier2-dstStageMask-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
dstStageMask must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03900
If dstAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03901
If dstAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03902
If dstAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03903
If dstAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03904
If dstAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03905
If dstAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03906

432

If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03907
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-07454
If dstAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03909
If dstAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03910
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03911
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03912
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03913
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03914
If dstAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03915
If dstAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, dstStageMask must include

433

VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03916
If dstAccessMask includes VK_ACCESS_2_HOST_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03917
If dstAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03918
If dstAccessMask includes VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03919
If dstAccessMask includes VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03920
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-04747
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT,
or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03922
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03923
If dstAccessMask includes VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-04994
If dstAccessMask includes VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI, dstStageMask must
include VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03924
If dstAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

434

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03925
If dstAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03926
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03927
If dstAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03928
If dstAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-06256
If the rayQuery feature is not enabled and dstAccessMask includes
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, dstStageMask must not include any of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstAccessMask-07272
If dstAccessMask includes VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT or
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstAccessMask-04858
If dstAccessMask includes VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstAccessMask-04859
If dstAccessMask includes VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstAccessMask-04860
If dstAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstAccessMask-04861
If dstAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstAccessMask-07455
If dstAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

435

• VUID-VkBufferMemoryBarrier2-dstAccessMask-07456
If dstAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkBufferMemoryBarrier2-dstAccessMask-07457
If dstAccessMask includes VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT, dstStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-07458
If dstAccessMask includes VK_ACCESS_2_MICROMAP_READ_BIT_EXT, dstStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

• VUID-VkBufferMemoryBarrier2-dstAccessMask-08118
If dstAccessMask includes VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-offset-01187
offset must be less than the size of buffer

• VUID-VkBufferMemoryBarrier2-size-01188
If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-VkBufferMemoryBarrier2-size-01189
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to than the size of
buffer minus offset

• VUID-VkBufferMemoryBarrier2-buffer-01931
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBufferMemoryBarrier2-buffer-09095
If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, VK_QUEUE_FAMILY_FOREIGN_EXT, or a valid queue family

• VUID-VkBufferMemoryBarrier2-buffer-09096
If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, VK_QUEUE_FAMILY_FOREIGN_EXT, or a valid queue family

• VUID-VkBufferMemoryBarrier2-srcQueueFamilyIndex-04087
If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, at least one of
srcQueueFamilyIndex or dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL or
VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkBufferMemoryBarrier2-None-09097
If the VK_KHR_external_memory extension is not enabled, and the value of
VkApplicationInfo::apiVersion used to create the VkInstance is not greater than or equal
to Version 1.1, srcQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier2-None-09098
If the VK_KHR_external_memory extension is not enabled, and the value of
VkApplicationInfo::apiVersion used to create the VkInstance is not greater than or equal

436

to Version 1.1, dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier2-srcQueueFamilyIndex-09099
If the VK_EXT_queue_family_foreign extension is not enabled srcQueueFamilyIndex must
not be VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkBufferMemoryBarrier2-dstQueueFamilyIndex-09100
If the VK_EXT_queue_family_foreign extension is not enabled dstQueueFamilyIndex must
not be VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkBufferMemoryBarrier2-srcStageMask-03851
If either srcStageMask or dstStageMask includes VK_PIPELINE_STAGE_2_HOST_BIT,
srcQueueFamilyIndex and dstQueueFamilyIndex must be equal

Valid Usage (Implicit)

• VUID-VkBufferMemoryBarrier2-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2

• VUID-VkBufferMemoryBarrier2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkExternalMemoryAcquireUnmodifiedEXT

• VUID-VkBufferMemoryBarrier2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBufferMemoryBarrier2-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkBufferMemoryBarrier2-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkBufferMemoryBarrier2-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkBufferMemoryBarrier2-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkBufferMemoryBarrier2-buffer-parameter
buffer must be a valid VkBuffer handle

The VkBufferMemoryBarrier structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferMemoryBarrier {
 VkStructureType sType;
 const void* pNext;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
 uint32_t srcQueueFamilyIndex;
 uint32_t dstQueueFamilyIndex;
 VkBuffer buffer;

437

 VkDeviceSize offset;
 VkDeviceSize size;
} VkBufferMemoryBarrier;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• buffer is a handle to the buffer whose backing memory is affected by the barrier.

• offset is an offset in bytes into the backing memory for buffer; this is relative to the base offset
as bound to the buffer (see vkBindBufferMemory).

• size is a size in bytes of the affected area of backing memory for buffer, or VK_WHOLE_SIZE to use
the range from offset to the end of the buffer.

The first access scope is limited to access to memory through the specified buffer range, via access
types in the source access mask specified by srcAccessMask. If srcAccessMask includes
VK_ACCESS_HOST_WRITE_BIT, a memory domain operation is performed where available memory in
the host domain is also made available to the device domain.

The second access scope is limited to access to memory through the specified buffer range, via
access types in the destination access mask specified by dstAccessMask. If dstAccessMask includes
VK_ACCESS_HOST_WRITE_BIT or VK_ACCESS_HOST_READ_BIT, a memory domain operation is performed
where available memory in the device domain is also made available to the host domain.

Note

When VK_MEMORY_PROPERTY_HOST_COHERENT_BIT is used, available memory in host
domain is automatically made visible to host domain, and any host write is
automatically made available to host domain.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family release operation for the
specified buffer range, and the second access scope includes no access, as if dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family acquire operation for the
specified buffer range, and the first access scope includes no access, as if srcAccessMask was 0.

Valid Usage

• VUID-VkBufferMemoryBarrier-offset-01187
offset must be less than the size of buffer

• VUID-VkBufferMemoryBarrier-size-01188

438

If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-VkBufferMemoryBarrier-size-01189
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to than the size of
buffer minus offset

• VUID-VkBufferMemoryBarrier-buffer-01931
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBufferMemoryBarrier-buffer-09095
If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, VK_QUEUE_FAMILY_FOREIGN_EXT, or a valid queue family

• VUID-VkBufferMemoryBarrier-buffer-09096
If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, VK_QUEUE_FAMILY_FOREIGN_EXT, or a valid queue family

• VUID-VkBufferMemoryBarrier-srcQueueFamilyIndex-04087
If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, at least one of
srcQueueFamilyIndex or dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL or
VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkBufferMemoryBarrier-None-09097
If the VK_KHR_external_memory extension is not enabled, and the value of
VkApplicationInfo::apiVersion used to create the VkInstance is not greater than or equal
to Version 1.1, srcQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier-None-09098
If the VK_KHR_external_memory extension is not enabled, and the value of
VkApplicationInfo::apiVersion used to create the VkInstance is not greater than or equal
to Version 1.1, dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier-srcQueueFamilyIndex-09099
If the VK_EXT_queue_family_foreign extension is not enabled srcQueueFamilyIndex must
not be VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkBufferMemoryBarrier-dstQueueFamilyIndex-09100
If the VK_EXT_queue_family_foreign extension is not enabled dstQueueFamilyIndex must
not be VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkBufferMemoryBarrier-None-09049
If the synchronization2 feature is not enabled, and buffer was created with a sharing
mode of VK_SHARING_MODE_CONCURRENT, at least one of srcQueueFamilyIndex and
dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED

• VUID-VkBufferMemoryBarrier-None-09050
If the synchronization2 feature is not enabled, and buffer was created with a sharing
mode of VK_SHARING_MODE_CONCURRENT, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_IGNORED or VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier-None-09051
If the synchronization2 feature is not enabled, and buffer was created with a sharing

439

mode of VK_SHARING_MODE_CONCURRENT, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_IGNORED or VK_QUEUE_FAMILY_EXTERNAL

Valid Usage (Implicit)

• VUID-VkBufferMemoryBarrier-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER

• VUID-VkBufferMemoryBarrier-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkExternalMemoryAcquireUnmodifiedEXT

• VUID-VkBufferMemoryBarrier-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBufferMemoryBarrier-buffer-parameter
buffer must be a valid VkBuffer handle

VK_WHOLE_SIZE is a special value indicating that the entire remaining length of a buffer following a
given offset should be used. It can be specified for VkBufferMemoryBarrier::size and other
structures.

#define VK_WHOLE_SIZE (~0ULL)

7.7.3. Image Memory Barriers

Image memory barriers only apply to memory accesses involving a specific image subresource
range. That is, a memory dependency formed from an image memory barrier is scoped to access
via the specified image subresource range. Image memory barriers can also be used to define
image layout transitions or a queue family ownership transfer for the specified image subresource
range.

The VkImageMemoryBarrier2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkImageMemoryBarrier2 {
 VkStructureType sType;
 const void* pNext;
 VkPipelineStageFlags2 srcStageMask;
 VkAccessFlags2 srcAccessMask;
 VkPipelineStageFlags2 dstStageMask;
 VkAccessFlags2 dstAccessMask;
 VkImageLayout oldLayout;
 VkImageLayout newLayout;
 uint32_t srcQueueFamilyIndex;
 uint32_t dstQueueFamilyIndex;
 VkImage image;
 VkImageSubresourceRange subresourceRange;

440

} VkImageMemoryBarrier2;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkImageMemoryBarrier2 VkImageMemoryBarrier2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the first
synchronization scope.

• srcAccessMask is a VkAccessFlags2 mask of access flags to be included in the first access scope.

• dstStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the second
synchronization scope.

• dstAccessMask is a VkAccessFlags2 mask of access flags to be included in the second access scope.

• oldLayout is the old layout in an image layout transition.

• newLayout is the new layout in an image layout transition.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• image is a handle to the image affected by this barrier.

• subresourceRange describes the image subresource range within image that is affected by this
barrier.

This structure defines a memory dependency limited to an image subresource range, and can
define a queue family ownership transfer operation and image layout transition for that
subresource range.

The first synchronization scope and access scope described by this structure include only
operations and memory accesses specified by srcStageMask and srcAccessMask.

The second synchronization scope and access scope described by this structure include only
operations and memory accesses specified by dstStageMask and dstAccessMask.

Both access scopes are limited to only memory accesses to image in the subresource range defined
by subresourceRange.

If image was created with VK_SHARING_MODE_EXCLUSIVE, and srcQueueFamilyIndex is not equal to
dstQueueFamilyIndex, this memory barrier defines a queue family ownership transfer operation.
When executed on a queue in the family identified by srcQueueFamilyIndex, this barrier defines a
queue family release operation for the specified image subresource range, and the second
synchronization and access scopes do not synchronize operations on that queue. When executed on
a queue in the family identified by dstQueueFamilyIndex, this barrier defines a queue family acquire
operation for the specified image subresource range, and the first synchronization and access

441

scopes do not synchronize operations on that queue.

A queue family ownership transfer operation is also defined if the values are not equal, and either
is one of the special queue family values reserved for external memory ownership transfers, as
described in Queue Family Ownership Transfer. A queue family release operation is defined when
dstQueueFamilyIndex is one of those values, and a queue family acquire operation is defined when
srcQueueFamilyIndex is one of those values.

If oldLayout is not equal to newLayout, then the memory barrier defines an image layout transition
for the specified image subresource range. If this memory barrier defines a queue family
ownership transfer operation, the layout transition is only executed once between the queues.

Note

When the old and new layout are equal, the layout values are ignored - data is
preserved no matter what values are specified, or what layout the image is
currently in.

If image has a multi-planar format and the image is disjoint, then including
VK_IMAGE_ASPECT_COLOR_BIT in the aspectMask member of subresourceRange is equivalent to including
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, and (for three-plane formats only)
VK_IMAGE_ASPECT_PLANE_2_BIT.

Valid Usage

• VUID-VkImageMemoryBarrier2-srcStageMask-03929
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkImageMemoryBarrier2-srcStageMask-03930
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkImageMemoryBarrier2-srcStageMask-03931
If the conditionalRendering feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkImageMemoryBarrier2-srcStageMask-03932
If the fragmentDensityMap feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkImageMemoryBarrier2-srcStageMask-03933
If the transformFeedback feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkImageMemoryBarrier2-srcStageMask-03934
If the meshShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-VkImageMemoryBarrier2-srcStageMask-03935
If the taskShader feature is not enabled, srcStageMask must not contain

442

VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-VkImageMemoryBarrier2-srcStageMask-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
srcStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcStageMask-04957
If the subpassShading feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-VkImageMemoryBarrier2-srcStageMask-04995
If the invocationMask feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkImageMemoryBarrier2-srcStageMask-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
srcStageMask must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcAccessMask-03900
If srcAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03901
If srcAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03902
If srcAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03903
If srcAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03904
If srcAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03905
If srcAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03906
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, srcStageMask must include

443

VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03907
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-07454
If srcAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03909
If srcAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03910
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03911
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03912
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03913
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03914
If srcAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03915
If srcAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,

444

VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03916
If srcAccessMask includes VK_ACCESS_2_HOST_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03917
If srcAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03918
If srcAccessMask includes VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03919
If srcAccessMask includes VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03920
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT, srcStageMask
must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-04747
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT,
or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03922
If srcAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03923
If srcAccessMask includes VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-04994
If srcAccessMask includes VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI, srcStageMask must
include VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkImageMemoryBarrier2-srcAccessMask-03924
If srcAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

445

• VUID-VkImageMemoryBarrier2-srcAccessMask-03925
If srcAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03926
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
srcStageMask must include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03927
If srcAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03928
If srcAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-06256
If the rayQuery feature is not enabled and srcAccessMask includes
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, srcStageMask must not include any of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcAccessMask-07272
If srcAccessMask includes VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR, srcStageMask
must include VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT or
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcAccessMask-04858
If srcAccessMask includes VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcAccessMask-04859
If srcAccessMask includes VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcAccessMask-04860
If srcAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcAccessMask-04861
If srcAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR, srcStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcAccessMask-07455
If srcAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

446

• VUID-VkImageMemoryBarrier2-srcAccessMask-07456
If srcAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV, srcStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkImageMemoryBarrier2-srcAccessMask-07457
If srcAccessMask includes VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT, srcStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

• VUID-VkImageMemoryBarrier2-srcAccessMask-07458
If srcAccessMask includes VK_ACCESS_2_MICROMAP_READ_BIT_EXT, srcStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcAccessMask-08118
If srcAccessMask includes VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstStageMask-03929
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkImageMemoryBarrier2-dstStageMask-03930
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkImageMemoryBarrier2-dstStageMask-03931
If the conditionalRendering feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkImageMemoryBarrier2-dstStageMask-03932
If the fragmentDensityMap feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkImageMemoryBarrier2-dstStageMask-03933
If the transformFeedback feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkImageMemoryBarrier2-dstStageMask-03934
If the meshShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-VkImageMemoryBarrier2-dstStageMask-03935
If the taskShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-VkImageMemoryBarrier2-dstStageMask-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
dstStageMask must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstStageMask-04957
If the subpassShading feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

447

• VUID-VkImageMemoryBarrier2-dstStageMask-04995
If the invocationMask feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkImageMemoryBarrier2-dstStageMask-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
dstStageMask must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstAccessMask-03900
If dstAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03901
If dstAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03902
If dstAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03903
If dstAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03904
If dstAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03905
If dstAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03906
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03907
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-07454
If dstAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, dstStageMask must include

448

VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03909
If dstAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03910
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03911
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03912
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03913
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03914
If dstAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03915
If dstAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03916
If dstAccessMask includes VK_ACCESS_2_HOST_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

449

• VUID-VkImageMemoryBarrier2-dstAccessMask-03917
If dstAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03918
If dstAccessMask includes VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03919
If dstAccessMask includes VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03920
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT, dstStageMask
must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-04747
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT,
or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03922
If dstAccessMask includes VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03923
If dstAccessMask includes VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-04994
If dstAccessMask includes VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI, dstStageMask must
include VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-VkImageMemoryBarrier2-dstAccessMask-03924
If dstAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03925
If dstAccessMask includes VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03926
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
dstStageMask must include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

450

• VUID-VkImageMemoryBarrier2-dstAccessMask-03927
If dstAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of the VK_PIPELINE_STAGE_*_SHADER_BIT
stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03928
If dstAccessMask includes VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-06256
If the rayQuery feature is not enabled and dstAccessMask includes
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR, dstStageMask must not include any of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages except
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstAccessMask-07272
If dstAccessMask includes VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR, dstStageMask
must include VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT or
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstAccessMask-04858
If dstAccessMask includes VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstAccessMask-04859
If dstAccessMask includes VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstAccessMask-04860
If dstAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstAccessMask-04861
If dstAccessMask includes VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR, dstStageMask must
include VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstAccessMask-07455
If dstAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkImageMemoryBarrier2-dstAccessMask-07456
If dstAccessMask includes VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV, dstStageMask must
include VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• VUID-VkImageMemoryBarrier2-dstAccessMask-07457
If dstAccessMask includes VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT, dstStageMask must include
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

• VUID-VkImageMemoryBarrier2-dstAccessMask-07458
If dstAccessMask includes VK_ACCESS_2_MICROMAP_READ_BIT_EXT, dstStageMask must include

451

VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT or
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

• VUID-VkImageMemoryBarrier2-dstAccessMask-08118
If dstAccessMask includes VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-oldLayout-01208
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01209
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL then image must have been created
with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01210
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01211
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01212
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_TRANSFER_SRC_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01213
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_TRANSFER_DST_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01197
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, oldLayout must be
VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image subresources affected by the
barrier

• VUID-VkImageMemoryBarrier2-newLayout-01198
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, newLayout must not be

452

VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkImageMemoryBarrier2-oldLayout-01658
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL then image must have been
created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01659
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL then image must have been
created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04065
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL then image must have been created with at least
one of VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04066
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04067
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then image must have been created with at
least one of VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04068
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• VUID-VkImageMemoryBarrier2-synchronization2-07793
If the synchronization2 feature is not enabled, oldLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkImageMemoryBarrier2-synchronization2-07794
If the synchronization2 feature is not enabled, newLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-03938
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, image must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

453

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-03939
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL, image must have been created with at least one of
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-02088
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR then image must have
been created with VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR set

• VUID-VkImageMemoryBarrier2-image-09117
If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, VK_QUEUE_FAMILY_FOREIGN_EXT, or a valid queue family

• VUID-VkImageMemoryBarrier2-image-09118
If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, VK_QUEUE_FAMILY_FOREIGN_EXT, or a valid queue family

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04070
If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, at least one of
srcQueueFamilyIndex or dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL or
VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkImageMemoryBarrier2-None-09119
If the VK_KHR_external_memory extension is not enabled, and the value of
VkApplicationInfo::apiVersion used to create the VkInstance is not greater than or equal
to Version 1.1, srcQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier2-None-09120
If the VK_KHR_external_memory extension is not enabled, and the value of
VkApplicationInfo::apiVersion used to create the VkInstance is not greater than or equal
to Version 1.1, dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-09121
If the VK_EXT_queue_family_foreign extension is not enabled srcQueueFamilyIndex must
not be VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkImageMemoryBarrier2-dstQueueFamilyIndex-09122
If the VK_EXT_queue_family_foreign extension is not enabled dstQueueFamilyIndex must
not be VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-07120
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_DECODE_SRC_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-07121
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer

454

or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-07122
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-07123
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_ENCODE_SRC_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-07124
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_ENCODE_DST_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-07125
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_ENCODE_DPB_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-07006
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT then image must have been
created with either the VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bits, and the
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT or VK_IMAGE_USAGE_SAMPLED_BIT usage bits, and the
VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT usage bit

• VUID-VkImageMemoryBarrier2-attachmentFeedbackLoopLayout-07313
If the attachmentFeedbackLoopLayout feature is not enabled, newLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-09550
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR then image must have been created with either
VK_IMAGE_USAGE_STORAGE_BIT, or with both VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT and either
of VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-dynamicRenderingLocalRead-09551
If the dynamicRenderingLocalRead feature is not enabled, oldLayout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• VUID-VkImageMemoryBarrier2-dynamicRenderingLocalRead-09552

455

If the dynamicRenderingLocalRead feature is not enabled, newLayout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• VUID-VkImageMemoryBarrier2-subresourceRange-01486
subresourceRange.baseMipLevel must be less than the mipLevels specified in
VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier2-subresourceRange-01724
If subresourceRange.levelCount is not VK_REMAINING_MIP_LEVELS,
subresourceRange.baseMipLevel + subresourceRange.levelCount must be less than or equal
to the mipLevels specified in VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier2-subresourceRange-01488
subresourceRange.baseArrayLayer must be less than the arrayLayers specified in
VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier2-subresourceRange-01725
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS,
subresourceRange.baseArrayLayer + subresourceRange.layerCount must be less than or
equal to the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier2-image-01932
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkImageMemoryBarrier2-image-09241
If image has a color format that is single-plane, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier2-image-09242
If image has a color format and is not disjoint, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier2-image-01672
If image has a multi-planar format and the image is disjoint, then the aspectMask member
of subresourceRange must include at least one multi-planar aspect mask bit or
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier2-image-03320
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is not enabled, then the aspectMask member of
subresourceRange must include both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageMemoryBarrier2-image-03319
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is enabled, then the aspectMask member of
subresourceRange must include either or both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageMemoryBarrier2-aspectMask-08702
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_DEPTH_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
or VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

456

• VUID-VkImageMemoryBarrier2-aspectMask-08703
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_STENCIL_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkImageMemoryBarrier2-subresourceRange-09601
subresourceRange.aspectMask must be valid for the format the image was created with

• VUID-VkImageMemoryBarrier2-srcStageMask-03854
If either srcStageMask or dstStageMask includes VK_PIPELINE_STAGE_2_HOST_BIT,
srcQueueFamilyIndex and dstQueueFamilyIndex must be equal

• VUID-VkImageMemoryBarrier2-srcStageMask-03855
If srcStageMask includes VK_PIPELINE_STAGE_2_HOST_BIT, and srcQueueFamilyIndex and
dstQueueFamilyIndex define a queue family ownership transfer or oldLayout and newLayout
define an image layout transition, oldLayout must be one of
VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_UNDEFINED, or VK_IMAGE_LAYOUT_GENERAL

Valid Usage (Implicit)

• VUID-VkImageMemoryBarrier2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2

• VUID-VkImageMemoryBarrier2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExternalMemoryAcquireUnmodifiedEXT or
VkSampleLocationsInfoEXT

• VUID-VkImageMemoryBarrier2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkImageMemoryBarrier2-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkImageMemoryBarrier2-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkImageMemoryBarrier2-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkImageMemoryBarrier2-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkImageMemoryBarrier2-oldLayout-parameter
oldLayout must be a valid VkImageLayout value

• VUID-VkImageMemoryBarrier2-newLayout-parameter
newLayout must be a valid VkImageLayout value

• VUID-VkImageMemoryBarrier2-image-parameter
image must be a valid VkImage handle

• VUID-VkImageMemoryBarrier2-subresourceRange-parameter
subresourceRange must be a valid VkImageSubresourceRange structure

457

The VkImageMemoryBarrier structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageMemoryBarrier {
 VkStructureType sType;
 const void* pNext;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
 VkImageLayout oldLayout;
 VkImageLayout newLayout;
 uint32_t srcQueueFamilyIndex;
 uint32_t dstQueueFamilyIndex;
 VkImage image;
 VkImageSubresourceRange subresourceRange;
} VkImageMemoryBarrier;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• oldLayout is the old layout in an image layout transition.

• newLayout is the new layout in an image layout transition.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• image is a handle to the image affected by this barrier.

• subresourceRange describes the image subresource range within image that is affected by this
barrier.

The first access scope is limited to access to memory through the specified image subresource
range, via access types in the source access mask specified by srcAccessMask. If srcAccessMask
includes VK_ACCESS_HOST_WRITE_BIT, memory writes performed by that access type are also made
visible, as that access type is not performed through a resource.

The second access scope is limited to access to memory through the specified image subresource
range, via access types in the destination access mask specified by dstAccessMask. If dstAccessMask
includes VK_ACCESS_HOST_WRITE_BIT or VK_ACCESS_HOST_READ_BIT, available memory writes are also
made visible to accesses of those types, as those access types are not performed through a resource.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family release operation for the
specified image subresource range, and the second access scope includes no access, as if
dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family acquire operation for the

458

specified image subresource range, and the first access scope includes no access, as if srcAccessMask
was 0.

If the synchronization2 feature is not enabled or oldLayout is not equal to newLayout, oldLayout and
newLayout define an image layout transition for the specified image subresource range.

Note

If the synchronization2 feature is enabled, when the old and new layout are equal,
the layout values are ignored - data is preserved no matter what values are
specified, or what layout the image is currently in.

If image has a multi-planar format and the image is disjoint, then including
VK_IMAGE_ASPECT_COLOR_BIT in the aspectMask member of subresourceRange is equivalent to including
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, and (for three-plane formats only)
VK_IMAGE_ASPECT_PLANE_2_BIT.

Valid Usage

• VUID-VkImageMemoryBarrier-oldLayout-01208
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01209
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL then image must have been created
with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01210
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01211
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01212
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_TRANSFER_SRC_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01213
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer

459

or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_TRANSFER_DST_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01197
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, oldLayout must be
VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image subresources affected by the
barrier

• VUID-VkImageMemoryBarrier-newLayout-01198
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, newLayout must not be
VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkImageMemoryBarrier-oldLayout-01658
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL then image must have been
created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01659
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL then image must have been
created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04065
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL then image must have been created with at least
one of VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04066
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04067
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then image must have been created with at
least one of VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04068
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

460

• VUID-VkImageMemoryBarrier-synchronization2-07793
If the synchronization2 feature is not enabled, oldLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkImageMemoryBarrier-synchronization2-07794
If the synchronization2 feature is not enabled, newLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-03938
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, image must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-03939
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL, image must have been created with at least one of
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-02088
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR then image must have
been created with VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR set

• VUID-VkImageMemoryBarrier-image-09117
If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, VK_QUEUE_FAMILY_FOREIGN_EXT, or a valid queue family

• VUID-VkImageMemoryBarrier-image-09118
If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, VK_QUEUE_FAMILY_FOREIGN_EXT, or a valid queue family

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04070
If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, at least one of
srcQueueFamilyIndex or dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL or
VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkImageMemoryBarrier-None-09119
If the VK_KHR_external_memory extension is not enabled, and the value of
VkApplicationInfo::apiVersion used to create the VkInstance is not greater than or equal
to Version 1.1, srcQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier-None-09120
If the VK_KHR_external_memory extension is not enabled, and the value of
VkApplicationInfo::apiVersion used to create the VkInstance is not greater than or equal
to Version 1.1, dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-09121
If the VK_EXT_queue_family_foreign extension is not enabled srcQueueFamilyIndex must

461

not be VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkImageMemoryBarrier-dstQueueFamilyIndex-09122
If the VK_EXT_queue_family_foreign extension is not enabled dstQueueFamilyIndex must
not be VK_QUEUE_FAMILY_FOREIGN_EXT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-07120
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_DECODE_SRC_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-07121
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-07122
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-07123
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_ENCODE_SRC_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-07124
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_ENCODE_DST_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-07125
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_VIDEO_ENCODE_DPB_KHR then image must have been created with
VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-07006
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT then image must have been
created with either the VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bits, and the
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT or VK_IMAGE_USAGE_SAMPLED_BIT usage bits, and the
VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT usage bit

• VUID-VkImageMemoryBarrier-attachmentFeedbackLoopLayout-07313
If the attachmentFeedbackLoopLayout feature is not enabled, newLayout must not be

462

VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-09550
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR then image must have been created with either
VK_IMAGE_USAGE_STORAGE_BIT, or with both VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT and either
of VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-dynamicRenderingLocalRead-09551
If the dynamicRenderingLocalRead feature is not enabled, oldLayout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• VUID-VkImageMemoryBarrier-dynamicRenderingLocalRead-09552
If the dynamicRenderingLocalRead feature is not enabled, newLayout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• VUID-VkImageMemoryBarrier-subresourceRange-01486
subresourceRange.baseMipLevel must be less than the mipLevels specified in
VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier-subresourceRange-01724
If subresourceRange.levelCount is not VK_REMAINING_MIP_LEVELS,
subresourceRange.baseMipLevel + subresourceRange.levelCount must be less than or equal
to the mipLevels specified in VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier-subresourceRange-01488
subresourceRange.baseArrayLayer must be less than the arrayLayers specified in
VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier-subresourceRange-01725
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS,
subresourceRange.baseArrayLayer + subresourceRange.layerCount must be less than or
equal to the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier-image-01932
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkImageMemoryBarrier-image-09241
If image has a color format that is single-plane, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier-image-09242
If image has a color format and is not disjoint, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier-image-01672
If image has a multi-planar format and the image is disjoint, then the aspectMask member
of subresourceRange must include at least one multi-planar aspect mask bit or
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier-image-03320
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is not enabled, then the aspectMask member of

463

subresourceRange must include both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageMemoryBarrier-image-03319
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is enabled, then the aspectMask member of
subresourceRange must include either or both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageMemoryBarrier-aspectMask-08702
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_DEPTH_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
or VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkImageMemoryBarrier-aspectMask-08703
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_STENCIL_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkImageMemoryBarrier-subresourceRange-09601
subresourceRange.aspectMask must be valid for the format the image was created with

• VUID-VkImageMemoryBarrier-None-09052
If the synchronization2 feature is not enabled, and image was created with a sharing mode
of VK_SHARING_MODE_CONCURRENT, at least one of srcQueueFamilyIndex and dstQueueFamilyIndex
must be VK_QUEUE_FAMILY_IGNORED

• VUID-VkImageMemoryBarrier-None-09053
If the synchronization2 feature is not enabled, and image was created with a sharing mode
of VK_SHARING_MODE_CONCURRENT, srcQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED or
VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier-None-09054
If the synchronization2 feature is not enabled, and image was created with a sharing mode
of VK_SHARING_MODE_CONCURRENT, dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED or
VK_QUEUE_FAMILY_EXTERNAL

Valid Usage (Implicit)

• VUID-VkImageMemoryBarrier-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER

• VUID-VkImageMemoryBarrier-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExternalMemoryAcquireUnmodifiedEXT or
VkSampleLocationsInfoEXT

• VUID-VkImageMemoryBarrier-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkImageMemoryBarrier-oldLayout-parameter
oldLayout must be a valid VkImageLayout value

464

• VUID-VkImageMemoryBarrier-newLayout-parameter
newLayout must be a valid VkImageLayout value

• VUID-VkImageMemoryBarrier-image-parameter
image must be a valid VkImage handle

• VUID-VkImageMemoryBarrier-subresourceRange-parameter
subresourceRange must be a valid VkImageSubresourceRange structure

To facilitate usage of images whose memory is initialized on the host, Vulkan allows image layout
transitions to be performed by the host as well, albeit supporting limited layouts.

To perform an image layout transition on the host, call:

// Provided by VK_EXT_host_image_copy
VkResult vkTransitionImageLayoutEXT(
 VkDevice device,
 uint32_t transitionCount,
 const VkHostImageLayoutTransitionInfoEXT* pTransitions);

• device is the device which owns pTransitions[i].image.

• transitionCount is the number of image layout transitions to perform.

• pTransitions is a pointer to an array of VkHostImageLayoutTransitionInfoEXT structures
specifying the image and subresource ranges within them to transition.

Valid Usage (Implicit)

• VUID-vkTransitionImageLayoutEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkTransitionImageLayoutEXT-pTransitions-parameter
pTransitions must be a valid pointer to an array of transitionCount valid
VkHostImageLayoutTransitionInfoEXT structures

• VUID-vkTransitionImageLayoutEXT-transitionCount-arraylength
transitionCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

465

• VK_ERROR_MEMORY_MAP_FAILED

The VkHostImageLayoutTransitionInfoEXT structure is defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkHostImageLayoutTransitionInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
 VkImageLayout oldLayout;
 VkImageLayout newLayout;
 VkImageSubresourceRange subresourceRange;
} VkHostImageLayoutTransitionInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is a handle to the image affected by this layout transition.

• oldLayout is the old layout in an image layout transition.

• newLayout is the new layout in an image layout transition.

• subresourceRange describes the image subresource range within image that is affected by this
layout transition.

vkTransitionImageLayoutEXT does not check whether the device memory associated with an image is
currently in use before performing the layout transition. The application must guarantee that any
previously submitted command that reads from or writes to this subresource has completed before
the host performs the layout transition.

Note

Image layout transitions performed on the host do not require queue family
ownership transfers as the physical layout of the image will not vary between
queue families for the layouts supported by this function.

Valid Usage

• VUID-VkHostImageLayoutTransitionInfoEXT-image-09055
image must have been created with VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT

• VUID-VkHostImageLayoutTransitionInfoEXT-subresourceRange-01486
subresourceRange.baseMipLevel must be less than the mipLevels specified in
VkImageCreateInfo when image was created

• VUID-VkHostImageLayoutTransitionInfoEXT-subresourceRange-01724
If subresourceRange.levelCount is not VK_REMAINING_MIP_LEVELS,
subresourceRange.baseMipLevel + subresourceRange.levelCount must be less than or equal
to the mipLevels specified in VkImageCreateInfo when image was created

466

• VUID-VkHostImageLayoutTransitionInfoEXT-subresourceRange-01488
subresourceRange.baseArrayLayer must be less than the arrayLayers specified in
VkImageCreateInfo when image was created

• VUID-VkHostImageLayoutTransitionInfoEXT-subresourceRange-01725
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS,
subresourceRange.baseArrayLayer + subresourceRange.layerCount must be less than or
equal to the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkHostImageLayoutTransitionInfoEXT-image-01932
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkHostImageLayoutTransitionInfoEXT-image-09241
If image has a color format that is single-plane, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkHostImageLayoutTransitionInfoEXT-image-09242
If image has a color format and is not disjoint, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkHostImageLayoutTransitionInfoEXT-image-01672
If image has a multi-planar format and the image is disjoint, then the aspectMask member
of subresourceRange must include at least one multi-planar aspect mask bit or
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkHostImageLayoutTransitionInfoEXT-image-03320
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is not enabled, then the aspectMask member of
subresourceRange must include both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkHostImageLayoutTransitionInfoEXT-image-03319
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is enabled, then the aspectMask member of
subresourceRange must include either or both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkHostImageLayoutTransitionInfoEXT-aspectMask-08702
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_DEPTH_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
or VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkHostImageLayoutTransitionInfoEXT-aspectMask-08703
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_STENCIL_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkHostImageLayoutTransitionInfoEXT-subresourceRange-09601
subresourceRange.aspectMask must be valid for the format the image was created with

• VUID-VkHostImageLayoutTransitionInfoEXT-oldLayout-09229
oldLayout must be either VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image
subresources as specified in subresourceRange

467

• VUID-VkHostImageLayoutTransitionInfoEXT-oldLayout-09230
If oldLayout is not VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED, it must
be one of the layouts in VkPhysicalDeviceHostImageCopyPropertiesEXT::pCopySrcLayouts

• VUID-VkHostImageLayoutTransitionInfoEXT-newLayout-09057
newLayout must be one of the layouts in VkPhysicalDeviceHostImageCopyPropertiesEXT
::pCopyDstLayouts

Valid Usage (Implicit)

• VUID-VkHostImageLayoutTransitionInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_HOST_IMAGE_LAYOUT_TRANSITION_INFO_EXT

• VUID-VkHostImageLayoutTransitionInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkHostImageLayoutTransitionInfoEXT-image-parameter
image must be a valid VkImage handle

• VUID-VkHostImageLayoutTransitionInfoEXT-oldLayout-parameter
oldLayout must be a valid VkImageLayout value

• VUID-VkHostImageLayoutTransitionInfoEXT-newLayout-parameter
newLayout must be a valid VkImageLayout value

• VUID-VkHostImageLayoutTransitionInfoEXT-subresourceRange-parameter
subresourceRange must be a valid VkImageSubresourceRange structure

7.7.4. Queue Family Ownership Transfer

Resources created with a VkSharingMode of VK_SHARING_MODE_EXCLUSIVE must have their ownership
explicitly transferred from one queue family to another in order to access their content in a well-
defined manner on a queue in a different queue family.

The special queue family index VK_QUEUE_FAMILY_IGNORED indicates that a queue family parameter or
member is ignored.

#define VK_QUEUE_FAMILY_IGNORED (~0U)

Resources shared with external APIs or instances using external memory must also explicitly
manage ownership transfers between local and external queues (or equivalent constructs in
external APIs) regardless of the VkSharingMode specified when creating them.

The special queue family index VK_QUEUE_FAMILY_EXTERNAL represents any queue external to the
resource’s current Vulkan instance, as long as the queue uses the same underlying device group or
physical device, and the same driver version as the resource’s VkDevice, as indicated by
VkPhysicalDeviceIDProperties::deviceUUID and VkPhysicalDeviceIDProperties::driverUUID.

468

#define VK_QUEUE_FAMILY_EXTERNAL (~1U)

or the equivalent

#define VK_QUEUE_FAMILY_EXTERNAL_KHR VK_QUEUE_FAMILY_EXTERNAL

The special queue family index VK_QUEUE_FAMILY_FOREIGN_EXT represents any queue external to the
resource’s current Vulkan instance, regardless of the queue’s underlying physical device or driver
version. This includes, for example, queues for fixed-function image processing devices, media
codec devices, and display devices, as well as all queues that use the same underlying device group
or physical device, and the same driver version as the resource’s VkDevice.

#define VK_QUEUE_FAMILY_FOREIGN_EXT (~2U)

If memory dependencies are correctly expressed between uses of such a resource between two
queues in different families, but no ownership transfer is defined, the contents of that resource are
undefined for any read accesses performed by the second queue family.

Note

If an application does not need the contents of a resource to remain valid when
transferring from one queue family to another, then the ownership transfer
should be skipped.

Note

Applications should expect transfers to/from VK_QUEUE_FAMILY_FOREIGN_EXT to be
more expensive than transfers to/from VK_QUEUE_FAMILY_EXTERNAL_KHR.

A queue family ownership transfer consists of two distinct parts:

1. Release exclusive ownership from the source queue family

2. Acquire exclusive ownership for the destination queue family

An application must ensure that these operations occur in the correct order by defining an
execution dependency between them, e.g. using a semaphore.

A release operation is used to release exclusive ownership of a range of a buffer or image
subresource range. A release operation is defined by executing a buffer memory barrier (for a
buffer range) or an image memory barrier (for an image subresource range) using a pipeline
barrier command, on a queue from the source queue family. The srcQueueFamilyIndex parameter of
the barrier must be set to the source queue family index, and the dstQueueFamilyIndex parameter to
the destination queue family index. dstAccessMask is ignored for such a barrier, such that no
visibility operation is executed - the value of this mask does not affect the validity of the barrier.
The release operation happens-after the availability operation, and happens-before operations
specified in the second synchronization scope of the calling command.

469

An acquire operation is used to acquire exclusive ownership of a range of a buffer or image
subresource range. An acquire operation is defined by executing a buffer memory barrier (for a
buffer range) or an image memory barrier (for an image subresource range) using a pipeline
barrier command, on a queue from the destination queue family. The buffer range or image
subresource range specified in an acquire operation must match exactly that of a previous release
operation. The srcQueueFamilyIndex parameter of the barrier must be set to the source queue family
index, and the dstQueueFamilyIndex parameter to the destination queue family index. srcAccessMask
is ignored for such a barrier, such that no availability operation is executed - the value of this mask
does not affect the validity of the barrier. The acquire operation happens-after operations in the
first synchronization scope of the calling command, and happens-before the visibility operation.

Note

Whilst it is not invalid to provide destination or source access masks for memory
barriers used for release or acquire operations, respectively, they have no practical
effect. Access after a release operation has undefined results, and so visibility for
those accesses has no practical effect. Similarly, write access before an acquire
operation will produce undefined results for future access, so availability of those
writes has no practical use. In an earlier version of the specification, these were
required to match on both sides - but this was subsequently relaxed. These masks
should be set to 0.

If the transfer is via an image memory barrier, and an image layout transition is desired, then the
values of oldLayout and newLayout in the release operation's memory barrier must be equal to
values of oldLayout and newLayout in the acquire operation's memory barrier. Although the image
layout transition is submitted twice, it will only be executed once. A layout transition specified in
this way happens-after the release operation and happens-before the acquire operation.

If the values of srcQueueFamilyIndex and dstQueueFamilyIndex are equal, no ownership transfer is
performed, and the barrier operates as if they were both set to VK_QUEUE_FAMILY_IGNORED.

Queue family ownership transfers may perform read and write accesses on all memory bound to
the image subresource or buffer range, so applications must ensure that all memory writes have
been made available before a queue family ownership transfer is executed. Available memory is
automatically made visible to queue family release and acquire operations, and writes performed
by those operations are automatically made available.

Once a queue family has acquired ownership of a buffer range or image subresource range of a
VK_SHARING_MODE_EXCLUSIVE resource, its contents are undefined to other queue families unless
ownership is transferred. The contents of any portion of another resource which aliases memory
that is bound to the transferred buffer or image subresource range are undefined after a release or
acquire operation.

Note

Because events cannot be used directly for inter-queue synchronization, and
because vkCmdSetEvent does not have the queue family index or memory barrier
parameters needed by a release operation, the release and acquire operations of a
queue family ownership transfer can only be performed using
vkCmdPipelineBarrier.

470

An acquire operation may have a performance penalty when acquiring ownership of a subresource
range from one of the special queue families reserved for external memory ownership transfers
described above. The application can reduce the performance penalty in some cases by adding a
VkExternalMemoryAcquireUnmodifiedEXT structure to the pNext chain of the acquire operation's
memory barrier structure.

The VkExternalMemoryAcquireUnmodifiedEXT structure is defined as:

// Provided by VK_EXT_external_memory_acquire_unmodified
typedef struct VkExternalMemoryAcquireUnmodifiedEXT {
 VkStructureType sType;
 const void* pNext;
 VkBool32 acquireUnmodifiedMemory;
} VkExternalMemoryAcquireUnmodifiedEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• acquireUnmodifiedMemory specifies, if VK_TRUE, that no range of VkDeviceMemory bound to the
resource of the memory barrier’s subresource range was modified at any time since the
resource’s most recent release of ownership to the queue family specified by the memory
barrier’s srcQueueFamilyIndex. If VK_FALSE, it specifies nothing.

If the application releases ownership of the subresource range to one of the special queue families
reserved for external memory ownership transfers with a memory barrier structure, and later re-
acquires ownership from the same queue family with a memory barrier structure, and if no range
of VkDeviceMemory bound to the resource was modified at any time between the release operation
and the acquire operation, then the application should add a
VkExternalMemoryAcquireUnmodifiedEXT structure to the pNext chain of the acquire operation's
memory barrier structure because this may reduce the performance penalty.

This struct is ignored if acquireUnmodifiedMemory is VK_FALSE. In particular, VK_FALSE does not specify
that memory was modified.

This struct is ignored if the memory barrier’s srcQueueFamilyIndex is not a special queue family
reserved for external memory ownership transfers.

Note

The method by which the application determines whether memory was modified
between the release operation and acquire operation is outside the scope of Vulkan.

For any Vulkan operation that accesses a resource, the application must not
assume the implementation accesses the resource’s memory as read-only, even for
apparently read-only operations such as transfer commands and shader reads.

The validity of VkExternalMemoryAcquireUnmodifiedEXT
::acquireUnmodifiedMemory is independent of memory ranges outside the ranges of
VkDeviceMemory bound to the resource. In particular, it is independent of any

471

implementation-private memory associated with the resource.

Valid Usage

• VUID-VkExternalMemoryAcquireUnmodifiedEXT-acquireUnmodifiedMemory-08922
If acquireUnmodifiedMemory is VK_TRUE, and the memory barrier’s srcQueueFamilyIndex is a
special queue family reserved for external memory ownership transfers (as described in
Queue Family Ownership Transfer), then each range of VkDeviceMemory bound to the
resource must have remained unmodified during all time since the resource’s most
recent release of ownership to the queue family.

Valid Usage (Implicit)

• VUID-VkExternalMemoryAcquireUnmodifiedEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_ACQUIRE_UNMODIFIED_EXT

7.8. Wait Idle Operations
To wait on the host for the completion of outstanding queue operations for a given queue, call:

// Provided by VK_VERSION_1_0
VkResult vkQueueWaitIdle(
 VkQueue queue);

• queue is the queue on which to wait.

vkQueueWaitIdle is equivalent to having submitted a valid fence to every previously executed queue
submission command that accepts a fence, then waiting for all of those fences to signal using
vkWaitForFences with an infinite timeout and waitAll set to VK_TRUE.

Valid Usage (Implicit)

• VUID-vkQueueWaitIdle-queue-parameter
queue must be a valid VkQueue handle

Host Synchronization

• Host access to queue must be externally synchronized

472

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To wait on the host for the completion of outstanding queue operations for all queues on a given
logical device, call:

// Provided by VK_VERSION_1_0
VkResult vkDeviceWaitIdle(
 VkDevice device);

• device is the logical device to idle.

vkDeviceWaitIdle is equivalent to calling vkQueueWaitIdle for all queues owned by device.

Valid Usage (Implicit)

• VUID-vkDeviceWaitIdle-device-parameter
device must be a valid VkDevice handle

Host Synchronization

• Host access to all VkQueue objects created from device must be externally synchronized

Return Codes

Success

• VK_SUCCESS

473

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

7.9. Host Write Ordering Guarantees
When batches of command buffers are submitted to a queue via a queue submission command, it
defines a memory dependency with prior host operations, and execution of command buffers
submitted to the queue.

The first synchronization scope includes execution of vkQueueSubmit on the host and anything
that happened-before it, as defined by the host memory model.

Note

Some systems allow writes that do not directly integrate with the host memory
model; these have to be synchronized by the application manually. One example of
this is non-temporal store instructions on x86; to ensure these happen-before
submission, applications should call _mm_sfence().

The second synchronization scope includes all commands submitted in the same queue submission,
and all commands that occur later in submission order.

The first access scope includes all host writes to mappable device memory that are available to the
host memory domain.

The second access scope includes all memory access performed by the device.

7.10. Synchronization and Multiple Physical Devices
If a logical device includes more than one physical device, then fences, semaphores, and events all
still have a single instance of the signaled state.

A fence becomes signaled when all physical devices complete the necessary queue operations.

Semaphore wait and signal operations all include a device index that is the sole physical device that
performs the operation. These indices are provided in the VkDeviceGroupSubmitInfo and
VkDeviceGroupBindSparseInfo structures. Semaphores are not exclusively owned by any physical
device. For example, a semaphore can be signaled by one physical device and then waited on by a
different physical device.

An event can only be waited on by the same physical device that signaled it (or the host).

7.11. Calibrated Timestamps
In order to be able to correlate the time a particular operation took place at on timelines of

474

different time domains (e.g. a device operation vs. a host operation), Vulkan allows querying
calibrated timestamps from multiple time domains.

To query calibrated timestamps from a set of time domains, call:

// Provided by VK_KHR_calibrated_timestamps
VkResult vkGetCalibratedTimestampsKHR(
 VkDevice device,
 uint32_t timestampCount,
 const VkCalibratedTimestampInfoKHR* pTimestampInfos,
 uint64_t* pTimestamps,
 uint64_t* pMaxDeviation);

or the equivalent command

// Provided by VK_EXT_calibrated_timestamps
VkResult vkGetCalibratedTimestampsEXT(
 VkDevice device,
 uint32_t timestampCount,
 const VkCalibratedTimestampInfoKHR* pTimestampInfos,
 uint64_t* pTimestamps,
 uint64_t* pMaxDeviation);

• device is the logical device used to perform the query.

• timestampCount is the number of timestamps to query.

• pTimestampInfos is a pointer to an array of timestampCount VkCalibratedTimestampInfoKHR
structures, describing the time domains the calibrated timestamps should be captured from.

• pTimestamps is a pointer to an array of timestampCount 64-bit unsigned integer values in which
the requested calibrated timestamp values are returned.

• pMaxDeviation is a pointer to a 64-bit unsigned integer value in which the strictly positive
maximum deviation, in nanoseconds, of the calibrated timestamp values is returned.

Note

The maximum deviation may vary between calls to vkGetCalibratedTimestampsKHR
even for the same set of time domains due to implementation and platform
specific reasons. It is the application’s responsibility to assess whether the
returned maximum deviation makes the timestamp values suitable for any
particular purpose and can choose to re-issue the timestamp calibration call
pursuing a lower deviation value.

Calibrated timestamp values can be extrapolated to estimate future coinciding timestamp values,
however, depending on the nature of the time domains and other properties of the platform
extrapolating values over a sufficiently long period of time may no longer be accurate enough to fit
any particular purpose, so applications are expected to re-calibrate the timestamps on a regular
basis.

475

Valid Usage

• VUID-vkGetCalibratedTimestampsEXT-timeDomain-09246
The timeDomain value of each VkCalibratedTimestampInfoEXT in pTimestampInfos must be
unique

Valid Usage (Implicit)

• VUID-vkGetCalibratedTimestampsKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetCalibratedTimestampsKHR-pTimestampInfos-parameter
pTimestampInfos must be a valid pointer to an array of timestampCount valid
VkCalibratedTimestampInfoKHR structures

• VUID-vkGetCalibratedTimestampsKHR-pTimestamps-parameter
pTimestamps must be a valid pointer to an array of timestampCount uint64_t values

• VUID-vkGetCalibratedTimestampsKHR-pMaxDeviation-parameter
pMaxDeviation must be a valid pointer to a uint64_t value

• VUID-vkGetCalibratedTimestampsKHR-timestampCount-arraylength
timestampCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCalibratedTimestampInfoKHR structure is defined as:

// Provided by VK_KHR_calibrated_timestamps
typedef struct VkCalibratedTimestampInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkTimeDomainKHR timeDomain;
} VkCalibratedTimestampInfoKHR;

or the equivalent

// Provided by VK_EXT_calibrated_timestamps

476

typedef VkCalibratedTimestampInfoKHR VkCalibratedTimestampInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• timeDomain is a VkTimeDomainKHR value specifying the time domain from which the calibrated
timestamp value should be returned.

Valid Usage

• VUID-VkCalibratedTimestampInfoEXT-timeDomain-02354
timeDomain must be one of the VkTimeDomainKHR values returned by
vkGetPhysicalDeviceCalibrateableTimeDomainsKHR

Valid Usage (Implicit)

• VUID-VkCalibratedTimestampInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_KHR

• VUID-VkCalibratedTimestampInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkCalibratedTimestampInfoKHR-timeDomain-parameter
timeDomain must be a valid VkTimeDomainKHR value

The set of supported time domains consists of:

// Provided by VK_KHR_calibrated_timestamps
typedef enum VkTimeDomainKHR {
 VK_TIME_DOMAIN_DEVICE_KHR = 0,
 VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR = 1,
 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_KHR = 2,
 VK_TIME_DOMAIN_QUERY_PERFORMANCE_COUNTER_KHR = 3,
 // Provided by VK_EXT_calibrated_timestamps
 VK_TIME_DOMAIN_DEVICE_EXT = VK_TIME_DOMAIN_DEVICE_KHR,
 // Provided by VK_EXT_calibrated_timestamps
 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT = VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR,
 // Provided by VK_EXT_calibrated_timestamps
 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT = VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_KHR,
 // Provided by VK_EXT_calibrated_timestamps
 VK_TIME_DOMAIN_QUERY_PERFORMANCE_COUNTER_EXT =
VK_TIME_DOMAIN_QUERY_PERFORMANCE_COUNTER_KHR,
} VkTimeDomainKHR;

or the equivalent

// Provided by VK_EXT_calibrated_timestamps

477

typedef VkTimeDomainKHR VkTimeDomainEXT;

• VK_TIME_DOMAIN_DEVICE_KHR specifies the device time domain. Timestamp values in this time
domain use the same units and are comparable with device timestamp values captured using
vkCmdWriteTimestamp or vkCmdWriteTimestamp2 and are defined to be incrementing
according to the timestampPeriod of the device.

• VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR specifies the CLOCK_MONOTONIC time domain available
on POSIX platforms. Timestamp values in this time domain are in units of nanoseconds and are
comparable with platform timestamp values captured using the POSIX clock_gettime API as
computed by this example:

Note

An implementation supporting VK_KHR_calibrated_timestamps or
VK_EXT_calibrated_timestamps will use the same time domain for all its VkQueue so
that timestamp values reported for VK_TIME_DOMAIN_DEVICE_KHR can be matched to
any timestamp captured through vkCmdWriteTimestamp or
vkCmdWriteTimestamp2 .

struct timespec tv;
clock_gettime(CLOCK_MONOTONIC, &tv);
return tv.tv_nsec + tv.tv_sec*1000000000ull;

• VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_KHR specifies the CLOCK_MONOTONIC_RAW time domain
available on POSIX platforms. Timestamp values in this time domain are in units of
nanoseconds and are comparable with platform timestamp values captured using the POSIX
clock_gettime API as computed by this example:

struct timespec tv;
clock_gettime(CLOCK_MONOTONIC_RAW, &tv);
return tv.tv_nsec + tv.tv_sec*1000000000ull;

• VK_TIME_DOMAIN_QUERY_PERFORMANCE_COUNTER_KHR specifies the performance counter (QPC) time
domain available on Windows. Timestamp values in this time domain are in the same units as
those provided by the Windows QueryPerformanceCounter API and are comparable with
platform timestamp values captured using that API as computed by this example:

LARGE_INTEGER counter;
QueryPerformanceCounter(&counter);
return counter.QuadPart;

478

Chapter 8. Render Pass
Draw commands must be recorded within a render pass instance. Each render pass instance
defines a set of image resources, referred to as attachments, used during rendering.

To begin a render pass instance, call:

// Provided by VK_VERSION_1_3
void vkCmdBeginRendering(
 VkCommandBuffer commandBuffer,
 const VkRenderingInfo* pRenderingInfo);

or the equivalent command

// Provided by VK_KHR_dynamic_rendering
void vkCmdBeginRenderingKHR(
 VkCommandBuffer commandBuffer,
 const VkRenderingInfo* pRenderingInfo);

• commandBuffer is the command buffer in which to record the command.

• pRenderingInfo is a pointer to a VkRenderingInfo structure specifying details of the render pass
instance to begin.

After beginning a render pass instance, the command buffer is ready to record draw commands.

If pRenderingInfo->flags includes VK_RENDERING_RESUMING_BIT then this render pass is resumed from
a render pass instance that has been suspended earlier in submission order.

Valid Usage

• VUID-vkCmdBeginRendering-dynamicRendering-06446
The dynamicRendering feature must be enabled

• VUID-vkCmdBeginRendering-commandBuffer-06068
If commandBuffer is a secondary command buffer, and the nestedCommandBuffer feature is
not enabled, pRenderingInfo->flags must not include
VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT

• VUID-vkCmdBeginRendering-pRenderingInfo-09588
If pRenderingInfo->pDepthAttachment is not NULL and pRenderingInfo->pDepthAttachment-
>imageView is not VK_NULL_HANDLE, pRenderingInfo->pDepthAttachment->imageView must
be in the layout specified by pRenderingInfo->pDepthAttachment->imageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09589
If pRenderingInfo->pDepthAttachment is not NULL, pRenderingInfo->pDepthAttachment-
>imageView is not VK_NULL_HANDLE, pRenderingInfo->pDepthAttachment->imageResolveMode
is not VK_RESOLVE_MODE_NONE, and pRenderingInfo->pDepthAttachment->resolveImageView is
not VK_NULL_HANDLE, pRenderingInfo->pDepthAttachment->resolveImageView must be in

479

the layout specified by pRenderingInfo->pDepthAttachment->resolveImageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09590
If pRenderingInfo->pStencilAttachment is not NULL and pRenderingInfo-
>pStencilAttachment->imageView is not VK_NULL_HANDLE, pRenderingInfo-
>pStencilAttachment->imageView must be in the layout specified by pRenderingInfo-
>pStencilAttachment->imageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09591
If pRenderingInfo->pStencilAttachment is not NULL, pRenderingInfo->pStencilAttachment-
>imageView is not VK_NULL_HANDLE, pRenderingInfo->pStencilAttachment-
>imageResolveMode is not VK_RESOLVE_MODE_NONE, and pRenderingInfo->pStencilAttachment-
>resolveImageView is not VK_NULL_HANDLE, pRenderingInfo->pStencilAttachment-
>resolveImageView must be in the layout specified by pRenderingInfo->pStencilAttachment-
>resolveImageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09592
For any element of pRenderingInfo->pColorAttachments, if imageView is not
VK_NULL_HANDLE, that image view must be in the layout specified by imageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09593
For any element of pRenderingInfo->pColorAttachments, if either imageResolveMode is
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, or imageView is not
VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE, and resolveImageView is
not VK_NULL_HANDLE, resolveImageView must be in the layout specified by
resolveImageLayout

Valid Usage (Implicit)

• VUID-vkCmdBeginRendering-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginRendering-pRenderingInfo-parameter
pRenderingInfo must be a valid pointer to a valid VkRenderingInfo structure

• VUID-vkCmdBeginRendering-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginRendering-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginRendering-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBeginRendering-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

480

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics Action
State

The VkRenderingInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkRenderingInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderingFlags flags;
 VkRect2D renderArea;
 uint32_t layerCount;
 uint32_t viewMask;
 uint32_t colorAttachmentCount;
 const VkRenderingAttachmentInfo* pColorAttachments;
 const VkRenderingAttachmentInfo* pDepthAttachment;
 const VkRenderingAttachmentInfo* pStencilAttachment;
} VkRenderingInfo;

or the equivalent

// Provided by VK_KHR_dynamic_rendering, VK_KHR_dynamic_rendering with
VK_QCOM_tile_properties
typedef VkRenderingInfo VkRenderingInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkRenderingFlagBits.

• renderArea is the render area that is affected by the render pass instance.

• layerCount is the number of layers rendered to in each attachment when viewMask is 0.

• viewMask is the view mask indicating the indices of attachment layers that will be rendered
when it is not 0.

• colorAttachmentCount is the number of elements in pColorAttachments.

• pColorAttachments is a pointer to an array of colorAttachmentCount VkRenderingAttachmentInfo
structures describing any color attachments used.

481

• pDepthAttachment is a pointer to a VkRenderingAttachmentInfo structure describing a depth
attachment.

• pStencilAttachment is a pointer to a VkRenderingAttachmentInfo structure describing a stencil
attachment.

If viewMask is not 0, multiview is enabled.

If there is an instance of VkDeviceGroupRenderPassBeginInfo included in the pNext chain and its
deviceRenderAreaCount member is not 0, then renderArea is ignored, and the render area is defined
per-device by that structure.

If multiview is enabled, and the multiviewPerViewRenderAreas feature is enabled, and there is an
instance of VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM included in the pNext
chain with perViewRenderAreaCount not equal to 0, then the elements of
VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM::pPerViewRenderAreas override
renderArea and define a render area for each view. In this case, renderArea must be set to an area at
least as large as the union of all the per-view render areas.

Each element of the pColorAttachments array corresponds to an output location in the shader, i.e. if
the shader declares an output variable decorated with a Location value of X, then it uses the
attachment provided in pColorAttachments[X]. If the imageView member of any element of
pColorAttachments is VK_NULL_HANDLE, and resolveMode is not
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, writes to the corresponding location by a
fragment are discarded.

Valid Usage

• VUID-VkRenderingInfo-viewMask-06069
If viewMask is 0, layerCount must not be 0

• VUID-VkRenderingInfo-multisampledRenderToSingleSampled-06857
imageView members of pDepthAttachment, pStencilAttachment, and elements of
pColorAttachments that are not VK_NULL_HANDLE must have been created with the same
sampleCount , if none of the following are enabled:

◦ The VK_AMD_mixed_attachment_samples extension

◦ The VK_NV_framebuffer_mixed_samples extension

◦ The multisampledRenderToSingleSampled feature,

• VUID-VkRenderingInfo-imageView-09429
imageView members of elements of pColorAttachments that are not VK_NULL_HANDLE
must have been created with the same sampleCount , if the
multisampledRenderToSingleSampled feature is not enabled

• VUID-VkRenderingInfo-None-08994
If VkDeviceGroupRenderPassBeginInfo::deviceRenderAreaCount is 0,
renderArea.extent.width must be greater than 0

• VUID-VkRenderingInfo-None-08995
If VkDeviceGroupRenderPassBeginInfo::deviceRenderAreaCount is 0,

482

renderArea.extent.height must be greater than 0

• VUID-VkRenderingInfo-imageView-06858
If multisampled-render-to-single-sampled is enabled, then all attachments referenced by
imageView members of pDepthAttachment, pStencilAttachment, and elements of
pColorAttachments that are not VK_NULL_HANDLE must have a sample count that is
either VK_SAMPLE_COUNT_1_BIT or equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-VkRenderingInfo-imageView-06859
If multisampled-render-to-single-sampled is enabled, then all attachments referenced by
imageView members of pDepthAttachment, pStencilAttachment, and elements of
pColorAttachments that are not VK_NULL_HANDLE and have a sample count of
VK_SAMPLE_COUNT_1_BIT must have been created with
VK_IMAGE_CREATE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_BIT_EXT in their
VkImageCreateInfo::flags

• VUID-VkRenderingInfo-pNext-06077
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.x must be greater than or
equal to 0

• VUID-VkRenderingInfo-pNext-06078
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.y must be greater than or
equal to 0

• VUID-VkRenderingInfo-pNext-07815
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, the sum of renderArea.extent.width and
renderArea.offset.x must be less than or equal to maxFramebufferWidth

• VUID-VkRenderingInfo-pNext-07816
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, the sum of renderArea.extent.height and
renderArea.offset.y must be less than or equal to maxFramebufferHeight

• VUID-VkRenderingInfo-pNext-06079
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, the width of the imageView member of any
element of pColorAttachments, pDepthAttachment, or pStencilAttachment that is not
VK_NULL_HANDLE must be greater than or equal to renderArea.offset.x +
renderArea.extent.width

• VUID-VkRenderingInfo-pNext-06080
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, the height of the imageView member of any
element of pColorAttachments, pDepthAttachment, or pStencilAttachment that is not
VK_NULL_HANDLE must be greater than or equal to renderArea.offset.y +
renderArea.extent.height

• VUID-VkRenderingInfo-pNext-06083
If the pNext chain contains VkDeviceGroupRenderPassBeginInfo, the width of the

483

imageView member of any element of pColorAttachments, pDepthAttachment, or
pStencilAttachment that is not VK_NULL_HANDLE must be greater than or equal to the
sum of the offset.x and extent.width members of each element of pDeviceRenderAreas

• VUID-VkRenderingInfo-pNext-06084
If the pNext chain contains VkDeviceGroupRenderPassBeginInfo, the height of the
imageView member of any element of pColorAttachments, pDepthAttachment, or
pStencilAttachment that is not VK_NULL_HANDLE must be greater than or equal to the
sum of the offset.y and extent.height members of each element of pDeviceRenderAreas

• VUID-VkRenderingInfo-pDepthAttachment-06085
If neither pDepthAttachment or pStencilAttachment are NULL and the imageView member of
either structure is not VK_NULL_HANDLE, the imageView member of each structure must
be the same

• VUID-VkRenderingInfo-pDepthAttachment-06086
If neither pDepthAttachment or pStencilAttachment are NULL, and the resolveMode member of
each is not VK_RESOLVE_MODE_NONE, the resolveImageView member of each structure must be
the same

• VUID-VkRenderingInfo-colorAttachmentCount-06087
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, that imageView must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkRenderingInfo-colorAttachmentCount-09476
If colorAttachmentCount is not 0 and there is an element of pColorAttachments with either
its resolveMode member set to VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, or its
imageView member not VK_NULL_HANDLE, and its resolveMode member not set to
VK_RESOLVE_MODE_NONE, the resolveImageView member of that element of pColorAttachments
must have been created with VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkRenderingInfo-pDepthAttachment-06547
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->imageView must have been created with a format that includes a depth
component

• VUID-VkRenderingInfo-pDepthAttachment-06088
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->imageView must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkRenderingInfo-pDepthAttachment-09477
If pDepthAttachment is not NULL and pDepthAttachment->resolveMode is not
VK_RESOLVE_MODE_NONE, pDepthAttachment->resolveImageView must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkRenderingInfo-pStencilAttachment-06548
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->imageView must have been created with a format
that includes a stencil aspect

• VUID-VkRenderingInfo-pStencilAttachment-06089
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not

484

VK_NULL_HANDLE, pStencilAttachment->imageView must have been created with a stencil
usage including VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkRenderingInfo-pStencilAttachment-09478
If pStencilAttachment is not NULL and pStencilAttachment->resolveMode is not
VK_RESOLVE_MODE_NONE, pStencilAttachment->resolveImageView must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkRenderingInfo-colorAttachmentCount-06090
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, the layout member of that element of
pColorAttachments must not be VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06091
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, if the resolveMode member of that element of
pColorAttachments is not VK_RESOLVE_MODE_NONE, its resolveImageLayout member must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-06092
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->layout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-06093
If pDepthAttachment is not NULL, pDepthAttachment->imageView is not VK_NULL_HANDLE, and
pDepthAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pDepthAttachment-
>resolveImageLayout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-06094
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->layout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-06095
If pStencilAttachment is not NULL, pStencilAttachment->imageView is not VK_NULL_HANDLE,
and pStencilAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pStencilAttachment-
>resolveImageLayout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06096
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, the layout member of that element of
pColorAttachments must not be
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06097
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, if the resolveMode member of that element of
pColorAttachments is not VK_RESOLVE_MODE_NONE, its resolveImageLayout member must not be
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

485

• VUID-VkRenderingInfo-pDepthAttachment-06098
If pDepthAttachment is not NULL, pDepthAttachment->imageView is not VK_NULL_HANDLE, and
pDepthAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pDepthAttachment-
>resolveImageLayout must not be
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-06099
If pStencilAttachment is not NULL, pStencilAttachment->imageView is not VK_NULL_HANDLE,
and pStencilAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pStencilAttachment-
>resolveImageLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06100
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, the layout member of that element of
pColorAttachments must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06101
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, if the resolveMode member of that element of
pColorAttachments is not VK_RESOLVE_MODE_NONE, its resolveImageLayout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-07732
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->layout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-07733
If pDepthAttachment is not NULL, pDepthAttachment->imageView is not VK_NULL_HANDLE, and
pDepthAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pDepthAttachment-
>resolveImageLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-07734
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->layout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-07735
If pStencilAttachment is not NULL, pStencilAttachment->imageView is not VK_NULL_HANDLE,
and pStencilAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pStencilAttachment-
>resolveImageLayout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-06102
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->resolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedDepthResolveModes

486

• VUID-VkRenderingInfo-pStencilAttachment-06103
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->resolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedStencilResolveModes

• VUID-VkRenderingInfo-pDepthAttachment-06104
If pDepthAttachment or pStencilAttachment are both not NULL, pDepthAttachment->imageView
and pStencilAttachment->imageView are both not VK_NULL_HANDLE, and
VkPhysicalDeviceDepthStencilResolveProperties::independentResolveNone is VK_FALSE, the
resolveMode of both structures must be the same value

• VUID-VkRenderingInfo-pDepthAttachment-06105
If pDepthAttachment or pStencilAttachment are both not NULL, pDepthAttachment->imageView
and pStencilAttachment->imageView are both not VK_NULL_HANDLE,
VkPhysicalDeviceDepthStencilResolveProperties::independentResolve is VK_FALSE, and the
resolveMode of neither structure is VK_RESOLVE_MODE_NONE, the resolveMode of both structures
must be the same value

• VUID-VkRenderingInfo-colorAttachmentCount-06106
colorAttachmentCount must be less than or equal to VkPhysicalDeviceLimits
::maxColorAttachments

• VUID-VkRenderingInfo-imageView-06107
If the imageView member of a VkRenderingFragmentDensityMapAttachmentInfoEXT
structure included in the pNext chain is not VK_NULL_HANDLE, and the
fragmentDensityMapNonSubsampledImages feature is not enabled, valid imageView and
resolveImageView members of pDepthAttachment, pStencilAttachment, and each element of
pColorAttachments must be a VkImageView created with
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkRenderingInfo-imageView-06108
If the imageView member of a VkRenderingFragmentDensityMapAttachmentInfoEXT
structure included in the pNext chain is not VK_NULL_HANDLE, and viewMask is not 0,
imageView must have a layerCount greater than or equal to the index of the most
significant bit in viewMask

• VUID-VkRenderingInfo-imageView-06109
If the imageView member of a VkRenderingFragmentDensityMapAttachmentInfoEXT
structure included in the pNext chain is not VK_NULL_HANDLE, and viewMask is 0,
imageView must have a layerCount equal to 1

• VUID-VkRenderingInfo-pNext-06112
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0 and the imageView member of a
VkRenderingFragmentDensityMapAttachmentInfoEXT structure included in the pNext
chain is not VK_NULL_HANDLE, imageView must have a width greater than or equal to

• VUID-VkRenderingInfo-pNext-06114
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0 and the imageView member of a
VkRenderingFragmentDensityMapAttachmentInfoEXT structure included in the pNext
chain is not VK_NULL_HANDLE, imageView must have a height greater than or equal to

487

• VUID-VkRenderingInfo-pNext-06113
If the pNext chain contains a VkDeviceGroupRenderPassBeginInfo structure, its
deviceRenderAreaCount member is not 0, and the imageView member of a
VkRenderingFragmentDensityMapAttachmentInfoEXT structure included in the pNext
chain is not VK_NULL_HANDLE, imageView must have a width greater than or equal to

 for each element of pDeviceRenderAreas

• VUID-VkRenderingInfo-pNext-06115
If the pNext chain contains a VkDeviceGroupRenderPassBeginInfo structure, its
deviceRenderAreaCount member is not 0, and the imageView member of a
VkRenderingFragmentDensityMapAttachmentInfoEXT structure included in the pNext
chain is not VK_NULL_HANDLE, imageView must have a height greater than or equal to

 for each element of pDeviceRenderAreas

• VUID-VkRenderingInfo-imageView-06116
If the imageView member of a VkRenderingFragmentDensityMapAttachmentInfoEXT
structure included in the pNext chain is not VK_NULL_HANDLE, it must not be equal to
the imageView or resolveImageView member of pDepthAttachment, pStencilAttachment, or any
element of pColorAttachments

• VUID-VkRenderingInfo-pNext-06119
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0 and the imageView member of a
VkRenderingFragmentShadingRateAttachmentInfoKHR structure included in the pNext
chain is not VK_NULL_HANDLE, imageView must have a width greater than or equal to

• VUID-VkRenderingInfo-pNext-06121
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0 and the imageView member of a
VkRenderingFragmentShadingRateAttachmentInfoKHR structure included in the pNext
chain is not VK_NULL_HANDLE, imageView must have a height greater than or equal to

• VUID-VkRenderingInfo-pNext-06120
If the pNext chain contains a VkDeviceGroupRenderPassBeginInfo structure, its
deviceRenderAreaCount member is not 0, and the imageView member of a
VkRenderingFragmentShadingRateAttachmentInfoKHR structure included in the pNext
chain is not VK_NULL_HANDLE, imageView must have a width greater than or equal to

 for each element of pDeviceRenderAreas

• VUID-VkRenderingInfo-pNext-06122
If the pNext chain contains a VkDeviceGroupRenderPassBeginInfo structure, its
deviceRenderAreaCount member is not 0, and the imageView member of a
VkRenderingFragmentShadingRateAttachmentInfoKHR structure included in the pNext
chain is not VK_NULL_HANDLE, imageView must have a height greater than or equal to

 for each element of pDeviceRenderAreas

• VUID-VkRenderingInfo-layerCount-07817
layerCount must be less than or equal to maxFramebufferLayers

488

• VUID-VkRenderingInfo-imageView-06123
If the imageView member of a VkRenderingFragmentShadingRateAttachmentInfoKHR
structure included in the pNext chain is not VK_NULL_HANDLE, and viewMask is 0,
imageView must have a layerCount that is either equal to 1 or greater than or equal to
layerCount

• VUID-VkRenderingInfo-imageView-06124
If the imageView member of a VkRenderingFragmentShadingRateAttachmentInfoKHR
structure included in the pNext chain is not VK_NULL_HANDLE, and viewMask is not 0,
imageView must have a layerCount that either equal to 1 or greater than or equal to the
index of the most significant bit in viewMask

• VUID-VkRenderingInfo-imageView-06125
If the imageView member of a VkRenderingFragmentShadingRateAttachmentInfoKHR
structure included in the pNext chain is not VK_NULL_HANDLE, it must not be equal to
the imageView or resolveImageView member of pDepthAttachment, pStencilAttachment, or any
element of pColorAttachments

• VUID-VkRenderingInfo-imageView-06126
If the imageView member of a VkRenderingFragmentShadingRateAttachmentInfoKHR
structure included in the pNext chain is not VK_NULL_HANDLE, it must not be equal to
the imageView member of a VkRenderingFragmentDensityMapAttachmentInfoEXT
structure included in the pNext chain

• VUID-VkRenderingInfo-multiview-06127
If the multiview feature is not enabled, viewMask must be 0

• VUID-VkRenderingInfo-viewMask-06128
The index of the most significant bit in viewMask must be less than maxMultiviewViewCount

• VUID-VkRenderingInfo-perViewRenderAreaCount-07857
If the perViewRenderAreaCount member of a
VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM structure included in the
pNext chain is not 0, then the multiviewPerViewRenderAreas feature must be enabled.

• VUID-VkRenderingInfo-perViewRenderAreaCount-07858
If the perViewRenderAreaCount member of a
VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM structure included in the
pNext chain is not 0, then renderArea must specify a render area that includes the union of
all per view render areas.

• VUID-VkRenderingInfo-None-09044
Valid attachments specified by this structure must not be bound to memory locations that
are bound to any other valid attachments specified by this structure

• VUID-VkRenderingInfo-flags-09381
If flags includes VK_RENDERING_CONTENTS_INLINE_BIT_EXT then the nestedCommandBuffer
feature must be enabled

• VUID-VkRenderingInfo-pDepthAttachment-09318
pDepthAttachment->resolveMode must not be
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID

• VUID-VkRenderingInfo-pStencilAttachment-09319

489

pStencilAttachment->resolveMode must not be
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID

• VUID-VkRenderingInfo-colorAttachmentCount-09320
If colorAttachmentCount is not 1, the resolveMode member of any element of
pColorAttachments must not be VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID

• VUID-VkRenderingInfo-resolveMode-09321
If the resolveMode of any element of pColorAttachments is
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID,
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView must be
VK_NULL_HANDLE

• VUID-VkRenderingInfo-resolveMode-09322
If the resolveMode of any element of pColorAttachments is
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID,
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView must be
VK_NULL_HANDLE

• VUID-VkRenderingInfo-pNext-09535
If the pNext chain contains a VkRenderPassStripeBeginInfoARM structure, the union of
stripe areas defined by the elements of VkRenderPassStripeInfoARM::pStripeInfos must
cover the renderArea

• VUID-VkRenderingInfo-colorAttachmentCount-09479
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, that imageView must have been created with
the identity swizzle

• VUID-VkRenderingInfo-colorAttachmentCount-09480
If colorAttachmentCount is not 0, and there is an element of pColorAttachments with either
its resolveMode member set to VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, or its
imageView member not set to VK_NULL_HANDLE and its resolveMode member not set to
VK_RESOLVE_MODE_NONE, the resolveImageView member of that element of pColorAttachments
must have been created with the identity swizzle

• VUID-VkRenderingInfo-pDepthAttachment-09481
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->imageView must have been created with the identity swizzle

• VUID-VkRenderingInfo-pDepthAttachment-09482
If pDepthAttachment is not NULL, pDepthAttachment->imageView is not VK_NULL_HANDLE, and
pDepthAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pDepthAttachment-
>resolveImageView must have been created with the identity swizzle

• VUID-VkRenderingInfo-pStencilAttachment-09483
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->imageView must have been created with the
identity swizzle

• VUID-VkRenderingInfo-pStencilAttachment-09484
If pStencilAttachment is not NULL, pStencilAttachment->imageView is not VK_NULL_HANDLE,
and pStencilAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pStencilAttachment-
>resolveImageView must have been created with the identity swizzle

490

• VUID-VkRenderingInfo-imageView-09485
If the imageView member of a VkRenderingFragmentShadingRateAttachmentInfoKHR
structure included in the pNext chain is not VK_NULL_HANDLE, it must have been created
with the identity swizzle

• VUID-VkRenderingInfo-imageView-09486
If the imageView member of a VkRenderingFragmentDensityMapAttachmentInfoEXT
structure included in the pNext chain is not VK_NULL_HANDLE, it must have been created
with the identity swizzle

Valid Usage (Implicit)

• VUID-VkRenderingInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_INFO

• VUID-VkRenderingInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupRenderPassBeginInfo,
VkMultisampledRenderToSingleSampledInfoEXT,
VkMultiviewPerViewAttributesInfoNVX,
VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM,
VkRenderPassStripeBeginInfoARM,
VkRenderingFragmentDensityMapAttachmentInfoEXT, or
VkRenderingFragmentShadingRateAttachmentInfoKHR

• VUID-VkRenderingInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRenderingInfo-flags-parameter
flags must be a valid combination of VkRenderingFlagBits values

• VUID-VkRenderingInfo-pColorAttachments-parameter
If colorAttachmentCount is not 0, pColorAttachments must be a valid pointer to an array of
colorAttachmentCount valid VkRenderingAttachmentInfo structures

• VUID-VkRenderingInfo-pDepthAttachment-parameter
If pDepthAttachment is not NULL, pDepthAttachment must be a valid pointer to a valid
VkRenderingAttachmentInfo structure

• VUID-VkRenderingInfo-pStencilAttachment-parameter
If pStencilAttachment is not NULL, pStencilAttachment must be a valid pointer to a valid
VkRenderingAttachmentInfo structure

Bits which can be set in VkRenderingInfo::flags describing additional properties of the render pass
are:

// Provided by VK_VERSION_1_3
typedef enum VkRenderingFlagBits {
 VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT = 0x00000001,
 VK_RENDERING_SUSPENDING_BIT = 0x00000002,

491

 VK_RENDERING_RESUMING_BIT = 0x00000004,
 // Provided by VK_EXT_nested_command_buffer
 VK_RENDERING_CONTENTS_INLINE_BIT_EXT = 0x00000010,
 // Provided by VK_VERSION_1_3 with VK_EXT_legacy_dithering, VK_KHR_dynamic_rendering
with VK_EXT_legacy_dithering
 VK_RENDERING_ENABLE_LEGACY_DITHERING_BIT_EXT = 0x00000008,
 VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT_KHR =
VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT,
 VK_RENDERING_SUSPENDING_BIT_KHR = VK_RENDERING_SUSPENDING_BIT,
 VK_RENDERING_RESUMING_BIT_KHR = VK_RENDERING_RESUMING_BIT,
} VkRenderingFlagBits;

or the equivalent

// Provided by VK_KHR_dynamic_rendering
typedef VkRenderingFlagBits VkRenderingFlagBitsKHR;

• VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT specifies that draw calls for the render
pass instance will be recorded in secondary command buffers. If the nestedCommandBuffer
feature is enabled, the draw calls can come from both inline and vkCmdExecuteCommands.

• VK_RENDERING_RESUMING_BIT specifies that the render pass instance is resuming an earlier
suspended render pass instance.

• VK_RENDERING_SUSPENDING_BIT specifies that the render pass instance will be suspended.

• VK_RENDERING_ENABLE_LEGACY_DITHERING_BIT_EXT specifies that Legacy Dithering is enabled for the
render pass instance.

• VK_RENDERING_CONTENTS_INLINE_BIT_EXT specifies that draw calls for the render pass instance can
be recorded inline within the current command buffer. When the nestedCommandBuffer feature is
enabled this can be combined with the VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT bit
to allow draw calls to be recorded both inline and in secondary command buffers.

The contents of pRenderingInfo must match between suspended render pass instances and the
render pass instances that resume them, other than the presence or absence of the
VK_RENDERING_RESUMING_BIT, VK_RENDERING_SUSPENDING_BIT, and
VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT flags. No action or synchronization
commands, or other render pass instances, are allowed between suspending and resuming render
pass instances.

// Provided by VK_VERSION_1_3
typedef VkFlags VkRenderingFlags;

or the equivalent

// Provided by VK_KHR_dynamic_rendering
typedef VkRenderingFlags VkRenderingFlagsKHR;

492

VkRenderingFlags is a bitmask type for setting a mask of zero or more VkRenderingFlagBits.

The VkRenderingAttachmentInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkRenderingAttachmentInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageView imageView;
 VkImageLayout imageLayout;
 VkResolveModeFlagBits resolveMode;
 VkImageView resolveImageView;
 VkImageLayout resolveImageLayout;
 VkAttachmentLoadOp loadOp;
 VkAttachmentStoreOp storeOp;
 VkClearValue clearValue;
} VkRenderingAttachmentInfo;

or the equivalent

// Provided by VK_KHR_dynamic_rendering
typedef VkRenderingAttachmentInfo VkRenderingAttachmentInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageView is the image view that will be used for rendering.

• imageLayout is the layout that imageView will be in during rendering.

• resolveMode is a VkResolveModeFlagBits value defining how data written to imageView will be
resolved into resolveImageView.

• resolveImageView is an image view used to write resolved data at the end of rendering.

• resolveImageLayout is the layout that resolveImageView will be in during rendering.

• loadOp is a VkAttachmentLoadOp value defining the load operation for the attachment.

• storeOp is a VkAttachmentStoreOp value defining the store operation for the attachment.

• clearValue is a VkClearValue structure defining values used to clear imageView when loadOp is
VK_ATTACHMENT_LOAD_OP_CLEAR.

Values in imageView are loaded and stored according to the values of loadOp and storeOp, within the
render area for each device specified in VkRenderingInfo. If imageView is VK_NULL_HANDLE, and
resolveMode is not VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, other members of this
structure are ignored; writes to this attachment will be discarded, and no load, store, or
multisample resolve operations will be performed.

If resolveMode is VK_RESOLVE_MODE_NONE, then resolveImageView is ignored. If resolveMode is not
VK_RESOLVE_MODE_NONE, and resolveImageView is not VK_NULL_HANDLE, a render pass multisample

493

resolve operation is defined for the attachment subresource. If resolveMode is
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and the
nullColorAttachmentWithExternalFormatResolve limit is VK_TRUE, values are only undefined once load
operations have completed.

Note

The resolve mode and store operation are independent; it is valid to write both
resolved and unresolved values, and equally valid to discard the unresolved
values while writing the resolved ones.

Store and resolve operations are only performed at the end of a render pass instance that does not
specify the VK_RENDERING_SUSPENDING_BIT_KHR flag.

Load operations are only performed at the beginning of a render pass instance that does not specify
the VK_RENDERING_RESUMING_BIT_KHR flag.

Image contents at the end of a suspended render pass instance remain defined for access by a
resuming render pass instance.

If the nullColorAttachmentWithExternalFormatResolve limit is VK_TRUE, and resolveMode is
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, values in the color attachment will be loaded
from the resolve attachment at the start of rendering, and may also be reloaded any time after a
resolve occurs or the resolve attachment is written to; if this occurs it must happen-before any
writes to the color attachment are performed which happen-after the resolve that triggers this. If
any color component in the external format is subsampled, values will be read from the nearest
sample in the image when they are loaded.

Valid Usage

• VUID-VkRenderingAttachmentInfo-imageView-06129
If imageView is not VK_NULL_HANDLE and has a non-integer color format, resolveMode
must be VK_RESOLVE_MODE_NONE or VK_RESOLVE_MODE_AVERAGE_BIT

• VUID-VkRenderingAttachmentInfo-imageView-06130
If imageView is not VK_NULL_HANDLE and has an integer color format, resolveMode must
be VK_RESOLVE_MODE_NONE or VK_RESOLVE_MODE_SAMPLE_ZERO_BIT

• VUID-VkRenderingAttachmentInfo-imageView-06861
imageView must not have a sample count of VK_SAMPLE_COUNT_1_BIT if all of the following
hold:

◦ imageView is not VK_NULL_HANDLE

◦ resolveMode is not VK_RESOLVE_MODE_NONE

◦ the pNext chain of VkRenderingInfo does not include a
VkMultisampledRenderToSingleSampledInfoEXT structure with the
multisampledRenderToSingleSampledEnable field equal to VK_TRUE

• VUID-VkRenderingAttachmentInfo-imageView-06862
resolveImageView must not be VK_NULL_HANDLE if all of the following hold:

494

◦ imageView is not VK_NULL_HANDLE

◦ resolveMode is not VK_RESOLVE_MODE_NONE

◦ the pNext chain of VkRenderingInfo does not include a
VkMultisampledRenderToSingleSampledInfoEXT structure with the
multisampledRenderToSingleSampledEnable field equal to VK_TRUE

• VUID-VkRenderingAttachmentInfo-imageView-06863
If imageView is not VK_NULL_HANDLE, resolveMode is not VK_RESOLVE_MODE_NONE, the pNext
chain of VkRenderingInfo includes a VkMultisampledRenderToSingleSampledInfoEXT
structure with the multisampledRenderToSingleSampledEnable field equal to VK_TRUE, and
imageView has a sample count of VK_SAMPLE_COUNT_1_BIT, resolveImageView must be
VK_NULL_HANDLE

• VUID-VkRenderingAttachmentInfo-imageView-06864
If imageView is not VK_NULL_HANDLE, resolveImageView is not VK_NULL_HANDLE, and
resolveMode is not VK_RESOLVE_MODE_NONE, resolveImageView must have a sample count of
VK_SAMPLE_COUNT_1_BIT

• VUID-VkRenderingAttachmentInfo-imageView-06865
If imageView is not VK_NULL_HANDLE, resolveImageView is not VK_NULL_HANDLE, and
resolveMode is not VK_RESOLVE_MODE_NONE, imageView and resolveImageView must have the
same VkFormat

• VUID-VkRenderingAttachmentInfo-imageView-06135
If imageView is not VK_NULL_HANDLE, imageLayout must not be VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkRenderingAttachmentInfo-imageView-06136
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkRenderingAttachmentInfo-imageView-06137
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingAttachmentInfo-imageView-06138
If imageView is not VK_NULL_HANDLE, imageLayout must not be
VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV

• VUID-VkRenderingAttachmentInfo-imageView-06139
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV

• VUID-VkRenderingAttachmentInfo-imageView-06140
If imageView is not VK_NULL_HANDLE, imageLayout must not be
VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT

• VUID-VkRenderingAttachmentInfo-imageView-06141

495

If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT

• VUID-VkRenderingAttachmentInfo-imageView-06142
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkRenderingAttachmentInfo-imageView-06143
If imageView is not VK_NULL_HANDLE, imageLayout must not be
VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR

• VUID-VkRenderingAttachmentInfo-imageView-06144
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be
VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR

• VUID-VkRenderingAttachmentInfo-imageView-06145
If imageView is not VK_NULL_HANDLE, imageLayout must not be
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

• VUID-VkRenderingAttachmentInfo-imageView-06146
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

• VUID-VkRenderingAttachmentInfo-externalFormatResolve-09323
If externalFormatResolve is not enabled, resolveMode must not be
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID

• VUID-VkRenderingAttachmentInfo-resolveMode-09324
If resolveMode is VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, resolveImageView
must be a valid image view

• VUID-VkRenderingAttachmentInfo-nullColorAttachmentWithExternalFormatResolve-
09325
If the nullColorAttachmentWithExternalFormatResolve property is VK_TRUE and resolveMode is
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, resolveImageView must have been
created with an image with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-VkRenderingAttachmentInfo-resolveMode-09326
If resolveMode is VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, resolveImageView
must have been created with an external format specified by VkExternalFormatANDROID

• VUID-VkRenderingAttachmentInfo-resolveMode-09327
If resolveMode is VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, resolveImageView
must have been created with a subresourceRange.layerCount of 1

• VUID-VkRenderingAttachmentInfo-resolveMode-09328
If resolveMode is VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID and
nullColorAttachmentWithExternalFormatResolve is VK_TRUE, imageView must be
VK_NULL_HANDLE

• VUID-VkRenderingAttachmentInfo-resolveMode-09329
If resolveMode is VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID and
nullColorAttachmentWithExternalFormatResolve is VK_FALSE, imageView must be a valid
VkImageView

496

• VUID-VkRenderingAttachmentInfo-resolveMode-09330
If resolveMode is VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID and
nullColorAttachmentWithExternalFormatResolve is VK_FALSE, imageView must have a format
equal to the value of VkAndroidHardwareBufferFormatResolvePropertiesANDROID
::colorAttachmentFormat as returned by a call to
vkGetAndroidHardwareBufferPropertiesANDROID for the Android hardware buffer that
was used to create resolveImageView

Valid Usage (Implicit)

• VUID-VkRenderingAttachmentInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO

• VUID-VkRenderingAttachmentInfo-pNext-pNext
pNext must be NULL

• VUID-VkRenderingAttachmentInfo-imageView-parameter
If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• VUID-VkRenderingAttachmentInfo-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

• VUID-VkRenderingAttachmentInfo-resolveMode-parameter
If resolveMode is not 0, resolveMode must be a valid VkResolveModeFlagBits value

• VUID-VkRenderingAttachmentInfo-resolveImageView-parameter
If resolveImageView is not VK_NULL_HANDLE, resolveImageView must be a valid
VkImageView handle

• VUID-VkRenderingAttachmentInfo-resolveImageLayout-parameter
resolveImageLayout must be a valid VkImageLayout value

• VUID-VkRenderingAttachmentInfo-loadOp-parameter
loadOp must be a valid VkAttachmentLoadOp value

• VUID-VkRenderingAttachmentInfo-storeOp-parameter
storeOp must be a valid VkAttachmentStoreOp value

• VUID-VkRenderingAttachmentInfo-clearValue-parameter
clearValue must be a valid VkClearValue union

• VUID-VkRenderingAttachmentInfo-commonparent
Both of imageView, and resolveImageView that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

The VkRenderingFragmentShadingRateAttachmentInfoKHR structure is defined as:

// Provided by VK_KHR_dynamic_rendering with VK_KHR_fragment_shading_rate
typedef struct VkRenderingFragmentShadingRateAttachmentInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkImageView imageView;

497

 VkImageLayout imageLayout;
 VkExtent2D shadingRateAttachmentTexelSize;
} VkRenderingFragmentShadingRateAttachmentInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageView is the image view that will be used as a fragment shading rate attachment.

• imageLayout is the layout that imageView will be in during rendering.

• shadingRateAttachmentTexelSize specifies the number of pixels corresponding to each texel in
imageView.

This structure can be included in the pNext chain of VkRenderingInfo to define a fragment shading
rate attachment. If imageView is VK_NULL_HANDLE, or if this structure is not specified, the
implementation behaves as if a valid shading rate attachment was specified with all texels
specifying a single pixel per fragment.

Valid Usage

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06147
If imageView is not VK_NULL_HANDLE, layout must be VK_IMAGE_LAYOUT_GENERAL or
VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06148
If imageView is not VK_NULL_HANDLE, it must have been created with
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06149
If imageView is not VK_NULL_HANDLE, shadingRateAttachmentTexelSize.width must be a
power of two value

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06150
If imageView is not VK_NULL_HANDLE, shadingRateAttachmentTexelSize.width must be less
than or equal to maxFragmentShadingRateAttachmentTexelSize.width

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06151
If imageView is not VK_NULL_HANDLE, shadingRateAttachmentTexelSize.width must be
greater than or equal to minFragmentShadingRateAttachmentTexelSize.width

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06152
If imageView is not VK_NULL_HANDLE, shadingRateAttachmentTexelSize.height must be a
power of two value

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06153
If imageView is not VK_NULL_HANDLE, shadingRateAttachmentTexelSize.height must be
less than or equal to maxFragmentShadingRateAttachmentTexelSize.height

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06154
If imageView is not VK_NULL_HANDLE, shadingRateAttachmentTexelSize.height must be
greater than or equal to minFragmentShadingRateAttachmentTexelSize.height

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06155

498

If imageView is not VK_NULL_HANDLE, the quotient of
shadingRateAttachmentTexelSize.width and shadingRateAttachmentTexelSize.height must
be less than or equal to maxFragmentShadingRateAttachmentTexelSizeAspectRatio

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-06156
If imageView is not VK_NULL_HANDLE, the quotient of
shadingRateAttachmentTexelSize.height and shadingRateAttachmentTexelSize.width must
be less than or equal to maxFragmentShadingRateAttachmentTexelSizeAspectRatio

Valid Usage (Implicit)

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageView-parameter
If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• VUID-VkRenderingFragmentShadingRateAttachmentInfoKHR-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

The VkRenderingFragmentDensityMapAttachmentInfoEXT structure is defined as:

// Provided by VK_KHR_dynamic_rendering with VK_EXT_fragment_density_map
typedef struct VkRenderingFragmentDensityMapAttachmentInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkImageView imageView;
 VkImageLayout imageLayout;
} VkRenderingFragmentDensityMapAttachmentInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageView is the image view that will be used as a fragment density map attachment.

• imageLayout is the layout that imageView will be in during rendering.

This structure can be included in the pNext chain of VkRenderingInfo to define a fragment density
map. If this structure is not included in the pNext chain, imageView is treated as VK_NULL_HANDLE.

Valid Usage

• VUID-VkRenderingFragmentDensityMapAttachmentInfoEXT-imageView-06157
If imageView is not VK_NULL_HANDLE, imageLayout must be VK_IMAGE_LAYOUT_GENERAL or
VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT

• VUID-VkRenderingFragmentDensityMapAttachmentInfoEXT-imageView-06158
If imageView is not VK_NULL_HANDLE, it must have been created with
VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT

499

• VUID-VkRenderingFragmentDensityMapAttachmentInfoEXT-imageView-06159
If imageView is not VK_NULL_HANDLE, it must not have been created with
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkRenderingFragmentDensityMapAttachmentInfoEXT-apiVersion-07908
If the multiview feature is not enabled, VkPhysicalDeviceProperties::apiVersion is less than
Vulkan 1.1, and imageView is not VK_NULL_HANDLE, it must have a layerCount equal to 1

Valid Usage (Implicit)

• VUID-VkRenderingFragmentDensityMapAttachmentInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT

• VUID-VkRenderingFragmentDensityMapAttachmentInfoEXT-imageView-parameter
imageView must be a valid VkImageView handle

• VUID-VkRenderingFragmentDensityMapAttachmentInfoEXT-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

To query the render area granularity for a render pass instance, call:

// Provided by VK_KHR_maintenance5
void vkGetRenderingAreaGranularityKHR(
 VkDevice device,
 const VkRenderingAreaInfoKHR* pRenderingAreaInfo,
 VkExtent2D* pGranularity);

• device is the logical device that owns the render pass instance.

• pRenderingAreaInfo is a pointer to a VkRenderingAreaInfoKHR structure specifying details of the
render pass instance to query the render area granularity for.

• pGranularity is a pointer to a VkExtent2D structure in which the granularity is returned.

The conditions leading to an optimal renderArea are:

• the offset.x member in renderArea is a multiple of the width member of the returned
VkExtent2D (the horizontal granularity).

• the offset.y member in renderArea is a multiple of the height member of the returned
VkExtent2D (the vertical granularity).

• either the extent.width member in renderArea is a multiple of the horizontal granularity or
offset.x+extent.width is equal to the width of each attachment used in the render pass instance.

• either the extent.height member in renderArea is a multiple of the vertical granularity or
offset.y+extent.height is equal to the height of each attachment used in the render pass
instance.

500

Valid Usage (Implicit)

• VUID-vkGetRenderingAreaGranularityKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetRenderingAreaGranularityKHR-pRenderingAreaInfo-parameter
pRenderingAreaInfo must be a valid pointer to a valid VkRenderingAreaInfoKHR structure

• VUID-vkGetRenderingAreaGranularityKHR-pGranularity-parameter
pGranularity must be a valid pointer to a VkExtent2D structure

The VkRenderingAreaInfoKHR structure is defined as:

// Provided by VK_KHR_maintenance5
typedef struct VkRenderingAreaInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t viewMask;
 uint32_t colorAttachmentCount;
 const VkFormat* pColorAttachmentFormats;
 VkFormat depthAttachmentFormat;
 VkFormat stencilAttachmentFormat;
} VkRenderingAreaInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• viewMask is the viewMask used for rendering.

• colorAttachmentCount is the number of entries in pColorAttachmentFormats

• pColorAttachmentFormats is a pointer to an array of VkFormat values defining the format of color
attachments used in the render pass instance.

• depthAttachmentFormat is a VkFormat value defining the format of the depth attachment used in
the render pass instance.

• stencilAttachmentFormat is a VkFormat value defining the format of the stencil attachment used
in the render pass instance.

Valid Usage (Implicit)

• VUID-VkRenderingAreaInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_AREA_INFO_KHR

• VUID-VkRenderingAreaInfoKHR-pNext-pNext
pNext must be NULL

The VkRenderPassStripeBeginInfoARM structure is defined as:

501

// Provided by VK_ARM_render_pass_striped
typedef struct VkRenderPassStripeBeginInfoARM {
 VkStructureType sType;
 const void* pNext;
 uint32_t stripeInfoCount;
 const VkRenderPassStripeInfoARM* pStripeInfos;
} VkRenderPassStripeBeginInfoARM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stripeInfoCount is the number of stripes in this render pass instance

• pStripeInfos is a pointer to an array of stripeInfoCount VkRenderPassStripeInfoARM structures
describing the stripes used by the render pass instance.

This structure can be included in the pNext chain of VkRenderPassBeginInfo or VkRenderingInfo to
define how the render pass instance is split into stripes.

Valid Usage

• VUID-VkRenderPassStripeBeginInfoARM-stripeInfoCount-09450
stripeInfoCount must be less than or equal to
VkPhysicalDeviceRenderPassStripedPropertiesARM::maxRenderPassStripes

• VUID-VkRenderPassStripeBeginInfoARM-stripeArea-09451
The stripeArea defined by each element of pStripeInfos must not overlap the stripeArea
of any other element

Valid Usage (Implicit)

• VUID-VkRenderPassStripeBeginInfoARM-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_BEGIN_INFO_ARM

• VUID-VkRenderPassStripeBeginInfoARM-pStripeInfos-parameter
pStripeInfos must be a valid pointer to an array of stripeInfoCount valid
VkRenderPassStripeInfoARM structures

• VUID-VkRenderPassStripeBeginInfoARM-stripeInfoCount-arraylength
stripeInfoCount must be greater than 0

The VkRenderPassStripeInfoARM structure is defined as:

// Provided by VK_ARM_render_pass_striped
typedef struct VkRenderPassStripeInfoARM {
 VkStructureType sType;
 const void* pNext;
 VkRect2D stripeArea;

502

} VkRenderPassStripeInfoARM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stripeArea is the stripe area, and is described in more detail below.

stripeArea is the render area that is affected by this stripe of the render pass instance. It must be a
subregion of the renderArea of the render pass instance.

Valid Usage

• VUID-VkRenderPassStripeInfoARM-stripeArea-09452
stripeArea.offset.x must be a multiple of
VkPhysicalDeviceRenderPassStripedPropertiesARM::renderPassStripeGranularity.width

• VUID-VkRenderPassStripeInfoARM-stripeArea-09453
stripeArea.extent.width must be a multiple of
VkPhysicalDeviceRenderPassStripedPropertiesARM::renderPassStripeGranularity.width,
or the sum of stripeArea.offset.x and stripeArea.extent.width must be equal to the
renderArea.extent.width of the render pass instance

• VUID-VkRenderPassStripeInfoARM-stripeArea-09454
stripeArea.offset.y must be a multiple of
VkPhysicalDeviceRenderPassStripedPropertiesARM::renderPassStripeGranularity.height

• VUID-VkRenderPassStripeInfoARM-stripeArea-09455
stripeArea.extent.height must be a multiple of
VkPhysicalDeviceRenderPassStripedPropertiesARM::renderPassStripeGranularity.height,
or the sum of stripeArea.offset.y and stripeArea.extent.height must be equal to the
renderArea.extent.height of the render pass instance

Valid Usage (Implicit)

• VUID-VkRenderPassStripeInfoARM-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_INFO_ARM

• VUID-VkRenderPassStripeInfoARM-pNext-pNext
pNext must be NULL

To end a render pass instance, call:

// Provided by VK_VERSION_1_3
void vkCmdEndRendering(
 VkCommandBuffer commandBuffer);

or the equivalent command

503

// Provided by VK_KHR_dynamic_rendering
void vkCmdEndRenderingKHR(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer in which to record the command.

If the value of pRenderingInfo->flags used to begin this render pass instance included
VK_RENDERING_SUSPENDING_BIT, then this render pass is suspended and will be resumed later in
submission order.

Valid Usage

• VUID-vkCmdEndRendering-None-06161
The current render pass instance must have been begun with vkCmdBeginRendering

• VUID-vkCmdEndRendering-commandBuffer-06162
The current render pass instance must have been begun in commandBuffer

• VUID-vkCmdEndRendering-None-06781
This command must not be recorded when transform feedback is active

• VUID-vkCmdEndRendering-None-06999
If vkCmdBeginQuery* was called within the render pass, the corresponding vkCmdEndQuery*
must have been called subsequently within the same subpass

Valid Usage (Implicit)

• VUID-vkCmdEndRendering-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndRendering-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndRendering-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdEndRendering-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdEndRendering-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

504

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action
State

Note

For more complex rendering graphs, it is possible to pre-define a static render pass
object, which as well as allowing draw commands, allows the definition of
framebuffer-local dependencies between multiple subpasses. These objects have a
lot of setup cost compared to vkCmdBeginRendering, but use of subpass
dependencies can confer important performance benefits on some devices.

The VkTilePropertiesQCOM structure is defined as:

// Provided by VK_QCOM_tile_properties
typedef struct VkTilePropertiesQCOM {
 VkStructureType sType;
 void* pNext;
 VkExtent3D tileSize;
 VkExtent2D apronSize;
 VkOffset2D origin;
} VkTilePropertiesQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• tileSize is the dimensions of a tile, with width and height describing the width and height of a
tile in pixels, and depth corresponding to the number of slices the tile spans.

• apronSize is the dimension of the apron.

• origin is the top-left corner of the first tile in attachment space.

All tiles will be tightly packed around the first tile, with edges being multiples of tile width and/or
height from the origin.

Note

Reported value for apronSize will be zero and its functionality will be described in
a future extension.

Valid Usage (Implicit)

• VUID-VkTilePropertiesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_TILE_PROPERTIES_QCOM

505

• VUID-VkTilePropertiesQCOM-pNext-pNext
pNext must be NULL

To query the tile properties when using dynamic rendering, call:

// Provided by VK_QCOM_tile_properties
VkResult vkGetDynamicRenderingTilePropertiesQCOM(
 VkDevice device,
 const VkRenderingInfo* pRenderingInfo,
 VkTilePropertiesQCOM* pProperties);

• device is a logical device associated with the render pass.

• pRenderingInfo is a pointer to the VkRenderingInfo structure specifying details of the render
pass instance in dynamic rendering.

• pProperties is a pointer to a VkTilePropertiesQCOM structure in which the properties are
returned.

Valid Usage (Implicit)

• VUID-vkGetDynamicRenderingTilePropertiesQCOM-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDynamicRenderingTilePropertiesQCOM-pRenderingInfo-parameter
pRenderingInfo must be a valid pointer to a valid VkRenderingInfo structure

• VUID-vkGetDynamicRenderingTilePropertiesQCOM-pProperties-parameter
pProperties must be a valid pointer to a VkTilePropertiesQCOM structure

Return Codes

Success

• VK_SUCCESS

8.1. Render Pass Objects
A render pass object represents a collection of attachments, subpasses, and dependencies between
the subpasses, and describes how the attachments are used over the course of the subpasses.

Render passes are represented by VkRenderPass handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkRenderPass)

An attachment description describes the properties of an attachment including its format, sample

506

count, and how its contents are treated at the beginning and end of each render pass instance.

A subpass represents a phase of rendering that reads and writes a subset of the attachments in a
render pass. Rendering commands are recorded into a particular subpass of a render pass instance.

A subpass description describes the subset of attachments that is involved in the execution of a
subpass. Each subpass can read from some attachments as input attachments, write to some as
color attachments or depth/stencil attachments, perform shader resolve operations to
color_attachments or depth/stencil_attachments, and perform multisample resolve operations to
resolve attachments. A subpass description can also include a set of preserve attachments, which are
attachments that are not read or written by the subpass but whose contents must be preserved
throughout the subpass.

A subpass uses an attachment if the attachment is a color, depth/stencil, resolve, depth/stencil
resolve, fragment shading rate, or input attachment for that subpass (as determined by the
pColorAttachments, pDepthStencilAttachment, pResolveAttachments,
VkSubpassDescriptionDepthStencilResolve::pDepthStencilResolveAttachment,
VkFragmentShadingRateAttachmentInfoKHR::pFragmentShadingRateAttachment->attachment, and
pInputAttachments members of VkSubpassDescription, respectively). A subpass does not use an
attachment if that attachment is preserved by the subpass. The first use of an attachment is in the
lowest numbered subpass that uses that attachment. Similarly, the last use of an attachment is in the
highest numbered subpass that uses that attachment.

The subpasses in a render pass all render to the same dimensions, and fragments for pixel
(x,y,layer) in one subpass can only read attachment contents written by previous subpasses at that
same (x,y,layer) location. For multi-pixel fragments, the pixel read from an input attachment is
selected from the pixels covered by that fragment in an implementation-dependent manner.
However, this selection must be made consistently for any fragment with the same shading rate for
the lifetime of the VkDevice.

Note

By describing a complete set of subpasses in advance, render passes provide the
implementation an opportunity to optimize the storage and transfer of attachment
data between subpasses.

In practice, this means that subpasses with a simple framebuffer-space
dependency may be merged into a single tiled rendering pass, keeping the
attachment data on-chip for the duration of a render pass instance. However, it is
also quite common for a render pass to only contain a single subpass.

Subpass dependencies describe execution and memory dependencies between subpasses.

A subpass dependency chain is a sequence of subpass dependencies in a render pass, where the
source subpass of each subpass dependency (after the first) equals the destination subpass of the
previous dependency.

Execution of subpasses may overlap or execute out of order with regards to other subpasses, unless
otherwise enforced by an execution dependency. Each subpass only respects submission order for
commands recorded in the same subpass, and the vkCmdBeginRenderPass and

507

vkCmdEndRenderPass commands that delimit the render pass - commands within other subpasses
are not included. This affects most other implicit ordering guarantees.

A render pass describes the structure of subpasses and attachments independent of any specific
image views for the attachments. The specific image views that will be used for the attachments,
and their dimensions, are specified in VkFramebuffer objects. Framebuffers are created with respect
to a specific render pass that the framebuffer is compatible with (see Render Pass Compatibility).
Collectively, a render pass and a framebuffer define the complete render target state for one or
more subpasses as well as the algorithmic dependencies between the subpasses.

The various pipeline stages of the drawing commands for a given subpass may execute
concurrently and/or out of order, both within and across drawing commands, whilst still respecting
pipeline order. However for a given (x,y,layer,sample) sample location, certain per-sample
operations are performed in rasterization order.

VK_ATTACHMENT_UNUSED is a constant indicating that a render pass attachment is not used.

#define VK_ATTACHMENT_UNUSED (~0U)

8.2. Render Pass Creation
To create a render pass, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateRenderPass(
 VkDevice device,
 const VkRenderPassCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkRenderPass* pRenderPass);

• device is the logical device that creates the render pass.

• pCreateInfo is a pointer to a VkRenderPassCreateInfo structure describing the parameters of the
render pass.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pRenderPass is a pointer to a VkRenderPass handle in which the resulting render pass object is
returned.

Valid Usage (Implicit)

• VUID-vkCreateRenderPass-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateRenderPass-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkRenderPassCreateInfo structure

• VUID-vkCreateRenderPass-pAllocator-parameter

508

If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateRenderPass-pRenderPass-parameter
pRenderPass must be a valid pointer to a VkRenderPass handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkRenderPassCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkRenderPassCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderPassCreateFlags flags;
 uint32_t attachmentCount;
 const VkAttachmentDescription* pAttachments;
 uint32_t subpassCount;
 const VkSubpassDescription* pSubpasses;
 uint32_t dependencyCount;
 const VkSubpassDependency* pDependencies;
} VkRenderPassCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkRenderPassCreateFlagBits

• attachmentCount is the number of attachments used by this render pass.

• pAttachments is a pointer to an array of attachmentCount VkAttachmentDescription structures
describing the attachments used by the render pass.

• subpassCount is the number of subpasses to create.

• pSubpasses is a pointer to an array of subpassCount VkSubpassDescription structures describing
each subpass.

• dependencyCount is the number of memory dependencies between pairs of subpasses.

• pDependencies is a pointer to an array of dependencyCount VkSubpassDependency structures
describing dependencies between pairs of subpasses.

509

Note

Care should be taken to avoid a data race here; if any subpasses access
attachments with overlapping memory locations, and one of those accesses is a
write, a subpass dependency needs to be included between them.

Valid Usage

• VUID-VkRenderPassCreateInfo-attachment-00834
If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or any element of pPreserveAttachments
in any element of pSubpasses is not VK_ATTACHMENT_UNUSED, then it must be less than
attachmentCount

• VUID-VkRenderPassCreateInfo-fragmentDensityMapAttachment-06471
If the pNext chain includes a VkRenderPassFragmentDensityMapCreateInfoEXT structure
and the fragmentDensityMapAttachment member is not VK_ATTACHMENT_UNUSED, then
attachment must be less than attachmentCount

• VUID-VkRenderPassCreateInfo-pAttachments-00836
For any member of pAttachments with a loadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the
first use of that attachment must not specify a layout equal to
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderPassCreateInfo-pAttachments-02511
For any member of pAttachments with a stencilLoadOp equal to
VK_ATTACHMENT_LOAD_OP_CLEAR, the first use of that attachment must not specify a layout
equal to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderPassCreateInfo-pAttachments-01566
For any member of pAttachments with a loadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the
first use of that attachment must not specify a layout equal to
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkRenderPassCreateInfo-pAttachments-01567
For any member of pAttachments with a stencilLoadOp equal to
VK_ATTACHMENT_LOAD_OP_CLEAR, the first use of that attachment must not specify a layout
equal to VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderPassCreateInfo-pNext-01926
If the pNext chain includes a VkRenderPassInputAttachmentAspectCreateInfo structure,
the subpass member of each element of its pAspectReferences member must be less than
subpassCount

• VUID-VkRenderPassCreateInfo-pNext-01927
If the pNext chain includes a VkRenderPassInputAttachmentAspectCreateInfo structure,
the inputAttachmentIndex member of each element of its pAspectReferences member must
be less than the value of inputAttachmentCount in the element of pSubpasses identified by
its subpass member

510

• VUID-VkRenderPassCreateInfo-pNext-01963
If the pNext chain includes a VkRenderPassInputAttachmentAspectCreateInfo structure,
for any element of the pInputAttachments member of any element of pSubpasses where the
attachment member is not VK_ATTACHMENT_UNUSED, the aspectMask member of the
corresponding element of VkRenderPassInputAttachmentAspectCreateInfo
::pAspectReferences must only include aspects that are present in images of the format
specified by the element of pAttachments at attachment

• VUID-VkRenderPassCreateInfo-pNext-01928
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, and its
subpassCount member is not zero, that member must be equal to the value of subpassCount

• VUID-VkRenderPassCreateInfo-pNext-01929
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, if its
dependencyCount member is not zero, it must be equal to dependencyCount

• VUID-VkRenderPassCreateInfo-pNext-01930
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, for each non-
zero element of pViewOffsets, the srcSubpass and dstSubpass members of pDependencies at
the same index must not be equal

• VUID-VkRenderPassCreateInfo-pNext-02512
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, for any element
of pDependencies with a dependencyFlags member that does not include
VK_DEPENDENCY_VIEW_LOCAL_BIT, the corresponding element of the pViewOffsets member of
that VkRenderPassMultiviewCreateInfo instance must be 0

• VUID-VkRenderPassCreateInfo-pNext-02513
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, elements of its
pViewMasks member must either all be 0, or all not be 0

• VUID-VkRenderPassCreateInfo-pNext-02514
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, and each
element of its pViewMasks member is 0, the dependencyFlags member of each element of
pDependencies must not include VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-VkRenderPassCreateInfo-pNext-02515
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, and each
element of its pViewMasks member is 0, its correlationMaskCount member must be 0

• VUID-VkRenderPassCreateInfo-pDependencies-00837
For any element of pDependencies, if the srcSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the srcStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the source
subpass

• VUID-VkRenderPassCreateInfo-pDependencies-00838
For any element of pDependencies, if the dstSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the dstStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the destination
subpass

• VUID-VkRenderPassCreateInfo-pDependencies-06866
For any element of pDependencies, if its srcSubpass is not VK_SUBPASS_EXTERNAL, it must be

511

less than subpassCount

• VUID-VkRenderPassCreateInfo-pDependencies-06867
For any element of pDependencies, if its dstSubpass is not VK_SUBPASS_EXTERNAL, it must be
less than subpassCount

Valid Usage (Implicit)

• VUID-VkRenderPassCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO

• VUID-VkRenderPassCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkRenderPassFragmentDensityMapCreateInfoEXT,
VkRenderPassInputAttachmentAspectCreateInfo, or VkRenderPassMultiviewCreateInfo

• VUID-VkRenderPassCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRenderPassCreateInfo-flags-parameter
flags must be a valid combination of VkRenderPassCreateFlagBits values

• VUID-VkRenderPassCreateInfo-pAttachments-parameter
If attachmentCount is not 0, pAttachments must be a valid pointer to an array of
attachmentCount valid VkAttachmentDescription structures

• VUID-VkRenderPassCreateInfo-pSubpasses-parameter
pSubpasses must be a valid pointer to an array of subpassCount valid
VkSubpassDescription structures

• VUID-VkRenderPassCreateInfo-pDependencies-parameter
If dependencyCount is not 0, pDependencies must be a valid pointer to an array of
dependencyCount valid VkSubpassDependency structures

• VUID-VkRenderPassCreateInfo-subpassCount-arraylength
subpassCount must be greater than 0

Bits which can be set in VkRenderPassCreateInfo::flags, describing additional properties of the
render pass, are:

// Provided by VK_VERSION_1_0
typedef enum VkRenderPassCreateFlagBits {
 // Provided by VK_QCOM_render_pass_transform
 VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM = 0x00000002,
} VkRenderPassCreateFlagBits;

• VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM specifies that the created render pass is compatible
with render pass transform.

// Provided by VK_VERSION_1_0

512

typedef VkFlags VkRenderPassCreateFlags;

VkRenderPassCreateFlags is a bitmask type for setting a mask of zero or more
VkRenderPassCreateFlagBits.

If the VkRenderPassCreateInfo::pNext chain includes a VkRenderPassMultiviewCreateInfo structure,
then that structure includes an array of view masks, view offsets, and correlation masks for the
render pass.

The VkRenderPassMultiviewCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkRenderPassMultiviewCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t subpassCount;
 const uint32_t* pViewMasks;
 uint32_t dependencyCount;
 const int32_t* pViewOffsets;
 uint32_t correlationMaskCount;
 const uint32_t* pCorrelationMasks;
} VkRenderPassMultiviewCreateInfo;

or the equivalent

// Provided by VK_KHR_multiview
typedef VkRenderPassMultiviewCreateInfo VkRenderPassMultiviewCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• subpassCount is zero or the number of subpasses in the render pass.

• pViewMasks is a pointer to an array of subpassCount view masks, where each mask is a bitfield of
view indices describing which views rendering is broadcast to in each subpass, when multiview
is enabled. If subpassCount is zero, each view mask is treated as zero.

• dependencyCount is zero or the number of dependencies in the render pass.

• pViewOffsets is a pointer to an array of dependencyCount view offsets, one for each dependency. If
dependencyCount is zero, each dependency’s view offset is treated as zero. Each view offset
controls which views in the source subpass the views in the destination subpass depend on.

• correlationMaskCount is zero or the number of correlation masks.

• pCorrelationMasks is a pointer to an array of correlationMaskCount view masks indicating sets of
views that may be more efficient to render concurrently.

When a subpass uses a non-zero view mask, multiview functionality is considered to be enabled.
Multiview is all-or-nothing for a render pass - that is, either all subpasses must have a non-zero

513

view mask (though some subpasses may have only one view) or all must be zero. Multiview causes
all drawing and clear commands in the subpass to behave as if they were broadcast to each view,
where a view is represented by one layer of the framebuffer attachments. All draws and clears are
broadcast to each view index whose bit is set in the view mask. The view index is provided in the
ViewIndex shader input variable, and color, depth/stencil, and input attachments all read/write the
layer of the framebuffer corresponding to the view index.

If the view mask is zero for all subpasses, multiview is considered to be disabled and all drawing
commands execute normally, without this additional broadcasting.

Some implementations may not support multiview in conjunction with mesh shaders, geometry
shaders or tessellation shaders.

When multiview is enabled, the VK_DEPENDENCY_VIEW_LOCAL_BIT bit in a dependency can be used to
express a view-local dependency, meaning that each view in the destination subpass depends on a
single view in the source subpass. Unlike pipeline barriers, a subpass dependency can potentially
have a different view mask in the source subpass and the destination subpass. If the dependency is
view-local, then each view (dstView) in the destination subpass depends on the view dstView +
pViewOffsets[dependency] in the source subpass. If there is not such a view in the source subpass,
then this dependency does not affect that view in the destination subpass. If the dependency is not
view-local, then all views in the destination subpass depend on all views in the source subpass, and
the view offset is ignored. A non-zero view offset is not allowed in a self-dependency.

The elements of pCorrelationMasks are a set of masks of views indicating that views in the same
mask may exhibit spatial coherency between the views, making it more efficient to render them
concurrently. Correlation masks must not have a functional effect on the results of the multiview
rendering.

When multiview is enabled, at the beginning of each subpass all non-render pass state is undefined.
In particular, each time vkCmdBeginRenderPass or vkCmdNextSubpass is called the graphics
pipeline must be bound, any relevant descriptor sets or vertex/index buffers must be bound, and
any relevant dynamic state or push constants must be set before they are used.

A multiview subpass can declare that its shaders will write per-view attributes for all views in a
single invocation, by setting the VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX bit in the
subpass description. The only supported per-view attributes are position and viewport mask, and
per-view position and viewport masks are written to output array variables decorated with
PositionPerViewNV and ViewportMaskPerViewNV, respectively. If VK_NV_viewport_array2 is not supported
and enabled, ViewportMaskPerViewNV must not be used. Values written to elements of
PositionPerViewNV and ViewportMaskPerViewNV must not depend on the ViewIndex. The shader must
also write to an output variable decorated with Position, and the value written to Position must
equal the value written to PositionPerViewNV[ViewIndex]. Similarly, if ViewportMaskPerViewNV is
written to then the shader must also write to an output variable decorated with ViewportMaskNV, and
the value written to ViewportMaskNV must equal the value written to ViewportMaskPerViewNV
[ViewIndex]. Implementations will either use values taken from Position and ViewportMaskNV and
invoke the shader once for each view, or will use values taken from PositionPerViewNV and
ViewportMaskPerViewNV and invoke the shader fewer times. The values written to Position and
ViewportMaskNV must not depend on the values written to PositionPerViewNV and
ViewportMaskPerViewNV, or vice versa (to allow compilers to eliminate the unused outputs). All

514

attributes that do not have *PerViewNV counterparts must not depend on ViewIndex.

Per-view attributes are all-or-nothing for a subpass. That is, all pipelines compiled against a subpass
that includes the VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX bit must write per-view
attributes to the *PerViewNV[] shader outputs, in addition to the non-per-view (e.g. Position)
outputs. Pipelines compiled against a subpass that does not include this bit must not include the
*PerViewNV[] outputs in their interfaces.

Valid Usage

• VUID-VkRenderPassMultiviewCreateInfo-pCorrelationMasks-00841
Each view index must not be set in more than one element of pCorrelationMasks

• VUID-VkRenderPassMultiviewCreateInfo-multiview-06555
If the multiview feature is not enabled, each element of pViewMasks must be 0

• VUID-VkRenderPassMultiviewCreateInfo-pViewMasks-06697
The index of the most significant bit in each element of pViewMasks must be less than
maxMultiviewViewCount

Valid Usage (Implicit)

• VUID-VkRenderPassMultiviewCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO

• VUID-VkRenderPassMultiviewCreateInfo-pViewMasks-parameter
If subpassCount is not 0, pViewMasks must be a valid pointer to an array of subpassCount
uint32_t values

• VUID-VkRenderPassMultiviewCreateInfo-pViewOffsets-parameter
If dependencyCount is not 0, pViewOffsets must be a valid pointer to an array of
dependencyCount int32_t values

• VUID-VkRenderPassMultiviewCreateInfo-pCorrelationMasks-parameter
If correlationMaskCount is not 0, pCorrelationMasks must be a valid pointer to an array of
correlationMaskCount uint32_t values

The VkMultiviewPerViewAttributesInfoNVX structure is defined as:

// Provided by VK_KHR_dynamic_rendering with VK_NVX_multiview_per_view_attributes
typedef struct VkMultiviewPerViewAttributesInfoNVX {
 VkStructureType sType;
 const void* pNext;
 VkBool32 perViewAttributes;
 VkBool32 perViewAttributesPositionXOnly;
} VkMultiviewPerViewAttributesInfoNVX;

• sType is a VkStructureType value identifying this structure.

515

• pNext is NULL or a pointer to a structure extending this structure.

• perViewAttributes specifies that shaders compiled for this pipeline write the attributes for all
views in a single invocation of each vertex processing stage. All pipelines executed within a
render pass instance that includes this bit must write per-view attributes to the *PerViewNV[]
shader outputs, in addition to the non-per-view (e.g. Position) outputs.

• perViewAttributesPositionXOnly specifies that shaders compiled for this pipeline use per-view
positions which only differ in value in the x component. Per-view viewport mask can also be
used.

When dynamic render pass instances are being used, instead of specifying
VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX or
VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX in the subpass description flags, the per-
attribute properties of the render pass instance must be specified by the
VkMultiviewPerViewAttributesInfoNVX structure Include the VkMultiviewPerViewAttributesInfoNVX
structure in the pNext chain of VkGraphicsPipelineCreateInfo when creating a graphics pipeline for
dynamic rendering, VkRenderingInfo when starting a dynamic render pass instance, and
VkCommandBufferInheritanceInfo when specifying the dynamic render pass instance parameters
for secondary command buffers.

Valid Usage (Implicit)

• VUID-VkMultiviewPerViewAttributesInfoNVX-sType-sType
sType must be VK_STRUCTURE_TYPE_MULTIVIEW_PER_VIEW_ATTRIBUTES_INFO_NVX

If the VkRenderPassCreateInfo::pNext chain includes a VkRenderPassFragmentDensityMapCreateInfoEXT
structure, then that structure includes a fragment density map attachment for the render pass.

The VkRenderPassFragmentDensityMapCreateInfoEXT structure is defined as:

// Provided by VK_EXT_fragment_density_map
typedef struct VkRenderPassFragmentDensityMapCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkAttachmentReference fragmentDensityMapAttachment;
} VkRenderPassFragmentDensityMapCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentDensityMapAttachment is the fragment density map to use for the render pass.

The fragment density map is read at an implementation-dependent time with the following
constraints determined by the attachment’s image view flags:

• VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DYNAMIC_BIT_EXT specifies that the fragment density
map will be read by the device during VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

516

• VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DEFERRED_BIT_EXT specifies that the fragment density
map will be read by the host during vkEndCommandBuffer of the primary command buffer
that the render pass is recorded into

• Otherwise the fragment density map will be read by the host during vkCmdBeginRenderPass

The fragment density map may additionally be read by the device during
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT for any mode.

If this structure is not present, it is as if fragmentDensityMapAttachment was given as
VK_ATTACHMENT_UNUSED.

Valid Usage

• VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-
fragmentDensityMapAttachment-02548
If fragmentDensityMapAttachment is not VK_ATTACHMENT_UNUSED, fragmentDensityMapAttachment
must not be an element of VkSubpassDescription::pInputAttachments,
VkSubpassDescription::pColorAttachments, VkSubpassDescription::pResolveAttachments,
VkSubpassDescription::pDepthStencilAttachment, or VkSubpassDescription
::pPreserveAttachments for any subpass

• VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-
fragmentDensityMapAttachment-02549
If fragmentDensityMapAttachment is not VK_ATTACHMENT_UNUSED, layout must be equal to
VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-
fragmentDensityMapAttachment-02550
If fragmentDensityMapAttachment is not VK_ATTACHMENT_UNUSED, fragmentDensityMapAttachment
must reference an attachment with a loadOp equal to VK_ATTACHMENT_LOAD_OP_LOAD or
VK_ATTACHMENT_LOAD_OP_DONT_CARE

• VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-
fragmentDensityMapAttachment-02551
If fragmentDensityMapAttachment is not VK_ATTACHMENT_UNUSED, fragmentDensityMapAttachment
must reference an attachment with a storeOp equal to VK_ATTACHMENT_STORE_OP_DONT_CARE

Valid Usage (Implicit)

• VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_FRAGMENT_DENSITY_MAP_CREATE_INFO_EXT

• VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-
fragmentDensityMapAttachment-parameter
fragmentDensityMapAttachment must be a valid VkAttachmentReference structure

The VkAttachmentDescription structure is defined as:

517

// Provided by VK_VERSION_1_0
typedef struct VkAttachmentDescription {
 VkAttachmentDescriptionFlags flags;
 VkFormat format;
 VkSampleCountFlagBits samples;
 VkAttachmentLoadOp loadOp;
 VkAttachmentStoreOp storeOp;
 VkAttachmentLoadOp stencilLoadOp;
 VkAttachmentStoreOp stencilStoreOp;
 VkImageLayout initialLayout;
 VkImageLayout finalLayout;
} VkAttachmentDescription;

• flags is a bitmask of VkAttachmentDescriptionFlagBits specifying additional properties of the
attachment.

• format is a VkFormat value specifying the format of the image view that will be used for the
attachment.

• samples is a VkSampleCountFlagBits value specifying the number of samples of the image.

• loadOp is a VkAttachmentLoadOp value specifying how the contents of color and depth
components of the attachment are treated at the beginning of the subpass where it is first used.

• storeOp is a VkAttachmentStoreOp value specifying how the contents of color and depth
components of the attachment are treated at the end of the subpass where it is last used.

• stencilLoadOp is a VkAttachmentLoadOp value specifying how the contents of stencil
components of the attachment are treated at the beginning of the subpass where it is first used.

• stencilStoreOp is a VkAttachmentStoreOp value specifying how the contents of stencil
components of the attachment are treated at the end of the last subpass where it is used.

• initialLayout is the layout the attachment image subresource will be in when a render pass
instance begins.

• finalLayout is the layout the attachment image subresource will be transitioned to when a
render pass instance ends.

If the attachment uses a color format, then loadOp and storeOp are used, and stencilLoadOp and
stencilStoreOp are ignored. If the format has depth and/or stencil components, loadOp and storeOp
apply only to the depth data, while stencilLoadOp and stencilStoreOp define how the stencil data is
handled. loadOp and stencilLoadOp define the load operations for the attachment. storeOp and
stencilStoreOp define the store operations for the attachment. If an attachment is not used by any
subpass, loadOp, storeOp, stencilStoreOp, and stencilLoadOp will be ignored for that attachment, and
no load or store ops will be performed. However, any transition specified by initialLayout and
finalLayout will still be executed.

If flags includes VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, then the attachment is treated as if it
shares physical memory with another attachment in the same render pass. This information limits
the ability of the implementation to reorder certain operations (like layout transitions and the
loadOp) such that it is not improperly reordered against other uses of the same physical memory via
a different attachment. This is described in more detail below.

518

If a render pass uses multiple attachments that alias the same device memory, those attachments
must each include the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit in their attachment description
flags. Attachments aliasing the same memory occurs in multiple ways:

• Multiple attachments being assigned the same image view as part of framebuffer creation.

• Attachments using distinct image views that correspond to the same image subresource of an
image.

• Attachments using views of distinct image subresources which are bound to overlapping
memory ranges.

Note

Render passes must include subpass dependencies (either directly or via a subpass
dependency chain) between any two subpasses that operate on the same
attachment or aliasing attachments and those subpass dependencies must include
execution and memory dependencies separating uses of the aliases, if at least one
of those subpasses writes to one of the aliases. These dependencies must not
include the VK_DEPENDENCY_BY_REGION_BIT if the aliases are views of distinct image
subresources which overlap in memory.

Multiple attachments that alias the same memory must not be used in a single subpass. A given
attachment index must not be used multiple times in a single subpass, with one exception: two
subpass attachments can use the same attachment index if at least one use is as an input
attachment and neither use is as a resolve or preserve attachment. In other words, the same view
can be used simultaneously as an input and color or depth/stencil attachment, but must not be
used as multiple color or depth/stencil attachments nor as resolve or preserve attachments.

If a set of attachments alias each other, then all except the first to be used in the render pass must
use an initialLayout of VK_IMAGE_LAYOUT_UNDEFINED, since the earlier uses of the other aliases make
their contents undefined. Once an alias has been used and a different alias has been used after it,
the first alias must not be used in any later subpasses. However, an application can assign the same
image view to multiple aliasing attachment indices, which allows that image view to be used
multiple times even if other aliases are used in between.

Note

Once an attachment needs the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit, there
should be no additional cost of introducing additional aliases, and using these
additional aliases may allow more efficient clearing of the attachments on
multiple uses via VK_ATTACHMENT_LOAD_OP_CLEAR.

Valid Usage

• VUID-VkAttachmentDescription-format-06699
If format includes a color or depth component and loadOp is VK_ATTACHMENT_LOAD_OP_LOAD,
then initialLayout must not be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription-finalLayout-00843
finalLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

519

• VUID-VkAttachmentDescription-format-03280
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03281
If format is a depth/stencil format, initialLayout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription-format-03282
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03283
If format is a depth/stencil format, finalLayout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription-format-06487
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription-format-06488
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription-separateDepthStencilLayouts-03284
If the separateDepthStencilLayouts feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentDescription-separateDepthStencilLayouts-03285
If the separateDepthStencilLayouts feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentDescription-format-03286
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03287
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-06906
If format is a depth/stencil format which includes both depth and stencil components,

520

initialLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-06907
If format is a depth/stencil format which includes both depth and stencil components,
finalLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03290
If format is a depth/stencil format which includes only the depth component,
initialLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03291
If format is a depth/stencil format which includes only the depth component, finalLayout
must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-synchronization2-06908
If the synchronization2 feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkAttachmentDescription-synchronization2-06909
If the synchronization2 feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkAttachmentDescription-attachmentFeedbackLoopLayout-07309
If the attachmentFeedbackLoopLayout feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VUID-VkAttachmentDescription-attachmentFeedbackLoopLayout-07310
If the attachmentFeedbackLoopLayout feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VUID-VkAttachmentDescription-samples-08745
samples must be a valid VkSampleCountFlagBits value that is set in
imageCreateSampleCounts (as defined in Image Creation Limits) for the given format

• VUID-VkAttachmentDescription-dynamicRenderingLocalRead-09544
If the dynamicRenderingLocalRead feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• VUID-VkAttachmentDescription-dynamicRenderingLocalRead-09545
If the dynamicRenderingLocalRead feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• VUID-VkAttachmentDescription-format-06698
format must not be VK_FORMAT_UNDEFINED

• VUID-VkAttachmentDescription-format-06700
If format includes a stencil component and stencilLoadOp is VK_ATTACHMENT_LOAD_OP_LOAD,
then initialLayout must not be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription-format-03292
If format is a depth/stencil format which includes only the stencil component,
initialLayout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or

521

VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03293
If format is a depth/stencil format which includes only the stencil component, finalLayout
must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-06242
If format is a depth/stencil format which includes both depth and stencil components,
initialLayout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-06243
If format is a depth/stencil format which includes both depth and stencil components,
finalLayout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

Valid Usage (Implicit)

• VUID-VkAttachmentDescription-flags-parameter
flags must be a valid combination of VkAttachmentDescriptionFlagBits values

• VUID-VkAttachmentDescription-format-parameter
format must be a valid VkFormat value

• VUID-VkAttachmentDescription-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-VkAttachmentDescription-loadOp-parameter
loadOp must be a valid VkAttachmentLoadOp value

• VUID-VkAttachmentDescription-storeOp-parameter
storeOp must be a valid VkAttachmentStoreOp value

• VUID-VkAttachmentDescription-stencilLoadOp-parameter
stencilLoadOp must be a valid VkAttachmentLoadOp value

• VUID-VkAttachmentDescription-stencilStoreOp-parameter
stencilStoreOp must be a valid VkAttachmentStoreOp value

• VUID-VkAttachmentDescription-initialLayout-parameter
initialLayout must be a valid VkImageLayout value

• VUID-VkAttachmentDescription-finalLayout-parameter
finalLayout must be a valid VkImageLayout value

Bits which can be set in VkAttachmentDescription::flags, describing additional properties of the
attachment, are:

// Provided by VK_VERSION_1_0
typedef enum VkAttachmentDescriptionFlagBits {
 VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT = 0x00000001,

522

} VkAttachmentDescriptionFlagBits;

• VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT specifies that the attachment aliases the same device
memory as other attachments.

// Provided by VK_VERSION_1_0
typedef VkFlags VkAttachmentDescriptionFlags;

VkAttachmentDescriptionFlags is a bitmask type for setting a mask of zero or more
VkAttachmentDescriptionFlagBits.

The VkRenderPassInputAttachmentAspectCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkRenderPassInputAttachmentAspectCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t aspectReferenceCount;
 const VkInputAttachmentAspectReference* pAspectReferences;
} VkRenderPassInputAttachmentAspectCreateInfo;

or the equivalent

// Provided by VK_KHR_maintenance2
typedef VkRenderPassInputAttachmentAspectCreateInfo
VkRenderPassInputAttachmentAspectCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• aspectReferenceCount is the number of elements in the pAspectReferences array.

• pAspectReferences is a pointer to an array of aspectReferenceCount
VkInputAttachmentAspectReference structures containing a mask describing which aspect(s)
can be accessed for a given input attachment within a given subpass.

To specify which aspects of an input attachment can be read, add a
VkRenderPassInputAttachmentAspectCreateInfo structure to the pNext chain of the
VkRenderPassCreateInfo structure:

An application can access any aspect of an input attachment that does not have a specified aspect
mask in the pAspectReferences array. Otherwise, an application must not access aspect(s) of an
input attachment other than those in its specified aspect mask.

Valid Usage (Implicit)

523

• VUID-VkRenderPassInputAttachmentAspectCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO

• VUID-VkRenderPassInputAttachmentAspectCreateInfo-pAspectReferences-parameter
pAspectReferences must be a valid pointer to an array of aspectReferenceCount valid
VkInputAttachmentAspectReference structures

• VUID-VkRenderPassInputAttachmentAspectCreateInfo-aspectReferenceCount-arraylength
aspectReferenceCount must be greater than 0

The VkInputAttachmentAspectReference structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkInputAttachmentAspectReference {
 uint32_t subpass;
 uint32_t inputAttachmentIndex;
 VkImageAspectFlags aspectMask;
} VkInputAttachmentAspectReference;

or the equivalent

// Provided by VK_KHR_maintenance2
typedef VkInputAttachmentAspectReference VkInputAttachmentAspectReferenceKHR;

• subpass is an index into the pSubpasses array of the parent VkRenderPassCreateInfo structure.

• inputAttachmentIndex is an index into the pInputAttachments of the specified subpass.

• aspectMask is a mask of which aspect(s) can be accessed within the specified subpass.

This structure specifies an aspect mask for a specific input attachment of a specific subpass in the
render pass.

subpass and inputAttachmentIndex index into the render pass as:

pCreateInfo->pSubpasses[subpass].pInputAttachments[inputAttachmentIndex]

Valid Usage

• VUID-VkInputAttachmentAspectReference-aspectMask-01964
aspectMask must not include VK_IMAGE_ASPECT_METADATA_BIT

• VUID-VkInputAttachmentAspectReference-aspectMask-02250
aspectMask must not include VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT for any index i

524

Valid Usage (Implicit)

• VUID-VkInputAttachmentAspectReference-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkInputAttachmentAspectReference-aspectMask-requiredbitmask
aspectMask must not be 0

The VkSubpassDescription structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSubpassDescription {
 VkSubpassDescriptionFlags flags;
 VkPipelineBindPoint pipelineBindPoint;
 uint32_t inputAttachmentCount;
 const VkAttachmentReference* pInputAttachments;
 uint32_t colorAttachmentCount;
 const VkAttachmentReference* pColorAttachments;
 const VkAttachmentReference* pResolveAttachments;
 const VkAttachmentReference* pDepthStencilAttachment;
 uint32_t preserveAttachmentCount;
 const uint32_t* pPreserveAttachments;
} VkSubpassDescription;

• flags is a bitmask of VkSubpassDescriptionFlagBits specifying usage of the subpass.

• pipelineBindPoint is a VkPipelineBindPoint value specifying the pipeline type supported for this
subpass.

• inputAttachmentCount is the number of input attachments.

• pInputAttachments is a pointer to an array of VkAttachmentReference structures defining the
input attachments for this subpass and their layouts.

• colorAttachmentCount is the number of color attachments.

• pColorAttachments is a pointer to an array of colorAttachmentCount VkAttachmentReference
structures defining the color attachments for this subpass and their layouts.

• pResolveAttachments is NULL or a pointer to an array of colorAttachmentCount
VkAttachmentReference structures defining the resolve attachments for this subpass and their
layouts.

• pDepthStencilAttachment is a pointer to a VkAttachmentReference structure specifying the
depth/stencil attachment for this subpass and its layout.

• preserveAttachmentCount is the number of preserved attachments.

• pPreserveAttachments is a pointer to an array of preserveAttachmentCount render pass attachment
indices identifying attachments that are not used by this subpass, but whose contents must be
preserved throughout the subpass.

Each element of the pInputAttachments array corresponds to an input attachment index in a

525

fragment shader, i.e. if a shader declares an image variable decorated with a InputAttachmentIndex
value of X, then it uses the attachment provided in pInputAttachments[X]. Input attachments must
also be bound to the pipeline in a descriptor set. If the attachment member of any element of
pInputAttachments is VK_ATTACHMENT_UNUSED, the application must not read from the corresponding
input attachment index. Fragment shaders can use subpass input variables to access the contents of
an input attachment at the fragment’s (x, y, layer) framebuffer coordinates. Input attachments must
not be used by any subpasses within a render pass that enables render pass transform.

Each element of the pColorAttachments array corresponds to an output location in the shader, i.e. if
the shader declares an output variable decorated with a Location value of X, then it uses the
attachment provided in pColorAttachments[X]. If the attachment member of any element of
pColorAttachments is VK_ATTACHMENT_UNUSED, or if Color Write Enable has been disabled for the
corresponding attachment index, then writes to the corresponding location by a fragment shader
are discarded.

If flags does not include VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, and if
pResolveAttachments is not NULL, each of its elements corresponds to a color attachment (the element
in pColorAttachments at the same index), and a multisample resolve operation is defined for each
attachment unless the resolve attachment index is VK_ATTACHMENT_UNUSED.

Similarly, if flags does not include VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, and
VkSubpassDescriptionDepthStencilResolve::pDepthStencilResolveAttachment is not NULL and does not
have the value VK_ATTACHMENT_UNUSED, it corresponds to the depth/stencil attachment in
pDepthStencilAttachment, and multisample resolve operation for depth and stencil are defined by
VkSubpassDescriptionDepthStencilResolve::depthResolveMode and
VkSubpassDescriptionDepthStencilResolve::stencilResolveMode, respectively. If
VkSubpassDescriptionDepthStencilResolve::depthResolveMode is VK_RESOLVE_MODE_NONE or the
pDepthStencilResolveAttachment does not have a depth aspect, no resolve operation is performed for
the depth attachment. If VkSubpassDescriptionDepthStencilResolve::stencilResolveMode is
VK_RESOLVE_MODE_NONE or the pDepthStencilResolveAttachment does not have a stencil aspect, no
resolve operation is performed for the stencil attachment.

If the image subresource range referenced by the depth/stencil attachment is created with
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT, then the multisample resolve
operation uses the sample locations state specified in the sampleLocationsInfo member of the
element of the VkRenderPassSampleLocationsBeginInfoEXT::pPostSubpassSampleLocations for the
subpass.

If pDepthStencilAttachment is NULL, or if its attachment index is VK_ATTACHMENT_UNUSED, it indicates that
no depth/stencil attachment will be used in the subpass.

The contents of an attachment within the render area become undefined at the start of a subpass S
if all of the following conditions are true:

• The attachment is used as a color, depth/stencil, or resolve attachment in any subpass in the
render pass.

• There is a subpass S1 that uses or preserves the attachment, and a subpass dependency from S1

to S.

526

• The attachment is not used or preserved in subpass S.

In addition, the contents of an attachment within the render area become undefined at the start of
a subpass S if all of the following conditions are true:

• VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM is set.

• The attachment is used as a color or depth/stencil in the subpass.

Once the contents of an attachment become undefined in subpass S, they remain undefined for
subpasses in subpass dependency chains starting with subpass S until they are written again.
However, they remain valid for subpasses in other subpass dependency chains starting with
subpass S1 if those subpasses use or preserve the attachment.

Valid Usage

• VUID-VkSubpassDescription-attachment-06912
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription-attachment-06913
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06914
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06915
If the attachment member of pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED, ts layout
member must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06916
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription-attachment-06917
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription-attachment-06918
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or

527

VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription-attachment-06919
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06920
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06921
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR

• VUID-VkSubpassDescription-attachment-06922
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkSubpassDescription-attachment-06923
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkSubpassDescription-pipelineBindPoint-04952
pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS or
VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI

• VUID-VkSubpassDescription-colorAttachmentCount-00845
colorAttachmentCount must be less than or equal to VkPhysicalDeviceLimits
::maxColorAttachments

• VUID-VkSubpassDescription-loadOp-00846
If the first use of an attachment in this render pass is as an input attachment, and the
attachment is not also used as a color or depth/stencil attachment in the same subpass,
then loadOp must not be VK_ATTACHMENT_LOAD_OP_CLEAR

• VUID-VkSubpassDescription-pResolveAttachments-00847
If pResolveAttachments is not NULL, for each resolve attachment that is not
VK_ATTACHMENT_UNUSED, the corresponding color attachment must not be
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription-pResolveAttachments-00848
If pResolveAttachments is not NULL, for each resolve attachment that is not
VK_ATTACHMENT_UNUSED, the corresponding color attachment must not have a sample count
of VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescription-pResolveAttachments-00849
If pResolveAttachments is not NULL, each resolve attachment that is not
VK_ATTACHMENT_UNUSED must have a sample count of VK_SAMPLE_COUNT_1_BIT

528

• VUID-VkSubpassDescription-pResolveAttachments-00850
If pResolveAttachments is not NULL, each resolve attachment that is not
VK_ATTACHMENT_UNUSED must have the same VkFormat as its corresponding color
attachment

• VUID-VkSubpassDescription-pColorAttachments-09430
All attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have the
same sample count

• VUID-VkSubpassDescription-pInputAttachments-02647
All attachments in pInputAttachments that are not VK_ATTACHMENT_UNUSED must have image
formats whose potential format features contain at least
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescription-pColorAttachments-02648
All attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have image
formats whose potential format features contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkSubpassDescription-pResolveAttachments-02649
All attachments in pResolveAttachments that are not VK_ATTACHMENT_UNUSED must have
image formats whose potential format features contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkSubpassDescription-pDepthStencilAttachment-02650
If pDepthStencilAttachment is not NULL and the attachment is not VK_ATTACHMENT_UNUSED then
it must have an image format whose potential format features contain
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescription-linearColorAttachment-06496
If the linearColorAttachment feature is enabled and the image is created with
VK_IMAGE_TILING_LINEAR, all attachments in pInputAttachments that are not
VK_ATTACHMENT_UNUSED must have image formats whose potential format features must
contain VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkSubpassDescription-linearColorAttachment-06497
If the linearColorAttachment feature is enabled and the image is created with
VK_IMAGE_TILING_LINEAR, all attachments in pColorAttachments that are not
VK_ATTACHMENT_UNUSED must have image formats whose potential format features must
contain VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkSubpassDescription-linearColorAttachment-06498
If the linearColorAttachment feature is enabled and the image is created with
VK_IMAGE_TILING_LINEAR, all attachments in pResolveAttachments that are not
VK_ATTACHMENT_UNUSED must have image formats whose potential format features must
contain VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkSubpassDescription-None-09431
If either of the following is enabled:

◦ The VK_AMD_mixed_attachment_samples extension

◦ The VK_NV_framebuffer_mixed_samples extension

all attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have a

529

sample count that is smaller than or equal to the sample count of pDepthStencilAttachment
if it is not VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription-pDepthStencilAttachment-01418
If pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED and any attachments in
pColorAttachments are not VK_ATTACHMENT_UNUSED, they must have the same sample count ,
if none of the following are enabled:

◦ The VK_AMD_mixed_attachment_samples extension

◦ The VK_NV_framebuffer_mixed_samples extension

• VUID-VkSubpassDescription-attachment-00853
Each element of pPreserveAttachments must not be VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription-pPreserveAttachments-00854
Each element of pPreserveAttachments must not also be an element of any other member
of the subpass description

• VUID-VkSubpassDescription-layout-02519
If any attachment is used by more than one VkAttachmentReference member, then each
use must use the same layout

• VUID-VkSubpassDescription-flags-00856
If flags includes VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX, it must also
include VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX

• VUID-VkSubpassDescription-flags-03341
If flags includes VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, and if
pResolveAttachments is not NULL, then each resolve attachment must be
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription-flags-03343
If flags includes VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, then the subpass must
be the last subpass in a subpass dependency chain

• VUID-VkSubpassDescription-pInputAttachments-02868
If the render pass is created with VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM each of the
elements of pInputAttachments must be VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription-pDepthStencilAttachment-04438
pDepthStencilAttachment and pColorAttachments must not contain references to the same
attachment

Valid Usage (Implicit)

• VUID-VkSubpassDescription-flags-parameter
flags must be a valid combination of VkSubpassDescriptionFlagBits values

• VUID-VkSubpassDescription-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkSubpassDescription-pInputAttachments-parameter
If inputAttachmentCount is not 0, pInputAttachments must be a valid pointer to an array of

530

inputAttachmentCount valid VkAttachmentReference structures

• VUID-VkSubpassDescription-pColorAttachments-parameter
If colorAttachmentCount is not 0, pColorAttachments must be a valid pointer to an array of
colorAttachmentCount valid VkAttachmentReference structures

• VUID-VkSubpassDescription-pResolveAttachments-parameter
If colorAttachmentCount is not 0, and pResolveAttachments is not NULL, pResolveAttachments
must be a valid pointer to an array of colorAttachmentCount valid VkAttachmentReference
structures

• VUID-VkSubpassDescription-pDepthStencilAttachment-parameter
If pDepthStencilAttachment is not NULL, pDepthStencilAttachment must be a valid pointer to
a valid VkAttachmentReference structure

• VUID-VkSubpassDescription-pPreserveAttachments-parameter
If preserveAttachmentCount is not 0, pPreserveAttachments must be a valid pointer to an
array of preserveAttachmentCount uint32_t values

Bits which can be set in VkSubpassDescription::flags, specifying usage of the subpass, are:

// Provided by VK_VERSION_1_0
typedef enum VkSubpassDescriptionFlagBits {
 // Provided by VK_NVX_multiview_per_view_attributes
 VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX = 0x00000001,
 // Provided by VK_NVX_multiview_per_view_attributes
 VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX = 0x00000002,
 // Provided by VK_QCOM_render_pass_shader_resolve
 VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM = 0x00000004,
 // Provided by VK_QCOM_render_pass_shader_resolve
 VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM = 0x00000008,
 // Provided by VK_EXT_rasterization_order_attachment_access
 VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT =
0x00000010,
 // Provided by VK_EXT_rasterization_order_attachment_access
 VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT =
0x00000020,
 // Provided by VK_EXT_rasterization_order_attachment_access
 VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EXT =
0x00000040,
 // Provided by VK_EXT_legacy_dithering
 VK_SUBPASS_DESCRIPTION_ENABLE_LEGACY_DITHERING_BIT_EXT = 0x00000080,
 // Provided by VK_ARM_rasterization_order_attachment_access
 VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_ARM =
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT,
 // Provided by VK_ARM_rasterization_order_attachment_access
 VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_ARM =
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT,
 // Provided by VK_ARM_rasterization_order_attachment_access
 VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_ARM =
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EXT,

531

} VkSubpassDescriptionFlagBits;

• VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX specifies that shaders compiled for this
subpass write the attributes for all views in a single invocation of each pre-rasterization shader
stage. All pipelines compiled against a subpass that includes this bit must write per-view
attributes to the *PerViewNV[] shader outputs, in addition to the non-per-view (e.g. Position)
outputs.

• VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX specifies that shaders compiled for
this subpass use per-view positions which only differ in value in the x component. Per-view
viewport mask can also be used.

• VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM specifies that the framebuffer region is the
fragment region, that is, the minimum region dependencies are by pixel rather than by sample,
such that any fragment shader invocation can access any sample associated with that fragment
shader invocation.

• VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM specifies that the subpass performs shader
resolve operations.

• VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT specifies that this
subpass supports pipelines created with
VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT.

• VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT specifies that this
subpass supports pipelines created with
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT.

• VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EXT specifies that
this subpass supports pipelines created with
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EX
T.

• VK_SUBPASS_DESCRIPTION_ENABLE_LEGACY_DITHERING_BIT_EXT specifies that Legacy Dithering is
enabled for this subpass.

Note

Shader resolve operations allow for custom resolve operations, but overdrawing
pixels may have a performance and/or power cost. Furthermore, since the content
of any depth stencil attachment or color attachment is undefined at the beginning
of a shader resolve subpass, any depth testing, stencil testing, or blending
operation which sources these undefined values also has undefined result value.

// Provided by VK_VERSION_1_0
typedef VkFlags VkSubpassDescriptionFlags;

VkSubpassDescriptionFlags is a bitmask type for setting a mask of zero or more
VkSubpassDescriptionFlagBits.

The VkAttachmentReference structure is defined as:

532

// Provided by VK_VERSION_1_0
typedef struct VkAttachmentReference {
 uint32_t attachment;
 VkImageLayout layout;
} VkAttachmentReference;

• attachment is either an integer value identifying an attachment at the corresponding index in
VkRenderPassCreateInfo::pAttachments, or VK_ATTACHMENT_UNUSED to signify that this attachment is
not used.

• layout is a VkImageLayout value specifying the layout the attachment uses during the subpass.

Valid Usage

• VUID-VkAttachmentReference-layout-03077
If attachment is not VK_ATTACHMENT_UNUSED, layout must not be VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_PREINITIALIZED, or VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

• VUID-VkAttachmentReference-separateDepthStencilLayouts-03313
If the separateDepthStencilLayouts feature is not enabled, and attachment is not
VK_ATTACHMENT_UNUSED, layout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentReference-synchronization2-06910
If the synchronization2 feature is not enabled, layout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkAttachmentReference-attachmentFeedbackLoopLayout-07311
If the attachmentFeedbackLoopLayout feature is not enabled, layout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VUID-VkAttachmentReference-dynamicRenderingLocalRead-09546
If the dynamicRenderingLocalRead feature is not enabled, layout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

Valid Usage (Implicit)

• VUID-VkAttachmentReference-layout-parameter
layout must be a valid VkImageLayout value

VK_SUBPASS_EXTERNAL is a special subpass index value expanding synchronization scope outside a
subpass. It is described in more detail by VkSubpassDependency.

#define VK_SUBPASS_EXTERNAL (~0U)

The VkSubpassDependency structure is defined as:

533

// Provided by VK_VERSION_1_0
typedef struct VkSubpassDependency {
 uint32_t srcSubpass;
 uint32_t dstSubpass;
 VkPipelineStageFlags srcStageMask;
 VkPipelineStageFlags dstStageMask;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
 VkDependencyFlags dependencyFlags;
} VkSubpassDependency;

• srcSubpass is the subpass index of the first subpass in the dependency, or VK_SUBPASS_EXTERNAL.

• dstSubpass is the subpass index of the second subpass in the dependency, or
VK_SUBPASS_EXTERNAL.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• dependencyFlags is a bitmask of VkDependencyFlagBits.

If srcSubpass is equal to dstSubpass then the VkSubpassDependency does not directly define a
dependency. Instead, it enables pipeline barriers to be used in a render pass instance within the
identified subpass, where the scopes of one pipeline barrier must be a subset of those described by
one subpass dependency. Subpass dependencies specified in this way that include framebuffer-
space stages in the srcStageMask must only include framebuffer-space stages in dstStageMask, and
must include VK_DEPENDENCY_BY_REGION_BIT. When a subpass dependency is specified in this way for
a subpass that has more than one view in its view mask, its dependencyFlags must include
VK_DEPENDENCY_VIEW_LOCAL_BIT.

If srcSubpass and dstSubpass are not equal, when a render pass instance which includes a subpass
dependency is submitted to a queue, it defines a dependency between the subpasses identified by
srcSubpass and dstSubpass.

If srcSubpass is equal to VK_SUBPASS_EXTERNAL, the first synchronization scope includes commands
that occur earlier in submission order than the vkCmdBeginRenderPass used to begin the render
pass instance. Otherwise, the first set of commands includes all commands submitted as part of the
subpass instance identified by srcSubpass and any load, store, or multisample resolve operations on
attachments used in srcSubpass. In either case, the first synchronization scope is limited to
operations on the pipeline stages determined by the source stage mask specified by srcStageMask.

If dstSubpass is equal to VK_SUBPASS_EXTERNAL, the second synchronization scope includes commands
that occur later in submission order than the vkCmdEndRenderPass used to end the render pass
instance. Otherwise, the second set of commands includes all commands submitted as part of the
subpass instance identified by dstSubpass and any load, store, and multisample resolve operations
on attachments used in dstSubpass. In either case, the second synchronization scope is limited to
operations on the pipeline stages determined by the destination stage mask specified by

534

dstStageMask.

The first access scope is limited to accesses in the pipeline stages determined by the source stage
mask specified by srcStageMask. It is also limited to access types in the source access mask specified
by srcAccessMask.

The second access scope is limited to accesses in the pipeline stages determined by the destination
stage mask specified by dstStageMask. It is also limited to access types in the destination access mask
specified by dstAccessMask.

The availability and visibility operations defined by a subpass dependency affect the execution of
image layout transitions within the render pass.

Note

For non-attachment resources, the memory dependency expressed by subpass
dependency is nearly identical to that of a VkMemoryBarrier (with matching
srcAccessMask and dstAccessMask parameters) submitted as a part of a
vkCmdPipelineBarrier (with matching srcStageMask and dstStageMask parameters).
The only difference being that its scopes are limited to the identified subpasses
rather than potentially affecting everything before and after.

For attachments however, subpass dependencies work more like a
VkImageMemoryBarrier defined similarly to the VkMemoryBarrier above, the
queue family indices set to VK_QUEUE_FAMILY_IGNORED, and layouts as follows:

• The equivalent to oldLayout is the attachment’s layout according to the subpass
description for srcSubpass.

• The equivalent to newLayout is the attachment’s layout according to the subpass
description for dstSubpass.

Valid Usage

• VUID-VkSubpassDependency-srcStageMask-04090
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubpassDependency-srcStageMask-04091
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubpassDependency-srcStageMask-04092
If the conditionalRendering feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkSubpassDependency-srcStageMask-04093
If the fragmentDensityMap feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkSubpassDependency-srcStageMask-04094

535

If the transformFeedback feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkSubpassDependency-srcStageMask-04095
If the meshShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-VkSubpassDependency-srcStageMask-04096
If the taskShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-VkSubpassDependency-srcStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
srcStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkSubpassDependency-srcStageMask-03937
If the synchronization2 feature is not enabled, srcStageMask must not be 0

• VUID-VkSubpassDependency-srcStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
srcStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkSubpassDependency-dstStageMask-04090
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubpassDependency-dstStageMask-04091
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubpassDependency-dstStageMask-04092
If the conditionalRendering feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkSubpassDependency-dstStageMask-04093
If the fragmentDensityMap feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkSubpassDependency-dstStageMask-04094
If the transformFeedback feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkSubpassDependency-dstStageMask-04095
If the meshShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-VkSubpassDependency-dstStageMask-04096
If the taskShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-VkSubpassDependency-dstStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
dstStageMask must not contain

536

VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkSubpassDependency-dstStageMask-03937
If the synchronization2 feature is not enabled, dstStageMask must not be 0

• VUID-VkSubpassDependency-dstStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
dstStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkSubpassDependency-srcSubpass-00864
srcSubpass must be less than or equal to dstSubpass, unless one of them is
VK_SUBPASS_EXTERNAL, to avoid cyclic dependencies and ensure a valid execution order

• VUID-VkSubpassDependency-srcSubpass-00865
srcSubpass and dstSubpass must not both be equal to VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency-srcSubpass-06809
If srcSubpass is equal to dstSubpass and srcStageMask includes a framebuffer-space stage,
dstStageMask must only contain framebuffer-space stages

• VUID-VkSubpassDependency-srcAccessMask-00868
Any access flag included in srcAccessMask must be supported by one of the pipeline stages
in srcStageMask, as specified in the table of supported access types

• VUID-VkSubpassDependency-dstAccessMask-00869
Any access flag included in dstAccessMask must be supported by one of the pipeline stages
in dstStageMask, as specified in the table of supported access types

• VUID-VkSubpassDependency-srcSubpass-02243
If srcSubpass equals dstSubpass, and srcStageMask and dstStageMask both include a
framebuffer-space stage, then dependencyFlags must include VK_DEPENDENCY_BY_REGION_BIT

• VUID-VkSubpassDependency-dependencyFlags-02520
If dependencyFlags includes VK_DEPENDENCY_VIEW_LOCAL_BIT, srcSubpass must not be equal to
VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency-dependencyFlags-02521
If dependencyFlags includes VK_DEPENDENCY_VIEW_LOCAL_BIT, dstSubpass must not be equal to
VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency-srcSubpass-00872
If srcSubpass equals dstSubpass and that subpass has more than one bit set in the view
mask, then dependencyFlags must include VK_DEPENDENCY_VIEW_LOCAL_BIT

Valid Usage (Implicit)

• VUID-VkSubpassDependency-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-VkSubpassDependency-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-VkSubpassDependency-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits values

537

• VUID-VkSubpassDependency-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkSubpassDependency-dependencyFlags-parameter
dependencyFlags must be a valid combination of VkDependencyFlagBits values

When multiview is enabled, the execution of the multiple views of one subpass may not occur
simultaneously or even back-to-back, and rather may be interleaved with the execution of other
subpasses. The load and store operations apply to attachments on a per-view basis. For example, an
attachment using VK_ATTACHMENT_LOAD_OP_CLEAR will have each view cleared on first use, but the first
use of one view may be temporally distant from the first use of another view.

Note

A good mental model for multiview is to think of a multiview subpass as if it were
a collection of individual (per-view) subpasses that are logically grouped together
and described as a single multiview subpass in the API. Similarly, a multiview
attachment can be thought of like several individual attachments that happen to
be layers in a single image. A view-local dependency between two multiview
subpasses acts like a set of one-to-one dependencies between corresponding pairs
of per-view subpasses. A view-global dependency between two multiview
subpasses acts like a set of N × M dependencies between all pairs of per-view
subpasses in the source and destination. Thus, it is a more compact representation
which also makes clear the commonality and reuse that is present between views
in a subpass. This interpretation motivates the answers to questions like “when
does the load op apply” - it is on the first use of each view of an attachment, as if
each view was a separate attachment.

The content of each view follows the description in attachment content behavior.
In particular, if an attachment is preserved, all views within the attachment are
preserved.

If any two subpasses of a render pass activate transform feedback to the same bound transform
feedback buffers, a subpass dependency must be included (either directly or via some intermediate
subpasses) between them.

If there is no subpass dependency from VK_SUBPASS_EXTERNAL to the first subpass that uses an
attachment, then an implicit subpass dependency exists from VK_SUBPASS_EXTERNAL to the first
subpass it is used in. The implicit subpass dependency only exists if there exists an automatic layout
transition away from initialLayout. The subpass dependency operates as if defined with the
following parameters:

VkSubpassDependency implicitDependency = {
 .srcSubpass = VK_SUBPASS_EXTERNAL,
 .dstSubpass = firstSubpass, // First subpass attachment is used in
 .srcStageMask = VK_PIPELINE_STAGE_NONE,
 .dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
 .srcAccessMask = 0,
 .dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |

538

 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
 .dependencyFlags = 0
};

Similarly, if there is no subpass dependency from the last subpass that uses an attachment to
VK_SUBPASS_EXTERNAL, then an implicit subpass dependency exists from the last subpass it is used in
to VK_SUBPASS_EXTERNAL. The implicit subpass dependency only exists if there exists an automatic
layout transition into finalLayout. The subpass dependency operates as if defined with the
following parameters:

VkSubpassDependency implicitDependency = {
 .srcSubpass = lastSubpass, // Last subpass attachment is used in
 .dstSubpass = VK_SUBPASS_EXTERNAL,
 .srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
 .dstStageMask = VK_PIPELINE_STAGE_NONE,
 .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
 .dstAccessMask = 0,
 .dependencyFlags = 0
};

As subpasses may overlap or execute out of order with regards to other subpasses unless a subpass
dependency chain describes otherwise, the layout transitions required between subpasses cannot
be known to an application. Instead, an application provides the layout that each attachment must
be in at the start and end of a render pass, and the layout it must be in during each subpass it is
used in. The implementation then must execute layout transitions between subpasses in order to
guarantee that the images are in the layouts required by each subpass, and in the final layout at the
end of the render pass.

Automatic layout transitions apply to the entire image subresource attached to the framebuffer. If
multiview is not enabled and the attachment is a view of a 1D or 2D image, the automatic layout
transitions apply to the number of layers specified by VkFramebufferCreateInfo::layers. If
multiview is enabled and the attachment is a view of a 1D or 2D image, the automatic layout
transitions apply to the layers corresponding to views which are used by some subpass in the
render pass, even if that subpass does not reference the given attachment. If the attachment view is
a 2D or 2D array view of a 3D image, even if the attachment view only refers to a subset of the slices
of the selected mip level of the 3D image, automatic layout transitions apply to the entire
subresource referenced which is the entire mip level in this case.

Automatic layout transitions away from the layout used in a subpass happen-after the availability
operations for all dependencies with that subpass as the srcSubpass.

Automatic layout transitions into the layout used in a subpass happen-before the visibility
operations for all dependencies with that subpass as the dstSubpass.

539

Automatic layout transitions away from initialLayout happen-after the availability operations for
all dependencies with a srcSubpass equal to VK_SUBPASS_EXTERNAL, where dstSubpass uses the
attachment that will be transitioned. For attachments created with
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, automatic layout transitions away from initialLayout
happen-after the availability operations for all dependencies with a srcSubpass equal to
VK_SUBPASS_EXTERNAL, where dstSubpass uses any aliased attachment.

Automatic layout transitions into finalLayout happen-before the visibility operations for all
dependencies with a dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses the attachment
that will be transitioned. For attachments created with VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT,
automatic layout transitions into finalLayout happen-before the visibility operations for all
dependencies with a dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses any aliased
attachment.

The image layout of the depth aspect of a depth/stencil attachment referring to an image created
with VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT is dependent on the last sample
locations used to render to the attachment, thus automatic layout transitions use the sample
locations state specified in VkRenderPassSampleLocationsBeginInfoEXT.

Automatic layout transitions of an attachment referring to a depth/stencil image created with
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT use the sample locations the image
subresource range referenced by the attachment was last rendered with. If the current render pass
does not use the attachment as a depth/stencil attachment in any subpass that happens-before, the
automatic layout transition uses the sample locations state specified in the sampleLocationsInfo
member of the element of the VkRenderPassSampleLocationsBeginInfoEXT
::pAttachmentInitialSampleLocations array for which the attachmentIndex member equals the
attachment index of the attachment, if one is specified. Otherwise, the automatic layout transition
uses the sample locations state specified in the sampleLocationsInfo member of the element of the
VkRenderPassSampleLocationsBeginInfoEXT::pPostSubpassSampleLocations array for which the
subpassIndex member equals the index of the subpass that last used the attachment as a
depth/stencil attachment, if one is specified.

If no sample locations state has been specified for an automatic layout transition performed on an
attachment referring to a depth/stencil image created with
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT the contents of the depth aspect of the
depth/stencil attachment become undefined as if the layout of the attachment was transitioned
from the VK_IMAGE_LAYOUT_UNDEFINED layout.

If two subpasses use the same attachment, and both subpasses use the attachment in a read-only
layout, no subpass dependency needs to be specified between those subpasses. If an
implementation treats those layouts separately, it must insert an implicit subpass dependency
between those subpasses to separate the uses in each layout. The subpass dependency operates as if
defined with the following parameters:

// Used for input attachments
VkPipelineStageFlags inputAttachmentStages = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
VkAccessFlags inputAttachmentDstAccess = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;

// Used for depth/stencil attachments

540

VkPipelineStageFlags depthStencilAttachmentStages =
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
VkAccessFlags depthStencilAttachmentDstAccess =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;

VkSubpassDependency implicitDependency = {
 .srcSubpass = firstSubpass;
 .dstSubpass = secondSubpass;
 .srcStageMask = inputAttachmentStages | depthStencilAttachmentStages;
 .dstStageMask = inputAttachmentStages | depthStencilAttachmentStages;
 .srcAccessMask = 0;
 .dstAccessMask = inputAttachmentDstAccess | depthStencilAttachmentDstAccess;
 .dependencyFlags = 0;
};

When drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, the application must specify which types of attachments that are written to during
a render pass will also be accessed as non-attachments in the render pass.

To dynamically set whether a pipeline can access a resource as a non-attachment while it is also
used as an attachment that is written to, call:

// Provided by VK_EXT_attachment_feedback_loop_dynamic_state
void vkCmdSetAttachmentFeedbackLoopEnableEXT(
 VkCommandBuffer commandBuffer,
 VkImageAspectFlags aspectMask);

• commandBuffer is the command buffer into which the command will be recorded.

• aspectMask specifies the types of attachments for which feedback loops will be enabled.
Attachment types whose aspects are not included in aspectMask will have feedback loops
disabled.

For attachments that are written to in a render pass, only attachments with the aspects specified in
aspectMask can be accessed as non-attachments by subsequent drawing commands.

Valid Usage

• VUID-vkCmdSetAttachmentFeedbackLoopEnableEXT-
attachmentFeedbackLoopDynamicState-08862
The attachmentFeedbackLoopDynamicState feature must be enabled

• VUID-vkCmdSetAttachmentFeedbackLoopEnableEXT-aspectMask-08863
aspectMask must only include VK_IMAGE_ASPECT_NONE, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_ASPECT_DEPTH_BIT, and VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkCmdSetAttachmentFeedbackLoopEnableEXT-attachmentFeedbackLoopLayout-

541

08864
If the attachmentFeedbackLoopLayout feature is not enabled, aspectMask must be
VK_IMAGE_ASPECT_NONE

Valid Usage (Implicit)

• VUID-vkCmdSetAttachmentFeedbackLoopEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetAttachmentFeedbackLoopEnableEXT-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-vkCmdSetAttachmentFeedbackLoopEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetAttachmentFeedbackLoopEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetAttachmentFeedbackLoopEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

A more extensible version of render pass creation is also defined below.

To create a render pass, call:

// Provided by VK_VERSION_1_2
VkResult vkCreateRenderPass2(
 VkDevice device,
 const VkRenderPassCreateInfo2* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkRenderPass* pRenderPass);

542

or the equivalent command

// Provided by VK_KHR_create_renderpass2
VkResult vkCreateRenderPass2KHR(
 VkDevice device,
 const VkRenderPassCreateInfo2* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkRenderPass* pRenderPass);

• device is the logical device that creates the render pass.

• pCreateInfo is a pointer to a VkRenderPassCreateInfo2 structure describing the parameters of
the render pass.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pRenderPass is a pointer to a VkRenderPass handle in which the resulting render pass object is
returned.

This command is functionally identical to vkCreateRenderPass, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage (Implicit)

• VUID-vkCreateRenderPass2-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateRenderPass2-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkRenderPassCreateInfo2 structure

• VUID-vkCreateRenderPass2-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateRenderPass2-pRenderPass-parameter
pRenderPass must be a valid pointer to a VkRenderPass handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkRenderPassCreateInfo2 structure is defined as:

// Provided by VK_VERSION_1_2

543

typedef struct VkRenderPassCreateInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkRenderPassCreateFlags flags;
 uint32_t attachmentCount;
 const VkAttachmentDescription2* pAttachments;
 uint32_t subpassCount;
 const VkSubpassDescription2* pSubpasses;
 uint32_t dependencyCount;
 const VkSubpassDependency2* pDependencies;
 uint32_t correlatedViewMaskCount;
 const uint32_t* pCorrelatedViewMasks;
} VkRenderPassCreateInfo2;

or the equivalent

// Provided by VK_KHR_create_renderpass2
typedef VkRenderPassCreateInfo2 VkRenderPassCreateInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• attachmentCount is the number of attachments used by this render pass.

• pAttachments is a pointer to an array of attachmentCount VkAttachmentDescription2 structures
describing the attachments used by the render pass.

• subpassCount is the number of subpasses to create.

• pSubpasses is a pointer to an array of subpassCount VkSubpassDescription2 structures describing
each subpass.

• dependencyCount is the number of dependencies between pairs of subpasses.

• pDependencies is a pointer to an array of dependencyCount VkSubpassDependency2 structures
describing dependencies between pairs of subpasses.

• correlatedViewMaskCount is the number of correlation masks.

• pCorrelatedViewMasks is a pointer to an array of view masks indicating sets of views that may be
more efficient to render concurrently.

Parameters defined by this structure with the same name as those in VkRenderPassCreateInfo have
the identical effect to those parameters; the child structures are variants of those used in
VkRenderPassCreateInfo which add sType and pNext parameters, allowing them to be extended.

If the VkSubpassDescription2::viewMask member of any element of pSubpasses is not zero, multiview
functionality is considered to be enabled for this render pass.

correlatedViewMaskCount and pCorrelatedViewMasks have the same effect as
VkRenderPassMultiviewCreateInfo::correlationMaskCount and VkRenderPassMultiviewCreateInfo

544

::pCorrelationMasks, respectively.

Valid Usage

• VUID-VkRenderPassCreateInfo2-None-03049
If any two subpasses operate on attachments with overlapping ranges of the same
VkDeviceMemory object, and at least one subpass writes to that area of VkDeviceMemory, a
subpass dependency must be included (either directly or via some intermediate
subpasses) between them

• VUID-VkRenderPassCreateInfo2-attachment-03050
If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or the attachment indexed by any
element of pPreserveAttachments in any element of pSubpasses is bound to a range of a
VkDeviceMemory object that overlaps with any other attachment in any subpass (including
the same subpass), the VkAttachmentDescription2 structures describing them must include
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT in flags

• VUID-VkRenderPassCreateInfo2-attachment-03051
If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or any element of pPreserveAttachments
in any element of pSubpasses is not VK_ATTACHMENT_UNUSED, then it must be less than
attachmentCount

• VUID-VkRenderPassCreateInfo2-fragmentDensityMapAttachment-06472
If the pNext chain includes a VkRenderPassFragmentDensityMapCreateInfoEXT structure
and the fragmentDensityMapAttachment member is not VK_ATTACHMENT_UNUSED, then
attachment must be less than attachmentCount

• VUID-VkRenderPassCreateInfo2-pSubpasses-06473
If the pSubpasses pNext chain includes a VkSubpassDescriptionDepthStencilResolve
structure and the pDepthStencilResolveAttachment member is not NULL and does not have
the value VK_ATTACHMENT_UNUSED, then attachment must be less than attachmentCount

• VUID-VkRenderPassCreateInfo2-pAttachments-02522
For any member of pAttachments with a loadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the
first use of that attachment must not specify a layout equal to
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkRenderPassCreateInfo2-pAttachments-02523
For any member of pAttachments with a stencilLoadOp equal to
VK_ATTACHMENT_LOAD_OP_CLEAR, the first use of that attachment must not specify a layout
equal to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderPassCreateInfo2-pDependencies-03054
For any element of pDependencies, if the srcSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the srcStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the source

545

subpass

• VUID-VkRenderPassCreateInfo2-pDependencies-03055
For any element of pDependencies, if the dstSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the dstStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the destination
subpass

• VUID-VkRenderPassCreateInfo2-pCorrelatedViewMasks-03056
The set of bits included in any element of pCorrelatedViewMasks must not overlap with the
set of bits included in any other element of pCorrelatedViewMasks

• VUID-VkRenderPassCreateInfo2-viewMask-03057
If the VkSubpassDescription2::viewMask member of all elements of pSubpasses is 0,
correlatedViewMaskCount must be 0

• VUID-VkRenderPassCreateInfo2-viewMask-03058
The VkSubpassDescription2::viewMask member of all elements of pSubpasses must either
all be 0, or all not be 0

• VUID-VkRenderPassCreateInfo2-viewMask-03059
If the VkSubpassDescription2::viewMask member of all elements of pSubpasses is 0, the
dependencyFlags member of any element of pDependencies must not include
VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-VkRenderPassCreateInfo2-pDependencies-03060
For any element of pDependencies where its srcSubpass member equals its dstSubpass
member, if the viewMask member of the corresponding element of pSubpasses includes
more than one bit, its dependencyFlags member must include
VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-VkRenderPassCreateInfo2-attachment-02525
If the attachment member of any element of the pInputAttachments member of any element
of pSubpasses is not VK_ATTACHMENT_UNUSED, the aspectMask member of that element of
pInputAttachments must only include aspects that are present in images of the format
specified by the element of pAttachments specified by attachment

• VUID-VkRenderPassCreateInfo2-srcSubpass-02526
The srcSubpass member of each element of pDependencies must be less than subpassCount

• VUID-VkRenderPassCreateInfo2-dstSubpass-02527
The dstSubpass member of each element of pDependencies must be less than subpassCount

• VUID-VkRenderPassCreateInfo2-pAttachments-04585
If any element of pAttachments is used as a fragment shading rate attachment in any
subpass, it must not be used as any other attachment in the render pass

• VUID-VkRenderPassCreateInfo2-pAttachments-09387
If any element of pAttachments is used as a fragment shading rate attachment, the loadOp
for that attachment must not be VK_ATTACHMENT_LOAD_OP_CLEAR

• VUID-VkRenderPassCreateInfo2-flags-04521
If flags includes VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM, an element of pSubpasses
includes an instance of VkFragmentShadingRateAttachmentInfoKHR in its pNext chain,
and the pFragmentShadingRateAttachment member of that structure is not equal to NULL, the

546

attachment member of pFragmentShadingRateAttachment must be VK_ATTACHMENT_UNUSED

• VUID-VkRenderPassCreateInfo2-pAttachments-04586
If any element of pAttachments is used as a fragment shading rate attachment in any
subpass, it must have an image format whose potential format features contain
VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkRenderPassCreateInfo2-rasterizationSamples-04905
If the pipeline is being created with fragment shader state, and the
VK_QCOM_render_pass_shader_resolve extension is enabled, and if subpass has any input
attachments, and if the subpass description contains
VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM, then the sample count of the input
attachments must equal rasterizationSamples

• VUID-VkRenderPassCreateInfo2-sampleShadingEnable-04906
If the pipeline is being created with fragment shader state, and the
VK_QCOM_render_pass_shader_resolve extension is enabled, and if the subpass description
contains VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM, then sampleShadingEnable
must be false

• VUID-VkRenderPassCreateInfo2-flags-04907
If flags includes VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, and if
pResolveAttachments is not NULL, then each resolve attachment must be
VK_ATTACHMENT_UNUSED

• VUID-VkRenderPassCreateInfo2-flags-04908
If flags includes VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, and if
pDepthStencilResolveAttachment is not NULL, then the depth/stencil resolve attachment
must be VK_ATTACHMENT_UNUSED

• VUID-VkRenderPassCreateInfo2-flags-04909
If flags includes VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, then the subpass must
be the last subpass in a subpass dependency chain

• VUID-VkRenderPassCreateInfo2-attachment-06244
If the attachment member of the pDepthStencilAttachment member of an element of
pSubpasses is not VK_ATTACHMENT_UNUSED, the layout member of that same structure is either
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
and the pNext chain of that structure does not include a
VkAttachmentReferenceStencilLayout structure, then the element of pAttachments with an
index equal to attachment must not have a format that includes both depth and stencil
components

• VUID-VkRenderPassCreateInfo2-attachment-06245
If the attachment member of the pDepthStencilAttachment member of an element of
pSubpasses is not VK_ATTACHMENT_UNUSED and the layout member of that same structure is
either VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, then the element of pAttachments with an
index equal to attachment must have a format that includes only a stencil component

• VUID-VkRenderPassCreateInfo2-attachment-06246
If the attachment member of the pDepthStencilAttachment member of an element of
pSubpasses is not VK_ATTACHMENT_UNUSED and the layout member of that same structure is

547

either VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, then the element of pAttachments with an index
equal to attachment must not have a format that includes only a stencil component

• VUID-VkRenderPassCreateInfo2-pResolveAttachments-09331
If any element of pResolveAttachments of any element of pSubpasses references an
attachment description with a format of VK_FORMAT_UNDEFINED,
VkRenderPassFragmentDensityMapCreateInfoEXT::fragmentDensityMapAttachment-
>attachment must be VK_ATTACHMENT_UNUSED

Valid Usage (Implicit)

• VUID-VkRenderPassCreateInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2

• VUID-VkRenderPassCreateInfo2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkRenderPassCreationControlEXT,
VkRenderPassCreationFeedbackCreateInfoEXT, or
VkRenderPassFragmentDensityMapCreateInfoEXT

• VUID-VkRenderPassCreateInfo2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRenderPassCreateInfo2-flags-parameter
flags must be a valid combination of VkRenderPassCreateFlagBits values

• VUID-VkRenderPassCreateInfo2-pAttachments-parameter
If attachmentCount is not 0, pAttachments must be a valid pointer to an array of
attachmentCount valid VkAttachmentDescription2 structures

• VUID-VkRenderPassCreateInfo2-pSubpasses-parameter
pSubpasses must be a valid pointer to an array of subpassCount valid
VkSubpassDescription2 structures

• VUID-VkRenderPassCreateInfo2-pDependencies-parameter
If dependencyCount is not 0, pDependencies must be a valid pointer to an array of
dependencyCount valid VkSubpassDependency2 structures

• VUID-VkRenderPassCreateInfo2-pCorrelatedViewMasks-parameter
If correlatedViewMaskCount is not 0, pCorrelatedViewMasks must be a valid pointer to an
array of correlatedViewMaskCount uint32_t values

• VUID-VkRenderPassCreateInfo2-subpassCount-arraylength
subpassCount must be greater than 0

The VkAttachmentDescription2 structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkAttachmentDescription2 {
 VkStructureType sType;

548

 const void* pNext;
 VkAttachmentDescriptionFlags flags;
 VkFormat format;
 VkSampleCountFlagBits samples;
 VkAttachmentLoadOp loadOp;
 VkAttachmentStoreOp storeOp;
 VkAttachmentLoadOp stencilLoadOp;
 VkAttachmentStoreOp stencilStoreOp;
 VkImageLayout initialLayout;
 VkImageLayout finalLayout;
} VkAttachmentDescription2;

or the equivalent

// Provided by VK_KHR_create_renderpass2
typedef VkAttachmentDescription2 VkAttachmentDescription2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkAttachmentDescriptionFlagBits specifying additional properties of the
attachment.

• format is a VkFormat value specifying the format of the image that will be used for the
attachment.

• samples is a VkSampleCountFlagBits value specifying the number of samples of the image.

• loadOp is a VkAttachmentLoadOp value specifying how the contents of color and depth
components of the attachment are treated at the beginning of the subpass where it is first used.

• storeOp is a VkAttachmentStoreOp value specifying how the contents of color and depth
components of the attachment are treated at the end of the subpass where it is last used.

• stencilLoadOp is a VkAttachmentLoadOp value specifying how the contents of stencil
components of the attachment are treated at the beginning of the subpass where it is first used.

• stencilStoreOp is a VkAttachmentStoreOp value specifying how the contents of stencil
components of the attachment are treated at the end of the last subpass where it is used.

• initialLayout is the layout the attachment image subresource will be in when a render pass
instance begins.

• finalLayout is the layout the attachment image subresource will be transitioned to when a
render pass instance ends.

Parameters defined by this structure with the same name as those in VkAttachmentDescription
have the identical effect to those parameters.

If the separateDepthStencilLayouts feature is enabled, and format is a depth/stencil format,
initialLayout and finalLayout can be set to a layout that only specifies the layout of the depth
aspect.

549

If the pNext chain includes a VkAttachmentDescriptionStencilLayout structure, then the
stencilInitialLayout and stencilFinalLayout members specify the initial and final layouts of the
stencil aspect of a depth/stencil format, and initialLayout and finalLayout only apply to the depth
aspect. For depth-only formats, the VkAttachmentDescriptionStencilLayout structure is ignored. For
stencil-only formats, the initial and final layouts of the stencil aspect are taken from the
VkAttachmentDescriptionStencilLayout structure if present, or initialLayout and finalLayout if not
present.

If format is a depth/stencil format, and either initialLayout or finalLayout does not specify a layout
for the stencil aspect, then the application must specify the initial and final layouts of the stencil
aspect by including a VkAttachmentDescriptionStencilLayout structure in the pNext chain.

loadOp and storeOp are ignored for fragment shading rate attachments. No access to the shading
rate attachment is performed in loadOp and storeOp. Instead, access to
VK_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR is performed as fragments are rasterized.

Valid Usage

• VUID-VkAttachmentDescription2-format-06699
If format includes a color or depth component and loadOp is VK_ATTACHMENT_LOAD_OP_LOAD,
then initialLayout must not be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription2-finalLayout-00843
finalLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkAttachmentDescription2-format-03280
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03281
If format is a depth/stencil format, initialLayout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription2-format-03282
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03283
If format is a depth/stencil format, finalLayout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription2-format-06487
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription2-format-06488
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

550

• VUID-VkAttachmentDescription2-separateDepthStencilLayouts-03284
If the separateDepthStencilLayouts feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentDescription2-separateDepthStencilLayouts-03285
If the separateDepthStencilLayouts feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentDescription2-format-03286
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03287
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-06906
If format is a depth/stencil format which includes both depth and stencil components,
initialLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-06907
If format is a depth/stencil format which includes both depth and stencil components,
finalLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03290
If format is a depth/stencil format which includes only the depth component,
initialLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03291
If format is a depth/stencil format which includes only the depth component, finalLayout
must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-synchronization2-06908
If the synchronization2 feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkAttachmentDescription2-synchronization2-06909
If the synchronization2 feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkAttachmentDescription2-attachmentFeedbackLoopLayout-07309
If the attachmentFeedbackLoopLayout feature is not enabled, initialLayout must not be

551

VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VUID-VkAttachmentDescription2-attachmentFeedbackLoopLayout-07310
If the attachmentFeedbackLoopLayout feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VUID-VkAttachmentDescription2-samples-08745
samples must be a valid VkSampleCountFlagBits value that is set in
imageCreateSampleCounts (as defined in Image Creation Limits) for the given format

• VUID-VkAttachmentDescription2-dynamicRenderingLocalRead-09544
If the dynamicRenderingLocalRead feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• VUID-VkAttachmentDescription2-dynamicRenderingLocalRead-09545
If the dynamicRenderingLocalRead feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• VUID-VkAttachmentDescription2-pNext-06704
If the pNext chain does not include a VkAttachmentDescriptionStencilLayout structure,
format includes a stencil component, and stencilLoadOp is VK_ATTACHMENT_LOAD_OP_LOAD,
then initialLayout must not be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription2-pNext-06705
If the pNext chain includes a VkAttachmentDescriptionStencilLayout structure, format
includes a stencil component, and stencilLoadOp is VK_ATTACHMENT_LOAD_OP_LOAD, then
VkAttachmentDescriptionStencilLayout::stencilInitialLayout must not be
VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription2-format-06249
If format is a depth/stencil format which includes both depth and stencil components, and
initialLayout is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, the pNext chain must include a
VkAttachmentDescriptionStencilLayout structure

• VUID-VkAttachmentDescription2-format-06250
If format is a depth/stencil format which includes both depth and stencil components, and
finalLayout is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, the pNext chain must include a
VkAttachmentDescriptionStencilLayout structure

• VUID-VkAttachmentDescription2-format-06247
If the pNext chain does not include a VkAttachmentDescriptionStencilLayout structure and
format only includes a stencil component, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-06248
If the pNext chain does not include a VkAttachmentDescriptionStencilLayout structure and
format only includes a stencil component, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-09332
If externalFormatResolve is not enabled, format must not be VK_FORMAT_UNDEFINED

• VUID-VkAttachmentDescription2-format-09334

552

If format is VK_FORMAT_UNDEFINED, there must be a VkExternalFormatANDROID structure in
the pNext chain with a externalFormat that is not equal to 0

Valid Usage (Implicit)

• VUID-VkAttachmentDescription2-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2

• VUID-VkAttachmentDescription2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkAttachmentDescriptionStencilLayout or
VkExternalFormatANDROID

• VUID-VkAttachmentDescription2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkAttachmentDescription2-flags-parameter
flags must be a valid combination of VkAttachmentDescriptionFlagBits values

• VUID-VkAttachmentDescription2-format-parameter
format must be a valid VkFormat value

• VUID-VkAttachmentDescription2-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-VkAttachmentDescription2-loadOp-parameter
loadOp must be a valid VkAttachmentLoadOp value

• VUID-VkAttachmentDescription2-storeOp-parameter
storeOp must be a valid VkAttachmentStoreOp value

• VUID-VkAttachmentDescription2-stencilLoadOp-parameter
stencilLoadOp must be a valid VkAttachmentLoadOp value

• VUID-VkAttachmentDescription2-stencilStoreOp-parameter
stencilStoreOp must be a valid VkAttachmentStoreOp value

• VUID-VkAttachmentDescription2-initialLayout-parameter
initialLayout must be a valid VkImageLayout value

• VUID-VkAttachmentDescription2-finalLayout-parameter
finalLayout must be a valid VkImageLayout value

The VkAttachmentDescriptionStencilLayout structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkAttachmentDescriptionStencilLayout {
 VkStructureType sType;
 void* pNext;
 VkImageLayout stencilInitialLayout;
 VkImageLayout stencilFinalLayout;
} VkAttachmentDescriptionStencilLayout;

553

or the equivalent

// Provided by VK_KHR_separate_depth_stencil_layouts
typedef VkAttachmentDescriptionStencilLayout VkAttachmentDescriptionStencilLayoutKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stencilInitialLayout is the layout the stencil aspect of the attachment image subresource will
be in when a render pass instance begins.

• stencilFinalLayout is the layout the stencil aspect of the attachment image subresource will be
transitioned to when a render pass instance ends.

Valid Usage

• VUID-VkAttachmentDescriptionStencilLayout-stencilInitialLayout-03308
stencilInitialLayout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescriptionStencilLayout-stencilFinalLayout-03309
stencilFinalLayout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescriptionStencilLayout-stencilFinalLayout-03310
stencilFinalLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED

Valid Usage (Implicit)

• VUID-VkAttachmentDescriptionStencilLayout-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT

• VUID-VkAttachmentDescriptionStencilLayout-stencilInitialLayout-parameter
stencilInitialLayout must be a valid VkImageLayout value

• VUID-VkAttachmentDescriptionStencilLayout-stencilFinalLayout-parameter
stencilFinalLayout must be a valid VkImageLayout value

The VkSubpassDescription2 structure is defined as:

554

// Provided by VK_VERSION_1_2
typedef struct VkSubpassDescription2 {
 VkStructureType sType;
 const void* pNext;
 VkSubpassDescriptionFlags flags;
 VkPipelineBindPoint pipelineBindPoint;
 uint32_t viewMask;
 uint32_t inputAttachmentCount;
 const VkAttachmentReference2* pInputAttachments;
 uint32_t colorAttachmentCount;
 const VkAttachmentReference2* pColorAttachments;
 const VkAttachmentReference2* pResolveAttachments;
 const VkAttachmentReference2* pDepthStencilAttachment;
 uint32_t preserveAttachmentCount;
 const uint32_t* pPreserveAttachments;
} VkSubpassDescription2;

or the equivalent

// Provided by VK_KHR_create_renderpass2
typedef VkSubpassDescription2 VkSubpassDescription2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSubpassDescriptionFlagBits specifying usage of the subpass.

• pipelineBindPoint is a VkPipelineBindPoint value specifying the pipeline type supported for this
subpass.

• viewMask is a bitfield of view indices describing which views rendering is broadcast to in this
subpass, when multiview is enabled.

• inputAttachmentCount is the number of input attachments.

• pInputAttachments is a pointer to an array of VkAttachmentReference2 structures defining the
input attachments for this subpass and their layouts.

• colorAttachmentCount is the number of color attachments.

• pColorAttachments is a pointer to an array of colorAttachmentCount VkAttachmentReference2
structures defining the color attachments for this subpass and their layouts.

• pResolveAttachments is NULL or a pointer to an array of colorAttachmentCount
VkAttachmentReference2 structures defining the resolve attachments for this subpass and their
layouts.

• pDepthStencilAttachment is a pointer to a VkAttachmentReference2 structure specifying the
depth/stencil attachment for this subpass and its layout.

• preserveAttachmentCount is the number of preserved attachments.

• pPreserveAttachments is a pointer to an array of preserveAttachmentCount render pass attachment

555

indices identifying attachments that are not used by this subpass, but whose contents must be
preserved throughout the subpass.

Parameters defined by this structure with the same name as those in VkSubpassDescription have
the identical effect to those parameters.

viewMask has the same effect for the described subpass as VkRenderPassMultiviewCreateInfo
::pViewMasks has on each corresponding subpass.

If a VkFragmentShadingRateAttachmentInfoKHR structure is included in the pNext chain,
pFragmentShadingRateAttachment is not NULL, and its attachment member is not VK_ATTACHMENT_UNUSED,
the identified attachment defines a fragment shading rate attachment for that subpass.

If any element of pResolveAttachments is an image specified with an VkExternalFormatANDROID,
values in the corresponding color attachment will be resolved to the resolve attachment in the
same manner as specified for VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID.

If the nullColorAttachmentWithExternalFormatResolve limit is VK_TRUE, values in the color attachment
will be loaded from the resolve attachment at the start of rendering, and may also be reloaded any
time after a resolve occurs or the resolve attachment is written to; if this occurs it must happen-
before any writes to the color attachment are performed which happen-after the resolve that
triggers this. If any color component in the external format is subsampled, values will be read from
the nearest sample in the image when they are loaded. If the color attachment is also used as an
input attachment, the same behavior applies.

Setting the color attachment to VK_ATTACHMENT_UNUSED when an external resolve attachment is used
and the nullColorAttachmentWithExternalFormatResolve limit is VK_TRUE will not result in color
attachment writes to be discarded for that attachment.

When nullColorAttachmentWithExternalFormatResolve is VK_TRUE, the color output from the subpass
can still be read via an input attachment; but the application cannot bind an image view for the
color attachment as there is no such image view bound. Instead to access the data as an input
attachment applications can use the resolve attachment in its place - using the resolve attachment
image for the descriptor, and setting the corresponding element of pInputAttachments to the index of
the resolve attachment.

Loads or input attachment reads from the resolve attachment are performed as if using a
VkSamplerYcbcrConversionCreateInfo with the following parameters:

VkSamplerYcbcrConversionCreateInfo createInfo = {
 .sType = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO,
 .pNext = NULL,
 .format = VK_FORMAT_UNDEFINED,
 .ycbcrModel = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY,
 .ycbcrRange = VK_SAMPLER_YCBCR_RANGE_ITU_FULL,
 .components = {
 .r = VK_COMPONENT_SWIZZLE_B
 .g = VK_COMPONENT_SWIZZLE_R
 .b = VK_COMPONENT_SWIZZLE_G
 .a = VK_COMPONENT_SWIZZLE_IDENTITY},

556

 .xChromaOffset = properties.chromaOffsetX,
 .yChromaOffset = properties.chromaOffsetY,
 .chromaFilter = VK_FILTER_NEAREST,
 .forceExplicitReconstruction = ... };

where properties is equal to VkPhysicalDeviceExternalFormatResolvePropertiesANDROID returned
by the device and forceExplicitReconstruction is effectively ignored as the
VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY model is used. The applied swizzle is the same
effective swizzle that would be applied by the VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY
model, but no range expansion is applied.

Valid Usage

• VUID-VkSubpassDescription2-attachment-06912
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06913
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06914
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06915
If the attachment member of pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED, ts layout
member must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06916
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06917
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06918
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL

557

• VUID-VkSubpassDescription2-attachment-06919
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06920
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06921
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR

• VUID-VkSubpassDescription2-attachment-06922
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkSubpassDescription2-attachment-06923
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkSubpassDescription2-attachment-06251
If the attachment member of pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED and its
pNext chain includes a VkAttachmentReferenceStencilLayout structure, the layout
member of pDepthStencilAttachment must not be
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-pipelineBindPoint-04953
pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS or
VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI

• VUID-VkSubpassDescription2-colorAttachmentCount-03063
colorAttachmentCount must be less than or equal to VkPhysicalDeviceLimits
::maxColorAttachments

• VUID-VkSubpassDescription2-loadOp-03064
If the first use of an attachment in this render pass is as an input attachment, and the
attachment is not also used as a color or depth/stencil attachment in the same subpass,
then loadOp must not be VK_ATTACHMENT_LOAD_OP_CLEAR

• VUID-VkSubpassDescription2-pResolveAttachments-03067
If pResolveAttachments is not NULL, each resolve attachment that is not
VK_ATTACHMENT_UNUSED must have a sample count of VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescription2-externalFormatResolve-09335
If externalFormatResolve is not enabled and pResolveAttachments is not NULL, for each
resolve attachment that does not have the value VK_ATTACHMENT_UNUSED, the corresponding
color attachment must not have the value VK_ATTACHMENT_UNUSED

558

• VUID-VkSubpassDescription2-nullColorAttachmentWithExternalFormatResolve-09336
If the nullColorAttachmentWithExternalFormatResolve property is VK_FALSE and
pResolveAttachments is not NULL, for each resolve attachment that has a format of
VK_FORMAT_UNDEFINED, the corresponding color attachment must not have the value
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription2-nullColorAttachmentWithExternalFormatResolve-09337
If the nullColorAttachmentWithExternalFormatResolve property is VK_TRUE and
pResolveAttachments is not NULL, for each resolve attachment that has a format of
VK_FORMAT_UNDEFINED, the corresponding color attachment must have the value
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription2-externalFormatResolve-09338
If externalFormatResolve is not enabled and pResolveAttachments is not NULL, for each
resolve attachment that is not VK_ATTACHMENT_UNUSED, the corresponding color attachment
must not have a sample count of VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescription2-externalFormatResolve-09339
If externalFormatResolve is not enabled, each element of pResolveAttachments must have
the same VkFormat as its corresponding color attachment

• VUID-VkSubpassDescription2-multisampledRenderToSingleSampled-06869
If the multisampledRenderToSingleSampled feature is not enabled, all attachments in
pColorAttachments that are not VK_ATTACHMENT_UNUSED must have the same sample count

• VUID-VkSubpassDescription2-pInputAttachments-02897
All attachments in pInputAttachments that are not VK_ATTACHMENT_UNUSED and any of the
following is true:

◦ the externalFormatResolve feature is not enabled

◦ the nullColorAttachmentWithExternalFormatResolve property is VK_FALSE

◦ does not have a non-zero value of VkExternalFormatANDROID::externalFormat

must have image formats whose potential format features contain at least
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescription2-pColorAttachments-02898
All attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have image
formats whose potential format features contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkSubpassDescription2-pResolveAttachments-09343
All attachments in pResolveAttachments that are not VK_ATTACHMENT_UNUSED and do not have
an image format of VK_FORMAT_UNDEFINED must have image formats whose potential format
features contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkSubpassDescription2-pDepthStencilAttachment-02900
If pDepthStencilAttachment is not NULL and the attachment is not VK_ATTACHMENT_UNUSED then
it must have an image format whose potential format features contain
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescription2-linearColorAttachment-06499
If the linearColorAttachment feature is enabled and the image is created with

559

VK_IMAGE_TILING_LINEAR, all attachments in pInputAttachments that are not
VK_ATTACHMENT_UNUSED must have image formats whose potential format features must
contain VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkSubpassDescription2-linearColorAttachment-06500
If the linearColorAttachment feature is enabled and the image is created with
VK_IMAGE_TILING_LINEAR, all attachments in pColorAttachments that are not
VK_ATTACHMENT_UNUSED must have image formats whose potential format features must
contain VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkSubpassDescription2-linearColorAttachment-06501
If the linearColorAttachment feature is enabled and the image is created with
VK_IMAGE_TILING_LINEAR, all attachments in pResolveAttachments that are not
VK_ATTACHMENT_UNUSED must have image formats whose potential format features must
contain VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkSubpassDescription2-None-09456
If either of the following is enabled:

◦ The VK_AMD_mixed_attachment_samples extension

◦ The VK_NV_framebuffer_mixed_samples extension

all attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have a
sample count that is smaller than or equal to the sample count of pDepthStencilAttachment
if it is not VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription2-pNext-06870
If the pNext chain includes a VkMultisampledRenderToSingleSampledInfoEXT structure
with multisampledRenderToSingleSampledEnable equal to VK_TRUE, then all attachments in
pColorAttachments and pDepthStencilAttachment that are not VK_ATTACHMENT_UNUSED must
have a sample count that is either VK_SAMPLE_COUNT_1_BIT or equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-VkSubpassDescription2-pNext-06871
If the pNext chain includes a VkMultisampledRenderToSingleSampledInfoEXT structure
with multisampledRenderToSingleSampledEnable equal to VK_TRUE, and
pDepthStencilAttachment is not NULL, does not have the value VK_ATTACHMENT_UNUSED, and has
a sample count of VK_SAMPLE_COUNT_1_BIT, the pNext chain must also include a
VkSubpassDescriptionDepthStencilResolve structure with pDepthStencilResolveAttachment
that is either NULL or has the value VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription2-multisampledRenderToSingleSampled-06872
All attachments in pDepthStencilAttachment or pColorAttachments that are not
VK_ATTACHMENT_UNUSED must have the same sample count , if none of the following are
enabled:

◦ The VK_AMD_mixed_attachment_samples extension

◦ The VK_NV_framebuffer_mixed_samples extension

◦ The multisampledRenderToSingleSampled feature,

• VUID-VkSubpassDescription2-attachment-03073
Each element of pPreserveAttachments must not be VK_ATTACHMENT_UNUSED

560

• VUID-VkSubpassDescription2-pPreserveAttachments-03074
Each element of pPreserveAttachments must not also be an element of any other member
of the subpass description

• VUID-VkSubpassDescription2-layout-02528
If any attachment is used by more than one VkAttachmentReference2 member, then each
use must use the same layout

• VUID-VkSubpassDescription2-flags-03076
If flags includes VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX, it must also
include VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX

• VUID-VkSubpassDescription2-attachment-02799
If the attachment member of any element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
then the aspectMask member must be a valid combination of VkImageAspectFlagBits

• VUID-VkSubpassDescription2-attachment-02800
If the attachment member of any element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
then the aspectMask member must not be 0

• VUID-VkSubpassDescription2-attachment-02801
If the attachment member of any element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
then the aspectMask member must not include VK_IMAGE_ASPECT_METADATA_BIT

• VUID-VkSubpassDescription2-attachment-04563
If the attachment member of any element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
then the aspectMask member must not include VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT for
any index i

• VUID-VkSubpassDescription2-pDepthStencilAttachment-04440
An attachment must not be used in both pDepthStencilAttachment and pColorAttachments

• VUID-VkSubpassDescription2-multiview-06558
If the multiview feature is not enabled, viewMask must be 0

• VUID-VkSubpassDescription2-viewMask-06706
The index of the most significant bit in viewMask must be less than maxMultiviewViewCount

• VUID-VkSubpassDescription2-externalFormatResolve-09344
If externalFormatResolve is enabled, pResolveAttachments is not NULL, and
colorAttachmentCount is not 1, any element of pResolveAttachments that is not
VK_ATTACHMENT_UNUSED, must not have a format of VK_FORMAT_UNDEFINED

• VUID-VkSubpassDescription2-externalFormatResolve-09345
If externalFormatResolve is enabled, pResolveAttachments is not NULL, any element of
pResolveAttachments is not VK_ATTACHMENT_UNUSED and has a format of VK_FORMAT_UNDEFINED,
and the corresponding element of pColorAttachments is not VK_ATTACHMENT_UNUSED, the color
attachment must have a samples value of 1

• VUID-VkSubpassDescription2-externalFormatResolve-09346
If externalFormatResolve is enabled, pResolveAttachments is not NULL, and any element of
pResolveAttachments is not VK_ATTACHMENT_UNUSED and has a format of VK_FORMAT_UNDEFINED,
viewMask must be 0

• VUID-VkSubpassDescription2-externalFormatResolve-09347
If externalFormatResolve is enabled, pResolveAttachments is not NULL, and any element of

561

pResolveAttachments is not VK_ATTACHMENT_UNUSED and has a format of VK_FORMAT_UNDEFINED,
VkFragmentShadingRateAttachmentInfoKHR::pFragmentShadingRateAttachment must
either be NULL or a VkAttachmentReference2 structure with an attachment value of
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription2-externalFormatResolve-09348
If externalFormatResolve is enabled, pResolveAttachments is not NULL, and any element of
pResolveAttachments is not VK_ATTACHMENT_UNUSED and has a format of VK_FORMAT_UNDEFINED,
elements of pInputAttachments referencing either a color attachment or resolve
attachment used in this subpass must not include VK_IMAGE_ASPECT_PLANE_i_BIT for any
index i in its aspectMask

Valid Usage (Implicit)

• VUID-VkSubpassDescription2-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2

• VUID-VkSubpassDescription2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkFragmentShadingRateAttachmentInfoKHR,
VkMultisampledRenderToSingleSampledInfoEXT, VkRenderPassCreationControlEXT,
VkRenderPassSubpassFeedbackCreateInfoEXT, or
VkSubpassDescriptionDepthStencilResolve

• VUID-VkSubpassDescription2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSubpassDescription2-flags-parameter
flags must be a valid combination of VkSubpassDescriptionFlagBits values

• VUID-VkSubpassDescription2-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkSubpassDescription2-pInputAttachments-parameter
If inputAttachmentCount is not 0, pInputAttachments must be a valid pointer to an array of
inputAttachmentCount valid VkAttachmentReference2 structures

• VUID-VkSubpassDescription2-pColorAttachments-parameter
If colorAttachmentCount is not 0, pColorAttachments must be a valid pointer to an array of
colorAttachmentCount valid VkAttachmentReference2 structures

• VUID-VkSubpassDescription2-pResolveAttachments-parameter
If colorAttachmentCount is not 0, and pResolveAttachments is not NULL, pResolveAttachments
must be a valid pointer to an array of colorAttachmentCount valid
VkAttachmentReference2 structures

• VUID-VkSubpassDescription2-pDepthStencilAttachment-parameter
If pDepthStencilAttachment is not NULL, pDepthStencilAttachment must be a valid pointer to
a valid VkAttachmentReference2 structure

• VUID-VkSubpassDescription2-pPreserveAttachments-parameter
If preserveAttachmentCount is not 0, pPreserveAttachments must be a valid pointer to an
array of preserveAttachmentCount uint32_t values

562

The VkSubpassDescriptionDepthStencilResolve structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSubpassDescriptionDepthStencilResolve {
 VkStructureType sType;
 const void* pNext;
 VkResolveModeFlagBits depthResolveMode;
 VkResolveModeFlagBits stencilResolveMode;
 const VkAttachmentReference2* pDepthStencilResolveAttachment;
} VkSubpassDescriptionDepthStencilResolve;

or the equivalent

// Provided by VK_KHR_depth_stencil_resolve
typedef VkSubpassDescriptionDepthStencilResolve
VkSubpassDescriptionDepthStencilResolveKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• depthResolveMode is a VkResolveModeFlagBits value describing the depth resolve mode.

• stencilResolveMode is a VkResolveModeFlagBits value describing the stencil resolve mode.

• pDepthStencilResolveAttachment is NULL or a pointer to a VkAttachmentReference2 structure
defining the depth/stencil resolve attachment for this subpass and its layout.

If the pNext chain of VkSubpassDescription2 includes a VkSubpassDescriptionDepthStencilResolve
structure, then that structure describes multisample resolve operations for the depth/stencil
attachment in a subpass. If this structure is not included in the pNext chain of
VkSubpassDescription2, or if it is and either pDepthStencilResolveAttachment is NULL or its
attachment index is VK_ATTACHMENT_UNUSED, it indicates that no depth/stencil resolve attachment will
be used in the subpass.

Valid Usage

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03177
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, pDepthStencilAttachment must not be NULL or have the value
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03179
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, pDepthStencilAttachment must not have a sample count of
VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03180
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, pDepthStencilResolveAttachment must have a sample count of

563

VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-02651
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED then it must have an image format whose potential format features
contain VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03181
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED and VkFormat of pDepthStencilResolveAttachment has a depth
component, then the VkFormat of pDepthStencilAttachment must have a depth component
with the same number of bits and numeric format

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03182
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, and VkFormat of pDepthStencilResolveAttachment has a stencil
component, then the VkFormat of pDepthStencilAttachment must have a stencil
component with the same number of bits and numeric format

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03178
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, depthResolveMode and stencilResolveMode must not both be
VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-depthResolveMode-03183
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED and the VkFormat of pDepthStencilResolveAttachment has a depth
component, then the value of depthResolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedDepthResolveModes or
VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-stencilResolveMode-03184
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED and the VkFormat of pDepthStencilResolveAttachment has a stencil
component, then the value of stencilResolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedStencilResolveModes or
VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03185
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, the VkFormat of pDepthStencilResolveAttachment has both depth and
stencil components, VkPhysicalDeviceDepthStencilResolveProperties::independentResolve
is VK_FALSE, and VkPhysicalDeviceDepthStencilResolveProperties::independentResolveNone
is VK_FALSE, then the values of depthResolveMode and stencilResolveMode must be identical

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03186
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, the VkFormat of pDepthStencilResolveAttachment has both depth and
stencil components, VkPhysicalDeviceDepthStencilResolveProperties::independentResolve
is VK_FALSE and VkPhysicalDeviceDepthStencilResolveProperties::independentResolveNone
is VK_TRUE, then the values of depthResolveMode and stencilResolveMode must be identical
or one of them must be VK_RESOLVE_MODE_NONE

564

• VUID-VkSubpassDescriptionDepthStencilResolve-pNext-06873
If the pNext chain of VkSubpassDescription2 includes a
VkMultisampledRenderToSingleSampledInfoEXT structure, the
multisampledRenderToSingleSampledEnable field is VK_TRUE, and pDepthStencilAttachment is
not NULL and does not have the value VK_ATTACHMENT_UNUSED, depthResolveMode and
stencilResolveMode must not both be VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-pNext-06874
If the pNext chain of VkSubpassDescription2 includes a
VkMultisampledRenderToSingleSampledInfoEXT structure whose
multisampledRenderToSingleSampledEnable field is VK_TRUE, and pDepthStencilAttachment is
not NULL, does not have the value VK_ATTACHMENT_UNUSED, and has a VkFormat that has a
depth component, then the value of depthResolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedDepthResolveModes or
VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-pNext-06875
If the pNext chain of VkSubpassDescription2 includes a
VkMultisampledRenderToSingleSampledInfoEXT structure whose
multisampledRenderToSingleSampledEnable field is VK_TRUE, and pDepthStencilAttachment is
not NULL, does not have the value VK_ATTACHMENT_UNUSED, and has a VkFormat with a stencil
component, then the value of stencilResolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedStencilResolveModes or
VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-pNext-06876
If the pNext chain of VkSubpassDescription2 includes a
VkMultisampledRenderToSingleSampledInfoEXT structure whose
multisampledRenderToSingleSampledEnable field is VK_TRUE, pDepthStencilAttachment is not
NULL, does not have the value VK_ATTACHMENT_UNUSED, and has a VkFormat with both depth
and stencil components, and both VkPhysicalDeviceDepthStencilResolveProperties
::independentResolve and VkPhysicalDeviceDepthStencilResolveProperties
::independentResolveNone are VK_FALSE, then the values of depthResolveMode and
stencilResolveMode must be identical

• VUID-VkSubpassDescriptionDepthStencilResolve-pNext-06877
If the pNext chain of VkSubpassDescription2 includes a
VkMultisampledRenderToSingleSampledInfoEXT structure whose
multisampledRenderToSingleSampledEnable field is VK_TRUE, pDepthStencilAttachment is not
NULL, does not have the value VK_ATTACHMENT_UNUSED, and has a VkFormat with both depth
and stencil components, VkPhysicalDeviceDepthStencilResolveProperties
::independentResolve is VK_FALSE, and VkPhysicalDeviceDepthStencilResolveProperties
::independentResolveNone is VK_TRUE, then the values of depthResolveMode and
stencilResolveMode must be identical or one of them must be VK_RESOLVE_MODE_NONE

Valid Usage (Implicit)

• VUID-VkSubpassDescriptionDepthStencilResolve-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE

565

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-
parameter
If pDepthStencilResolveAttachment is not NULL, pDepthStencilResolveAttachment must be a
valid pointer to a valid VkAttachmentReference2 structure

The VkFragmentShadingRateAttachmentInfoKHR structure is defined as:

// Provided by VK_KHR_fragment_shading_rate
typedef struct VkFragmentShadingRateAttachmentInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const VkAttachmentReference2* pFragmentShadingRateAttachment;
 VkExtent2D shadingRateAttachmentTexelSize;
} VkFragmentShadingRateAttachmentInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pFragmentShadingRateAttachment is NULL or a pointer to a VkAttachmentReference2 structure
defining the fragment shading rate attachment for this subpass.

• shadingRateAttachmentTexelSize specifies the size of the portion of the framebuffer
corresponding to each texel in pFragmentShadingRateAttachment.

If no shading rate attachment is specified, or if this structure is not specified, the implementation
behaves as if a valid shading rate attachment was specified with all texels specifying a single pixel
per fragment.

Valid Usage

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
04524
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, its layout member must be equal to VK_IMAGE_LAYOUT_GENERAL or
VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
04525
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, shadingRateAttachmentTexelSize.width must be a power of two
value

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
04526
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, shadingRateAttachmentTexelSize.width must be less than or equal to
maxFragmentShadingRateAttachmentTexelSize.width

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-

566

04527
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, shadingRateAttachmentTexelSize.width must be greater than or
equal to minFragmentShadingRateAttachmentTexelSize.width

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
04528
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, shadingRateAttachmentTexelSize.height must be a power of two
value

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
04529
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, shadingRateAttachmentTexelSize.height must be less than or equal
to maxFragmentShadingRateAttachmentTexelSize.height

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
04530
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, shadingRateAttachmentTexelSize.height must be greater than or
equal to minFragmentShadingRateAttachmentTexelSize.height

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
04531
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, the quotient of shadingRateAttachmentTexelSize.width and
shadingRateAttachmentTexelSize.height must be less than or equal to
maxFragmentShadingRateAttachmentTexelSizeAspectRatio

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
04532
If pFragmentShadingRateAttachment is not NULL and its attachment member is not
VK_ATTACHMENT_UNUSED, the quotient of shadingRateAttachmentTexelSize.height and
shadingRateAttachmentTexelSize.width must be less than or equal to
maxFragmentShadingRateAttachmentTexelSizeAspectRatio

Valid Usage (Implicit)

• VUID-VkFragmentShadingRateAttachmentInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR

• VUID-VkFragmentShadingRateAttachmentInfoKHR-pFragmentShadingRateAttachment-
parameter
If pFragmentShadingRateAttachment is not NULL, pFragmentShadingRateAttachment must be a
valid pointer to a valid VkAttachmentReference2 structure

If the pNext chain of VkSubpassDescription2 or VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure, then that structure describes how
multisampled rendering is performed on single sampled attachments in that subpass.

567

The VkMultisampledRenderToSingleSampledInfoEXT structure is defined as:

// Provided by VK_EXT_multisampled_render_to_single_sampled
typedef struct VkMultisampledRenderToSingleSampledInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkBool32 multisampledRenderToSingleSampledEnable;
 VkSampleCountFlagBits rasterizationSamples;
} VkMultisampledRenderToSingleSampledInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• multisampledRenderToSingleSampledEnable controls whether multisampled rendering to single-
sampled attachments is performed as described below.

• rasterizationSamples is a VkSampleCountFlagBits specifying the number of samples used in
rasterization.

Valid Usage

• VUID-VkMultisampledRenderToSingleSampledInfoEXT-rasterizationSamples-06878
The value of rasterizationSamples must not be VK_SAMPLE_COUNT_1_BIT

• VUID-VkMultisampledRenderToSingleSampledInfoEXT-pNext-06880
If added to the pNext chain of VkRenderingInfo, each imageView member of any element of
VkRenderingInfo::pColorAttachments, VkRenderingInfo::pDepthAttachment, or
VkRenderingInfo::pStencilAttachment that is not VK_NULL_HANDLE must have a format
that supports the sample count specified in rasterizationSamples

Valid Usage (Implicit)

• VUID-VkMultisampledRenderToSingleSampledInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_INFO_EXT

• VUID-VkMultisampledRenderToSingleSampledInfoEXT-rasterizationSamples-parameter
rasterizationSamples must be a valid VkSampleCountFlagBits value

If the pNext chain of VkSubpassDescription2 or VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure whose
multisampledRenderToSingleSampledEnable field is VK_TRUE, the graphics pipelines must have
VkGraphicsPipelineCreateInfo::rasterizationSamples equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples, and the subpass
attachments can have a sample count of VK_SAMPLE_COUNT_1_BIT. For attachments with a sample
count of VK_SAMPLE_COUNT_1_BIT, multisampled rendering is performed to an intermediate
multisampled image with VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples
samples, implicitly allocated by the implementation for the duration of the subpass. For such

568

attachments:

• If loadOp equals to VK_ATTACHMENT_LOAD_OP_LOAD, samples of the implicit image are initialized by
replicating the value from the corresponding pixel in the attachment.

• If storeOp or stencilStoreOp is equal to VK_ATTACHMENT_STORE_OP_STORE, the implicit image is
implicitly resolved prior to storage in the attachment.

Memory constraints due to high primitive counts may result in an implicit split of the subpass. This
is the equivalent of partial rasterization of geometry in a render pass that ends in storeOp and
stencilStoreOp equal to VK_ATTACHMENT_STORE_OP_STORE, followed by another render pass with loadOp
and stencilLoadOp equal to VK_ATTACHMENT_LOAD_OP_LOAD with appropriate barriers in between. When
VkMultisampledRenderToSingleSampledInfoEXT is used, the implementation is allowed to resolve
attachments with a sample count of VK_SAMPLE_COUNT_1_BIT and lose multisampled data on such
splits. The implementation may similarly split the render pass at subpass boundaries even if they
use the same value for VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples.

The VkAttachmentReference2 structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkAttachmentReference2 {
 VkStructureType sType;
 const void* pNext;
 uint32_t attachment;
 VkImageLayout layout;
 VkImageAspectFlags aspectMask;
} VkAttachmentReference2;

or the equivalent

// Provided by VK_KHR_create_renderpass2
typedef VkAttachmentReference2 VkAttachmentReference2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachment is either an integer value identifying an attachment at the corresponding index in
VkRenderPassCreateInfo2::pAttachments, or VK_ATTACHMENT_UNUSED to signify that this attachment
is not used.

• layout is a VkImageLayout value specifying the layout the attachment uses during the subpass.

• aspectMask is a mask of which aspect(s) can be accessed within the specified subpass as an input
attachment.

Parameters defined by this structure with the same name as those in VkAttachmentReference have
the identical effect to those parameters.

aspectMask is ignored when this structure is used to describe anything other than an input
attachment reference.

569

If the separateDepthStencilLayouts feature is enabled, and attachment has a depth/stencil format,
layout can be set to a layout that only specifies the layout of the depth aspect.

If layout only specifies the layout of the depth aspect of the attachment, the layout of the stencil
aspect is specified by the stencilLayout member of a VkAttachmentReferenceStencilLayout
structure included in the pNext chain. Otherwise, layout describes the layout for all relevant image
aspects.

Valid Usage

• VUID-VkAttachmentReference2-layout-03077
If attachment is not VK_ATTACHMENT_UNUSED, layout must not be VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_PREINITIALIZED, or VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

• VUID-VkAttachmentReference2-separateDepthStencilLayouts-03313
If the separateDepthStencilLayouts feature is not enabled, and attachment is not
VK_ATTACHMENT_UNUSED, layout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentReference2-synchronization2-06910
If the synchronization2 feature is not enabled, layout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkAttachmentReference2-attachmentFeedbackLoopLayout-07311
If the attachmentFeedbackLoopLayout feature is not enabled, layout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VUID-VkAttachmentReference2-dynamicRenderingLocalRead-09546
If the dynamicRenderingLocalRead feature is not enabled, layout must not be
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

Valid Usage (Implicit)

• VUID-VkAttachmentReference2-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2

• VUID-VkAttachmentReference2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkAttachmentReferenceStencilLayout

• VUID-VkAttachmentReference2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkAttachmentReference2-layout-parameter
layout must be a valid VkImageLayout value

The VkAttachmentReferenceStencilLayout structure is defined as:

// Provided by VK_VERSION_1_2

570

typedef struct VkAttachmentReferenceStencilLayout {
 VkStructureType sType;
 void* pNext;
 VkImageLayout stencilLayout;
} VkAttachmentReferenceStencilLayout;

or the equivalent

// Provided by VK_KHR_separate_depth_stencil_layouts
typedef VkAttachmentReferenceStencilLayout VkAttachmentReferenceStencilLayoutKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stencilLayout is a VkImageLayout value specifying the layout the stencil aspect of the
attachment uses during the subpass.

Valid Usage

• VUID-VkAttachmentReferenceStencilLayout-stencilLayout-03318
stencilLayout must not be VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

Valid Usage (Implicit)

• VUID-VkAttachmentReferenceStencilLayout-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT

• VUID-VkAttachmentReferenceStencilLayout-stencilLayout-parameter
stencilLayout must be a valid VkImageLayout value

The VkSubpassDependency2 structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSubpassDependency2 {
 VkStructureType sType;
 const void* pNext;
 uint32_t srcSubpass;
 uint32_t dstSubpass;
 VkPipelineStageFlags srcStageMask;

571

 VkPipelineStageFlags dstStageMask;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
 VkDependencyFlags dependencyFlags;
 int32_t viewOffset;
} VkSubpassDependency2;

or the equivalent

// Provided by VK_KHR_create_renderpass2
typedef VkSubpassDependency2 VkSubpassDependency2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcSubpass is the subpass index of the first subpass in the dependency, or VK_SUBPASS_EXTERNAL.

• dstSubpass is the subpass index of the second subpass in the dependency, or
VK_SUBPASS_EXTERNAL.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• dependencyFlags is a bitmask of VkDependencyFlagBits.

• viewOffset controls which views in the source subpass the views in the destination subpass
depend on.

Parameters defined by this structure with the same name as those in VkSubpassDependency have
the identical effect to those parameters.

viewOffset has the same effect for the described subpass dependency as
VkRenderPassMultiviewCreateInfo::pViewOffsets has on each corresponding subpass dependency.

If a VkMemoryBarrier2 is included in the pNext chain, srcStageMask, dstStageMask, srcAccessMask,
and dstAccessMask parameters are ignored. The synchronization and access scopes instead are
defined by the parameters of VkMemoryBarrier2.

Valid Usage

• VUID-VkSubpassDependency2-srcStageMask-04090
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubpassDependency2-srcStageMask-04091
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or

572

VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubpassDependency2-srcStageMask-04092
If the conditionalRendering feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkSubpassDependency2-srcStageMask-04093
If the fragmentDensityMap feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkSubpassDependency2-srcStageMask-04094
If the transformFeedback feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkSubpassDependency2-srcStageMask-04095
If the meshShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-VkSubpassDependency2-srcStageMask-04096
If the taskShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-VkSubpassDependency2-srcStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
srcStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkSubpassDependency2-srcStageMask-03937
If the synchronization2 feature is not enabled, srcStageMask must not be 0

• VUID-VkSubpassDependency2-srcStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
srcStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkSubpassDependency2-dstStageMask-04090
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubpassDependency2-dstStageMask-04091
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubpassDependency2-dstStageMask-04092
If the conditionalRendering feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-VkSubpassDependency2-dstStageMask-04093
If the fragmentDensityMap feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-VkSubpassDependency2-dstStageMask-04094
If the transformFeedback feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-VkSubpassDependency2-dstStageMask-04095

573

If the meshShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-VkSubpassDependency2-dstStageMask-04096
If the taskShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-VkSubpassDependency2-dstStageMask-07318
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
dstStageMask must not contain
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkSubpassDependency2-dstStageMask-03937
If the synchronization2 feature is not enabled, dstStageMask must not be 0

• VUID-VkSubpassDependency2-dstStageMask-07949
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
dstStageMask must not contain VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-VkSubpassDependency2-srcSubpass-03084
srcSubpass must be less than or equal to dstSubpass, unless one of them is
VK_SUBPASS_EXTERNAL, to avoid cyclic dependencies and ensure a valid execution order

• VUID-VkSubpassDependency2-srcSubpass-03085
srcSubpass and dstSubpass must not both be equal to VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency2-srcSubpass-06810
If srcSubpass is equal to dstSubpass and srcStageMask includes a framebuffer-space stage,
dstStageMask must only contain framebuffer-space stages

• VUID-VkSubpassDependency2-srcAccessMask-03088
Any access flag included in srcAccessMask must be supported by one of the pipeline stages
in srcStageMask, as specified in the table of supported access types

• VUID-VkSubpassDependency2-dstAccessMask-03089
Any access flag included in dstAccessMask must be supported by one of the pipeline stages
in dstStageMask, as specified in the table of supported access types

• VUID-VkSubpassDependency2-dependencyFlags-03090
If dependencyFlags includes VK_DEPENDENCY_VIEW_LOCAL_BIT, srcSubpass must not be equal to
VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency2-dependencyFlags-03091
If dependencyFlags includes VK_DEPENDENCY_VIEW_LOCAL_BIT, dstSubpass must not be equal to
VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency2-srcSubpass-02245
If srcSubpass equals dstSubpass, and srcStageMask and dstStageMask both include a
framebuffer-space stage, then dependencyFlags must include VK_DEPENDENCY_BY_REGION_BIT

• VUID-VkSubpassDependency2-viewOffset-02530
If viewOffset is not equal to 0, srcSubpass must not be equal to dstSubpass

• VUID-VkSubpassDependency2-dependencyFlags-03092
If dependencyFlags does not include VK_DEPENDENCY_VIEW_LOCAL_BIT, viewOffset must be 0

574

Valid Usage (Implicit)

• VUID-VkSubpassDependency2-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2

• VUID-VkSubpassDependency2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkMemoryBarrier2

• VUID-VkSubpassDependency2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSubpassDependency2-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-VkSubpassDependency2-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-VkSubpassDependency2-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkSubpassDependency2-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkSubpassDependency2-dependencyFlags-parameter
dependencyFlags must be a valid combination of VkDependencyFlagBits values

To destroy a render pass, call:

// Provided by VK_VERSION_1_0
void vkDestroyRenderPass(
 VkDevice device,
 VkRenderPass renderPass,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the render pass.

• renderPass is the handle of the render pass to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyRenderPass-renderPass-00873
All submitted commands that refer to renderPass must have completed execution

• VUID-vkDestroyRenderPass-renderPass-00874
If VkAllocationCallbacks were provided when renderPass was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyRenderPass-renderPass-00875
If no VkAllocationCallbacks were provided when renderPass was created, pAllocator must
be NULL

575

Valid Usage (Implicit)

• VUID-vkDestroyRenderPass-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyRenderPass-renderPass-parameter
If renderPass is not VK_NULL_HANDLE, renderPass must be a valid VkRenderPass handle

• VUID-vkDestroyRenderPass-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyRenderPass-renderPass-parent
If renderPass is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to renderPass must be externally synchronized

8.3. Render Pass Compatibility
Framebuffers and graphics pipelines are created based on a specific render pass object. They must
only be used with that render pass object, or one compatible with it.

Two attachment references are compatible if they have matching format and sample count, or are
both VK_ATTACHMENT_UNUSED or the pointer that would contain the reference is NULL.

Two arrays of attachment references are compatible if all corresponding pairs of attachments are
compatible. If the arrays are of different lengths, attachment references not present in the smaller
array are treated as VK_ATTACHMENT_UNUSED.

Two render passes are compatible if their corresponding color, input, resolve, and depth/stencil
attachment references are compatible and if they are otherwise identical except for:

• Initial and final image layout in attachment descriptions

• Load and store operations in attachment descriptions

• Image layout in attachment references

As an additional special case, if two render passes have a single subpass, the resolve attachment
reference and depth/stencil resolve mode compatibility requirements are ignored.

A framebuffer is compatible with a render pass if it was created using the same render pass or a
compatible render pass.

576

8.4. Framebuffers
Render passes operate in conjunction with framebuffers. Framebuffers represent a collection of
specific memory attachments that a render pass instance uses.

Framebuffers are represented by VkFramebuffer handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFramebuffer)

To create a framebuffer, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateFramebuffer(
 VkDevice device,
 const VkFramebufferCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFramebuffer* pFramebuffer);

• device is the logical device that creates the framebuffer.

• pCreateInfo is a pointer to a VkFramebufferCreateInfo structure describing additional
information about framebuffer creation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFramebuffer is a pointer to a VkFramebuffer handle in which the resulting framebuffer object is
returned.

Valid Usage

• VUID-vkCreateFramebuffer-pCreateInfo-02777
If pCreateInfo->flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, and
attachmentCount is not 0, each element of pCreateInfo->pAttachments must have been
created on device

Valid Usage (Implicit)

• VUID-vkCreateFramebuffer-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateFramebuffer-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkFramebufferCreateInfo structure

• VUID-vkCreateFramebuffer-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateFramebuffer-pFramebuffer-parameter

577

pFramebuffer must be a valid pointer to a VkFramebuffer handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFramebufferCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkFramebufferCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkFramebufferCreateFlags flags;
 VkRenderPass renderPass;
 uint32_t attachmentCount;
 const VkImageView* pAttachments;
 uint32_t width;
 uint32_t height;
 uint32_t layers;
} VkFramebufferCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkFramebufferCreateFlagBits

• renderPass is a render pass defining what render passes the framebuffer will be compatible
with. See Render Pass Compatibility for details.

• attachmentCount is the number of attachments.

• pAttachments is a pointer to an array of VkImageView handles, each of which will be used as the
corresponding attachment in a render pass instance. If flags includes
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, this parameter is ignored.

• width, height and layers define the dimensions of the framebuffer. If the render pass uses
multiview, then layers must be one and each attachment requires a number of layers that is
greater than the maximum bit index set in the view mask in the subpasses in which it is used.

It is legal for a subpass to use no color or depth/stencil attachments, either because it has no
attachment references or because all of them are VK_ATTACHMENT_UNUSED. This kind of subpass can
use shader side effects such as image stores and atomics to produce an output. In this case, the
subpass continues to use the width, height, and layers of the framebuffer to define the dimensions
of the rendering area, and the rasterizationSamples from each pipeline’s

578

VkPipelineMultisampleStateCreateInfo to define the number of samples used in rasterization;
however, if VkPhysicalDeviceFeatures::variableMultisampleRate is VK_FALSE, then all pipelines to be
bound with the subpass must have the same value for VkPipelineMultisampleStateCreateInfo
::rasterizationSamples. In all such cases, rasterizationSamples must be a valid
VkSampleCountFlagBits value that is set in VkPhysicalDeviceLimits
::framebufferNoAttachmentsSampleCounts.

Valid Usage

• VUID-VkFramebufferCreateInfo-attachmentCount-00876
attachmentCount must be equal to the attachment count specified in renderPass

• VUID-VkFramebufferCreateInfo-flags-02778
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT and attachmentCount is not
0, pAttachments must be a valid pointer to an array of attachmentCount valid VkImageView
handles

• VUID-VkFramebufferCreateInfo-pAttachments-00877
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as a color attachment or resolve attachment by renderPass must
have been created with a usage value including VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-pAttachments-02633
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as a depth/stencil attachment by renderPass must have been
created with a usage value including VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-pAttachments-02634
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as a depth/stencil resolve attachment by renderPass must have
been created with a usage value including VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-pAttachments-00879
If renderpass is not VK_NULL_HANDLE, flags does not include
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of pAttachments that is used as an
input attachment by renderPass must have been created with a usage value including
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-pAttachments-02552
Each element of pAttachments that is used as a fragment density map attachment by
renderPass must not have been created with a flags value including
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkFramebufferCreateInfo-renderPass-02553
If renderPass has a fragment density map attachment and the
fragmentDensityMapNonSubsampledImages feature is not enabled, each element of
pAttachments must have been created with a flags value including
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT unless that element is the fragment density map
attachment

• VUID-VkFramebufferCreateInfo-renderPass-06502
If renderPass was created with fragment density map offsets other than (0,0), each

579

element of pAttachments must have been created with a flags value including
VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM

• VUID-VkFramebufferCreateInfo-pAttachments-00880
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must have been created with a VkFormat value that matches the VkFormat
specified by the corresponding VkAttachmentDescription in renderPass

• VUID-VkFramebufferCreateInfo-pAttachments-00881
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must have been created with a samples value that matches the samples value
specified by the corresponding VkAttachmentDescription in renderPass

• VUID-VkFramebufferCreateInfo-flags-04533
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as an input, color, resolve, or depth/stencil attachment by
renderPass must have been created with a VkImageCreateInfo::extent.width greater than
or equal to width

• VUID-VkFramebufferCreateInfo-flags-04534
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as an input, color, resolve, or depth/stencil attachment by
renderPass must have been created with a VkImageCreateInfo::extent.height greater than
or equal to height

• VUID-VkFramebufferCreateInfo-flags-04535
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as an input, color, resolve, or depth/stencil attachment by
renderPass must have been created with a VkImageViewCreateInfo
::subresourceRange.layerCount greater than or equal to layers

• VUID-VkFramebufferCreateInfo-renderPass-04536
If renderPass was specified with non-zero view masks, each element of pAttachments that is
used as an input, color, resolve, or depth/stencil attachment by renderPass must have a
layerCount greater than the index of the most significant bit set in any of those view masks

• VUID-VkFramebufferCreateInfo-renderPass-02746
Each element of pAttachments that is referenced by fragmentDensityMapAttachment must
have a layerCount equal to 1 or if renderPass was specified with non-zero view masks,
greater than the index of the most significant bit set in any of those view masks

• VUID-VkFramebufferCreateInfo-pAttachments-02555
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, an element of pAttachments
that is referenced by fragmentDensityMapAttachment must have a width at least as large as

• VUID-VkFramebufferCreateInfo-pAttachments-02556
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, an element of pAttachments
that is referenced by fragmentDensityMapAttachment must have a height at least as large as

• VUID-VkFramebufferCreateInfo-flags-04537
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, and renderPass was
specified with non-zero view masks, each element of pAttachments that is used as a

580

fragment shading rate attachment by renderPass must have a layerCount that is either 1,
or greater than the index of the most significant bit set in any of those view masks

• VUID-VkFramebufferCreateInfo-flags-04538
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, and renderPass was not
specified with non-zero view masks, each element of pAttachments that is used as a
fragment shading rate attachment by renderPass must have a layerCount that is either 1,
or greater than layers

• VUID-VkFramebufferCreateInfo-renderPass-08921
If renderPass was specified with non-zero view masks, each element of pAttachments that is
used as a fragment shading rate attachment must have a layerCount equal to 1 or greater
than the index of the most significant bit set in any of those view masks

• VUID-VkFramebufferCreateInfo-flags-04539
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, an element of pAttachments
that is used as a fragment shading rate attachment must have a width at least as large as
⌈width / texelWidth⌉, where texelWidth is the largest value of
shadingRateAttachmentTexelSize.width in a VkFragmentShadingRateAttachmentInfoKHR
which references that attachment

• VUID-VkFramebufferCreateInfo-flags-04540
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, an element of pAttachments
that is used as a fragment shading rate attachment must have a height at least as large as
⌈height / texelHeight⌉, where texelHeight is the largest value of
shadingRateAttachmentTexelSize.height in a VkFragmentShadingRateAttachmentInfoKHR
which references that attachment

• VUID-VkFramebufferCreateInfo-pAttachments-00883
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must only specify a single mip level

• VUID-VkFramebufferCreateInfo-pAttachments-00884
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must have been created with the identity swizzle

• VUID-VkFramebufferCreateInfo-width-00885
width must be greater than 0

• VUID-VkFramebufferCreateInfo-width-00886
width must be less than or equal to maxFramebufferWidth

• VUID-VkFramebufferCreateInfo-height-00887
height must be greater than 0

• VUID-VkFramebufferCreateInfo-height-00888
height must be less than or equal to maxFramebufferHeight

• VUID-VkFramebufferCreateInfo-layers-00889
layers must be greater than 0

• VUID-VkFramebufferCreateInfo-layers-00890
layers must be less than or equal to maxFramebufferLayers

• VUID-VkFramebufferCreateInfo-renderPass-02531
If renderPass was specified with non-zero view masks, layers must be 1

581

• VUID-VkFramebufferCreateInfo-pAttachments-00891
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is a 2D or 2D array image view taken from a 3D image must not be a
depth/stencil format

• VUID-VkFramebufferCreateInfo-flags-03189
If the imagelessFramebuffer feature is not enabled, flags must not include
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT

• VUID-VkFramebufferCreateInfo-flags-03190
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the pNext chain must include a
VkFramebufferAttachmentsCreateInfo structure

• VUID-VkFramebufferCreateInfo-flags-03191
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the attachmentImageInfoCount
member of a VkFramebufferAttachmentsCreateInfo structure in the pNext chain must be
equal to either zero or attachmentCount

• VUID-VkFramebufferCreateInfo-flags-04541
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the width member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure in the pNext chain that is used as an input, color, resolve or depth/stencil
attachment in renderPass must be greater than or equal to width

• VUID-VkFramebufferCreateInfo-flags-04542
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the height member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure in the pNext chain that is used as an input, color, resolve or depth/stencil
attachment in renderPass must be greater than or equal to height

• VUID-VkFramebufferCreateInfo-flags-03196
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the width member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure in the pNext chain that is referenced by
VkRenderPassFragmentDensityMapCreateInfoEXT::fragmentDensityMapAttachment in
renderPass must be greater than or equal to

• VUID-VkFramebufferCreateInfo-flags-03197
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the height member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that is referenced by
VkRenderPassFragmentDensityMapCreateInfoEXT::fragmentDensityMapAttachment in
renderPass must be greater than or equal to

• VUID-VkFramebufferCreateInfo-flags-04543
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the width member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure in the pNext chain that is used as a fragment shading rate attachment must be
greater than or equal to ⌈width / texelWidth⌉, where texelWidth is the largest value of
shadingRateAttachmentTexelSize.width in a VkFragmentShadingRateAttachmentInfoKHR
which references that attachment

• VUID-VkFramebufferCreateInfo-flags-04544

582

If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the height member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure in the pNext chain that is used as a fragment shading rate attachment must be
greater than or equal to ⌈height / texelHeight⌉, where texelHeight is the largest value of
shadingRateAttachmentTexelSize.height in a VkFragmentShadingRateAttachmentInfoKHR
which references that attachment

• VUID-VkFramebufferCreateInfo-flags-04545
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the layerCount member of any
element of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure in the pNext chain that is used as a fragment shading rate attachment must be
either 1, or greater than or equal to layers

• VUID-VkFramebufferCreateInfo-flags-04587
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT and renderPass was specified with
non-zero view masks, each element of pAttachments that is used as a fragment shading
rate attachment by renderPass must have a layerCount that is either 1, or greater than the
index of the most significant bit set in any of those view masks

• VUID-VkFramebufferCreateInfo-renderPass-03198
If multiview is enabled for renderPass and flags includes
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the layerCount member of any element of the
pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo structure
included in the pNext chain used as an input, color, resolve, or depth/stencil attachment in
renderPass must be greater than the maximum bit index set in the view mask in the
subpasses in which it is used in renderPass

• VUID-VkFramebufferCreateInfo-renderPass-04546
If multiview is not enabled for renderPass and flags includes
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the layerCount member of any element of the
pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo structure
included in the pNext chain used as an input, color, resolve, or depth/stencil attachment in
renderPass must be greater than or equal to layers

• VUID-VkFramebufferCreateInfo-flags-03201
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the usage member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that refers to an attachment used as a color
attachment or resolve attachment by renderPass must include
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-flags-03202
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the usage member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that refers to an attachment used as a depth/stencil
attachment by renderPass must include VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-flags-03203
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the usage member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that refers to an attachment used as a depth/stencil
resolve attachment by renderPass must include

583

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-flags-03204
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the usage member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that refers to an attachment used as an input
attachment by renderPass must include VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-flags-03205
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, at least one element of the
pViewFormats member of any element of the pAttachmentImageInfos member of a
VkFramebufferAttachmentsCreateInfo structure included in the pNext chain must be
equal to the corresponding value of VkAttachmentDescription::format used to create
renderPass

• VUID-VkFramebufferCreateInfo-flags-04113
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must have been created with VkImageViewCreateInfo::viewType not equal to
VK_IMAGE_VIEW_TYPE_3D

• VUID-VkFramebufferCreateInfo-flags-04548
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as a fragment shading rate attachment by renderPass must have
been created with a usage value including
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkFramebufferCreateInfo-flags-04549
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the usage member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that refers to an attachment used as a fragment
shading rate attachment by renderPass must include
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkFramebufferCreateInfo-samples-06881
If multisampled-render-to-single-sampled is enabled for any subpass, all color,
depth/stencil and input attachments used in that subpass which have
VkAttachmentDescription::samples or VkAttachmentDescription2::samples equal to
VK_SAMPLE_COUNT_1_BIT must have been created with
VK_IMAGE_CREATE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_BIT_EXT in their
VkImageCreateInfo::flags

• VUID-VkFramebufferCreateInfo-samples-07009
If multisampled-render-to-single-sampled is enabled for any subpass, all color,
depth/stencil and input attachments used in that subpass which have
VkAttachmentDescription::samples or VkAttachmentDescription2::samples equal to
VK_SAMPLE_COUNT_1_BIT must have a format that supports the sample count specified in
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-VkFramebufferCreateInfo-nullColorAttachmentWithExternalFormatResolve-09349
If the nullColorAttachmentWithExternalFormatResolve is VK_FALSE, and flags does not
include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the format of the color attachment for each
subpass in renderPass that includes an external format image as a resolve attachment
must have a format equal to the value of

584

VkAndroidHardwareBufferFormatResolvePropertiesANDROID::colorAttachmentFormat as
returned by a call to vkGetAndroidHardwareBufferPropertiesANDROID for the Android
hardware buffer that was used to create the image view use as its resolve attachment

• VUID-VkFramebufferCreateInfo-pAttachments-09350
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, then if an element of
pAttachments has a format of VK_FORMAT_UNDEFINED, it must have been created with a
VkExternalFormatANDROID::externalFormat value identical to that provided in the
VkExternalFormatANDROID::externalFormat specified by the corresponding
VkAttachmentDescription2 in renderPass

Valid Usage (Implicit)

• VUID-VkFramebufferCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO

• VUID-VkFramebufferCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkFramebufferAttachmentsCreateInfo

• VUID-VkFramebufferCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkFramebufferCreateInfo-flags-parameter
flags must be a valid combination of VkFramebufferCreateFlagBits values

• VUID-VkFramebufferCreateInfo-renderPass-parameter
renderPass must be a valid VkRenderPass handle

• VUID-VkFramebufferCreateInfo-commonparent
Both of renderPass, and the elements of pAttachments that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

The VkFramebufferAttachmentsCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkFramebufferAttachmentsCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t attachmentImageInfoCount;
 const VkFramebufferAttachmentImageInfo* pAttachmentImageInfos;
} VkFramebufferAttachmentsCreateInfo;

or the equivalent

// Provided by VK_KHR_imageless_framebuffer
typedef VkFramebufferAttachmentsCreateInfo VkFramebufferAttachmentsCreateInfoKHR;

585

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachmentImageInfoCount is the number of attachments being described.

• pAttachmentImageInfos is a pointer to an array of VkFramebufferAttachmentImageInfo
structures, each structure describing a number of parameters of the corresponding attachment
in a render pass instance.

Valid Usage (Implicit)

• VUID-VkFramebufferAttachmentsCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO

• VUID-VkFramebufferAttachmentsCreateInfo-pAttachmentImageInfos-parameter
If attachmentImageInfoCount is not 0, pAttachmentImageInfos must be a valid pointer to an
array of attachmentImageInfoCount valid VkFramebufferAttachmentImageInfo structures

The VkFramebufferAttachmentImageInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkFramebufferAttachmentImageInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageCreateFlags flags;
 VkImageUsageFlags usage;
 uint32_t width;
 uint32_t height;
 uint32_t layerCount;
 uint32_t viewFormatCount;
 const VkFormat* pViewFormats;
} VkFramebufferAttachmentImageInfo;

or the equivalent

// Provided by VK_KHR_imageless_framebuffer
typedef VkFramebufferAttachmentImageInfo VkFramebufferAttachmentImageInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkImageCreateFlagBits, matching the value of VkImageCreateInfo::flags
used to create an image that will be used with this framebuffer.

• usage is a bitmask of VkImageUsageFlagBits, matching the value of VkImageCreateInfo::usage
used to create an image used with this framebuffer.

• width is the width of the image view used for rendering.

586

• height is the height of the image view used for rendering.

• layerCount is the number of array layers of the image view used for rendering.

• viewFormatCount is the number of entries in the pViewFormats array, matching the value of
VkImageFormatListCreateInfo::viewFormatCount used to create an image used with this
framebuffer.

• pViewFormats is a pointer to an array of VkFormat values specifying all of the formats which can
be used when creating views of the image, matching the value of
VkImageFormatListCreateInfo::pViewFormats used to create an image used with this
framebuffer.

Images that can be used with the framebuffer when beginning a render pass, as specified by
VkRenderPassAttachmentBeginInfo, must be created with parameters that are identical to those
specified here.

Valid Usage

• VUID-VkFramebufferAttachmentImageInfo-viewFormatCount-09536
If viewFormatCount is not 0, and the render pass is not being used with an external format
resolve attachment, each element of pViewFormats must not be VK_FORMAT_UNDEFINED

Valid Usage (Implicit)

• VUID-VkFramebufferAttachmentImageInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO

• VUID-VkFramebufferAttachmentImageInfo-pNext-pNext
pNext must be NULL

• VUID-VkFramebufferAttachmentImageInfo-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

• VUID-VkFramebufferAttachmentImageInfo-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkFramebufferAttachmentImageInfo-usage-requiredbitmask
usage must not be 0

• VUID-VkFramebufferAttachmentImageInfo-pViewFormats-parameter
If viewFormatCount is not 0, pViewFormats must be a valid pointer to an array of
viewFormatCount valid VkFormat values

Bits which can be set in VkFramebufferCreateInfo::flags, specifying options for framebuffers, are:

// Provided by VK_VERSION_1_0
typedef enum VkFramebufferCreateFlagBits {
 // Provided by VK_VERSION_1_2
 VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT = 0x00000001,
 // Provided by VK_KHR_imageless_framebuffer

587

 VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR = VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT,
} VkFramebufferCreateFlagBits;

• VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT specifies that image views are not specified, and only
attachment compatibility information will be provided via a
VkFramebufferAttachmentImageInfo structure.

// Provided by VK_VERSION_1_0
typedef VkFlags VkFramebufferCreateFlags;

VkFramebufferCreateFlags is a bitmask type for setting a mask of zero or more
VkFramebufferCreateFlagBits.

To destroy a framebuffer, call:

// Provided by VK_VERSION_1_0
void vkDestroyFramebuffer(
 VkDevice device,
 VkFramebuffer framebuffer,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the framebuffer.

• framebuffer is the handle of the framebuffer to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyFramebuffer-framebuffer-00892
All submitted commands that refer to framebuffer must have completed execution

• VUID-vkDestroyFramebuffer-framebuffer-00893
If VkAllocationCallbacks were provided when framebuffer was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyFramebuffer-framebuffer-00894
If no VkAllocationCallbacks were provided when framebuffer was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyFramebuffer-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyFramebuffer-framebuffer-parameter
If framebuffer is not VK_NULL_HANDLE, framebuffer must be a valid VkFramebuffer
handle

588

• VUID-vkDestroyFramebuffer-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyFramebuffer-framebuffer-parent
If framebuffer is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to framebuffer must be externally synchronized

8.5. Render Pass Load Operations
Render pass load operations define the initial values of an attachment during a render pass
instance.

Load operations for attachments with a depth/stencil format execute in the
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT pipeline stage. Load operations for attachments with a
color format execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage. The load
operation for each sample in an attachment happens-before any recorded command which
accesses the sample in that render pass instance via that attachment or an alias.

Note

Because load operations always happen first, external synchronization with
attachment access only needs to synchronize the load operations with previous
commands; not the operations within the render pass instance. This does not apply
when using VK_ATTACHMENT_LOAD_OP_NONE_KHR.

Load operations only update values within the defined render area for the render pass instance.
However, any writes performed by a load operation (as defined by its access masks) to a given
attachment may read and write back any memory locations within the image subresource bound
for that attachment. For depth/stencil images, writes to one aspect may also result in read-modify-
write operations for the other aspect. If the subresource is in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT layout, implementations must not access
pixels outside of the render area.

Note

As entire subresources could be accessed by load operations, applications cannot
safely access values outside of the render area during a render pass instance when
a load operation that modifies values is used.

Load operations that can be used for a render pass are:

// Provided by VK_VERSION_1_0
typedef enum VkAttachmentLoadOp {

589

 VK_ATTACHMENT_LOAD_OP_LOAD = 0,
 VK_ATTACHMENT_LOAD_OP_CLEAR = 1,
 VK_ATTACHMENT_LOAD_OP_DONT_CARE = 2,
 // Provided by VK_KHR_load_store_op_none
 VK_ATTACHMENT_LOAD_OP_NONE_KHR = 1000400000,
 // Provided by VK_EXT_load_store_op_none
 VK_ATTACHMENT_LOAD_OP_NONE_EXT = VK_ATTACHMENT_LOAD_OP_NONE_KHR,
} VkAttachmentLoadOp;

• VK_ATTACHMENT_LOAD_OP_LOAD specifies that the previous contents of the image within the render
area will be preserved as the initial values. For attachments with a depth/stencil format, this
uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT. For attachments with a color
format, this uses the access type VK_ACCESS_COLOR_ATTACHMENT_READ_BIT.

• VK_ATTACHMENT_LOAD_OP_CLEAR specifies that the contents within the render area will be cleared to
a uniform value, which is specified when a render pass instance is begun. For attachments with
a depth/stencil format, this uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT.
For attachments with a color format, this uses the access type
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• VK_ATTACHMENT_LOAD_OP_DONT_CARE specifies that the previous contents within the area need not
be preserved; the contents of the attachment will be undefined inside the render area. For
attachments with a depth/stencil format, this uses the access type
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses
the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• VK_ATTACHMENT_LOAD_OP_NONE_KHR specifies that the previous contents of the image will be
undefined inside the render pass. No access type is used as the image is not accessed.

During a render pass instance, input and color attachments with color formats that have a
component size of 8, 16, or 32 bits must be represented in the attachment’s format throughout the
instance. Attachments with other floating- or fixed-point color formats, or with depth components
may be represented in a format with a precision higher than the attachment format, but must be
represented with the same range. When such a component is loaded via the loadOp, it will be
converted into an implementation-dependent format used by the render pass. Such components
must be converted from the render pass format, to the format of the attachment, before they are
resolved or stored at the end of a render pass instance via storeOp. Conversions occur as described
in Numeric Representation and Computation and Fixed-Point Data Conversions.

8.6. Render Pass Store Operations
Render pass store operations define how values written to an attachment during a render pass
instance are stored to memory.

Store operations for attachments with a depth/stencil format execute in the
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stage. Store operations for attachments with a
color format execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage. The store
operation for each sample in an attachment happens-after any recorded command which accesses
the sample via that attachment or an alias.

590

Note

Because store operations always happen after other accesses in a render pass
instance, external synchronization with attachment access in an earlier render
pass only needs to synchronize with the store operations; not the operations
within the render pass instance. This does not apply when using
VK_ATTACHMENT_STORE_OP_NONE.

Store operations only update values within the defined render area for the render pass instance.
However, any writes performed by a store operation (as defined by its access masks) to a given
attachment may read and write back any memory locations within the image subresource bound
for that attachment. For depth/stencil images writes to one aspect may also result in read-modify-
write operations for the other aspect. If the subresource is in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT layout, implementations must not access
pixels outside of the render area.

Note

As entire subresources could be accessed by store operations, applications cannot
safely access values outside of the render area via aliased resources during a
render pass instance when a store operation that modifies values is used.

Possible values of VkAttachmentDescription::storeOp and stencilStoreOp, specifying how the
contents of the attachment are treated, are:

// Provided by VK_VERSION_1_0
typedef enum VkAttachmentStoreOp {
 VK_ATTACHMENT_STORE_OP_STORE = 0,
 VK_ATTACHMENT_STORE_OP_DONT_CARE = 1,
 // Provided by VK_VERSION_1_3
 VK_ATTACHMENT_STORE_OP_NONE = 1000301000,
 // Provided by VK_KHR_dynamic_rendering, VK_KHR_load_store_op_none
 VK_ATTACHMENT_STORE_OP_NONE_KHR = VK_ATTACHMENT_STORE_OP_NONE,
 // Provided by VK_QCOM_render_pass_store_ops
 VK_ATTACHMENT_STORE_OP_NONE_QCOM = VK_ATTACHMENT_STORE_OP_NONE,
 // Provided by VK_EXT_load_store_op_none
 VK_ATTACHMENT_STORE_OP_NONE_EXT = VK_ATTACHMENT_STORE_OP_NONE,
} VkAttachmentStoreOp;

• VK_ATTACHMENT_STORE_OP_STORE specifies the contents generated during the render pass and
within the render area are written to memory. For attachments with a depth/stencil format, this
uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a
color format, this uses the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• VK_ATTACHMENT_STORE_OP_DONT_CARE specifies the contents within the render area are not needed
after rendering, and may be discarded; the contents of the attachment will be undefined inside
the render area. For attachments with a depth/stencil format, this uses the access type
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses
the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

591

• VK_ATTACHMENT_STORE_OP_NONE specifies the contents within the render area are not accessed by
the store operation as long as no values are written to the attachment during the render pass. If
values are written during the render pass, this behaves identically to
VK_ATTACHMENT_STORE_OP_DONT_CARE and with matching access semantics.

Note

VK_ATTACHMENT_STORE_OP_DONT_CARE can cause contents generated during previous
render passes to be discarded before reaching memory, even if no write to the
attachment occurs during the current render pass.

8.7. Render Pass Multisample Resolve Operations
Render pass multisample resolve operations combine sample values from a single pixel in a
multisample attachment and store the result to the corresponding pixel in a single sample
attachment.

Multisample resolve operations for attachments execute in the
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage. A final resolve operation for all
pixels in the render area happens-after any recorded command which writes a pixel via the
multisample attachment to be resolved or an explicit alias of it in the subpass that it is specified.
Any single sample attachment specified for use in a multisample resolve operation may have its
contents modified at any point once rendering begins for the render pass instance. Reads from the
multisample attachment can be synchronized with VK_ACCESS_COLOR_ATTACHMENT_READ_BIT. Access to
the single sample attachment can be synchronized with VK_ACCESS_COLOR_ATTACHMENT_READ_BIT and
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. These pipeline stage and access types are used whether the
attachments are color or depth/stencil attachments.

When using render pass objects, a subpass dependency specified with the above pipeline stages
and access flags will ensure synchronization with multisample resolve operations for any
attachments that were last accessed by that subpass. This allows later subpasses to read resolved
values as input attachments.

Resolve operations only update values within the defined render area for the render pass instance.
However, any writes performed by a resolve operation (as defined by its access masks) to a given
attachment may read and write back any memory locations within the image subresource bound
for that attachment. For depth/stencil images writes to one aspect may also result in read-modify-
write operations for the other aspect. If the subresource is in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT layout, implementations must not access
pixels outside of the render area.

Note

As entire subresources could be accessed by multisample resolve operations,
applications cannot safely access values outside of the render area via aliased
resources during a render pass instance when a multisample resolve operation is
performed.

Multisample values in a multisample attachment are combined according to the resolve mode used:

592

// Provided by VK_VERSION_1_2
typedef enum VkResolveModeFlagBits {
 VK_RESOLVE_MODE_NONE = 0,
 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT = 0x00000001,
 VK_RESOLVE_MODE_AVERAGE_BIT = 0x00000002,
 VK_RESOLVE_MODE_MIN_BIT = 0x00000004,
 VK_RESOLVE_MODE_MAX_BIT = 0x00000008,
 // Provided by VK_KHR_dynamic_rendering with VK_ANDROID_external_format_resolve
 VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID = 0x00000010,
 // Provided by VK_KHR_depth_stencil_resolve
 VK_RESOLVE_MODE_NONE_KHR = VK_RESOLVE_MODE_NONE,
 // Provided by VK_KHR_depth_stencil_resolve
 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT,
 // Provided by VK_KHR_depth_stencil_resolve
 VK_RESOLVE_MODE_AVERAGE_BIT_KHR = VK_RESOLVE_MODE_AVERAGE_BIT,
 // Provided by VK_KHR_depth_stencil_resolve
 VK_RESOLVE_MODE_MIN_BIT_KHR = VK_RESOLVE_MODE_MIN_BIT,
 // Provided by VK_KHR_depth_stencil_resolve
 VK_RESOLVE_MODE_MAX_BIT_KHR = VK_RESOLVE_MODE_MAX_BIT,
} VkResolveModeFlagBits;

or the equivalent

// Provided by VK_KHR_depth_stencil_resolve
typedef VkResolveModeFlagBits VkResolveModeFlagBitsKHR;

• VK_RESOLVE_MODE_NONE indicates that no resolve operation is done.

• VK_RESOLVE_MODE_SAMPLE_ZERO_BIT indicates that result of the resolve operation is equal to the
value of sample 0.

• VK_RESOLVE_MODE_AVERAGE_BIT indicates that result of the resolve operation is the average of the
sample values.

• VK_RESOLVE_MODE_MIN_BIT indicates that result of the resolve operation is the minimum of the
sample values.

• VK_RESOLVE_MODE_MAX_BIT indicates that result of the resolve operation is the maximum of the
sample values.

• VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID indicates that rather than a multisample
resolve, a single sampled color attachment will be downsampled into a Y′CBCR format image
specified by an external Android format. Unlike other resolve modes, implementations can
resolve multiple times during rendering, or even bypass writing to the color attachment
altogether, as long as the final value is resolved to the resolve attachment. Values in the G, B,
and R channels of the color attachment will be written to the Y, CB, and CR channels of the
external format image, respectively. Chroma values are calculated as if sampling with a linear
filter from the color attachment at full rate, at the location the chroma values sit according to
VkPhysicalDeviceExternalFormatResolvePropertiesANDROID::chromaOffsetX,
VkPhysicalDeviceExternalFormatResolvePropertiesANDROID::chromaOffsetY, and the chroma

593

sample rate of the resolved image.

If no resolve mode is otherwise specified, VK_RESOLVE_MODE_AVERAGE_BIT is used.

Note

No range compression or Y′CBCR model conversion is performed by
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID; applications have to do these
conversions themselves. Value outputs are expected to match those that would be
read through a Y′CBCR sampler using
VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY. The color space that the values
should be in is defined by the platform and is not exposed via Vulkan.

// Provided by VK_VERSION_1_2
typedef VkFlags VkResolveModeFlags;

or the equivalent

// Provided by VK_KHR_depth_stencil_resolve
typedef VkResolveModeFlags VkResolveModeFlagsKHR;

VkResolveModeFlags is a bitmask type for setting a mask of zero or more VkResolveModeFlagBits.

8.8. Render Pass Commands
An application records the commands for a render pass instance one subpass at a time, by
beginning a render pass instance, iterating over the subpasses to record commands for that
subpass, and then ending the render pass instance.

To begin a render pass instance, call:

// Provided by VK_VERSION_1_0
void vkCmdBeginRenderPass(
 VkCommandBuffer commandBuffer,
 const VkRenderPassBeginInfo* pRenderPassBegin,
 VkSubpassContents contents);

• commandBuffer is the command buffer in which to record the command.

• pRenderPassBegin is a pointer to a VkRenderPassBeginInfo structure specifying the render pass
to begin an instance of, and the framebuffer the instance uses.

• contents is a VkSubpassContents value specifying how the commands in the first subpass will be
provided.

After beginning a render pass instance, the command buffer is ready to record the commands for
the first subpass of that render pass.

594

Valid Usage

• VUID-vkCmdBeginRenderPass-initialLayout-00895
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-01758
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment
image view of the framebuffer specified in the framebuffer member of pRenderPassBegin
must have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-02842
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment image
view of the framebuffer specified in the framebuffer member of pRenderPassBegin must
have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-stencilInitialLayout-02843
If any of the stencilInitialLayout or stencilFinalLayout member of the
VkAttachmentDescriptionStencilLayout structures or the stencilLayout member of the
VkAttachmentReferenceStencilLayout structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment image
view of the framebuffer specified in the framebuffer member of pRenderPassBegin must
have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-00897
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then the corresponding attachment image view

595

of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including VK_IMAGE_USAGE_SAMPLED_BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-00898
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then the corresponding attachment image view of
the framebuffer specified in the framebuffer member of pRenderPassBegin must have been
created with a usage value including VK_IMAGE_USAGE_TRANSFER_SRC_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-00899
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then the corresponding attachment image view of
the framebuffer specified in the framebuffer member of pRenderPassBegin must have been
created with a usage value including VK_IMAGE_USAGE_TRANSFER_DST_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-00900
If the initialLayout member of any of the VkAttachmentDescription structures specified
when creating the render pass specified in the renderPass member of pRenderPassBegin is
not VK_IMAGE_LAYOUT_UNDEFINED, then each such initialLayout must be equal to the current
layout of the corresponding attachment image subresource of the framebuffer specified
in the framebuffer member of pRenderPassBegin

• VUID-vkCmdBeginRenderPass-srcStageMask-06451
The srcStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderPass must be supported by the capabilities
of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from

• VUID-vkCmdBeginRenderPass-dstStageMask-06452
The dstStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderPass must be supported by the capabilities
of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from

• VUID-vkCmdBeginRenderPass-framebuffer-02532
For any attachment in framebuffer that is used by renderPass and is bound to memory
locations that are also bound to another attachment used by renderPass, and if at least one
of those uses causes either attachment to be written to, both attachments must have had
the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT set

• VUID-vkCmdBeginRenderPass-framebuffer-09045
If any attachments specified in framebuffer are used by renderPass and are bound to
overlapping memory locations, there must be only one that is used as a color attachment,
depth/stencil, or resolve attachment in any subpass

• VUID-vkCmdBeginRenderPass-initialLayout-07000

596

If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT then the corresponding
attachment image view of the framebuffer specified in the framebuffer member of
pRenderPassBegin must have been created with a usage value including either the
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT and
either the VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT or VK_IMAGE_USAGE_SAMPLED_BIT usage bits

• VUID-vkCmdBeginRenderPass-initialLayout-07001
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT then the corresponding
attachment image view of the framebuffer specified in the framebuffer member of
pRenderPassBegin must have been created with a usage value the
VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT usage bit

• VUID-vkCmdBeginRenderPass-initialLayout-09537
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including either VK_IMAGE_USAGE_STORAGE_BIT, or both
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT and either of VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

Valid Usage (Implicit)

• VUID-vkCmdBeginRenderPass-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginRenderPass-pRenderPassBegin-parameter
pRenderPassBegin must be a valid pointer to a valid VkRenderPassBeginInfo structure

• VUID-vkCmdBeginRenderPass-contents-parameter
contents must be a valid VkSubpassContents value

• VUID-vkCmdBeginRenderPass-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginRenderPass-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginRenderPass-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBeginRenderPass-videocoding
This command must only be called outside of a video coding scope

597

• VUID-vkCmdBeginRenderPass-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Outside Graphics Action
State
Synchronization

Alternatively to begin a render pass, call:

// Provided by VK_VERSION_1_2
void vkCmdBeginRenderPass2(
 VkCommandBuffer commandBuffer,
 const VkRenderPassBeginInfo* pRenderPassBegin,
 const VkSubpassBeginInfo* pSubpassBeginInfo);

or the equivalent command

// Provided by VK_KHR_create_renderpass2
void vkCmdBeginRenderPass2KHR(
 VkCommandBuffer commandBuffer,
 const VkRenderPassBeginInfo* pRenderPassBegin,
 const VkSubpassBeginInfo* pSubpassBeginInfo);

• commandBuffer is the command buffer in which to record the command.

• pRenderPassBegin is a pointer to a VkRenderPassBeginInfo structure specifying the render pass
to begin an instance of, and the framebuffer the instance uses.

• pSubpassBeginInfo is a pointer to a VkSubpassBeginInfo structure containing information about
the subpass which is about to begin rendering.

After beginning a render pass instance, the command buffer is ready to record the commands for
the first subpass of that render pass.

598

Valid Usage

• VUID-vkCmdBeginRenderPass2-framebuffer-02779
Both the framebuffer and renderPass members of pRenderPassBegin must have been
created on the same VkDevice that commandBuffer was allocated on

• VUID-vkCmdBeginRenderPass2-initialLayout-03094
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03096
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment
image view of the framebuffer specified in the framebuffer member of pRenderPassBegin
must have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-02844
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment image
view of the framebuffer specified in the framebuffer member of pRenderPassBegin must
have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-stencilInitialLayout-02845
If any of the stencilInitialLayout or stencilFinalLayout member of the
VkAttachmentDescriptionStencilLayout structures or the stencilLayout member of the
VkAttachmentReferenceStencilLayout structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment image
view of the framebuffer specified in the framebuffer member of pRenderPassBegin must
have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03097
If any of the initialLayout or finalLayout member of the VkAttachmentDescription

599

structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including VK_IMAGE_USAGE_SAMPLED_BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03098
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then the corresponding attachment image view of
the framebuffer specified in the framebuffer member of pRenderPassBegin must have been
created with a usage value including VK_IMAGE_USAGE_TRANSFER_SRC_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03099
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then the corresponding attachment image view of
the framebuffer specified in the framebuffer member of pRenderPassBegin must have been
created with a usage value including VK_IMAGE_USAGE_TRANSFER_DST_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03100
If the initialLayout member of any of the VkAttachmentDescription structures specified
when creating the render pass specified in the renderPass member of pRenderPassBegin is
not VK_IMAGE_LAYOUT_UNDEFINED, then each such initialLayout must be equal to the current
layout of the corresponding attachment image subresource of the framebuffer specified
in the framebuffer member of pRenderPassBegin

• VUID-vkCmdBeginRenderPass2-srcStageMask-06453
The srcStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderPass must be supported by the capabilities
of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from

• VUID-vkCmdBeginRenderPass2-dstStageMask-06454
The dstStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderPass must be supported by the capabilities
of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from

• VUID-vkCmdBeginRenderPass2-framebuffer-02533
For any attachment in framebuffer that is used by renderPass and is bound to memory
locations that are also bound to another attachment used by renderPass, and if at least one
of those uses causes either attachment to be written to, both attachments must have had
the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT set

• VUID-vkCmdBeginRenderPass2-framebuffer-09046
If any attachments specified in framebuffer are used by renderPass and are bound to

600

overlapping memory locations, there must be only one that is used as a color attachment,
depth/stencil, or resolve attachment in any subpass

• VUID-vkCmdBeginRenderPass2-initialLayout-07002
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT then the corresponding
attachment image view of the framebuffer specified in the framebuffer member of
pRenderPassBegin must have been created with a usage value including either the
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT and
either the VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT or VK_IMAGE_USAGE_SAMPLED_BIT usage bits

• VUID-vkCmdBeginRenderPass2-initialLayout-07003
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT then the corresponding
attachment image view of the framebuffer specified in the framebuffer member of
pRenderPassBegin must have been created with a usage value the
VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT usage bit

• VUID-vkCmdBeginRenderPass2-initialLayout-09538
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including either VK_IMAGE_USAGE_STORAGE_BIT, or both
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT and either of VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

Valid Usage (Implicit)

• VUID-vkCmdBeginRenderPass2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginRenderPass2-pRenderPassBegin-parameter
pRenderPassBegin must be a valid pointer to a valid VkRenderPassBeginInfo structure

• VUID-vkCmdBeginRenderPass2-pSubpassBeginInfo-parameter
pSubpassBeginInfo must be a valid pointer to a valid VkSubpassBeginInfo structure

• VUID-vkCmdBeginRenderPass2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginRenderPass2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginRenderPass2-renderpass

601

This command must only be called outside of a render pass instance

• VUID-vkCmdBeginRenderPass2-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBeginRenderPass2-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Outside Graphics Action
State
Synchronization

The VkRenderPassBeginInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkRenderPassBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderPass renderPass;
 VkFramebuffer framebuffer;
 VkRect2D renderArea;
 uint32_t clearValueCount;
 const VkClearValue* pClearValues;
} VkRenderPassBeginInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• renderPass is the render pass to begin an instance of.

• framebuffer is the framebuffer containing the attachments that are used with the render pass.

• renderArea is the render area that is affected by the render pass instance, and is described in
more detail below.

• clearValueCount is the number of elements in pClearValues.

602

• pClearValues is a pointer to an array of clearValueCount VkClearValue structures containing
clear values for each attachment, if the attachment uses a loadOp value of
VK_ATTACHMENT_LOAD_OP_CLEAR or if the attachment has a depth/stencil format and uses a
stencilLoadOp value of VK_ATTACHMENT_LOAD_OP_CLEAR. The array is indexed by attachment
number. Only elements corresponding to cleared attachments are used. Other elements of
pClearValues are ignored.

renderArea is the render area that is affected by the render pass instance. The effects of attachment
load, store and multisample resolve operations are restricted to the pixels whose x and y
coordinates fall within the render area on all attachments. The render area extends to all layers of
framebuffer. The application must ensure (using scissor if necessary) that all rendering is contained
within the render area. The render area, after any transform specified by
VkRenderPassTransformBeginInfoQCOM::transform is applied, must be contained within the
framebuffer dimensions.

If render pass transform is enabled, then renderArea must equal the framebuffer pre-transformed
dimensions. After renderArea has been transformed by VkRenderPassTransformBeginInfoQCOM
::transform, the resulting render area must be equal to the framebuffer dimensions.

If multiview is enabled in renderPass, and multiviewPerViewRenderAreas feature is enabled, and there
is an instance of VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM included in the
pNext chain with perViewRenderAreaCount not equal to 0, then the elements of
VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM::pPerViewRenderAreas override
renderArea and define a render area for each view. In this case, renderArea must be set to an area at
least as large as the union of all the per-view render areas.

If the subpassShading feature is enabled, then renderArea must equal the framebuffer dimensions.

Note

There may be a performance cost for using a render area smaller than the
framebuffer, unless it matches the render area granularity for the render pass.

Valid Usage

• VUID-VkRenderPassBeginInfo-clearValueCount-00902
clearValueCount must be greater than the largest attachment index in renderPass
specifying a loadOp (or stencilLoadOp, if the attachment has a depth/stencil format) of
VK_ATTACHMENT_LOAD_OP_CLEAR

• VUID-VkRenderPassBeginInfo-clearValueCount-04962
If clearValueCount is not 0, pClearValues must be a valid pointer to an array of
clearValueCount VkClearValue unions

• VUID-VkRenderPassBeginInfo-renderPass-00904
renderPass must be compatible with the renderPass member of the
VkFramebufferCreateInfo structure specified when creating framebuffer

• VUID-VkRenderPassBeginInfo-None-08996
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.extent.width must be greater

603

than 0

• VUID-VkRenderPassBeginInfo-None-08997
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.extent.height must be greater
than 0

• VUID-VkRenderPassBeginInfo-pNext-02850
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.x must be greater than or
equal to 0

• VUID-VkRenderPassBeginInfo-pNext-02851
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.y must be greater than or
equal to 0

• VUID-VkRenderPassBeginInfo-pNext-02852
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.x +
renderArea.extent.width must be less than or equal to VkFramebufferCreateInfo::width
the framebuffer was created with

• VUID-VkRenderPassBeginInfo-pNext-02853
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.y +
renderArea.extent.height must be less than or equal to VkFramebufferCreateInfo::height
the framebuffer was created with

• VUID-VkRenderPassBeginInfo-pNext-02856
If the pNext chain contains VkDeviceGroupRenderPassBeginInfo, offset.x + extent.width
of each element of pDeviceRenderAreas must be less than or equal to
VkFramebufferCreateInfo::width the framebuffer was created with

• VUID-VkRenderPassBeginInfo-pNext-02857
If the pNext chain contains VkDeviceGroupRenderPassBeginInfo, offset.y + extent.height
of each element of pDeviceRenderAreas must be less than or equal to
VkFramebufferCreateInfo::height the framebuffer was created with

• VUID-VkRenderPassBeginInfo-framebuffer-03207
If framebuffer was created with a VkFramebufferCreateInfo::flags value that did not
include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, and the pNext chain includes a
VkRenderPassAttachmentBeginInfo structure, its attachmentCount must be zero

• VUID-VkRenderPassBeginInfo-framebuffer-03208
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the attachmentCount of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be equal
to the value of VkFramebufferAttachmentsCreateInfo::attachmentImageInfoCount used to
create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-02780
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a

604

VkRenderPassAttachmentBeginInfo structure included in the pNext chain must have been
created on the same VkDevice as framebuffer and renderPass

• VUID-VkRenderPassBeginInfo-framebuffer-03209
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageCreateInfo::flags equal to the
flags member of the corresponding element of VkFramebufferAttachmentsCreateInfo
::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-04627
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView with an inherited usage equal to the usage member of the corresponding
element of VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create
framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03211
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView with a width equal to the width member of the corresponding element of
VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03212
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView with a height equal to the height member of the corresponding element of
VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03213
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageViewCreateInfo
::subresourceRange.layerCount equal to the layerCount member of the corresponding
element of VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create
framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03214
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageFormatListCreateInfo
::viewFormatCount equal to the viewFormatCount member of the corresponding element of
VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03215
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included

605

VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a set of elements in
VkImageFormatListCreateInfo::pViewFormats equal to the set of elements in the
pViewFormats member of the corresponding element of
VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03216
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageViewCreateInfo::format equal
to the corresponding value of VkAttachmentDescription::format in renderPass

• VUID-VkRenderPassBeginInfo-framebuffer-09353
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, and the
nullColorAttachmentWithExternalFormatResolve is VK_FALSE, the format of the color
attachment for each subpass that includes an external format image as a resolve
attachment must have a format equal to the value of
VkAndroidHardwareBufferFormatResolvePropertiesANDROID::colorAttachmentFormat as
returned by a call to vkGetAndroidHardwareBufferPropertiesANDROID for the Android
hardware buffer that was used to create the image view use as its resolve attachment

• VUID-VkRenderPassBeginInfo-framebuffer-09354
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkExternalFormatANDROID
::externalFormat equal to VkExternalFormatANDROID::externalFormat in the pNext chain of
the corresponding VkAttachmentDescription2 structure used to create renderPass

• VUID-VkRenderPassBeginInfo-framebuffer-09047
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageCreateInfo::samples equal to
the corresponding value of VkAttachmentDescription::samples in renderPass , or
VK_SAMPLE_COUNT_1_BIT if renderPass was created with
VkMultisampledRenderToSingleSampledInfoEXT structure in the pNext chain with
multisampledRenderToSingleSampledEnable equal to VK_TRUE

• VUID-VkRenderPassBeginInfo-pNext-02869
If the pNext chain includes VkRenderPassTransformBeginInfoQCOM, renderArea.offset
must equal (0,0)

• VUID-VkRenderPassBeginInfo-pNext-02870
If the pNext chain includes VkRenderPassTransformBeginInfoQCOM, renderArea.extent
transformed by VkRenderPassTransformBeginInfoQCOM::transform must equal the
framebuffer dimensions

• VUID-VkRenderPassBeginInfo-perViewRenderAreaCount-07859

606

If the perViewRenderAreaCount member of a
VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM structure included in the
pNext chain is not 0, then the multiviewPerViewRenderAreas feature must be enabled.

• VUID-VkRenderPassBeginInfo-perViewRenderAreaCount-07860
If the perViewRenderAreaCount member of a
VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM structure included in the
pNext chain is not 0, then renderArea must specify a render area that includes the union of
all per view render areas.

• VUID-VkRenderPassBeginInfo-pNext-09539
If the pNext chain contains a VkRenderPassStripeBeginInfoARM structure, the union of
stripe areas defined by the elements of VkRenderPassStripeInfoARM::pStripeInfos must
cover the renderArea

Valid Usage (Implicit)

• VUID-VkRenderPassBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO

• VUID-VkRenderPassBeginInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupRenderPassBeginInfo,
VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM,
VkRenderPassAttachmentBeginInfo, VkRenderPassSampleLocationsBeginInfoEXT,
VkRenderPassStripeBeginInfoARM, or VkRenderPassTransformBeginInfoQCOM

• VUID-VkRenderPassBeginInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRenderPassBeginInfo-renderPass-parameter
renderPass must be a valid VkRenderPass handle

• VUID-VkRenderPassBeginInfo-framebuffer-parameter
framebuffer must be a valid VkFramebuffer handle

• VUID-VkRenderPassBeginInfo-commonparent
Both of framebuffer, and renderPass must have been created, allocated, or retrieved from
the same VkDevice

The image layout of the depth aspect of a depth/stencil attachment referring to an image created
with VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT is dependent on the last sample
locations used to render to the image subresource, thus preserving the contents of such
depth/stencil attachments across subpass boundaries requires the application to specify these
sample locations whenever a layout transition of the attachment may occur. This information can
be provided by adding a VkRenderPassSampleLocationsBeginInfoEXT structure to the pNext chain of
VkRenderPassBeginInfo.

The VkRenderPassSampleLocationsBeginInfoEXT structure is defined as:

607

// Provided by VK_EXT_sample_locations
typedef struct VkRenderPassSampleLocationsBeginInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t attachmentInitialSampleLocationsCount;
 const VkAttachmentSampleLocationsEXT* pAttachmentInitialSampleLocations;
 uint32_t postSubpassSampleLocationsCount;
 const VkSubpassSampleLocationsEXT* pPostSubpassSampleLocations;
} VkRenderPassSampleLocationsBeginInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachmentInitialSampleLocationsCount is the number of elements in the
pAttachmentInitialSampleLocations array.

• pAttachmentInitialSampleLocations is a pointer to an array of
attachmentInitialSampleLocationsCount VkAttachmentSampleLocationsEXT structures
specifying the attachment indices and their corresponding sample location state. Each element
of pAttachmentInitialSampleLocations can specify the sample location state to use in the
automatic layout transition performed to transition a depth/stencil attachment from the initial
layout of the attachment to the image layout specified for the attachment in the first subpass
using it.

• postSubpassSampleLocationsCount is the number of elements in the pPostSubpassSampleLocations
array.

• pPostSubpassSampleLocations is a pointer to an array of postSubpassSampleLocationsCount
VkSubpassSampleLocationsEXT structures specifying the subpass indices and their
corresponding sample location state. Each element of pPostSubpassSampleLocations can specify
the sample location state to use in the automatic layout transition performed to transition the
depth/stencil attachment used by the specified subpass to the image layout specified in a
dependent subpass or to the final layout of the attachment in case the specified subpass is the
last subpass using that attachment. In addition, if
VkPhysicalDeviceSampleLocationsPropertiesEXT::variableSampleLocations is VK_FALSE, each
element of pPostSubpassSampleLocations must specify the sample location state that matches the
sample locations used by all pipelines that will be bound to a command buffer during the
specified subpass. If variableSampleLocations is VK_TRUE, the sample locations used for
rasterization do not depend on pPostSubpassSampleLocations.

Valid Usage (Implicit)

• VUID-VkRenderPassSampleLocationsBeginInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT

• VUID-VkRenderPassSampleLocationsBeginInfoEXT-pAttachmentInitialSampleLocations-
parameter
If attachmentInitialSampleLocationsCount is not 0, pAttachmentInitialSampleLocations must
be a valid pointer to an array of attachmentInitialSampleLocationsCount valid

608

VkAttachmentSampleLocationsEXT structures

• VUID-VkRenderPassSampleLocationsBeginInfoEXT-pPostSubpassSampleLocations-
parameter
If postSubpassSampleLocationsCount is not 0, pPostSubpassSampleLocations must be a valid
pointer to an array of postSubpassSampleLocationsCount valid
VkSubpassSampleLocationsEXT structures

The VkAttachmentSampleLocationsEXT structure is defined as:

// Provided by VK_EXT_sample_locations
typedef struct VkAttachmentSampleLocationsEXT {
 uint32_t attachmentIndex;
 VkSampleLocationsInfoEXT sampleLocationsInfo;
} VkAttachmentSampleLocationsEXT;

• attachmentIndex is the index of the attachment for which the sample locations state is provided.

• sampleLocationsInfo is the sample locations state to use for the layout transition of the given
attachment from the initial layout of the attachment to the image layout specified for the
attachment in the first subpass using it.

If the image referenced by the framebuffer attachment at index attachmentIndex was not created
with VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT then the values specified in
sampleLocationsInfo are ignored.

Valid Usage

• VUID-VkAttachmentSampleLocationsEXT-attachmentIndex-01531
attachmentIndex must be less than the attachmentCount specified in
VkRenderPassCreateInfo the render pass specified by VkRenderPassBeginInfo::renderPass
was created with

Valid Usage (Implicit)

• VUID-VkAttachmentSampleLocationsEXT-sampleLocationsInfo-parameter
sampleLocationsInfo must be a valid VkSampleLocationsInfoEXT structure

The VkSubpassSampleLocationsEXT structure is defined as:

// Provided by VK_EXT_sample_locations
typedef struct VkSubpassSampleLocationsEXT {
 uint32_t subpassIndex;
 VkSampleLocationsInfoEXT sampleLocationsInfo;
} VkSubpassSampleLocationsEXT;

609

• subpassIndex is the index of the subpass for which the sample locations state is provided.

• sampleLocationsInfo is the sample locations state to use for the layout transition of the
depth/stencil attachment away from the image layout the attachment is used with in the
subpass specified in subpassIndex.

If the image referenced by the depth/stencil attachment used in the subpass identified by
subpassIndex was not created with VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT or if
the subpass does not use a depth/stencil attachment, and
VkPhysicalDeviceSampleLocationsPropertiesEXT::variableSampleLocations is VK_TRUE then the
values specified in sampleLocationsInfo are ignored.

Valid Usage

• VUID-VkSubpassSampleLocationsEXT-subpassIndex-01532
subpassIndex must be less than the subpassCount specified in VkRenderPassCreateInfo the
render pass specified by VkRenderPassBeginInfo::renderPass was created with

Valid Usage (Implicit)

• VUID-VkSubpassSampleLocationsEXT-sampleLocationsInfo-parameter
sampleLocationsInfo must be a valid VkSampleLocationsInfoEXT structure

To begin a render pass instance with render pass transform enabled, add the
VkRenderPassTransformBeginInfoQCOM to the pNext chain of VkRenderPassBeginInfo structure
passed to the vkCmdBeginRenderPass command specifying the render pass transform.

The VkRenderPassTransformBeginInfoQCOM structure is defined as:

// Provided by VK_QCOM_render_pass_transform
typedef struct VkRenderPassTransformBeginInfoQCOM {
 VkStructureType sType;
 void* pNext;
 VkSurfaceTransformFlagBitsKHR transform;
} VkRenderPassTransformBeginInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• transform is a VkSurfaceTransformFlagBitsKHR value describing the transform to be applied to
rasterization.

Valid Usage

• VUID-VkRenderPassTransformBeginInfoQCOM-transform-02871
transform must be VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR,

610

VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR, VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR, or
VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR

• VUID-VkRenderPassTransformBeginInfoQCOM-flags-02872
The renderpass must have been created with VkRenderPassCreateInfo::flags containing
VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM

Valid Usage (Implicit)

• VUID-VkRenderPassTransformBeginInfoQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM

The VkSubpassBeginInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSubpassBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkSubpassContents contents;
} VkSubpassBeginInfo;

or the equivalent

// Provided by VK_KHR_create_renderpass2
typedef VkSubpassBeginInfo VkSubpassBeginInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• contents is a VkSubpassContents value specifying how the commands in the next subpass will
be provided.

Valid Usage

• VUID-VkSubpassBeginInfo-contents-09382
If contents is VK_SUBPASS_CONTENTS_INLINE_AND_SECONDARY_COMMAND_BUFFERS_EXT, then
nestedCommandBuffer must be enabled

Valid Usage (Implicit)

• VUID-VkSubpassBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO

• VUID-VkSubpassBeginInfo-pNext-pNext
pNext must be NULL

611

• VUID-VkSubpassBeginInfo-contents-parameter
contents must be a valid VkSubpassContents value

Possible values of vkCmdBeginRenderPass::contents, specifying how the commands in the first
subpass will be provided, are:

// Provided by VK_VERSION_1_0
typedef enum VkSubpassContents {
 VK_SUBPASS_CONTENTS_INLINE = 0,
 VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS = 1,
 // Provided by VK_EXT_nested_command_buffer
 VK_SUBPASS_CONTENTS_INLINE_AND_SECONDARY_COMMAND_BUFFERS_EXT = 1000451000,
} VkSubpassContents;

• VK_SUBPASS_CONTENTS_INLINE specifies that the contents of the subpass will be recorded inline in
the primary command buffer, and secondary command buffers must not be executed within
the subpass.

• VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS specifies that the contents are recorded in
secondary command buffers that will be called from the primary command buffer, and
vkCmdExecuteCommands is the only valid command in the command buffer until
vkCmdNextSubpass or vkCmdEndRenderPass.

• VK_SUBPASS_CONTENTS_INLINE_AND_SECONDARY_COMMAND_BUFFERS_EXT specifies that the contents of the
subpass can be recorded both inline and in secondary command buffers executed from this
command buffer with vkCmdExecuteCommands.

If the pNext chain of VkRenderPassBeginInfo or VkRenderingInfo includes a
VkDeviceGroupRenderPassBeginInfo structure, then that structure includes a device mask and set of
render areas for the render pass instance.

The VkDeviceGroupRenderPassBeginInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupRenderPassBeginInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t deviceMask;
 uint32_t deviceRenderAreaCount;
 const VkRect2D* pDeviceRenderAreas;
} VkDeviceGroupRenderPassBeginInfo;

or the equivalent

// Provided by VK_KHR_device_group
typedef VkDeviceGroupRenderPassBeginInfo VkDeviceGroupRenderPassBeginInfoKHR;

612

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceMask is the device mask for the render pass instance.

• deviceRenderAreaCount is the number of elements in the pDeviceRenderAreas array.

• pDeviceRenderAreas is a pointer to an array of VkRect2D structures defining the render area for
each physical device.

The deviceMask serves several purposes. It is an upper bound on the set of physical devices that can
be used during the render pass instance, and the initial device mask when the render pass instance
begins. In addition, commands transitioning to the next subpass in a render pass instance and
commands ending the render pass instance, and, accordingly render pass load, store, and
multisample resolve operations and subpass dependencies corresponding to the render pass
instance, are executed on the physical devices included in the device mask provided here.

If deviceRenderAreaCount is not zero, then the elements of pDeviceRenderAreas override the value of
VkRenderPassBeginInfo::renderArea, and provide a render area specific to each physical device.
These render areas serve the same purpose as VkRenderPassBeginInfo::renderArea, including
controlling the region of attachments that are cleared by VK_ATTACHMENT_LOAD_OP_CLEAR and that are
resolved into resolve attachments.

If this structure is not present, the render pass instance’s device mask is the value of
VkDeviceGroupCommandBufferBeginInfo::deviceMask. If this structure is not present or if
deviceRenderAreaCount is zero, VkRenderPassBeginInfo::renderArea is used for all physical devices.

Valid Usage

• VUID-VkDeviceGroupRenderPassBeginInfo-deviceMask-00905
deviceMask must be a valid device mask value

• VUID-VkDeviceGroupRenderPassBeginInfo-deviceMask-00906
deviceMask must not be zero

• VUID-VkDeviceGroupRenderPassBeginInfo-deviceMask-00907
deviceMask must be a subset of the command buffer’s initial device mask

• VUID-VkDeviceGroupRenderPassBeginInfo-deviceRenderAreaCount-00908
deviceRenderAreaCount must either be zero or equal to the number of physical devices in
the logical device

• VUID-VkDeviceGroupRenderPassBeginInfo-offset-06166
The offset.x member of any element of pDeviceRenderAreas must be greater than or equal
to 0

• VUID-VkDeviceGroupRenderPassBeginInfo-offset-06167
The offset.y member of any element of pDeviceRenderAreas must be greater than or equal
to 0

• VUID-VkDeviceGroupRenderPassBeginInfo-offset-06168
The sum of the offset.x and extent.width members of any element of pDeviceRenderAreas
must be less than or equal to maxFramebufferWidth

613

• VUID-VkDeviceGroupRenderPassBeginInfo-offset-06169
The sum of the offset.y and extent.height members of any element of pDeviceRenderAreas
must be less than or equal to maxFramebufferHeight

• VUID-VkDeviceGroupRenderPassBeginInfo-extent-08998
The extent.width member of any element of pDeviceRenderAreas must be greater than 0

• VUID-VkDeviceGroupRenderPassBeginInfo-extent-08999
The extent.height member of any element of pDeviceRenderAreas must be greater than 0

Valid Usage (Implicit)

• VUID-VkDeviceGroupRenderPassBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO

• VUID-VkDeviceGroupRenderPassBeginInfo-pDeviceRenderAreas-parameter
If deviceRenderAreaCount is not 0, pDeviceRenderAreas must be a valid pointer to an array of
deviceRenderAreaCount VkRect2D structures

The VkRenderPassAttachmentBeginInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkRenderPassAttachmentBeginInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t attachmentCount;
 const VkImageView* pAttachments;
} VkRenderPassAttachmentBeginInfo;

or the equivalent

// Provided by VK_KHR_imageless_framebuffer
typedef VkRenderPassAttachmentBeginInfo VkRenderPassAttachmentBeginInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachmentCount is the number of attachments.

• pAttachments is a pointer to an array of VkImageView handles, each of which will be used as the
corresponding attachment in the render pass instance.

Valid Usage

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-03218
Each element of pAttachments must only specify a single mip level

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-03219

614

Each element of pAttachments must have been created with the identity swizzle

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-04114
Each element of pAttachments must have been created with VkImageViewCreateInfo
::viewType not equal to VK_IMAGE_VIEW_TYPE_3D

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-07010
If multisampled-render-to-single-sampled is enabled for any subpass, all element of
pAttachments which have a sample count equal to VK_SAMPLE_COUNT_1_BIT must have a
format that supports the sample count specified in
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

Valid Usage (Implicit)

• VUID-VkRenderPassAttachmentBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-parameter
If attachmentCount is not 0, pAttachments must be a valid pointer to an array of
attachmentCount valid VkImageView handles

If a render pass instance enables multiview and if the multiviewPerViewRenderAreas feature is
enabled, the VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM structure can be included in
the pNext chain of VkRenderPassBeginInfo or VkRenderingInfo

The VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM structure is defined as:

// Provided by VK_QCOM_multiview_per_view_render_areas
typedef struct VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM {
 VkStructureType sType;
 const void* pNext;
 uint32_t perViewRenderAreaCount;
 const VkRect2D* pPerViewRenderAreas;
} VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• perViewRenderAreaCount is the number of elements in the pPerViewRenderAreas array.

• pPerViewRenderAreas is a pointer to an array of VkRect2D structures defining the render area for
each view.

If perViewRenderAreaCount is not zero, then the elements of pPerViewRenderAreas override the value of
VkRenderPassBeginInfo::renderArea or VkRenderingInfo::renderArea and define per-view render
areas for the individual views of a multiview render pass. The render area for the view with view
index i is specified by pPerViewRenderAreas[i].

The per-view render areas define per-view regions of attachments that are loaded, stored, and

615

resolved according to the loadOp, storeOp, and resolveMode values of the render pass instance. When
per-view render areas are defined, the value of VkRenderPassBeginInfo::renderArea or
VkRenderingInfo::renderArea must be set to a render area that includes the union of all per-view
render areas, may be used by the implementation for optimizations, but does not affect loads,
stores, or resolves.

If this structure is present and if perViewRenderAreaCount is not zero, then perViewRenderAreaCount
must be at least least one greater than the most significant bit set in any any element of
VkRenderPassMultiviewCreateInfo::pViewMasks. or VkRenderingInfo::viewMask

If this structure is not present or if perViewRenderAreaCount is zero, VkRenderPassBeginInfo
::renderArea or VkRenderingInfo::renderArea is used for all views.

Valid Usage

• VUID-VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM-offset-07861
The offset.x member of any element of pPerViewRenderAreas must be greater than or
equal to 0

• VUID-VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM-offset-07862
The offset.y member of any element of pPerViewRenderAreas must be greater than or
equal to 0

• VUID-VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM-offset-07863
The sum of the offset.x and extent.width members of any element of pPerViewRenderAreas
must be less than or equal to maxFramebufferWidth

• VUID-VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM-offset-07864
The sum of the offset.y and extent.height members of any element of
pPerViewRenderAreas must be less than or equal to maxFramebufferHeight

• VUID-VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM-pNext-07865
If this structure is in the pNext chain of VkRenderPassBeginInfo and if the render pass
object included an element in VkRenderPassMultiviewCreateInfo::pViewMasks that set bit n,
then perViewRenderAreaCount must be at least equal to n+1.

• VUID-VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM-pNext-07866
If this structure is in the pNext chain of VkRenderingInfo and if VkRenderingInfo::viewMask
set bit n, then perViewRenderAreaCount must be at least equal to n+1.

Valid Usage (Implicit)

• VUID-VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM-sType-sType
sType must be
VK_STRUCTURE_TYPE_MULTIVIEW_PER_VIEW_RENDER_AREAS_RENDER_PASS_BEGIN_INFO_QCOM

• VUID-VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM-
pPerViewRenderAreas-parameter
If perViewRenderAreaCount is not 0, pPerViewRenderAreas must be a valid pointer to an array
of perViewRenderAreaCount VkRect2D structures

616

To query the render area granularity, call:

// Provided by VK_VERSION_1_0
void vkGetRenderAreaGranularity(
 VkDevice device,
 VkRenderPass renderPass,
 VkExtent2D* pGranularity);

• device is the logical device that owns the render pass.

• renderPass is a handle to a render pass.

• pGranularity is a pointer to a VkExtent2D structure in which the granularity is returned.

The conditions leading to an optimal renderArea are:

• the offset.x member in renderArea is a multiple of the width member of the returned
VkExtent2D (the horizontal granularity).

• the offset.y member in renderArea is a multiple of the height member of the returned
VkExtent2D (the vertical granularity).

• either the extent.width member in renderArea is a multiple of the horizontal granularity or
offset.x+extent.width is equal to the width of the framebuffer in the VkRenderPassBeginInfo.

• either the extent.height member in renderArea is a multiple of the vertical granularity or
offset.y+extent.height is equal to the height of the framebuffer in the VkRenderPassBeginInfo.

Subpass dependencies are not affected by the render area, and apply to the entire image
subresources attached to the framebuffer as specified in the description of automatic layout
transitions. Similarly, pipeline barriers are valid even if their effect extends outside the render
area.

Valid Usage (Implicit)

• VUID-vkGetRenderAreaGranularity-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetRenderAreaGranularity-renderPass-parameter
renderPass must be a valid VkRenderPass handle

• VUID-vkGetRenderAreaGranularity-pGranularity-parameter
pGranularity must be a valid pointer to a VkExtent2D structure

• VUID-vkGetRenderAreaGranularity-renderPass-parent
renderPass must have been created, allocated, or retrieved from device

To transition to the next subpass in the render pass instance after recording the commands for a
subpass, call:

// Provided by VK_VERSION_1_0
void vkCmdNextSubpass(

617

 VkCommandBuffer commandBuffer,
 VkSubpassContents contents);

• commandBuffer is the command buffer in which to record the command.

• contents specifies how the commands in the next subpass will be provided, in the same fashion
as the corresponding parameter of vkCmdBeginRenderPass.

The subpass index for a render pass begins at zero when vkCmdBeginRenderPass is recorded, and
increments each time vkCmdNextSubpass is recorded.

After transitioning to the next subpass, the application can record the commands for that subpass.

Valid Usage

• VUID-vkCmdNextSubpass-None-00909
The current subpass index must be less than the number of subpasses in the render pass
minus one

• VUID-vkCmdNextSubpass-None-02349
This command must not be recorded when transform feedback is active

Valid Usage (Implicit)

• VUID-vkCmdNextSubpass-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdNextSubpass-contents-parameter
contents must be a valid VkSubpassContents value

• VUID-vkCmdNextSubpass-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdNextSubpass-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdNextSubpass-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdNextSubpass-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdNextSubpass-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

618

synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Inside Outside Graphics Action
State
Synchronization

To transition to the next subpass in the render pass instance after recording the commands for a
subpass, call:

// Provided by VK_VERSION_1_2
void vkCmdNextSubpass2(
 VkCommandBuffer commandBuffer,
 const VkSubpassBeginInfo* pSubpassBeginInfo,
 const VkSubpassEndInfo* pSubpassEndInfo);

or the equivalent command

// Provided by VK_KHR_create_renderpass2
void vkCmdNextSubpass2KHR(
 VkCommandBuffer commandBuffer,
 const VkSubpassBeginInfo* pSubpassBeginInfo,
 const VkSubpassEndInfo* pSubpassEndInfo);

• commandBuffer is the command buffer in which to record the command.

• pSubpassBeginInfo is a pointer to a VkSubpassBeginInfo structure containing information about
the subpass which is about to begin rendering.

• pSubpassEndInfo is a pointer to a VkSubpassEndInfo structure containing information about how
the previous subpass will be ended.

vkCmdNextSubpass2 is semantically identical to vkCmdNextSubpass, except that it is extensible, and
that contents is provided as part of an extensible structure instead of as a flat parameter.

Valid Usage

• VUID-vkCmdNextSubpass2-None-03102
The current subpass index must be less than the number of subpasses in the render pass
minus one

• VUID-vkCmdNextSubpass2-None-02350
This command must not be recorded when transform feedback is active

619

Valid Usage (Implicit)

• VUID-vkCmdNextSubpass2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdNextSubpass2-pSubpassBeginInfo-parameter
pSubpassBeginInfo must be a valid pointer to a valid VkSubpassBeginInfo structure

• VUID-vkCmdNextSubpass2-pSubpassEndInfo-parameter
pSubpassEndInfo must be a valid pointer to a valid VkSubpassEndInfo structure

• VUID-vkCmdNextSubpass2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdNextSubpass2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdNextSubpass2-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdNextSubpass2-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdNextSubpass2-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Inside Outside Graphics Action
State
Synchronization

To record a command to end a render pass instance after recording the commands for the last
subpass, call:

// Provided by VK_VERSION_1_0
void vkCmdEndRenderPass(
 VkCommandBuffer commandBuffer);

620

• commandBuffer is the command buffer in which to end the current render pass instance.

Ending a render pass instance performs any multisample resolve operations on the final subpass.

Valid Usage

• VUID-vkCmdEndRenderPass-None-00910
The current subpass index must be equal to the number of subpasses in the render pass
minus one

• VUID-vkCmdEndRenderPass-None-02351
This command must not be recorded when transform feedback is active

• VUID-vkCmdEndRenderPass-None-06170
The current render pass instance must not have been begun with vkCmdBeginRendering

• VUID-vkCmdEndRenderPass-None-07004
If vkCmdBeginQuery* was called within a subpass of the render pass, the corresponding
vkCmdEndQuery* must have been called subsequently within the same subpass

Valid Usage (Implicit)

• VUID-vkCmdEndRenderPass-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndRenderPass-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndRenderPass-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdEndRenderPass-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdEndRenderPass-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdEndRenderPass-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

621

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Inside Outside Graphics Action
State
Synchronization

To record a command to end a render pass instance after recording the commands for the last
subpass, call:

// Provided by VK_VERSION_1_2
void vkCmdEndRenderPass2(
 VkCommandBuffer commandBuffer,
 const VkSubpassEndInfo* pSubpassEndInfo);

or the equivalent command

// Provided by VK_KHR_create_renderpass2
void vkCmdEndRenderPass2KHR(
 VkCommandBuffer commandBuffer,
 const VkSubpassEndInfo* pSubpassEndInfo);

• commandBuffer is the command buffer in which to end the current render pass instance.

• pSubpassEndInfo is a pointer to a VkSubpassEndInfo structure containing information about how
the last subpass will be ended.

vkCmdEndRenderPass2 is semantically identical to vkCmdEndRenderPass, except that it is extensible.

Valid Usage

• VUID-vkCmdEndRenderPass2-None-03103
The current subpass index must be equal to the number of subpasses in the render pass
minus one

• VUID-vkCmdEndRenderPass2-None-02352
This command must not be recorded when transform feedback is active

• VUID-vkCmdEndRenderPass2-None-06171
The current render pass instance must not have been begun with vkCmdBeginRendering

• VUID-vkCmdEndRenderPass2-None-07005
If vkCmdBeginQuery* was called within a subpass of the render pass, the corresponding
vkCmdEndQuery* must have been called subsequently within the same subpass

622

Valid Usage (Implicit)

• VUID-vkCmdEndRenderPass2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndRenderPass2-pSubpassEndInfo-parameter
pSubpassEndInfo must be a valid pointer to a valid VkSubpassEndInfo structure

• VUID-vkCmdEndRenderPass2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndRenderPass2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdEndRenderPass2-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdEndRenderPass2-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdEndRenderPass2-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Inside Outside Graphics Action
State
Synchronization

The VkSubpassEndInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSubpassEndInfo {
 VkStructureType sType;
 const void* pNext;
} VkSubpassEndInfo;

623

or the equivalent

// Provided by VK_KHR_create_renderpass2
typedef VkSubpassEndInfo VkSubpassEndInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

Valid Usage (Implicit)

• VUID-VkSubpassEndInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_END_INFO

• VUID-VkSubpassEndInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkSubpassFragmentDensityMapOffsetEndInfoQCOM

• VUID-VkSubpassEndInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

If the VkSubpassEndInfo::pNext chain includes a VkSubpassFragmentDensityMapOffsetEndInfoQCOM
structure, then that structure includes an array of fragment density map offsets per layer for the
render pass.

The VkSubpassFragmentDensityMapOffsetEndInfoQCOM structure is defined as:

// Provided by VK_QCOM_fragment_density_map_offset
typedef struct VkSubpassFragmentDensityMapOffsetEndInfoQCOM {
 VkStructureType sType;
 const void* pNext;
 uint32_t fragmentDensityOffsetCount;
 const VkOffset2D* pFragmentDensityOffsets;
} VkSubpassFragmentDensityMapOffsetEndInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentDensityOffsetCount is the number of offsets being specified.

• pFragmentDensityOffsets is a pointer to an array of VkOffset2D structs, each of which describes
the offset per layer.

The array elements are given per layer as defined by Fetch Density Value, where index = layer.
Each (x,y) offset is in framebuffer pixels and shifts the fetch of the fragment density map by that
amount. Offsets can be positive or negative.

Offset values specified for any subpass that is not the last subpass in the render pass are ignored. If
the VkSubpassEndInfo::pNext chain for the last subpass of a render pass does not include

624

VkSubpassFragmentDensityMapOffsetEndInfoQCOM, or if fragmentDensityOffsetCount is zero, then the
offset (0,0) is used for Fetch Density Value.

Valid Usage

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-fragmentDensityMapOffsets-
06503
If the fragmentDensityMapOffsets feature is not enabled or fragment density map is not
enabled in the render pass, fragmentDensityOffsetCount must equal 0

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-
fragmentDensityMapAttachment-06504
If VkSubpassDescription::fragmentDensityMapAttachment is not is not VK_ATTACHMENT_UNUSED
and was not created with VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM,
fragmentDensityOffsetCount must equal 0

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-pDepthStencilAttachment-
06505
If VkSubpassDescription::pDepthStencilAttachment is not is not VK_ATTACHMENT_UNUSED and
was not created with VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM,
fragmentDensityOffsetCount must equal 0

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-pInputAttachments-06506
If any element of VkSubpassDescription::pInputAttachments is not is not
VK_ATTACHMENT_UNUSED and was not created with
VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM, fragmentDensityOffsetCount must
equal 0

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-pColorAttachments-06507
If any element of VkSubpassDescription::pColorAttachments is not is not
VK_ATTACHMENT_UNUSED and was not created with
VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM, fragmentDensityOffsetCount must
equal 0

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-pResolveAttachments-06508
If any element of VkSubpassDescription::pResolveAttachments is not is not
VK_ATTACHMENT_UNUSED and was not created with
VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM, fragmentDensityOffsetCount must
equal 0

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-pPreserveAttachments-06509
If any element of VkSubpassDescription::pPreserveAttachments is not is not
VK_ATTACHMENT_UNUSED and was not created with
VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM, fragmentDensityOffsetCount must
equal 0

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-fragmentDensityOffsetCount-
06510
If fragmentDensityOffsetCount is not 0 and multiview is enabled for the render pass,
fragmentDensityOffsetCount must equal the layerCount that was specified in creating the
fragment density map attachment view

625

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-fragmentDensityOffsetCount-
06511
If fragmentDensityOffsetCount is not 0 and multiview is not enabled for the render pass,
fragmentDensityOffsetCount must equal 1

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-x-06512
The x component of each element of pFragmentDensityOffsets must be an integer multiple
of fragmentDensityOffsetGranularity.width

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-y-06513
The y component of each element of pFragmentDensityOffsets must be an integer multiple
of fragmentDensityOffsetGranularity.height

Valid Usage (Implicit)

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_FRAGMENT_DENSITY_MAP_OFFSET_END_INFO_QCOM

• VUID-VkSubpassFragmentDensityMapOffsetEndInfoQCOM-pFragmentDensityOffsets-
parameter
If fragmentDensityOffsetCount is not 0, pFragmentDensityOffsets must be a valid pointer to
an array of fragmentDensityOffsetCount VkOffset2D structures

8.9. Render Pass Creation Feedback
A VkRenderPassCreationControlEXT structure can be included in the pNext chain of
VkRenderPassCreateInfo2 or pNext chain of VkSubpassDescription2. The
VkRenderPassCreationControlEXT structure is defined as:

// Provided by VK_EXT_subpass_merge_feedback
typedef struct VkRenderPassCreationControlEXT {
 VkStructureType sType;
 const void* pNext;
 VkBool32 disallowMerging;
} VkRenderPassCreationControlEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• disallowMerging is a boolean value indicating whether subpass merging will be disabled.

If a VkRenderPassCreationControlEXT structure is included in the pNext chain of
VkRenderPassCreateInfo2 and its value of disallowMerging is VK_TRUE, the implementation will
disable subpass merging for the entire render pass. If a VkRenderPassCreationControlEXT structure is
included in the pNext chain of VkSubpassDescription2 and its value of disallowMerging is VK_TRUE,
the implementation will disable merging the described subpass with previous subpasses in the
render pass.

626

Valid Usage (Implicit)

• VUID-VkRenderPassCreationControlEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATION_CONTROL_EXT

To obtain feedback about the creation of a render pass, include a
VkRenderPassCreationFeedbackCreateInfoEXT structure in the pNext chain of
VkRenderPassCreateInfo2. The VkRenderPassCreationFeedbackCreateInfoEXT structure is defined as:

// Provided by VK_EXT_subpass_merge_feedback
typedef struct VkRenderPassCreationFeedbackCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkRenderPassCreationFeedbackInfoEXT* pRenderPassFeedback;
} VkRenderPassCreationFeedbackCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pRenderPassFeedback is a pointer to a VkRenderPassCreationFeedbackInfoEXT structure in which
feedback is returned.

Valid Usage (Implicit)

• VUID-VkRenderPassCreationFeedbackCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATION_FEEDBACK_CREATE_INFO_EXT

• VUID-VkRenderPassCreationFeedbackCreateInfoEXT-pRenderPassFeedback-parameter
pRenderPassFeedback must be a valid pointer to a VkRenderPassCreationFeedbackInfoEXT
structure

The VkRenderPassCreationFeedbackInfoEXT structure is defined as:

// Provided by VK_EXT_subpass_merge_feedback
typedef struct VkRenderPassCreationFeedbackInfoEXT {
 uint32_t postMergeSubpassCount;
} VkRenderPassCreationFeedbackInfoEXT;

• postMergeSubpassCount is the subpass count after merge.

Feedback about the creation of a subpass can be obtained by including a
VkRenderPassSubpassFeedbackCreateInfoEXT structure in the pNext chain of VkSubpassDescription2.
VkRenderPassSubpassFeedbackCreateInfoEXT structure is defined as:

// Provided by VK_EXT_subpass_merge_feedback

627

typedef struct VkRenderPassSubpassFeedbackCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkRenderPassSubpassFeedbackInfoEXT* pSubpassFeedback;
} VkRenderPassSubpassFeedbackCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pSubpassFeedback is a pointer to a VkRenderPassSubpassFeedbackInfoEXT structure in which
feedback is returned.

Valid Usage (Implicit)

• VUID-VkRenderPassSubpassFeedbackCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_SUBPASS_FEEDBACK_CREATE_INFO_EXT

• VUID-VkRenderPassSubpassFeedbackCreateInfoEXT-pSubpassFeedback-parameter
pSubpassFeedback must be a valid pointer to a VkRenderPassSubpassFeedbackInfoEXT
structure

The VkRenderPassSubpassFeedbackInfoEXT structure is defined as:

// Provided by VK_EXT_subpass_merge_feedback
typedef struct VkRenderPassSubpassFeedbackInfoEXT {
 VkSubpassMergeStatusEXT subpassMergeStatus;
 char description[VK_MAX_DESCRIPTION_SIZE];
 uint32_t postMergeIndex;
} VkRenderPassSubpassFeedbackInfoEXT;

• subpassMergeStatus is a VkSubpassMergeStatusEXT value specifying information about whether the
subpass is merged with previous subpass and the reason why it is not merged.

• description is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8
string which provides additional details.

• postMergeIndex is the subpass index after the subpass merging.

Possible values of VkRenderPassSubpassFeedbackInfoEXT:subpassMergeStatus are:

// Provided by VK_EXT_subpass_merge_feedback
typedef enum VkSubpassMergeStatusEXT {
 VK_SUBPASS_MERGE_STATUS_MERGED_EXT = 0,
 VK_SUBPASS_MERGE_STATUS_DISALLOWED_EXT = 1,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_SIDE_EFFECTS_EXT = 2,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_SAMPLES_MISMATCH_EXT = 3,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_VIEWS_MISMATCH_EXT = 4,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_ALIASING_EXT = 5,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_DEPENDENCIES_EXT = 6,

628

 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_INCOMPATIBLE_INPUT_ATTACHMENT_EXT = 7,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_TOO_MANY_ATTACHMENTS_EXT = 8,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_INSUFFICIENT_STORAGE_EXT = 9,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_DEPTH_STENCIL_COUNT_EXT = 10,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_RESOLVE_ATTACHMENT_REUSE_EXT = 11,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_SINGLE_SUBPASS_EXT = 12,
 VK_SUBPASS_MERGE_STATUS_NOT_MERGED_UNSPECIFIED_EXT = 13,
} VkSubpassMergeStatusEXT;

• VK_SUBPASS_MERGE_STATUS_MERGED_EXT specifies the subpass is merged with a previous subpass.

• VK_SUBPASS_MERGE_STATUS_DISALLOWED_EXT specifies the subpass is disallowed to merge with
previous subpass. If the render pass does not allow subpass merging, then all subpass statuses
are set to this value. If a subpass description does not allow subpass merging, then only that
subpass’s status is set to this value.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_SIDE_EFFECTS_EXT specifies the subpass is not merged
because it contains side effects.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_SAMPLES_MISMATCH_EXT specifies the subpass is not merged
because sample count is not compatible with previous subpass.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_VIEWS_MISMATCH_EXT specifies the subpass is not merged
because view masks do not match with previous subpass.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_ALIASING_EXT specifies the subpass is not merged because of
attachments aliasing between them.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_DEPENDENCIES_EXT specifies the subpass is not merged
because subpass dependencies do not allow merging.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_INCOMPATIBLE_INPUT_ATTACHMENT_EXT specifies the subpass is
not merged because input attachment is not a color attachment from previous subpass or the
formats are incompatible.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_TOO_MANY_ATTACHMENTS_EXT specifies the subpass is not
merged because of too many attachments.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_INSUFFICIENT_STORAGE_EXT specifies the subpass is not
merged because of insufficient memory.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_DEPTH_STENCIL_COUNT_EXT specifies the subpass is not
merged because of too many depth/stencil attachments.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_RESOLVE_ATTACHMENT_REUSE_EXT specifies the subpass is not
merged because a resolve attachment is reused as an input attachment in a subsequent subpass.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_SINGLE_SUBPASS_EXT specifies the subpass is not merged
because the render pass has only one subpass.

• VK_SUBPASS_MERGE_STATUS_NOT_MERGED_UNSPECIFIED_EXT specifies other reasons why subpass is not
merged. It is also the recommended default value that should be reported when a subpass is not
merged and when no other value is appropriate.

629

8.10. Common Render Pass Data Races (Informative)
Due to the complexity of how rendering is performed, there are several ways an application can
accidentally introduce a data race, usually by doing something that may seem benign but actually
cannot be supported. This section indicates a number of the more common cases as guidelines to
help avoid them.

8.10.1. Sampling From a Read-only Attachment

Vulkan includes read-only layouts for depth/stencil images, that allow the images to be both read
during a render pass for the purposes of depth/stencil tests, and read as a non-attachment.

However, because VK_ATTACHMENT_STORE_OP_STORE and VK_ATTACHMENT_STORE_OP_DONT_CARE may
perform write operations, even if no recorded command writes to an attachment, reading from an
image while also using it as an attachment with these store operations can result in a data race. If
the reads from the non-attachment are performed in a fragment shader where the accessed
samples match those covered by the fragment shader, no data race will occur as store operations
are guaranteed to operate after fragment shader execution for the set of samples the fragment
covers. Notably, input attachments can also be used for this case. Reading other samples or in any
other shader stage can result in unexpected behavior due to the potential for a data race, and
validation errors should be generated for doing so. In practice, many applications have shipped
reading samples outside of the covered fragment without any observable issue, but there is no
guarantee that this will always work, and it is not advisable to rely on this in new or re-worked
code bases. As VK_ATTACHMENT_STORE_OP_NONE is guaranteed to perform no writes, applications
wishing to read an image as both an attachment and a non-attachment should make use of this
store operation, coupled with a load operation that also performs no writes.

8.10.2. Non-overlapping Access Between Resources

When relying on non-overlapping accesses between attachments and other resources, it is
important to note that load and store operations have fairly wide alignment requirements -
potentially affecting entire subresources and adjacent depth/stencil aspects. This makes it invalid to
access a non-attachment subresource that is simultaneously being used as an attachment where
either access performs a write operation.

The only exception to this is if a subresource is in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, in which case the overlap is
defined to occur at a per-pixel granularity, and applications can read data from pixels outside the
render area without introducing a data race.

8.10.3. Depth/Stencil and Input Attachments

When rendering to only the depth OR stencil aspect of an image, an input attachment accessing the
other aspect will not cause a data race only under very specific conditions. To avoid a data race, the
aspect not being written must be in a read-only layout, and writes to it must be disabled in the draw
state. For example, to read from stencil while writing depth, the attachment must be in
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL (or equivalent), and the stencil write
mask must be set to 0. Similarly to read from depth while writing stencil, the attachment must be in

630

VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL (or equivalent), and depth write
enable must be set to VK_FALSE.

8.10.4. Synchronization Options

There are several synchronization options available to synchronize between accesses to resources
within a render pass. Some of the options are outlined below:

• A VkSubpassDependency in a render pass object can synchronize attachment writes and
multisample resolve operations from a prior subpass for subsequent input attachment reads.

• A vkCmdPipelineBarrier inside a subpass can synchronize prior attachment writes in the
subpass with subsequent input attachment reads.

• A vkCmdPipelineBarrier inside a subpass can synchronize prior attachment writes in the
subpass with subsequent non-attachment reads if the attachment is in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout.

• If a subresource is used as a color and input attachment, and the pipeline performing the read
was created with
VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT

• If a subresource is used as a depth and input attachment, and the pipeline performing the read
was created with
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT

• If a subresource is used as a stencil and input attachment, and the pipeline performing the read
was created with
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EX
T

• If a subresource is used as two separate non-attachment resources, writes to a pixel or
individual sample in a fragment shader can be synchronized with access to the same pixel or
sample in another fragment shader by using one of the fragment interlock execution modes.

631

Chapter 9. Shaders
A shader specifies programmable operations that execute for each vertex, control point, tessellated
vertex, primitive, fragment, or workgroup in the corresponding stage(s) of the graphics and
compute pipelines.

Graphics pipelines include vertex shader execution as a result of primitive assembly, followed, if
enabled, by tessellation control and evaluation shaders operating on patches, geometry shaders, if
enabled, operating on primitives, and fragment shaders, if present, operating on fragments
generated by Rasterization. In this specification, vertex, tessellation control, tessellation evaluation
and geometry shaders are collectively referred to as pre-rasterization shader stages and occur in
the logical pipeline before rasterization. The fragment shader occurs logically after rasterization.

Only the compute shader stage is included in a compute pipeline. Compute shaders operate on
compute invocations in a workgroup.

Shaders can read from input variables, and read from and write to output variables. Input and
output variables can be used to transfer data between shader stages, or to allow the shader to
interact with values that exist in the execution environment. Similarly, the execution environment
provides constants describing capabilities.

Shader variables are associated with execution environment-provided inputs and outputs using
built-in decorations in the shader. The available decorations for each stage are documented in the
following subsections.

9.1. Shader Objects
Shaders may be compiled and linked into pipeline objects as described in Pipelines chapter, or if
the shaderObject feature is enabled they may be compiled into individual per-stage shader objects
which can be bound on a command buffer independently from one another. Unlike pipelines,
shader objects are not intrinsically tied to any specific set of state. Instead, state is specified
dynamically in the command buffer.

Each shader object represents a single compiled shader stage, which may optionally be linked with
one or more other stages.

Shader objects are represented by VkShaderEXT handles:

// Provided by VK_EXT_shader_object
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkShaderEXT)

9.1.1. Shader Object Creation

Shader objects may be created from shader code provided as SPIR-V, or in an opaque,
implementation-defined binary format specific to the physical device.

To create one or more shader objects, call:

632

// Provided by VK_EXT_shader_object
VkResult vkCreateShadersEXT(
 VkDevice device,
 uint32_t createInfoCount,
 const VkShaderCreateInfoEXT* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkShaderEXT* pShaders);

• device is the logical device that creates the shader objects.

• createInfoCount is the length of the pCreateInfos and pShaders arrays.

• pCreateInfos is a pointer to an array of VkShaderCreateInfoEXT structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pShaders is a pointer to an array of VkShaderEXT handles in which the resulting shader objects
are returned.

When this function returns, whether or not it succeeds, it is guaranteed that every element of
pShaders will have been overwritten by either VK_NULL_HANDLE or a valid VkShaderEXT handle.

This means that whenever shader creation fails, the application can determine which shader the
returned error pertains to by locating the first VK_NULL_HANDLE element in pShaders. It also
means that an application can reliably clean up from a failed call by iterating over the pShaders
array and destroying every element that is not VK_NULL_HANDLE.

Valid Usage

• VUID-vkCreateShadersEXT-None-08400
The shaderObject feature must be enabled

• VUID-vkCreateShadersEXT-pCreateInfos-08402
If the flags member of any element of pCreateInfos includes
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, the flags member of all other elements of
pCreateInfos whose stage is VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
VK_SHADER_STAGE_GEOMETRY_BIT, or VK_SHADER_STAGE_FRAGMENT_BIT must also include
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT

• VUID-vkCreateShadersEXT-pCreateInfos-08403
If the flags member of any element of pCreateInfos includes
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, the flags member of all other elements of
pCreateInfos whose stage is VK_SHADER_STAGE_TASK_BIT_EXT or VK_SHADER_STAGE_MESH_BIT_EXT
must also include VK_SHADER_CREATE_LINK_STAGE_BIT_EXT

• VUID-vkCreateShadersEXT-pCreateInfos-08404
If the flags member of any element of pCreateInfos whose stage is
VK_SHADER_STAGE_TASK_BIT_EXT or VK_SHADER_STAGE_MESH_BIT_EXT includes
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, there must be no member of pCreateInfos whose
stage is VK_SHADER_STAGE_VERTEX_BIT and whose flags member includes

633

VK_SHADER_CREATE_LINK_STAGE_BIT_EXT

• VUID-vkCreateShadersEXT-pCreateInfos-08405
If there is any element of pCreateInfos whose stage is VK_SHADER_STAGE_MESH_BIT_EXT and
whose flags member includes both VK_SHADER_CREATE_LINK_STAGE_BIT_EXT and
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT, there must be no element of pCreateInfos
whose stage is VK_SHADER_STAGE_TASK_BIT_EXT and whose flags member includes
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT

• VUID-vkCreateShadersEXT-pCreateInfos-08409
For each element of pCreateInfos whose flags member includes
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, if there is any other element of pCreateInfos whose
stage is logically later than the stage of the former and whose flags member also includes
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, the nextStage of the former must be equal to the
stage of the element with the logically earliest stage following the stage of the former
whose flags member also includes VK_SHADER_CREATE_LINK_STAGE_BIT_EXT

• VUID-vkCreateShadersEXT-pCreateInfos-08410
The stage member of each element of pCreateInfos whose flags member includes
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT must be unique

• VUID-vkCreateShadersEXT-pCreateInfos-08411
The codeType member of all elements of pCreateInfos whose flags member includes
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT must be the same

• VUID-vkCreateShadersEXT-pCreateInfos-08867
If pCreateInfos contains elements with both VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT
and VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, both elements' flags include
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, both elements' codeType is
VK_SHADER_CODE_TYPE_SPIRV_EXT, and the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT stage’s
pCode contains an OpExecutionMode instruction specifying the type of subdivision, it must
match the subdivision type specified in the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
stage

• VUID-vkCreateShadersEXT-pCreateInfos-08868
If pCreateInfos contains elements with both VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT
and VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, both elements' flags include
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, both elements' codeType is
VK_SHADER_CODE_TYPE_SPIRV_EXT, and the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT stage’s
pCode contains an OpExecutionMode instruction specifying the orientation of triangles, it
must match the triangle orientation specified in the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage

• VUID-vkCreateShadersEXT-pCreateInfos-08869
If pCreateInfos contains elements with both VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT
and VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, both elements' flags include
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, both elements' codeType is
VK_SHADER_CODE_TYPE_SPIRV_EXT, and the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT stage’s
pCode contains an OpExecutionMode instruction specifying PointMode, the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage must also contain an OpExecutionMode
instruction specifying PointMode

• VUID-vkCreateShadersEXT-pCreateInfos-08870

634

If pCreateInfos contains elements with both VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT
and VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, both elements' flags include
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, both elements' codeType is
VK_SHADER_CODE_TYPE_SPIRV_EXT, and the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT stage’s
pCode contains an OpExecutionMode instruction specifying the spacing of segments on the
edges of tessellated primitives, it must match the segment spacing specified in the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage

• VUID-vkCreateShadersEXT-pCreateInfos-08871
If pCreateInfos contains elements with both VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT
and VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, both elements' flags include
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT, both elements' codeType is
VK_SHADER_CODE_TYPE_SPIRV_EXT, and the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT stage’s
pCode contains an OpExecutionMode instruction specifying the output patch size, it must
match the output patch size specified in the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
stage

Valid Usage (Implicit)

• VUID-vkCreateShadersEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateShadersEXT-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of createInfoCount valid
VkShaderCreateInfoEXT structures

• VUID-vkCreateShadersEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateShadersEXT-pShaders-parameter
pShaders must be a valid pointer to an array of createInfoCount VkShaderEXT handles

• VUID-vkCreateShadersEXT-createInfoCount-arraylength
createInfoCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPATIBLE_SHADER_BINARY_EXT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

635

The VkShaderCreateInfoEXT structure is defined as:

// Provided by VK_EXT_shader_object
typedef struct VkShaderCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkShaderCreateFlagsEXT flags;
 VkShaderStageFlagBits stage;
 VkShaderStageFlags nextStage;
 VkShaderCodeTypeEXT codeType;
 size_t codeSize;
 const void* pCode;
 const char* pName;
 uint32_t setLayoutCount;
 const VkDescriptorSetLayout* pSetLayouts;
 uint32_t pushConstantRangeCount;
 const VkPushConstantRange* pPushConstantRanges;
 const VkSpecializationInfo* pSpecializationInfo;
} VkShaderCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkShaderCreateFlagBitsEXT describing additional parameters of the
shader.

• stage is a VkShaderStageFlagBits value specifying a single shader stage.

• nextStage is a bitmask of VkShaderStageFlagBits specifying zero or stages which may be used as
a logically next bound stage when drawing with the shader bound.

• codeType is a VkShaderCodeTypeEXT value specifying the type of the shader code pointed to be
pCode.

• codeSize is the size in bytes of the shader code pointed to be pCode.

• pCode is a pointer to the shader code to use to create the shader.

• pName is a pointer to a null-terminated UTF-8 string specifying the entry point name of the
shader for this stage.

• setLayoutCount is the number of descriptor set layouts pointed to by pSetLayouts.

• pSetLayouts is a pointer to an array of VkDescriptorSetLayout objects used by the shader stage.

• pushConstantRangeCount is the number of push constant ranges pointed to by
pPushConstantRanges.

• pPushConstantRanges is a pointer to an array of VkPushConstantRange structures used by the
shader stage.

• pSpecializationInfo is a pointer to a VkSpecializationInfo structure, as described in
Specialization Constants, or NULL.

636

Valid Usage

• VUID-VkShaderCreateInfoEXT-codeSize-08735
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, codeSize must be a multiple of 4

• VUID-VkShaderCreateInfoEXT-pCode-08736
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, pCode must point to valid SPIR-V code,
formatted and packed as described by the Khronos SPIR-V Specification

• VUID-VkShaderCreateInfoEXT-pCode-08737
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, pCode must adhere to the validation rules
described by the Validation Rules within a Module section of the SPIR-V Environment
appendix

• VUID-VkShaderCreateInfoEXT-pCode-08738
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, pCode must declare the Shader capability for
SPIR-V code

• VUID-VkShaderCreateInfoEXT-pCode-08739
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, pCode must not declare any capability that is
not supported by the API, as described by the Capabilities section of the SPIR-V
Environment appendix

• VUID-VkShaderCreateInfoEXT-pCode-08740
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and pCode declares any of the capabilities
listed in the SPIR-V Environment appendix, one of the corresponding requirements must
be satisfied

• VUID-VkShaderCreateInfoEXT-pCode-08741
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, pCode must not declare any SPIR-V extension
that is not supported by the API, as described by the Extension section of the SPIR-V
Environment appendix

• VUID-VkShaderCreateInfoEXT-pCode-08742
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and pCode declares any of the SPIR-V
extensions listed in the SPIR-V Environment appendix, one of the corresponding
requirements must be satisfied

• VUID-VkShaderCreateInfoEXT-flags-08412
If stage is not VK_SHADER_STAGE_TASK_BIT_EXT, VK_SHADER_STAGE_MESH_BIT_EXT,
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, VK_SHADER_STAGE_GEOMETRY_BIT, or
VK_SHADER_STAGE_FRAGMENT_BIT, flags must not include
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT

• VUID-VkShaderCreateInfoEXT-flags-08486
If stage is not VK_SHADER_STAGE_FRAGMENT_BIT, flags must not include
VK_SHADER_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_EXT

• VUID-VkShaderCreateInfoEXT-flags-08487
If the attachmentFragmentShadingRate feature is not enabled, flags must not include
VK_SHADER_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_EXT

• VUID-VkShaderCreateInfoEXT-flags-08488

637

If stage is not VK_SHADER_STAGE_FRAGMENT_BIT, flags must not include
VK_SHADER_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-VkShaderCreateInfoEXT-flags-08489
If the fragmentDensityMap feature is not enabled, flags must not include
VK_SHADER_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-VkShaderCreateInfoEXT-flags-09404
If flags includes VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT, the
subgroupSizeControl feature must be enabled

• VUID-VkShaderCreateInfoEXT-flags-09405
If flags includes VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT, the
computeFullSubgroups feature must be enabled

• VUID-VkShaderCreateInfoEXT-flags-08992
If flags includes VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT, stage must be one of
VK_SHADER_STAGE_MESH_BIT_EXT, VK_SHADER_STAGE_TASK_BIT_EXT, or
VK_SHADER_STAGE_COMPUTE_BIT

• VUID-VkShaderCreateInfoEXT-flags-08485
If stage is not VK_SHADER_STAGE_COMPUTE_BIT, flags must not include
VK_SHADER_CREATE_DISPATCH_BASE_BIT_EXT

• VUID-VkShaderCreateInfoEXT-flags-08414
If stage is not VK_SHADER_STAGE_MESH_BIT_EXT, flags must not include
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT

• VUID-VkShaderCreateInfoEXT-flags-08416
If flags includes both VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT and
VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT, the local workgroup size in the X
dimension of the shader must be a multiple of maxSubgroupSize

• VUID-VkShaderCreateInfoEXT-flags-08417
If flags includes VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT but not
VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT and no
VkShaderRequiredSubgroupSizeCreateInfoEXT structure is included in the pNext chain,
the local workgroup size in the X dimension of the shader must be a multiple of
subgroupSize

• VUID-VkShaderCreateInfoEXT-stage-08418
stage must not be VK_SHADER_STAGE_ALL_GRAPHICS or VK_SHADER_STAGE_ALL

• VUID-VkShaderCreateInfoEXT-stage-08419
If the tessellationShader feature is not enabled, stage must not be
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-VkShaderCreateInfoEXT-stage-08420
If the geometryShader feature is not enabled, stage must not be
VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-VkShaderCreateInfoEXT-stage-08421
If the taskShader feature is not enabled, stage must not be VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-VkShaderCreateInfoEXT-stage-08422

638

If the meshShader feature is not enabled, stage must not be VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-VkShaderCreateInfoEXT-stage-08425
stage must not be VK_SHADER_STAGE_SUBPASS_SHADING_BIT_HUAWEI

• VUID-VkShaderCreateInfoEXT-stage-08426
stage must not be VK_SHADER_STAGE_CLUSTER_CULLING_BIT_HUAWEI

• VUID-VkShaderCreateInfoEXT-nextStage-08427
If stage is VK_SHADER_STAGE_VERTEX_BIT, nextStage must not include any bits other than
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_GEOMETRY_BIT, and
VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-VkShaderCreateInfoEXT-nextStage-08428
If the tessellationShader feature is not enabled, nextStage must not include
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-VkShaderCreateInfoEXT-nextStage-08429
If the geometryShader feature is not enabled, nextStage must not include
VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-VkShaderCreateInfoEXT-nextStage-08430
If stage is VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, nextStage must not include any bits
other than VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-VkShaderCreateInfoEXT-nextStage-08431
If stage is VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, nextStage must not include any
bits other than VK_SHADER_STAGE_GEOMETRY_BIT and VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-VkShaderCreateInfoEXT-nextStage-08433
If stage is VK_SHADER_STAGE_GEOMETRY_BIT, nextStage must not include any bits other than
VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-VkShaderCreateInfoEXT-nextStage-08434
If stage is VK_SHADER_STAGE_FRAGMENT_BIT or VK_SHADER_STAGE_COMPUTE_BIT, nextStage must
be 0

• VUID-VkShaderCreateInfoEXT-nextStage-08435
If stage is VK_SHADER_STAGE_TASK_BIT_EXT, nextStage must not include any bits other than
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-VkShaderCreateInfoEXT-nextStage-08436
If stage is VK_SHADER_STAGE_MESH_BIT_EXT, nextStage must not include any bits other than
VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-VkShaderCreateInfoEXT-pName-08440
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, pName must be the name of an OpEntryPoint in
pCode with an execution model that matches stage

• VUID-VkShaderCreateInfoEXT-pCode-08492
If codeType is VK_SHADER_CODE_TYPE_BINARY_EXT, pCode must be aligned to 16 bytes

• VUID-VkShaderCreateInfoEXT-pCode-08493
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, pCode must be aligned to 4 bytes

• VUID-VkShaderCreateInfoEXT-pCode-08448

639

If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and the identified entry point includes any
variable in its interface that is declared with the ClipDistance BuiltIn decoration, that
variable must not have an array size greater than VkPhysicalDeviceLimits
::maxClipDistances

• VUID-VkShaderCreateInfoEXT-pCode-08449
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and the identified entry point includes any
variable in its interface that is declared with the CullDistance BuiltIn decoration, that
variable must not have an array size greater than VkPhysicalDeviceLimits
::maxCullDistances

• VUID-VkShaderCreateInfoEXT-pCode-08450
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and the identified entry point includes
variables in its interface that are declared with the ClipDistance BuiltIn decoration and
variables in its interface that are declared with the CullDistance BuiltIn decoration, those
variables must not have array sizes which sum to more than VkPhysicalDeviceLimits
::maxCombinedClipAndCullDistances

• VUID-VkShaderCreateInfoEXT-pCode-08451
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and the identified entry point includes any
variable in its interface that is declared with the SampleMask BuiltIn decoration, that
variable must not have an array size greater than VkPhysicalDeviceLimits
::maxSampleMaskWords

• VUID-VkShaderCreateInfoEXT-pCode-08452
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is VK_SHADER_STAGE_VERTEX_BIT, the
identified entry point must not include any input variable in its interface that is
decorated with CullDistance

• VUID-VkShaderCreateInfoEXT-pCode-08453
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, and the identified entry point has an
OpExecutionMode instruction specifying a patch size with OutputVertices, the patch size
must be greater than 0 and less than or equal to VkPhysicalDeviceLimits
::maxTessellationPatchSize

• VUID-VkShaderCreateInfoEXT-pCode-08454
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is VK_SHADER_STAGE_GEOMETRY_BIT,
the identified entry point must have an OpExecutionMode instruction specifying a
maximum output vertex count that is greater than 0 and less than or equal to
VkPhysicalDeviceLimits::maxGeometryOutputVertices

• VUID-VkShaderCreateInfoEXT-pCode-08455
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is VK_SHADER_STAGE_GEOMETRY_BIT,
the identified entry point must have an OpExecutionMode instruction specifying an
invocation count that is greater than 0 and less than or equal to VkPhysicalDeviceLimits
::maxGeometryShaderInvocations

• VUID-VkShaderCreateInfoEXT-pCode-08456
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is a pre-rasterization shader stage,
and the identified entry point writes to Layer for any primitive, it must write the same
value to Layer for all vertices of a given primitive

640

• VUID-VkShaderCreateInfoEXT-pCode-08457
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is a pre-rasterization shader stage,
and the identified entry point writes to ViewportIndex for any primitive, it must write the
same value to ViewportIndex for all vertices of a given primitive

• VUID-VkShaderCreateInfoEXT-pCode-08458
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is VK_SHADER_STAGE_FRAGMENT_BIT,
the identified entry point must not include any output variables in its interface decorated
with CullDistance

• VUID-VkShaderCreateInfoEXT-pCode-08459
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is VK_SHADER_STAGE_FRAGMENT_BIT,
and the identified entry point writes to FragDepth in any execution path, all execution
paths that are not exclusive to helper invocations must either discard the fragment, or
write or initialize the value of FragDepth

• VUID-VkShaderCreateInfoEXT-pCode-08460
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, the shader code in pCode must be valid as
described by the Khronos SPIR-V Specification after applying the specializations provided
in pSpecializationInfo, if any, and then converting all specialization constants into fixed
constants

• VUID-VkShaderCreateInfoEXT-codeType-08872
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, pCode must contain an OpExecutionMode
instruction specifying the type of subdivision

• VUID-VkShaderCreateInfoEXT-codeType-08873
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, pCode must contain an OpExecutionMode
instruction specifying the orientation of triangles generated by the tessellator

• VUID-VkShaderCreateInfoEXT-codeType-08874
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, pCode must contain an OpExecutionMode
instruction specifying the spacing of segments on the edges of tessellated primitives

• VUID-VkShaderCreateInfoEXT-codeType-08875
If codeType is VK_SHADER_CODE_TYPE_SPIRV_EXT, and stage is
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, pCode must contain an OpExecutionMode
instruction specifying the output patch size

Valid Usage (Implicit)

• VUID-VkShaderCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT

• VUID-VkShaderCreateInfoEXT-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo

• VUID-VkShaderCreateInfoEXT-sType-unique

641

The sType value of each struct in the pNext chain must be unique

• VUID-VkShaderCreateInfoEXT-flags-parameter
flags must be a valid combination of VkShaderCreateFlagBitsEXT values

• VUID-VkShaderCreateInfoEXT-stage-parameter
stage must be a valid VkShaderStageFlagBits value

• VUID-VkShaderCreateInfoEXT-nextStage-parameter
nextStage must be a valid combination of VkShaderStageFlagBits values

• VUID-VkShaderCreateInfoEXT-codeType-parameter
codeType must be a valid VkShaderCodeTypeEXT value

• VUID-VkShaderCreateInfoEXT-pCode-parameter
pCode must be a valid pointer to an array of codeSize bytes

• VUID-VkShaderCreateInfoEXT-pName-parameter
If pName is not NULL, pName must be a null-terminated UTF-8 string

• VUID-VkShaderCreateInfoEXT-pSetLayouts-parameter
If setLayoutCount is not 0, and pSetLayouts is not NULL, pSetLayouts must be a valid pointer
to an array of setLayoutCount valid VkDescriptorSetLayout handles

• VUID-VkShaderCreateInfoEXT-pPushConstantRanges-parameter
If pushConstantRangeCount is not 0, and pPushConstantRanges is not NULL, pPushConstantRanges
must be a valid pointer to an array of pushConstantRangeCount valid VkPushConstantRange
structures

• VUID-VkShaderCreateInfoEXT-pSpecializationInfo-parameter
If pSpecializationInfo is not NULL, pSpecializationInfo must be a valid pointer to a valid
VkSpecializationInfo structure

• VUID-VkShaderCreateInfoEXT-codeSize-arraylength
codeSize must be greater than 0

// Provided by VK_EXT_shader_object
typedef VkFlags VkShaderCreateFlagsEXT;

VkShaderCreateFlagsEXT is a bitmask type for setting a mask of zero or more
VkShaderCreateFlagBitsEXT.

Possible values of the flags member of VkShaderCreateInfoEXT specifying how a shader object is
created, are:

// Provided by VK_EXT_shader_object
typedef enum VkShaderCreateFlagBitsEXT {
 VK_SHADER_CREATE_LINK_STAGE_BIT_EXT = 0x00000001,
 // Provided by VK_EXT_shader_object with VK_EXT_subgroup_size_control or
VK_VERSION_1_3
 VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT = 0x00000002,
 // Provided by VK_EXT_shader_object with VK_EXT_subgroup_size_control or
VK_VERSION_1_3

642

 VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT = 0x00000004,
 // Provided by VK_EXT_shader_object with VK_EXT_mesh_shader or VK_NV_mesh_shader
 VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT = 0x00000008,
 // Provided by VK_EXT_shader_object with VK_KHR_device_group or VK_VERSION_1_1
 VK_SHADER_CREATE_DISPATCH_BASE_BIT_EXT = 0x00000010,
 // Provided by VK_KHR_fragment_shading_rate with VK_EXT_shader_object
 VK_SHADER_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_EXT = 0x00000020,
 // Provided by VK_EXT_fragment_density_map with VK_EXT_shader_object
 VK_SHADER_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT = 0x00000040,
} VkShaderCreateFlagBitsEXT;

• VK_SHADER_CREATE_LINK_STAGE_BIT_EXT specifies that a shader is linked to all other shaders
created in the same vkCreateShadersEXT call whose VkShaderCreateInfoEXT structures' flags
include VK_SHADER_CREATE_LINK_STAGE_BIT_EXT.

• VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT specifies that the SubgroupSize may vary
in a task, mesh, or compute shader.

• VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT specifies that the subgroup sizes must be
launched with all invocations active in a task, mesh, or compute shader.

• VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT specifies that a mesh shader must only be used
without a task shader. Otherwise, the mesh shader must only be used with a task shader.

• VK_SHADER_CREATE_DISPATCH_BASE_BIT_EXT specifies that a compute shader can be used with
vkCmdDispatchBase with a non-zero base workgroup.

• VK_SHADER_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_EXT specifies that a fragment shader
can be used with a fragment shading rate attachment.

• VK_SHADER_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT specifies that a fragment shader can
be used with a fragment density map attachment.

Note

The behavior of VK_SHADER_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_EXT and
VK_SHADER_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT differs subtly from the
behavior of
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR and
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT in that the
shader bit allows, but does not require the shader to be used with that type of
attachment. This means that the application need not create multiple shaders
when it does not know in advance whether the shader will be used with or
without the attachment type, or when it needs the same shader to be compatible
with usage both with and without. This may come at some performance cost on
some implementations, so applications should still only set bits that are actually
necessary.

Shader objects can be created using different types of shader code. Possible values of
VkShaderCreateInfoEXT::codeType, are:

// Provided by VK_EXT_shader_object

643

typedef enum VkShaderCodeTypeEXT {
 VK_SHADER_CODE_TYPE_BINARY_EXT = 0,
 VK_SHADER_CODE_TYPE_SPIRV_EXT = 1,
} VkShaderCodeTypeEXT;

• VK_SHADER_CODE_TYPE_BINARY_EXT specifies shader code in an opaque, implementation-defined
binary format specific to the physical device.

• VK_SHADER_CODE_TYPE_SPIRV_EXT specifies shader code in SPIR-V format.

9.1.2. Binary Shader Code

Binary shader code can be retrieved from a shader object using the command:

// Provided by VK_EXT_shader_object
VkResult vkGetShaderBinaryDataEXT(
 VkDevice device,
 VkShaderEXT shader,
 size_t* pDataSize,
 void* pData);

• device is the logical device that shader object was created from.

• shader is the shader object to retrieve binary shader code from.

• pDataSize is a pointer to a size_t value related to the size of the binary shader code, as described
below.

• pData is either NULL or a pointer to a buffer.

If pData is NULL, then the size of the binary shader code of the shader object, in bytes, is returned in
pDataSize. Otherwise, pDataSize must point to a variable set by the user to the size of the buffer, in
bytes, pointed to by pData, and on return the variable is overwritten with the amount of data
actually written to pData. If pDataSize is less than the size of the binary shader code, nothing is
written to pData, and VK_INCOMPLETE will be returned instead of VK_SUCCESS.

Note

The behavior of this command when pDataSize is too small differs from how some
other getter-type commands work in Vulkan. Because shader binary data is only
usable in its entirety, it would never be useful for the implementation to return
partial data. Because of this, nothing is written to pData unless pDataSize is large
enough to fit the data it its entirety.

Binary shader code retrieved using vkGetShaderBinaryDataEXT can be passed to a subsequent call to
vkCreateShadersEXT on a compatible physical device by specifying VK_SHADER_CODE_TYPE_BINARY_EXT
in the codeType member of VkShaderCreateInfoEXT.

The shader code returned by repeated calls to this function with the same VkShaderEXT is guaranteed
to be invariant for the lifetime of the VkShaderEXT object.

644

Valid Usage

• VUID-vkGetShaderBinaryDataEXT-None-08461
The shaderObject feature must be enabled

• VUID-vkGetShaderBinaryDataEXT-None-08499
If pData is not NULL, it must be aligned to 16 bytes

Valid Usage (Implicit)

• VUID-vkGetShaderBinaryDataEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetShaderBinaryDataEXT-shader-parameter
shader must be a valid VkShaderEXT handle

• VUID-vkGetShaderBinaryDataEXT-pDataSize-parameter
pDataSize must be a valid pointer to a size_t value

• VUID-vkGetShaderBinaryDataEXT-pData-parameter
If the value referenced by pDataSize is not 0, and pData is not NULL, pData must be a valid
pointer to an array of pDataSize bytes

• VUID-vkGetShaderBinaryDataEXT-shader-parent
shader must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

9.1.3. Binary Shader Compatibility

Binary shader compatibility means that binary shader code returned from a call to
vkGetShaderBinaryDataEXT can be passed to a later call to vkCreateShadersEXT, potentially on a
different logical and/or physical device, and that this will result in the successful creation of a
shader object functionally equivalent to the shader object that the code was originally queried
from.

Binary shader code queried from vkGetShaderBinaryDataEXT is not guaranteed to be compatible
across all devices, but implementations are required to provide some compatibility guarantees.
Applications may determine binary shader compatibility using either (or both) of two mechanisms.

645

Guaranteed compatibility of shader binaries is expressed through a combination of the
shaderBinaryUUID and shaderBinaryVersion members of the
VkPhysicalDeviceShaderObjectPropertiesEXT structure queried from a physical device. Binary
shaders retrieved from a physical device with a certain shaderBinaryUUID are guaranteed to be
compatible with all other physical devices reporting the same shaderBinaryUUID and the same or
higher shaderBinaryVersion.

Whenever a new version of an implementation incorporates any changes that affect the output of
vkGetShaderBinaryDataEXT, the implementation should either increment shaderBinaryVersion if
binary shader code retrieved from older versions remains compatible with the new
implementation, or else replace shaderBinaryUUID with a new value if backward compatibility has
been broken. Binary shader code queried from a device with a matching shaderBinaryUUID and
lower shaderBinaryVersion relative to the device on which vkCreateShadersEXT is being called may
be suboptimal for the new device in ways that do not change shader functionality, but it is still
guaranteed to be usable to successfully create the shader object(s).

Note

Implementations are encouraged to share shaderBinaryUUID between devices and
driver versions to the maximum extent their hardware naturally allows, and are
strongly discouraged from ever changing the shaderBinaryUUID for the same
hardware except unless absolutely necessary.

In addition to the shader compatibility guarantees described above, it is valid for an application to
call vkCreateShadersEXT with binary shader code created on a device with a different or unknown
shaderBinaryUUID and/or higher shaderBinaryVersion. In this case, the implementation may use any
unspecified means of its choosing to determine whether the provided binary shader code is usable.
If it is, vkCreateShadersEXT must return VK_SUCCESS, and the created shader object is guaranteed to
be valid. Otherwise, in the absence of some error, vkCreateShadersEXT must return
VK_INCOMPATIBLE_SHADER_BINARY_EXT to indicate that the provided binary shader code is not
compatible with the device.

9.1.4. Binding Shader Objects

Once shader objects have been created, they can be bound to the command buffer using the
command:

// Provided by VK_EXT_shader_object
void vkCmdBindShadersEXT(
 VkCommandBuffer commandBuffer,
 uint32_t stageCount,
 const VkShaderStageFlagBits* pStages,
 const VkShaderEXT* pShaders);

• commandBuffer is the command buffer that the shader object will be bound to.

• stageCount is the length of the pStages and pShaders arrays.

• pStages is a pointer to an array of VkShaderStageFlagBits values specifying one stage per array

646

index that is affected by the corresponding value in the pShaders array.

• pShaders is a pointer to an array of VkShaderEXT handles and/or VK_NULL_HANDLE values
describing the shader binding operations to be performed on each stage in pStages.

When binding linked shaders, an application may bind them in any combination of one or more
calls to vkCmdBindShadersEXT (i.e., shaders that were created linked together do not need to be bound
in the same vkCmdBindShadersEXT call).

Any shader object bound to a particular stage may be unbound by setting its value in pShaders to
VK_NULL_HANDLE. If pShaders is NULL, vkCmdBindShadersEXT behaves as if pShaders was an array of
stageCount VK_NULL_HANDLE values (i.e., any shaders bound to the stages specified in pStages are
unbound).

Valid Usage

• VUID-vkCmdBindShadersEXT-None-08462
The shaderObject feature must be enabled

• VUID-vkCmdBindShadersEXT-pStages-08463
Every element of pStages must be unique

• VUID-vkCmdBindShadersEXT-pStages-08464
pStages must not contain VK_SHADER_STAGE_ALL_GRAPHICS or VK_SHADER_STAGE_ALL

• VUID-vkCmdBindShadersEXT-pStages-08465
pStages must not contain VK_SHADER_STAGE_RAYGEN_BIT_KHR,
VK_SHADER_STAGE_ANY_HIT_BIT_KHR, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR,
VK_SHADER_STAGE_MISS_BIT_KHR, VK_SHADER_STAGE_INTERSECTION_BIT_KHR, or
VK_SHADER_STAGE_CALLABLE_BIT_KHR

• VUID-vkCmdBindShadersEXT-pStages-08467
pStages must not contain VK_SHADER_STAGE_SUBPASS_SHADING_BIT_HUAWEI

• VUID-vkCmdBindShadersEXT-pStages-08468
pStages must not contain VK_SHADER_STAGE_CLUSTER_CULLING_BIT_HUAWEI

• VUID-vkCmdBindShadersEXT-pShaders-08469
For each element of pStages, if pShaders is not NULL, and the element of the pShaders array
with the same index is not VK_NULL_HANDLE, it must have been created with a stage
equal to the corresponding element of pStages

• VUID-vkCmdBindShadersEXT-pShaders-08470
If pStages contains both VK_SHADER_STAGE_TASK_BIT_EXT and VK_SHADER_STAGE_VERTEX_BIT,
and pShaders is not NULL, and the same index in pShaders as VK_SHADER_STAGE_TASK_BIT_EXT
in pStages is not VK_NULL_HANDLE, the same index in pShaders as
VK_SHADER_STAGE_VERTEX_BIT in pStages must be VK_NULL_HANDLE

• VUID-vkCmdBindShadersEXT-pShaders-08471
If pStages contains both VK_SHADER_STAGE_MESH_BIT_EXT and VK_SHADER_STAGE_VERTEX_BIT,
and pShaders is not NULL, and the same index in pShaders as VK_SHADER_STAGE_MESH_BIT_EXT
in pStages is not VK_NULL_HANDLE, the same index in pShaders as
VK_SHADER_STAGE_VERTEX_BIT in pStages must be VK_NULL_HANDLE

647

• VUID-vkCmdBindShadersEXT-pShaders-08474
If the tessellationShader feature is not enabled, and pStages contains
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, and pShaders is not NULL, the same index or
indices in pShaders must be VK_NULL_HANDLE

• VUID-vkCmdBindShadersEXT-pShaders-08475
If the geometryShader feature is not enabled, and pStages contains
VK_SHADER_STAGE_GEOMETRY_BIT, and pShaders is not NULL, the same index in pShaders must
be VK_NULL_HANDLE

• VUID-vkCmdBindShadersEXT-pShaders-08490
If the taskShader feature is not enabled, and pStages contains
VK_SHADER_STAGE_TASK_BIT_EXT, and pShaders is not NULL, the same index in pShaders must
be VK_NULL_HANDLE

• VUID-vkCmdBindShadersEXT-pShaders-08491
If the meshShader feature is not enabled, and pStages contains
VK_SHADER_STAGE_MESH_BIT_EXT, and pShaders is not NULL, the same index in pShaders must
be VK_NULL_HANDLE

• VUID-vkCmdBindShadersEXT-pShaders-08476
If pStages contains VK_SHADER_STAGE_COMPUTE_BIT, the VkCommandPool that commandBuffer was
allocated from must support compute operations

• VUID-vkCmdBindShadersEXT-pShaders-08477
If pStages contains VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, VK_SHADER_STAGE_GEOMETRY_BIT, or
VK_SHADER_STAGE_FRAGMENT_BIT, the VkCommandPool that commandBuffer was allocated from
must support graphics operations

• VUID-vkCmdBindShadersEXT-pShaders-08478
If pStages contains VK_SHADER_STAGE_MESH_BIT_EXT or VK_SHADER_STAGE_TASK_BIT_EXT, the
VkCommandPool that commandBuffer was allocated from must support graphics operations

Valid Usage (Implicit)

• VUID-vkCmdBindShadersEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindShadersEXT-pStages-parameter
pStages must be a valid pointer to an array of stageCount valid VkShaderStageFlagBits
values

• VUID-vkCmdBindShadersEXT-pShaders-parameter
If pShaders is not NULL, pShaders must be a valid pointer to an array of stageCount valid or
VK_NULL_HANDLE VkShaderEXT handles

• VUID-vkCmdBindShadersEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindShadersEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or

648

compute operations

• VUID-vkCmdBindShadersEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindShadersEXT-stageCount-arraylength
stageCount must be greater than 0

• VUID-vkCmdBindShadersEXT-commonparent
Both of commandBuffer, and the elements of pShaders that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

9.1.5. Setting State

Whenever shader objects are used to issue drawing commands, the appropriate dynamic state
setting commands must have been called to set the relevant state in the command buffer prior to
drawing:

• vkCmdSetViewportWithCount

• vkCmdSetScissorWithCount

• vkCmdSetRasterizerDiscardEnable

If a shader is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, the following commands must have
been called in the command buffer prior to drawing:

• vkCmdSetVertexInputEXT

• vkCmdSetPrimitiveTopology

• vkCmdSetPatchControlPointsEXT, if primitiveTopology is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

• vkCmdSetPrimitiveRestartEnable

If a shader is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, the following
command must have been called in the command buffer prior to drawing:

649

• vkCmdSetTessellationDomainOriginEXT

If rasterizerDiscardEnable is VK_FALSE, the following commands must have been called in the
command buffer prior to drawing:

• vkCmdSetRasterizationSamplesEXT

• vkCmdSetSampleMaskEXT

• vkCmdSetAlphaToCoverageEnableEXT

• vkCmdSetAlphaToOneEnableEXT, if the alphaToOne feature is enabled on the device

• vkCmdSetPolygonModeEXT

• vkCmdSetLineWidth, if polygonMode is VK_POLYGON_MODE_LINE, or if a shader is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage and primitiveTopology is a line topology, or if a shader which
outputs line primitives is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or
VK_SHADER_STAGE_GEOMETRY_BIT stage

• vkCmdSetCullMode

• vkCmdSetFrontFace

• vkCmdSetDepthTestEnable

• vkCmdSetDepthWriteEnable

• vkCmdSetDepthCompareOp, if depthTestEnable is VK_TRUE

• vkCmdSetDepthBoundsTestEnable, if the depthBounds feature is enabled on the device

• vkCmdSetDepthBounds, if depthBoundsTestEnable is VK_TRUE

• vkCmdSetDepthBiasEnable

• vkCmdSetDepthBias or vkCmdSetDepthBias2EXT, if depthBiasEnable is VK_TRUE

• vkCmdSetDepthClampEnableEXT, if the depthClamp feature is enabled on the device

• vkCmdSetStencilTestEnable

• vkCmdSetStencilOp, if stencilTestEnable is VK_TRUE

• vkCmdSetStencilCompareMask, if stencilTestEnable is VK_TRUE

• vkCmdSetStencilWriteMask, if stencilTestEnable is VK_TRUE

• vkCmdSetStencilReference, if stencilTestEnable is VK_TRUE

If a shader is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and rasterizerDiscardEnable is
VK_FALSE, the following commands must have been called in the command buffer prior to drawing:

• vkCmdSetLogicOpEnableEXT, if the logicOp feature is enabled on the device

• vkCmdSetLogicOpEXT, if logicOpEnable is VK_TRUE

• vkCmdSetColorBlendEnableEXT and vkCmdSetColorWriteMaskEXT, if color attachments are
bound, with values set for every color attachment in the render pass instance active at draw
time

• vkCmdSetColorBlendEquationEXT or vkCmdSetColorBlendAdvancedEXT, if color attachments
are bound, for every attachment whose index in pColorBlendEnables is a pointer to a value of

650

VK_TRUE

• vkCmdSetBlendConstants, if any index in pColorBlendEnables is VK_TRUE, and the same index in
pColorBlendEquations is a VkColorBlendEquationEXT structure with any VkBlendFactor member
with a value of VK_BLEND_FACTOR_CONSTANT_COLOR, VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR,
VK_BLEND_FACTOR_CONSTANT_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA

If the pipelineFragmentShadingRate feature is enabled on the device, and a shader is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and rasterizerDiscardEnable is VK_FALSE, the following
command must have been called in the command buffer prior to drawing:

• vkCmdSetFragmentShadingRateKHR

If the geometryStreams feature is enabled on the device, and a shader is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, the following command must have been called in the
command buffer prior to drawing:

• vkCmdSetRasterizationStreamEXT

If the VK_EXT_discard_rectangles extension is enabled on the device, and rasterizerDiscardEnable is
VK_FALSE, the following commands must have been called in the command buffer prior to drawing:

• vkCmdSetDiscardRectangleEnableEXT

• vkCmdSetDiscardRectangleModeEXT, if discardRectangleEnable is VK_TRUE

• vkCmdSetDiscardRectangleEXT, if discardRectangleEnable is VK_TRUE

If VK_EXT_conservative_rasterization extension is enabled on the device, and
rasterizerDiscardEnable is VK_FALSE, the following commands must have been called in the
command buffer prior to drawing:

• vkCmdSetConservativeRasterizationModeEXT

• vkCmdSetExtraPrimitiveOverestimationSizeEXT, if conservativeRasterizationMode is
VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT

If the depthClipEnable feature is enabled on the device, the following command must have been
called in the command buffer prior to drawing:

• vkCmdSetDepthClipEnableEXT

If the VK_EXT_sample_locations extension is enabled on the device, and rasterizerDiscardEnable is
VK_FALSE, the following commands must have been called in the command buffer prior to drawing:

• vkCmdSetSampleLocationsEnableEXT

• vkCmdSetSampleLocationsEXT, if sampleLocationsEnable is VK_TRUE

If the VK_EXT_provoking_vertex extension is enabled on the device, and rasterizerDiscardEnable is
VK_FALSE, and a shader is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, the following command
must have been called in the command buffer prior to drawing:

• vkCmdSetProvokingVertexModeEXT

651

If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled on the device,
and rasterizerDiscardEnable is VK_FALSE, and if polygonMode is VK_POLYGON_MODE_LINE or a shader is
bound to the VK_SHADER_STAGE_VERTEX_BIT stage and primitiveTopology is a line topology or a shader
which outputs line primitives is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or
VK_SHADER_STAGE_GEOMETRY_BIT stage, the following commands must have been called in the
command buffer prior to drawing:

• vkCmdSetLineRasterizationModeEXT

• vkCmdSetLineStippleEnableEXT

• vkCmdSetLineStippleKHR, if stippledLineEnable is VK_TRUE

If the depthClipControl feature is enabled on the device, the following command must have been
called in the command buffer prior to drawing:

• vkCmdSetDepthClipNegativeOneToOneEXT

If the colorWriteEnable feature is enabled on the device, and a shader is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and rasterizerDiscardEnable is VK_FALSE, the following
command must have been called in the command buffer prior to drawing:

• vkCmdSetColorWriteEnableEXT, with values set for every color attachment in the render pass
instance active at draw time

If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a shader is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and rasterizerDiscardEnable is VK_FALSE, the
following command must have been called in the command buffer prior to drawing:

• vkCmdSetAttachmentFeedbackLoopEnableEXT

If the VK_NV_clip_space_w_scaling extension is enabled on the device, the following commands must
have been called in the command buffer prior to drawing:

• vkCmdSetViewportWScalingEnableNV

• vkCmdSetViewportWScalingNV, if viewportWScalingEnable is VK_TRUE

If the VK_NV_viewport_swizzle extension is enabled on the device, the following command must
have been called in the command buffer prior to drawing:

• vkCmdSetViewportSwizzleNV

If the VK_NV_fragment_coverage_to_color extension is enabled on the device, and a shader is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and rasterizerDiscardEnable is VK_FALSE, the following
commands must have been called in the command buffer prior to drawing:

• vkCmdSetCoverageToColorEnableNV

• vkCmdSetCoverageToColorLocationNV, if coverageToColorEnable is VK_TRUE

If the VK_NV_framebuffer_mixed_samples extension is enabled on the device, and
rasterizerDiscardEnable is VK_FALSE, the following commands must have been called in the

652

command buffer prior to drawing:

• vkCmdSetCoverageModulationModeNV

• vkCmdSetCoverageModulationTableEnableNV, if coverageModulationMode is not
VK_COVERAGE_MODULATION_MODE_NONE_NV

• vkCmdSetCoverageModulationTableNV, if coverageModulationTableEnable is VK_TRUE

If the coverageReductionMode feature is enabled on the device, and rasterizerDiscardEnable is
VK_FALSE, the following command must have been called in the command buffer prior to drawing:

• vkCmdSetCoverageReductionModeNV

If the representativeFragmentTest feature is enabled on the device, and rasterizerDiscardEnable is
VK_FALSE, the following command must have been called in the command buffer prior to drawing:

• vkCmdSetRepresentativeFragmentTestEnableNV

If the shadingRateImage feature is enabled on the device, and rasterizerDiscardEnable is VK_FALSE,
the following commands must have been called in the command buffer prior to drawing:

• vkCmdSetCoarseSampleOrderNV

• vkCmdSetShadingRateImageEnableNV

• vkCmdSetViewportShadingRatePaletteNV, if shadingRateImageEnable is VK_TRUE

If the exclusiveScissor feature is enabled on the device, the following commands must have been
called in the command buffer prior to drawing:

• vkCmdSetExclusiveScissorEnableNV

• vkCmdSetExclusiveScissorNV, if any value in pExclusiveScissorEnables is VK_TRUE

State can be set either at any time before or after shader objects are bound, but all required state
must be set prior to issuing drawing commands.

9.1.6. Interaction With Pipelines

Calling vkCmdBindShadersEXT causes the pipeline bind points corresponding to each stage in
pStages to be disturbed, meaning that any pipelines that had previously been bound to those
pipeline bind points are no longer bound.

If VK_PIPELINE_BIND_POINT_GRAPHICS is disturbed (i.e., if pStages contains any graphics stage), any
graphics pipeline state that the previously bound pipeline did not specify as dynamic becomes
undefined, and must be set in the command buffer before issuing drawing commands using shader
objects.

Calls to vkCmdBindPipeline likewise disturb the shader stage(s) corresponding to
pipelineBindPoint, meaning that any shaders that had previously been bound to any of those stages
are no longer bound, even if the pipeline was created without shaders for some of those stages.

653

9.1.7. Shader Object Destruction

To destroy a shader object, call:

// Provided by VK_EXT_shader_object
void vkDestroyShaderEXT(
 VkDevice device,
 VkShaderEXT shader,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the shader object.

• shader is the handle of the shader object to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Destroying a shader object used by one or more command buffers in the recording or executable
state causes those command buffers to move into the invalid state.

Valid Usage

• VUID-vkDestroyShaderEXT-None-08481
The shaderObject feature must be enabled

• VUID-vkDestroyShaderEXT-shader-08482
All submitted commands that refer to shader must have completed execution

• VUID-vkDestroyShaderEXT-pAllocator-08483
If VkAllocationCallbacks were provided when shader was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyShaderEXT-pAllocator-08484
If no VkAllocationCallbacks were provided when shader was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyShaderEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyShaderEXT-shader-parameter
If shader is not VK_NULL_HANDLE, shader must be a valid VkShaderEXT handle

• VUID-vkDestroyShaderEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyShaderEXT-shader-parent
If shader is a valid handle, it must have been created, allocated, or retrieved from device

654

Host Synchronization

• Host access to shader must be externally synchronized

9.2. Shader Modules
Shader modules contain shader code and one or more entry points. Shaders are selected from a
shader module by specifying an entry point as part of pipeline creation. The stages of a pipeline can
use shaders that come from different modules. The shader code defining a shader module must be
in the SPIR-V format, as described by the Vulkan Environment for SPIR-V appendix.

Shader modules are represented by VkShaderModule handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkShaderModule)

To create a shader module, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateShaderModule(
 VkDevice device,
 const VkShaderModuleCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkShaderModule* pShaderModule);

• device is the logical device that creates the shader module.

• pCreateInfo is a pointer to a VkShaderModuleCreateInfo structure.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pShaderModule is a pointer to a VkShaderModule handle in which the resulting shader module
object is returned.

Once a shader module has been created, any entry points it contains can be used in pipeline shader
stages as described in Compute Pipelines and Graphics Pipelines.

Note

If the maintenance5 feature is enabled, shader module creation can be omitted
entirely. Instead, applications should provide the VkShaderModuleCreateInfo
structure directly in to pipeline creation by chaining it to
VkPipelineShaderStageCreateInfo. This avoids the overhead of creating and
managing an additional object.

655

Valid Usage

• VUID-vkCreateShaderModule-pCreateInfo-06904
If pCreateInfo is not NULL, pCreateInfo->pNext must be NULL or a pointer to a
VkShaderModuleValidationCacheCreateInfoEXT structure

Valid Usage (Implicit)

• VUID-vkCreateShaderModule-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateShaderModule-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkShaderModuleCreateInfo structure

• VUID-vkCreateShaderModule-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateShaderModule-pShaderModule-parameter
pShaderModule must be a valid pointer to a VkShaderModule handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_SHADER_NV

The VkShaderModuleCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkShaderModuleCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkShaderModuleCreateFlags flags;
 size_t codeSize;
 const uint32_t* pCode;
} VkShaderModuleCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

656

• flags is reserved for future use.

• codeSize is the size, in bytes, of the code pointed to by pCode.

• pCode is a pointer to code that is used to create the shader module. The type and format of the
code is determined from the content of the memory addressed by pCode.

Valid Usage

• VUID-VkShaderModuleCreateInfo-codeSize-08735
If pCode is a pointer to SPIR-V code, codeSize must be a multiple of 4

• VUID-VkShaderModuleCreateInfo-pCode-08736
If pCode is a pointer to SPIR-V code, pCode must point to valid SPIR-V code, formatted and
packed as described by the Khronos SPIR-V Specification

• VUID-VkShaderModuleCreateInfo-pCode-08737
If pCode is a pointer to SPIR-V code, pCode must adhere to the validation rules described
by the Validation Rules within a Module section of the SPIR-V Environment appendix

• VUID-VkShaderModuleCreateInfo-pCode-08738
If pCode is a pointer to SPIR-V code, pCode must declare the Shader capability for SPIR-V
code

• VUID-VkShaderModuleCreateInfo-pCode-08739
If pCode is a pointer to SPIR-V code, pCode must not declare any capability that is not
supported by the API, as described by the Capabilities section of the SPIR-V Environment
appendix

• VUID-VkShaderModuleCreateInfo-pCode-08740
If pCode is a pointer to SPIR-V code, and pCode declares any of the capabilities listed in the
SPIR-V Environment appendix, one of the corresponding requirements must be satisfied

• VUID-VkShaderModuleCreateInfo-pCode-08741
If pCode is a pointer to SPIR-V code, pCode must not declare any SPIR-V extension that is
not supported by the API, as described by the Extension section of the SPIR-V
Environment appendix

• VUID-VkShaderModuleCreateInfo-pCode-08742
If pCode is a pointer to SPIR-V code, and pCode declares any of the SPIR-V extensions listed
in the SPIR-V Environment appendix, one of the corresponding requirements must be
satisfied

• VUID-VkShaderModuleCreateInfo-pCode-07912
If the VK_NV_glsl_shader extension is not enabled, pCode must be a pointer to SPIR-V code

• VUID-VkShaderModuleCreateInfo-pCode-01379
If pCode is a pointer to GLSL code, it must be valid GLSL code written to the
GL_KHR_vulkan_glsl GLSL extension specification

• VUID-VkShaderModuleCreateInfo-codeSize-01085
codeSize must be greater than 0

657

Valid Usage (Implicit)

• VUID-VkShaderModuleCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO

• VUID-VkShaderModuleCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkShaderModuleCreateInfo-pCode-parameter
pCode must be a valid pointer to an array of uint32_t values

// Provided by VK_VERSION_1_0
typedef VkFlags VkShaderModuleCreateFlags;

VkShaderModuleCreateFlags is a bitmask type for setting a mask, but is currently reserved for future
use.

To use a VkValidationCacheEXT to cache shader validation results, add a
VkShaderModuleValidationCacheCreateInfoEXT structure to the pNext chain of the
VkShaderModuleCreateInfo structure, specifying the cache object to use.

The VkShaderModuleValidationCacheCreateInfoEXT struct is defined as:

// Provided by VK_EXT_validation_cache
typedef struct VkShaderModuleValidationCacheCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkValidationCacheEXT validationCache;
} VkShaderModuleValidationCacheCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• validationCache is the validation cache object from which the results of prior validation
attempts will be written, and to which new validation results for this VkShaderModule will be
written (if not already present).

Valid Usage (Implicit)

• VUID-VkShaderModuleValidationCacheCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT

• VUID-VkShaderModuleValidationCacheCreateInfoEXT-validationCache-parameter
validationCache must be a valid VkValidationCacheEXT handle

To destroy a shader module, call:

658

// Provided by VK_VERSION_1_0
void vkDestroyShaderModule(
 VkDevice device,
 VkShaderModule shaderModule,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the shader module.

• shaderModule is the handle of the shader module to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

A shader module can be destroyed while pipelines created using its shaders are still in use.

Valid Usage

• VUID-vkDestroyShaderModule-shaderModule-01092
If VkAllocationCallbacks were provided when shaderModule was created, a compatible set
of callbacks must be provided here

• VUID-vkDestroyShaderModule-shaderModule-01093
If no VkAllocationCallbacks were provided when shaderModule was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyShaderModule-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyShaderModule-shaderModule-parameter
If shaderModule is not VK_NULL_HANDLE, shaderModule must be a valid VkShaderModule
handle

• VUID-vkDestroyShaderModule-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyShaderModule-shaderModule-parent
If shaderModule is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to shaderModule must be externally synchronized

659

9.3. Shader Module Identifiers
Shader modules have unique identifiers associated with them. To query an implementation
provided identifier, call:

// Provided by VK_EXT_shader_module_identifier
void vkGetShaderModuleIdentifierEXT(
 VkDevice device,
 VkShaderModule shaderModule,
 VkShaderModuleIdentifierEXT* pIdentifier);

• device is the logical device that created the shader module.

• shaderModule is the handle of the shader module.

• pIdentifier is a pointer to the returned VkShaderModuleIdentifierEXT.

The identifier returned by the implementation must only depend on shaderIdentifierAlgorithmUUID
and information provided in the VkShaderModuleCreateInfo which created shaderModule. The
implementation may return equal identifiers for two different VkShaderModuleCreateInfo
structures if the difference does not affect pipeline compilation. Identifiers are only meaningful on
different VkDevice objects if the device the identifier was queried from had the same
shaderModuleIdentifierAlgorithmUUID as the device consuming the identifier.

Valid Usage

• VUID-vkGetShaderModuleIdentifierEXT-shaderModuleIdentifier-06884
shaderModuleIdentifier feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetShaderModuleIdentifierEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetShaderModuleIdentifierEXT-shaderModule-parameter
shaderModule must be a valid VkShaderModule handle

• VUID-vkGetShaderModuleIdentifierEXT-pIdentifier-parameter
pIdentifier must be a valid pointer to a VkShaderModuleIdentifierEXT structure

• VUID-vkGetShaderModuleIdentifierEXT-shaderModule-parent
shaderModule must have been created, allocated, or retrieved from device

VkShaderModuleCreateInfo structures have unique identifiers associated with them. To query an
implementation provided identifier, call:

// Provided by VK_EXT_shader_module_identifier
void vkGetShaderModuleCreateInfoIdentifierEXT(

660

 VkDevice device,
 const VkShaderModuleCreateInfo* pCreateInfo,
 VkShaderModuleIdentifierEXT* pIdentifier);

• device is the logical device that can create a VkShaderModule from pCreateInfo.

• pCreateInfo is a pointer to a VkShaderModuleCreateInfo structure.

• pIdentifier is a pointer to the returned VkShaderModuleIdentifierEXT.

The identifier returned by implementation must only depend on shaderIdentifierAlgorithmUUID
and information provided in the VkShaderModuleCreateInfo. The implementation may return
equal identifiers for two different VkShaderModuleCreateInfo structures if the difference does not
affect pipeline compilation. Identifiers are only meaningful on different VkDevice objects if the
device the identifier was queried from had the same shaderModuleIdentifierAlgorithmUUID as the
device consuming the identifier.

The identifier returned by the implementation in vkGetShaderModuleCreateInfoIdentifierEXT
must be equal to the identifier returned by vkGetShaderModuleIdentifierEXT given equivalent
definitions of VkShaderModuleCreateInfo and any chained pNext structures.

Valid Usage

• VUID-vkGetShaderModuleCreateInfoIdentifierEXT-shaderModuleIdentifier-06885
shaderModuleIdentifier feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetShaderModuleCreateInfoIdentifierEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetShaderModuleCreateInfoIdentifierEXT-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkShaderModuleCreateInfo structure

• VUID-vkGetShaderModuleCreateInfoIdentifierEXT-pIdentifier-parameter
pIdentifier must be a valid pointer to a VkShaderModuleIdentifierEXT structure

VkShaderModuleIdentifierEXT represents a shader module identifier returned by the
implementation.

// Provided by VK_EXT_shader_module_identifier
typedef struct VkShaderModuleIdentifierEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t identifierSize;
 uint8_t identifier[VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT];
} VkShaderModuleIdentifierEXT;

661

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• identifierSize is the size, in bytes, of valid data returned in identifier.

• identifier is a buffer of opaque data specifying an identifier.

Any returned values beyond the first identifierSize bytes are undefined. Implementations must
return an identifierSize greater than 0, and less-or-equal to
VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT.

Two identifiers are considered equal if identifierSize is equal and the first identifierSize bytes of
identifier compare equal.

Implementations may return a different identifierSize for different modules. Implementations
should ensure that identifierSize is large enough to uniquely define a shader module.

Valid Usage (Implicit)

• VUID-VkShaderModuleIdentifierEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SHADER_MODULE_IDENTIFIER_EXT

• VUID-VkShaderModuleIdentifierEXT-pNext-pNext
pNext must be NULL

VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT is the length in bytes of a shader module identifier, as
returned in VkShaderModuleIdentifierEXT::identifierSize.

#define VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT 32U

9.4. Binding Shaders
Before a shader can be used it must be first bound to the command buffer.

Calling vkCmdBindPipeline binds all stages corresponding to the VkPipelineBindPoint. Calling
vkCmdBindShadersEXT binds all stages in pStages

The following table describes the relationship between shader stages and pipeline bind points:

662

Shader stage Pipeline bind point behavior controlled

• VK_SHADER_STAGE_VERTEX_BIT

• VK_SHADER_STAGE_TESSELLATIO
N_CONTROL_BIT

• VK_SHADER_STAGE_TESSELLATIO
N_EVALUATION_BIT

• VK_SHADER_STAGE_GEOMETRY_BI
T

• VK_SHADER_STAGE_FRAGMENT_BI
T

• VK_SHADER_STAGE_TASK_BIT_EX
T

• VK_SHADER_STAGE_MESH_BIT_EX
T

VK_PIPELINE_BIND_POINT_GRAPHIC
S

all drawing commands

• VK_SHADER_STAGE_COMPUTE_BIT VK_PIPELINE_BIND_POINT_COMPUTE all dispatch commands

• VK_SHADER_STAGE_ANY_HIT_BIT
_KHR

• VK_SHADER_STAGE_CALLABLE_BI
T_KHR

• VK_SHADER_STAGE_CLOSEST_HIT
_BIT_KHR

• VK_SHADER_STAGE_INTERSECTIO
N_BIT_KHR

• VK_SHADER_STAGE_MISS_BIT_KH
R

• VK_SHADER_STAGE_RAYGEN_BIT_
KHR

VK_PIPELINE_BIND_POINT_RAY_TRA
CING_KHR

vkCmdTraceRaysKHR and
vkCmdTraceRaysIndirectKHR

• VK_SHADER_STAGE_SUBPASS_SHA
DING_BIT_HUAWEI

• VK_SHADER_STAGE_CLUSTER_CUL
LING_BIT_HUAWEI

VK_PIPELINE_BIND_POINT_SUBPASS
_SHADING_HUAWEI

vkCmdSubpassShadingHUAWEI

• VK_SHADER_STAGE_COMPUTE_BIT VK_PIPELINE_BIND_POINT_EXECUTI
ON_GRAPH_AMDX

all execution graph commands

9.5. Shader Execution
At each stage of the pipeline, multiple invocations of a shader may execute simultaneously. Further,
invocations of a single shader produced as the result of different commands may execute
simultaneously. The relative execution order of invocations of the same shader type is undefined.
Shader invocations may complete in a different order than that in which the primitives they
originated from were drawn or dispatched by the application. However, fragment shader outputs

663

are written to attachments in rasterization order.

The relative execution order of invocations of different shader types is largely undefined. However,
when invoking a shader whose inputs are generated from a previous pipeline stage, the shader
invocations from the previous stage are guaranteed to have executed far enough to generate input
values for all required inputs.

9.5.1. Shader Termination

A shader invocation that is terminated has finished executing instructions.

Executing OpReturn in the entry point, or executing OpTerminateInvocation in any function will
terminate an invocation. Implementations may also terminate a shader invocation when OpKill is
executed in any function; otherwise it becomes a helper invocation.

In addition to the above conditions, helper invocations are terminated when all non-helper
invocations in the same derivative group either terminate or become helper invocations via
OpDemoteToHelperInvocationEXT or OpKill.

A shader stage for a given command completes execution when all invocations for that stage have
terminated.

9.6. Shader Memory Access Ordering
The order in which image or buffer memory is read or written by shaders is largely undefined. For
some shader types (vertex, tessellation evaluation, and in some cases, fragment), even the number
of shader invocations that may perform loads and stores is undefined.

In particular, the following rules apply:

• Vertex and tessellation evaluation shaders will be invoked at least once for each unique vertex,
as defined in those sections.

• Fragment shaders will be invoked zero or more times, as defined in that section.

• The relative execution order of invocations of the same shader type is undefined. A store issued
by a shader when working on primitive B might complete prior to a store for primitive A, even
if primitive A is specified prior to primitive B. This applies even to fragment shaders; while
fragment shader outputs are always written to the framebuffer in rasterization order, stores
executed by fragment shader invocations are not.

• The relative execution order of invocations of different shader types is largely undefined.

Note

The above limitations on shader invocation order make some forms of
synchronization between shader invocations within a single set of primitives
unimplementable. For example, having one invocation poll memory written by
another invocation assumes that the other invocation has been launched and will
complete its writes in finite time.

664

The Memory Model appendix defines the terminology and rules for how to correctly communicate
between shader invocations, such as when a write is Visible-To a read, and what constitutes a Data
Race.

Applications must not cause a data race.

The SPIR-V SubgroupMemory, CrossWorkgroupMemory, and AtomicCounterMemory memory
semantics are ignored. Sequentially consistent atomics and barriers are not supported and
SequentiallyConsistent is treated as AcquireRelease. SequentiallyConsistent should not be
used.

9.7. Shader Inputs and Outputs
Data is passed into and out of shaders using variables with input or output storage class,
respectively. User-defined inputs and outputs are connected between stages by matching their
Location decorations. Additionally, data can be provided by or communicated to special functions
provided by the execution environment using BuiltIn decorations.

In many cases, the same BuiltIn decoration can be used in multiple shader stages with similar
meaning. The specific behavior of variables decorated as BuiltIn is documented in the following
sections.

9.8. Task Shaders
Task shaders operate in conjunction with the mesh shaders to produce a collection of primitives
that will be processed by subsequent stages of the graphics pipeline. Its primary purpose is to
create a variable amount of subsequent mesh shader invocations.

Task shaders are invoked via the execution of the programmable mesh shading pipeline.

The task shader has no fixed-function inputs other than variables identifying the specific
workgroup and invocation. In the TaskNV Execution Model the number of mesh shader workgroups to
create is specified via a TaskCountNV decorated output variable. In the TaskEXT Execution Model the
number of mesh shader workgroups to create is specified via the OpEmitMeshTasksEXT instruction.

The task shader can write additional outputs to task memory, which can be read by all of the mesh
shader workgroups it created.

9.8.1. Task Shader Execution

Task workloads are formed from groups of work items called workgroups and processed by the
task shader in the current graphics pipeline. A workgroup is a collection of shader invocations that
execute the same shader, potentially in parallel. Task shaders execute in global workgroups which
are divided into a number of local workgroups with a size that can be set by assigning a value to the
LocalSize or LocalSizeId execution mode or via an object decorated by the WorkgroupSize
decoration. An invocation within a local workgroup can share data with other members of the local
workgroup through shared variables and issue memory and control flow barriers to synchronize
with other members of the local workgroup. If the subpass includes multiple views in its view
mask, a Task shader using TaskEXT Execution Model may be invoked separately for each view.

665

9.9. Mesh Shaders
Mesh shaders operate in workgroups to produce a collection of primitives that will be processed by
subsequent stages of the graphics pipeline. Each workgroup emits zero or more output primitives
and the group of vertices and their associated data required for each output primitive.

Mesh shaders are invoked via the execution of the programmable mesh shading pipeline.

The only inputs available to the mesh shader are variables identifying the specific workgroup and
invocation and, if applicable, any outputs written to task memory by the task shader that spawned
the mesh shader’s workgroup. The mesh shader can operate without a task shader as well.

The invocations of the mesh shader workgroup write an output mesh, comprising a set of
primitives with per-primitive attributes, a set of vertices with per-vertex attributes, and an array of
indices identifying the mesh vertices that belong to each primitive. The primitives of this mesh are
then processed by subsequent graphics pipeline stages, where the outputs of the mesh shader form
an interface with the fragment shader.

9.9.1. Mesh Shader Execution

Mesh workloads are formed from groups of work items called workgroups and processed by the
mesh shader in the current graphics pipeline. A workgroup is a collection of shader invocations
that execute the same shader, potentially in parallel. Mesh shaders execute in global workgroups
which are divided into a number of local workgroups with a size that can be set by assigning a
value to the LocalSize or LocalSizeId execution mode or via an object decorated by the
WorkgroupSize decoration. An invocation within a local workgroup can share data with other
members of the local workgroup through shared variables and issue memory and control flow
barriers to synchronize with other members of the local workgroup.

The global workgroups may be generated explicitly via the API, or implicitly through the task
shader’s work creation mechanism. If the subpass includes multiple views in its view mask, a Mesh
shader using MeshEXT Execution Model may be invoked separately for each view.

9.10. Cluster Culling Shaders
Cluster Culling shaders are invoked via the execution of the Programmable Cluster Culling Shading
pipeline.

The only inputs available to the cluster culling shader are variables identifying the specific
workgroup and invocation.

Cluster Culling shaders operate in workgroups to perform cluster-based culling and produce zero
or more cluster drawing command that will be processed by subsequent stages of the graphics
pipeline.

The Cluster Drawing Command(CDC) is very similar to the MDI command, invocations in
workgroup can emit zero of more CDC to draw zero or more visible cluster.

666

9.10.1. Cluster Culling Shader Execution

Cluster Culling workloads are formed from groups of work items called workgroups and processed
by the cluster culling shader in the current graphics pipeline. A workgroup is a collection of shader
invocations that execute the same shader, potentially in parallel. Cluster Culling shaders execute in
global workgroups which are divided into a number of local workgroups with a size that can be set
by assigning a value to the LocalSize or LocalSizeId execution mode or via an object decorated by
the WorkgroupSize decoration. An invocation within a local workgroup can share data with other
members of the local workgroup through shared variables and issue memory and control flow
barriers to synchronize with other members of the local workgroup.

9.11. Vertex Shaders
Each vertex shader invocation operates on one vertex and its associated vertex attribute data, and
outputs one vertex and associated data. Graphics pipelines using primitive shading must include a
vertex shader, and the vertex shader stage is always the first shader stage in the graphics pipeline.

9.11.1. Vertex Shader Execution

A vertex shader must be executed at least once for each vertex specified by a drawing command. If
the subpass includes multiple views in its view mask, the shader may be invoked separately for
each view. During execution, the shader is presented with the index of the vertex and instance for
which it has been invoked. Input variables declared in the vertex shader are filled by the
implementation with the values of vertex attributes associated with the invocation being executed.

If the same vertex is specified multiple times in a drawing command (e.g. by including the same
index value multiple times in an index buffer) the implementation may reuse the results of vertex
shading if it can statically determine that the vertex shader invocations will produce identical
results.

Note

It is implementation-dependent when and if results of vertex shading are reused,
and thus how many times the vertex shader will be executed. This is true also if
the vertex shader contains stores or atomic operations (see
vertexPipelineStoresAndAtomics).

9.12. Tessellation Control Shaders
The tessellation control shader is used to read an input patch provided by the application and to
produce an output patch. Each tessellation control shader invocation operates on an input patch
(after all control points in the patch are processed by a vertex shader) and its associated data, and
outputs a single control point of the output patch and its associated data, and can also output
additional per-patch data. The input patch is sized according to the patchControlPoints member of
VkPipelineTessellationStateCreateInfo, as part of input assembly.

The input patch can also be dynamically sized with patchControlPoints parameter of
vkCmdSetPatchControlPointsEXT.

667

To dynamically set the number of control points per patch, call:

// Provided by VK_EXT_extended_dynamic_state2, VK_EXT_shader_object
void vkCmdSetPatchControlPointsEXT(
 VkCommandBuffer commandBuffer,
 uint32_t patchControlPoints);

• commandBuffer is the command buffer into which the command will be recorded.

• patchControlPoints specifies the number of control points per patch.

This command sets the number of control points per patch for subsequent drawing commands
when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineTessellationStateCreateInfo
::patchControlPoints value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetPatchControlPointsEXT-None-09422
At least one of the following must be true:

◦ The extendedDynamicState2PatchControlPoints feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetPatchControlPointsEXT-patchControlPoints-04874
patchControlPoints must be greater than zero and less than or equal to
VkPhysicalDeviceLimits::maxTessellationPatchSize

Valid Usage (Implicit)

• VUID-vkCmdSetPatchControlPointsEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPatchControlPointsEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetPatchControlPointsEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetPatchControlPointsEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

668

synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

The size of the output patch is controlled by the OpExecutionMode OutputVertices specified in the
tessellation control or tessellation evaluation shaders, which must be specified in at least one of the
shaders. The size of the input and output patches must each be greater than zero and less than or
equal to VkPhysicalDeviceLimits::maxTessellationPatchSize.

9.12.1. Tessellation Control Shader Execution

A tessellation control shader is invoked at least once for each output vertex in a patch. If the
subpass includes multiple views in its view mask, the shader may be invoked separately for each
view.

Inputs to the tessellation control shader are generated by the vertex shader. Each invocation of the
tessellation control shader can read the attributes of any incoming vertices and their associated
data. The invocations corresponding to a given patch execute logically in parallel, with undefined
relative execution order. However, the OpControlBarrier instruction can be used to provide limited
control of the execution order by synchronizing invocations within a patch, effectively dividing
tessellation control shader execution into a set of phases. Tessellation control shaders will read
undefined values if one invocation reads a per-vertex or per-patch output written by another
invocation at any point during the same phase, or if two invocations attempt to write different
values to the same per-patch output in a single phase.

9.13. Tessellation Evaluation Shaders
The Tessellation Evaluation Shader operates on an input patch of control points and their
associated data, and a single input barycentric coordinate indicating the invocation’s relative
position within the subdivided patch, and outputs a single vertex and its associated data.

9.13.1. Tessellation Evaluation Shader Execution

A tessellation evaluation shader is invoked at least once for each unique vertex generated by the
tessellator. If the subpass includes multiple views in its view mask, the shader may be invoked
separately for each view.

9.14. Geometry Shaders
The geometry shader operates on a group of vertices and their associated data assembled from a

669

single input primitive, and emits zero or more output primitives and the group of vertices and their
associated data required for each output primitive.

9.14.1. Geometry Shader Execution

A geometry shader is invoked at least once for each primitive produced by the tessellation stages,
or at least once for each primitive generated by primitive assembly when tessellation is not in use.
A shader can request that the geometry shader runs multiple instances. A geometry shader is
invoked at least once for each instance. If the subpass includes multiple views in its view mask, the
shader may be invoked separately for each view.

9.15. Fragment Shaders
Fragment shaders are invoked as a fragment operation in a graphics pipeline. Each fragment
shader invocation operates on a single fragment and its associated data. With few exceptions,
fragment shaders do not have access to any data associated with other fragments and are
considered to execute in isolation of fragment shader invocations associated with other fragments.

9.16. Compute Shaders
Compute shaders are invoked via vkCmdDispatch and vkCmdDispatchIndirect commands. In
general, they have access to similar resources as shader stages executing as part of a graphics
pipeline.

Compute workloads are formed from groups of work items called workgroups and processed by the
compute shader in the current compute pipeline. A workgroup is a collection of shader invocations
that execute the same shader, potentially in parallel. Compute shaders execute in global
workgroups which are divided into a number of local workgroups with a size that can be set by
assigning a value to the LocalSize or LocalSizeId execution mode or via an object decorated by the
WorkgroupSize decoration. An invocation within a local workgroup can share data with other
members of the local workgroup through shared variables and issue memory and control flow
barriers to synchronize with other members of the local workgroup.

9.17. Ray Generation Shaders
A ray generation shader is similar to a compute shader. Its main purpose is to execute ray tracing
queries using pipeline trace ray instructions (such as OpTraceRayKHR) and process the results.

9.17.1. Ray Generation Shader Execution

One ray generation shader is executed per ray tracing dispatch. Its location in the shader binding
table (see Shader Binding Table for details) is passed directly into vkCmdTraceRaysKHR using the
pRaygenShaderBindingTable parameter or vkCmdTraceRaysNV using the
raygenShaderBindingTableBuffer and raygenShaderBindingOffset parameters .

670

9.18. Intersection Shaders
Intersection shaders enable the implementation of arbitrary, application defined geometric
primitives. An intersection shader for a primitive is executed whenever its axis-aligned bounding
box is hit by a ray.

Like other ray tracing shader domains, an intersection shader operates on a single ray at a time. It
also operates on a single primitive at a time. It is therefore the purpose of an intersection shader to
compute the ray-primitive intersections and report them. To report an intersection, the shader calls
the OpReportIntersectionKHR instruction.

An intersection shader communicates with any-hit and closest shaders by generating attribute
values that they can read. Intersection shaders cannot read or modify the ray payload.

9.18.1. Intersection Shader Execution

The order in which intersections are found along a ray, and therefore the order in which
intersection shaders are executed, is unspecified.

The intersection shader of the closest AABB which intersects the ray is guaranteed to be executed at
some point during traversal, unless the ray is forcibly terminated.

9.19. Any-Hit Shaders
The any-hit shader is executed after the intersection shader reports an intersection that lies within
the current [tmin,tmax] of the ray. The main use of any-hit shaders is to programmatically decide
whether or not an intersection will be accepted. The intersection will be accepted unless the shader
calls the OpIgnoreIntersectionKHR instruction. Any-hit shaders have read-only access to the
attributes generated by the corresponding intersection shader, and can read or modify the ray
payload.

9.19.1. Any-Hit Shader Execution

The order in which intersections are found along a ray, and therefore the order in which any-hit
shaders are executed, is unspecified.

The any-hit shader of the closest hit is guaranteed to be executed at some point during traversal,
unless the ray is forcibly terminated.

9.20. Closest Hit Shaders
Closest hit shaders have read-only access to the attributes generated by the corresponding
intersection shader, and can read or modify the ray payload. They also have access to a number of
system-generated values. Closest hit shaders can call pipeline trace ray instructions to recursively
trace rays.

671

9.20.1. Closest Hit Shader Execution

Exactly one closest hit shader is executed when traversal is finished and an intersection has been
found and accepted.

9.21. Miss Shaders
Miss shaders can access the ray payload and can trace new rays through the pipeline trace ray
instructions, but cannot access attributes since they are not associated with an intersection.

9.21.1. Miss Shader Execution

A miss shader is executed instead of a closest hit shader if no intersection was found during
traversal.

9.22. Callable Shaders
Callable shaders can access a callable payload that works similarly to ray payloads to do subroutine
work.

9.22.1. Callable Shader Execution

A callable shader is executed by calling OpExecuteCallableKHR from an allowed shader stage.

9.23. Interpolation Decorations
Variables in the Input storage class in a fragment shader’s interface are interpolated from the
values specified by the primitive being rasterized.

Note

Interpolation decorations can be present on input and output variables in pre-
rasterization shaders but have no effect on the interpolation performed.

An undecorated input variable will be interpolated with perspective-correct interpolation
according to the primitive type being rasterized. Lines and polygons are interpolated in the same
way as the primitive’s clip coordinates. If the NoPerspective decoration is present, linear
interpolation is instead used for lines and polygons. For points, as there is only a single vertex,
input values are never interpolated and instead take the value written for the single vertex.

If the Flat decoration is present on an input variable, the value is not interpolated, and instead
takes its value directly from the provoking vertex. Fragment shader inputs that are signed or
unsigned integers, integer vectors, or any double-precision floating-point type must be decorated
with Flat.

Interpolation of input variables is performed at an implementation-defined position within the
fragment area being shaded. The position is further constrained as follows:

• If the Centroid decoration is used, the interpolation position used for the variable must also fall

672

within the bounds of the primitive being rasterized.

• If the Sample decoration is used, the interpolation position used for the variable must be at the
position of the sample being shaded by the current fragment shader invocation.

• If a sample count of 1 is used, the interpolation position must be at the center of the fragment
area.

Note

As Centroid restricts the possible interpolation position to the covered area of the
primitive, the position can be forced to vary between neighboring fragments when
it otherwise would not. Derivatives calculated based on these differing locations
can produce inconsistent results compared to undecorated inputs. It is
recommended that input variables used in derivative calculations are not
decorated with Centroid.

If the PerVertexKHR decoration is present on an input variable, the value is not interpolated, and
instead values from all input vertices are available in an array. Each index of the array corresponds
to one of the vertices of the primitive that produced the fragment.

If the CustomInterpAMD decoration is present on an input variable, the value cannot be accessed
directly; instead the extended instruction InterpolateAtVertexAMD must be used to obtain values
from the input vertices.

9.24. Static Use
A SPIR-V module declares a global object in memory using the OpVariable instruction, which results
in a pointer x to that object. A specific entry point in a SPIR-V module is said to statically use that
object if that entry point’s call tree contains a function containing a instruction with x as an id
operand. A shader entry point also statically uses any variables explicitly declared in its interface.

9.25. Scope
A scope describes a set of shader invocations, where each such set is a scope instance. Each
invocation belongs to one or more scope instances, but belongs to no more than one scope instance
for each scope.

The operations available between invocations in a given scope instance vary, with smaller scopes
generally able to perform more operations, and with greater efficiency.

9.25.1. Cross Device

All invocations executed in a Vulkan instance fall into a single cross device scope instance.

Whilst the CrossDevice scope is defined in SPIR-V, it is disallowed in Vulkan. API synchronization
commands can be used to communicate between devices.

673

9.25.2. Device

All invocations executed on a single device form a device scope instance.

If the vulkanMemoryModel and vulkanMemoryModelDeviceScope features are enabled, this scope is
represented in SPIR-V by the Device Scope, which can be used as a Memory Scope for barrier and
atomic operations.

If both the shaderDeviceClock and vulkanMemoryModelDeviceScope features are enabled, using the
Device Scope with the OpReadClockKHR instruction will read from a clock that is consistent across
invocations in the same device scope instance.

There is no method to synchronize the execution of these invocations within SPIR-V, and this can
only be done with API synchronization primitives.

Invocations executing on different devices in a device group operate in separate device scope
instances.

9.25.3. Queue Family

Invocations executed by queues in a given queue family form a queue family scope instance.

This scope is identified in SPIR-V as the QueueFamily Scope if the vulkanMemoryModel feature is
enabled, or if not, the Device Scope, which can be used as a Memory Scope for barrier and atomic
operations.

If the shaderDeviceClock feature is enabled, but the vulkanMemoryModelDeviceScope feature is not
enabled, using the Device Scope with the OpReadClockKHR instruction will read from a clock that is
consistent across invocations in the same queue family scope instance.

There is no method to synchronize the execution of these invocations within SPIR-V, and this can
only be done with API synchronization primitives.

Each invocation in a queue family scope instance must be in the same device scope instance.

9.25.4. Command

Any shader invocations executed as the result of a single command such as vkCmdDispatch or
vkCmdDraw form a command scope instance. For indirect drawing commands with drawCount
greater than one, invocations from separate draws are in separate command scope instances. For
ray tracing shaders, an invocation group is an implementation-dependent subset of the set of
shader invocations of a given shader stage which are produced by a single trace rays command.

There is no specific Scope for communication across invocations in a command scope instance. As
this has a clear boundary at the API level, coordination here can be performed in the API, rather
than in SPIR-V.

Each invocation in a command scope instance must be in the same queue-family scope instance.

For shaders without defined workgroups, this set of invocations forms an invocation group as
defined in the SPIR-V specification.

674

9.25.5. Primitive

Any fragment shader invocations executed as the result of rasterization of a single primitive form a
primitive scope instance.

There is no specific Scope for communication across invocations in a primitive scope instance.

Any generated helper invocations are included in this scope instance.

Each invocation in a primitive scope instance must be in the same command scope instance.

Any input variables decorated with Flat are uniform within a primitive scope instance.

9.25.6. Shader Call

Any shader-call-related invocations that are executed in one or more ray tracing execution models
form a shader call scope instance.

The ShaderCallKHR Scope can be used as Memory Scope for barrier and atomic operations.

Each invocation in a shader call scope instance must be in the same queue family scope instance.

9.25.7. Workgroup

A local workgroup is a set of invocations that can synchronize and share data with each other using
memory in the Workgroup storage class.

The Workgroup Scope can be used as both an Execution Scope and Memory Scope for barrier and atomic
operations.

Each invocation in a local workgroup must be in the same command scope instance.

Only task, mesh, and compute shaders have defined workgroups - other shader types cannot use
workgroup functionality. For shaders that have defined workgroups, this set of invocations forms
an invocation group as defined in the SPIR-V specification.

When variables declared with the Workgroup storage class are explicitly laid out (hence they are also
decorated with Block), the amount of storage consumed is the size of the largest Block variable, not
counting any padding at the end. The amount of storage consumed by the non-Block variables
declared with the Workgroup storage class is implementation-dependent. However, the amount of
storage consumed may not exceed the largest block size that would be obtained if all active non-
Block variables declared with Workgroup storage class were assigned offsets in an arbitrary order by
successively taking the smallest valid offset according to the Standard Storage Buffer Layout rules,
and with Boolean values considered as 32-bit integer values for the purpose of this calculation. (This
is equivalent to using the GLSL std430 layout rules.)

9.25.8. Subgroup

A subgroup (see the subsection “Control Flow” of section 2 of the SPIR-V 1.3 Revision 1 specification)
is a set of invocations that can synchronize and share data with each other efficiently.

675

The Subgroup Scope can be used as both an Execution Scope and Memory Scope for barrier and atomic
operations. Other subgroup features allow the use of group operations with subgroup scope.

If the shaderSubgroupClock feature is enabled, using the Subgroup Scope with the OpReadClockKHR
instruction will read from a clock that is consistent across invocations in the same subgroup.

For shaders that have defined workgroups, each invocation in a subgroup must be in the same
local workgroup.

In other shader stages, each invocation in a subgroup must be in the same device scope instance.

Only shader stages that support subgroup operations have defined subgroups.

Note

In shaders, there are two kinds of uniformity that are of primary interest to
applications: uniform within an invocation group (a.k.a. dynamically uniform),
and uniform within a subgroup scope.

While one could make the assumption that being uniform in invocation group
implies being uniform in subgroup scope, it is not necessarily the case for shader
stages without defined workgroups.

For shader stages with defined workgroups however, the relationship between
invocation group and subgroup scope is well defined as a subgroup is a subset of
the workgroup, and the workgroup is the invocation group. If a value is uniform in
invocation group, it is by definition also uniform in subgroup scope. This is
important if writing code like:

uniform texture2D Textures[];
uint dynamicallyUniformValue = gl_WorkGroupID.x;
vec4 value = texelFetch(Textures[dynamicallyUniformValue], coord, 0);

// subgroupUniformValue is guaranteed to be uniform within the
subgroup.
// This value also happens to be dynamically uniform.
vec4 subgroupUniformValue = subgroupBroadcastFirst
(dynamicallyUniformValue);

In shader stages without defined workgroups, this gets complicated. Due to
scoping rules, there is no guarantee that a subgroup is a subset of the invocation
group, which in turn defines the scope for dynamically uniform. In graphics, the
invocation group is a single draw command, except for multi-draw situations, and
indirect draws with drawCount > 1, where there are multiple invocation groups,
one per DrawIndex.

// Assume SubgroupSize = 8, where 3 draws are packed together.
// Two subgroups were generated.
uniform texture2D Textures[];

676

// DrawIndex builtin is dynamically uniform
uint dynamicallyUniformValue = gl_DrawID;
// | gl_DrawID = 0 | gl_DrawID = 1 | }
// Subgroup 0: { 0, 0, 0, 0, 1, 1, 1, 1 }
// | DrawID = 2 | DrawID = 1 | }
// Subgroup 1: { 2, 2, 2, 2, 1, 1, 1, 1 }

uint notActuallyDynamicallyUniformAnymore =
 subgroupBroadcastFirst(dynamicallyUniformValue);
// | gl_DrawID = 0 | gl_DrawID = 1 | }
// Subgroup 0: { 0, 0, 0, 0, 0, 0, 0, 0 }
// | gl_DrawID = 2 | gl_DrawID = 1 | }
// Subgroup 1: { 2, 2, 2, 2, 2, 2, 2, 2 }

// Bug. gl_DrawID = 1's invocation group observes both index 0 and 2.
vec4 value = texelFetch(Textures[notActuallyDynamicallyUniformAnymore],
 coord, 0);

Another problematic scenario is when a shader attempts to help the compiler
notice that a value is uniform in subgroup scope to potentially improve
performance.

layout(location = 0) flat in dynamicallyUniformIndex;
// Vertex shader might have emitted a value that depends only on
gl_DrawID,
// making it dynamically uniform.
// Give knowledge to compiler that the flat input is dynamically
uniform,
// as this is not a guarantee otherwise.

uint uniformIndex = subgroupBroadcastFirst(dynamicallyUniformIndex);
// Hazard: If different draw commands are packed into one subgroup, the
uniformIndex is wrong.

DrawData d = UBO.perDrawData[uniformIndex];

For implementations where subgroups are packed across draws, the
implementation must make sure to handle descriptor indexing correctly. From the
specification’s point of view, a dynamically uniform index does not require
NonUniform decoration, and such an implementation will likely either promote
descriptor indexing into NonUniform on its own, or handle non-uniformity
implicitly.

9.25.9. Quad

A quad scope instance is formed of four shader invocations.

677

In a fragment shader, each invocation in a quad scope instance is formed of invocations in
neighboring framebuffer locations (xi, yi), where:

• i is the index of the invocation within the scope instance.

• w and h are the number of pixels the fragment covers in the x and y axes.

• w and h are identical for all participating invocations.

• (x0) = (x1 - w) = (x2) = (x3 - w)

• (y0) = (y1) = (y2 - h) = (y3 - h)

• Each invocation has the same layer and sample indices.

In a compute shader, if the DerivativeGroupQuadsNV execution mode is specified, each invocation in a
quad scope instance is formed of invocations with adjacent local invocation IDs (xi, yi), where:

• i is the index of the invocation within the quad scope instance.

• (x0) = (x1 - 1) = (x2) = (x3 - 1)

• (y0) = (y1) = (y2 - 1) = (y3 - 1)

• x0 and y0 are integer multiples of 2.

• Each invocation has the same z coordinate.

In a compute shader, if the DerivativeGroupLinearNV execution mode is specified, each invocation in
a quad scope instance is formed of invocations with adjacent local invocation indices (li), where:

• i is the index of the invocation within the quad scope instance.

• (l0) = (l1 - 1) = (l2 - 2) = (l3 - 3)

• l0 is an integer multiple of 4.

In all shaders, each invocation in a quad scope instance is formed of invocations in adjacent
subgroup invocation indices (si), where:

• i is the index of the invocation within the quad scope instance.

• (s0) = (s1 - 1) = (s2 - 2) = (s3 - 3)

• s0 is an integer multiple of 4.

Each invocation in a quad scope instance must be in the same subgroup.

In a fragment shader, each invocation in a quad scope instance must be in the same primitive
scope instance.

Fragment and compute shaders have defined quad scope instances. If the
quadOperationsInAllStages limit is supported, any shader stages that support subgroup operations
also have defined quad scope instances.

9.25.10. Fragment Interlock

A fragment interlock scope instance is formed of fragment shader invocations based on their

678

framebuffer locations (x,y,layer,sample), executed by commands inside a single subpass.

The specific set of invocations included varies based on the execution mode as follows:

• If the SampleInterlockOrderedEXT or SampleInterlockUnorderedEXT execution modes are used, only
invocations with identical framebuffer locations (x,y,layer,sample) are included.

• If the PixelInterlockOrderedEXT or PixelInterlockUnorderedEXT execution modes are used,
fragments with different sample ids are also included.

• If the ShadingRateInterlockOrderedEXT or ShadingRateInterlockUnorderedEXT execution modes are
used, fragments from neighbouring framebuffer locations are also included. The shading rate
image or fragment shading rate determines these fragments.

Only fragment shaders with one of the above execution modes have defined fragment interlock
scope instances.

There is no specific Scope value for communication across invocations in a fragment interlock scope
instance. However, this is implicitly used as a memory scope by OpBeginInvocationInterlockEXT and
OpEndInvocationInterlockEXT.

Each invocation in a fragment interlock scope instance must be in the same queue family scope
instance.

9.25.11. Invocation

The smallest scope is a single invocation; this is represented by the Invocation Scope in SPIR-V.

Fragment shader invocations must be in a primitive scope instance.

Invocations in fragment shaders that have a defined fragment interlock scope must be in a
fragment interlock scope instance.

Invocations in shaders that have defined workgroups must be in a local workgroup.

Invocations in shaders that have a defined subgroup scope must be in a subgroup.

Invocations in shaders that have a defined quad scope must be in a quad scope instance.

All invocations in all stages must be in a command scope instance.

9.26. Group Operations
Group operations are executed by multiple invocations within a scope instance; with each
invocation involved in calculating the result. This provides a mechanism for efficient
communication between invocations in a particular scope instance.

Group operations all take a Scope defining the desired scope instance to operate within. Only the
Subgroup scope can be used for these operations; the subgroupSupportedOperations limit defines
which types of operation can be used.

679

9.26.1. Basic Group Operations

Basic group operations include the use of OpGroupNonUniformElect, OpControlBarrier,
OpMemoryBarrier, and atomic operations.

OpGroupNonUniformElect can be used to choose a single invocation to perform a task for the whole
group. Only the invocation with the lowest id in the group will return true.

The Memory Model appendix defines the operation of barriers and atomics.

9.26.2. Vote Group Operations

The vote group operations allow invocations within a group to compare values across a group. The
types of votes enabled are:

• Do all active group invocations agree that an expression is true?

• Do any active group invocations evaluate an expression to true?

• Do all active group invocations have the same value of an expression?

Note

These operations are useful in combination with control flow in that they allow for
developers to check whether conditions match across the group and choose
potentially faster code-paths in these cases.

9.26.3. Arithmetic Group Operations

The arithmetic group operations allow invocations to perform scans and reductions across a group.
The operators supported are add, mul, min, max, and, or, xor.

For reductions, every invocation in a group will obtain the cumulative result of these operators
applied to all values in the group. For exclusive scans, each invocation in a group will obtain the
cumulative result of these operators applied to all values in invocations with a lower index in the
group. Inclusive scans are identical to exclusive scans, except the cumulative result includes the
operator applied to the value in the current invocation.

The order in which these operators are applied is implementation-dependent.

9.26.4. Ballot Group Operations

The ballot group operations allow invocations to perform more complex votes across the group.
The ballot functionality allows all invocations within a group to provide a boolean value and get as
a result what each invocation provided as their boolean value. The broadcast functionality allows
values to be broadcast from an invocation to all other invocations within the group.

9.26.5. Shuffle Group Operations

The shuffle group operations allow invocations to read values from other invocations within a
group.

680

9.26.6. Shuffle Relative Group Operations

The shuffle relative group operations allow invocations to read values from other invocations
within the group relative to the current invocation in the group. The relative operations supported
allow data to be shifted up and down through the invocations within a group.

9.26.7. Clustered Group Operations

The clustered group operations allow invocations to perform an operation among partitions of a
group, such that the operation is only performed within the group invocations within a partition.
The partitions for clustered group operations are consecutive power-of-two size groups of
invocations and the cluster size must be known at pipeline creation time. The operations supported
are add, mul, min, max, and, or, xor.

9.26.8. Rotate Group Operations

The rotate group operations allow invocations to read values from other invocations within the
group relative to the current invocation and modulo the size of the group. Clustered rotate group
operations perform the same operation within individual partitions of a group.

The partitions for clustered rotate group operations are consecutive power-of-two size groups of
invocations and the cluster size must be known at pipeline creation time.

9.27. Quad Group Operations
Quad group operations (OpGroupNonUniformQuad*) are a specialized type of group operations that
only operate on quad scope instances. Whilst these instructions do include a Scope parameter, this
scope is always overridden; only the quad scope instance is included in its execution scope.

Fragment shaders that statically execute either OpGroupNonUniformQuadBroadcast or
OpGroupNonUniformQuadSwap must launch sufficient invocations to ensure their correct operation;
additional helper invocations are launched for framebuffer locations not covered by rasterized
fragments if necessary.

The index used to select participating invocations is i, as described for a quad scope instance,
defined as the quad index in the SPIR-V specification.

For OpGroupNonUniformQuadBroadcast this value is equal to Index. For OpGroupNonUniformQuadSwap, it is
equal to the implicit Index used by each participating invocation.

9.28. Derivative Operations
Derivative operations calculate the partial derivative for an expression P as a function of an
invocation’s x and y coordinates.

Derivative operations operate on a set of invocations known as a derivative group as defined in the
SPIR-V specification.

A derivative group in a fragment shader is equivalent to the quad scope instance if the

681

QuadDerivativesKHR execution mode is specified, otherwise it is equivalent to the primitive scope
instance. A derivative group in a compute shader is equivalent to the quad scope instance.

Derivatives are calculated assuming that P is piecewise linear and continuous within the derivative
group.

The following control-flow restrictions apply to derivative operations:

• If the QuadDerivativesKHR execution mode is specified, dynamic instances of any derivative
operations must be executed in control flow that is uniform within the current quad scope
instance.

• If the QuadDerivativesKHR execution mode is not specified:

◦ dynamic instances of explicit derivative instructions (OpDPdx*, OpDPdy*, and OpFwidth*) must
be executed in control flow that is uniform within a derivative group.

◦ dynamic instances of implicit derivative operations can be executed in control flow that is
not uniform within the derivative group, but results are undefined.

Fragment shaders that statically execute derivative operations must launch sufficient invocations
to ensure their correct operation; additional helper invocations are launched for framebuffer
locations not covered by rasterized fragments if necessary.

Note

In a compute shader, it is the application’s responsibility to ensure that sufficient
invocations are launched.

Derivative operations calculate their results as the difference between the result of P across
invocations in the quad. For fine derivative operations (OpDPdxFine and OpDPdyFine), the values of
DPdx(Pi) are calculated as

DPdx(P0) = DPdx(P1) = P1 - P0

DPdx(P2) = DPdx(P3) = P3 - P2

and the values of DPdy(Pi) are calculated as

DPdy(P0) = DPdy(P2) = P2 - P0

DPdy(P1) = DPdy(P3) = P3 - P1

where i is the index of each invocation as described in Quad.

Coarse derivative operations (OpDPdxCoarse and OpDPdyCoarse), calculate their results in roughly the
same manner, but may only calculate two values instead of four (one for each of DPdx and DPdy),
reusing the same result no matter the originating invocation. If an implementation does this, it

682

should use the fine derivative calculations described for P0.

Note

Derivative values are calculated between fragments rather than pixels. If the
fragment shader invocations involved in the calculation cover multiple pixels,
these operations cover a wider area, resulting in larger derivative values. This in
turn will result in a coarser LOD being selected for image sampling operations
using derivatives.

Applications may want to account for this when using multi-pixel fragments; if
pixel derivatives are desired, applications should use explicit derivative operations
and divide the results by the size of the fragment in each dimension as follows:

DPdx(Pn)' = DPdx(Pn) / w

DPdy(Pn)' = DPdy(Pn) / h

where w and h are the size of the fragments in the quad, and DPdx(Pn)' and
DPdy(Pn)' are the pixel derivatives.

The results for OpDPdx and OpDPdy may be calculated as either fine or coarse derivatives, with
implementations favouring the most efficient approach. Implementations must choose coarse or
fine consistently between the two.

Executing OpFwidthFine, OpFwidthCoarse, or OpFwidth is equivalent to executing the corresponding
OpDPdx* and OpDPdy* instructions, taking the absolute value of the results, and summing them.

Executing an OpImage*Sample*ImplicitLod instruction is equivalent to executing OpDPdx(Coordinate)
and OpDPdy(Coordinate), and passing the results as the Grad operands dx and dy.

Note

It is expected that using the ImplicitLod variants of sampling functions will be
substantially more efficient than using the ExplicitLod variants with explicitly
generated derivatives.

9.29. Helper Invocations
When performing derivative or quad group operations in a fragment shader, additional
invocations may be spawned in order to ensure correct results. These additional invocations are
known as helper invocations and can be identified by a non-zero value in the HelperInvocation
built-in. Stores and atomics performed by helper invocations must not have any effect on memory
except for the Function, Private and Output storage classes, and values returned by atomic
instructions in helper invocations are undefined.

Note

683

While storage to Output storage class has an effect even in helper invocations, it
does not mean that helper invocations have an effect on the framebuffer. Output
variables in fragment shaders can be read from as well, and they behave more like
Private variables for the duration of the shader invocation.

If the MaximallyReconvergesKHR execution mode is applied to the entry point, helper invocations
must remain active for all instructions for the lifetime of the quad scope instance they are a part of.
If the MaximallyReconvergesKHR execution mode is not applied to the entry point, helper invocations
may be considered inactive for group operations other than derivative and quad group operations.
All invocations in a quad scope instance may become permanently inactive at any point once the
only remaining invocations in that quad scope instance are helper invocations.

9.30. Cooperative Matrices
A cooperative matrix type is a SPIR-V type where the storage for and computations performed on
the matrix are spread across the invocations in a scope instance. These types give the
implementation freedom in how to optimize matrix multiplies.

SPIR-V defines the types and instructions, but does not specify rules about what sizes/combinations
are valid, and it is expected that different implementations may support different sizes.

To enumerate the supported cooperative matrix types and operations, call:

// Provided by VK_KHR_cooperative_matrix
VkResult vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t* pPropertyCount,
 VkCooperativeMatrixPropertiesKHR* pProperties);

• physicalDevice is the physical device.

• pPropertyCount is a pointer to an integer related to the number of cooperative matrix properties
available or queried.

• pProperties is either NULL or a pointer to an array of VkCooperativeMatrixPropertiesKHR
structures.

If pProperties is NULL, then the number of cooperative matrix properties available is returned in
pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of
elements in the pProperties array, and on return the variable is overwritten with the number of
structures actually written to pProperties. If pPropertyCount is less than the number of cooperative
matrix properties available, at most pPropertyCount structures will be written, and VK_INCOMPLETE
will be returned instead of VK_SUCCESS, to indicate that not all the available cooperative matrix
properties were returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR-physicalDevice-parameter

684

physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkCooperativeMatrixPropertiesKHR
structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To enumerate the supported cooperative matrix types and operations, call:

// Provided by VK_NV_cooperative_matrix
VkResult vkGetPhysicalDeviceCooperativeMatrixPropertiesNV(
 VkPhysicalDevice physicalDevice,
 uint32_t* pPropertyCount,
 VkCooperativeMatrixPropertiesNV* pProperties);

• physicalDevice is the physical device.

• pPropertyCount is a pointer to an integer related to the number of cooperative matrix properties
available or queried.

• pProperties is either NULL or a pointer to an array of VkCooperativeMatrixPropertiesNV
structures.

If pProperties is NULL, then the number of cooperative matrix properties available is returned in
pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of
elements in the pProperties array, and on return the variable is overwritten with the number of
structures actually written to pProperties. If pPropertyCount is less than the number of cooperative
matrix properties available, at most pPropertyCount structures will be written, and VK_INCOMPLETE
will be returned instead of VK_SUCCESS, to indicate that not all the available cooperative matrix
properties were returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceCooperativeMatrixPropertiesNV-physicalDevice-parameter

685

physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceCooperativeMatrixPropertiesNV-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceCooperativeMatrixPropertiesNV-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkCooperativeMatrixPropertiesNV
structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Each VkCooperativeMatrixPropertiesKHR or VkCooperativeMatrixPropertiesNV structure describes
a single supported combination of types for a matrix multiply/add operation (
OpCooperativeMatrixMulAddKHR or OpCooperativeMatrixMulAddNV). The multiply can be described in
terms of the following variables and types (in SPIR-V pseudocode):

 %A is of type OpTypeCooperativeMatrixKHR %AType %scope %MSize %KSize %MatrixAKHR
 %B is of type OpTypeCooperativeMatrixKHR %BType %scope %KSize %NSize %MatrixBKHR
 %C is of type OpTypeCooperativeMatrixKHR %CType %scope %MSize %NSize
%MatrixAccumulatorKHR
 %Result is of type OpTypeCooperativeMatrixKHR %ResultType %scope %MSize %NSize
%MatrixAccumulatorKHR

 %Result = %A * %B + %C // using OpCooperativeMatrixMulAddKHR

 %A is of type OpTypeCooperativeMatrixNV %AType %scope %MSize %KSize
 %B is of type OpTypeCooperativeMatrixNV %BType %scope %KSize %NSize
 %C is of type OpTypeCooperativeMatrixNV %CType %scope %MSize %NSize
 %D is of type OpTypeCooperativeMatrixNV %DType %scope %MSize %NSize

 %D = %A * %B + %C // using OpCooperativeMatrixMulAddNV

A matrix multiply with these dimensions is known as an MxNxK matrix multiply.

The VkCooperativeMatrixPropertiesKHR structure is defined as:

686

// Provided by VK_KHR_cooperative_matrix
typedef struct VkCooperativeMatrixPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t MSize;
 uint32_t NSize;
 uint32_t KSize;
 VkComponentTypeKHR AType;
 VkComponentTypeKHR BType;
 VkComponentTypeKHR CType;
 VkComponentTypeKHR ResultType;
 VkBool32 saturatingAccumulation;
 VkScopeKHR scope;
} VkCooperativeMatrixPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• MSize is the number of rows in matrices A, C, and Result.

• KSize is the number of columns in matrix A and rows in matrix B.

• NSize is the number of columns in matrices B, C, Result.

• AType is the component type of matrix A, of type VkComponentTypeKHR.

• BType is the component type of matrix B, of type VkComponentTypeKHR.

• CType is the component type of matrix C, of type VkComponentTypeKHR.

• ResultType is the component type of matrix Result, of type VkComponentTypeKHR.

• saturatingAccumulation indicates whether the SaturatingAccumulation operand to
OpCooperativeMatrixMulAddKHR must be present.

• scope is the scope of all the matrix types, of type VkScopeKHR.

If some types are preferred over other types (e.g. for performance), they should appear earlier in
the list enumerated by vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR.

At least one entry in the list must have power of two values for all of MSize, KSize, and NSize.

scope must be VK_SCOPE_SUBGROUP_KHR.

Valid Usage (Implicit)

• VUID-VkCooperativeMatrixPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR

• VUID-VkCooperativeMatrixPropertiesKHR-pNext-pNext
pNext must be NULL

The VkCooperativeMatrixPropertiesNV structure is defined as:

687

// Provided by VK_NV_cooperative_matrix
typedef struct VkCooperativeMatrixPropertiesNV {
 VkStructureType sType;
 void* pNext;
 uint32_t MSize;
 uint32_t NSize;
 uint32_t KSize;
 VkComponentTypeNV AType;
 VkComponentTypeNV BType;
 VkComponentTypeNV CType;
 VkComponentTypeNV DType;
 VkScopeNV scope;
} VkCooperativeMatrixPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• MSize is the number of rows in matrices A, C, and D.

• KSize is the number of columns in matrix A and rows in matrix B.

• NSize is the number of columns in matrices B, C, D.

• AType is the component type of matrix A, of type VkComponentTypeNV.

• BType is the component type of matrix B, of type VkComponentTypeNV.

• CType is the component type of matrix C, of type VkComponentTypeNV.

• DType is the component type of matrix D, of type VkComponentTypeNV.

• scope is the scope of all the matrix types, of type VkScopeNV.

If some types are preferred over other types (e.g. for performance), they should appear earlier in
the list enumerated by vkGetPhysicalDeviceCooperativeMatrixPropertiesNV.

At least one entry in the list must have power of two values for all of MSize, KSize, and NSize.

Valid Usage (Implicit)

• VUID-VkCooperativeMatrixPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_NV

• VUID-VkCooperativeMatrixPropertiesNV-pNext-pNext
pNext must be NULL

Possible values for VkScopeKHR include:

// Provided by VK_KHR_cooperative_matrix
typedef enum VkScopeKHR {
 VK_SCOPE_DEVICE_KHR = 1,
 VK_SCOPE_WORKGROUP_KHR = 2,

688

 VK_SCOPE_SUBGROUP_KHR = 3,
 VK_SCOPE_QUEUE_FAMILY_KHR = 5,
 // Provided by VK_NV_cooperative_matrix
 VK_SCOPE_DEVICE_NV = VK_SCOPE_DEVICE_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_SCOPE_WORKGROUP_NV = VK_SCOPE_WORKGROUP_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_SCOPE_SUBGROUP_NV = VK_SCOPE_SUBGROUP_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_SCOPE_QUEUE_FAMILY_NV = VK_SCOPE_QUEUE_FAMILY_KHR,
} VkScopeKHR;

or the equivalent

// Provided by VK_NV_cooperative_matrix
typedef VkScopeKHR VkScopeNV;

• VK_SCOPE_DEVICE_KHR corresponds to SPIR-V Device scope.

• VK_SCOPE_WORKGROUP_KHR corresponds to SPIR-V Workgroup scope.

• VK_SCOPE_SUBGROUP_KHR corresponds to SPIR-V Subgroup scope.

• VK_SCOPE_QUEUE_FAMILY_KHR corresponds to SPIR-V QueueFamily scope.

All enum values match the corresponding SPIR-V value.

Possible values for VkComponentTypeKHR include:

// Provided by VK_KHR_cooperative_matrix
typedef enum VkComponentTypeKHR {
 VK_COMPONENT_TYPE_FLOAT16_KHR = 0,
 VK_COMPONENT_TYPE_FLOAT32_KHR = 1,
 VK_COMPONENT_TYPE_FLOAT64_KHR = 2,
 VK_COMPONENT_TYPE_SINT8_KHR = 3,
 VK_COMPONENT_TYPE_SINT16_KHR = 4,
 VK_COMPONENT_TYPE_SINT32_KHR = 5,
 VK_COMPONENT_TYPE_SINT64_KHR = 6,
 VK_COMPONENT_TYPE_UINT8_KHR = 7,
 VK_COMPONENT_TYPE_UINT16_KHR = 8,
 VK_COMPONENT_TYPE_UINT32_KHR = 9,
 VK_COMPONENT_TYPE_UINT64_KHR = 10,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_FLOAT16_NV = VK_COMPONENT_TYPE_FLOAT16_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_FLOAT32_NV = VK_COMPONENT_TYPE_FLOAT32_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_FLOAT64_NV = VK_COMPONENT_TYPE_FLOAT64_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_SINT8_NV = VK_COMPONENT_TYPE_SINT8_KHR,

689

 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_SINT16_NV = VK_COMPONENT_TYPE_SINT16_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_SINT32_NV = VK_COMPONENT_TYPE_SINT32_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_SINT64_NV = VK_COMPONENT_TYPE_SINT64_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_UINT8_NV = VK_COMPONENT_TYPE_UINT8_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_UINT16_NV = VK_COMPONENT_TYPE_UINT16_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_UINT32_NV = VK_COMPONENT_TYPE_UINT32_KHR,
 // Provided by VK_NV_cooperative_matrix
 VK_COMPONENT_TYPE_UINT64_NV = VK_COMPONENT_TYPE_UINT64_KHR,
} VkComponentTypeKHR;

or the equivalent

// Provided by VK_NV_cooperative_matrix
typedef VkComponentTypeKHR VkComponentTypeNV;

• VK_COMPONENT_TYPE_FLOAT16_KHR corresponds to SPIR-V OpTypeFloat 16.

• VK_COMPONENT_TYPE_FLOAT32_KHR corresponds to SPIR-V OpTypeFloat 32.

• VK_COMPONENT_TYPE_FLOAT64_KHR corresponds to SPIR-V OpTypeFloat 64.

• VK_COMPONENT_TYPE_SINT8_KHR corresponds to SPIR-V OpTypeInt 8 1.

• VK_COMPONENT_TYPE_SINT16_KHR corresponds to SPIR-V OpTypeInt 16 1.

• VK_COMPONENT_TYPE_SINT32_KHR corresponds to SPIR-V OpTypeInt 32 1.

• VK_COMPONENT_TYPE_SINT64_KHR corresponds to SPIR-V OpTypeInt 64 1.

• VK_COMPONENT_TYPE_UINT8_KHR corresponds to SPIR-V OpTypeInt 8 0.

• VK_COMPONENT_TYPE_UINT16_KHR corresponds to SPIR-V OpTypeInt 16 0.

• VK_COMPONENT_TYPE_UINT32_KHR corresponds to SPIR-V OpTypeInt 32 0.

• VK_COMPONENT_TYPE_UINT64_KHR corresponds to SPIR-V OpTypeInt 64 0.

9.31. Validation Cache
Validation cache objects allow the result of internal validation to be reused, both within a single
application run and between multiple runs. Reuse within a single run is achieved by passing the
same validation cache object when creating supported Vulkan objects. Reuse across runs of an
application is achieved by retrieving validation cache contents in one run of an application, saving
the contents, and using them to preinitialize a validation cache on a subsequent run. The contents
of the validation cache objects are managed by the validation layers. Applications can manage the
host memory consumed by a validation cache object and control the amount of data retrieved from
a validation cache object.

690

Validation cache objects are represented by VkValidationCacheEXT handles:

// Provided by VK_EXT_validation_cache
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkValidationCacheEXT)

To create validation cache objects, call:

// Provided by VK_EXT_validation_cache
VkResult vkCreateValidationCacheEXT(
 VkDevice device,
 const VkValidationCacheCreateInfoEXT* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkValidationCacheEXT* pValidationCache);

• device is the logical device that creates the validation cache object.

• pCreateInfo is a pointer to a VkValidationCacheCreateInfoEXT structure containing the initial
parameters for the validation cache object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pValidationCache is a pointer to a VkValidationCacheEXT handle in which the resulting
validation cache object is returned.

Note

Applications can track and manage the total host memory size of a validation
cache object using the pAllocator. Applications can limit the amount of data
retrieved from a validation cache object in vkGetValidationCacheDataEXT.
Implementations should not internally limit the total number of entries added to a
validation cache object or the total host memory consumed.

Once created, a validation cache can be passed to the vkCreateShaderModule command by adding
this object to the VkShaderModuleCreateInfo structure’s pNext chain. If a
VkShaderModuleValidationCacheCreateInfoEXT object is included in the
VkShaderModuleCreateInfo::pNext chain, and its validationCache field is not VK_NULL_HANDLE, the
implementation will query it for possible reuse opportunities and update it with new content. The
use of the validation cache object in these commands is internally synchronized, and the same
validation cache object can be used in multiple threads simultaneously.

Note

Implementations should make every effort to limit any critical sections to the
actual accesses to the cache, which is expected to be significantly shorter than the
duration of the vkCreateShaderModule command.

Valid Usage (Implicit)

• VUID-vkCreateValidationCacheEXT-device-parameter

691

device must be a valid VkDevice handle

• VUID-vkCreateValidationCacheEXT-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkValidationCacheCreateInfoEXT structure

• VUID-vkCreateValidationCacheEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateValidationCacheEXT-pValidationCache-parameter
pValidationCache must be a valid pointer to a VkValidationCacheEXT handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkValidationCacheCreateInfoEXT structure is defined as:

// Provided by VK_EXT_validation_cache
typedef struct VkValidationCacheCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkValidationCacheCreateFlagsEXT flags;
 size_t initialDataSize;
 const void* pInitialData;
} VkValidationCacheCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• initialDataSize is the number of bytes in pInitialData. If initialDataSize is zero, the validation
cache will initially be empty.

• pInitialData is a pointer to previously retrieved validation cache data. If the validation cache
data is incompatible (as defined below) with the device, the validation cache will be initially
empty. If initialDataSize is zero, pInitialData is ignored.

Valid Usage

• VUID-VkValidationCacheCreateInfoEXT-initialDataSize-01534
If initialDataSize is not 0, it must be equal to the size of pInitialData, as returned by
vkGetValidationCacheDataEXT when pInitialData was originally retrieved

692

• VUID-VkValidationCacheCreateInfoEXT-initialDataSize-01535
If initialDataSize is not 0, pInitialData must have been retrieved from a previous call to
vkGetValidationCacheDataEXT

Valid Usage (Implicit)

• VUID-VkValidationCacheCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_VALIDATION_CACHE_CREATE_INFO_EXT

• VUID-VkValidationCacheCreateInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkValidationCacheCreateInfoEXT-flags-zerobitmask
flags must be 0

• VUID-VkValidationCacheCreateInfoEXT-pInitialData-parameter
If initialDataSize is not 0, pInitialData must be a valid pointer to an array of
initialDataSize bytes

// Provided by VK_EXT_validation_cache
typedef VkFlags VkValidationCacheCreateFlagsEXT;

VkValidationCacheCreateFlagsEXT is a bitmask type for setting a mask, but is currently reserved for
future use.

Validation cache objects can be merged using the command:

// Provided by VK_EXT_validation_cache
VkResult vkMergeValidationCachesEXT(
 VkDevice device,
 VkValidationCacheEXT dstCache,
 uint32_t srcCacheCount,
 const VkValidationCacheEXT* pSrcCaches);

• device is the logical device that owns the validation cache objects.

• dstCache is the handle of the validation cache to merge results into.

• srcCacheCount is the length of the pSrcCaches array.

• pSrcCaches is a pointer to an array of validation cache handles, which will be merged into
dstCache. The previous contents of dstCache are included after the merge.

Note

The details of the merge operation are implementation-dependent, but
implementations should merge the contents of the specified validation caches and
prune duplicate entries.

693

Valid Usage

• VUID-vkMergeValidationCachesEXT-dstCache-01536
dstCache must not appear in the list of source caches

Valid Usage (Implicit)

• VUID-vkMergeValidationCachesEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkMergeValidationCachesEXT-dstCache-parameter
dstCache must be a valid VkValidationCacheEXT handle

• VUID-vkMergeValidationCachesEXT-pSrcCaches-parameter
pSrcCaches must be a valid pointer to an array of srcCacheCount valid
VkValidationCacheEXT handles

• VUID-vkMergeValidationCachesEXT-srcCacheCount-arraylength
srcCacheCount must be greater than 0

• VUID-vkMergeValidationCachesEXT-dstCache-parent
dstCache must have been created, allocated, or retrieved from device

• VUID-vkMergeValidationCachesEXT-pSrcCaches-parent
Each element of pSrcCaches must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to dstCache must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Data can be retrieved from a validation cache object using the command:

// Provided by VK_EXT_validation_cache
VkResult vkGetValidationCacheDataEXT(
 VkDevice device,
 VkValidationCacheEXT validationCache,
 size_t* pDataSize,

694

 void* pData);

• device is the logical device that owns the validation cache.

• validationCache is the validation cache to retrieve data from.

• pDataSize is a pointer to a value related to the amount of data in the validation cache, as
described below.

• pData is either NULL or a pointer to a buffer.

If pData is NULL, then the maximum size of the data that can be retrieved from the validation cache,
in bytes, is returned in pDataSize. Otherwise, pDataSize must point to a variable set by the user to
the size of the buffer, in bytes, pointed to by pData, and on return the variable is overwritten with
the amount of data actually written to pData. If pDataSize is less than the maximum size that can be
retrieved by the validation cache, at most pDataSize bytes will be written to pData, and
vkGetValidationCacheDataEXT will return VK_INCOMPLETE instead of VK_SUCCESS, to indicate that not all
of the validation cache was returned.

Any data written to pData is valid and can be provided as the pInitialData member of the
VkValidationCacheCreateInfoEXT structure passed to vkCreateValidationCacheEXT.

Two calls to vkGetValidationCacheDataEXT with the same parameters must retrieve the same data
unless a command that modifies the contents of the cache is called between them.

Applications can store the data retrieved from the validation cache, and use these data, possibly in
a future run of the application, to populate new validation cache objects. The results of validation,
however, may depend on the vendor ID, device ID, driver version, and other details of the device.
To enable applications to detect when previously retrieved data is incompatible with the device, the
initial bytes written to pData must be a header consisting of the following members:

Table 12. Layout for validation cache header version
VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT

Offse
t

Size Meaning

0 4 length in bytes of the entire validation cache header
written as a stream of bytes, with the least significant byte
first

4 4 a VkValidationCacheHeaderVersionEXT value written as a
stream of bytes, with the least significant byte first

8 VK_UUID_SIZE a layer commit ID expressed as a UUID, which uniquely
identifies the version of the validation layers used to
generate these validation results

The first four bytes encode the length of the entire validation cache header, in bytes. This value
includes all fields in the header including the validation cache version field and the size of the
length field.

The next four bytes encode the validation cache version, as described for

695

VkValidationCacheHeaderVersionEXT. A consumer of the validation cache should use the cache
version to interpret the remainder of the cache header.

If pDataSize is less than what is necessary to store this header, nothing will be written to pData and
zero will be written to pDataSize.

Valid Usage (Implicit)

• VUID-vkGetValidationCacheDataEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetValidationCacheDataEXT-validationCache-parameter
validationCache must be a valid VkValidationCacheEXT handle

• VUID-vkGetValidationCacheDataEXT-pDataSize-parameter
pDataSize must be a valid pointer to a size_t value

• VUID-vkGetValidationCacheDataEXT-pData-parameter
If the value referenced by pDataSize is not 0, and pData is not NULL, pData must be a valid
pointer to an array of pDataSize bytes

• VUID-vkGetValidationCacheDataEXT-validationCache-parent
validationCache must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Possible values of the second group of four bytes in the header returned by
vkGetValidationCacheDataEXT, encoding the validation cache version, are:

// Provided by VK_EXT_validation_cache
typedef enum VkValidationCacheHeaderVersionEXT {
 VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT = 1,
} VkValidationCacheHeaderVersionEXT;

• VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT specifies version one of the validation cache.

To destroy a validation cache, call:

// Provided by VK_EXT_validation_cache

696

void vkDestroyValidationCacheEXT(
 VkDevice device,
 VkValidationCacheEXT validationCache,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the validation cache object.

• validationCache is the handle of the validation cache to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyValidationCacheEXT-validationCache-01537
If VkAllocationCallbacks were provided when validationCache was created, a compatible
set of callbacks must be provided here

• VUID-vkDestroyValidationCacheEXT-validationCache-01538
If no VkAllocationCallbacks were provided when validationCache was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyValidationCacheEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyValidationCacheEXT-validationCache-parameter
If validationCache is not VK_NULL_HANDLE, validationCache must be a valid
VkValidationCacheEXT handle

• VUID-vkDestroyValidationCacheEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyValidationCacheEXT-validationCache-parent
If validationCache is a valid handle, it must have been created, allocated, or retrieved
from device

Host Synchronization

• Host access to validationCache must be externally synchronized

9.32. CUDA Modules

9.32.1. Creating a CUDA Module

CUDA modules must contain some kernel code and must expose at least one function entry point.

697

CUDA modules are represented by VkCudaModuleNV handles:

// Provided by VK_NV_cuda_kernel_launch
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCudaModuleNV)

To create a CUDA module, call:

// Provided by VK_NV_cuda_kernel_launch
VkResult vkCreateCudaModuleNV(
 VkDevice device,
 const VkCudaModuleCreateInfoNV* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkCudaModuleNV* pModule);

• device is the logical device that creates the shader module.

• pCreateInfo is a pointer to a VkCudaModuleCreateInfoNV structure.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pModule is a pointer to a VkCudaModuleNV handle in which the resulting CUDA module object is
returned.

Once a CUDA module has been created, the application may create the function entry point, which
must refer to one function in the module.

Valid Usage (Implicit)

• VUID-vkCreateCudaModuleNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateCudaModuleNV-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkCudaModuleCreateInfoNV structure

• VUID-vkCreateCudaModuleNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateCudaModuleNV-pModule-parameter
pModule must be a valid pointer to a VkCudaModuleNV handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

698

The VkCudaModuleCreateInfoNV structure is defined as:

// Provided by VK_NV_cuda_kernel_launch
typedef struct VkCudaModuleCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 size_t dataSize;
 const void* pData;
} VkCudaModuleCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext may be NULL or may be a pointer to a structure extending this structure.

• dataSize is the length of the pData array.

• pData is a pointer to CUDA code

Valid Usage

• VUID-VkCudaModuleCreateInfoNV-dataSize-09413
dataSize must be the total size in bytes of the PTX files or binary cache passed to pData.

Valid Usage (Implicit)

• VUID-VkCudaModuleCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_CUDA_MODULE_CREATE_INFO_NV

• VUID-VkCudaModuleCreateInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkCudaModuleCreateInfoNV-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-VkCudaModuleCreateInfoNV-dataSize-arraylength
dataSize must be greater than 0

9.32.2. Creating a CUDA Function Handle

CUDA functions are represented by VkCudaFunctionNV handles. Handles to global functions may then
be used to issue a kernel launch (i.e. dispatch) from a commandbuffer. See Dispatching Command
for CUDA PTX kernel.

// Provided by VK_NV_cuda_kernel_launch
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCudaFunctionNV)

To create a CUDA function, call:

699

// Provided by VK_NV_cuda_kernel_launch
VkResult vkCreateCudaFunctionNV(
 VkDevice device,
 const VkCudaFunctionCreateInfoNV* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkCudaFunctionNV* pFunction);

• device is the logical device that creates the shader module.

• pCreateInfo is a pointer to a VkCudaFunctionCreateInfoNV structure.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFunction is a pointer to a VkCudaFunctionNV handle in which the resulting CUDA function
object is returned.

Valid Usage (Implicit)

• VUID-vkCreateCudaFunctionNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateCudaFunctionNV-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkCudaFunctionCreateInfoNV structure

• VUID-vkCreateCudaFunctionNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateCudaFunctionNV-pFunction-parameter
pFunction must be a valid pointer to a VkCudaFunctionNV handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkCudaFunctionCreateInfoNV structure is defined as:

// Provided by VK_NV_cuda_kernel_launch
typedef struct VkCudaFunctionCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkCudaModuleNV module;
 const char* pName;

700

} VkCudaFunctionCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• module is the CUDA VkCudaModuleNV module in which the function resides.

• pName is a null-terminated UTF-8 string containing the name of the shader entry point for this
stage.

Valid Usage (Implicit)

• VUID-VkCudaFunctionCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_CUDA_FUNCTION_CREATE_INFO_NV

• VUID-VkCudaFunctionCreateInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkCudaFunctionCreateInfoNV-module-parameter
module must be a valid VkCudaModuleNV handle

• VUID-VkCudaFunctionCreateInfoNV-pName-parameter
pName must be a null-terminated UTF-8 string

9.32.3. Destroying a CUDA Function

To destroy a CUDA function handle, call:

// Provided by VK_NV_cuda_kernel_launch
void vkDestroyCudaFunctionNV(
 VkDevice device,
 VkCudaFunctionNV function,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the Function.

• function is the handle of the CUDA function to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage (Implicit)

• VUID-vkDestroyCudaFunctionNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyCudaFunctionNV-function-parameter
function must be a valid VkCudaFunctionNV handle

• VUID-vkDestroyCudaFunctionNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

701

• VUID-vkDestroyCudaFunctionNV-function-parent
function must have been created, allocated, or retrieved from device

9.32.4. Destroying a CUDA Module

To destroy a CUDA shader module, call:

// Provided by VK_NV_cuda_kernel_launch
void vkDestroyCudaModuleNV(
 VkDevice device,
 VkCudaModuleNV module,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the shader module.

• module is the handle of the CUDA module to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage (Implicit)

• VUID-vkDestroyCudaModuleNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyCudaModuleNV-module-parameter
module must be a valid VkCudaModuleNV handle

• VUID-vkDestroyCudaModuleNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyCudaModuleNV-module-parent
module must have been created, allocated, or retrieved from device

9.32.5. Reading back CUDA Module Cache

After uploading the PTX kernel code, the module compiles the code to generate a binary cache with
all the necessary information for the device to execute it. It is possible to read back this cache for
later use, such as accelerating the initialization of further executions.

To get the CUDA module cache call:

// Provided by VK_NV_cuda_kernel_launch
VkResult vkGetCudaModuleCacheNV(
 VkDevice device,
 VkCudaModuleNV module,
 size_t* pCacheSize,
 void* pCacheData);

702

• device is the logical device that destroys the Function.

• module is the CUDA module.

• pCacheSize is a pointer containing the amount of bytes to be copied in pCacheData

• pCacheData is a pointer to a buffer in which to copy the binary cache

If pCacheData is NULL, then the size of the binary cache, in bytes, is returned in pCacheSize. Otherwise,
pCacheSize must point to a variable set by the user to the size of the buffer, in bytes, pointed to by
pCacheData, and on return the variable is overwritten with the amount of data actually written to
pCacheData. If pCacheSize is less than the size of the binary shader code, nothing is written to
pCacheData, and VK_INCOMPLETE will be returned instead of VK_SUCCESS.

The returned cache may then be used later for further initialization of the CUDA module, by
sending this cache instead of the PTX code when using vkCreateCudaModuleNV.

Note

Using the binary cache instead of the original PTX code should significantly speed
up initialization of the CUDA module, given that the whole compilation and
validation will not be necessary.

As with VkPipelineCache, the binary cache depends on the specific
implementation. The application must assume the cache upload might fail in
many circumstances and thus may have to get ready for falling back to the
original PTX code if necessary. Most often, the cache may succeed if the same
device driver and architecture is used between the cache generation from PTX and
the use of this cache. In the event of a new driver version or if using a different
device architecture, this cache may become invalid.

Valid Usage (Implicit)

• VUID-vkGetCudaModuleCacheNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetCudaModuleCacheNV-module-parameter
module must be a valid VkCudaModuleNV handle

• VUID-vkGetCudaModuleCacheNV-pCacheSize-parameter
pCacheSize must be a valid pointer to a size_t value

• VUID-vkGetCudaModuleCacheNV-pCacheData-parameter
If the value referenced by pCacheSize is not 0, and pCacheData is not NULL, pCacheData must
be a valid pointer to an array of pCacheSize bytes

• VUID-vkGetCudaModuleCacheNV-module-parent
module must have been created, allocated, or retrieved from device

703

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_INITIALIZATION_FAILED

9.32.6. Limitations

CUDA and Vulkan do not use the device in the same configuration. The following limitations must
be taken into account:

• It is not possible to read or write global parameters from Vulkan. The only way to share
resources or send values to the PTX kernel is to pass them as arguments of the function. See
Resources sharing between CUDA Kernel and Vulkan for more details.

• No calls to functions external to the module PTX are supported.

• Vulkan disables some shader/kernel exceptions, which could break CUDA kernels relying on
exceptions.

• CUDA kernels submitted to Vulkan are limited to the amount of shared memory, which can be
queried from the physical capabilities. It may be less than what CUDA can offer.

• CUDA instruction-level preemption (CILP) does not work.

• CUDA Unified Memory will not work in this extension.

• CUDA Dynamic parallelism is not supported.

• vk*DispatchIndirect is not available.

704

Chapter 10. Pipelines
The following figure shows a block diagram of the Vulkan pipelines. Some Vulkan commands
specify geometric objects to be drawn or computational work to be performed, while others specify
state controlling how objects are handled by the various pipeline stages, or control data transfer
between memory organized as images and buffers. Commands are effectively sent through a
processing pipeline, either a graphics pipeline, a ray tracing pipeline, or a compute pipeline.

The graphics pipeline can be operated in two modes, as either primitive shading or mesh shading
pipeline.

Primitive Shading

The first stage of the graphics pipeline (Input Assembler) assembles vertices to form geometric
primitives such as points, lines, and triangles, based on a requested primitive topology. In the next
stage (Vertex Shader) vertices can be transformed, computing positions and attributes for each
vertex. If tessellation and/or geometry shaders are supported, they can then generate multiple
primitives from a single input primitive, possibly changing the primitive topology or generating
additional attribute data in the process.

Cluster Culling Shading

When using the Cluster Culling Shader, a compute-like shader will perform cluster-based culling, a
set of new built-in output variables are used to express visible cluster, in addition, a new built-in
function is used to emit these variables from the cluster culling shader to the Input Assembler(IA)
stage, then IA can use these variables to fetches vertices of visible cluster and drive vertex shader to
work.

Mesh Shading

When using the mesh shading pipeline input primitives are not assembled implicitly, but explicitly
through the (Mesh Shader). The work on the mesh pipeline is initiated by the application drawing a
set of mesh tasks.

If an optional (Task Shader) is active, each task triggers the execution of a task shader workgroup
that will generate a new set of tasks upon completion. Each of these spawned tasks, or each of the
original dispatched tasks if no task shader is present, triggers the execution of a mesh shader
workgroup that produces an output mesh with a variable-sized number of primitives assembled
from vertices stored in the output mesh.

Common

The final resulting primitives are clipped to a clip volume in preparation for the next stage,
Rasterization. The rasterizer produces a series of fragments associated with a region of the
framebuffer, from a two-dimensional description of a point, line segment, or triangle. These
fragments are processed by fragment operations to determine whether generated values will be
written to the framebuffer. Fragment shading determines the values to be written to the
framebuffer attachments. Framebuffer operations then read and write the color and depth/stencil
attachments of the framebuffer for a given subpass of a render pass instance. The attachments can

705

be used as input attachments in the fragment shader in a later subpass of the same render pass.

The compute pipeline is a separate pipeline from the graphics pipeline, which operates on one-,
two-, or three-dimensional workgroups which can read from and write to buffer and image
memory.

This ordering is meant only as a tool for describing Vulkan, not as a strict rule of how Vulkan is
implemented, and we present it only as a means to organize the various operations of the pipelines.
Actual ordering guarantees between pipeline stages are explained in detail in the synchronization
chapter.

Vertex Shader

Draw

Input Assembler

Tessellation Control Shader

Tessellation Primitive Generator

Tessellation Evaluation Shader

Rasterization

Indirect Buffer

Legend

Geometry Shader

Vertex Post-Processing

Early Per-Fragment Tests

Fragment Shader

Late Per-Fragment Tests

Blending

Index Buffer

Vertex Buffers

Task Shader

DrawMeshTasks

Depth/Stencil Attachments

Input Attachments

Color Attachments

Fixed Function Stage

Shader Stage

 Resource

Compute Shader

Dispatch

Task Assembler

Mesh Assembler

Mesh Shader

Descriptor Sets

Push Constants

Uniform Buffers

Uniform Texel Buffers
Sampled Images

Storage Buffers

Storage Texel Buffers

Storage Images

Figure 2. Block diagram of the Vulkan pipeline

Each pipeline is controlled by a monolithic object created from a description of all of the shader
stages and any relevant fixed-function stages. Linking the whole pipeline together allows the
optimization of shaders based on their input/outputs and eliminates expensive draw time state
validation.

A pipeline object is bound to the current state using vkCmdBindPipeline. Any pipeline object state
that is specified as dynamic is not applied to the current state when the pipeline object is bound,
but is instead set by dynamic state setting commands.

No state, including dynamic state, is inherited from one command buffer to another.

Compute, ray tracing, and graphics pipelines are each represented by VkPipeline handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipeline)

706

10.1. Multiple Pipeline Creation
Multiple pipelines can be created in a single call by commands such as
vkCreateExecutionGraphPipelinesAMDX, vkCreateRayTracingPipelinesKHR,
vkCreateRayTracingPipelinesNV, vkCreateComputePipelines, and vkCreateGraphicsPipelines.

The creation commands are passed an array pCreateInfos of Vk*PipelineCreateInfo structures
specifying parameters of each pipeline to be created, and return a corresponding array of handles
in pPipelines. Each element index i of pPipelines is created based on the corresponding element i of
pCreateInfos.

Applications can group together similar pipelines to be created in a single call, and
implementations are encouraged to look for reuse opportunities when creating a group.

When attempting to create many pipelines in a single command, it is possible that creation may fail
for a subset of them. In this case, the corresponding elements of pPipelines will be set to
VK_NULL_HANDLE. If creation fails for a pipeline despite valid arguments (for example, due to out
of memory errors), the VkResult code returned by the pipeline creation command will indicate why.
The implementation will attempt to create all pipelines, and only return VK_NULL_HANDLE values
for those that actually failed.

If creation fails for a pipeline that has the VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT set in its
Vk*PipelineCreateInfo, pipelines at an index in the pPipelines array greater than or equal to that of
the failing pipeline will be set to VK_NULL_HANDLE.

If creation fails for multiple pipelines, the returned VkResult must be the return value of any one of
the pipelines which did not succeed. An application can reliably clean up from a failed call by
iterating over the pPipelines array and destroying every element that is not VK_NULL_HANDLE.

If the entire command fails and no pipelines are created, all elements of pPipelines will be set to
VK_NULL_HANDLE.

10.2. Compute Pipelines
Compute pipelines consist of a single static compute shader stage and the pipeline layout.

The compute pipeline represents a compute shader and is created by calling
vkCreateComputePipelines with module and pName selecting an entry point from a shader module,
where that entry point defines a valid compute shader, in the VkPipelineShaderStageCreateInfo
structure contained within the VkComputePipelineCreateInfo structure.

To create compute pipelines, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateComputePipelines(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkComputePipelineCreateInfo* pCreateInfos,

707

 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

• device is the logical device that creates the compute pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is a pointer to an array of VkComputePipelineCreateInfo structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array of VkPipeline handles in which the resulting compute
pipeline objects are returned.

Pipelines are created and returned as described for Multiple Pipeline Creation.

Valid Usage

• VUID-vkCreateComputePipelines-flags-00695
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that
corresponds to that element

• VUID-vkCreateComputePipelines-flags-00696
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

• VUID-vkCreateComputePipelines-pipelineCache-02873
If pipelineCache was created with VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT,
host access to pipelineCache must be externally synchronized

Valid Usage (Implicit)

• VUID-vkCreateComputePipelines-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateComputePipelines-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkCreateComputePipelines-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of createInfoCount valid
VkComputePipelineCreateInfo structures

• VUID-vkCreateComputePipelines-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid

708

VkAllocationCallbacks structure

• VUID-vkCreateComputePipelines-pPipelines-parameter
pPipelines must be a valid pointer to an array of createInfoCount VkPipeline handles

• VUID-vkCreateComputePipelines-createInfoCount-arraylength
createInfoCount must be greater than 0

• VUID-vkCreateComputePipelines-pipelineCache-parent
If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success

• VK_SUCCESS

• VK_PIPELINE_COMPILE_REQUIRED_EXT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_SHADER_NV

The VkComputePipelineCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkComputePipelineCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 VkPipelineShaderStageCreateInfo stage;
 VkPipelineLayout layout;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkComputePipelineCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stage is a VkPipelineShaderStageCreateInfo structure describing the compute shader.

• layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

• basePipelineHandle is a pipeline to derive from.

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive

709

from.

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

If a VkPipelineCreateFlags2CreateInfoKHR structure is present in the pNext chain,
VkPipelineCreateFlags2CreateInfoKHR::flags from that structure is used instead of flags from this
structure.

Valid Usage

• VUID-VkComputePipelineCreateInfo-None-09497
If the pNext chain does not include a VkPipelineCreateFlags2CreateInfoKHR structure,
flags must be a valid combination of VkPipelineCreateFlagBits values

• VUID-VkComputePipelineCreateInfo-flags-07984
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid compute VkPipeline handle

• VUID-VkComputePipelineCreateInfo-flags-07985
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

• VUID-VkComputePipelineCreateInfo-flags-07986
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, basePipelineIndex must be -1
or basePipelineHandle must be VK_NULL_HANDLE

• VUID-VkComputePipelineCreateInfo-layout-07987
If a push constant block is declared in a shader, a push constant range in layout must
match both the shader stage and range

• VUID-VkComputePipelineCreateInfo-layout-07988
If a resource variables is declared in a shader, a descriptor slot in layout must match the
shader stage

• VUID-VkComputePipelineCreateInfo-layout-07990
If a resource variables is declared in a shader, and the descriptor type is not
VK_DESCRIPTOR_TYPE_MUTABLE_EXT, a descriptor slot in layout must match the descriptor
type

• VUID-VkComputePipelineCreateInfo-layout-07991
If a resource variables is declared in a shader as an array, a descriptor slot in layout must
match the descriptor count

• VUID-VkComputePipelineCreateInfo-flags-03365
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR

• VUID-VkComputePipelineCreateInfo-flags-03366
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR

• VUID-VkComputePipelineCreateInfo-flags-03367
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR

710

• VUID-VkComputePipelineCreateInfo-flags-03368
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR

• VUID-VkComputePipelineCreateInfo-flags-03369
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR

• VUID-VkComputePipelineCreateInfo-flags-03370
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR

• VUID-VkComputePipelineCreateInfo-flags-03576
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR

• VUID-VkComputePipelineCreateInfo-flags-04945
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV

• VUID-VkComputePipelineCreateInfo-flags-09007
If the VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV
::deviceGeneratedComputePipelines is not enabled, flags must not include
VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• VUID-VkComputePipelineCreateInfo-flags-09008
If flags includes VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV, then the pNext chain must
include a pointer to a valid instance of VkComputePipelineIndirectBufferInfoNV
specifying the address where the pipeline’s metadata will be saved

• VUID-VkComputePipelineCreateInfo-pipelineCreationCacheControl-02875
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT or
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

• VUID-VkComputePipelineCreateInfo-stage-00701
The stage member of stage must be VK_SHADER_STAGE_COMPUTE_BIT

• VUID-VkComputePipelineCreateInfo-stage-00702
The shader code for the entry point identified by stage and the rest of the state identified
by this structure must adhere to the pipeline linking rules described in the Shader
Interfaces chapter

• VUID-VkComputePipelineCreateInfo-layout-01687
The number of resources in layout accessible to the compute shader stage must be less
than or equal to VkPhysicalDeviceLimits::maxPerStageResources

• VUID-VkComputePipelineCreateInfo-shaderEnqueue-09177
If shaderEnqueue is not enabled, flags must not include
VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

• VUID-VkComputePipelineCreateInfo-flags-09178
If flags does not include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR, the shader specified by
stage must not declare the ShaderEnqueueAMDX capability

• VUID-VkComputePipelineCreateInfo-pipelineStageCreationFeedbackCount-06566
If VkPipelineCreationFeedbackCreateInfo::pipelineStageCreationFeedbackCount is not 0, it
must be 1

711

• VUID-VkComputePipelineCreateInfo-flags-07367
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT

• VUID-VkComputePipelineCreateInfo-flags-07996
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV

Valid Usage (Implicit)

• VUID-VkComputePipelineCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO

• VUID-VkComputePipelineCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkComputePipelineIndirectBufferInfoNV,
VkPipelineCompilerControlCreateInfoAMD, VkPipelineCreateFlags2CreateInfoKHR,
VkPipelineCreationFeedbackCreateInfo, VkPipelineRobustnessCreateInfoEXT, or
VkSubpassShadingPipelineCreateInfoHUAWEI

• VUID-VkComputePipelineCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkComputePipelineCreateInfo-stage-parameter
stage must be a valid VkPipelineShaderStageCreateInfo structure

• VUID-VkComputePipelineCreateInfo-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-VkComputePipelineCreateInfo-commonparent
Both of basePipelineHandle, and layout that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

The VkPipelineShaderStageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineShaderStageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineShaderStageCreateFlags flags;
 VkShaderStageFlagBits stage;
 VkShaderModule module;
 const char* pName;
 const VkSpecializationInfo* pSpecializationInfo;
} VkPipelineShaderStageCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineShaderStageCreateFlagBits specifying how the pipeline shader
stage will be generated.

712

• stage is a VkShaderStageFlagBits value specifying a single pipeline stage.

• module is optionally a VkShaderModule object containing the shader code for this stage.

• pName is a pointer to a null-terminated UTF-8 string specifying the entry point name of the
shader for this stage.

• pSpecializationInfo is a pointer to a VkSpecializationInfo structure, as described in
Specialization Constants, or NULL.

If module is not VK_NULL_HANDLE, the shader code used by the pipeline is defined by module. If
module is VK_NULL_HANDLE, the shader code is defined by the chained VkShaderModuleCreateInfo
if present.

If the shaderModuleIdentifier feature is enabled, applications can omit shader code for stage and
instead provide a module identifier. This is done by including a
VkPipelineShaderStageModuleIdentifierCreateInfoEXT struct with identifierSize not equal to 0 in
the pNext chain. A shader stage created in this way is equivalent to one created using a shader
module with the same identifier. The identifier allows an implementation to look up a pipeline
without consuming a valid SPIR-V module. If a pipeline is not found, pipeline compilation is not
possible and the implementation must fail as specified by
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT.

When an identifier is used in lieu of a shader module, implementations may fail pipeline
compilation with VK_PIPELINE_COMPILE_REQUIRED for any reason.

Note

The rationale for the relaxed requirement on implementations to return a pipeline
with VkPipelineShaderStageModuleIdentifierCreateInfoEXT is that layers or tools
may intercept pipeline creation calls and require the full SPIR-V context to operate
correctly. ICDs are not expected to fail pipeline compilation if the pipeline exists in
a cache somewhere.

Applications can use identifiers when creating pipelines with VK_PIPELINE_CREATE_LIBRARY_BIT_KHR.
When creating such pipelines, VK_SUCCESS may be returned, but subsequently fail when referencing
the pipeline in a VkPipelineLibraryCreateInfoKHR struct. Applications must allow pipeline
compilation to fail during link steps with
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT as it may not be possible to determine if
a pipeline can be created from identifiers until the link step.

Valid Usage

• VUID-VkPipelineShaderStageCreateInfo-stage-00704
If the geometryShader feature is not enabled, stage must not be
VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-VkPipelineShaderStageCreateInfo-stage-00705
If the tessellationShader feature is not enabled, stage must not be
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

713

• VUID-VkPipelineShaderStageCreateInfo-stage-02091
If the meshShaders feature is not enabled, stage must not be VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-VkPipelineShaderStageCreateInfo-stage-02092
If the taskShaders feature is not enabled, stage must not be VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-VkPipelineShaderStageCreateInfo-clustercullingShader-07813
If the clustercullingShader feature is not enabled, stage must not be
VK_SHADER_STAGE_CLUSTER_CULLING_BIT_HUAWEI

• VUID-VkPipelineShaderStageCreateInfo-stage-00706
stage must not be VK_SHADER_STAGE_ALL_GRAPHICS, or VK_SHADER_STAGE_ALL

• VUID-VkPipelineShaderStageCreateInfo-pName-00707
pName must be the name of an OpEntryPoint in module with an execution model that
matches stage

• VUID-VkPipelineShaderStageCreateInfo-maxClipDistances-00708
If the identified entry point includes any variable in its interface that is declared with the
ClipDistance BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxClipDistances

• VUID-VkPipelineShaderStageCreateInfo-maxCullDistances-00709
If the identified entry point includes any variable in its interface that is declared with the
CullDistance BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxCullDistances

• VUID-VkPipelineShaderStageCreateInfo-maxCombinedClipAndCullDistances-00710
If the identified entry point includes variables in its interface that are declared with the
ClipDistance BuiltIn decoration and variables in its interface that are declared with the
CullDistance BuiltIn decoration, those variables must not have array sizes which sum to
more than VkPhysicalDeviceLimits::maxCombinedClipAndCullDistances

• VUID-VkPipelineShaderStageCreateInfo-maxSampleMaskWords-00711
If the identified entry point includes any variable in its interface that is declared with the
SampleMask BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxSampleMaskWords

• VUID-VkPipelineShaderStageCreateInfo-stage-00713
If stage is VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, and the identified entry point has an
OpExecutionMode instruction specifying a patch size with OutputVertices, the patch size
must be greater than 0 and less than or equal to VkPhysicalDeviceLimits
::maxTessellationPatchSize

• VUID-VkPipelineShaderStageCreateInfo-stage-00714
If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction specifying a maximum output vertex count that is greater
than 0 and less than or equal to VkPhysicalDeviceLimits::maxGeometryOutputVertices

• VUID-VkPipelineShaderStageCreateInfo-stage-00715
If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction specifying an invocation count that is greater than 0 and less
than or equal to VkPhysicalDeviceLimits::maxGeometryShaderInvocations

714

• VUID-VkPipelineShaderStageCreateInfo-stage-02596
If stage is either VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, or VK_SHADER_STAGE_GEOMETRY_BIT, and the
identified entry point writes to Layer for any primitive, it must write the same value to
Layer for all vertices of a given primitive

• VUID-VkPipelineShaderStageCreateInfo-stage-02597
If stage is either VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, or VK_SHADER_STAGE_GEOMETRY_BIT, and the
identified entry point writes to ViewportIndex for any primitive, it must write the same
value to ViewportIndex for all vertices of a given primitive

• VUID-VkPipelineShaderStageCreateInfo-stage-06685
If stage is VK_SHADER_STAGE_FRAGMENT_BIT, and the identified entry point writes to FragDepth
in any execution path, all execution paths that are not exclusive to helper invocations
must either discard the fragment, or write or initialize the value of FragDepth

• VUID-VkPipelineShaderStageCreateInfo-stage-06686
If stage is VK_SHADER_STAGE_FRAGMENT_BIT, and the identified entry point writes to
FragStencilRefEXT in any execution path, all execution paths that are not exclusive to
helper invocations must either discard the fragment, or write or initialize the value of
FragStencilRefEXT

• VUID-VkPipelineShaderStageCreateInfo-flags-02784
If flags has the VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag set,
the subgroupSizeControl feature must be enabled

• VUID-VkPipelineShaderStageCreateInfo-flags-02785
If flags has the VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag set, the
computeFullSubgroups feature must be enabled

• VUID-VkPipelineShaderStageCreateInfo-flags-08988
If flags includes VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT, stage must
be one of VK_SHADER_STAGE_MESH_BIT_EXT, VK_SHADER_STAGE_TASK_BIT_EXT, or
VK_SHADER_STAGE_COMPUTE_BIT

• VUID-VkPipelineShaderStageCreateInfo-pNext-02754
If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the
pNext chain, flags must not have the
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag set

• VUID-VkPipelineShaderStageCreateInfo-pNext-02755
If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the
pNext chain, the subgroupSizeControl feature must be enabled, and stage must be a valid
bit specified in requiredSubgroupSizeStages

• VUID-VkPipelineShaderStageCreateInfo-pNext-02756
If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the
pNext chain and stage is VK_SHADER_STAGE_COMPUTE_BIT, VK_SHADER_STAGE_MESH_BIT_EXT, or
VK_SHADER_STAGE_TASK_BIT_EXT, the local workgroup size of the shader must be less than or
equal to the product of VkPipelineShaderStageRequiredSubgroupSizeCreateInfo
::requiredSubgroupSize and maxComputeWorkgroupSubgroups

• VUID-VkPipelineShaderStageCreateInfo-pNext-02757

715

If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the
pNext chain, and flags has the
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag set, the local workgroup
size in the X dimension of the pipeline must be a multiple of
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo::requiredSubgroupSize

• VUID-VkPipelineShaderStageCreateInfo-flags-02758
If flags has both the VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT and
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flags set, the local
workgroup size in the X dimension of the pipeline must be a multiple of maxSubgroupSize

• VUID-VkPipelineShaderStageCreateInfo-flags-02759
If flags has the VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag set and
flags does not have the VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT
flag set and no VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is
included in the pNext chain, the local workgroup size in the X dimension of the pipeline
must be a multiple of subgroupSize

• VUID-VkPipelineShaderStageCreateInfo-module-08987
If module uses the OpTypeCooperativeMatrixKHR instruction with a Scope equal to Subgroup,
then the local workgroup size in the X dimension of the pipeline must be a multiple of
subgroupSize.

• VUID-VkPipelineShaderStageCreateInfo-stage-08771
If a shader module identifier is not specified for this stage, module must be a valid
VkShaderModule if none of the following features are enabled:

◦ graphicsPipelineLibrary

◦ maintenance5

• VUID-VkPipelineShaderStageCreateInfo-stage-06845
If a shader module identifier is not specified for this stage, module must be a valid
VkShaderModule, or there must be a valid VkShaderModuleCreateInfo structure in the
pNext chain

• VUID-VkPipelineShaderStageCreateInfo-stage-06844
If a shader module identifier is specified for this stage, a VkShaderModuleCreateInfo
structure must not be present in the pNext chain

• VUID-VkPipelineShaderStageCreateInfo-stage-06848
If a shader module identifier is specified for this stage, module must be VK_NULL_HANDLE

• VUID-VkPipelineShaderStageCreateInfo-pSpecializationInfo-06849
If a shader module identifier is not specified, the shader code used by the pipeline must
be valid as described by the Khronos SPIR-V Specification after applying the
specializations provided in pSpecializationInfo, if any, and then converting all
specialization constants into fixed constants

Valid Usage (Implicit)

• VUID-VkPipelineShaderStageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO

716

• VUID-VkPipelineShaderStageCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDebugUtilsObjectNameInfoEXT,
VkPipelineRobustnessCreateInfoEXT,
VkPipelineShaderStageModuleIdentifierCreateInfoEXT,
VkPipelineShaderStageNodeCreateInfoAMDX,
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo, VkShaderModuleCreateInfo, or
VkShaderModuleValidationCacheCreateInfoEXT

• VUID-VkPipelineShaderStageCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineShaderStageCreateInfo-flags-parameter
flags must be a valid combination of VkPipelineShaderStageCreateFlagBits values

• VUID-VkPipelineShaderStageCreateInfo-stage-parameter
stage must be a valid VkShaderStageFlagBits value

• VUID-VkPipelineShaderStageCreateInfo-module-parameter
If module is not VK_NULL_HANDLE, module must be a valid VkShaderModule handle

• VUID-VkPipelineShaderStageCreateInfo-pName-parameter
pName must be a null-terminated UTF-8 string

• VUID-VkPipelineShaderStageCreateInfo-pSpecializationInfo-parameter
If pSpecializationInfo is not NULL, pSpecializationInfo must be a valid pointer to a valid
VkSpecializationInfo structure

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineShaderStageCreateFlags;

VkPipelineShaderStageCreateFlags is a bitmask type for setting a mask of zero or more
VkPipelineShaderStageCreateFlagBits.

Possible values of the flags member of VkPipelineShaderStageCreateInfo specifying how a pipeline
shader stage is created, are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineShaderStageCreateFlagBits {
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT = 0x00000001,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT = 0x00000002,
 // Provided by VK_EXT_subgroup_size_control
 VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT =
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT,
 // Provided by VK_EXT_subgroup_size_control
 VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT =
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT,
} VkPipelineShaderStageCreateFlagBits;

717

• VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT specifies that the
SubgroupSize may vary in the shader stage.

• VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT specifies that the subgroup sizes
must be launched with all invocations active in the task, mesh, or compute stage.

Note

If VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT and
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT are specified and
minSubgroupSize does not equal maxSubgroupSize and no required subgroup size is
specified, then the only way to guarantee that the 'X' dimension of the local
workgroup size is a multiple of SubgroupSize is to make it a multiple of
maxSubgroupSize. Under these conditions, you are guaranteed full subgroups but
not any particular subgroup size.

Bits which can be set by commands and structures, specifying one or more shader stages, are:

// Provided by VK_VERSION_1_0
typedef enum VkShaderStageFlagBits {
 VK_SHADER_STAGE_VERTEX_BIT = 0x00000001,
 VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,
 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT = 0x00000004,
 VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,
 VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,
 VK_SHADER_STAGE_COMPUTE_BIT = 0x00000020,
 VK_SHADER_STAGE_ALL_GRAPHICS = 0x0000001F,
 VK_SHADER_STAGE_ALL = 0x7FFFFFFF,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_SHADER_STAGE_RAYGEN_BIT_KHR = 0x00000100,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_SHADER_STAGE_ANY_HIT_BIT_KHR = 0x00000200,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR = 0x00000400,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_SHADER_STAGE_MISS_BIT_KHR = 0x00000800,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_SHADER_STAGE_INTERSECTION_BIT_KHR = 0x00001000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_SHADER_STAGE_CALLABLE_BIT_KHR = 0x00002000,
 // Provided by VK_EXT_mesh_shader
 VK_SHADER_STAGE_TASK_BIT_EXT = 0x00000040,
 // Provided by VK_EXT_mesh_shader
 VK_SHADER_STAGE_MESH_BIT_EXT = 0x00000080,
 // Provided by VK_HUAWEI_subpass_shading
 VK_SHADER_STAGE_SUBPASS_SHADING_BIT_HUAWEI = 0x00004000,
 // Provided by VK_HUAWEI_cluster_culling_shader
 VK_SHADER_STAGE_CLUSTER_CULLING_BIT_HUAWEI = 0x00080000,
 // Provided by VK_NV_ray_tracing
 VK_SHADER_STAGE_RAYGEN_BIT_NV = VK_SHADER_STAGE_RAYGEN_BIT_KHR,
 // Provided by VK_NV_ray_tracing

718

 VK_SHADER_STAGE_ANY_HIT_BIT_NV = VK_SHADER_STAGE_ANY_HIT_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_SHADER_STAGE_MISS_BIT_NV = VK_SHADER_STAGE_MISS_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_SHADER_STAGE_INTERSECTION_BIT_NV = VK_SHADER_STAGE_INTERSECTION_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_SHADER_STAGE_CALLABLE_BIT_NV = VK_SHADER_STAGE_CALLABLE_BIT_KHR,
 // Provided by VK_NV_mesh_shader
 VK_SHADER_STAGE_TASK_BIT_NV = VK_SHADER_STAGE_TASK_BIT_EXT,
 // Provided by VK_NV_mesh_shader
 VK_SHADER_STAGE_MESH_BIT_NV = VK_SHADER_STAGE_MESH_BIT_EXT,
} VkShaderStageFlagBits;

• VK_SHADER_STAGE_VERTEX_BIT specifies the vertex stage.

• VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT specifies the tessellation control stage.

• VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT specifies the tessellation evaluation stage.

• VK_SHADER_STAGE_GEOMETRY_BIT specifies the geometry stage.

• VK_SHADER_STAGE_FRAGMENT_BIT specifies the fragment stage.

• VK_SHADER_STAGE_COMPUTE_BIT specifies the compute stage.

• VK_SHADER_STAGE_ALL_GRAPHICS is a combination of bits used as shorthand to specify all graphics
stages defined above (excluding the compute stage).

• VK_SHADER_STAGE_ALL is a combination of bits used as shorthand to specify all shader stages
supported by the device, including all additional stages which are introduced by extensions.

• VK_SHADER_STAGE_TASK_BIT_EXT specifies the task stage.

• VK_SHADER_STAGE_MESH_BIT_EXT specifies the mesh stage.

• VK_SHADER_STAGE_CLUSTER_CULLING_BIT_HUAWEI specifies the cluster culling stage.

• VK_SHADER_STAGE_RAYGEN_BIT_KHR specifies the ray generation stage.

• VK_SHADER_STAGE_ANY_HIT_BIT_KHR specifies the any-hit stage.

• VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR specifies the closest hit stage.

• VK_SHADER_STAGE_MISS_BIT_KHR specifies the miss stage.

• VK_SHADER_STAGE_INTERSECTION_BIT_KHR specifies the intersection stage.

• VK_SHADER_STAGE_CALLABLE_BIT_KHR specifies the callable stage.

Note

VK_SHADER_STAGE_ALL_GRAPHICS only includes the original five graphics stages
included in Vulkan 1.0, and not any stages added by extensions. Thus, it may not
have the desired effect in all cases.

// Provided by VK_VERSION_1_0

719

typedef VkFlags VkShaderStageFlags;

VkShaderStageFlags is a bitmask type for setting a mask of zero or more VkShaderStageFlagBits.

The VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPipelineShaderStageRequiredSubgroupSizeCreateInfo {
 VkStructureType sType;
 void* pNext;
 uint32_t requiredSubgroupSize;
} VkPipelineShaderStageRequiredSubgroupSizeCreateInfo;

or the equivalent

// Provided by VK_EXT_subgroup_size_control
typedef VkPipelineShaderStageRequiredSubgroupSizeCreateInfo
VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT;

or the equiavlent

// Provided by VK_EXT_shader_object
typedef VkPipelineShaderStageRequiredSubgroupSizeCreateInfo
VkShaderRequiredSubgroupSizeCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• requiredSubgroupSize is an unsigned integer value specifying the required subgroup size for the
newly created pipeline shader stage.

If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the pNext chain of
VkPipelineShaderStageCreateInfo, it specifies that the pipeline shader stage being compiled has a
required subgroup size.

If a VkShaderRequiredSubgroupSizeCreateInfoEXT structure is included in the pNext chain of
VkShaderCreateInfoEXT, it specifies that the shader being compiled has a required subgroup size.

Valid Usage

• VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-
02760
requiredSubgroupSize must be a power-of-two integer

• VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-
02761

720

requiredSubgroupSize must be greater or equal to minSubgroupSize

• VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-
02762
requiredSubgroupSize must be less than or equal to maxSubgroupSize

Valid Usage (Implicit)

• VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO

A subpass shading pipeline is a compute pipeline which must be called only in a subpass of a
render pass with work dimensions specified by render area size. The subpass shading pipeline
shader is a compute shader allowed to access input attachments specified in the calling subpass. To
create a subpass shading pipeline, call vkCreateComputePipelines with
VkSubpassShadingPipelineCreateInfoHUAWEI in the pNext chain of VkComputePipelineCreateInfo.

The VkSubpassShadingPipelineCreateInfoHUAWEI structure is defined as:

// Provided by VK_HUAWEI_subpass_shading
typedef struct VkSubpassShadingPipelineCreateInfoHUAWEI {
 VkStructureType sType;
 void* pNext;
 VkRenderPass renderPass;
 uint32_t subpass;
} VkSubpassShadingPipelineCreateInfoHUAWEI;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• renderPass is a handle to a render pass object describing the environment in which the pipeline
will be used. The pipeline must only be used with a render pass instance compatible with the
one provided. See Render Pass Compatibility for more information.

• subpass is the index of the subpass in the render pass where this pipeline will be used.

Valid Usage

• VUID-VkSubpassShadingPipelineCreateInfoHUAWEI-subpass-04946
subpass must be created with VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI bind point

Valid Usage (Implicit)

• VUID-VkSubpassShadingPipelineCreateInfoHUAWEI-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_SHADING_PIPELINE_CREATE_INFO_HUAWEI

721

• VUID-VkSubpassShadingPipelineCreateInfoHUAWEI-renderPass-parameter
renderPass must be a valid VkRenderPass handle

A subpass shading pipeline’s workgroup size is a 2D vector with number of power-of-two in width
and height. The maximum number of width and height is implementation-dependent, and may
vary for different formats and sample counts of attachments in a render pass.

To query the maximum workgroup size, call:

// Provided by VK_HUAWEI_subpass_shading
VkResult vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI(
 VkDevice device,
 VkRenderPass renderpass,
 VkExtent2D* pMaxWorkgroupSize);

• device is a handle to a local device object that was used to create the given render pass.

• renderPass is a handle to a render pass object describing the environment in which the pipeline
will be used. The pipeline must only be used with a render pass instance compatible with the
one provided. See Render Pass Compatibility for more information.

• pMaxWorkgroupSize is a pointer to a VkExtent2D structure.

Valid Usage (Implicit)

• VUID-vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI-renderpass-parameter
renderpass must be a valid VkRenderPass handle

• VUID-vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI-pMaxWorkgroupSize-
parameter
pMaxWorkgroupSize must be a valid pointer to VkExtent2D structures

• VUID-vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI-renderpass-parent
renderpass must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

722

The VkPipelineRobustnessCreateInfoEXT structure is defined as:

// Provided by VK_EXT_pipeline_robustness
typedef struct VkPipelineRobustnessCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkPipelineRobustnessBufferBehaviorEXT storageBuffers;
 VkPipelineRobustnessBufferBehaviorEXT uniformBuffers;
 VkPipelineRobustnessBufferBehaviorEXT vertexInputs;
 VkPipelineRobustnessImageBehaviorEXT images;
} VkPipelineRobustnessCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageBuffers sets the behaviour of out of bounds accesses made to resources bound as:

◦ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER

◦ VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER

◦ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

• uniformBuffers describes the behaviour of out of bounds accesses made to resources bound as:

◦ VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER

◦ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER

◦ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC

◦ VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

• vertexInputs describes the behaviour of out of bounds accesses made to vertex input attributes

• images describes the behaviour of out of bounds accesses made to resources bound as:

◦ VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE

◦ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE

Resources bound as VK_DESCRIPTOR_TYPE_MUTABLE_EXT will have the robustness behavior that covers
its active descriptor type.

The scope of the effect of VkPipelineRobustnessCreateInfoEXT depends on which structure’s pNext
chain it is included in.

• VkGraphicsPipelineCreateInfo, VkRayTracingPipelineCreateInfoKHR, VkComputePipelineCreateInfo:
The robustness behavior described by VkPipelineRobustnessCreateInfoEXT applies to all accesses
through this pipeline

• VkPipelineShaderStageCreateInfo:
The robustness behavior described by VkPipelineRobustnessCreateInfoEXT applies to all accesses
emanating from the shader code of this shader stage

If VkPipelineRobustnessCreateInfoEXT is specified for both a pipeline and a pipeline stage, the

723

VkPipelineRobustnessCreateInfoEXT specified for the pipeline stage will take precedence.

When VkPipelineRobustnessCreateInfoEXT is specified for a pipeline, it only affects the subset of the
pipeline that is specified by the create info, as opposed to subsets linked from pipeline libraries. For
VkGraphicsPipelineCreateInfo, that subset is specified by
VkGraphicsPipelineLibraryCreateInfoEXT::flags. For VkRayTracingPipelineCreateInfoKHR, that
subset is specified by the specific stages in VkRayTracingPipelineCreateInfoKHR::pStages.

Valid Usage

• VUID-VkPipelineRobustnessCreateInfoEXT-pipelineRobustness-06926
If the pipelineRobustness feature is not enabled, storageBuffers must be
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DEVICE_DEFAULT_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-pipelineRobustness-06927
If the pipelineRobustness feature is not enabled, uniformBuffers must be
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DEVICE_DEFAULT_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-pipelineRobustness-06928
If the pipelineRobustness feature is not enabled, vertexInputs must be
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DEVICE_DEFAULT_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-pipelineRobustness-06929
If the pipelineRobustness feature is not enabled, images must be
VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_DEVICE_DEFAULT_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-robustImageAccess-06930
If the robustImageAccess feature is not supported, images must not be
VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_ROBUST_IMAGE_ACCESS_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-robustBufferAccess2-06931
If the robustBufferAccess2 feature is not supported, storageBuffers must not be
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-robustBufferAccess2-06932
If the robustBufferAccess2 feature is not supported, uniformBuffers must not be
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-robustBufferAccess2-06933
If the robustBufferAccess2 feature is not supported, vertexInputs must not be
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-robustImageAccess2-06934
If the robustImageAccess2 feature is not supported, images must not be
VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_ROBUST_IMAGE_ACCESS_2_EXT

Valid Usage (Implicit)

• VUID-VkPipelineRobustnessCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_ROBUSTNESS_CREATE_INFO_EXT

• VUID-VkPipelineRobustnessCreateInfoEXT-storageBuffers-parameter

724

storageBuffers must be a valid VkPipelineRobustnessBufferBehaviorEXT value

• VUID-VkPipelineRobustnessCreateInfoEXT-uniformBuffers-parameter
uniformBuffers must be a valid VkPipelineRobustnessBufferBehaviorEXT value

• VUID-VkPipelineRobustnessCreateInfoEXT-vertexInputs-parameter
vertexInputs must be a valid VkPipelineRobustnessBufferBehaviorEXT value

• VUID-VkPipelineRobustnessCreateInfoEXT-images-parameter
images must be a valid VkPipelineRobustnessImageBehaviorEXT value

Possible values of the storageBuffers, uniformBuffers, and vertexInputs members of
VkPipelineRobustnessCreateInfoEXT are:

// Provided by VK_EXT_pipeline_robustness
typedef enum VkPipelineRobustnessBufferBehaviorEXT {
 VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DEVICE_DEFAULT_EXT = 0,
 VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT = 1,
 VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT = 2,
 VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT = 3,
} VkPipelineRobustnessBufferBehaviorEXT;

• VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DEVICE_DEFAULT_EXT specifies that this pipeline stage
follows the behavior of robustness features that are enabled on the device that created this
pipeline

• VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT specifies that buffer accesses by this
pipeline stage to the relevant resource types must not be out of bounds

• VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT specifies that out of bounds
accesses by this pipeline stage to the relevant resource types behave as if the robustBufferAccess
feature is enabled

• VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT specifies that out of
bounds accesses by this pipeline stage to the relevant resource types behave as if the
robustBufferAccess2 feature is enabled

Possible values of the images member of VkPipelineRobustnessCreateInfoEXT are:

// Provided by VK_EXT_pipeline_robustness
typedef enum VkPipelineRobustnessImageBehaviorEXT {
 VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_DEVICE_DEFAULT_EXT = 0,
 VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_DISABLED_EXT = 1,
 VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_ROBUST_IMAGE_ACCESS_EXT = 2,
 VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_ROBUST_IMAGE_ACCESS_2_EXT = 3,
} VkPipelineRobustnessImageBehaviorEXT;

• VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_DEVICE_DEFAULT_EXT specifies that this pipeline stage
follows the behavior of robustness features that are enabled on the device that created this
pipeline

725

• VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_DISABLED_EXT specifies that image accesses by this
pipeline stage to the relevant resource types must not be out of bounds

• VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_ROBUST_IMAGE_ACCESS_EXT specifies that out of bounds
accesses by this pipeline stage to images behave as if the robustImageAccess feature is enabled

• VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_ROBUST_IMAGE_ACCESS_2_EXT specifies that out of bounds
accesses by this pipeline stage to images behave as if the robustImageAccess2 feature is enabled

An identifier can be provided instead of shader code in an attempt to compile pipelines without
providing complete SPIR-V to the implementation.

The VkPipelineShaderStageModuleIdentifierCreateInfoEXT structure is defined as:

// Provided by VK_EXT_shader_module_identifier
typedef struct VkPipelineShaderStageModuleIdentifierCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t identifierSize;
 const uint8_t* pIdentifier;
} VkPipelineShaderStageModuleIdentifierCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• identifierSize is the size, in bytes, of the buffer pointed to by pIdentifier.

• pIdentifier is a pointer to a buffer of opaque data specifying an identifier.

Any identifier can be used. If the pipeline being created with identifier requires compilation to
complete the pipeline creation call, pipeline compilation must fail as defined by
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT.

pIdentifier and identifierSize can be obtained from an VkShaderModuleIdentifierEXT queried
earlier.

Valid Usage

• VUID-VkPipelineShaderStageModuleIdentifierCreateInfoEXT-pNext-06850
If this structure is included in a pNext chain and identifierSize is not equal to 0, the
shaderModuleIdentifier feature must be enabled

• VUID-VkPipelineShaderStageModuleIdentifierCreateInfoEXT-pNext-06851
If this struct is included in a pNext chain of VkPipelineShaderStageCreateInfo and
identifierSize is not equal to 0, the pipeline must be created with the
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT flag set

• VUID-VkPipelineShaderStageModuleIdentifierCreateInfoEXT-identifierSize-06852
identifierSize must be less-or-equal to VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT

726

Valid Usage (Implicit)

• VUID-VkPipelineShaderStageModuleIdentifierCreateInfoEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT

• VUID-VkPipelineShaderStageModuleIdentifierCreateInfoEXT-pIdentifier-parameter
If identifierSize is not 0, pIdentifier must be a valid pointer to an array of
identifierSize uint8_t values

If a compute pipeline is going to be used in Device-Generated Commands by specifying its pipeline
token with VkBindPipelineIndirectCommandNV, then that pipeline’s associated metadata must be
saved at a specified buffer device address for later use in indirect command generation. The buffer
device address must be specified at the time of compute pipeline creation with
VkComputePipelineIndirectBufferInfoNV structure in the pNext chain of
VkComputePipelineCreateInfo.

The VkComputePipelineIndirectBufferInfoNV structure is defined as:

// Provided by VK_NV_device_generated_commands_compute
typedef struct VkComputePipelineIndirectBufferInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkDeviceAddress deviceAddress;
 VkDeviceSize size;
 VkDeviceAddress pipelineDeviceAddressCaptureReplay;
} VkComputePipelineIndirectBufferInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceAddress is the address where the pipeline’s metadata will be stored.

• size is the size of pipeline’s metadata that was queried using
vkGetPipelineIndirectMemoryRequirementsNV.

• pipelineDeviceAddressCaptureReplay is the device address where pipeline’s metadata was
originally saved and can now be used to re-populate deviceAddress for replay.

If pipelineDeviceAddressCaptureReplay is zero, no specific address is requested. If
pipelineDeviceAddressCaptureReplay is not zero, then it must be an address retrieved from an
identically created pipeline on the same implementation. The pipeline metadata must also be
placed on an identically created buffer and at the same offset using the
vkCmdUpdatePipelineIndirectBufferNV command.

Valid Usage

• VUID-VkComputePipelineIndirectBufferInfoNV-deviceGeneratedComputePipelines-09009

727

The VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV
::deviceGeneratedComputePipelines feature must be enabled

• VUID-VkComputePipelineIndirectBufferInfoNV-flags-09010
The pipeline creation flags in VkComputePipelineCreateInfo::flags must include
VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• VUID-VkComputePipelineIndirectBufferInfoNV-deviceAddress-09011
deviceAddress must be aligned to the VkMemoryRequirements2::alignment, as returned by
vkGetPipelineIndirectMemoryRequirementsNV

• VUID-VkComputePipelineIndirectBufferInfoNV-deviceAddress-09012
deviceAddress must have been allocated from a buffer that was created with usage
VK_BUFFER_USAGE_TRANSFER_DST_BIT and VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT

• VUID-VkComputePipelineIndirectBufferInfoNV-size-09013
size must be greater than or equal to the VkMemoryRequirements2::size, as returned by
vkGetPipelineIndirectMemoryRequirementsNV

• VUID-VkComputePipelineIndirectBufferInfoNV-pipelineDeviceAddressCaptureReplay-
09014
If pipelineDeviceAddressCaptureReplay is non-zero then the
VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV::deviceGeneratedComputeCaptur
eReplay feature must be enabled

• VUID-VkComputePipelineIndirectBufferInfoNV-pipelineDeviceAddressCaptureReplay-
09015
If pipelineDeviceAddressCaptureReplay is non-zero then that address must have been
allocated with flag VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT set

• VUID-VkComputePipelineIndirectBufferInfoNV-pipelineDeviceAddressCaptureReplay-
09016
If pipelineDeviceAddressCaptureReplay is non-zero, the pipeline must have been recreated
for replay

• VUID-VkComputePipelineIndirectBufferInfoNV-pipelineDeviceAddressCaptureReplay-
09017
pipelineDeviceAddressCaptureReplay must satisfy the alignment and size requirements
similar to deviceAddress

Valid Usage (Implicit)

• VUID-VkComputePipelineIndirectBufferInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_INDIRECT_BUFFER_INFO_NV

To save a compute pipeline’s metadata at a device address call:

// Provided by VK_NV_device_generated_commands_compute
void vkCmdUpdatePipelineIndirectBufferNV(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,

728

 VkPipeline pipeline);

• commandBuffer is the command buffer into which the command will be recorded.

• pipelineBindPoint is a VkPipelineBindPoint value specifying the type of pipeline whose
metadata will be saved.

• pipeline is the pipeline whose metadata will be saved.

vkCmdUpdatePipelineIndirectBufferNV is only allowed outside of a render pass. This command is
treated as a “transfer” operation for the purposes of synchronization barriers. The writes to the
address must be synchronized using stages VK_PIPELINE_STAGE_2_COPY_BIT and
VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV and with access masks VK_ACCESS_MEMORY_WRITE_BIT
and VK_ACCESS_COMMAND_PREPROCESS_READ_BIT_NV respectively before using the results in
preprocessing.

Valid Usage

• VUID-vkCmdUpdatePipelineIndirectBufferNV-pipelineBindPoint-09018
pipelineBindPoint must be VK_PIPELINE_BIND_POINT_COMPUTE

• VUID-vkCmdUpdatePipelineIndirectBufferNV-pipeline-09019
pipeline must have been created with VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV flag
set

• VUID-vkCmdUpdatePipelineIndirectBufferNV-pipeline-09020
pipeline must have been created with VkComputePipelineIndirectBufferInfoNV structure
specifying a valid address where its metadata will be saved

• VUID-vkCmdUpdatePipelineIndirectBufferNV-deviceGeneratedComputePipelines-09021
The VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV
::deviceGeneratedComputePipelines feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdUpdatePipelineIndirectBufferNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdUpdatePipelineIndirectBufferNV-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdUpdatePipelineIndirectBufferNV-pipeline-parameter
pipeline must be a valid VkPipeline handle

• VUID-vkCmdUpdatePipelineIndirectBufferNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdUpdatePipelineIndirectBufferNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdUpdatePipelineIndirectBufferNV-renderpass

729

This command must only be called outside of a render pass instance

• VUID-vkCmdUpdatePipelineIndirectBufferNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdUpdatePipelineIndirectBufferNV-commonparent
Both of commandBuffer, and pipeline must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

10.3. Graphics Pipelines
Graphics pipelines consist of multiple shader stages, multiple fixed-function pipeline stages, and a
pipeline layout.

To create graphics pipelines, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateGraphicsPipelines(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkGraphicsPipelineCreateInfo* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

• device is the logical device that creates the graphics pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

730

• pCreateInfos is a pointer to an array of VkGraphicsPipelineCreateInfo structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array of VkPipeline handles in which the resulting graphics
pipeline objects are returned.

The VkGraphicsPipelineCreateInfo structure includes an array of VkPipelineShaderStageCreateInfo
structures for each of the desired active shader stages, as well as creation information for all
relevant fixed-function stages, and a pipeline layout.

Pipelines are created and returned as described for Multiple Pipeline Creation.

Valid Usage

• VUID-vkCreateGraphicsPipelines-flags-00720
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that
corresponds to that element

• VUID-vkCreateGraphicsPipelines-flags-00721
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

• VUID-vkCreateGraphicsPipelines-pipelineCache-02876
If pipelineCache was created with VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT,
host access to pipelineCache must be externally synchronized

Note

An implicit cache may be provided by the implementation or a layer. For this
reason, it is still valid to set
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT on flags for any
element of pCreateInfos while passing VK_NULL_HANDLE for pipelineCache.

Valid Usage (Implicit)

• VUID-vkCreateGraphicsPipelines-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateGraphicsPipelines-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkCreateGraphicsPipelines-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of createInfoCount valid
VkGraphicsPipelineCreateInfo structures

• VUID-vkCreateGraphicsPipelines-pAllocator-parameter

731

If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateGraphicsPipelines-pPipelines-parameter
pPipelines must be a valid pointer to an array of createInfoCount VkPipeline handles

• VUID-vkCreateGraphicsPipelines-createInfoCount-arraylength
createInfoCount must be greater than 0

• VUID-vkCreateGraphicsPipelines-pipelineCache-parent
If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success

• VK_SUCCESS

• VK_PIPELINE_COMPILE_REQUIRED_EXT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_SHADER_NV

The VkGraphicsPipelineCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkGraphicsPipelineCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
 const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
 const VkPipelineTessellationStateCreateInfo* pTessellationState;
 const VkPipelineViewportStateCreateInfo* pViewportState;
 const VkPipelineRasterizationStateCreateInfo* pRasterizationState;
 const VkPipelineMultisampleStateCreateInfo* pMultisampleState;
 const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;
 const VkPipelineColorBlendStateCreateInfo* pColorBlendState;
 const VkPipelineDynamicStateCreateInfo* pDynamicState;
 VkPipelineLayout layout;
 VkRenderPass renderPass;
 uint32_t subpass;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;

732

} VkGraphicsPipelineCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stageCount is the number of entries in the pStages array.

• pStages is a pointer to an array of stageCount VkPipelineShaderStageCreateInfo structures
describing the set of the shader stages to be included in the graphics pipeline.

• pVertexInputState is a pointer to a VkPipelineVertexInputStateCreateInfo structure. It is ignored
if the pipeline includes a mesh shader stage. It can be NULL if the pipeline is created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state set.

• pInputAssemblyState is a pointer to a VkPipelineInputAssemblyStateCreateInfo structure which
determines input assembly behavior for vertex shading, as described in Drawing Commands. If
the VK_EXT_extended_dynamic_state3 extension is enabled, it can be NULL if the pipeline is created
with both VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE, and VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic states set and dynamicPrimitiveTopologyUnrestricted is VK_TRUE. It is ignored if the
pipeline includes a mesh shader stage.

• pTessellationState is a pointer to a VkPipelineTessellationStateCreateInfo structure defining
tessellation state used by tessellation shaders. It can be NULL if the pipeline is created with the
VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state set.

• pViewportState is a pointer to a VkPipelineViewportStateCreateInfo structure defining viewport
state used when rasterization is enabled. If the VK_EXT_extended_dynamic_state3 extension is
enabled, it can be NULL if the pipeline is created with both
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT, and VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic states
set.

• pRasterizationState is a pointer to a VkPipelineRasterizationStateCreateInfo structure defining
rasterization state. If the VK_EXT_extended_dynamic_state3 extension is enabled, it can be NULL if
the pipeline is created with all of VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT,
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE, VK_DYNAMIC_STATE_POLYGON_MODE_EXT,
VK_DYNAMIC_STATE_CULL_MODE, VK_DYNAMIC_STATE_FRONT_FACE, VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE,
VK_DYNAMIC_STATE_DEPTH_BIAS, and VK_DYNAMIC_STATE_LINE_WIDTH dynamic states set.

• pMultisampleState is a pointer to a VkPipelineMultisampleStateCreateInfo structure defining
multisample state used when rasterization is enabled. If the VK_EXT_extended_dynamic_state3
extension is enabled, it can be NULL if the pipeline is created with all of
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT, VK_DYNAMIC_STATE_SAMPLE_MASK_EXT, and
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic states set, and either alphaToOne is
disabled on the device or VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT is set, in which case
VkPipelineMultisampleStateCreateInfo::sampleShadingEnable is assumed to be VK_FALSE.

• pDepthStencilState is a pointer to a VkPipelineDepthStencilStateCreateInfo structure defining
depth/stencil state used when rasterization is enabled for depth or stencil attachments accessed
during rendering. If the VK_EXT_extended_dynamic_state3 extension is enabled, it can be NULL if
the pipeline is created with all of VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE,
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE, VK_DYNAMIC_STATE_DEPTH_COMPARE_OP,

733

VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE, VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE,
VK_DYNAMIC_STATE_STENCIL_OP, and VK_DYNAMIC_STATE_DEPTH_BOUNDS dynamic states set.

• pColorBlendState is a pointer to a VkPipelineColorBlendStateCreateInfo structure defining color
blend state used when rasterization is enabled for any color attachments accessed during
rendering. If the VK_EXT_extended_dynamic_state3 extension is enabled, it can be NULL if the
pipeline is created with all of VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT,
VK_DYNAMIC_STATE_LOGIC_OP_EXT, VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT,
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT, VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic states set.

• pDynamicState is a pointer to a VkPipelineDynamicStateCreateInfo structure defining which
properties of the pipeline state object are dynamic and can be changed independently of the
pipeline state. This can be NULL, which means no state in the pipeline is considered dynamic.

• layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

• renderPass is a handle to a render pass object describing the environment in which the pipeline
will be used. The pipeline must only be used with a render pass instance compatible with the
one provided. See Render Pass Compatibility for more information.

• subpass is the index of the subpass in the render pass where this pipeline will be used.

• basePipelineHandle is a pipeline to derive from.

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive
from.

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

If any shader stage fails to compile, the compile log will be reported back to the application, and
VK_ERROR_INVALID_SHADER_NV will be generated.

Note

With VK_EXT_extended_dynamic_state3, it is possible that many of the
VkGraphicsPipelineCreateInfo members above can be NULL because all their state is
dynamic and therefore ignored. This is optional so the application can still use a
valid pointer if it needs to set the pNext or flags fields to specify state for other
extensions.

The state required for a graphics pipeline is divided into vertex input state, pre-rasterization shader
state, fragment shader state, and fragment output state.

Vertex Input State

Vertex input state is defined by:

• VkPipelineVertexInputStateCreateInfo

• VkPipelineInputAssemblyStateCreateInfo

If this pipeline specifies pre-rasterization state either directly or by including it as a pipeline library

734

and its pStages includes a vertex shader, this state must be specified to create a complete graphics
pipeline.

If a pipeline includes VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT in
VkGraphicsPipelineLibraryCreateInfoEXT::flags either explicitly or as a default, and either the
conditions requiring this state for a complete graphics pipeline are met or this pipeline does not
specify pre-rasterization state in any way, that pipeline must specify this state directly.

Pre-Rasterization Shader State

Pre-rasterization shader state is defined by:

• VkPipelineShaderStageCreateInfo entries for:

◦ Vertex shaders

◦ Tessellation control shaders

◦ Tessellation evaluation shaders

◦ Geometry shaders

◦ Task shaders

◦ Mesh shaders

• Within the VkPipelineLayout, all descriptor sets with pre-rasterization shader bindings if
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT was specified.

◦ If VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT was not specified, the full pipeline
layout must be specified.

• VkPipelineViewportStateCreateInfo

• VkPipelineRasterizationStateCreateInfo

• VkPipelineTessellationStateCreateInfo

• VkRenderPass and subpass parameter

• The viewMask parameter of VkPipelineRenderingCreateInfo (formats are ignored)

• VkPipelineDiscardRectangleStateCreateInfoEXT

• VkPipelineFragmentShadingRateStateCreateInfoKHR

This state must be specified to create a complete graphics pipeline.

If either the pNext chain includes a VkGraphicsPipelineLibraryCreateInfoEXT structure with
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT included in flags, or it is not
specified and would default to include that value, this state must be specified in the pipeline.

Fragment Shader State

Fragment shader state is defined by:

• A VkPipelineShaderStageCreateInfo entry for the fragment shader

• Within the VkPipelineLayout, all descriptor sets with fragment shader bindings if
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT was specified.

735

◦ If VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT was not specified, the full pipeline
layout must be specified.

• VkPipelineMultisampleStateCreateInfo if sample shading is enabled or renderpass is not
VK_NULL_HANDLE

• VkPipelineDepthStencilStateCreateInfo

• VkRenderPass and subpass parameter

• The viewMask parameter of VkPipelineRenderingCreateInfo (formats are ignored)

• VkPipelineFragmentShadingRateStateCreateInfoKHR

• VkPipelineFragmentShadingRateEnumStateCreateInfoNV

• VkPipelineRepresentativeFragmentTestStateCreateInfoNV

• Inclusion/omission of the
VK_PIPELINE_RASTERIZATION_STATE_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR flag

• Inclusion/omission of the
VK_PIPELINE_RASTERIZATION_STATE_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT flag

• VkRenderingInputAttachmentIndexInfoKHR

If a pipeline specifies pre-rasterization state either directly or by including it as a pipeline library
and rasterizerDiscardEnable is set to VK_FALSE or VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE is
used, this state must be specified to create a complete graphics pipeline.

If a pipeline includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT in
VkGraphicsPipelineLibraryCreateInfoEXT::flags either explicitly or as a default, and either the
conditions requiring this state for a complete graphics pipeline are met or this pipeline does not
specify pre-rasterization state in any way, that pipeline must specify this state directly.

Fragment Output State

Fragment output state is defined by:

• VkPipelineColorBlendStateCreateInfo

• VkRenderPass and subpass parameter

• VkPipelineMultisampleStateCreateInfo

• VkPipelineRenderingCreateInfo

• VkAttachmentSampleCountInfoAMD

• VkAttachmentSampleCountInfoNV

• VkExternalFormatANDROID

• Inclusion/omission of the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT and
VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT flags

• VkRenderingAttachmentLocationInfoKHR

If a pipeline specifies pre-rasterization state either directly or by including it as a pipeline library
and rasterizerDiscardEnable is set to VK_FALSE or VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE is
used, this state must be specified to create a complete graphics pipeline.

736

If a pipeline includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT in
VkGraphicsPipelineLibraryCreateInfoEXT::flags either explicitly or as a default, and either the
conditions requiring this state for a complete graphics pipeline are met or this pipeline does not
specify pre-rasterization state in any way, that pipeline must specify this state directly.

Dynamic State

Dynamic state values set via pDynamicState must be ignored if the state they correspond to is not
otherwise statically set by one of the state subsets used to create the pipeline. Additionally, setting
dynamic state values must not modify whether state in a linked library is static or dynamic; this is
set and unchangeable when the library is created. For example, if a pipeline only included pre-
rasterization shader state, then any dynamic state value corresponding to depth or stencil testing
has no effect. Any linked library that has dynamic state enabled that same dynamic state must also
be enabled in all the other linked libraries to which that dynamic state applies.

Complete Graphics Pipelines

A complete graphics pipeline always includes pre-rasterization shader state, with other subsets
included depending on that state as specified in the above sections.

Graphics Pipeline Library Layouts

If different subsets are linked together with pipeline layouts created with
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, the final effective pipeline layout is effectively
the union of the linked pipeline layouts. When binding descriptor sets for this pipeline, the pipeline
layout used must be compatible with this union. This pipeline layout can be overridden when
linking with VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT by providing a VkPipelineLayout
that is compatible with this union other than VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT,
or when linking without VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT by providing a
VkPipelineLayout that is fully compatible with this union.

If a VkPipelineCreateFlags2CreateInfoKHR structure is present in the pNext chain,
VkPipelineCreateFlags2CreateInfoKHR::flags from that structure is used instead of flags from this
structure.

Valid Usage

• VUID-VkGraphicsPipelineCreateInfo-None-09497
If the pNext chain does not include a VkPipelineCreateFlags2CreateInfoKHR structure,
flags must be a valid combination of VkPipelineCreateFlagBits values

• VUID-VkGraphicsPipelineCreateInfo-flags-07984
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid graphics VkPipeline handle

• VUID-VkGraphicsPipelineCreateInfo-flags-07985
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

• VUID-VkGraphicsPipelineCreateInfo-flags-07986
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, basePipelineIndex must be -1

737

or basePipelineHandle must be VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-layout-07987
If a push constant block is declared in a shader, a push constant range in layout must
match both the shader stage and range

• VUID-VkGraphicsPipelineCreateInfo-layout-07988
If a resource variables is declared in a shader, a descriptor slot in layout must match the
shader stage

• VUID-VkGraphicsPipelineCreateInfo-layout-07990
If a resource variables is declared in a shader, and the descriptor type is not
VK_DESCRIPTOR_TYPE_MUTABLE_EXT, a descriptor slot in layout must match the descriptor
type

• VUID-VkGraphicsPipelineCreateInfo-layout-07991
If a resource variables is declared in a shader as an array, a descriptor slot in layout must
match the descriptor count

• VUID-VkGraphicsPipelineCreateInfo-stage-02096
If the pipeline requires pre-rasterization shader state the stage member of one element of
pStages must be VK_SHADER_STAGE_VERTEX_BIT or VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-pStages-02095
If the pipeline requires pre-rasterization shader state the geometric shader stages
provided in pStages must be either from the mesh shading pipeline (stage is
VK_SHADER_STAGE_TASK_BIT_EXT or VK_SHADER_STAGE_MESH_BIT_EXT) or from the primitive
shading pipeline (stage is VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
or VK_SHADER_STAGE_GEOMETRY_BIT)

• VUID-VkGraphicsPipelineCreateInfo-TaskNV-07063
The shader stages for VK_SHADER_STAGE_TASK_BIT_EXT or VK_SHADER_STAGE_MESH_BIT_EXT must
use either the TaskNV and MeshNV Execution Model or the TaskEXT and MeshEXT Execution
Model, but must not use both

• VUID-VkGraphicsPipelineCreateInfo-pStages-00729
If the pipeline requires pre-rasterization shader state and pStages includes a tessellation
control shader stage, it must include a tessellation evaluation shader stage

• VUID-VkGraphicsPipelineCreateInfo-pStages-00730
If the pipeline requires pre-rasterization shader state and pStages includes a tessellation
evaluation shader stage, it must include a tessellation control shader stage

• VUID-VkGraphicsPipelineCreateInfo-pStages-09022
If the pipeline requires pre-rasterization shader state and pStages includes a tessellation
control shader stage, and the VK_EXT_extended_dynamic_state3 extension is not enabled or
the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state is not set,
pTessellationState must be a valid pointer to a valid
VkPipelineTessellationStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pTessellationState-09023
If pTessellationState is not NULL it must be a pointer to a valid
VkPipelineTessellationStateCreateInfo structure

738

• VUID-VkGraphicsPipelineCreateInfo-pStages-00732
If the pipeline requires pre-rasterization shader state and pStages includes tessellation
shader stages, the shader code of at least one stage must contain an OpExecutionMode
instruction specifying the type of subdivision in the pipeline

• VUID-VkGraphicsPipelineCreateInfo-pStages-00733
If the pipeline requires pre-rasterization shader state and pStages includes tessellation
shader stages, and the shader code of both stages contain an OpExecutionMode instruction
specifying the type of subdivision in the pipeline, they must both specify the same
subdivision mode

• VUID-VkGraphicsPipelineCreateInfo-pStages-00734
If the pipeline requires pre-rasterization shader state and pStages includes tessellation
shader stages, the shader code of at least one stage must contain an OpExecutionMode
instruction specifying the output patch size in the pipeline

• VUID-VkGraphicsPipelineCreateInfo-pStages-00735
If the pipeline requires pre-rasterization shader state and pStages includes tessellation
shader stages, and the shader code of both contain an OpExecutionMode instruction
specifying the out patch size in the pipeline, they must both specify the same patch size

• VUID-VkGraphicsPipelineCreateInfo-pStages-08888
If the pipeline is being created with pre-rasterization shader state and vertex input state
and pStages includes tessellation shader stages, and either
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state is not enabled or
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, the topology member of pInputAssembly
must be VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

• VUID-VkGraphicsPipelineCreateInfo-topology-08889
If the pipeline is being created with pre-rasterization shader state and vertex input state
and the topology member of pInputAssembly is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, and
either VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state is not enabled or
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then pStages must include tessellation
shader stages

• VUID-VkGraphicsPipelineCreateInfo-TessellationEvaluation-07723
If the pipeline is being created with a TessellationEvaluation Execution Model, no Geometry
Execution Model, uses the PointMode Execution Mode, and
shaderTessellationAndGeometryPointSize is enabled, a PointSize decorated variable must
be written to if maintenance5 is not enabled

• VUID-VkGraphicsPipelineCreateInfo-topology-08773
If the pipeline is being created with a Vertex Execution Model and no
TessellationEvaluation or Geometry Execution Model, and the topology member of
pInputAssembly is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, and either
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state is not enabled or
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, a PointSize decorated variable must be
written to if maintenance5 is not enabled

• VUID-VkGraphicsPipelineCreateInfo-maintenance5-08775
If maintenance5 is enabled and a PointSize decorated variable is written to, all execution
paths must write to a PointSize decorated variable

739

• VUID-VkGraphicsPipelineCreateInfo-TessellationEvaluation-07724
If the pipeline is being created with a TessellationEvaluation Execution Model, no Geometry
Execution Model, uses the PointMode Execution Mode, and
shaderTessellationAndGeometryPointSize is not enabled, a PointSize decorated variable
must not be written to

• VUID-VkGraphicsPipelineCreateInfo-shaderTessellationAndGeometryPointSize-08776
If the pipeline is being created with a Geometry Execution Model, uses the OutputPoints
Execution Mode, and shaderTessellationAndGeometryPointSize is enabled, a PointSize
decorated variable must be written to for every vertex emitted if maintenance5 is not
enabled

• VUID-VkGraphicsPipelineCreateInfo-Geometry-07726
If the pipeline is being created with a Geometry Execution Model, uses the OutputPoints
Execution Mode, and shaderTessellationAndGeometryPointSize is not enabled, a PointSize
decorated variable must not be written to

• VUID-VkGraphicsPipelineCreateInfo-pStages-00738
If the pipeline requires pre-rasterization shader state and pStages includes a geometry
shader stage, and does not include any tessellation shader stages, its shader code must
contain an OpExecutionMode instruction specifying an input primitive type that is
compatible with the primitive topology specified in pInputAssembly

• VUID-VkGraphicsPipelineCreateInfo-pStages-00739
If the pipeline requires pre-rasterization shader state and pStages includes a geometry
shader stage, and also includes tessellation shader stages, its shader code must contain an
OpExecutionMode instruction specifying an input primitive type that is compatible with the
primitive topology that is output by the tessellation stages

• VUID-VkGraphicsPipelineCreateInfo-pStages-00740
If the pipeline requires pre-rasterization shader state and fragment shader state, it
includes both a fragment shader and a geometry shader, and the fragment shader code
reads from an input variable that is decorated with PrimitiveId, then the geometry shader
code must write to a matching output variable, decorated with PrimitiveId, in all
execution paths

• VUID-VkGraphicsPipelineCreateInfo-PrimitiveId-06264
If the pipeline requires pre-rasterization shader state, it includes a mesh shader and the
fragment shader code reads from an input variable that is decorated with PrimitiveId,
then the mesh shader code must write to a matching output variable, decorated with
PrimitiveId, in all execution paths

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06038
If renderPass is not VK_NULL_HANDLE and the pipeline is being created with fragment
shader state the fragment shader must not read from any input attachment that is
defined as VK_ATTACHMENT_UNUSED in subpass

• VUID-VkGraphicsPipelineCreateInfo-pStages-00742
If the pipeline requires pre-rasterization shader state and multiple pre-rasterization
shader stages are included in pStages, the shader code for the entry points identified by
those pStages and the rest of the state identified by this structure must adhere to the
pipeline linking rules described in the Shader Interfaces chapter

740

• VUID-VkGraphicsPipelineCreateInfo-None-04889
If the pipeline requires pre-rasterization shader state and fragment shader state, the
fragment shader and last pre-rasterization shader stage and any relevant state must
adhere to the pipeline linking rules described in the Shader Interfaces chapter

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06041
If renderPass is not VK_NULL_HANDLE, and the pipeline is being created with fragment
output interface state, then for each color attachment in the subpass, if the potential
format features of the format of the corresponding attachment description do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of the
corresponding element of the pAttachments member of pColorBlendState must be VK_FALSE

• VUID-VkGraphicsPipelineCreateInfo-renderPass-07609
If renderPass is not VK_NULL_HANDLE, and the pipeline is being created with fragment
output interface state, and the pColorBlendState pointer is not NULL, and the subpass uses
color attachments, the attachmentCount member of pColorBlendState must be equal to the
colorAttachmentCount used to create subpass

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04130
If the pipeline requires pre-rasterization shader state, and pViewportState->pViewports is
not dynamic, then pViewportState->pViewports must be a valid pointer to an array of
pViewportState->viewportCount valid VkViewport structures

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04131
If the pipeline requires pre-rasterization shader state, and pViewportState->pScissors is
not dynamic, then pViewportState->pScissors must be a valid pointer to an array of
pViewportState->scissorCount VkRect2D structures

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-00749
If the pipeline requires pre-rasterization shader state, and the wideLines feature is not
enabled, and no element of the pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_LINE_WIDTH, the lineWidth member of pRasterizationState must be 1.0

• VUID-VkGraphicsPipelineCreateInfo-rasterizerDiscardEnable-09024
If the pipeline requires pre-rasterization shader state, and the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state is enabled or the
rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, and either the
VK_EXT_extended_dynamic_state3 extension is not enabled, or either the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT or VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic
states are not set, pViewportState must be a valid pointer to a valid
VkPipelineViewportStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pViewportState-09025
If pViewportState is not NULL it must be a valid pointer to a valid
VkPipelineViewportStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pMultisampleState-09026
If the pipeline requires fragment output interface state, and the
VK_EXT_extended_dynamic_state3 extension is not enabled or any of the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT, VK_DYNAMIC_STATE_SAMPLE_MASK_EXT, or
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic states is not set, or alphaToOne is
enabled on the device and VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT is not set,
pMultisampleState must be a valid pointer to a valid

741

VkPipelineMultisampleStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pMultisampleState-09027
If pMultisampleState is not NULL it must be a valid pointer to a valid
VkPipelineMultisampleStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-alphaToCoverageEnable-08891
If the pipeline is being created with fragment shader state, the
VkPipelineMultisampleStateCreateInfo::alphaToCoverageEnable is not ignored and is
VK_TRUE, then the Fragment Output Interface must contain a variable for the alpha
Component word in Location 0 at Index 0

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09028
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with fragment shader
state, and subpass uses a depth/stencil attachment, and the
VK_EXT_extended_dynamic_state3 extension is not enabled or, any of the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE, VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE,
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP, VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE,
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE, VK_DYNAMIC_STATE_STENCIL_OP, or
VK_DYNAMIC_STATE_DEPTH_BOUNDS dynamic states are not set, pDepthStencilState must be a
valid pointer to a valid VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pDepthStencilState-09029
If pDepthStencilState is not NULL it must be a valid pointer to a valid
VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09030
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with fragment output
interface state, and subpass uses color attachments, and VK_EXT_extended_dynamic_state3
extension is not enabled, or any of the VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT,
VK_DYNAMIC_STATE_LOGIC_OP_EXT, VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT,
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT, VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, or
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic states are not set, pColorBlendState must be a
valid pointer to a valid VkPipelineColorBlendStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-00754
If the pipeline requires pre-rasterization shader state, the depthBiasClamp feature is not
enabled, no element of the pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_DEPTH_BIAS, and the depthBiasEnable member of pRasterizationState is
VK_TRUE, the depthBiasClamp member of pRasterizationState must be 0.0

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-02510
If the pipeline requires fragment shader state, the VK_EXT_depth_range_unrestricted
extension is not enabled and no element of the pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_DEPTH_BOUNDS, and the depthBoundsTestEnable member of
pDepthStencilState is VK_TRUE, the minDepthBounds and maxDepthBounds members of
pDepthStencilState must be between 0.0 and 1.0, inclusive

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07610
If the pipeline requires fragment shader state or fragment output interface state, and
rasterizationSamples and sampleLocationsInfo are not dynamic, and
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable included in the
pNext chain of pMultisampleState is VK_TRUE,

742

sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07611
If the pipeline requires fragment shader state or fragment output interface state, and
rasterizationSamples and sampleLocationsInfo are not dynamic, and
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable the included in the
pNext chain of pMultisampleState is VK_TRUE or
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT is used,
sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07612
If the pipeline requires fragment shader state or fragment output interface state, and
rasterizationSamples and sampleLocationsInfo are not dynamic, and
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable included in the
pNext chain of pMultisampleState is VK_TRUE or
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT is used,
sampleLocationsInfo.sampleLocationsPerPixel must equal rasterizationSamples

• VUID-VkGraphicsPipelineCreateInfo-sampleLocationsEnable-01524
If the pipeline requires fragment shader state, and the sampleLocationsEnable member of a
VkPipelineSampleLocationsStateCreateInfoEXT structure included in the pNext chain of
pMultisampleState is VK_TRUE, the fragment shader code must not statically use the
extended instruction InterpolateAtSample

• VUID-VkGraphicsPipelineCreateInfo-multisampledRenderToSingleSampled-06853
If the pipeline requires fragment output interface state, and none of the
VK_AMD_mixed_attachment_samples extension, the VK_NV_framebuffer_mixed_samples
extension, or the multisampledRenderToSingleSampled feature are enabled,
rasterizationSamples is not dynamic, and if subpass uses color and/or depth/stencil
attachments, then the rasterizationSamples member of pMultisampleState must be the
same as the sample count for those subpass attachments

• VUID-VkGraphicsPipelineCreateInfo-subpass-01505
If the pipeline requires fragment output interface state, and the
VK_AMD_mixed_attachment_samples extension is enabled, rasterizationSamples is not
dynamic, and if subpass uses color and/or depth/stencil attachments, then the
rasterizationSamples member of pMultisampleState must equal the maximum of the
sample counts of those subpass attachments

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06854
If renderPass is not VK_NULL_HANDLE, the VK_EXT_multisampled_render_to_single_sampled
extension is enabled, rasterizationSamples is not dynamic, and subpass has a
VkMultisampledRenderToSingleSampledInfoEXT structure included in the
VkSubpassDescription2::pNext chain with multisampledRenderToSingleSampledEnable equal
to VK_TRUE, then the rasterizationSamples member of pMultisampleState must be equal to

743

VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-VkGraphicsPipelineCreateInfo-subpass-01411
If the pipeline requires fragment output interface state, the
VK_NV_framebuffer_mixed_samples extension is enabled, rasterizationSamples is not
dynamic, and if subpass has a depth/stencil attachment and depth test, stencil test, or
depth bounds test are enabled, then the rasterizationSamples member of
pMultisampleState must be the same as the sample count of the depth/stencil attachment

• VUID-VkGraphicsPipelineCreateInfo-subpass-01412
If the pipeline requires fragment output interface state, the
VK_NV_framebuffer_mixed_samples extension is enabled, rasterizationSamples is not
dynamic, and if subpass has any color attachments, then the rasterizationSamples member
of pMultisampleState must be greater than or equal to the sample count for those subpass
attachments

• VUID-VkGraphicsPipelineCreateInfo-coverageReductionMode-02722
If the pipeline requires fragment output interface state, the VK_NV_coverage_reduction_mode
extension is enabled, and rasterizationSamples is not dynamic, the coverage reduction
mode specified by VkPipelineCoverageReductionStateCreateInfoNV
::coverageReductionMode, the rasterizationSamples member of pMultisampleState and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-VkGraphicsPipelineCreateInfo-subpass-00758
If the pipeline requires fragment output interface state, rasterizationSamples is not
dynamic, and subpass does not use any color and/or depth/stencil attachments, then the
rasterizationSamples member of pMultisampleState must follow the rules for a zero-
attachment subpass

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06046
If renderPass is not VK_NULL_HANDLE, subpass must be a valid subpass within renderPass

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06047
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with pre-
rasterization shader state, subpass viewMask is not 0, and multiviewTessellationShader is
not enabled, then pStages must not include tessellation shaders

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06048
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with pre-
rasterization shader state, subpass viewMask is not 0, and multiviewGeometryShader is not
enabled, then pStages must not include a geometry shader

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06050
If renderPass is not VK_NULL_HANDLE and the pipeline is being created with pre-
rasterization shader state, and subpass viewMask is not 0, then all of the shaders in the
pipeline must not include variables decorated with the Layer built-in decoration in their
interfaces

• VUID-VkGraphicsPipelineCreateInfo-renderPass-07064
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with pre-
rasterization shader state, subpass viewMask is not 0, and multiviewMeshShader is not

744

enabled, then pStages must not include a mesh shader

• VUID-VkGraphicsPipelineCreateInfo-flags-00764
flags must not contain the VK_PIPELINE_CREATE_DISPATCH_BASE flag

• VUID-VkGraphicsPipelineCreateInfo-pStages-01565
If the pipeline requires fragment shader state and an input attachment was referenced by
an aspectMask at renderPass creation time, the fragment shader must only read from the
aspects that were specified for that input attachment

• VUID-VkGraphicsPipelineCreateInfo-layout-01688
The number of resources in layout accessible to each shader stage that is used by the
pipeline must be less than or equal to VkPhysicalDeviceLimits::maxPerStageResources

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-01715
If the pipeline requires pre-rasterization shader state, and no element of the
pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV, and
the viewportWScalingEnable member of a VkPipelineViewportWScalingStateCreateInfoNV
structure, included in the pNext chain of pViewportState, is VK_TRUE, the pViewportWScalings
member of the VkPipelineViewportWScalingStateCreateInfoNV must be a pointer to an
array of VkPipelineViewportWScalingStateCreateInfoNV::viewportCount valid
VkViewportWScalingNV structures

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04056
If the pipeline requires pre-rasterization shader state, and no element of the
pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV, and if
pViewportState->pNext chain includes a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure, and if its
exclusiveScissorCount member is not 0, then its pExclusiveScissors member must be a
valid pointer to an array of exclusiveScissorCount VkRect2D structures

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07854
If VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV is included in the pDynamicStates array
then the implementation must support at least specVersion 2 of the
VK_NV_scissor_exclusive extension

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04057
If the pipeline requires pre-rasterization shader state, and no element of the
pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV, and if pViewportState->pNext chain
includes a VkPipelineViewportShadingRateImageStateCreateInfoNV structure, then its
pShadingRatePalettes member must be a valid pointer to an array of viewportCount valid
VkShadingRatePaletteNV structures

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04058
If the pipeline requires pre-rasterization shader state, and no element of the
pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT, and if
pNext chain includes a VkPipelineDiscardRectangleStateCreateInfoEXT structure, and if its
discardRectangleCount member is not 0, then its pDiscardRectangles member must be a
valid pointer to an array of discardRectangleCount VkRect2D structures

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07855
If VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT is included in the pDynamicStates array

745

then the implementation must support at least specVersion 2 of the
VK_EXT_discard_rectangles extension

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07856
If VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT is included in the pDynamicStates array
then the implementation must support at least specVersion 2 of the
VK_EXT_discard_rectangles extension

• VUID-VkGraphicsPipelineCreateInfo-pStages-02097
If the pipeline requires vertex input state, and pVertexInputState is not dynamic, then
pVertexInputState must be a valid pointer to a valid
VkPipelineVertexInputStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-Input-07904
If the pipeline is being created with vertex input state and pVertexInputState is not
dynamic, then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription::location

• VUID-VkGraphicsPipelineCreateInfo-Input-08733
If the pipeline requires vertex input state and pVertexInputState is not dynamic, then the
numeric type associated with all Input variables of the corresponding Location in the
Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription::format

• VUID-VkGraphicsPipelineCreateInfo-pVertexInputState-08929
If the pipeline is being created with vertex input state and pVertexInputState is not
dynamic, and VkVertexInputAttributeDescription::format has a 64-bit component, then the
scalar width associated with all Input variables of the corresponding Location in the
Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-VkGraphicsPipelineCreateInfo-pVertexInputState-08930
If the pipeline is being created with vertex input state and pVertexInputState is not
dynamic, and the scalar width associated with a Location decorated Input variable in the
Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription::format must have a 64-bit component

• VUID-VkGraphicsPipelineCreateInfo-pVertexInputState-09198
If the pipeline is being created with vertex input state and pVertexInputState is not
dynamic, and VkVertexInputAttributeDescription::format has a 64-bit component, then all
Input variables at the corresponding Location in the Vertex Execution Model OpEntryPoint
must not use components that are not present in the format

• VUID-VkGraphicsPipelineCreateInfo-dynamicPrimitiveTopologyUnrestricted-09031
If the pipeline requires vertex input state, and the VK_EXT_extended_dynamic_state3
extension is not enabled, or either VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE, or
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic states are not set, or
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, pInputAssemblyState must be a valid
pointer to a valid VkPipelineInputAssemblyStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pInputAssemblyState-09032
If pInputAssemblyState is not NULL it must be a valid pointer to a valid
VkPipelineInputAssemblyStateCreateInfo structure

746

• VUID-VkGraphicsPipelineCreateInfo-pStages-02317
If the pipeline requires pre-rasterization shader state, the Xfb execution mode can be
specified by no more than one shader stage in pStages

• VUID-VkGraphicsPipelineCreateInfo-pStages-02318
If the pipeline requires pre-rasterization shader state, and any shader stage in pStages
specifies Xfb execution mode it must be the last pre-rasterization shader stage

• VUID-VkGraphicsPipelineCreateInfo-rasterizationStream-02319
If the pipeline requires pre-rasterization shader state, and a
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream value other than
zero is specified, all variables in the output interface of the entry point being compiled
decorated with Position, PointSize, ClipDistance, or CullDistance must be decorated with
identical Stream values that match the rasterizationStream

• VUID-VkGraphicsPipelineCreateInfo-rasterizationStream-02320
If the pipeline requires pre-rasterization shader state, and
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream is zero, or not
specified, all variables in the output interface of the entry point being compiled decorated
with Position, PointSize, ClipDistance, or CullDistance must be decorated with a Stream
value of zero, or must not specify the Stream decoration

• VUID-VkGraphicsPipelineCreateInfo-geometryStreams-02321
If the pipeline requires pre-rasterization shader state, and the last pre-rasterization
shader stage is a geometry shader, and that geometry shader uses the GeometryStreams
capability, then VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams feature
must be enabled

• VUID-VkGraphicsPipelineCreateInfo-None-02322
If the pipeline requires pre-rasterization shader state, and there are any mesh shader
stages in the pipeline there must not be any shader stage in the pipeline with a Xfb
execution mode

• VUID-VkGraphicsPipelineCreateInfo-lineRasterizationMode-02766
If the pipeline requires pre-rasterization shader state and at least one of fragment output
interface state or fragment shader state, and pMultisampleState is not NULL, the
lineRasterizationMode member of a VkPipelineRasterizationLineStateCreateInfoKHR
structure included in the pNext chain of pRasterizationState is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR or
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the alphaToCoverageEnable,
alphaToOneEnable, and sampleShadingEnable members of pMultisampleState must all be
VK_FALSE

• VUID-VkGraphicsPipelineCreateInfo-stippledLineEnable-02767
If the pipeline requires pre-rasterization shader state, the stippledLineEnable member of
VkPipelineRasterizationLineStateCreateInfoKHR is VK_TRUE, and no element of the
pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_LINE_STIPPLE_EXT, then the
lineStippleFactor member of VkPipelineRasterizationLineStateCreateInfoKHR must be in
the range [1,256]

• VUID-VkGraphicsPipelineCreateInfo-flags-03372
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR

747

• VUID-VkGraphicsPipelineCreateInfo-flags-03373
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-03374
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-03375
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-03376
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-03377
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-03577
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-04947
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-03378
If the extendedDynamicState feature is not enabled, and the value of VkApplicationInfo
::apiVersion used to create the VkInstance is less than Version 1.3 there must be no
element of the pDynamicStates member of pDynamicState set to VK_DYNAMIC_STATE_CULL_MODE,
VK_DYNAMIC_STATE_FRONT_FACE, VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY,
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT, VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT,
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE, VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE,
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE, VK_DYNAMIC_STATE_DEPTH_COMPARE_OP,
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE, VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE, or
VK_DYNAMIC_STATE_STENCIL_OP

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-03379
If the pipeline requires pre-rasterization shader state, and
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT is included in the pDynamicStates array then
viewportCount must be zero

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-03380
If the pipeline requires pre-rasterization shader state, and
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT is included in the pDynamicStates array then
scissorCount must be zero

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04132
If the pipeline requires pre-rasterization shader state, and
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT is included in the pDynamicStates array then
VK_DYNAMIC_STATE_VIEWPORT must not be present

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04133
If the pipeline requires pre-rasterization shader state, and
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT is included in the pDynamicStates array then
VK_DYNAMIC_STATE_SCISSOR must not be present

748

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07065
If the pipeline requires pre-rasterization shader state, and includes a mesh shader, there
must be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY, or VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04868
If the extendedDynamicState2 feature is not enabled, and the value of VkApplicationInfo
::apiVersion used to create the VkInstance is less than Version 1.3 there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE, VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE, or
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04869
If the extendedDynamicState2LogicOp feature is not enabled, there must be no element of
the pDynamicStates member of pDynamicState set to VK_DYNAMIC_STATE_LOGIC_OP_EXT

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04870
If the extendedDynamicState2PatchControlPoints feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07066
If the pipeline requires pre-rasterization shader state, and includes a mesh shader, there
must be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE, or VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT

• VUID-VkGraphicsPipelineCreateInfo-flags-02877
If flags includes VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV, then the
deviceGeneratedCommands feature must be enabled

• VUID-VkGraphicsPipelineCreateInfo-flags-02966
If the pipeline requires pre-rasterization shader state and flags includes
VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV, then all stages must not specify Xfb
execution mode

• VUID-VkGraphicsPipelineCreateInfo-libraryCount-06648
If the pipeline is not created with a complete set of state, or
VkPipelineLibraryCreateInfoKHR::libraryCount is not 0,
VkGraphicsPipelineShaderGroupsCreateInfoNV::groupCount and
VkGraphicsPipelineShaderGroupsCreateInfoNV::pipelineCount must be 0

• VUID-VkGraphicsPipelineCreateInfo-libraryCount-06649
If the pipeline is created with a complete set of state, and
VkPipelineLibraryCreateInfoKHR::libraryCount is 0, and the pNext chain includes an
instance of VkGraphicsPipelineShaderGroupsCreateInfoNV,
VkGraphicsPipelineShaderGroupsCreateInfoNV::groupCount must be greater than 0

• VUID-VkGraphicsPipelineCreateInfo-pipelineCreationCacheControl-02878
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT or
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

• VUID-VkGraphicsPipelineCreateInfo-pipelineProtectedAccess-07368
If the pipelineProtectedAccess feature is not enabled, flags must not include

749

VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT or
VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-flags-07369
flags must not include both VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT and
VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04494
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateStateCreateInfoKHR::fragmentSize.width
must be greater than or equal to 1

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04495
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateStateCreateInfoKHR
::fragmentSize.height must be greater than or equal to 1

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04496
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateStateCreateInfoKHR::fragmentSize.width
must be a power-of-two value

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04497
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateStateCreateInfoKHR
::fragmentSize.height must be a power-of-two value

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04498
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateStateCreateInfoKHR::fragmentSize.width
must be less than or equal to 4

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04499
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateStateCreateInfoKHR
::fragmentSize.height must be less than or equal to 4

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04500
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, and the pipelineFragmentShadingRate feature is not enabled,
VkPipelineFragmentShadingRateStateCreateInfoKHR::fragmentSize.width and
VkPipelineFragmentShadingRateStateCreateInfoKHR::fragmentSize.height must both be
equal to 1

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-06567
If the pipeline requires pre-rasterization shader state or fragment shader state and

750

VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateStateCreateInfoKHR::combinerOps[0]
must be a valid VkFragmentShadingRateCombinerOpKHR value

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-06568
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateStateCreateInfoKHR::combinerOps[1]
must be a valid VkFragmentShadingRateCombinerOpKHR value

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04501
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, and the primitiveFragmentShadingRate feature is not enabled,
VkPipelineFragmentShadingRateStateCreateInfoKHR::combinerOps[0] must be
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04502
If the pipeline requires pre-rasterization shader state or fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, and the attachmentFragmentShadingRate feature is not enabled,
VkPipelineFragmentShadingRateStateCreateInfoKHR::combinerOps[1] must be
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR

• VUID-VkGraphicsPipelineCreateInfo-
primitiveFragmentShadingRateWithMultipleViewports-04503
If the pipeline requires pre-rasterization shader state and the
primitiveFragmentShadingRateWithMultipleViewports limit is not supported,
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT is not included in pDynamicState->pDynamicStates,
and VkPipelineViewportStateCreateInfo::viewportCount is greater than 1, entry points
specified in pStages must not write to the PrimitiveShadingRateKHR built-in

• VUID-VkGraphicsPipelineCreateInfo-
primitiveFragmentShadingRateWithMultipleViewports-04504
If the pipeline requires pre-rasterization shader state and the
primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and entry
points specified in pStages write to the ViewportIndex built-in, they must not also write to
the PrimitiveShadingRateKHR built-in

• VUID-VkGraphicsPipelineCreateInfo-
primitiveFragmentShadingRateWithMultipleViewports-04505
If the pipeline requires pre-rasterization shader state and the
primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and entry
points specified in pStages write to the ViewportMaskNV built-in, they must not also write to
the PrimitiveShadingRateKHR built-in

• VUID-VkGraphicsPipelineCreateInfo-fragmentShadingRateNonTrivialCombinerOps-04506
If the pipeline requires pre-rasterization shader state or fragment shader state, the
fragmentShadingRateNonTrivialCombinerOps limit is not supported, and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, elements of VkPipelineFragmentShadingRateStateCreateInfoKHR
::combinerOps must be VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR or

751

VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR

• VUID-VkGraphicsPipelineCreateInfo-None-06569
If the pipeline requires fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateEnumStateCreateInfoNV
::shadingRateType must be a valid VkFragmentShadingRateTypeNV value

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-06570
If the pipeline requires fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateEnumStateCreateInfoNV::shadingRate
must be a valid VkFragmentShadingRateNV value

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-06571
If the pipeline requires fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateEnumStateCreateInfoNV::combinerOps[0]
must be a valid VkFragmentShadingRateCombinerOpKHR value

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-06572
If the pipeline requires fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, VkPipelineFragmentShadingRateEnumStateCreateInfoNV::combinerOps[1]
must be a valid VkFragmentShadingRateCombinerOpKHR value

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04569
If the pipeline requires fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, and the fragmentShadingRateEnums feature is not enabled,
VkPipelineFragmentShadingRateEnumStateCreateInfoNV::shadingRateType must be equal
to VK_FRAGMENT_SHADING_RATE_TYPE_FRAGMENT_SIZE_NV

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04570
If the pipeline requires fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, and the pipelineFragmentShadingRate feature is not enabled,
VkPipelineFragmentShadingRateEnumStateCreateInfoNV::shadingRate must be equal to
VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_PIXEL_NV

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04571
If the pipeline requires fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, and the primitiveFragmentShadingRate feature is not enabled,
VkPipelineFragmentShadingRateEnumStateCreateInfoNV::combinerOps[0] must be
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-04572
If the pipeline requires fragment shader state and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, and the attachmentFragmentShadingRate feature is not enabled,
VkPipelineFragmentShadingRateEnumStateCreateInfoNV::combinerOps[1] must be
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR

752

• VUID-VkGraphicsPipelineCreateInfo-fragmentShadingRateNonTrivialCombinerOps-04573
If the pipeline requires fragment shader state, and the
fragmentShadingRateNonTrivialCombinerOps limit is not supported and
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR is not included in pDynamicState-
>pDynamicStates, elements of VkPipelineFragmentShadingRateEnumStateCreateInfoNV
::combinerOps must be VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR or
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR

• VUID-VkGraphicsPipelineCreateInfo-None-04574
If the pipeline requires fragment shader state, and the supersampleFragmentShadingRates
feature is not enabled, VkPipelineFragmentShadingRateEnumStateCreateInfoNV
::shadingRate must not be equal to VK_FRAGMENT_SHADING_RATE_2_INVOCATIONS_PER_PIXEL_NV,
VK_FRAGMENT_SHADING_RATE_4_INVOCATIONS_PER_PIXEL_NV,
VK_FRAGMENT_SHADING_RATE_8_INVOCATIONS_PER_PIXEL_NV, or
VK_FRAGMENT_SHADING_RATE_16_INVOCATIONS_PER_PIXEL_NV

• VUID-VkGraphicsPipelineCreateInfo-None-04575
If the pipeline requires fragment shader state, and the noInvocationFragmentShadingRates
feature is not enabled, VkPipelineFragmentShadingRateEnumStateCreateInfoNV
::shadingRate must not be equal to VK_FRAGMENT_SHADING_RATE_NO_INVOCATIONS_NV

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-03578
All elements of the pDynamicStates member of pDynamicState must not be
VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04807
If the pipeline requires pre-rasterization shader state and the vertexInputDynamicState
feature is not enabled, there must be no element of the pDynamicStates member of
pDynamicState set to VK_DYNAMIC_STATE_VERTEX_INPUT_EXT

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07067
If the pipeline requires pre-rasterization shader state, and includes a mesh shader, there
must be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04800
If the colorWriteEnable feature is not enabled, there must be no element of the
pDynamicStates member of pDynamicState set to VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-rasterizationSamples-04899
If the pipeline requires fragment shader state, and the
VK_QCOM_render_pass_shader_resolve extension is enabled, rasterizationSamples is not
dynamic, and if subpass has any input attachments, and if the subpass description
contains VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM, then the sample count of the
input attachments must equal rasterizationSamples

• VUID-VkGraphicsPipelineCreateInfo-sampleShadingEnable-04900
If the pipeline requires fragment shader state, and the
VK_QCOM_render_pass_shader_resolve extension is enabled, and if the subpass description
contains VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM, then sampleShadingEnable
must be false

• VUID-VkGraphicsPipelineCreateInfo-flags-04901

753

If flags includes VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, then the subpass must
be the last subpass in a subpass dependency chain

• VUID-VkGraphicsPipelineCreateInfo-flags-04902
If flags includes VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM, and if
pResolveAttachments is not NULL, then each resolve attachment must be
VK_ATTACHMENT_UNUSED

• VUID-VkGraphicsPipelineCreateInfo-dynamicRendering-06576
If the dynamicRendering feature is not enabled and the pipeline requires pre-rasterization
shader state, fragment shader state, or fragment output interface state, renderPass must
not be VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-multiview-06577
If the multiview feature is not enabled, the pipeline requires pre-rasterization shader
state, fragment shader state, or fragment output interface state, and renderPass is
VK_NULL_HANDLE, VkPipelineRenderingCreateInfo::viewMask must be 0

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06578
If the pipeline requires pre-rasterization shader state, fragment shader state, or fragment
output interface state, and renderPass is VK_NULL_HANDLE, the index of the most
significant bit in VkPipelineRenderingCreateInfo::viewMask must be less than
maxMultiviewViewCount

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06579
If the pipeline requires fragment output interface state, and renderPass is
VK_NULL_HANDLE, and VkPipelineRenderingCreateInfo::colorAttachmentCount is not 0,
VkPipelineRenderingCreateInfo::pColorAttachmentFormats must be a valid pointer to an
array of colorAttachmentCount valid VkFormat values

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06580
If the pipeline requires fragment output interface state, and renderPass is
VK_NULL_HANDLE, each element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats must be a valid VkFormat value

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06582
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and any element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats is not
VK_FORMAT_UNDEFINED, that format must be a format with potential format features that
include VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06583
If the pipeline requires fragment output interface state, and renderPass is
VK_NULL_HANDLE, VkPipelineRenderingCreateInfo::depthAttachmentFormat must be a
valid VkFormat value

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06584
If the pipeline requires fragment output interface state, and renderPass is
VK_NULL_HANDLE, VkPipelineRenderingCreateInfo::stencilAttachmentFormat must be a
valid VkFormat value

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06585
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,

754

and VkPipelineRenderingCreateInfo::depthAttachmentFormat is not VK_FORMAT_UNDEFINED, it
must be a format with potential format features that include
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06586
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and VkPipelineRenderingCreateInfo::stencilAttachmentFormat is not VK_FORMAT_UNDEFINED,
it must be a format with potential format features that include
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06587
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and VkPipelineRenderingCreateInfo::depthAttachmentFormat is not VK_FORMAT_UNDEFINED, it
must be a format that includes a depth component

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06588
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and VkPipelineRenderingCreateInfo::stencilAttachmentFormat is not VK_FORMAT_UNDEFINED,
it must be a format that includes a stencil component

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06589
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
VkPipelineRenderingCreateInfo::depthAttachmentFormat is not VK_FORMAT_UNDEFINED, and
VkPipelineRenderingCreateInfo::stencilAttachmentFormat is not VK_FORMAT_UNDEFINED,
depthAttachmentFormat must equal stencilAttachmentFormat

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09033
If renderPass is VK_NULL_HANDLE, the pipeline is being created with fragment shader
state and fragment output interface state, and either of VkPipelineRenderingCreateInfo
::depthAttachmentFormat or VkPipelineRenderingCreateInfo::stencilAttachmentFormat are
not VK_FORMAT_UNDEFINED, and the VK_EXT_extended_dynamic_state3 extension is not enabled
or any of the VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE, VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE,
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP, VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE,
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE, VK_DYNAMIC_STATE_STENCIL_OP, or
VK_DYNAMIC_STATE_DEPTH_BOUNDS dynamic states are not set, pDepthStencilState must be a
valid pointer to a valid VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pDepthStencilState-09034
If pDepthStencilState is not NULL it must be a valid pointer to a valid
VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09035
If renderPass is VK_NULL_HANDLE and the pipeline is being created with fragment shader
state but not fragment output interface state, and the VK_EXT_extended_dynamic_state3
extension is not enabled, or any of the VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE,
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE, VK_DYNAMIC_STATE_DEPTH_COMPARE_OP,
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE, VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE,
VK_DYNAMIC_STATE_STENCIL_OP, or VK_DYNAMIC_STATE_DEPTH_BOUNDS dynamic states are not set,
pDepthStencilState must be a valid pointer to a valid
VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pDepthStencilState-09036
If pDepthStencilState is not NULL it must be a valid pointer to a valid

755

VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09037
If renderPass is VK_NULL_HANDLE, the pipeline is being created with fragment output
interface state, and any element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats is not VK_FORMAT_UNDEFINED, and the
VK_EXT_extended_dynamic_state3 extension is not enabled, or any of the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT, VK_DYNAMIC_STATE_LOGIC_OP_EXT,
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT, VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT,
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, or VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic
states are not set, pColorBlendState must be a valid pointer to a valid
VkPipelineColorBlendStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pColorBlendState-09038
If pColorBlendState is not NULL it must be a valid pointer to a valid
VkPipelineColorBlendStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06055
If renderPass is VK_NULL_HANDLE, pColorBlendState is not dynamic, and the pipeline is
being created with fragment output interface state, pColorBlendState->attachmentCount
must be equal to VkPipelineRenderingCreateInfo::colorAttachmentCount

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06057
If renderPass is VK_NULL_HANDLE, the pipeline is being created with pre-rasterization
shader state, VkPipelineRenderingCreateInfo::viewMask is not 0, and the
multiviewTessellationShader feature is not enabled, then pStages must not include
tessellation shaders

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06058
If renderPass is VK_NULL_HANDLE, the pipeline is being created with pre-rasterization
shader state, VkPipelineRenderingCreateInfo::viewMask is not 0, and the
multiviewGeometryShader feature is not enabled, then pStages must not include a geometry
shader

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06059
If renderPass is VK_NULL_HANDLE, the pipeline is being created with pre-rasterization
shader state, and VkPipelineRenderingCreateInfo::viewMask is not 0, all of the shaders in
the pipeline must not include variables decorated with the Layer built-in decoration in
their interfaces

• VUID-VkGraphicsPipelineCreateInfo-renderPass-07720
If renderPass is VK_NULL_HANDLE, the pipeline is being created with pre-rasterization
shader state, and VkPipelineRenderingCreateInfo::viewMask is not 0, and
multiviewMeshShader is not enabled, then pStages must not include a mesh shader

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06061
If the dynamicRenderingLocalRead feature is not enabled, the pipeline requires fragment
shader state, and renderPass is VK_NULL_HANDLE, fragment shaders in pStages must not
include the InputAttachment capability

• VUID-VkGraphicsPipelineCreateInfo-renderPass-08710
If the pipeline requires fragment shader state and renderPass is not VK_NULL_HANDLE,
fragment shaders in pStages must not include any of the TileImageColorReadAccessEXT,

756

TileImageDepthReadAccessEXT, or TileImageStencilReadAccessEXT capabilities

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06062
If the pipeline requires fragment output interface state and renderPass is
VK_NULL_HANDLE, for each color attachment format defined by the
pColorAttachmentFormats member of VkPipelineRenderingCreateInfo, if its potential
format features do not contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the
blendEnable member of the corresponding element of the pAttachments member of
pColorBlendState must be VK_FALSE

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06063
If the pipeline requires fragment output interface state and renderPass is
VK_NULL_HANDLE, if the pNext chain includes VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV, the colorAttachmentCount member of that structure must
be equal to the value of VkPipelineRenderingCreateInfo::colorAttachmentCount

• VUID-VkGraphicsPipelineCreateInfo-flags-06591
If pStages includes a fragment shader stage, and the fragment shader declares the
EarlyFragmentTests execution mode, the flags member of
VkPipelineDepthStencilStateCreateInfo must not include
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BI
T_EXT or
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_
BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-flags-06482
If the dynamicRenderingLocalRead feature is not enabled, the pipeline requires fragment
output interface state, and the flags member of VkPipelineColorBlendStateCreateInfo
includes
VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT,
renderPass must not be VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-None-09526
If the dynamicRenderingLocalRead feature is not enabled, the pipeline requires fragment
output interface state, and the flags member of VkPipelineDepthStencilStateCreateInfo
includes
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BI
T_EXT or
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_
BIT_EXT, renderPass must not be VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-pColorAttachmentSamples-06592
If the fragment output interface state, elements of the pColorAttachmentSamples member of
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV must be valid
VkSampleCountFlagBits values

• VUID-VkGraphicsPipelineCreateInfo-depthStencilAttachmentSamples-06593
If the fragment output interface state and the depthStencilAttachmentSamples member of
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV is not 0, it
must be a valid VkSampleCountFlagBits value

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09527
If the pipeline requires fragment output interface state, renderPass is not

757

VK_NULL_HANDLE, and the flags member of VkPipelineColorBlendStateCreateInfo
includes
VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT
subpass must have been created with
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09528
If the pipeline requires fragment shader state, renderPass is not VK_NULL_HANDLE, and
the flags member of VkPipelineDepthStencilStateCreateInfo includes
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BI
T_EXT, subpass must have been created with
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09529
If the pipeline requires fragment shader state, renderPass is not VK_NULL_HANDLE, and
the flags member of VkPipelineDepthStencilStateCreateInfo includes
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_
BIT_EXT, subpass must have been created with
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-pipelineStageCreationFeedbackCount-06594
If VkPipelineCreationFeedbackCreateInfo::pipelineStageCreationFeedbackCount is not 0, it
must be equal to stageCount

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06595
If renderPass is VK_NULL_HANDLE, the pipeline is being created with pre-rasterization
shader state or fragment shader state, and VkMultiviewPerViewAttributesInfoNVX
::perViewAttributesPositionXOnly is VK_TRUE then VkMultiviewPerViewAttributesInfoNVX
::perViewAttributes must also be VK_TRUE

• VUID-VkGraphicsPipelineCreateInfo-flags-06596
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other flag, the value of
VkMultiviewPerViewAttributesInfoNVX::perViewAttributes specified in both this pipeline
and the library must be equal

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06597
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, the value of
VkMultiviewPerViewAttributesInfoNVX::perViewAttributes specified in both libraries
must be equal

• VUID-VkGraphicsPipelineCreateInfo-flags-06598
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other flag, the value of
VkMultiviewPerViewAttributesInfoNVX::perViewAttributesPositionXOnly specified in both
this pipeline and the library must be equal

758

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06599
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, the value of
VkMultiviewPerViewAttributesInfoNVX::perViewAttributesPositionXOnly specified in both
libraries must be equal

• VUID-VkGraphicsPipelineCreateInfo-pStages-06600
If the pipeline requires pre-rasterization shader state or fragment shader state, pStages
must be a valid pointer to an array of stageCount valid VkPipelineShaderStageCreateInfo
structures

• VUID-VkGraphicsPipelineCreateInfo-stageCount-09587
If the pipeline does not require pre-rasterization shader state or fragment shader state,
stageCount must be zero

• VUID-VkGraphicsPipelineCreateInfo-pRasterizationState-09039
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT, and the
VK_EXT_extended_dynamic_state3 extension is not enabled, or any of the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT, VK_DYNAMIC_STATE_SAMPLE_MASK_EXT, or
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic states are not set, or alphaToOne
is enabled on the device and VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT is not set, then
pMultisampleState must be a valid pointer to a valid
VkPipelineMultisampleStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pRasterizationState-09040
If pRasterizationState is not NULL it must be a valid pointer to a valid
VkPipelineRasterizationStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-layout-06602
If the pipeline requires fragment shader state or pre-rasterization shader state, layout
must be a valid VkPipelineLayout handle

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06603
If the pipeline requires pre-rasterization shader state, fragment shader state, or fragment
output state, and renderPass is not VK_NULL_HANDLE, renderPass must be a valid
VkRenderPass handle

• VUID-VkGraphicsPipelineCreateInfo-stageCount-09530
If the pipeline requires pre-rasterization shader state, stageCount must be greater than 0

• VUID-VkGraphicsPipelineCreateInfo-graphicsPipelineLibrary-06606
If the graphicsPipelineLibrary feature is not enabled, flags must not include
VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-06608
If the pipeline defines, or includes as libraries, all the state subsets required for a
complete graphics pipeline, flags must not include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-06609
If flags includes VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT, pipeline libraries
included via VkPipelineLibraryCreateInfoKHR must have been created with
VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT

759

• VUID-VkGraphicsPipelineCreateInfo-flags-09245
If flags includes VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT, flags
must also include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-flags-06610
If flags includes VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT, pipeline
libraries included via VkPipelineLibraryCreateInfoKHR must have been created with
VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06611
Any pipeline libraries included via VkPipelineLibraryCreateInfoKHR::pLibraries must not
include any state subset already defined by this structure or defined by any other pipeline
library in VkPipelineLibraryCreateInfoKHR::pLibraries

• VUID-VkGraphicsPipelineCreateInfo-flags-06612
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other flag, and layout was not
created with VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, then the layout used by
this pipeline and the library must be identically defined

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06613
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and the layout specified
by either library was not created with
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, then the layout used by each library
must be identically defined

• VUID-VkGraphicsPipelineCreateInfo-flags-06614
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other subset, and layout was
created with VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, then the layout used by
the library must also have been created with
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06615
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and the layout specified
by either library was created with VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT,
then the layout used by both libraries must have been created with
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-flags-06616
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other subset, and layout was

760

created with VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, elements of the
pSetLayouts array which layout was created with that are not VK_NULL_HANDLE must be
identically defined to the element at the same index of pSetLayouts used to create the
library’s layout

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06617
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and the layout specified
by either library was created with VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT,
elements of the pSetLayouts array which either layout was created with that are not
VK_NULL_HANDLE must be identically defined to the element at the same index of
pSetLayouts used to create the other library’s layout

• VUID-VkGraphicsPipelineCreateInfo-flags-06618
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other flag, any descriptor set
layout N specified by layout in both this pipeline and the library which include bindings
accessed by shader stages in each must be identically defined

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06619
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, any descriptor set layout
N specified by layout in both libraries which include bindings accessed by shader stages
in each must be identically defined

• VUID-VkGraphicsPipelineCreateInfo-flags-06620
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other flag, push constants
specified in layout in both this pipeline and the library which are available to shader
stages in each must be identically defined

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06621
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, push constants specified
in layout in both this pipeline and the library which are available to shader stages in each
must be identically defined

• VUID-VkGraphicsPipelineCreateInfo-flags-06679
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other subset, any element of
the pSetLayouts array when layout was created and the corresponding element of the
pSetLayouts array used to create the library’s layout must not both be VK_NULL_HANDLE

761

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06681
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and any element of the
pSetLayouts array used to create each library’s layout was VK_NULL_HANDLE, then the
corresponding element of the pSetLayouts array used to create the other library’s layout
must not be VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-flags-06756
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other subset, and any element
of the pSetLayouts array which layout was created with was VK_NULL_HANDLE, then the
corresponding element of the pSetLayouts array used to create the library’s layout must
not have shader bindings for shaders in the other subset

• VUID-VkGraphicsPipelineCreateInfo-flags-06757
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other subset, and any element
of the pSetLayouts array used to create the library’s layout was VK_NULL_HANDLE, then
the corresponding element of the pSetLayouts array used to create this pipeline’s layout
must not have shader bindings for shaders in the other subset

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06758
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and any element of the
pSetLayouts array used to create each library’s layout was VK_NULL_HANDLE, then the
corresponding element of the pSetLayouts array used to create the other library’s layout
must not have shader bindings for shaders in the other subset

• VUID-VkGraphicsPipelineCreateInfo-flags-06682
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes both
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, layout must have been created
with no elements of the pSetLayouts array set to VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-flags-06683
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and
pRasterizationState->rasterizerDiscardEnable is VK_TRUE, layout must have been created
with no elements of the pSetLayouts array set to VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-flags-06684
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes at least one of and no more
than two of VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT,
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, and an element of

762

VkPipelineLibraryCreateInfoKHR::pLibraries includes one of the other flags, the value of
subpass must be equal to that used to create the library

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06623
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes at least one of
and no more than two of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT,
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, and another element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes one of the other flags, the value of
subpass used to create each library must be identical

• VUID-VkGraphicsPipelineCreateInfo-renderpass-06624
If renderpass is not VK_NULL_HANDLE, VkGraphicsPipelineLibraryCreateInfoEXT::flags
includes at least one of and no more than two of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT,
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, and an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes one of the other flags, renderPass
must be compatible with that used to create the library

• VUID-VkGraphicsPipelineCreateInfo-renderpass-06625
If renderpass is VK_NULL_HANDLE, VkGraphicsPipelineLibraryCreateInfoEXT::flags
includes at least one of and no more than two of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT,
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, and an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes one of the other flags, the value of
renderPass used to create that library must also be VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-flags-06626
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes at least one of and no more
than two of VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT,
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes one of the other flags, and
renderPass is VK_NULL_HANDLE, the value of VkPipelineRenderingCreateInfo::viewMask
used by this pipeline and that specified by the library must be identical

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06627
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes at least one of
and no more than two of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT,
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, another element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes one of the other flags, and
renderPass was VK_NULL_HANDLE for both libraries, the value of
VkPipelineRenderingCreateInfo::viewMask set by each library must be identical

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06628
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes at least one of

763

and no more than two of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT,
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, and another element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes one of the other flags, the
renderPass objects used to create each library must be compatible or all equal to
VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-renderpass-06631
If renderPass is not VK_NULL_HANDLE, the pipeline requires fragment shader state, and
the VK_EXT_extended_dynamic_state3 extension is not enabled or any of the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT, VK_DYNAMIC_STATE_SAMPLE_MASK_EXT, or
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic states is not set, or alphaToOne is
enabled on the device and VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT is not set, then
pMultisampleState must be a valid pointer to a valid
VkPipelineMultisampleStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-Input-06632
If the pipeline requires fragment shader state with a fragment shader that either enables
sample shading or decorates any variable in the Input storage class with Sample, and the
VK_EXT_extended_dynamic_state3 extension is not enabled or any of the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT, VK_DYNAMIC_STATE_SAMPLE_MASK_EXT, or
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic states is not set, or alphaToOne is
enabled on the device and VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT is not set, then
pMultisampleState must be a valid pointer to a valid
VkPipelineMultisampleStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-flags-06633
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT with a pMultisampleState that was
not NULL, and an element of VkPipelineLibraryCreateInfoKHR::pLibraries was created
with VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, pMultisampleState
must be identically defined to that used to create the library

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06634
If an element of VkPipelineLibraryCreateInfoKHR::pLibraries was created with
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT with a pMultisampleState that was
not NULL, and if VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, pMultisampleState must
be identically defined to that used to create the library

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06635
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries was created with
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT with a pMultisampleState that was
not NULL, and if a different element of VkPipelineLibraryCreateInfoKHR::pLibraries was
created with VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, the
pMultisampleState used to create each library must be identically defined

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06636
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries was created with
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT and a value of

764

pMultisampleState->sampleShadingEnable equal VK_TRUE, and if a different element of
VkPipelineLibraryCreateInfoKHR::pLibraries was created with
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, the pMultisampleState used to
create each library must be identically defined

• VUID-VkGraphicsPipelineCreateInfo-flags-06637
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, pMultisampleState-
>sampleShadingEnable is VK_TRUE, and an element of VkPipelineLibraryCreateInfoKHR
::pLibraries was created with VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, the
pMultisampleState used to create that library must be identically defined pMultisampleState

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-09567
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries was created with
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT and a value of
pMultisampleState->sampleShadingEnable equal VK_TRUE, and if
VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, pMultisampleState must
be identically defined to that used to create the library

• VUID-VkGraphicsPipelineCreateInfo-flags-06638
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes only one of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and an element of
VkPipelineLibraryCreateInfoKHR::pLibraries includes the other flag, values specified in
VkPipelineFragmentShadingRateStateCreateInfoKHR for both this pipeline and that
library must be identical

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06639
If one element of VkPipelineLibraryCreateInfoKHR::pLibraries includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT and another element
includes VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, values specified in
VkPipelineFragmentShadingRateStateCreateInfoKHR for both this pipeline and that
library must be identical

• VUID-VkGraphicsPipelineCreateInfo-flags-06640
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, pStages must be a valid pointer to
an array of stageCount valid VkPipelineShaderStageCreateInfo structures

• VUID-VkGraphicsPipelineCreateInfo-flags-06642
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, layout must be a valid
VkPipelineLayout handle

• VUID-VkGraphicsPipelineCreateInfo-flags-06643
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT, or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT,
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, and renderPass is not

765

VK_NULL_HANDLE, renderPass must be a valid VkRenderPass handle

• VUID-VkGraphicsPipelineCreateInfo-flags-06644
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT or
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, stageCount must be greater than 0

• VUID-VkGraphicsPipelineCreateInfo-flags-06645
If VkGraphicsPipelineLibraryCreateInfoEXT::flags is non-zero, if flags includes
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR, any libraries must have
also been created with VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06646
If VkPipelineLibraryCreateInfoKHR::pLibraries includes more than one library, and any
library was created with VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR,
all libraries must have also been created with
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-pLibraries-06647
If VkPipelineLibraryCreateInfoKHR::pLibraries includes at least one library,
VkGraphicsPipelineLibraryCreateInfoEXT::flags is non-zero, and any library was created
with VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR, flags must include
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR

• VUID-VkGraphicsPipelineCreateInfo-None-07826
If the pipeline includes a complete set of state, and there are no libraries included in
VkPipelineLibraryCreateInfoKHR::pLibraries, then VkPipelineLayout must be a valid
pipeline layout

• VUID-VkGraphicsPipelineCreateInfo-layout-07827
If the pipeline includes a complete set of state specified entirely by libraries, and each
library was created with a VkPipelineLayout created without
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, then layout must be compatible
with the layouts in those libraries

• VUID-VkGraphicsPipelineCreateInfo-flags-06729
If flags includes VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT, the pipeline
includes a complete set of state specified entirely by libraries, and each library was
created with a VkPipelineLayout created with
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, then layout must be compatible
with the union of the libraries' pipeline layouts other than the inclusion/exclusion of
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-flags-06730
If flags does not include VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT, the pipeline
includes a complete set of state specified entirely by libraries, and each library was
created with a VkPipelineLayout created with
VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, then layout must be compatible
with the union of the libraries' pipeline layouts

• VUID-VkGraphicsPipelineCreateInfo-conservativePointAndLineRasterization-08892
If conservativePointAndLineRasterization is not supported; the pipeline is being created
with vertex input state and pre-rasterization shader state; the pipeline does not include a

766

geometry shader; and the value of VkPipelineInputAssemblyStateCreateInfo::topology is
VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST, or
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, and either VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state is not enabled or dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then
VkPipelineRasterizationConservativeStateCreateInfoEXT::conservativeRasterizationMode
must be VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-VkGraphicsPipelineCreateInfo-conservativePointAndLineRasterization-06760
If conservativePointAndLineRasterization is not supported, the pipeline requires pre-
rasterization shader state, and the pipeline includes a geometry shader with either the
OutputPoints or OutputLineStrip execution modes,
VkPipelineRasterizationConservativeStateCreateInfoEXT::conservativeRasterizationMode
must be VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-VkGraphicsPipelineCreateInfo-conservativePointAndLineRasterization-06761
If conservativePointAndLineRasterization is not supported, the pipeline requires pre-
rasterization shader state, and the pipeline includes a mesh shader with either the
OutputPoints or OutputLinesNV execution modes,
VkPipelineRasterizationConservativeStateCreateInfoEXT::conservativeRasterizationMode
must be VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-VkGraphicsPipelineCreateInfo-pStages-06894
If the pipeline requires pre-rasterization shader state but not fragment shader state,
elements of pStages must not have stage set to VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-VkGraphicsPipelineCreateInfo-pStages-06895
If the pipeline requires fragment shader state but not pre-rasterization shader state,
elements of pStages must not have stage set to a shader stage which participates in pre-
rasterization

• VUID-VkGraphicsPipelineCreateInfo-pStages-06896
If the pipeline requires pre-rasterization shader state, all elements of pStages must have a
stage set to a shader stage which participates in fragment shader state or pre-
rasterization shader state

• VUID-VkGraphicsPipelineCreateInfo-stage-06897
If the pipeline requires fragment shader state and/or pre-rasterization shader state, any
value of stage must not be set in more than one element of pStages

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3TessellationDomainOrigin-
07370
If the extendedDynamicState3TessellationDomainOrigin feature is not enabled, there must
be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3DepthClampEnable-07371
If the extendedDynamicState3DepthClampEnable feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3PolygonMode-07372
If the extendedDynamicState3PolygonMode feature is not enabled, there must be no element
of the pDynamicStates member of pDynamicState set to VK_DYNAMIC_STATE_POLYGON_MODE_EXT

767

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3RasterizationSamples-07373
If the extendedDynamicState3RasterizationSamples feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3SampleMask-07374
If the extendedDynamicState3SampleMask feature is not enabled, there must be no element
of the pDynamicStates member of pDynamicState set to VK_DYNAMIC_STATE_SAMPLE_MASK_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3AlphaToCoverageEnable-
07375
If the extendedDynamicState3AlphaToCoverageEnable feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3AlphaToOneEnable-07376
If the extendedDynamicState3AlphaToOneEnable feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3LogicOpEnable-07377
If the extendedDynamicState3LogicOpEnable feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3ColorBlendEnable-07378
If the extendedDynamicState3ColorBlendEnable feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3ColorBlendEquation-07379
If the extendedDynamicState3ColorBlendEquation feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3ColorWriteMask-07380
If the extendedDynamicState3ColorWriteMask feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3RasterizationStream-07381
If the extendedDynamicState3RasterizationStream feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT

• VUID-VkGraphicsPipelineCreateInfo-
extendedDynamicState3ConservativeRasterizationMode-07382
If the extendedDynamicState3ConservativeRasterizationMode feature is not enabled, there
must be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT

• VUID-VkGraphicsPipelineCreateInfo-
extendedDynamicState3ExtraPrimitiveOverestimationSize-07383
If the extendedDynamicState3ExtraPrimitiveOverestimationSize feature is not enabled,

768

there must be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3DepthClipEnable-07384
If the extendedDynamicState3DepthClipEnable feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3SampleLocationsEnable-
07385
If the extendedDynamicState3SampleLocationsEnable feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3ColorBlendAdvanced-07386
If the extendedDynamicState3ColorBlendAdvanced feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3ProvokingVertexMode-07387
If the extendedDynamicState3ProvokingVertexMode feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3LineRasterizationMode-
07388
If the extendedDynamicState3LineRasterizationMode feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3LineStippleEnable-07389
If the extendedDynamicState3LineStippleEnable feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT

• VUID-VkGraphicsPipelineCreateInfo-
extendedDynamicState3DepthClipNegativeOneToOne-07390
If the extendedDynamicState3DepthClipNegativeOneToOne feature is not enabled, there must
be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3ViewportWScalingEnable-
07391
If the extendedDynamicState3ViewportWScalingEnable feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3ViewportSwizzle-07392
If the extendedDynamicState3ViewportSwizzle feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3CoverageToColorEnable-
07393

769

If the extendedDynamicState3CoverageToColorEnable feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3CoverageToColorLocation-
07394
If the extendedDynamicState3CoverageToColorLocation feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3CoverageModulationMode-
07395
If the extendedDynamicState3CoverageModulationMode feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV

• VUID-VkGraphicsPipelineCreateInfo-
extendedDynamicState3CoverageModulationTableEnable-07396
If the extendedDynamicState3CoverageModulationTableEnable feature is not enabled, there
must be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3CoverageModulationTable-
07397
If the extendedDynamicState3CoverageModulationTable feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3CoverageReductionMode-
07398
If the extendedDynamicState3CoverageReductionMode feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV

• VUID-VkGraphicsPipelineCreateInfo-
extendedDynamicState3RepresentativeFragmentTestEnable-07399
If the extendedDynamicState3RepresentativeFragmentTestEnable feature is not enabled,
there must be no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV

• VUID-VkGraphicsPipelineCreateInfo-extendedDynamicState3ShadingRateImageEnable-
07400
If the extendedDynamicState3ShadingRateImageEnable feature is not enabled, there must be
no element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV

• VUID-VkGraphicsPipelineCreateInfo-flags-07401
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT

• VUID-VkGraphicsPipelineCreateInfo-flags-07997
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07730
If the pipeline requires pre-rasterization shader state, and no element of the

770

pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_VIEWPORT or
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT, and if multiviewPerViewViewports is enabled, then
the index of the most significant bit in each element of
VkRenderPassMultiviewCreateInfo::pViewMasks must be less than pViewportState-
>viewportCount

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-07731
If the pipeline requires pre-rasterization shader state, and no element of the
pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_SCISSOR or
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT, and if multiviewPerViewViewports is enabled, then
the index of the most significant bit in each element of
VkRenderPassMultiviewCreateInfo::pViewMasks must be less than pViewportState-
>scissorCount

• VUID-VkGraphicsPipelineCreateInfo-pStages-08711
If pStages includes a fragment shader stage, VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE is not set
in VkPipelineDynamicStateCreateInfo::pDynamicStates, and the fragment shader declares
the EarlyFragmentTests execution mode and uses OpDepthAttachmentReadEXT, the
depthWriteEnable member of VkPipelineDepthStencilStateCreateInfo must be VK_FALSE

• VUID-VkGraphicsPipelineCreateInfo-pStages-08712
If pStages includes a fragment shader stage, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK is not set
in VkPipelineDynamicStateCreateInfo::pDynamicStates, and the fragment shader declares
the EarlyFragmentTests execution mode and uses OpStencilAttachmentReadEXT, the value of
VkStencilOpState::writeMask for both front and back in
VkPipelineDepthStencilStateCreateInfo must be 0

• VUID-VkGraphicsPipelineCreateInfo-renderPass-08744
If renderPass is VK_NULL_HANDLE, the pipeline requires fragment output state or
fragment shader state, the pipeline enables sample shading, rasterizationSamples is not
dynamic, and the pNext chain includes a VkPipelineRenderingCreateInfo structure,
rasterizationSamples must be a valid VkSampleCountFlagBits value that is set in
imageCreateSampleCounts (as defined in Image Creation Limits) for every element of
depthAttachmentFormat, stencilAttachmentFormat and the pColorAttachmentFormats array
which is not VK_FORMAT_UNDEFINED

• VUID-VkGraphicsPipelineCreateInfo-flags-08897
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT, pre-rasterization shader
state is specified either in a library or by the inclusion of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT, and that state includes
a vertex shader stage in pStages, the pipeline must define vertex input state

• VUID-VkGraphicsPipelineCreateInfo-flags-08898
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT, and pre-rasterization
shader state is not specified, the pipeline must define vertex input state

• VUID-VkGraphicsPipelineCreateInfo-flags-08899
If flags does not include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR, pre-rasterization shader
state is specified either in a library or by the inclusion of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT, and that state includes

771

a vertex shader stage in pStages, the pipeline must either define vertex input state or
include that state in a linked pipeline library

• VUID-VkGraphicsPipelineCreateInfo-flags-08900
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT the pipeline must
define pre-rasterization shader state

• VUID-VkGraphicsPipelineCreateInfo-flags-08901
If flags does not include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR, the pipeline must either
define pre-rasterization shader state or include that state in a linked pipeline library

• VUID-VkGraphicsPipelineCreateInfo-flags-08903
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, pre-rasterization shader state is
specified either in a library or by the inclusion of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT, and that state either
includes VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE or has pRasterizationState-
>rasterizerDiscardEnable set to VK_FALSE, the pipeline must define fragment shader state

• VUID-VkGraphicsPipelineCreateInfo-flags-08904
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and pre-rasterization shader state
is not specified, the pipeline must define fragment shader state

• VUID-VkGraphicsPipelineCreateInfo-flags-08906
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, pre-rasterization shader state is
specified either in a library or by the inclusion of
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT, and that state either
includes VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE or has pRasterizationState-
>rasterizerDiscardEnable set to VK_FALSE, the pipeline must define fragment output
interface state

• VUID-VkGraphicsPipelineCreateInfo-flags-08907
If VkGraphicsPipelineLibraryCreateInfoEXT::flags includes
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT, and pre-rasterization shader state
is not specified, the pipeline must define fragment output interface state

• VUID-VkGraphicsPipelineCreateInfo-flags-08909
If flags does not include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR, pre-rasterization shader
state is specified either in a library or by the inclusion of
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT, and that state either
includes VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE or has pRasterizationState-
>rasterizerDiscardEnable set to VK_FALSE, the pipeline must define fragment output
interface state and fragment shader state or include those states in linked pipeline
libraries

• VUID-VkGraphicsPipelineCreateInfo-None-09043
If pDynamicState->pDynamicStates does not include VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT,
and the format of any color attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the
colorWriteMask member of the corresponding element of pColorBlendState->pAttachments
must either include all of VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and

772

VK_COLOR_COMPONENT_B_BIT, or none of them

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09301
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is VK_NULL_HANDLE, and VkExternalFormatANDROID
::externalFormat is not 0, VkPipelineRenderingCreateInfo::viewMask must be 0

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09304
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is VK_NULL_HANDLE, VkExternalFormatANDROID
::externalFormat is not 0, and rasterizationSamples is not dynamic,
VkPipelineMultisampleStateCreateInfo::rasterizationSamples must be 1

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09305
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is VK_NULL_HANDLE, and VkExternalFormatANDROID
::externalFormat is not 0, and blendEnable is not dynamic, the blendEnable member of each
element of pColorBlendState->pAttachments must be VK_FALSE

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09306
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is VK_NULL_HANDLE, and VkExternalFormatANDROID
::externalFormat is not 0, and pDynamicState->pDynamicStates does not include
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR,
VkPipelineFragmentShadingRateStateCreateInfoKHR::width must be 1

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09307
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is VK_NULL_HANDLE, and VkExternalFormatANDROID
::externalFormat is not 0, and pDynamicState->pDynamicStates does not include
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR,
VkPipelineFragmentShadingRateStateCreateInfoKHR::height must be 1

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09308
If the externalFormatResolve feature is enabled, the pipeline requires pre-rasterization
shader state and fragment output interface state, renderPass is VK_NULL_HANDLE, and
VkExternalFormatANDROID::externalFormat is not 0, the last pre-rasterization shader
stage must not statically use a variable with the PrimitiveShadingRateKHR built-in

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09309
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is VK_NULL_HANDLE, and VkExternalFormatANDROID
::externalFormat is not 0, VkPipelineRenderingCreateInfo::colorAttachmentCount must be 1

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09310
If the externalFormatResolve feature is enabled, the pipeline requires fragment shader
state and fragment output interface state, renderPass is VK_NULL_HANDLE, and
VkExternalFormatANDROID::externalFormat is not 0, the fragment shader must not
declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09313
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is not VK_NULL_HANDLE, subpass includes an external format

773

resolve attachment, and rasterizationSamples is not dynamic,
VkPipelineMultisampleStateCreateInfo::rasterizationSamples must be
VK_SAMPLE_COUNT_1_BIT

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09314
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is not VK_NULL_HANDLE, subpass includes an external format
resolve attachment, and blendEnable is not dynamic, the blendEnable member of each
element of pColorBlendState->pAttachments must be VK_FALSE

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09315
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is not VK_NULL_HANDLE, subpass includes an external format
resolve attachment, and pDynamicState->pDynamicStates does not include
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR,
VkPipelineFragmentShadingRateStateCreateInfoKHR::width must be 1

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09316
If the externalFormatResolve feature is enabled, the pipeline requires fragment output
interface state, renderPass is not VK_NULL_HANDLE, subpass includes an external format
resolve attachment, and pDynamicState->pDynamicStates does not include
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR,
VkPipelineFragmentShadingRateStateCreateInfoKHR::height must be 1

• VUID-VkGraphicsPipelineCreateInfo-externalFormatResolve-09317
If the externalFormatResolve feature is enabled, the pipeline requires pre-rasterization
shader state and fragment output interface state, renderPass is not VK_NULL_HANDLE,
and subpass includes an external format resolve attachment, the last pre-rasterization
shader stage must not statically use a variable with the PrimitiveShadingRateKHR built-in

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09531
If the pipeline is being created with fragment shader state and fragment output state, and
the value of renderPass is VK_NULL_HANDLE,
VkRenderingInputAttachmentIndexInfoKHR::colorAttachmentCount must be equal to
VkPipelineRenderingCreateInfo::colorAttachmentCount

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09532
If the pipeline is being created with fragment output state, and the value of renderPass is
VK_NULL_HANDLE, VkRenderingAttachmentLocationInfoKHR::colorAttachmentCount
must be equal to VkPipelineRenderingCreateInfo::colorAttachmentCount

Valid Usage (Implicit)

• VUID-VkGraphicsPipelineCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO

• VUID-VkGraphicsPipelineCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkAttachmentSampleCountInfoAMD,
VkExternalFormatANDROID, VkGraphicsPipelineLibraryCreateInfoEXT,
VkGraphicsPipelineShaderGroupsCreateInfoNV, VkMultiviewPerViewAttributesInfoNVX,

774

VkPipelineCompilerControlCreateInfoAMD, VkPipelineCreateFlags2CreateInfoKHR,
VkPipelineCreationFeedbackCreateInfo, VkPipelineDiscardRectangleStateCreateInfoEXT,
VkPipelineFragmentShadingRateEnumStateCreateInfoNV,
VkPipelineFragmentShadingRateStateCreateInfoKHR, VkPipelineLibraryCreateInfoKHR,
VkPipelineRenderingCreateInfo,
VkPipelineRepresentativeFragmentTestStateCreateInfoNV,
VkPipelineRobustnessCreateInfoEXT, VkRenderingAttachmentLocationInfoKHR, or
VkRenderingInputAttachmentIndexInfoKHR

• VUID-VkGraphicsPipelineCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-parameter
If pDynamicState is not NULL, pDynamicState must be a valid pointer to a valid
VkPipelineDynamicStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-commonparent
Each of basePipelineHandle, layout, and renderPass that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

The VkPipelineRenderingCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPipelineRenderingCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t viewMask;
 uint32_t colorAttachmentCount;
 const VkFormat* pColorAttachmentFormats;
 VkFormat depthAttachmentFormat;
 VkFormat stencilAttachmentFormat;
} VkPipelineRenderingCreateInfo;

or the equivalent

// Provided by VK_KHR_dynamic_rendering
typedef VkPipelineRenderingCreateInfo VkPipelineRenderingCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• viewMask is the viewMask used for rendering.

• colorAttachmentCount is the number of entries in pColorAttachmentFormats

• pColorAttachmentFormats is a pointer to an array of VkFormat values defining the format of color
attachments used in this pipeline.

• depthAttachmentFormat is a VkFormat value defining the format of the depth attachment used in
this pipeline.

775

• stencilAttachmentFormat is a VkFormat value defining the format of the stencil attachment used
in this pipeline.

When a pipeline is created without a VkRenderPass, if the pNext chain of
VkGraphicsPipelineCreateInfo includes this structure, it specifies the view mask and format of
attachments used for rendering. If this structure is not specified, and the pipeline does not include
a VkRenderPass, viewMask and colorAttachmentCount are 0, and depthAttachmentFormat and
stencilAttachmentFormat are VK_FORMAT_UNDEFINED. If a graphics pipeline is created with a valid
VkRenderPass, parameters of this structure are ignored.

If depthAttachmentFormat, stencilAttachmentFormat, or any element of pColorAttachmentFormats is
VK_FORMAT_UNDEFINED, it indicates that the corresponding attachment is unused within the render
pass. Valid formats indicate that an attachment can be used - but it is still valid to set the
attachment to NULL when beginning rendering.

If the render pass is going to be used with an external format resolve attachment, a
VkExternalFormatANDROID structure must also be included in the pNext chain of
VkGraphicsPipelineCreateInfo, defining the external format of the resolve attachment that will be
used.

Valid Usage

• VUID-VkPipelineRenderingCreateInfo-colorAttachmentCount-09533
colorAttachmentCount must be less than or equal to maxColorAttachments

Valid Usage (Implicit)

• VUID-VkPipelineRenderingCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO

The VkPipelineCreateFlags2CreateInfoKHR structure is defined as:

// Provided by VK_KHR_maintenance5
typedef struct VkPipelineCreateFlags2CreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags2KHR flags;
} VkPipelineCreateFlags2CreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCreateFlagBits2KHR specifying how a pipeline will be generated.

If this structure is included in the pNext chain of a pipeline creation structure, flags is used instead
of the corresponding flags value passed in that creation structure, allowing additional creation

776

flags to be specified.

Valid Usage (Implicit)

• VUID-VkPipelineCreateFlags2CreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_CREATE_FLAGS_2_CREATE_INFO_KHR

• VUID-VkPipelineCreateFlags2CreateInfoKHR-flags-parameter
flags must be a valid combination of VkPipelineCreateFlagBits2KHR values

• VUID-VkPipelineCreateFlags2CreateInfoKHR-flags-requiredbitmask
flags must not be 0

Bits which can be set in VkPipelineCreateFlags2CreateInfoKHR::flags, specifying how a pipeline is
created, are:

// Provided by VK_KHR_maintenance5
// Flag bits for VkPipelineCreateFlagBits2KHR
typedef VkFlags64 VkPipelineCreateFlagBits2KHR;
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_DISABLE_OPTIMIZATION_BIT_KHR = 0x00000001ULL;
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_ALLOW_DERIVATIVES_BIT_KHR = 0x00000002ULL;
static const VkPipelineCreateFlagBits2KHR VK_PIPELINE_CREATE_2_DERIVATIVE_BIT_KHR =
0x00000004ULL;
// Provided by VK_KHR_maintenance5 with VK_VERSION_1_1 or VK_KHR_device_group
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_VIEW_INDEX_FROM_DEVICE_INDEX_BIT_KHR = 0x00000008ULL;
// Provided by VK_KHR_maintenance5 with VK_VERSION_1_1 or VK_KHR_device_group
static const VkPipelineCreateFlagBits2KHR VK_PIPELINE_CREATE_2_DISPATCH_BASE_BIT_KHR =
0x00000010ULL;
// Provided by VK_KHR_maintenance5 with VK_NV_ray_tracing
static const VkPipelineCreateFlagBits2KHR VK_PIPELINE_CREATE_2_DEFER_COMPILE_BIT_NV =
0x00000020ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_pipeline_executable_properties
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_CAPTURE_STATISTICS_BIT_KHR = 0x00000040ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_pipeline_executable_properties
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR = 0x00000080ULL;
// Provided by VK_KHR_maintenance5 with VK_VERSION_1_3 or
VK_EXT_pipeline_creation_cache_control
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR = 0x00000100ULL;
// Provided by VK_KHR_maintenance5 with VK_VERSION_1_3 or
VK_EXT_pipeline_creation_cache_control
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR = 0x00000200ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_graphics_pipeline_library
static const VkPipelineCreateFlagBits2KHR

777

VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT = 0x00000400ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_graphics_pipeline_library
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT = 0x00800000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_pipeline_library
static const VkPipelineCreateFlagBits2KHR VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR =
0x00000800ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_ray_tracing_pipeline
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR = 0x00001000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_ray_tracing_pipeline
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_AABBS_BIT_KHR = 0x00002000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_ray_tracing_pipeline
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR = 0x00004000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_ray_tracing_pipeline
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR = 0x00008000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_ray_tracing_pipeline
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR = 0x00010000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_ray_tracing_pipeline
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR = 0x00020000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_ray_tracing_pipeline
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR =
0x00080000ULL;
// Provided by VK_KHR_maintenance5 with VK_NV_device_generated_commands
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_INDIRECT_BINDABLE_BIT_NV = 0x00040000ULL;
// Provided by VK_KHR_maintenance5 with VK_NV_ray_tracing_motion_blur
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_ALLOW_MOTION_BIT_NV = 0x00100000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_dynamic_rendering and
VK_KHR_fragment_shading_rate
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR =
0x00200000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_dynamic_rendering and
VK_EXT_fragment_density_map
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT =
0x00400000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_opacity_micromap
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT = 0x01000000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_attachment_feedback_loop_layout
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT = 0x02000000ULL;

778

// Provided by VK_KHR_maintenance5 with VK_EXT_attachment_feedback_loop_layout
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT = 0x04000000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_pipeline_protected_access
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_NO_PROTECTED_ACCESS_BIT_EXT = 0x08000000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_pipeline_protected_access
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_PROTECTED_ACCESS_ONLY_BIT_EXT = 0x40000000ULL;
// Provided by VK_KHR_maintenance5 with VK_NV_displacement_micromap
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV = 0x10000000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_descriptor_buffer
static const VkPipelineCreateFlagBits2KHR
VK_PIPELINE_CREATE_2_DESCRIPTOR_BUFFER_BIT_EXT = 0x20000000ULL;

• VK_PIPELINE_CREATE_2_DISABLE_OPTIMIZATION_BIT_KHR specifies that the created pipeline will not
be optimized. Using this flag may reduce the time taken to create the pipeline.

• VK_PIPELINE_CREATE_2_ALLOW_DERIVATIVES_BIT_KHR specifies that the pipeline to be created is
allowed to be the parent of a pipeline that will be created in a subsequent pipeline creation call.

• VK_PIPELINE_CREATE_2_DERIVATIVE_BIT_KHR specifies that the pipeline to be created will be a child
of a previously created parent pipeline.

• VK_PIPELINE_CREATE_2_VIEW_INDEX_FROM_DEVICE_INDEX_BIT_KHR specifies that any shader input
variables decorated as ViewIndex will be assigned values as if they were decorated as
DeviceIndex.

• VK_PIPELINE_CREATE_2_DISPATCH_BASE_BIT_KHR specifies that a compute pipeline can be used with
vkCmdDispatchBase with a non-zero base workgroup.

• VK_PIPELINE_CREATE_2_DEFER_COMPILE_BIT_NV specifies that a pipeline is created with all shaders
in the deferred state. Before using the pipeline the application must call vkCompileDeferredNV
exactly once on each shader in the pipeline before using the pipeline.

• VK_PIPELINE_CREATE_2_CAPTURE_STATISTICS_BIT_KHR specifies that the shader compiler should
capture statistics for the pipeline executables produced by the compile process which can later
be retrieved by calling vkGetPipelineExecutableStatisticsKHR. Enabling this flag must not affect
the final compiled pipeline but may disable pipeline caching or otherwise affect pipeline
creation time.

• VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR specifies that the shader
compiler should capture the internal representations of pipeline executables produced by the
compile process which can later be retrieved by calling
vkGetPipelineExecutableInternalRepresentationsKHR. Enabling this flag must not affect the
final compiled pipeline but may disable pipeline caching or otherwise affect pipeline creation
time. When capturing IR from pipelines created with pipeline libraries, there is no guarantee
that IR from libraries can be retrieved from the linked pipeline. Applications should retrieve IR
from each library, and any linked pipelines, separately.

• VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR specifies that the pipeline cannot be used directly, and
instead defines a pipeline library that can be combined with other pipelines using the

779

VkPipelineLibraryCreateInfoKHR structure. This is available in ray tracing and graphics
pipelines.

• VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR specifies that an any-hit
shader will always be present when an any-hit shader would be executed. A NULL any-hit
shader is an any-hit shader which is effectively VK_SHADER_UNUSED_KHR, such as from a shader
group consisting entirely of zeros.

• VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR specifies that a closest
hit shader will always be present when a closest hit shader would be executed. A NULL closest
hit shader is a closest hit shader which is effectively VK_SHADER_UNUSED_KHR, such as from a
shader group consisting entirely of zeros.

• VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR specifies that a miss shader
will always be present when a miss shader would be executed. A NULL miss shader is a miss
shader which is effectively VK_SHADER_UNUSED_KHR, such as from a shader group consisting
entirely of zeros.

• VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR specifies that an
intersection shader will always be present when an intersection shader would be executed. A
NULL intersection shader is an intersection shader which is effectively VK_SHADER_UNUSED_KHR,
such as from a shader group consisting entirely of zeros.

• VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR specifies that triangle primitives will
be skipped during traversal using pipeline trace ray instructions.

• VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_AABBS_BIT_KHR specifies that AABB primitives will be
skipped during traversal using pipeline trace ray instructions.

• VK_PIPELINE_CREATE_2_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR specifies that the
shader group handles can be saved and reused on a subsequent run (e.g. for trace capture and
replay).

• VK_PIPELINE_CREATE_2_INDIRECT_BINDABLE_BIT_NV specifies that the pipeline can be used in
combination with Device-Generated Commands.

• VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR specifies that pipeline
creation will fail if a compile is required for creation of a valid VkPipeline object;
VK_PIPELINE_COMPILE_REQUIRED will be returned by pipeline creation, and the VkPipeline will be
set to VK_NULL_HANDLE.

• When creating multiple pipelines, VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR
specifies that control will be returned to the application if any individual pipeline returns a
result which is not VK_SUCCESS rather than continuing to create additional pipelines.

• VK_PIPELINE_CREATE_2_RAY_TRACING_ALLOW_MOTION_BIT_NV specifies that the pipeline is allowed to
use OpTraceRayMotionNV.

• VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR specifies that the
pipeline will be used with a fragment shading rate attachment.

• VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT specifies that the
pipeline will be used with a fragment density map attachment.

• VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT specifies that pipeline libraries being
linked into this library should have link time optimizations applied. If this bit is omitted,

780

implementations should instead perform linking as rapidly as possible.

• VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT specifies that pipeline
libraries should retain any information necessary to later perform an optimal link with
VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT.

• VK_PIPELINE_CREATE_2_DESCRIPTOR_BUFFER_BIT_EXT specifies that a pipeline will be used with
descriptor buffers, rather than descriptor sets.

• VK_PIPELINE_CREATE_2_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT specifies that the pipeline may be
used with an attachment feedback loop including color attachments.

• VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT specifies that the
pipeline may be used with an attachment feedback loop including depth-stencil attachments.

• VK_PIPELINE_CREATE_2_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT specifies that the ray tracing
pipeline can be used with acceleration structures which reference an opacity micromap array.

• VK_PIPELINE_CREATE_2_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV specifies that the ray tracing
pipeline can be used with acceleration structures which reference a displacement micromap
array.

• VK_PIPELINE_CREATE_2_NO_PROTECTED_ACCESS_BIT_EXT specifies that the pipeline must not be
bound to a protected command buffer.

• VK_PIPELINE_CREATE_2_PROTECTED_ACCESS_ONLY_BIT_EXT specifies that the pipeline must not be
bound to an unprotected command buffer.

It is valid to set both VK_PIPELINE_CREATE_2_ALLOW_DERIVATIVES_BIT_KHR and
VK_PIPELINE_CREATE_2_DERIVATIVE_BIT_KHR. This allows a pipeline to be both a parent and possibly a
child in a pipeline hierarchy. See Pipeline Derivatives for more information.

When an implementation is looking up a pipeline in a pipeline cache, if that pipeline is being
created using linked libraries, implementations should always return an equivalent pipeline
created with VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT if available, whether or not that
bit was specified.

Note

Using VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT (or not) when linking
pipeline libraries is intended as a performance tradeoff between host and device.
If the bit is omitted, linking should be faster and produce a pipeline more rapidly,
but performance of the pipeline on the target device may be reduced. If the bit is
included, linking may be slower but should produce a pipeline with device
performance comparable to a monolithically created pipeline. Using both options
can allow latency-sensitive applications to generate a suboptimal but usable
pipeline quickly, and then perform an optimal link in the background, substituting
the result for the suboptimally linked pipeline as soon as it is available.

// Provided by VK_KHR_maintenance5
typedef VkFlags64 VkPipelineCreateFlags2KHR;

VkPipelineCreateFlags2KHR is a bitmask type for setting a mask of zero or more

781

VkPipelineCreateFlagBits2KHR.

Bits which can be set in

• VkGraphicsPipelineCreateInfo::flags

• VkComputePipelineCreateInfo::flags

• VkRayTracingPipelineCreateInfoKHR::flags

• VkRayTracingPipelineCreateInfoNV::flags

specify how a pipeline is created, and are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineCreateFlagBits {
 VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT = 0x00000001,
 VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT = 0x00000002,
 VK_PIPELINE_CREATE_DERIVATIVE_BIT = 0x00000004,
 // Provided by VK_VERSION_1_1
 VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT = 0x00000008,
 // Provided by VK_VERSION_1_1
 VK_PIPELINE_CREATE_DISPATCH_BASE_BIT = 0x00000010,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT = 0x00000100,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT = 0x00000200,
 // Provided by VK_KHR_dynamic_rendering with VK_KHR_fragment_shading_rate
 VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR =
0x00200000,
 // Provided by VK_KHR_dynamic_rendering with VK_EXT_fragment_density_map
 VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT = 0x00400000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR = 0x00004000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR = 0x00008000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR = 0x00010000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR = 0x00020000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR = 0x00001000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR = 0x00002000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR =
0x00080000,
 // Provided by VK_NV_ray_tracing
 VK_PIPELINE_CREATE_DEFER_COMPILE_BIT_NV = 0x00000020,
 // Provided by VK_KHR_pipeline_executable_properties
 VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR = 0x00000040,
 // Provided by VK_KHR_pipeline_executable_properties

782

 VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR = 0x00000080,
 // Provided by VK_NV_device_generated_commands
 VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV = 0x00040000,
 // Provided by VK_KHR_pipeline_library
 VK_PIPELINE_CREATE_LIBRARY_BIT_KHR = 0x00000800,
 // Provided by VK_EXT_descriptor_buffer
 VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT = 0x20000000,
 // Provided by VK_EXT_graphics_pipeline_library
 VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT = 0x00800000,
 // Provided by VK_EXT_graphics_pipeline_library
 VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT = 0x00000400,
 // Provided by VK_NV_ray_tracing_motion_blur
 VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV = 0x00100000,
 // Provided by VK_EXT_attachment_feedback_loop_layout
 VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT = 0x02000000,
 // Provided by VK_EXT_attachment_feedback_loop_layout
 VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT = 0x04000000,
 // Provided by VK_EXT_opacity_micromap
 VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT = 0x01000000,
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_NV_displacement_micromap
 VK_PIPELINE_CREATE_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV = 0x10000000,
#endif
 // Provided by VK_EXT_pipeline_protected_access
 VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT = 0x08000000,
 // Provided by VK_EXT_pipeline_protected_access
 VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT = 0x40000000,
 // Provided by VK_VERSION_1_1
 VK_PIPELINE_CREATE_DISPATCH_BASE = VK_PIPELINE_CREATE_DISPATCH_BASE_BIT,
 // Provided by VK_KHR_dynamic_rendering with VK_KHR_fragment_shading_rate
 VK_PIPELINE_RASTERIZATION_STATE_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR =
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR,
 // Provided by VK_KHR_dynamic_rendering with VK_EXT_fragment_density_map
 VK_PIPELINE_RASTERIZATION_STATE_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT =
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT,
 // Provided by VK_KHR_device_group
 VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT_KHR =
VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT,
 // Provided by VK_KHR_device_group
 VK_PIPELINE_CREATE_DISPATCH_BASE_KHR = VK_PIPELINE_CREATE_DISPATCH_BASE,
 // Provided by VK_EXT_pipeline_creation_cache_control
 VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT =
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT,
 // Provided by VK_EXT_pipeline_creation_cache_control
 VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT =
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT,
} VkPipelineCreateFlagBits;

• VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT specifies that the created pipeline will not be
optimized. Using this flag may reduce the time taken to create the pipeline.

783

• VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT specifies that the pipeline to be created is allowed to
be the parent of a pipeline that will be created in a subsequent pipeline creation call.

• VK_PIPELINE_CREATE_DERIVATIVE_BIT specifies that the pipeline to be created will be a child of a
previously created parent pipeline.

• VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT specifies that any shader input variables
decorated as ViewIndex will be assigned values as if they were decorated as DeviceIndex.

• VK_PIPELINE_CREATE_DISPATCH_BASE specifies that a compute pipeline can be used with
vkCmdDispatchBase with a non-zero base workgroup.

• VK_PIPELINE_CREATE_DEFER_COMPILE_BIT_NV specifies that a pipeline is created with all shaders in
the deferred state. Before using the pipeline the application must call vkCompileDeferredNV
exactly once on each shader in the pipeline before using the pipeline.

• VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR specifies that the shader compiler should
capture statistics for the pipeline executables produced by the compile process which can later
be retrieved by calling vkGetPipelineExecutableStatisticsKHR. Enabling this flag must not affect
the final compiled pipeline but may disable pipeline caching or otherwise affect pipeline
creation time.

• VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR specifies that the shader
compiler should capture the internal representations of pipeline executables produced by the
compile process which can later be retrieved by calling
vkGetPipelineExecutableInternalRepresentationsKHR. Enabling this flag must not affect the
final compiled pipeline but may disable pipeline caching or otherwise affect pipeline creation
time. When capturing IR from pipelines created with pipeline libraries, there is no guarantee
that IR from libraries can be retrieved from the linked pipeline. Applications should retrieve IR
from each library, and any linked pipelines, separately.

• VK_PIPELINE_CREATE_LIBRARY_BIT_KHR specifies that the pipeline cannot be used directly, and
instead defines a pipeline library that can be combined with other pipelines using the
VkPipelineLibraryCreateInfoKHR structure. This is available in ray tracing and graphics
pipelines.

• VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR specifies that an any-hit
shader will always be present when an any-hit shader would be executed. A NULL any-hit
shader is an any-hit shader which is effectively VK_SHADER_UNUSED_KHR, such as from a shader
group consisting entirely of zeros.

• VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR specifies that a closest hit
shader will always be present when a closest hit shader would be executed. A NULL closest hit
shader is a closest hit shader which is effectively VK_SHADER_UNUSED_KHR, such as from a shader
group consisting entirely of zeros.

• VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR specifies that a miss shader will
always be present when a miss shader would be executed. A NULL miss shader is a miss shader
which is effectively VK_SHADER_UNUSED_KHR, such as from a shader group consisting entirely of
zeros.

• VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR specifies that an
intersection shader will always be present when an intersection shader would be executed. A
NULL intersection shader is an intersection shader which is effectively VK_SHADER_UNUSED_KHR,

784

such as from a shader group consisting entirely of zeros.

• VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR specifies that triangle primitives will be
skipped during traversal using pipeline trace ray instructions.

• VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR specifies that AABB primitives will be
skipped during traversal using pipeline trace ray instructions.

• VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR specifies that the
shader group handles can be saved and reused on a subsequent run (e.g. for trace capture and
replay).

• VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV specifies that the pipeline can be used in
combination with Device-Generated Commands.

• VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT specifies that pipeline creation will
fail if a compile is required for creation of a valid VkPipeline object;
VK_PIPELINE_COMPILE_REQUIRED will be returned by pipeline creation, and the VkPipeline will be
set to VK_NULL_HANDLE.

• When creating multiple pipelines, VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT specifies
that control will be returned to the application if any individual pipeline returns a result which
is not VK_SUCCESS rather than continuing to create additional pipelines.

• VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV specifies that the pipeline is allowed to use
OpTraceRayMotionNV.

• VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR specifies that the
pipeline will be used with a fragment shading rate attachment and dynamic rendering.

• VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT specifies that the
pipeline will be used with a fragment density map attachment and dynamic rendering.

• VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT specifies that pipeline libraries being linked
into this library should have link time optimizations applied. If this bit is omitted,
implementations should instead perform linking as rapidly as possible.

• VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT specifies that pipeline libraries
should retain any information necessary to later perform an optimal link with
VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT.

• VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT specifies that a pipeline will be used with
descriptor buffers, rather than descriptor sets.

• VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT specifies that the pipeline may be
used with an attachment feedback loop including color attachments. It is ignored if
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT is set in pDynamicStates.

• VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT specifies that the pipeline
may be used with an attachment feedback loop including depth-stencil attachments. It is
ignored if VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT is set in pDynamicStates.

• VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT specifies that the ray tracing pipeline
can be used with acceleration structures which reference an opacity micromap array.

• VK_PIPELINE_CREATE_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV specifies that the ray tracing
pipeline can be used with acceleration structures which reference a displacement micromap

785

array.

• VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT specifies that the pipeline must not be bound
to a protected command buffer.

• VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT specifies that the pipeline must not be
bound to an unprotected command buffer.

It is valid to set both VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT and
VK_PIPELINE_CREATE_DERIVATIVE_BIT. This allows a pipeline to be both a parent and possibly a child
in a pipeline hierarchy. See Pipeline Derivatives for more information.

When an implementation is looking up a pipeline in a pipeline cache, if that pipeline is being
created using linked libraries, implementations should always return an equivalent pipeline
created with VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT if available, whether or not that
bit was specified.

Note

Using VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT (or not) when linking
pipeline libraries is intended as a performance tradeoff between host and device.
If the bit is omitted, linking should be faster and produce a pipeline more rapidly,
but performance of the pipeline on the target device may be reduced. If the bit is
included, linking may be slower but should produce a pipeline with device
performance comparable to a monolithically created pipeline. Using both options
can allow latency-sensitive applications to generate a suboptimal but usable
pipeline quickly, and then perform an optimal link in the background, substituting
the result for the suboptimally linked pipeline as soon as it is available.

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineCreateFlags;

VkPipelineCreateFlags is a bitmask type for setting a mask of zero or more
VkPipelineCreateFlagBits.

The VkGraphicsPipelineLibraryCreateInfoEXT structure is defined as:

// Provided by VK_EXT_graphics_pipeline_library
typedef struct VkGraphicsPipelineLibraryCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkGraphicsPipelineLibraryFlagsEXT flags;
} VkGraphicsPipelineLibraryCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkGraphicsPipelineLibraryFlagBitsEXT specifying the subsets of the
graphics pipeline that are being compiled.

786

If a VkGraphicsPipelineLibraryCreateInfoEXT structure is included in the pNext chain of
VkGraphicsPipelineCreateInfo, it specifies the subsets of the graphics pipeline being created,
excluding any subsets from linked pipeline libraries. If the pipeline is created with pipeline
libraries, state from those libraries is aggregated with said subset.

If this structure is omitted, and either VkGraphicsPipelineCreateInfo::flags includes
VK_PIPELINE_CREATE_LIBRARY_BIT_KHR or the VkGraphicsPipelineCreateInfo::pNext chain includes a
VkPipelineLibraryCreateInfoKHR structure with a libraryCount greater than 0, it is as if flags is 0.
Otherwise if this structure is omitted, it is as if flags includes all possible subsets of the graphics
pipeline (i.e. a complete graphics pipeline).

Valid Usage (Implicit)

• VUID-VkGraphicsPipelineLibraryCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT

• VUID-VkGraphicsPipelineLibraryCreateInfoEXT-flags-parameter
flags must be a valid combination of VkGraphicsPipelineLibraryFlagBitsEXT values

• VUID-VkGraphicsPipelineLibraryCreateInfoEXT-flags-requiredbitmask
flags must not be 0

// Provided by VK_EXT_graphics_pipeline_library
typedef VkFlags VkGraphicsPipelineLibraryFlagsEXT;

VkGraphicsPipelineLibraryFlagsEXT is a bitmask type for setting a mask of zero or more
VkGraphicsPipelineLibraryFlagBitsEXT.

Possible values of the flags member of VkGraphicsPipelineLibraryCreateInfoEXT, specifying the
subsets of a graphics pipeline to compile are:

// Provided by VK_EXT_graphics_pipeline_library
typedef enum VkGraphicsPipelineLibraryFlagBitsEXT {
 VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT = 0x00000001,
 VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT = 0x00000002,
 VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT = 0x00000004,
 VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT = 0x00000008,
} VkGraphicsPipelineLibraryFlagBitsEXT;

• VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT specifies that a pipeline will
include vertex input interface state.

• VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT specifies that a pipeline will
include pre-rasterization shader state.

• VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT specifies that a pipeline will include
fragment shader state.

• VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT specifies that a pipeline will

787

include fragment output interface state.

The VkPipelineDynamicStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineDynamicStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineDynamicStateCreateFlags flags;
 uint32_t dynamicStateCount;
 const VkDynamicState* pDynamicStates;
} VkPipelineDynamicStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• dynamicStateCount is the number of elements in the pDynamicStates array.

• pDynamicStates is a pointer to an array of VkDynamicState values specifying which pieces of
pipeline state will use the values from dynamic state commands rather than from pipeline state
creation information.

Valid Usage

• VUID-VkPipelineDynamicStateCreateInfo-pDynamicStates-01442
Each element of pDynamicStates must be unique

Valid Usage (Implicit)

• VUID-VkPipelineDynamicStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO

• VUID-VkPipelineDynamicStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineDynamicStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineDynamicStateCreateInfo-pDynamicStates-parameter
If dynamicStateCount is not 0, pDynamicStates must be a valid pointer to an array of
dynamicStateCount valid VkDynamicState values

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineDynamicStateCreateFlags;

VkPipelineDynamicStateCreateFlags is a bitmask type for setting a mask, but is currently reserved for

788

future use.

The source of different pieces of dynamic state is specified by the
VkPipelineDynamicStateCreateInfo::pDynamicStates property of the currently active pipeline, each
of whose elements must be one of the values:

// Provided by VK_VERSION_1_0
typedef enum VkDynamicState {
 VK_DYNAMIC_STATE_VIEWPORT = 0,
 VK_DYNAMIC_STATE_SCISSOR = 1,
 VK_DYNAMIC_STATE_LINE_WIDTH = 2,
 VK_DYNAMIC_STATE_DEPTH_BIAS = 3,
 VK_DYNAMIC_STATE_BLEND_CONSTANTS = 4,
 VK_DYNAMIC_STATE_DEPTH_BOUNDS = 5,
 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK = 6,
 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK = 7,
 VK_DYNAMIC_STATE_STENCIL_REFERENCE = 8,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_CULL_MODE = 1000267000,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_FRONT_FACE = 1000267001,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY = 1000267002,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT = 1000267003,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT = 1000267004,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE = 1000267005,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE = 1000267006,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE = 1000267007,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_COMPARE_OP = 1000267008,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE = 1000267009,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE = 1000267010,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_STENCIL_OP = 1000267011,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE = 1000377001,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE = 1000377002,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE = 1000377004,
 // Provided by VK_NV_clip_space_w_scaling
 VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV = 1000087000,
 // Provided by VK_EXT_discard_rectangles

789

 VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT = 1000099000,
 // Provided by VK_EXT_discard_rectangles
 VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT = 1000099001,
 // Provided by VK_EXT_discard_rectangles
 VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT = 1000099002,
 // Provided by VK_EXT_sample_locations
 VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT = 1000143000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR = 1000347000,
 // Provided by VK_NV_shading_rate_image
 VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV = 1000164004,
 // Provided by VK_NV_shading_rate_image
 VK_DYNAMIC_STATE_VIEWPORT_COARSE_SAMPLE_ORDER_NV = 1000164006,
 // Provided by VK_NV_scissor_exclusive
 VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV = 1000205000,
 // Provided by VK_NV_scissor_exclusive
 VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV = 1000205001,
 // Provided by VK_KHR_fragment_shading_rate
 VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR = 1000226000,
 // Provided by VK_EXT_vertex_input_dynamic_state
 VK_DYNAMIC_STATE_VERTEX_INPUT_EXT = 1000352000,
 // Provided by VK_EXT_extended_dynamic_state2
 VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT = 1000377000,
 // Provided by VK_EXT_extended_dynamic_state2
 VK_DYNAMIC_STATE_LOGIC_OP_EXT = 1000377003,
 // Provided by VK_EXT_color_write_enable
 VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT = 1000381000,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT = 1000455003,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_POLYGON_MODE_EXT = 1000455004,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT = 1000455005,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_SAMPLE_MASK_EXT = 1000455006,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT = 1000455007,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT = 1000455008,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT = 1000455009,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT = 1000455010,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT = 1000455011,
 // Provided by VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT = 1000455012,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_KHR_maintenance2 or
VK_VERSION_1_1
 VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT = 1000455002,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_transform_feedback

790

 VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT = 1000455013,
 // Provided by VK_EXT_conservative_rasterization with VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT = 1000455014,
 // Provided by VK_EXT_conservative_rasterization with VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT = 1000455015,
 // Provided by VK_EXT_depth_clip_enable with VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT = 1000455016,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_sample_locations
 VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT = 1000455017,
 // Provided by VK_EXT_blend_operation_advanced with VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT = 1000455018,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_provoking_vertex
 VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT = 1000455019,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_line_rasterization
 VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT = 1000455020,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_line_rasterization
 VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT = 1000455021,
 // Provided by VK_EXT_depth_clip_control with VK_EXT_extended_dynamic_state3
 VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT = 1000455022,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_clip_space_w_scaling
 VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV = 1000455023,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_viewport_swizzle
 VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV = 1000455024,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_fragment_coverage_to_color
 VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV = 1000455025,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_fragment_coverage_to_color
 VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV = 1000455026,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_framebuffer_mixed_samples
 VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV = 1000455027,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_framebuffer_mixed_samples
 VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV = 1000455028,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_framebuffer_mixed_samples
 VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV = 1000455029,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_shading_rate_image
 VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV = 1000455030,
 // Provided by VK_EXT_extended_dynamic_state3 with
VK_NV_representative_fragment_test
 VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV = 1000455031,
 // Provided by VK_EXT_extended_dynamic_state3 with VK_NV_coverage_reduction_mode
 VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV = 1000455032,
 // Provided by VK_EXT_attachment_feedback_loop_dynamic_state
 VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT = 1000524000,
 // Provided by VK_KHR_line_rasterization
 VK_DYNAMIC_STATE_LINE_STIPPLE_KHR = 1000259000,
 // Provided by VK_EXT_line_rasterization
 VK_DYNAMIC_STATE_LINE_STIPPLE_EXT = VK_DYNAMIC_STATE_LINE_STIPPLE_KHR,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_CULL_MODE_EXT = VK_DYNAMIC_STATE_CULL_MODE,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_FRONT_FACE_EXT = VK_DYNAMIC_STATE_FRONT_FACE,
 // Provided by VK_EXT_extended_dynamic_state

791

 VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT = VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT = VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT = VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT =
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT = VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT = VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT = VK_DYNAMIC_STATE_DEPTH_COMPARE_OP,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT =
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT = VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE,
 // Provided by VK_EXT_extended_dynamic_state
 VK_DYNAMIC_STATE_STENCIL_OP_EXT = VK_DYNAMIC_STATE_STENCIL_OP,
 // Provided by VK_EXT_extended_dynamic_state2
 VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE_EXT =
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE,
 // Provided by VK_EXT_extended_dynamic_state2
 VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE_EXT = VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE,
 // Provided by VK_EXT_extended_dynamic_state2
 VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE_EXT =
VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE,
} VkDynamicState;

• VK_DYNAMIC_STATE_VIEWPORT specifies that the pViewports state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetViewport before any drawing commands. The number of viewports used by a pipeline
is still specified by the viewportCount member of VkPipelineViewportStateCreateInfo.

• VK_DYNAMIC_STATE_SCISSOR specifies that the pScissors state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetScissor before any drawing commands. The number of scissor rectangles used by a
pipeline is still specified by the scissorCount member of VkPipelineViewportStateCreateInfo.

• VK_DYNAMIC_STATE_LINE_WIDTH specifies that the lineWidth state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetLineWidth before any drawing commands that generate line primitives for the
rasterizer.

• VK_DYNAMIC_STATE_DEPTH_BIAS specifies that any instance of VkDepthBiasRepresentationInfoEXT
included in the pNext chain of VkPipelineRasterizationStateCreateInfo as well as the
depthBiasConstantFactor, depthBiasClamp and depthBiasSlopeFactor states in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT before any draws are performed with depth

792

bias enabled.

• VK_DYNAMIC_STATE_BLEND_CONSTANTS specifies that the blendConstants state in
VkPipelineColorBlendStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetBlendConstants before any draws are performed with a pipeline state with
VkPipelineColorBlendAttachmentState member blendEnable set to VK_TRUE and any of the blend
functions using a constant blend color.

• VK_DYNAMIC_STATE_DEPTH_BOUNDS specifies that the minDepthBounds and maxDepthBounds states of
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBounds before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member depthBoundsTestEnable set to VK_TRUE.

• VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK specifies that the compareMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilCompareMask before any draws are performed with a
pipeline state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to
VK_TRUE

• VK_DYNAMIC_STATE_STENCIL_WRITE_MASK specifies that the writeMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilWriteMask before any draws are performed with a pipeline
state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_STENCIL_REFERENCE specifies that the reference state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilReference before any draws are performed with a pipeline
state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV specifies that the pViewportWScalings state in
VkPipelineViewportWScalingStateCreateInfoNV will be ignored and must be set dynamically
with vkCmdSetViewportWScalingNV before any draws are performed with a pipeline state with
VkPipelineViewportWScalingStateCreateInfoNV member viewportScalingEnable set to VK_TRUE

• VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT specifies that the pDiscardRectangles state in
VkPipelineDiscardRectangleStateCreateInfoEXT will be ignored and must be set dynamically
with vkCmdSetDiscardRectangleEXT before any draw or clear commands.

• VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT specifies that the presence of the
VkPipelineDiscardRectangleStateCreateInfoEXT structure in the VkGraphicsPipelineCreateInfo
chain with a discardRectangleCount greater than zero does not implicitly enable discard
rectangles and they must be enabled dynamically with vkCmdSetDiscardRectangleEnableEXT
before any draw commands. This is available on implementations that support at least
specVersion 2 of the VK_EXT_discard_rectangles extension.

• VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT specifies that the discardRectangleMode state in
VkPipelineDiscardRectangleStateCreateInfoEXT will be ignored and must be set dynamically
with vkCmdSetDiscardRectangleModeEXT before any draw commands. This is available on
implementations that support at least specVersion 2 of the VK_EXT_discard_rectangles extension.

• VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT specifies that the sampleLocationsInfo state in
VkPipelineSampleLocationsStateCreateInfoEXT will be ignored and must be set dynamically
with vkCmdSetSampleLocationsEXT before any draw or clear commands. Enabling custom
sample locations is still indicated by the sampleLocationsEnable member of

793

VkPipelineSampleLocationsStateCreateInfoEXT.

• VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV specifies that the pExclusiveScissors state in
VkPipelineViewportExclusiveScissorStateCreateInfoNV will be ignored and must be set
dynamically with vkCmdSetExclusiveScissorNV before any drawing commands.

• VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV specifies that the exclusive scissors must be
explicitly enabled with vkCmdSetExclusiveScissorEnableNV and the exclusiveScissorCount
value in VkPipelineViewportExclusiveScissorStateCreateInfoNV will not implicitly enable them.
This is available on implementations that support at least specVersion 2 of the
VK_NV_scissor_exclusive extension.

• VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV specifies that the pShadingRatePalettes state
in VkPipelineViewportShadingRateImageStateCreateInfoNV will be ignored and must be set
dynamically with vkCmdSetViewportShadingRatePaletteNV before any drawing commands.

• VK_DYNAMIC_STATE_VIEWPORT_COARSE_SAMPLE_ORDER_NV specifies that the coarse sample order state
in VkPipelineViewportCoarseSampleOrderStateCreateInfoNV will be ignored and must be set
dynamically with vkCmdSetCoarseSampleOrderNV before any drawing commands.

• VK_DYNAMIC_STATE_LINE_STIPPLE_EXT specifies that the lineStippleFactor and lineStipplePattern
state in VkPipelineRasterizationLineStateCreateInfoKHR will be ignored and must be set
dynamically with vkCmdSetLineStippleKHR before any draws are performed with a pipeline
state with VkPipelineRasterizationLineStateCreateInfoKHR member stippledLineEnable set to
VK_TRUE.

• VK_DYNAMIC_STATE_CULL_MODE specifies that the cullMode state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetCullMode before any drawing commands.

• VK_DYNAMIC_STATE_FRONT_FACE specifies that the frontFace state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetFrontFace before any drawing commands.

• VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY specifies that the topology state in
VkPipelineInputAssemblyStateCreateInfo only specifies the topology class, and the specific
topology order and adjacency must be set dynamically with vkCmdSetPrimitiveTopology before
any drawing commands.

• VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT specifies that the viewportCount and pViewports state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetViewportWithCount before any draw call.

• VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT specifies that the scissorCount and pScissors state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetScissorWithCount before any draw call.

• VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE specifies that the stride state in
VkVertexInputBindingDescription will be ignored and must be set dynamically with
vkCmdBindVertexBuffers2 before any draw call.

• VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE specifies that the depthTestEnable state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthTestEnable before any draw call.

• VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE specifies that the depthWriteEnable state in

794

VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthWriteEnable before any draw call.

• VK_DYNAMIC_STATE_DEPTH_COMPARE_OP specifies that the depthCompareOp state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthCompareOp before any draw call.

• VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE specifies that the depthBoundsTestEnable state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBoundsTestEnable before any draw call.

• VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE specifies that the stencilTestEnable state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetStencilTestEnable before any draw call.

• VK_DYNAMIC_STATE_STENCIL_OP specifies that the failOp, passOp, depthFailOp, and compareOp states
in VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be
set dynamically with vkCmdSetStencilOp before any draws are performed with a pipeline state
with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT specifies that the patchControlPoints state in
VkPipelineTessellationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetPatchControlPointsEXT before any drawing commands.

• VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE specifies that the rasterizerDiscardEnable state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetRasterizerDiscardEnable before any drawing commands.

• VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE specifies that the depthBiasEnable state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBiasEnable before any drawing commands.

• VK_DYNAMIC_STATE_LOGIC_OP_EXT specifies that the logicOp state in
VkPipelineColorBlendStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetLogicOpEXT before any drawing commands.

• VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE specifies that the primitiveRestartEnable state in
VkPipelineInputAssemblyStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetPrimitiveRestartEnable before any drawing commands.

• VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR specifies that state in
VkPipelineFragmentShadingRateStateCreateInfoKHR and
VkPipelineFragmentShadingRateEnumStateCreateInfoNV will be ignored and must be set
dynamically with vkCmdSetFragmentShadingRateKHR or
vkCmdSetFragmentShadingRateEnumNV before any drawing commands.

• VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR specifies that the default stack size
computation for the pipeline will be ignored and must be set dynamically with
vkCmdSetRayTracingPipelineStackSizeKHR before any ray tracing calls are performed.

• VK_DYNAMIC_STATE_VERTEX_INPUT_EXT specifies that the pVertexInputState state will be ignored and
must be set dynamically with vkCmdSetVertexInputEXT before any drawing commands

• VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT specifies that the pColorWriteEnables state in
VkPipelineColorWriteCreateInfoEXT will be ignored and must be set dynamically with
vkCmdSetColorWriteEnableEXT before any draw call.

795

• VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT specifies that the domainOrigin state in
VkPipelineTessellationDomainOriginStateCreateInfo will be ignored and must be set
dynamically with vkCmdSetTessellationDomainOriginEXT before any draw call.

• VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT specifies that the depthClampEnable state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthClampEnableEXT before any draw call.

• VK_DYNAMIC_STATE_POLYGON_MODE_EXT specifies that the polygonMode state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetPolygonModeEXT before any draw call.

• VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT specifies that the rasterizationSamples state in
VkPipelineMultisampleStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetRasterizationSamplesEXT before any draw call.

• VK_DYNAMIC_STATE_SAMPLE_MASK_EXT specifies that the pSampleMask state in
VkPipelineMultisampleStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetSampleMaskEXT before any draw call.

• VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT specifies that the alphaToCoverageEnable state in
VkPipelineMultisampleStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetAlphaToCoverageEnableEXT before any draw call.

• VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT specifies that the alphaToOneEnable state in
VkPipelineMultisampleStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetAlphaToOneEnableEXT before any draw call.

• VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT specifies that the logicOpEnable state in
VkPipelineColorBlendStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetLogicOpEnableEXT before any draw call.

• VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT specifies that the blendEnable state in
VkPipelineColorBlendAttachmentState will be ignored and must be set dynamically with
vkCmdSetColorBlendEnableEXT before any draw call.

• VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT specifies that the srcColorBlendFactor,
dstColorBlendFactor, colorBlendOp, srcAlphaBlendFactor, dstAlphaBlendFactor, and alphaBlendOp
states in VkPipelineColorBlendAttachmentState will be ignored and must be set dynamically
with vkCmdSetColorBlendEquationEXT before any draw call.

• VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT specifies that the colorWriteMask state in
VkPipelineColorBlendAttachmentState will be ignored and must be set dynamically with
vkCmdSetColorWriteMaskEXT before any draw call.

• VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT specifies that the rasterizationStream state in
VkPipelineRasterizationStateStreamCreateInfoEXT will be ignored and must be set dynamically
with vkCmdSetRasterizationStreamEXT before any draw call.

• VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT specifies that the
conservativeRasterizationMode state in VkPipelineRasterizationConservativeStateCreateInfoEXT
will be ignored and must be set dynamically with vkCmdSetConservativeRasterizationModeEXT
before any draw call.

• VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT specifies that the
extraPrimitiveOverestimationSize state in

796

VkPipelineRasterizationConservativeStateCreateInfoEXT will be ignored and must be set
dynamically with vkCmdSetExtraPrimitiveOverestimationSizeEXT before any draw call.

• VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT specifies that the depthClipEnable state in
VkPipelineRasterizationDepthClipStateCreateInfoEXT will be ignored and must be set
dynamically with vkCmdSetDepthClipEnableEXT before any draw call.

• VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT specifies that the sampleLocationsEnable state in
VkPipelineSampleLocationsStateCreateInfoEXT will be ignored and must be set dynamically
with vkCmdSetSampleLocationsEnableEXT before any draw call.

• VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT specifies that the colorBlendOp state in
VkPipelineColorBlendAttachmentState, and srcPremultiplied, dstPremultiplied, and
blendOverlap states in VkPipelineColorBlendAdvancedStateCreateInfoEXT will be ignored and
must be set dynamically with vkCmdSetColorBlendAdvancedEXT before any draw call.

• VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT specifies that the provokingVertexMode state in
VkPipelineRasterizationProvokingVertexStateCreateInfoEXT will be ignored and must be set
dynamically with vkCmdSetProvokingVertexModeEXT before any draw call.

• VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT specifies that the lineRasterizationMode state in
VkPipelineRasterizationLineStateCreateInfoKHR will be ignored and must be set dynamically
with vkCmdSetLineRasterizationModeEXT before any draw call.

• VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT specifies that the stippledLineEnable state in
VkPipelineRasterizationLineStateCreateInfoKHR will be ignored and must be set dynamically
with vkCmdSetLineStippleEnableEXT before any draw call.

• VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT specifies that the negativeOneToOne state in
VkPipelineViewportDepthClipControlCreateInfoEXT will be ignored and must be set
dynamically with vkCmdSetDepthClipNegativeOneToOneEXT before any draw call.

• VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV specifies that the viewportWScalingEnable state in
VkPipelineViewportWScalingStateCreateInfoNV will be ignored and must be set dynamically
with vkCmdSetViewportWScalingEnableNV before any draw call.

• VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV specifies that the viewportCount, and pViewportSwizzles
states in VkPipelineViewportSwizzleStateCreateInfoNV will be ignored and must be set
dynamically with vkCmdSetViewportSwizzleNV before any draw call.

• VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV specifies that the coverageToColorEnable state in
VkPipelineCoverageToColorStateCreateInfoNV will be ignored and must be set dynamically
with vkCmdSetCoverageToColorEnableNV before any draw call.

• VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV specifies that the coverageToColorLocation state
in VkPipelineCoverageToColorStateCreateInfoNV will be ignored and must be set dynamically
with vkCmdSetCoverageToColorLocationNV before any draw call.

• VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV specifies that the coverageModulationMode state in
VkPipelineCoverageModulationStateCreateInfoNV will be ignored and must be set dynamically
with vkCmdSetCoverageModulationModeNV before any draw call.

• VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV specifies that the
coverageModulationTableEnable state in VkPipelineCoverageModulationStateCreateInfoNV will
be ignored and must be set dynamically with vkCmdSetCoverageModulationTableEnableNV
before any draw call.

797

• VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV specifies that the coverageModulationTableCount,
and pCoverageModulationTable states in VkPipelineCoverageModulationStateCreateInfoNV will
be ignored and must be set dynamically with vkCmdSetCoverageModulationTableNV before
any draw call.

• VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV specifies that the shadingRateImageEnable state in
VkPipelineViewportShadingRateImageStateCreateInfoNV will be ignored and must be set
dynamically with vkCmdSetShadingRateImageEnableNV before any draw call.

• VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV specifies that the
representativeFragmentTestEnable state in
VkPipelineRepresentativeFragmentTestStateCreateInfoNV will be ignored and must be set
dynamically with vkCmdSetRepresentativeFragmentTestEnableNV before any draw call.

• VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV specifies that the coverageReductionMode state in
VkPipelineCoverageReductionStateCreateInfoNV will be ignored and must be set dynamically
with vkCmdSetCoverageReductionModeNV before any draw call.

• VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT specifies that the
VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT and
VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT flags will be ignored and
must be set dynamically with vkCmdSetAttachmentFeedbackLoopEnableEXT before any draw
call.

10.3.1. Valid Combinations of Stages for Graphics Pipelines

Primitive processing can be handled either on a per primitive basis by the vertex, tessellation, and
geometry shader stages, or on a per mesh basis using task and mesh shader stages. If the pipeline
includes a mesh shader stage, it uses the mesh pipeline, otherwise it uses the primitive pipeline.

If a task shader is omitted, the task shading stage is skipped.

If tessellation shader stages are omitted, the tessellation shading and fixed-function stages of the
pipeline are skipped.

If a geometry shader is omitted, the geometry shading stage is skipped.

If a fragment shader is omitted, fragment color outputs have undefined values, and the fragment
depth value is determined by Fragment Operations state. This can be useful for depth-only
rendering.

Presence of a shader stage in a pipeline is indicated by including a valid
VkPipelineShaderStageCreateInfo with module and pName selecting an entry point from a shader
module, where that entry point is valid for the stage specified by stage.

Presence of some of the fixed-function stages in the pipeline is implicitly derived from enabled
shaders and provided state. For example, the fixed-function tessellator is always present when the
pipeline has valid Tessellation Control and Tessellation Evaluation shaders.

For example:

• Depth/stencil-only rendering in a subpass with no color attachments

798

◦ Active Pipeline Shader Stages

▪ Vertex Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineVertexInputStateCreateInfo

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineDepthStencilStateCreateInfo

• Color-only rendering in a subpass with no depth/stencil attachment

◦ Active Pipeline Shader Stages

▪ Vertex Shader

▪ Fragment Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineVertexInputStateCreateInfo

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineColorBlendStateCreateInfo

• Rendering pipeline with tessellation and geometry shaders

◦ Active Pipeline Shader Stages

▪ Vertex Shader

▪ Tessellation Control Shader

▪ Tessellation Evaluation Shader

▪ Geometry Shader

▪ Fragment Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineVertexInputStateCreateInfo

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineTessellationStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineDepthStencilStateCreateInfo

799

▪ VkPipelineColorBlendStateCreateInfo

• Rendering pipeline with task and mesh shaders

◦ Active Pipeline Shader Stages

▪ Task Shader

▪ Mesh Shader

▪ Fragment Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineDepthStencilStateCreateInfo

▪ VkPipelineColorBlendStateCreateInfo

10.3.2. Graphics Pipeline Shader Groups

Graphics pipelines can contain multiple shader groups that can be bound individually. Each shader
group behaves as if it was a pipeline using the shader group’s state. When the pipeline is bound by
regular means, it behaves as if the state of group 0 is active, use
vkCmdBindPipelineShaderGroupNV to bind an individual shader group.

The primary purpose of shader groups is allowing the device to bind different pipeline state using
Device-Generated Commands.

The VkGraphicsPipelineShaderGroupsCreateInfoNV structure is defined as:

// Provided by VK_NV_device_generated_commands
typedef struct VkGraphicsPipelineShaderGroupsCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 uint32_t groupCount;
 const VkGraphicsShaderGroupCreateInfoNV* pGroups;
 uint32_t pipelineCount;
 const VkPipeline* pPipelines;
} VkGraphicsPipelineShaderGroupsCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• groupCount is the number of elements in the pGroups array.

• pGroups is a pointer to an array of VkGraphicsShaderGroupCreateInfoNV structures specifying
which state of the original VkGraphicsPipelineCreateInfo each shader group overrides.

• pipelineCount is the number of elements in the pPipelines array.

• pPipelines is a pointer to an array of graphics VkPipeline structures which are referenced

800

within the created pipeline, including all their shader groups.

When referencing shader groups by index, groups defined in the referenced pipelines are treated
as if they were defined as additional entries in pGroups. They are appended in the order they appear
in the pPipelines array and in the pGroups array when those pipelines were defined.

The application must maintain the lifetime of all such referenced pipelines based on the pipelines
that make use of them.

Valid Usage

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-groupCount-02879
groupCount must be at least 1 and as maximum
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::maxGraphicsShaderGroupCount

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-groupCount-02880
The sum of groupCount including those groups added from referenced pPipelines must
also be as maximum VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV
::maxGraphicsShaderGroupCount

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-pGroups-02881
The state of the first element of pGroups must match its equivalent within the parent’s
VkGraphicsPipelineCreateInfo

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-pGroups-02882
Each element of pGroups must in combination with the rest of the pipeline state yield a
valid state configuration

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-pGroups-02884
All elements of pGroups must use the same shader stage combinations unless any mesh
shader stage is used, then either combination of task and mesh or just mesh shader is
valid

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-pGroups-02885
Mesh and regular primitive shading stages cannot be mixed across pGroups

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-pPipelines-02886
Each element of pPipelines must have been created with identical state to the pipeline
currently created except the state that can be overridden by
VkGraphicsShaderGroupCreateInfoNV

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-deviceGeneratedCommands-02887
The deviceGeneratedCommands feature must be enabled

Valid Usage (Implicit)

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_SHADER_GROUPS_CREATE_INFO_NV

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-pGroups-parameter
If groupCount is not 0, pGroups must be a valid pointer to an array of groupCount valid
VkGraphicsShaderGroupCreateInfoNV structures

801

• VUID-VkGraphicsPipelineShaderGroupsCreateInfoNV-pPipelines-parameter
If pipelineCount is not 0, pPipelines must be a valid pointer to an array of pipelineCount
valid VkPipeline handles

The VkGraphicsShaderGroupCreateInfoNV structure provides the state overrides for each shader
group. Each shader group behaves like a pipeline that was created from its state as well as the
remaining parent’s state. It is defined as:

// Provided by VK_NV_device_generated_commands
typedef struct VkGraphicsShaderGroupCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
 const VkPipelineTessellationStateCreateInfo* pTessellationState;
} VkGraphicsShaderGroupCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stageCount is the number of entries in the pStages array.

• pStages is a pointer to an array VkPipelineShaderStageCreateInfo structures specifying the set of
the shader stages to be included in this shader group.

• pVertexInputState is a pointer to a VkPipelineVertexInputStateCreateInfo structure.

• pTessellationState is a pointer to a VkPipelineTessellationStateCreateInfo structure, and is
ignored if the shader group does not include a tessellation control shader stage and tessellation
evaluation shader stage.

Valid Usage

• VUID-VkGraphicsShaderGroupCreateInfoNV-stageCount-02888
For stageCount, the same restrictions as in VkGraphicsPipelineCreateInfo::stageCount
apply

• VUID-VkGraphicsShaderGroupCreateInfoNV-pStages-02889
For pStages, the same restrictions as in VkGraphicsPipelineCreateInfo::pStages apply

• VUID-VkGraphicsShaderGroupCreateInfoNV-pVertexInputState-02890
For pVertexInputState, the same restrictions as in VkGraphicsPipelineCreateInfo
::pVertexInputState apply

• VUID-VkGraphicsShaderGroupCreateInfoNV-pTessellationState-02891
For pTessellationState, the same restrictions as in VkGraphicsPipelineCreateInfo
::pTessellationState apply

802

Valid Usage (Implicit)

• VUID-VkGraphicsShaderGroupCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_GRAPHICS_SHADER_GROUP_CREATE_INFO_NV

• VUID-VkGraphicsShaderGroupCreateInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkGraphicsShaderGroupCreateInfoNV-pStages-parameter
pStages must be a valid pointer to an array of stageCount valid
VkPipelineShaderStageCreateInfo structures

• VUID-VkGraphicsShaderGroupCreateInfoNV-stageCount-arraylength
stageCount must be greater than 0

10.4. Ray Tracing Pipelines
Ray tracing pipelines consist of multiple shader stages, fixed-function traversal stages, and a
pipeline layout.

VK_SHADER_UNUSED_KHR is a special shader index used to indicate that a ray generation, miss, or
callable shader member is not used.

#define VK_SHADER_UNUSED_KHR (~0U)

or the equivalent

#define VK_SHADER_UNUSED_NV VK_SHADER_UNUSED_KHR

To create ray tracing pipelines, call:

// Provided by VK_NV_ray_tracing
VkResult vkCreateRayTracingPipelinesNV(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkRayTracingPipelineCreateInfoNV* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

• device is the logical device that creates the ray tracing pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled, or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

803

• pCreateInfos is a pointer to an array of VkRayTracingPipelineCreateInfoNV structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array in which the resulting ray tracing pipeline objects are
returned.

Pipelines are created and returned as described for Multiple Pipeline Creation.

Valid Usage

• VUID-vkCreateRayTracingPipelinesNV-flags-03415
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that
corresponds to that element

• VUID-vkCreateRayTracingPipelinesNV-flags-03416
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

• VUID-vkCreateRayTracingPipelinesNV-flags-03816
flags must not contain the VK_PIPELINE_CREATE_DISPATCH_BASE flag

• VUID-vkCreateRayTracingPipelinesNV-pipelineCache-02903
If pipelineCache was created with VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT,
host access to pipelineCache must be externally synchronized

Valid Usage (Implicit)

• VUID-vkCreateRayTracingPipelinesNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateRayTracingPipelinesNV-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkCreateRayTracingPipelinesNV-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of createInfoCount valid
VkRayTracingPipelineCreateInfoNV structures

• VUID-vkCreateRayTracingPipelinesNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateRayTracingPipelinesNV-pPipelines-parameter
pPipelines must be a valid pointer to an array of createInfoCount VkPipeline handles

• VUID-vkCreateRayTracingPipelinesNV-createInfoCount-arraylength
createInfoCount must be greater than 0

• VUID-vkCreateRayTracingPipelinesNV-pipelineCache-parent

804

If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success

• VK_SUCCESS

• VK_PIPELINE_COMPILE_REQUIRED_EXT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_SHADER_NV

To create ray tracing pipelines, call:

// Provided by VK_KHR_ray_tracing_pipeline
VkResult vkCreateRayTracingPipelinesKHR(
 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkRayTracingPipelineCreateInfoKHR* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

• device is the logical device that creates the ray tracing pipelines.

• deferredOperation is VK_NULL_HANDLE or the handle of a valid VkDeferredOperationKHR
request deferral object for this command.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled, or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is a pointer to an array of VkRayTracingPipelineCreateInfoKHR structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array in which the resulting ray tracing pipeline objects are
returned.

The VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS error is returned if the implementation is unable to
reuse the shader group handles provided in VkRayTracingShaderGroupCreateInfoKHR
::pShaderGroupCaptureReplayHandle when VkPhysicalDeviceRayTracingPipelineFeaturesKHR
::rayTracingPipelineShaderGroupHandleCaptureReplay is enabled.

805

Pipelines are created and returned as described for Multiple Pipeline Creation.

Valid Usage

• VUID-vkCreateRayTracingPipelinesKHR-flags-03415
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that
corresponds to that element

• VUID-vkCreateRayTracingPipelinesKHR-flags-03416
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

• VUID-vkCreateRayTracingPipelinesKHR-flags-03816
flags must not contain the VK_PIPELINE_CREATE_DISPATCH_BASE flag

• VUID-vkCreateRayTracingPipelinesKHR-pipelineCache-02903
If pipelineCache was created with VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT,
host access to pipelineCache must be externally synchronized

• VUID-vkCreateRayTracingPipelinesKHR-deferredOperation-03678
Any previous deferred operation that was associated with deferredOperation must be
complete

• VUID-vkCreateRayTracingPipelinesKHR-rayTracingPipeline-03586
The rayTracingPipeline feature must be enabled

• VUID-vkCreateRayTracingPipelinesKHR-deferredOperation-03587
If deferredOperation is not VK_NULL_HANDLE, the flags member of elements of
pCreateInfos must not include VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

Valid Usage (Implicit)

• VUID-vkCreateRayTracingPipelinesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateRayTracingPipelinesKHR-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkCreateRayTracingPipelinesKHR-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkCreateRayTracingPipelinesKHR-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of createInfoCount valid
VkRayTracingPipelineCreateInfoKHR structures

• VUID-vkCreateRayTracingPipelinesKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid

806

VkAllocationCallbacks structure

• VUID-vkCreateRayTracingPipelinesKHR-pPipelines-parameter
pPipelines must be a valid pointer to an array of createInfoCount VkPipeline handles

• VUID-vkCreateRayTracingPipelinesKHR-createInfoCount-arraylength
createInfoCount must be greater than 0

• VUID-vkCreateRayTracingPipelinesKHR-deferredOperation-parent
If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

• VUID-vkCreateRayTracingPipelinesKHR-pipelineCache-parent
If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

• VK_PIPELINE_COMPILE_REQUIRED_EXT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS

The VkRayTracingPipelineCreateInfoNV structure is defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkRayTracingPipelineCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 uint32_t groupCount;
 const VkRayTracingShaderGroupCreateInfoNV* pGroups;
 uint32_t maxRecursionDepth;
 VkPipelineLayout layout;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkRayTracingPipelineCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

807

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stageCount is the number of entries in the pStages array.

• pStages is a pointer to an array of VkPipelineShaderStageCreateInfo structures specifying the set
of the shader stages to be included in the ray tracing pipeline.

• groupCount is the number of entries in the pGroups array.

• pGroups is a pointer to an array of VkRayTracingShaderGroupCreateInfoNV structures
describing the set of the shader stages to be included in each shader group in the ray tracing
pipeline.

• maxRecursionDepth is the maximum recursion depth of shaders executed by this pipeline.

• layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

• basePipelineHandle is a pipeline to derive from.

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive
from.

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

If a VkPipelineCreateFlags2CreateInfoKHR structure is present in the pNext chain,
VkPipelineCreateFlags2CreateInfoKHR::flags from that structure is used instead of flags from this
structure.

Valid Usage

• VUID-VkRayTracingPipelineCreateInfoNV-None-09497
If the pNext chain does not include a VkPipelineCreateFlags2CreateInfoKHR structure,
flags must be a valid combination of VkPipelineCreateFlagBits values

• VUID-VkRayTracingPipelineCreateInfoNV-flags-07984
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid ray tracing VkPipeline handle

• VUID-VkRayTracingPipelineCreateInfoNV-flags-07985
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

• VUID-VkRayTracingPipelineCreateInfoNV-flags-07986
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, basePipelineIndex must be -1
or basePipelineHandle must be VK_NULL_HANDLE

• VUID-VkRayTracingPipelineCreateInfoNV-layout-07987
If a push constant block is declared in a shader, a push constant range in layout must
match both the shader stage and range

• VUID-VkRayTracingPipelineCreateInfoNV-layout-07988

808

If a resource variables is declared in a shader, a descriptor slot in layout must match the
shader stage

• VUID-VkRayTracingPipelineCreateInfoNV-layout-07990
If a resource variables is declared in a shader, and the descriptor type is not
VK_DESCRIPTOR_TYPE_MUTABLE_EXT, a descriptor slot in layout must match the descriptor
type

• VUID-VkRayTracingPipelineCreateInfoNV-layout-07991
If a resource variables is declared in a shader as an array, a descriptor slot in layout must
match the descriptor count

• VUID-VkRayTracingPipelineCreateInfoNV-pStages-03426
The shader code for the entry points identified by pStages, and the rest of the state
identified by this structure must adhere to the pipeline linking rules described in the
Shader Interfaces chapter

• VUID-VkRayTracingPipelineCreateInfoNV-layout-03428
The number of resources in layout accessible to each shader stage that is used by the
pipeline must be less than or equal to VkPhysicalDeviceLimits::maxPerStageResources

• VUID-VkRayTracingPipelineCreateInfoNV-flags-02904
flags must not include VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• VUID-VkRayTracingPipelineCreateInfoNV-pipelineCreationCacheControl-02905
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT or
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

• VUID-VkRayTracingPipelineCreateInfoNV-stage-06232
The stage member of at least one element of pStages must be
VK_SHADER_STAGE_RAYGEN_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-flags-03456
flags must not include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-maxRecursionDepth-03457
maxRecursionDepth must be less than or equal to
VkPhysicalDeviceRayTracingPropertiesNV::maxRecursionDepth

• VUID-VkRayTracingPipelineCreateInfoNV-flags-03458
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-flags-03459
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-flags-03460
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-flags-03461
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-flags-03462
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR

809

• VUID-VkRayTracingPipelineCreateInfoNV-flags-03463
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-flags-03588
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-flags-04948
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV

• VUID-VkRayTracingPipelineCreateInfoNV-flags-02957
flags must not include both VK_PIPELINE_CREATE_DEFER_COMPILE_BIT_NV and
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT at the same time

• VUID-VkRayTracingPipelineCreateInfoNV-pipelineStageCreationFeedbackCount-06651
If VkPipelineCreationFeedbackCreateInfo::pipelineStageCreationFeedbackCount is not 0, it
must be equal to stageCount

• VUID-VkRayTracingPipelineCreateInfoNV-stage-06898
The stage value in all pStages elements must be one of VK_SHADER_STAGE_RAYGEN_BIT_KHR,
VK_SHADER_STAGE_ANY_HIT_BIT_KHR, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR,
VK_SHADER_STAGE_MISS_BIT_KHR, VK_SHADER_STAGE_INTERSECTION_BIT_KHR, or
VK_SHADER_STAGE_CALLABLE_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoNV-flags-07402
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT

• VUID-VkRayTracingPipelineCreateInfoNV-flags-07998
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV

Valid Usage (Implicit)

• VUID-VkRayTracingPipelineCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_NV

• VUID-VkRayTracingPipelineCreateInfoNV-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkPipelineCreateFlags2CreateInfoKHR or
VkPipelineCreationFeedbackCreateInfo

• VUID-VkRayTracingPipelineCreateInfoNV-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRayTracingPipelineCreateInfoNV-pStages-parameter
pStages must be a valid pointer to an array of stageCount valid
VkPipelineShaderStageCreateInfo structures

• VUID-VkRayTracingPipelineCreateInfoNV-pGroups-parameter
pGroups must be a valid pointer to an array of groupCount valid
VkRayTracingShaderGroupCreateInfoNV structures

• VUID-VkRayTracingPipelineCreateInfoNV-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-VkRayTracingPipelineCreateInfoNV-stageCount-arraylength

810

stageCount must be greater than 0

• VUID-VkRayTracingPipelineCreateInfoNV-groupCount-arraylength
groupCount must be greater than 0

• VUID-VkRayTracingPipelineCreateInfoNV-commonparent
Both of basePipelineHandle, and layout that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

The VkRayTracingPipelineCreateInfoKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_pipeline
typedef struct VkRayTracingPipelineCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 uint32_t groupCount;
 const VkRayTracingShaderGroupCreateInfoKHR* pGroups;
 uint32_t maxPipelineRayRecursionDepth;
 const VkPipelineLibraryCreateInfoKHR* pLibraryInfo;
 const VkRayTracingPipelineInterfaceCreateInfoKHR* pLibraryInterface;
 const VkPipelineDynamicStateCreateInfo* pDynamicState;
 VkPipelineLayout layout;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkRayTracingPipelineCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stageCount is the number of entries in the pStages array.

• pStages is a pointer to an array of stageCount VkPipelineShaderStageCreateInfo structures
describing the set of the shader stages to be included in the ray tracing pipeline.

• groupCount is the number of entries in the pGroups array.

• pGroups is a pointer to an array of groupCount VkRayTracingShaderGroupCreateInfoKHR
structures describing the set of the shader stages to be included in each shader group in the ray
tracing pipeline.

• maxPipelineRayRecursionDepth is the maximum recursion depth of shaders executed by this
pipeline.

• pLibraryInfo is a pointer to a VkPipelineLibraryCreateInfoKHR structure defining pipeline
libraries to include.

• pLibraryInterface is a pointer to a VkRayTracingPipelineInterfaceCreateInfoKHR structure
defining additional information when using pipeline libraries.

811

• pDynamicState is a pointer to a VkPipelineDynamicStateCreateInfo structure, and is used to
indicate which properties of the pipeline state object are dynamic and can be changed
independently of the pipeline state. This can be NULL, which means no state in the pipeline is
considered dynamic.

• layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

• basePipelineHandle is a pipeline to derive from.

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive
from.

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

When VK_PIPELINE_CREATE_LIBRARY_BIT_KHR is specified, this pipeline defines a pipeline library which
cannot be bound as a ray tracing pipeline directly. Instead, pipeline libraries define common
shaders and shader groups which can be included in future pipeline creation.

If pipeline libraries are included in pLibraryInfo, shaders defined in those libraries are treated as if
they were defined as additional entries in pStages, appended in the order they appear in the
pLibraries array and in the pStages array when those libraries were defined.

When referencing shader groups in order to obtain a shader group handle, groups defined in those
libraries are treated as if they were defined as additional entries in pGroups, appended in the order
they appear in the pLibraries array and in the pGroups array when those libraries were defined. The
shaders these groups reference are set when the pipeline library is created, referencing those
specified in the pipeline library, not in the pipeline that includes it.

The default stack size for a pipeline if VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR is not
provided is computed as described in Ray Tracing Pipeline Stack.

If a VkPipelineCreateFlags2CreateInfoKHR structure is present in the pNext chain,
VkPipelineCreateFlags2CreateInfoKHR::flags from that structure is used instead of flags from this
structure.

Valid Usage

• VUID-VkRayTracingPipelineCreateInfoKHR-None-09497
If the pNext chain does not include a VkPipelineCreateFlags2CreateInfoKHR structure,
flags must be a valid combination of VkPipelineCreateFlagBits values

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-07984
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid ray tracing VkPipeline handle

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-07985
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

812

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-07986
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, basePipelineIndex must be -1
or basePipelineHandle must be VK_NULL_HANDLE

• VUID-VkRayTracingPipelineCreateInfoKHR-layout-07987
If a push constant block is declared in a shader, a push constant range in layout must
match both the shader stage and range

• VUID-VkRayTracingPipelineCreateInfoKHR-layout-07988
If a resource variables is declared in a shader, a descriptor slot in layout must match the
shader stage

• VUID-VkRayTracingPipelineCreateInfoKHR-layout-07990
If a resource variables is declared in a shader, and the descriptor type is not
VK_DESCRIPTOR_TYPE_MUTABLE_EXT, a descriptor slot in layout must match the descriptor
type

• VUID-VkRayTracingPipelineCreateInfoKHR-layout-07991
If a resource variables is declared in a shader as an array, a descriptor slot in layout must
match the descriptor count

• VUID-VkRayTracingPipelineCreateInfoKHR-pStages-03426
The shader code for the entry points identified by pStages, and the rest of the state
identified by this structure must adhere to the pipeline linking rules described in the
Shader Interfaces chapter

• VUID-VkRayTracingPipelineCreateInfoKHR-layout-03428
The number of resources in layout accessible to each shader stage that is used by the
pipeline must be less than or equal to VkPhysicalDeviceLimits::maxPerStageResources

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-02904
flags must not include VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• VUID-VkRayTracingPipelineCreateInfoKHR-pipelineCreationCacheControl-02905
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT or
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

• VUID-VkRayTracingPipelineCreateInfoKHR-stage-03425
If flags does not include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR, the stage member of at least
one element of pStages, including those implicitly added by pLibraryInfo, must be
VK_SHADER_STAGE_RAYGEN_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-maxPipelineRayRecursionDepth-03589
maxPipelineRayRecursionDepth must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxRayRecursionDepth

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-03465
If flags includes VK_PIPELINE_CREATE_LIBRARY_BIT_KHR, pLibraryInterface must not be NULL

• VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-03590
If pLibraryInfo is not NULL and its libraryCount member is greater than 0,
pLibraryInterface must not be NULL

• VUID-VkRayTracingPipelineCreateInfoKHR-pLibraries-03591

813

Each element of pLibraryInfo->pLibraries must have been created with the value of
maxPipelineRayRecursionDepth equal to that in this pipeline

• VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-03592
If pLibraryInfo is not NULL, each element of its pLibraries member must have been created
with a layout that is compatible with the layout in this pipeline

• VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-03593
If pLibraryInfo is not NULL, each element of its pLibraries member must have been created
with values of the maxPipelineRayPayloadSize and maxPipelineRayHitAttributeSize
members of pLibraryInterface equal to those in this pipeline

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-03594
If flags includes
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR, each
element of pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR bit set

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-04718
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR, each element of
pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR bit set

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-04719
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR, each element of
pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR bit set

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-04720
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR, each
element of pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR bit set

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-04721
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR,
each element of pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR bit set

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-04722
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR,
each element of pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR bit set

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-04723
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR, each
element of pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR bit set

• VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-03595
If the VK_KHR_pipeline_library extension is not enabled, pLibraryInfo and
pLibraryInterface must be NULL

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-03470
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR, for

814

any element of pGroups with a type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR or
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR, the anyHitShader of that
element must not be VK_SHADER_UNUSED_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-03471
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR,
for any element of pGroups with a type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR or
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR, the closestHitShader of that
element must not be VK_SHADER_UNUSED_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-rayTraversalPrimitiveCulling-03596
If the rayTraversalPrimitiveCulling feature is not enabled, flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-rayTraversalPrimitiveCulling-03597
If the rayTraversalPrimitiveCulling feature is not enabled, flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-06546
flags must not include both VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR and
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-03598
If flags includes
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR,
rayTracingPipelineShaderGroupHandleCaptureReplay must be enabled

• VUID-VkRayTracingPipelineCreateInfoKHR-
rayTracingPipelineShaderGroupHandleCaptureReplay-03599
If VkPhysicalDeviceRayTracingPipelineFeaturesKHR
::rayTracingPipelineShaderGroupHandleCaptureReplay is VK_TRUE and the
pShaderGroupCaptureReplayHandle member of any element of pGroups is not NULL, flags
must include
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-07999
If pLibraryInfo is NULL or its libraryCount is 0, stageCount must not be 0

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-08700
If flags does not include VK_PIPELINE_CREATE_LIBRARY_BIT_KHR and either pLibraryInfo is
NULL or its libraryCount is 0, groupCount must not be 0

• VUID-VkRayTracingPipelineCreateInfoKHR-pDynamicStates-03602
Any element of the pDynamicStates member of pDynamicState must be
VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-pipelineStageCreationFeedbackCount-06652
If VkPipelineCreationFeedbackCreateInfo::pipelineStageCreationFeedbackCount is not 0, it
must be equal to stageCount

• VUID-VkRayTracingPipelineCreateInfoKHR-stage-06899
The stage value in all pStages elements must be one of VK_SHADER_STAGE_RAYGEN_BIT_KHR,

815

VK_SHADER_STAGE_ANY_HIT_BIT_KHR, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR,
VK_SHADER_STAGE_MISS_BIT_KHR, VK_SHADER_STAGE_INTERSECTION_BIT_KHR, or
VK_SHADER_STAGE_CALLABLE_BIT_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-07403
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT, each element
of pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT bit set

• VUID-VkRayTracingPipelineCreateInfoKHR-flags-08701
If flags includes VK_PIPELINE_CREATE_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV, each
element of pLibraryInfo->pLibraries must have been created with the
VK_PIPELINE_CREATE_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV bit set

Valid Usage (Implicit)

• VUID-VkRayTracingPipelineCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR

• VUID-VkRayTracingPipelineCreateInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkPipelineCreateFlags2CreateInfoKHR,
VkPipelineCreationFeedbackCreateInfo, or VkPipelineRobustnessCreateInfoEXT

• VUID-VkRayTracingPipelineCreateInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRayTracingPipelineCreateInfoKHR-pStages-parameter
If stageCount is not 0, pStages must be a valid pointer to an array of stageCount valid
VkPipelineShaderStageCreateInfo structures

• VUID-VkRayTracingPipelineCreateInfoKHR-pGroups-parameter
If groupCount is not 0, pGroups must be a valid pointer to an array of groupCount valid
VkRayTracingShaderGroupCreateInfoKHR structures

• VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-parameter
If pLibraryInfo is not NULL, pLibraryInfo must be a valid pointer to a valid
VkPipelineLibraryCreateInfoKHR structure

• VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInterface-parameter
If pLibraryInterface is not NULL, pLibraryInterface must be a valid pointer to a valid
VkRayTracingPipelineInterfaceCreateInfoKHR structure

• VUID-VkRayTracingPipelineCreateInfoKHR-pDynamicState-parameter
If pDynamicState is not NULL, pDynamicState must be a valid pointer to a valid
VkPipelineDynamicStateCreateInfo structure

• VUID-VkRayTracingPipelineCreateInfoKHR-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-VkRayTracingPipelineCreateInfoKHR-commonparent
Both of basePipelineHandle, and layout that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

816

The VkRayTracingShaderGroupCreateInfoNV structure is defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkRayTracingShaderGroupCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkRayTracingShaderGroupTypeKHR type;
 uint32_t generalShader;
 uint32_t closestHitShader;
 uint32_t anyHitShader;
 uint32_t intersectionShader;
} VkRayTracingShaderGroupCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• type is the type of hit group specified in this structure.

• generalShader is the index of the ray generation, miss, or callable shader from
VkRayTracingPipelineCreateInfoNV::pStages in the group if the shader group has type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV, and VK_SHADER_UNUSED_NV otherwise.

• closestHitShader is the optional index of the closest hit shader from
VkRayTracingPipelineCreateInfoNV::pStages in the group if the shader group has type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV or
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV, and VK_SHADER_UNUSED_NV otherwise.

• anyHitShader is the optional index of the any-hit shader from
VkRayTracingPipelineCreateInfoNV::pStages in the group if the shader group has type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV or
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV, and VK_SHADER_UNUSED_NV otherwise.

• intersectionShader is the index of the intersection shader from
VkRayTracingPipelineCreateInfoNV::pStages in the group if the shader group has type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV, and VK_SHADER_UNUSED_NV otherwise.

Valid Usage

• VUID-VkRayTracingShaderGroupCreateInfoNV-type-02413
If type is VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV then generalShader must be a valid
index into VkRayTracingPipelineCreateInfoNV::pStages referring to a shader of
VK_SHADER_STAGE_RAYGEN_BIT_NV, VK_SHADER_STAGE_MISS_BIT_NV, or
VK_SHADER_STAGE_CALLABLE_BIT_NV

• VUID-VkRayTracingShaderGroupCreateInfoNV-type-02414
If type is VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV then closestHitShader,
anyHitShader, and intersectionShader must be VK_SHADER_UNUSED_NV

• VUID-VkRayTracingShaderGroupCreateInfoNV-type-02415
If type is VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV then
intersectionShader must be a valid index into VkRayTracingPipelineCreateInfoNV

817

::pStages referring to a shader of VK_SHADER_STAGE_INTERSECTION_BIT_NV

• VUID-VkRayTracingShaderGroupCreateInfoNV-type-02416
If type is VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV then
intersectionShader must be VK_SHADER_UNUSED_NV

• VUID-VkRayTracingShaderGroupCreateInfoNV-closestHitShader-02417
closestHitShader must be either VK_SHADER_UNUSED_NV or a valid index into
VkRayTracingPipelineCreateInfoNV::pStages referring to a shader of
VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV

• VUID-VkRayTracingShaderGroupCreateInfoNV-anyHitShader-02418
anyHitShader must be either VK_SHADER_UNUSED_NV or a valid index into
VkRayTracingPipelineCreateInfoNV::pStages referring to a shader of
VK_SHADER_STAGE_ANY_HIT_BIT_NV

Valid Usage (Implicit)

• VUID-VkRayTracingShaderGroupCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_NV

• VUID-VkRayTracingShaderGroupCreateInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkRayTracingShaderGroupCreateInfoNV-type-parameter
type must be a valid VkRayTracingShaderGroupTypeKHR value

The VkRayTracingShaderGroupCreateInfoKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_pipeline
typedef struct VkRayTracingShaderGroupCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkRayTracingShaderGroupTypeKHR type;
 uint32_t generalShader;
 uint32_t closestHitShader;
 uint32_t anyHitShader;
 uint32_t intersectionShader;
 const void* pShaderGroupCaptureReplayHandle;
} VkRayTracingShaderGroupCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• type is the type of hit group specified in this structure.

• generalShader is the index of the ray generation, miss, or callable shader from
VkRayTracingPipelineCreateInfoKHR::pStages in the group if the shader group has type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR, and VK_SHADER_UNUSED_KHR otherwise.

818

• closestHitShader is the optional index of the closest hit shader from
VkRayTracingPipelineCreateInfoKHR::pStages in the group if the shader group has type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR or
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR, and VK_SHADER_UNUSED_KHR
otherwise.

• anyHitShader is the optional index of the any-hit shader from
VkRayTracingPipelineCreateInfoKHR::pStages in the group if the shader group has type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR or
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR, and VK_SHADER_UNUSED_KHR
otherwise.

• intersectionShader is the index of the intersection shader from
VkRayTracingPipelineCreateInfoKHR::pStages in the group if the shader group has type of
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR, and VK_SHADER_UNUSED_KHR
otherwise.

• pShaderGroupCaptureReplayHandle is NULL or a pointer to replay information for this shader group
queried from vkGetRayTracingCaptureReplayShaderGroupHandlesKHR, as described in Ray
Tracing Capture Replay. Ignored if VkPhysicalDeviceRayTracingPipelineFeaturesKHR
::rayTracingPipelineShaderGroupHandleCaptureReplay is VK_FALSE.

If the pipeline is created with VK_PIPELINE_CREATE_LIBRARY_BIT_KHR and the
pipelineLibraryGroupHandles feature is enabled, pShaderGroupCaptureReplayHandle is inherited by
all pipelines which link against this pipeline and remains bitwise identical for any pipeline which
references this pipeline library.

Valid Usage

• VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03474
If type is VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR then generalShader must be a
valid index into VkRayTracingPipelineCreateInfoKHR::pStages referring to a shader of
VK_SHADER_STAGE_RAYGEN_BIT_KHR, VK_SHADER_STAGE_MISS_BIT_KHR, or
VK_SHADER_STAGE_CALLABLE_BIT_KHR

• VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03475
If type is VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR then closestHitShader,
anyHitShader, and intersectionShader must be VK_SHADER_UNUSED_KHR

• VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03476
If type is VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR then
intersectionShader must be a valid index into VkRayTracingPipelineCreateInfoKHR
::pStages referring to a shader of VK_SHADER_STAGE_INTERSECTION_BIT_KHR

• VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03477
If type is VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR then
intersectionShader must be VK_SHADER_UNUSED_KHR

• VUID-VkRayTracingShaderGroupCreateInfoKHR-closestHitShader-03478
closestHitShader must be either VK_SHADER_UNUSED_KHR or a valid index into
VkRayTracingPipelineCreateInfoKHR::pStages referring to a shader of
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR

819

• VUID-VkRayTracingShaderGroupCreateInfoKHR-anyHitShader-03479
anyHitShader must be either VK_SHADER_UNUSED_KHR or a valid index into
VkRayTracingPipelineCreateInfoKHR::pStages referring to a shader of
VK_SHADER_STAGE_ANY_HIT_BIT_KHR

• VUID-VkRayTracingShaderGroupCreateInfoKHR-
rayTracingPipelineShaderGroupHandleCaptureReplayMixed-03603
If VkPhysicalDeviceRayTracingPipelineFeaturesKHR
::rayTracingPipelineShaderGroupHandleCaptureReplayMixed is VK_FALSE then
pShaderGroupCaptureReplayHandle must not be provided if it has not been provided on a
previous call to ray tracing pipeline creation

• VUID-VkRayTracingShaderGroupCreateInfoKHR-
rayTracingPipelineShaderGroupHandleCaptureReplayMixed-03604
If VkPhysicalDeviceRayTracingPipelineFeaturesKHR
::rayTracingPipelineShaderGroupHandleCaptureReplayMixed is VK_FALSE then the caller must
guarantee that no ray tracing pipeline creation commands with
pShaderGroupCaptureReplayHandle provided execute simultaneously with ray tracing
pipeline creation commands without pShaderGroupCaptureReplayHandle provided

Valid Usage (Implicit)

• VUID-VkRayTracingShaderGroupCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR

• VUID-VkRayTracingShaderGroupCreateInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkRayTracingShaderGroupCreateInfoKHR-type-parameter
type must be a valid VkRayTracingShaderGroupTypeKHR value

Possible values of type in VkRayTracingShaderGroupCreateInfoKHR are:

// Provided by VK_KHR_ray_tracing_pipeline
typedef enum VkRayTracingShaderGroupTypeKHR {
 VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR = 0,
 VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR = 1,
 VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR = 2,
 // Provided by VK_NV_ray_tracing
 VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV =
VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR,
 // Provided by VK_NV_ray_tracing
 VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV =
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR,
 // Provided by VK_NV_ray_tracing
 VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV =
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR,
} VkRayTracingShaderGroupTypeKHR;

820

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkRayTracingShaderGroupTypeKHR VkRayTracingShaderGroupTypeNV;

• VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR indicates a shader group with a single
VK_SHADER_STAGE_RAYGEN_BIT_KHR, VK_SHADER_STAGE_MISS_BIT_KHR, or
VK_SHADER_STAGE_CALLABLE_BIT_KHR shader in it.

• VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR specifies a shader group that only
hits triangles and must not contain an intersection shader, only closest hit and any-hit shaders.

• VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR specifies a shader group that only
intersects with custom geometry and must contain an intersection shader and may contain
closest hit and any-hit shaders.

Note

For current group types, the hit group type could be inferred from the presence or
absence of the intersection shader, but we provide the type explicitly for future hit
groups that do not have that property.

The VkRayTracingPipelineInterfaceCreateInfoKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_pipeline
typedef struct VkRayTracingPipelineInterfaceCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t maxPipelineRayPayloadSize;
 uint32_t maxPipelineRayHitAttributeSize;
} VkRayTracingPipelineInterfaceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxPipelineRayPayloadSize is the maximum payload size in bytes used by any shader in the
pipeline.

• maxPipelineRayHitAttributeSize is the maximum attribute structure size in bytes used by any
shader in the pipeline.

maxPipelineRayPayloadSize is calculated as the maximum number of bytes used by any block
declared in the RayPayloadKHR or IncomingRayPayloadKHR storage classes.
maxPipelineRayHitAttributeSize is calculated as the maximum number of bytes used by any block
declared in the HitAttributeKHR storage class. As variables in these storage classes do not have
explicit offsets, the size should be calculated as if each variable has a scalar alignment equal to the
largest scalar alignment of any of the block’s members.

Note

821

There is no explicit upper limit for maxPipelineRayPayloadSize, but in practice it
should be kept as small as possible. Similar to invocation local memory, it must be
allocated for each shader invocation and for devices which support many
simultaneous invocations, this storage can rapidly be exhausted, resulting in
failure.

Valid Usage

• VUID-VkRayTracingPipelineInterfaceCreateInfoKHR-maxPipelineRayHitAttributeSize-
03605
maxPipelineRayHitAttributeSize must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxRayHitAttributeSize

Valid Usage (Implicit)

• VUID-VkRayTracingPipelineInterfaceCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_INTERFACE_CREATE_INFO_KHR

• VUID-VkRayTracingPipelineInterfaceCreateInfoKHR-pNext-pNext
pNext must be NULL

To query the opaque handles of shaders in the ray tracing pipeline, call:

// Provided by VK_KHR_ray_tracing_pipeline
VkResult vkGetRayTracingShaderGroupHandlesKHR(
 VkDevice device,
 VkPipeline pipeline,
 uint32_t firstGroup,
 uint32_t groupCount,
 size_t dataSize,
 void* pData);

or the equivalent command

// Provided by VK_NV_ray_tracing
VkResult vkGetRayTracingShaderGroupHandlesNV(
 VkDevice device,
 VkPipeline pipeline,
 uint32_t firstGroup,
 uint32_t groupCount,
 size_t dataSize,
 void* pData);

• device is the logical device containing the ray tracing pipeline.

• pipeline is the ray tracing pipeline object containing the shaders.

822

• firstGroup is the index of the first group to retrieve a handle for from the
VkRayTracingPipelineCreateInfoKHR::pGroups or VkRayTracingPipelineCreateInfoNV::pGroups
array.

• groupCount is the number of shader handles to retrieve.

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written.

If pipeline was created with VK_PIPELINE_CREATE_LIBRARY_BIT_KHR and the
pipelineLibraryGroupHandles feature is enabled applications can query group handles from that
pipeline, even if the pipeline is a library and is never bound to a command buffer. These group
handles remain bitwise identical for any pipeline which references the pipeline library. Group
indices are assigned as-if the pipeline was created without VK_PIPELINE_CREATE_LIBRARY_BIT_KHR.

Valid Usage

• VUID-vkGetRayTracingShaderGroupHandlesKHR-pipeline-04619
pipeline must be a ray tracing pipeline

• VUID-vkGetRayTracingShaderGroupHandlesKHR-firstGroup-04050
firstGroup must be less than the number of shader groups in pipeline

• VUID-vkGetRayTracingShaderGroupHandlesKHR-firstGroup-02419
The sum of firstGroup and groupCount must be less than or equal to the number of shader
groups in pipeline

• VUID-vkGetRayTracingShaderGroupHandlesKHR-dataSize-02420
dataSize must be at least VkPhysicalDeviceRayTracingPipelinePropertiesKHR
::shaderGroupHandleSize × groupCount

• VUID-vkGetRayTracingShaderGroupHandlesKHR-pipeline-07828
If the pipelineLibraryGroupHandles feature is not enabled, pipeline must not have been
created with VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

Valid Usage (Implicit)

• VUID-vkGetRayTracingShaderGroupHandlesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetRayTracingShaderGroupHandlesKHR-pipeline-parameter
pipeline must be a valid VkPipeline handle

• VUID-vkGetRayTracingShaderGroupHandlesKHR-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-vkGetRayTracingShaderGroupHandlesKHR-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkGetRayTracingShaderGroupHandlesKHR-pipeline-parent
pipeline must have been created, allocated, or retrieved from device

823

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To query the opaque capture data of shader groups in a ray tracing pipeline, call:

// Provided by VK_KHR_ray_tracing_pipeline
VkResult vkGetRayTracingCaptureReplayShaderGroupHandlesKHR(
 VkDevice device,
 VkPipeline pipeline,
 uint32_t firstGroup,
 uint32_t groupCount,
 size_t dataSize,
 void* pData);

• device is the logical device containing the ray tracing pipeline.

• pipeline is the ray tracing pipeline object containing the shaders.

• firstGroup is the index of the first group to retrieve a handle for from the
VkRayTracingPipelineCreateInfoKHR::pGroups array.

• groupCount is the number of shader handles to retrieve.

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written.

Once queried, this opaque data can be provided at pipeline creation time (in a subsequent
execution), using VkRayTracingShaderGroupCreateInfoKHR::pShaderGroupCaptureReplayHandle, as
described in Ray Tracing Capture Replay.

If pipeline was created with VK_PIPELINE_CREATE_LIBRARY_BIT_KHR and the
pipelineLibraryGroupHandles feature is enabled applications can query capture replay group
handles from that pipeline. The capture replay handle remains bitwise identical for any pipeline
which references the pipeline library. Group indices are assigned as-if the pipeline was created
without VK_PIPELINE_CREATE_LIBRARY_BIT_KHR.

Valid Usage

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-pipeline-04620
pipeline must be a ray tracing pipeline

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-firstGroup-04051
firstGroup must be less than the number of shader groups in pipeline

824

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-firstGroup-03483
The sum of firstGroup and groupCount must be less than or equal to the number of shader
groups in pipeline

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-dataSize-03484
dataSize must be at least VkPhysicalDeviceRayTracingPipelinePropertiesKHR
::shaderGroupHandleCaptureReplaySize × groupCount

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-
rayTracingPipelineShaderGroupHandleCaptureReplay-03606
VkPhysicalDeviceRayTracingPipelineFeaturesKHR::rayTracingPipelineShaderGroupHandleCapt
ureReplay must be enabled to call this function

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-pipeline-03607
pipeline must have been created with a flags that included
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-pipeline-07829
If the pipelineLibraryGroupHandles feature is not enabled, pipeline must not have been
created with VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

Valid Usage (Implicit)

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-pipeline-parameter
pipeline must be a valid VkPipeline handle

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkGetRayTracingCaptureReplayShaderGroupHandlesKHR-pipeline-parent
pipeline must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Ray tracing pipelines can contain more shaders than a graphics or compute pipeline, so to allow
parallel compilation of shaders within a pipeline, an application can choose to defer compilation
until a later point in time.

825

To compile a deferred shader in a pipeline call:

// Provided by VK_NV_ray_tracing
VkResult vkCompileDeferredNV(
 VkDevice device,
 VkPipeline pipeline,
 uint32_t shader);

• device is the logical device containing the ray tracing pipeline.

• pipeline is the ray tracing pipeline object containing the shaders.

• shader is the index of the shader to compile.

Valid Usage

• VUID-vkCompileDeferredNV-pipeline-04621
pipeline must be a ray tracing pipeline

• VUID-vkCompileDeferredNV-pipeline-02237
pipeline must have been created with VK_PIPELINE_CREATE_DEFER_COMPILE_BIT_NV

• VUID-vkCompileDeferredNV-shader-02238
shader must not have been called as a deferred compile before

Valid Usage (Implicit)

• VUID-vkCompileDeferredNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkCompileDeferredNV-pipeline-parameter
pipeline must be a valid VkPipeline handle

• VUID-vkCompileDeferredNV-pipeline-parent
pipeline must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To query the pipeline stack size of shaders in a shader group in the ray tracing pipeline, call:

826

// Provided by VK_KHR_ray_tracing_pipeline
VkDeviceSize vkGetRayTracingShaderGroupStackSizeKHR(
 VkDevice device,
 VkPipeline pipeline,
 uint32_t group,
 VkShaderGroupShaderKHR groupShader);

• device is the logical device containing the ray tracing pipeline.

• pipeline is the ray tracing pipeline object containing the shaders groups.

• group is the index of the shader group to query.

• groupShader is the type of shader from the group to query.

The return value is the ray tracing pipeline stack size in bytes for the specified shader as called
from the specified shader group.

Valid Usage

• VUID-vkGetRayTracingShaderGroupStackSizeKHR-pipeline-04622
pipeline must be a ray tracing pipeline

• VUID-vkGetRayTracingShaderGroupStackSizeKHR-group-03608
The value of group must be less than the number of shader groups in pipeline

• VUID-vkGetRayTracingShaderGroupStackSizeKHR-groupShader-03609
The shader identified by groupShader in group must not be VK_SHADER_UNUSED_KHR

Valid Usage (Implicit)

• VUID-vkGetRayTracingShaderGroupStackSizeKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetRayTracingShaderGroupStackSizeKHR-pipeline-parameter
pipeline must be a valid VkPipeline handle

• VUID-vkGetRayTracingShaderGroupStackSizeKHR-groupShader-parameter
groupShader must be a valid VkShaderGroupShaderKHR value

• VUID-vkGetRayTracingShaderGroupStackSizeKHR-pipeline-parent
pipeline must have been created, allocated, or retrieved from device

Possible values of groupShader in vkGetRayTracingShaderGroupStackSizeKHR are:

// Provided by VK_KHR_ray_tracing_pipeline
typedef enum VkShaderGroupShaderKHR {
 VK_SHADER_GROUP_SHADER_GENERAL_KHR = 0,
 VK_SHADER_GROUP_SHADER_CLOSEST_HIT_KHR = 1,
 VK_SHADER_GROUP_SHADER_ANY_HIT_KHR = 2,

827

 VK_SHADER_GROUP_SHADER_INTERSECTION_KHR = 3,
} VkShaderGroupShaderKHR;

• VK_SHADER_GROUP_SHADER_GENERAL_KHR uses the shader specified in the group with
VkRayTracingShaderGroupCreateInfoKHR::generalShader

• VK_SHADER_GROUP_SHADER_CLOSEST_HIT_KHR uses the shader specified in the group with
VkRayTracingShaderGroupCreateInfoKHR::closestHitShader

• VK_SHADER_GROUP_SHADER_ANY_HIT_KHR uses the shader specified in the group with
VkRayTracingShaderGroupCreateInfoKHR::anyHitShader

• VK_SHADER_GROUP_SHADER_INTERSECTION_KHR uses the shader specified in the group with
VkRayTracingShaderGroupCreateInfoKHR::intersectionShader

To dynamically set the stack size for a ray tracing pipeline, call:

// Provided by VK_KHR_ray_tracing_pipeline
void vkCmdSetRayTracingPipelineStackSizeKHR(
 VkCommandBuffer commandBuffer,
 uint32_t pipelineStackSize);

• commandBuffer is the command buffer into which the command will be recorded.

• pipelineStackSize is the stack size to use for subsequent ray tracing trace commands.

This command sets the stack size for subsequent ray tracing commands when the ray tracing
pipeline is created with VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, the stack size is computed as
described in Ray Tracing Pipeline Stack.

Valid Usage

• VUID-vkCmdSetRayTracingPipelineStackSizeKHR-pipelineStackSize-03610
pipelineStackSize must be large enough for any dynamic execution through the shaders
in the ray tracing pipeline used by a subsequent trace call

Valid Usage (Implicit)

• VUID-vkCmdSetRayTracingPipelineStackSizeKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetRayTracingPipelineStackSizeKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetRayTracingPipelineStackSizeKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdSetRayTracingPipelineStackSizeKHR-renderpass

828

This command must only be called outside of a render pass instance

• VUID-vkCmdSetRayTracingPipelineStackSizeKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute State

10.5. Pipeline Destruction
To destroy a pipeline, call:

// Provided by VK_VERSION_1_0
void vkDestroyPipeline(
 VkDevice device,
 VkPipeline pipeline,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline.

• pipeline is the handle of the pipeline to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyPipeline-pipeline-00765
All submitted commands that refer to pipeline must have completed execution

• VUID-vkDestroyPipeline-pipeline-00766
If VkAllocationCallbacks were provided when pipeline was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyPipeline-pipeline-00767
If no VkAllocationCallbacks were provided when pipeline was created, pAllocator must

829

be NULL

Valid Usage (Implicit)

• VUID-vkDestroyPipeline-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyPipeline-pipeline-parameter
If pipeline is not VK_NULL_HANDLE, pipeline must be a valid VkPipeline handle

• VUID-vkDestroyPipeline-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyPipeline-pipeline-parent
If pipeline is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to pipeline must be externally synchronized

10.6. Pipeline Derivatives
A pipeline derivative is a child pipeline created from a parent pipeline, where the child and parent
are expected to have much commonality.

The goal of derivative pipelines is that they be cheaper to create using the parent as a starting
point, and that it be more efficient (on either host or device) to switch/bind between children of the
same parent.

A derivative pipeline is created by setting the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag in the
Vk*PipelineCreateInfo structure. If this is set, then exactly one of basePipelineHandle or
basePipelineIndex members of the structure must have a valid handle/index, and specifies the
parent pipeline. If basePipelineHandle is used, the parent pipeline must have already been created.
If basePipelineIndex is used, then the parent is being created in the same command.
VK_NULL_HANDLE acts as the invalid handle for basePipelineHandle, and -1 is the invalid index for
basePipelineIndex. If basePipelineIndex is used, the base pipeline must appear earlier in the array.
The base pipeline must have been created with the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag
set.

10.7. Pipeline Cache
Pipeline cache objects allow the result of pipeline construction to be reused between pipelines and
between runs of an application. Reuse between pipelines is achieved by passing the same pipeline
cache object when creating multiple related pipelines. Reuse across runs of an application is
achieved by retrieving pipeline cache contents in one run of an application, saving the contents,

830

and using them to preinitialize a pipeline cache on a subsequent run. The contents of the pipeline
cache objects are managed by the implementation. Applications can manage the host memory
consumed by a pipeline cache object and control the amount of data retrieved from a pipeline
cache object.

Pipeline cache objects are represented by VkPipelineCache handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineCache)

10.7.1. Creating a Pipeline Cache

To create pipeline cache objects, call:

// Provided by VK_VERSION_1_0
VkResult vkCreatePipelineCache(
 VkDevice device,
 const VkPipelineCacheCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPipelineCache* pPipelineCache);

• device is the logical device that creates the pipeline cache object.

• pCreateInfo is a pointer to a VkPipelineCacheCreateInfo structure containing initial parameters
for the pipeline cache object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelineCache is a pointer to a VkPipelineCache handle in which the resulting pipeline cache
object is returned.

Note

Applications can track and manage the total host memory size of a pipeline cache
object using the pAllocator. Applications can limit the amount of data retrieved
from a pipeline cache object in vkGetPipelineCacheData. Implementations should
not internally limit the total number of entries added to a pipeline cache object or
the total host memory consumed.

Once created, a pipeline cache can be passed to the vkCreateGraphicsPipelines
vkCreateRayTracingPipelinesKHR, vkCreateRayTracingPipelinesNV, and vkCreateComputePipelines
commands. If the pipeline cache passed into these commands is not VK_NULL_HANDLE, the
implementation will query it for possible reuse opportunities and update it with new content. The
use of the pipeline cache object in these commands is internally synchronized, and the same
pipeline cache object can be used in multiple threads simultaneously.

If flags of pCreateInfo includes VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT, all
commands that modify the returned pipeline cache object must be externally synchronized.

831

Note

Implementations should make every effort to limit any critical sections to the
actual accesses to the cache, which is expected to be significantly shorter than the
duration of the vkCreate*Pipelines commands.

Valid Usage (Implicit)

• VUID-vkCreatePipelineCache-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreatePipelineCache-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkPipelineCacheCreateInfo structure

• VUID-vkCreatePipelineCache-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreatePipelineCache-pPipelineCache-parameter
pPipelineCache must be a valid pointer to a VkPipelineCache handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineCacheCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineCacheCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCacheCreateFlags flags;
 size_t initialDataSize;
 const void* pInitialData;
} VkPipelineCacheCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCacheCreateFlagBits specifying the behavior of the pipeline
cache.

• initialDataSize is the number of bytes in pInitialData. If initialDataSize is zero, the pipeline

832

cache will initially be empty.

• pInitialData is a pointer to previously retrieved pipeline cache data. If the pipeline cache data is
incompatible (as defined below) with the device, the pipeline cache will be initially empty. If
initialDataSize is zero, pInitialData is ignored.

Valid Usage

• VUID-VkPipelineCacheCreateInfo-initialDataSize-00768
If initialDataSize is not 0, it must be equal to the size of pInitialData, as returned by
vkGetPipelineCacheData when pInitialData was originally retrieved

• VUID-VkPipelineCacheCreateInfo-initialDataSize-00769
If initialDataSize is not 0, pInitialData must have been retrieved from a previous call to
vkGetPipelineCacheData

• VUID-VkPipelineCacheCreateInfo-pipelineCreationCacheControl-02892
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

Valid Usage (Implicit)

• VUID-VkPipelineCacheCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO

• VUID-VkPipelineCacheCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineCacheCreateInfo-flags-parameter
flags must be a valid combination of VkPipelineCacheCreateFlagBits values

• VUID-VkPipelineCacheCreateInfo-pInitialData-parameter
If initialDataSize is not 0, pInitialData must be a valid pointer to an array of
initialDataSize bytes

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineCacheCreateFlags;

VkPipelineCacheCreateFlags is a bitmask type for setting a mask of zero or more
VkPipelineCacheCreateFlagBits.

Bits which can be set in VkPipelineCacheCreateInfo::flags, specifying behavior of the pipeline
cache, are:

// Provided by VK_EXT_pipeline_creation_cache_control
typedef enum VkPipelineCacheCreateFlagBits {
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,

833

 // Provided by VK_EXT_pipeline_creation_cache_control
 VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT_EXT =
VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT,
} VkPipelineCacheCreateFlagBits;

• VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT specifies that all commands that modify
the created VkPipelineCache will be externally synchronized. When set, the implementation
may skip any unnecessary processing needed to support simultaneous modification from
multiple threads where allowed.

10.7.2. Merging Pipeline Caches

Pipeline cache objects can be merged using the command:

// Provided by VK_VERSION_1_0
VkResult vkMergePipelineCaches(
 VkDevice device,
 VkPipelineCache dstCache,
 uint32_t srcCacheCount,
 const VkPipelineCache* pSrcCaches);

• device is the logical device that owns the pipeline cache objects.

• dstCache is the handle of the pipeline cache to merge results into.

• srcCacheCount is the length of the pSrcCaches array.

• pSrcCaches is a pointer to an array of pipeline cache handles, which will be merged into
dstCache. The previous contents of dstCache are included after the merge.

Note

The details of the merge operation are implementation-dependent, but
implementations should merge the contents of the specified pipelines and prune
duplicate entries.

Valid Usage

• VUID-vkMergePipelineCaches-dstCache-00770
dstCache must not appear in the list of source caches

Valid Usage (Implicit)

• VUID-vkMergePipelineCaches-device-parameter
device must be a valid VkDevice handle

• VUID-vkMergePipelineCaches-dstCache-parameter
dstCache must be a valid VkPipelineCache handle

834

• VUID-vkMergePipelineCaches-pSrcCaches-parameter
pSrcCaches must be a valid pointer to an array of srcCacheCount valid VkPipelineCache
handles

• VUID-vkMergePipelineCaches-srcCacheCount-arraylength
srcCacheCount must be greater than 0

• VUID-vkMergePipelineCaches-dstCache-parent
dstCache must have been created, allocated, or retrieved from device

• VUID-vkMergePipelineCaches-pSrcCaches-parent
Each element of pSrcCaches must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to dstCache must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

10.7.3. Retrieving Pipeline Cache Data

Data can be retrieved from a pipeline cache object using the command:

// Provided by VK_VERSION_1_0
VkResult vkGetPipelineCacheData(
 VkDevice device,
 VkPipelineCache pipelineCache,
 size_t* pDataSize,
 void* pData);

• device is the logical device that owns the pipeline cache.

• pipelineCache is the pipeline cache to retrieve data from.

• pDataSize is a pointer to a size_t value related to the amount of data in the pipeline cache, as
described below.

• pData is either NULL or a pointer to a buffer.

If pData is NULL, then the maximum size of the data that can be retrieved from the pipeline cache, in
bytes, is returned in pDataSize. Otherwise, pDataSize must point to a variable set by the user to the

835

size of the buffer, in bytes, pointed to by pData, and on return the variable is overwritten with the
amount of data actually written to pData. If pDataSize is less than the maximum size that can be
retrieved by the pipeline cache, at most pDataSize bytes will be written to pData, and VK_INCOMPLETE
will be returned instead of VK_SUCCESS, to indicate that not all of the pipeline cache was returned.

Any data written to pData is valid and can be provided as the pInitialData member of the
VkPipelineCacheCreateInfo structure passed to vkCreatePipelineCache.

Two calls to vkGetPipelineCacheData with the same parameters must retrieve the same data unless a
command that modifies the contents of the cache is called between them.

The initial bytes written to pData must be a header as described in the Pipeline Cache Header
section.

If pDataSize is less than what is necessary to store this header, nothing will be written to pData and
zero will be written to pDataSize.

Valid Usage (Implicit)

• VUID-vkGetPipelineCacheData-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPipelineCacheData-pipelineCache-parameter
pipelineCache must be a valid VkPipelineCache handle

• VUID-vkGetPipelineCacheData-pDataSize-parameter
pDataSize must be a valid pointer to a size_t value

• VUID-vkGetPipelineCacheData-pData-parameter
If the value referenced by pDataSize is not 0, and pData is not NULL, pData must be a valid
pointer to an array of pDataSize bytes

• VUID-vkGetPipelineCacheData-pipelineCache-parent
pipelineCache must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

10.7.4. Pipeline Cache Header

Applications can store the data retrieved from the pipeline cache, and use these data, possibly in a

836

future run of the application, to populate new pipeline cache objects. The results of pipeline
compiles, however, may depend on the vendor ID, device ID, driver version, and other details of
the device. To enable applications to detect when previously retrieved data is incompatible with the
device, the pipeline cache data must begin with a valid pipeline cache header.

Note

Structures described in this section are not part of the Vulkan API and are only
used to describe the representation of data elements in pipeline cache data.
Accordingly, the valid usage clauses defined for structures defined in this section
do not define valid usage conditions for APIs accepting pipeline cache data as
input, as providing invalid pipeline cache data as input to any Vulkan API
commands will result in the provided pipeline cache data being ignored.

Version one of the pipeline cache header is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineCacheHeaderVersionOne {
 uint32_t headerSize;
 VkPipelineCacheHeaderVersion headerVersion;
 uint32_t vendorID;
 uint32_t deviceID;
 uint8_t pipelineCacheUUID[VK_UUID_SIZE];
} VkPipelineCacheHeaderVersionOne;

• headerSize is the length in bytes of the pipeline cache header.

• headerVersion is a VkPipelineCacheHeaderVersion value specifying the version of the header. A
consumer of the pipeline cache should use the cache version to interpret the remainder of the
cache header.

• vendorID is the VkPhysicalDeviceProperties::vendorID of the implementation.

• deviceID is the VkPhysicalDeviceProperties::deviceID of the implementation.

• pipelineCacheUUID is the VkPhysicalDeviceProperties::pipelineCacheUUID of the implementation.

Unlike most structures declared by the Vulkan API, all fields of this structure are written with the
least significant byte first, regardless of host byte-order.

The C language specification does not define the packing of structure members. This layout
assumes tight structure member packing, with members laid out in the order listed in the structure,
and the intended size of the structure is 32 bytes. If a compiler produces code that diverges from
that pattern, applications must employ another method to set values at the correct offsets.

Valid Usage

• VUID-VkPipelineCacheHeaderVersionOne-headerSize-04967
headerSize must be 32

• VUID-VkPipelineCacheHeaderVersionOne-headerVersion-04968

837

headerVersion must be VK_PIPELINE_CACHE_HEADER_VERSION_ONE

• VUID-VkPipelineCacheHeaderVersionOne-headerSize-08990
headerSize must not exceed the size of the pipeline cache

Valid Usage (Implicit)

• VUID-VkPipelineCacheHeaderVersionOne-headerVersion-parameter
headerVersion must be a valid VkPipelineCacheHeaderVersion value

Possible values of the headerVersion value of the pipeline cache header are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineCacheHeaderVersion {
 VK_PIPELINE_CACHE_HEADER_VERSION_ONE = 1,
} VkPipelineCacheHeaderVersion;

• VK_PIPELINE_CACHE_HEADER_VERSION_ONE specifies version one of the pipeline cache, described by
VkPipelineCacheHeaderVersionOne.

10.7.5. Destroying a Pipeline Cache

To destroy a pipeline cache, call:

// Provided by VK_VERSION_1_0
void vkDestroyPipelineCache(
 VkDevice device,
 VkPipelineCache pipelineCache,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline cache object.

• pipelineCache is the handle of the pipeline cache to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyPipelineCache-pipelineCache-00771
If VkAllocationCallbacks were provided when pipelineCache was created, a compatible set
of callbacks must be provided here

• VUID-vkDestroyPipelineCache-pipelineCache-00772
If no VkAllocationCallbacks were provided when pipelineCache was created, pAllocator
must be NULL

838

Valid Usage (Implicit)

• VUID-vkDestroyPipelineCache-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyPipelineCache-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkDestroyPipelineCache-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyPipelineCache-pipelineCache-parent
If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to pipelineCache must be externally synchronized

10.8. Specialization Constants
Specialization constants are a mechanism whereby constants in a SPIR-V module can have their
constant value specified at the time the VkPipeline is created. This allows a SPIR-V module to have
constants that can be modified while executing an application that uses the Vulkan API.

Note

Specialization constants are useful to allow a compute shader to have its local
workgroup size changed at runtime by the user, for example.

Each VkPipelineShaderStageCreateInfo structure contains a pSpecializationInfo member, which
can be NULL to indicate no specialization constants, or point to a VkSpecializationInfo structure.

The VkSpecializationInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSpecializationInfo {
 uint32_t mapEntryCount;
 const VkSpecializationMapEntry* pMapEntries;
 size_t dataSize;
 const void* pData;
} VkSpecializationInfo;

• mapEntryCount is the number of entries in the pMapEntries array.

• pMapEntries is a pointer to an array of VkSpecializationMapEntry structures, which map constant

839

IDs to offsets in pData.

• dataSize is the byte size of the pData buffer.

• pData contains the actual constant values to specialize with.

Valid Usage

• VUID-VkSpecializationInfo-offset-00773
The offset member of each element of pMapEntries must be less than dataSize

• VUID-VkSpecializationInfo-pMapEntries-00774
The size member of each element of pMapEntries must be less than or equal to dataSize
minus offset

• VUID-VkSpecializationInfo-constantID-04911
The constantID value of each element of pMapEntries must be unique within pMapEntries

Valid Usage (Implicit)

• VUID-VkSpecializationInfo-pMapEntries-parameter
If mapEntryCount is not 0, pMapEntries must be a valid pointer to an array of mapEntryCount
valid VkSpecializationMapEntry structures

• VUID-VkSpecializationInfo-pData-parameter
If dataSize is not 0, pData must be a valid pointer to an array of dataSize bytes

The VkSpecializationMapEntry structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSpecializationMapEntry {
 uint32_t constantID;
 uint32_t offset;
 size_t size;
} VkSpecializationMapEntry;

• constantID is the ID of the specialization constant in SPIR-V.

• offset is the byte offset of the specialization constant value within the supplied data buffer.

• size is the byte size of the specialization constant value within the supplied data buffer.

If a constantID value is not a specialization constant ID used in the shader, that map entry does not
affect the behavior of the pipeline.

Valid Usage

• VUID-VkSpecializationMapEntry-constantID-00776
For a constantID specialization constant declared in a shader, size must match the byte

840

size of the constantID. If the specialization constant is of type boolean, size must be the
byte size of VkBool32

In human readable SPIR-V:

OpDecorate %x SpecId 13 ; decorate .x component of WorkgroupSize with ID 13
OpDecorate %y SpecId 42 ; decorate .y component of WorkgroupSize with ID 42
OpDecorate %z SpecId 3 ; decorate .z component of WorkgroupSize with ID 3
OpDecorate %wgsize BuiltIn WorkgroupSize ; decorate WorkgroupSize onto constant
%i32 = OpTypeInt 32 0 ; declare an unsigned 32-bit type
%uvec3 = OpTypeVector %i32 3 ; declare a 3 element vector type of unsigned 32-bit
%x = OpSpecConstant %i32 1 ; declare the .x component of WorkgroupSize
%y = OpSpecConstant %i32 1 ; declare the .y component of WorkgroupSize
%z = OpSpecConstant %i32 1 ; declare the .z component of WorkgroupSize
%wgsize = OpSpecConstantComposite %uvec3 %x %y %z ; declare WorkgroupSize

From the above we have three specialization constants, one for each of the x, y & z elements of the
WorkgroupSize vector.

Now to specialize the above via the specialization constants mechanism:

const VkSpecializationMapEntry entries[] =
{
 {
 .constantID = 13,
 .offset = 0 * sizeof(uint32_t),
 .size = sizeof(uint32_t)
 },
 {
 .constantID = 42,
 .offset = 1 * sizeof(uint32_t),
 .size = sizeof(uint32_t)
 },
 {
 .constantID = 3,
 .offset = 2 * sizeof(uint32_t),
 .size = sizeof(uint32_t)
 }
};

const uint32_t data[] = { 16, 8, 4 }; // our workgroup size is 16x8x4

const VkSpecializationInfo info =
{
 .mapEntryCount = 3,
 .pMapEntries = entries,
 .dataSize = 3 * sizeof(uint32_t),
 .pData = data,

841

};

Then when calling vkCreateComputePipelines, and passing the VkSpecializationInfo we defined as
the pSpecializationInfo parameter of VkPipelineShaderStageCreateInfo, we will create a compute
pipeline with the runtime specified local workgroup size.

Another example would be that an application has a SPIR-V module that has some platform-
dependent constants they wish to use.

In human readable SPIR-V:

OpDecorate %1 SpecId 0 ; decorate our signed 32-bit integer constant
OpDecorate %2 SpecId 12 ; decorate our 32-bit floating-point constant
%i32 = OpTypeInt 32 1 ; declare a signed 32-bit type
%float = OpTypeFloat 32 ; declare a 32-bit floating-point type
%1 = OpSpecConstant %i32 -1 ; some signed 32-bit integer constant
%2 = OpSpecConstant %float 0.5 ; some 32-bit floating-point constant

From the above we have two specialization constants, one is a signed 32-bit integer and the second
is a 32-bit floating-point value.

Now to specialize the above via the specialization constants mechanism:

struct SpecializationData {
 int32_t data0;
 float data1;
};

const VkSpecializationMapEntry entries[] =
{
 {
 .constantID = 0,
 .offset = offsetof(SpecializationData, data0),
 .size = sizeof(SpecializationData::data0)
 },
 {
 .constantID = 12,
 .offset = offsetof(SpecializationData, data1),
 .size = sizeof(SpecializationData::data1)
 }
};

SpecializationData data;
data.data0 = -42; // set the data for the 32-bit integer
data.data1 = 42.0f; // set the data for the 32-bit floating-point

const VkSpecializationInfo info =
{
 .mapEntryCount = 2,

842

 .pMapEntries = entries,
 .dataSize = sizeof(data),
 .pdata = &data,
};

It is legal for a SPIR-V module with specializations to be compiled into a pipeline where no
specialization information was provided. SPIR-V specialization constants contain default values
such that if a specialization is not provided, the default value will be used. In the examples above, it
would be valid for an application to only specialize some of the specialization constants within the
SPIR-V module, and let the other constants use their default values encoded within the
OpSpecConstant declarations.

10.9. Pipeline Libraries
A pipeline library is a special pipeline that was created using the
VK_PIPELINE_CREATE_LIBRARY_BIT_KHR and cannot be bound, instead it defines a set of pipeline state
which can be linked into other pipelines. For ray tracing pipelines this includes shaders and shader
groups. For graphics pipelines this includes distinct library types defined by
VkGraphicsPipelineLibraryFlagBitsEXT. The application must maintain the lifetime of a pipeline
library based on the pipelines that link with it.

This linkage is achieved by using the following structure within the appropriate creation
mechanisms:

The VkPipelineLibraryCreateInfoKHR structure is defined as:

// Provided by VK_KHR_pipeline_library
typedef struct VkPipelineLibraryCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t libraryCount;
 const VkPipeline* pLibraries;
} VkPipelineLibraryCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• libraryCount is the number of pipeline libraries in pLibraries.

• pLibraries is a pointer to an array of VkPipeline structures specifying pipeline libraries to use
when creating a pipeline.

Valid Usage

• VUID-VkPipelineLibraryCreateInfoKHR-pLibraries-03381
Each element of pLibraries must have been created with
VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

843

• VUID-VkPipelineLibraryCreateInfoKHR-pLibraries-06855
If any library in pLibraries was created with a shader stage with
VkPipelineShaderStageModuleIdentifierCreateInfoEXT and identifierSize not equal to 0,
the pipeline must be created with the
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT flag set

• VUID-VkPipelineLibraryCreateInfoKHR-pLibraries-08096
If any element of pLibraries was created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, all elements must have been created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-VkPipelineLibraryCreateInfoKHR-pipeline-07404
If pipeline is being created with VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT, every
element of pLibraries must have been created with
VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT

• VUID-VkPipelineLibraryCreateInfoKHR-pipeline-07405
If pipeline is being created without VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT,
every element of pLibraries must have been created without
VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT

• VUID-VkPipelineLibraryCreateInfoKHR-pipeline-07406
If pipeline is being created with VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT, every
element of pLibraries must have been created with
VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT

• VUID-VkPipelineLibraryCreateInfoKHR-pipeline-07407
If pipeline is being created without VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT,
every element of pLibraries must have been created without
VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT

Valid Usage (Implicit)

• VUID-VkPipelineLibraryCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR

• VUID-VkPipelineLibraryCreateInfoKHR-pLibraries-parameter
If libraryCount is not 0, pLibraries must be a valid pointer to an array of libraryCount
valid VkPipeline handles

Pipelines created with VK_PIPELINE_CREATE_LIBRARY_BIT_KHR libraries can depend on other pipeline
libraries in VkPipelineLibraryCreateInfoKHR.

A pipeline library is considered in-use, as long as one of the linking pipelines is in-use. This applies
recursively if a pipeline library includes other pipeline libraries.

10.10. Pipeline Binding
Once a pipeline has been created, it can be bound to the command buffer using the command:

844

// Provided by VK_VERSION_1_0
void vkCmdBindPipeline(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipeline pipeline);

• commandBuffer is the command buffer that the pipeline will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint value specifying to which bind point the pipeline is
bound. Binding one does not disturb the others.

• pipeline is the pipeline to be bound.

Once bound, a pipeline binding affects subsequent commands that interact with the given pipeline
type in the command buffer until a different pipeline of the same type is bound to the bind point, or
until the pipeline bind point is disturbed by binding a shader object as described in Interaction
with Pipelines. Commands that do not interact with the given pipeline type must not be affected by
the pipeline state.

Valid Usage

• VUID-vkCmdBindPipeline-pipelineBindPoint-00777
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, the VkCommandPool that
commandBuffer was allocated from must support compute operations

• VUID-vkCmdBindPipeline-pipelineBindPoint-00778
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, the VkCommandPool that
commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBindPipeline-pipelineBindPoint-00779
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, pipeline must be a compute
pipeline

• VUID-vkCmdBindPipeline-pipelineBindPoint-00780
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline must be a graphics
pipeline

• VUID-vkCmdBindPipeline-pipeline-00781
If the variableMultisampleRate feature is not supported, pipeline is a graphics pipeline, the
current subpass uses no attachments, and this is not the first call to this function with a
graphics pipeline after transitioning to the current subpass, then the sample count
specified by this pipeline must match that set in the previous pipeline

• VUID-vkCmdBindPipeline-variableSampleLocations-01525
If VkPhysicalDeviceSampleLocationsPropertiesEXT::variableSampleLocations is VK_FALSE,
and pipeline is a graphics pipeline created with a
VkPipelineSampleLocationsStateCreateInfoEXT structure having its sampleLocationsEnable
member set to VK_TRUE but without VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT enabled then
the current render pass instance must have been begun by specifying a
VkRenderPassSampleLocationsBeginInfoEXT structure whose
pPostSubpassSampleLocations member contains an element with a subpassIndex matching

845

the current subpass index and the sampleLocationsInfo member of that element must
match the sampleLocationsInfo specified in
VkPipelineSampleLocationsStateCreateInfoEXT when the pipeline was created

• VUID-vkCmdBindPipeline-None-02323
This command must not be recorded when transform feedback is active

• VUID-vkCmdBindPipeline-pipelineBindPoint-02391
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, the VkCommandPool that
commandBuffer was allocated from must support compute operations

• VUID-vkCmdBindPipeline-pipelineBindPoint-02392
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline must be a ray
tracing pipeline

• VUID-vkCmdBindPipeline-pipelineBindPoint-06721
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, commandBuffer must not be
a protected command buffer

• VUID-vkCmdBindPipeline-pipelineProtectedAccess-07408
If the pipelineProtectedAccess feature is enabled, and commandBuffer is a protected
command buffer, pipeline must have been created without
VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT

• VUID-vkCmdBindPipeline-pipelineProtectedAccess-07409
If the pipelineProtectedAccess feature is enabled, and commandBuffer is not a protected
command buffer, pipeline must have been created without
VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT

• VUID-vkCmdBindPipeline-pipeline-03382
pipeline must not have been created with VK_PIPELINE_CREATE_LIBRARY_BIT_KHR set

• VUID-vkCmdBindPipeline-commandBuffer-04808
If commandBuffer is a secondary command buffer with
VkCommandBufferInheritanceViewportScissorInfoNV::viewportScissor2D enabled and
pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, then the pipeline must have been
created with VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT or VK_DYNAMIC_STATE_VIEWPORT, and
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT or VK_DYNAMIC_STATE_SCISSOR enabled

• VUID-vkCmdBindPipeline-commandBuffer-04809
If commandBuffer is a secondary command buffer with
VkCommandBufferInheritanceViewportScissorInfoNV::viewportScissor2D enabled and
pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS and pipeline was created with
VkPipelineDiscardRectangleStateCreateInfoEXT structure and its discardRectangleCount
member is not 0, or the pipeline was created with
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT enabled, then the pipeline must have
been created with VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT enabled

• VUID-vkCmdBindPipeline-pipelineBindPoint-04881
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS and the
provokingVertexModePerPipeline limit is VK_FALSE, then pipeline’s
VkPipelineRasterizationProvokingVertexStateCreateInfoEXT::provokingVertexMode must
be the same as that of any other pipelines previously bound to this bind point within the
current render pass instance, including any pipeline already bound when beginning the

846

render pass instance

• VUID-vkCmdBindPipeline-pipelineBindPoint-04949
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI, the VkCommandPool
that commandBuffer was allocated from must support compute operations

• VUID-vkCmdBindPipeline-pipelineBindPoint-04950
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI, pipeline must be a
subpass shading pipeline

Valid Usage (Implicit)

• VUID-vkCmdBindPipeline-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindPipeline-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdBindPipeline-pipeline-parameter
pipeline must be a valid VkPipeline handle

• VUID-vkCmdBindPipeline-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindPipeline-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBindPipeline-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindPipeline-commonparent
Both of commandBuffer, and pipeline must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

847

Possible values of vkCmdBindPipeline::pipelineBindPoint, specifying the bind point of a pipeline
object, are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineBindPoint {
 VK_PIPELINE_BIND_POINT_GRAPHICS = 0,
 VK_PIPELINE_BIND_POINT_COMPUTE = 1,
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_AMDX_shader_enqueue
 VK_PIPELINE_BIND_POINT_EXECUTION_GRAPH_AMDX = 1000134000,
#endif
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR = 1000165000,
 // Provided by VK_HUAWEI_subpass_shading
 VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI = 1000369003,
 // Provided by VK_NV_ray_tracing
 VK_PIPELINE_BIND_POINT_RAY_TRACING_NV = VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR,
} VkPipelineBindPoint;

• VK_PIPELINE_BIND_POINT_COMPUTE specifies binding as a compute pipeline.

• VK_PIPELINE_BIND_POINT_GRAPHICS specifies binding as a graphics pipeline.

• VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR specifies binding as a ray tracing pipeline.

• VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI specifies binding as a subpass shading pipeline.

• VK_PIPELINE_BIND_POINT_EXECUTION_GRAPH_AMDX specifies binding as an execution graph pipeline.

For pipelines that were created with the support of multiple shader groups (see Graphics Pipeline
Shader Groups), the regular vkCmdBindPipeline command will bind Shader Group 0. To explicitly
bind a shader group use:

// Provided by VK_NV_device_generated_commands
void vkCmdBindPipelineShaderGroupNV(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipeline pipeline,
 uint32_t groupIndex);

• commandBuffer is the command buffer that the pipeline will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint value specifying the bind point to which the pipeline
will be bound.

• pipeline is the pipeline to be bound.

• groupIndex is the shader group to be bound.

848

Valid Usage

• VUID-vkCmdBindPipelineShaderGroupNV-groupIndex-02893
groupIndex must be 0 or less than the effective
VkGraphicsPipelineShaderGroupsCreateInfoNV::groupCount including the referenced
pipelines

• VUID-vkCmdBindPipelineShaderGroupNV-pipelineBindPoint-02894
The pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdBindPipelineShaderGroupNV-groupIndex-02895
The same restrictions as vkCmdBindPipeline apply as if the bound pipeline was created
only with the Shader Group from the groupIndex information

• VUID-vkCmdBindPipelineShaderGroupNV-deviceGeneratedCommands-02896
The deviceGeneratedCommands feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdBindPipelineShaderGroupNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindPipelineShaderGroupNV-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdBindPipelineShaderGroupNV-pipeline-parameter
pipeline must be a valid VkPipeline handle

• VUID-vkCmdBindPipelineShaderGroupNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindPipelineShaderGroupNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBindPipelineShaderGroupNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindPipelineShaderGroupNV-commonparent
Both of commandBuffer, and pipeline must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

849

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

10.10.1. Interaction With Shader Objects

If the shaderObject feature is enabled, applications can use both pipelines and shader objects at the
same time. The interaction between pipelines and shader objects is described in Interaction with
Pipelines.

10.11. Dynamic State
When a pipeline object is bound, any pipeline object state that is not specified as dynamic is applied
to the command buffer state. Pipeline object state that is specified as dynamic is not applied to the
command buffer state at this time. Instead, dynamic state can be modified at any time and persists
for the lifetime of the command buffer, or until modified by another dynamic state setting
command, or made invalid by another pipeline bind with that state specified as static.

When a pipeline object is bound, the following applies to each state parameter:

• If the state is not specified as dynamic in the new pipeline object, then that command buffer
state is overwritten by the state in the new pipeline object. Before any draw or dispatch call
with this pipeline there must not have been any calls to any of the corresponding dynamic state
setting commands after this pipeline was bound.

• If the state is specified as dynamic in the new pipeline object, then that command buffer state is
not disturbed. Before any draw or dispatch call with this pipeline there must have been at least
one call to each of the corresponding dynamic state setting commands. The state-setting
commands must be recorded after command buffer recording was begun, or after the last
command binding a pipeline object with that state specified as static, whichever was the latter.

• If the state is not included (corresponding pointer in VkGraphicsPipelineCreateInfo was NULL or
was ignored) in the new pipeline object, then that command buffer state is not disturbed. For
example, mesh shading pipelines do not include vertex input state and therefore do not disturb
any such command buffer state.

Dynamic state that does not affect the result of operations can be left undefined.

Note

For example, if blending is disabled by the pipeline object state then the dynamic
color blend constants do not need to be specified in the command buffer, even if
this state is specified as dynamic in the pipeline object.

 Note

850

Applications running on Vulkan implementations advertising an
VkPhysicalDeviceDriverProperties::conformanceVersion less than 1.3.8.0 should be
aware that rebinding the currently bound pipeline object may not reapply static
state.

10.12. Pipeline Properties and Shader Information
When a pipeline is created, its state and shaders are compiled into zero or more device-specific
executables, which are used when executing commands against that pipeline. To query the
properties of these pipeline executables, call:

// Provided by VK_KHR_pipeline_executable_properties
VkResult vkGetPipelineExecutablePropertiesKHR(
 VkDevice device,
 const VkPipelineInfoKHR* pPipelineInfo,
 uint32_t* pExecutableCount,
 VkPipelineExecutablePropertiesKHR* pProperties);

• device is the device that created the pipeline.

• pPipelineInfo describes the pipeline being queried.

• pExecutableCount is a pointer to an integer related to the number of pipeline executables
available or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkPipelineExecutablePropertiesKHR
structures.

If pProperties is NULL, then the number of pipeline executables associated with the pipeline is
returned in pExecutableCount. Otherwise, pExecutableCount must point to a variable set by the user
to the number of elements in the pProperties array, and on return the variable is overwritten with
the number of structures actually written to pProperties. If pExecutableCount is less than the
number of pipeline executables associated with the pipeline, at most pExecutableCount structures
will be written, and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the
available properties were returned.

Valid Usage

• VUID-vkGetPipelineExecutablePropertiesKHR-pipelineExecutableInfo-03270
The pipelineExecutableInfo feature must be enabled

• VUID-vkGetPipelineExecutablePropertiesKHR-pipeline-03271
The pipeline member of pPipelineInfo must have been created with device

Valid Usage (Implicit)

• VUID-vkGetPipelineExecutablePropertiesKHR-device-parameter
device must be a valid VkDevice handle

851

• VUID-vkGetPipelineExecutablePropertiesKHR-pPipelineInfo-parameter
pPipelineInfo must be a valid pointer to a valid VkPipelineInfoKHR structure

• VUID-vkGetPipelineExecutablePropertiesKHR-pExecutableCount-parameter
pExecutableCount must be a valid pointer to a uint32_t value

• VUID-vkGetPipelineExecutablePropertiesKHR-pProperties-parameter
If the value referenced by pExecutableCount is not 0, and pProperties is not NULL,
pProperties must be a valid pointer to an array of pExecutableCount
VkPipelineExecutablePropertiesKHR structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineExecutablePropertiesKHR structure is defined as:

// Provided by VK_KHR_pipeline_executable_properties
typedef struct VkPipelineExecutablePropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkShaderStageFlags stages;
 char name[VK_MAX_DESCRIPTION_SIZE];
 char description[VK_MAX_DESCRIPTION_SIZE];
 uint32_t subgroupSize;
} VkPipelineExecutablePropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stages is a bitmask of zero or more VkShaderStageFlagBits indicating which shader stages (if
any) were principally used as inputs to compile this pipeline executable.

• name is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8 string
which is a short human readable name for this pipeline executable.

• description is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8
string which is a human readable description for this pipeline executable.

• subgroupSize is the subgroup size with which this pipeline executable is dispatched.

Not all implementations have a 1:1 mapping between shader stages and pipeline executables and
some implementations may reduce a given shader stage to fixed function hardware programming

852

such that no pipeline executable is available. No guarantees are provided about the mapping
between shader stages and pipeline executables and stages should be considered a best effort hint.
Because the application cannot rely on the stages field to provide an exact description, name and
description provide a human readable name and description which more accurately describes the
given pipeline executable.

Valid Usage (Implicit)

• VUID-VkPipelineExecutablePropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_PROPERTIES_KHR

• VUID-VkPipelineExecutablePropertiesKHR-pNext-pNext
pNext must be NULL

To query the pipeline properties call:

// Provided by VK_EXT_pipeline_properties
VkResult vkGetPipelinePropertiesEXT(
 VkDevice device,
 const VkPipelineInfoEXT* pPipelineInfo,
 VkBaseOutStructure* pPipelineProperties);

• device is the logical device that created the pipeline.

• pPipelineInfo is a pointer to a VkPipelineInfoEXT structure which describes the pipeline being
queried.

• pPipelineProperties is a pointer to a VkBaseOutStructure structure in which the pipeline
properties will be written.

To query a pipeline’s pipelineIdentifier pass a VkPipelinePropertiesIdentifierEXT structure in
pPipelineProperties. Each pipeline is associated with a pipelineIdentifier and the identifier is
implementation specific.

Valid Usage

• VUID-vkGetPipelinePropertiesEXT-pipeline-06738
The pipeline member of pPipelineInfo must have been created with device

• VUID-vkGetPipelinePropertiesEXT-pPipelineProperties-06739
pPipelineProperties must be a valid pointer to a VkPipelinePropertiesIdentifierEXT
structure

• VUID-vkGetPipelinePropertiesEXT-None-06766
The pipelinePropertiesIdentifier feature must be enabled

853

Valid Usage (Implicit)

• VUID-vkGetPipelinePropertiesEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPipelinePropertiesEXT-pPipelineInfo-parameter
pPipelineInfo must be a valid pointer to a valid VkPipelineInfoEXT structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPipelinePropertiesIdentifierEXT structure is defined as:

// Provided by VK_EXT_pipeline_properties
typedef struct VkPipelinePropertiesIdentifierEXT {
 VkStructureType sType;
 void* pNext;
 uint8_t pipelineIdentifier[VK_UUID_SIZE];
} VkPipelinePropertiesIdentifierEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineIdentifier is an array of VK_UUID_SIZE uint8_t values into which the pipeline identifier
will be written.

Valid Usage (Implicit)

• VUID-VkPipelinePropertiesIdentifierEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_PROPERTIES_IDENTIFIER_EXT

• VUID-VkPipelinePropertiesIdentifierEXT-pNext-pNext
pNext must be NULL

The VkPipelineInfoKHR structure is defined as:

// Provided by VK_KHR_pipeline_executable_properties
typedef struct VkPipelineInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkPipeline pipeline;

854

} VkPipelineInfoKHR;

or the equivalent

// Provided by VK_EXT_pipeline_properties
typedef VkPipelineInfoKHR VkPipelineInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipeline is a VkPipeline handle.

Valid Usage (Implicit)

• VUID-VkPipelineInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR

• VUID-VkPipelineInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkPipelineInfoKHR-pipeline-parameter
pipeline must be a valid VkPipeline handle

Each pipeline executable may have a set of statistics associated with it that are generated by the
pipeline compilation process. These statistics may include things such as instruction counts,
amount of spilling (if any), maximum number of simultaneous threads, or anything else which may
aid developers in evaluating the expected performance of a shader. To query the compile time
statistics associated with a pipeline executable, call:

// Provided by VK_KHR_pipeline_executable_properties
VkResult vkGetPipelineExecutableStatisticsKHR(
 VkDevice device,
 const VkPipelineExecutableInfoKHR* pExecutableInfo,
 uint32_t* pStatisticCount,
 VkPipelineExecutableStatisticKHR* pStatistics);

• device is the device that created the pipeline.

• pExecutableInfo describes the pipeline executable being queried.

• pStatisticCount is a pointer to an integer related to the number of statistics available or
queried, as described below.

• pStatistics is either NULL or a pointer to an array of VkPipelineExecutableStatisticKHR
structures.

If pStatistics is NULL, then the number of statistics associated with the pipeline executable is
returned in pStatisticCount. Otherwise, pStatisticCount must point to a variable set by the user to
the number of elements in the pStatistics array, and on return the variable is overwritten with the

855

number of structures actually written to pStatistics. If pStatisticCount is less than the number of
statistics associated with the pipeline executable, at most pStatisticCount structures will be written,
and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the available
statistics were returned.

Valid Usage

• VUID-vkGetPipelineExecutableStatisticsKHR-pipelineExecutableInfo-03272
The pipelineExecutableInfo feature must be enabled

• VUID-vkGetPipelineExecutableStatisticsKHR-pipeline-03273
The pipeline member of pExecutableInfo must have been created with device

• VUID-vkGetPipelineExecutableStatisticsKHR-pipeline-03274
The pipeline member of pExecutableInfo must have been created with
VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR

Valid Usage (Implicit)

• VUID-vkGetPipelineExecutableStatisticsKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPipelineExecutableStatisticsKHR-pExecutableInfo-parameter
pExecutableInfo must be a valid pointer to a valid VkPipelineExecutableInfoKHR
structure

• VUID-vkGetPipelineExecutableStatisticsKHR-pStatisticCount-parameter
pStatisticCount must be a valid pointer to a uint32_t value

• VUID-vkGetPipelineExecutableStatisticsKHR-pStatistics-parameter
If the value referenced by pStatisticCount is not 0, and pStatistics is not NULL, pStatistics
must be a valid pointer to an array of pStatisticCount VkPipelineExecutableStatisticKHR
structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineExecutableInfoKHR structure is defined as:

// Provided by VK_KHR_pipeline_executable_properties

856

typedef struct VkPipelineExecutableInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkPipeline pipeline;
 uint32_t executableIndex;
} VkPipelineExecutableInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipeline is the pipeline to query.

• executableIndex is the index of the pipeline executable to query in the array of executable
properties returned by vkGetPipelineExecutablePropertiesKHR.

Valid Usage

• VUID-VkPipelineExecutableInfoKHR-executableIndex-03275
executableIndex must be less than the number of pipeline executables associated with
pipeline as returned in the pExecutableCount parameter of
vkGetPipelineExecutablePropertiesKHR

Valid Usage (Implicit)

• VUID-VkPipelineExecutableInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_INFO_KHR

• VUID-VkPipelineExecutableInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkPipelineExecutableInfoKHR-pipeline-parameter
pipeline must be a valid VkPipeline handle

The VkPipelineExecutableStatisticKHR structure is defined as:

// Provided by VK_KHR_pipeline_executable_properties
typedef struct VkPipelineExecutableStatisticKHR {
 VkStructureType sType;
 void* pNext;
 char name[VK_MAX_DESCRIPTION_SIZE];
 char description[VK_MAX_DESCRIPTION_SIZE];
 VkPipelineExecutableStatisticFormatKHR format;
 VkPipelineExecutableStatisticValueKHR value;
} VkPipelineExecutableStatisticKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

857

• name is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8 string
which is a short human readable name for this statistic.

• description is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8
string which is a human readable description for this statistic.

• format is a VkPipelineExecutableStatisticFormatKHR value specifying the format of the data
found in value.

• value is the value of this statistic.

Valid Usage (Implicit)

• VUID-VkPipelineExecutableStatisticKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_STATISTIC_KHR

• VUID-VkPipelineExecutableStatisticKHR-pNext-pNext
pNext must be NULL

The VkPipelineExecutableStatisticFormatKHR enum is defined as:

// Provided by VK_KHR_pipeline_executable_properties
typedef enum VkPipelineExecutableStatisticFormatKHR {
 VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_BOOL32_KHR = 0,
 VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_INT64_KHR = 1,
 VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR = 2,
 VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_FLOAT64_KHR = 3,
} VkPipelineExecutableStatisticFormatKHR;

• VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_BOOL32_KHR specifies that the statistic is returned as a
32-bit boolean value which must be either VK_TRUE or VK_FALSE and should be read from the b32
field of VkPipelineExecutableStatisticValueKHR.

• VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_INT64_KHR specifies that the statistic is returned as a
signed 64-bit integer and should be read from the i64 field of
VkPipelineExecutableStatisticValueKHR.

• VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR specifies that the statistic is returned as an
unsigned 64-bit integer and should be read from the u64 field of
VkPipelineExecutableStatisticValueKHR.

• VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_FLOAT64_KHR specifies that the statistic is returned as a
64-bit floating-point value and should be read from the f64 field of
VkPipelineExecutableStatisticValueKHR.

The VkPipelineExecutableStatisticValueKHR union is defined as:

// Provided by VK_KHR_pipeline_executable_properties
typedef union VkPipelineExecutableStatisticValueKHR {
 VkBool32 b32;
 int64_t i64;

858

 uint64_t u64;
 double f64;
} VkPipelineExecutableStatisticValueKHR;

• b32 is the 32-bit boolean value if the VkPipelineExecutableStatisticFormatKHR is
VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_BOOL32_KHR.

• i64 is the signed 64-bit integer value if the VkPipelineExecutableStatisticFormatKHR is
VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_INT64_KHR.

• u64 is the unsigned 64-bit integer value if the VkPipelineExecutableStatisticFormatKHR is
VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR.

• f64 is the 64-bit floating-point value if the VkPipelineExecutableStatisticFormatKHR is
VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_FLOAT64_KHR.

Each pipeline executable may have one or more text or binary internal representations associated
with it which are generated as part of the compile process. These may include the final shader
assembly, a binary form of the compiled shader, or the shader compiler’s internal representation at
any number of intermediate compile steps. To query the internal representations associated with a
pipeline executable, call:

// Provided by VK_KHR_pipeline_executable_properties
VkResult vkGetPipelineExecutableInternalRepresentationsKHR(
 VkDevice device,
 const VkPipelineExecutableInfoKHR* pExecutableInfo,
 uint32_t* pInternalRepresentationCount,
 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations);

• device is the device that created the pipeline.

• pExecutableInfo describes the pipeline executable being queried.

• pInternalRepresentationCount is a pointer to an integer related to the number of internal
representations available or queried, as described below.

• pInternalRepresentations is either NULL or a pointer to an array of
VkPipelineExecutableInternalRepresentationKHR structures.

If pInternalRepresentations is NULL, then the number of internal representations associated with the
pipeline executable is returned in pInternalRepresentationCount. Otherwise,
pInternalRepresentationCount must point to a variable set by the user to the number of elements in
the pInternalRepresentations array, and on return the variable is overwritten with the number of
structures actually written to pInternalRepresentations. If pInternalRepresentationCount is less than
the number of internal representations associated with the pipeline executable, at most
pInternalRepresentationCount structures will be written, and VK_INCOMPLETE will be returned instead
of VK_SUCCESS, to indicate that not all the available representations were returned.

While the details of the internal representations remain implementation-dependent, the
implementation should order the internal representations in the order in which they occur in the
compiled pipeline with the final shader assembly (if any) last.

859

Valid Usage

• VUID-vkGetPipelineExecutableInternalRepresentationsKHR-pipelineExecutableInfo-03276
The pipelineExecutableInfo feature must be enabled

• VUID-vkGetPipelineExecutableInternalRepresentationsKHR-pipeline-03277
The pipeline member of pExecutableInfo must have been created with device

• VUID-vkGetPipelineExecutableInternalRepresentationsKHR-pipeline-03278
The pipeline member of pExecutableInfo must have been created with
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR

Valid Usage (Implicit)

• VUID-vkGetPipelineExecutableInternalRepresentationsKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPipelineExecutableInternalRepresentationsKHR-pExecutableInfo-parameter
pExecutableInfo must be a valid pointer to a valid VkPipelineExecutableInfoKHR
structure

• VUID-vkGetPipelineExecutableInternalRepresentationsKHR-
pInternalRepresentationCount-parameter
pInternalRepresentationCount must be a valid pointer to a uint32_t value

• VUID-vkGetPipelineExecutableInternalRepresentationsKHR-pInternalRepresentations-
parameter
If the value referenced by pInternalRepresentationCount is not 0, and
pInternalRepresentations is not NULL, pInternalRepresentations must be a valid pointer to
an array of pInternalRepresentationCount
VkPipelineExecutableInternalRepresentationKHR structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineExecutableInternalRepresentationKHR structure is defined as:

// Provided by VK_KHR_pipeline_executable_properties
typedef struct VkPipelineExecutableInternalRepresentationKHR {
 VkStructureType sType;

860

 void* pNext;
 char name[VK_MAX_DESCRIPTION_SIZE];
 char description[VK_MAX_DESCRIPTION_SIZE];
 VkBool32 isText;
 size_t dataSize;
 void* pData;
} VkPipelineExecutableInternalRepresentationKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• name is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8 string
which is a short human readable name for this internal representation.

• description is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8
string which is a human readable description for this internal representation.

• isText specifies whether the returned data is text or opaque data. If isText is VK_TRUE then the
data returned in pData is text and is guaranteed to be a null-terminated UTF-8 string.

• dataSize is an integer related to the size, in bytes, of the internal representation’s data, as
described below.

• pData is either NULL or a pointer to a block of data into which the implementation will write the
internal representation.

If pData is NULL, then the size, in bytes, of the internal representation data is returned in dataSize.
Otherwise, dataSize must be the size of the buffer, in bytes, pointed to by pData and on return
dataSize is overwritten with the number of bytes of data actually written to pData including any
trailing null character. If dataSize is less than the size, in bytes, of the internal representation’s data,
at most dataSize bytes of data will be written to pData, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available representation was returned.

If isText is VK_TRUE and pData is not NULL and dataSize is not zero, the last byte written to pData will
be a null character.

Valid Usage (Implicit)

• VUID-VkPipelineExecutableInternalRepresentationKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_INTERNAL_REPRESENTATION_KHR

• VUID-VkPipelineExecutableInternalRepresentationKHR-pNext-pNext
pNext must be NULL

Information about a particular shader that has been compiled as part of a pipeline object can be
extracted by calling:

// Provided by VK_AMD_shader_info
VkResult vkGetShaderInfoAMD(
 VkDevice device,

861

 VkPipeline pipeline,
 VkShaderStageFlagBits shaderStage,
 VkShaderInfoTypeAMD infoType,
 size_t* pInfoSize,
 void* pInfo);

• device is the device that created pipeline.

• pipeline is the target of the query.

• shaderStage is a VkShaderStageFlagBits specifying the particular shader within the pipeline
about which information is being queried.

• infoType describes what kind of information is being queried.

• pInfoSize is a pointer to a value related to the amount of data the query returns, as described
below.

• pInfo is either NULL or a pointer to a buffer.

If pInfo is NULL, then the maximum size of the information that can be retrieved about the shader,
in bytes, is returned in pInfoSize. Otherwise, pInfoSize must point to a variable set by the user to
the size of the buffer, in bytes, pointed to by pInfo, and on return the variable is overwritten with
the amount of data actually written to pInfo. If pInfoSize is less than the maximum size that can be
retrieved by the pipeline cache, then at most pInfoSize bytes will be written to pInfo, and
VK_INCOMPLETE will be returned, instead of VK_SUCCESS, to indicate that not all required of the pipeline
cache was returned.

Not all information is available for every shader and implementations may not support all kinds of
information for any shader. When a certain type of information is unavailable, the function returns
VK_ERROR_FEATURE_NOT_PRESENT.

If information is successfully and fully queried, the function will return VK_SUCCESS.

For infoType VK_SHADER_INFO_TYPE_STATISTICS_AMD, a VkShaderStatisticsInfoAMD structure will be
written to the buffer pointed to by pInfo. This structure will be populated with statistics regarding
the physical device resources used by that shader along with other miscellaneous information and
is described in further detail below.

For infoType VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD, pInfo is a pointer to a null-terminated UTF-8
string containing human-readable disassembly. The exact formatting and contents of the
disassembly string are vendor-specific.

The formatting and contents of all other types of information, including infoType
VK_SHADER_INFO_TYPE_BINARY_AMD, are left to the vendor and are not further specified by this
extension.

Valid Usage (Implicit)

• VUID-vkGetShaderInfoAMD-device-parameter
device must be a valid VkDevice handle

862

• VUID-vkGetShaderInfoAMD-pipeline-parameter
pipeline must be a valid VkPipeline handle

• VUID-vkGetShaderInfoAMD-shaderStage-parameter
shaderStage must be a valid VkShaderStageFlagBits value

• VUID-vkGetShaderInfoAMD-infoType-parameter
infoType must be a valid VkShaderInfoTypeAMD value

• VUID-vkGetShaderInfoAMD-pInfoSize-parameter
pInfoSize must be a valid pointer to a size_t value

• VUID-vkGetShaderInfoAMD-pInfo-parameter
If the value referenced by pInfoSize is not 0, and pInfo is not NULL, pInfo must be a valid
pointer to an array of pInfoSize bytes

• VUID-vkGetShaderInfoAMD-pipeline-parent
pipeline must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_FEATURE_NOT_PRESENT

• VK_ERROR_OUT_OF_HOST_MEMORY

Possible values of vkGetShaderInfoAMD::infoType, specifying the information being queried from a
shader, are:

// Provided by VK_AMD_shader_info
typedef enum VkShaderInfoTypeAMD {
 VK_SHADER_INFO_TYPE_STATISTICS_AMD = 0,
 VK_SHADER_INFO_TYPE_BINARY_AMD = 1,
 VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD = 2,
} VkShaderInfoTypeAMD;

• VK_SHADER_INFO_TYPE_STATISTICS_AMD specifies that device resources used by a shader will be
queried.

• VK_SHADER_INFO_TYPE_BINARY_AMD specifies that implementation-specific information will be
queried.

• VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD specifies that human-readable disassembly of a shader.

The VkShaderStatisticsInfoAMD structure is defined as:

863

// Provided by VK_AMD_shader_info
typedef struct VkShaderStatisticsInfoAMD {
 VkShaderStageFlags shaderStageMask;
 VkShaderResourceUsageAMD resourceUsage;
 uint32_t numPhysicalVgprs;
 uint32_t numPhysicalSgprs;
 uint32_t numAvailableVgprs;
 uint32_t numAvailableSgprs;
 uint32_t computeWorkGroupSize[3];
} VkShaderStatisticsInfoAMD;

• shaderStageMask are the combination of logical shader stages contained within this shader.

• resourceUsage is a VkShaderResourceUsageAMD structure describing internal physical device
resources used by this shader.

• numPhysicalVgprs is the maximum number of vector instruction general-purpose registers
(VGPRs) available to the physical device.

• numPhysicalSgprs is the maximum number of scalar instruction general-purpose registers
(SGPRs) available to the physical device.

• numAvailableVgprs is the maximum limit of VGPRs made available to the shader compiler.

• numAvailableSgprs is the maximum limit of SGPRs made available to the shader compiler.

• computeWorkGroupSize is the local workgroup size of this shader in { X, Y, Z } dimensions.

Some implementations may merge multiple logical shader stages together in a single shader. In
such cases, shaderStageMask will contain a bitmask of all of the stages that are active within that
shader. Consequently, if specifying those stages as input to vkGetShaderInfoAMD, the same output
information may be returned for all such shader stage queries.

The number of available VGPRs and SGPRs (numAvailableVgprs and numAvailableSgprs respectively)
are the shader-addressable subset of physical registers that is given as a limit to the compiler for
register assignment. These values may further be limited by implementations due to performance
optimizations where register pressure is a bottleneck.

The VkShaderResourceUsageAMD structure is defined as:

// Provided by VK_AMD_shader_info
typedef struct VkShaderResourceUsageAMD {
 uint32_t numUsedVgprs;
 uint32_t numUsedSgprs;
 uint32_t ldsSizePerLocalWorkGroup;
 size_t ldsUsageSizeInBytes;
 size_t scratchMemUsageInBytes;
} VkShaderResourceUsageAMD;

• numUsedVgprs is the number of vector instruction general-purpose registers used by this shader.

• numUsedSgprs is the number of scalar instruction general-purpose registers used by this shader.

864

• ldsSizePerLocalWorkGroup is the maximum local data store size per work group in bytes.

• ldsUsageSizeInBytes is the LDS usage size in bytes per work group by this shader.

• scratchMemUsageInBytes is the scratch memory usage in bytes by this shader.

10.13. Pipeline Compiler Control
The compilation of a pipeline can be tuned by adding a VkPipelineCompilerControlCreateInfoAMD
structure to the pNext chain of VkGraphicsPipelineCreateInfo or VkComputePipelineCreateInfo.

// Provided by VK_AMD_pipeline_compiler_control
typedef struct VkPipelineCompilerControlCreateInfoAMD {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCompilerControlFlagsAMD compilerControlFlags;
} VkPipelineCompilerControlCreateInfoAMD;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• compilerControlFlags is a bitmask of VkPipelineCompilerControlFlagBitsAMD affecting how the
pipeline will be compiled.

Valid Usage (Implicit)

• VUID-VkPipelineCompilerControlCreateInfoAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_COMPILER_CONTROL_CREATE_INFO_AMD

• VUID-VkPipelineCompilerControlCreateInfoAMD-compilerControlFlags-zerobitmask
compilerControlFlags must be 0

There are currently no available flags for this extension; flags will be added by future versions of
this extension.

// Provided by VK_AMD_pipeline_compiler_control
typedef enum VkPipelineCompilerControlFlagBitsAMD {
} VkPipelineCompilerControlFlagBitsAMD;

// Provided by VK_AMD_pipeline_compiler_control
typedef VkFlags VkPipelineCompilerControlFlagsAMD;

VkPipelineCompilerControlFlagsAMD is a bitmask type for setting a mask of zero or more
VkPipelineCompilerControlFlagBitsAMD.

865

10.14. Pipeline Creation Feedback
Feedback about the creation of a particular pipeline object can be obtained by adding a
VkPipelineCreationFeedbackCreateInfo structure to the pNext chain of VkGraphicsPipelineCreateInfo,
VkRayTracingPipelineCreateInfoKHR, VkRayTracingPipelineCreateInfoNV, or
VkComputePipelineCreateInfo. The VkPipelineCreationFeedbackCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPipelineCreationFeedbackCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreationFeedback* pPipelineCreationFeedback;
 uint32_t pipelineStageCreationFeedbackCount;
 VkPipelineCreationFeedback* pPipelineStageCreationFeedbacks;
} VkPipelineCreationFeedbackCreateInfo;

or the equivalent

// Provided by VK_EXT_pipeline_creation_feedback
typedef VkPipelineCreationFeedbackCreateInfo VkPipelineCreationFeedbackCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pPipelineCreationFeedback is a pointer to a VkPipelineCreationFeedback structure.

• pipelineStageCreationFeedbackCount is the number of elements in
pPipelineStageCreationFeedbacks.

• pPipelineStageCreationFeedbacks is a pointer to an array of pipelineStageCreationFeedbackCount
VkPipelineCreationFeedback structures.

An implementation should write pipeline creation feedback to pPipelineCreationFeedback and may
write pipeline stage creation feedback to pPipelineStageCreationFeedbacks. An implementation
must set or clear the VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT in VkPipelineCreationFeedback
::flags for pPipelineCreationFeedback and every element of pPipelineStageCreationFeedbacks.

Note

One common scenario for an implementation to skip per-stage feedback is when
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT is set in
pPipelineCreationFeedback.

When chained to VkRayTracingPipelineCreateInfoKHR, VkRayTracingPipelineCreateInfoNV, or
VkGraphicsPipelineCreateInfo, the i element of pPipelineStageCreationFeedbacks corresponds to the
i element of VkRayTracingPipelineCreateInfoKHR::pStages, VkRayTracingPipelineCreateInfoNV
::pStages, or VkGraphicsPipelineCreateInfo::pStages. When chained to
VkComputePipelineCreateInfo, the first element of pPipelineStageCreationFeedbacks corresponds to
VkComputePipelineCreateInfo::stage.

866

Valid Usage (Implicit)

• VUID-VkPipelineCreationFeedbackCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO

• VUID-VkPipelineCreationFeedbackCreateInfo-pPipelineCreationFeedback-parameter
pPipelineCreationFeedback must be a valid pointer to a VkPipelineCreationFeedback
structure

• VUID-VkPipelineCreationFeedbackCreateInfo-pPipelineStageCreationFeedbacks-
parameter
If pipelineStageCreationFeedbackCount is not 0, pPipelineStageCreationFeedbacks must be a
valid pointer to an array of pipelineStageCreationFeedbackCount
VkPipelineCreationFeedback structures

The VkPipelineCreationFeedback structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPipelineCreationFeedback {
 VkPipelineCreationFeedbackFlags flags;
 uint64_t duration;
} VkPipelineCreationFeedback;

or the equivalent

// Provided by VK_EXT_pipeline_creation_feedback
typedef VkPipelineCreationFeedback VkPipelineCreationFeedbackEXT;

• flags is a bitmask of VkPipelineCreationFeedbackFlagBits providing feedback about the
creation of a pipeline or of a pipeline stage.

• duration is the duration spent creating a pipeline or pipeline stage in nanoseconds.

If the VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT is not set in flags, an implementation must not set
any other bits in flags, and the values of all other VkPipelineCreationFeedback data members are
undefined.

Possible values of the flags member of VkPipelineCreationFeedback are:

// Provided by VK_VERSION_1_3
typedef enum VkPipelineCreationFeedbackFlagBits {
 VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT = 0x00000001,
 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT = 0x00000002,
 VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT = 0x00000004,
 VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT =
VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT =
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT,

867

 VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT_EXT =
VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT,
} VkPipelineCreationFeedbackFlagBits;

or the equivalent

// Provided by VK_EXT_pipeline_creation_feedback
typedef VkPipelineCreationFeedbackFlagBits VkPipelineCreationFeedbackFlagBitsEXT;

• VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT indicates that the feedback information is valid.

• VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT indicates that a readily
usable pipeline or pipeline stage was found in the pipelineCache specified by the application in
the pipeline creation command.

An implementation should set the
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT bit if it was able to avoid the
large majority of pipeline or pipeline stage creation work by using the pipelineCache parameter
of vkCreateGraphicsPipelines, vkCreateRayTracingPipelinesKHR,
vkCreateRayTracingPipelinesNV, or vkCreateComputePipelines. When an implementation sets
this bit for the entire pipeline, it may leave it unset for any stage.

Note

Implementations are encouraged to provide a meaningful signal to
applications using this bit. The intention is to communicate to the application
that the pipeline or pipeline stage was created “as fast as it gets” using the
pipeline cache provided by the application. If an implementation uses an
internal cache, it is discouraged from setting this bit as the feedback would be
unactionable.

• VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT indicates that the base pipeline
specified by the basePipelineHandle or basePipelineIndex member of the Vk*PipelineCreateInfo
structure was used to accelerate the creation of the pipeline.

An implementation should set the
VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT bit if it was able to avoid a
significant amount of work by using the base pipeline.

Note

While “significant amount of work” is subjective, implementations are
encouraged to provide a meaningful signal to applications using this bit. For
example, a 1% reduction in duration may not warrant setting this bit, while a
50% reduction would.

// Provided by VK_VERSION_1_3
typedef VkFlags VkPipelineCreationFeedbackFlags;

868

or the equivalent

// Provided by VK_EXT_pipeline_creation_feedback
typedef VkPipelineCreationFeedbackFlags VkPipelineCreationFeedbackFlagsEXT;

VkPipelineCreationFeedbackFlags is a bitmask type for providing zero or more
VkPipelineCreationFeedbackFlagBits.

869

Chapter 11. Memory Allocation
Vulkan memory is broken up into two categories, host memory and device memory.

11.1. Host Memory
Host memory is memory needed by the Vulkan implementation for non-device-visible storage.

Note

This memory may be used to store the implementation’s representation and state
of Vulkan objects.

Vulkan provides applications the opportunity to perform host memory allocations on behalf of the
Vulkan implementation. If this feature is not used, the implementation will perform its own
memory allocations. Since most memory allocations are off the critical path, this is not meant as a
performance feature. Rather, this can be useful for certain embedded systems, for debugging
purposes (e.g. putting a guard page after all host allocations), or for memory allocation logging.

Allocators are provided by the application as a pointer to a VkAllocationCallbacks structure:

// Provided by VK_VERSION_1_0
typedef struct VkAllocationCallbacks {
 void* pUserData;
 PFN_vkAllocationFunction pfnAllocation;
 PFN_vkReallocationFunction pfnReallocation;
 PFN_vkFreeFunction pfnFree;
 PFN_vkInternalAllocationNotification pfnInternalAllocation;
 PFN_vkInternalFreeNotification pfnInternalFree;
} VkAllocationCallbacks;

• pUserData is a value to be interpreted by the implementation of the callbacks. When any of the
callbacks in VkAllocationCallbacks are called, the Vulkan implementation will pass this value as
the first parameter to the callback. This value can vary each time an allocator is passed into a
command, even when the same object takes an allocator in multiple commands.

• pfnAllocation is a PFN_vkAllocationFunction pointer to an application-defined memory
allocation function.

• pfnReallocation is a PFN_vkReallocationFunction pointer to an application-defined memory
reallocation function.

• pfnFree is a PFN_vkFreeFunction pointer to an application-defined memory free function.

• pfnInternalAllocation is a PFN_vkInternalAllocationNotification pointer to an application-
defined function that is called by the implementation when the implementation makes internal
allocations.

• pfnInternalFree is a PFN_vkInternalFreeNotification pointer to an application-defined function
that is called by the implementation when the implementation frees internal allocations.

870

Valid Usage

• VUID-VkAllocationCallbacks-pfnAllocation-00632
pfnAllocation must be a valid pointer to a valid user-defined PFN_vkAllocationFunction

• VUID-VkAllocationCallbacks-pfnReallocation-00633
pfnReallocation must be a valid pointer to a valid user-defined
PFN_vkReallocationFunction

• VUID-VkAllocationCallbacks-pfnFree-00634
pfnFree must be a valid pointer to a valid user-defined PFN_vkFreeFunction

• VUID-VkAllocationCallbacks-pfnInternalAllocation-00635
If either of pfnInternalAllocation or pfnInternalFree is not NULL, both must be valid
callbacks

The type of pfnAllocation is:

// Provided by VK_VERSION_1_0
typedef void* (VKAPI_PTR *PFN_vkAllocationFunction)(
 void* pUserData,
 size_t size,
 size_t alignment,
 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• size is the size in bytes of the requested allocation.

• alignment is the requested alignment of the allocation in bytes and must be a power of two.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

If pfnAllocation is unable to allocate the requested memory, it must return NULL. If the allocation
was successful, it must return a valid pointer to memory allocation containing at least size bytes,
and with the pointer value being a multiple of alignment.

Note

Correct Vulkan operation cannot be assumed if the application does not follow
these rules.

For example, pfnAllocation (or pfnReallocation) could cause termination of
running Vulkan instance(s) on a failed allocation for debugging purposes, either
directly or indirectly. In these circumstances, it cannot be assumed that any part
of any affected VkInstance objects are going to operate correctly (even
vkDestroyInstance), and the application must ensure it cleans up properly via
other means (e.g. process termination).

871

If pfnAllocation returns NULL, and if the implementation is unable to continue correct processing of
the current command without the requested allocation, it must treat this as a runtime error, and
generate VK_ERROR_OUT_OF_HOST_MEMORY at the appropriate time for the command in which the
condition was detected, as described in Return Codes.

If the implementation is able to continue correct processing of the current command without the
requested allocation, then it may do so, and must not generate VK_ERROR_OUT_OF_HOST_MEMORY as a
result of this failed allocation.

The type of pfnReallocation is:

// Provided by VK_VERSION_1_0
typedef void* (VKAPI_PTR *PFN_vkReallocationFunction)(
 void* pUserData,
 void* pOriginal,
 size_t size,
 size_t alignment,
 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• pOriginal must be either NULL or a pointer previously returned by pfnReallocation or
pfnAllocation of a compatible allocator.

• size is the size in bytes of the requested allocation.

• alignment is the requested alignment of the allocation in bytes and must be a power of two.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

If the reallocation was successful, pfnReallocation must return an allocation with enough space for
size bytes, and the contents of the original allocation from bytes zero to min(original size, new size)
- 1 must be preserved in the returned allocation. If size is larger than the old size, the contents of
the additional space are undefined. If satisfying these requirements involves creating a new
allocation, then the old allocation should be freed.

If pOriginal is NULL, then pfnReallocation must behave equivalently to a call to
PFN_vkAllocationFunction with the same parameter values (without pOriginal).

If size is zero, then pfnReallocation must behave equivalently to a call to PFN_vkFreeFunction with
the same pUserData parameter value, and pMemory equal to pOriginal.

If pOriginal is non-NULL, the implementation must ensure that alignment is equal to the alignment
used to originally allocate pOriginal.

If this function fails and pOriginal is non-NULL the application must not free the old allocation.

pfnReallocation must follow the same rules for return values as PFN_vkAllocationFunction.

The type of pfnFree is:

872

// Provided by VK_VERSION_1_0
typedef void (VKAPI_PTR *PFN_vkFreeFunction)(
 void* pUserData,
 void* pMemory);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• pMemory is the allocation to be freed.

pMemory may be NULL, which the callback must handle safely. If pMemory is non-NULL, it must be a
pointer previously allocated by pfnAllocation or pfnReallocation. The application should free this
memory.

The type of pfnInternalAllocation is:

// Provided by VK_VERSION_1_0
typedef void (VKAPI_PTR *PFN_vkInternalAllocationNotification)(
 void* pUserData,
 size_t size,
 VkInternalAllocationType allocationType,
 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• size is the requested size of an allocation.

• allocationType is a VkInternalAllocationType value specifying the requested type of an
allocation.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

This is a purely informational callback.

The type of pfnInternalFree is:

// Provided by VK_VERSION_1_0
typedef void (VKAPI_PTR *PFN_vkInternalFreeNotification)(
 void* pUserData,
 size_t size,
 VkInternalAllocationType allocationType,
 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• size is the requested size of an allocation.

873

• allocationType is a VkInternalAllocationType value specifying the requested type of an
allocation.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

Each allocation has an allocation scope defining its lifetime and which object it is associated with.
Possible values passed to the allocationScope parameter of the callback functions specified by
VkAllocationCallbacks, indicating the allocation scope, are:

// Provided by VK_VERSION_1_0
typedef enum VkSystemAllocationScope {
 VK_SYSTEM_ALLOCATION_SCOPE_COMMAND = 0,
 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT = 1,
 VK_SYSTEM_ALLOCATION_SCOPE_CACHE = 2,
 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE = 3,
 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE = 4,
} VkSystemAllocationScope;

• VK_SYSTEM_ALLOCATION_SCOPE_COMMAND specifies that the allocation is scoped to the duration of the
Vulkan command.

• VK_SYSTEM_ALLOCATION_SCOPE_OBJECT specifies that the allocation is scoped to the lifetime of the
Vulkan object that is being created or used.

• VK_SYSTEM_ALLOCATION_SCOPE_CACHE specifies that the allocation is scoped to the lifetime of a
VkPipelineCache or VkValidationCacheEXT object.

• VK_SYSTEM_ALLOCATION_SCOPE_DEVICE specifies that the allocation is scoped to the lifetime of the
Vulkan device.

• VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE specifies that the allocation is scoped to the lifetime of the
Vulkan instance.

Most Vulkan commands operate on a single object, or there is a sole object that is being created or
manipulated. When an allocation uses an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT or
VK_SYSTEM_ALLOCATION_SCOPE_CACHE, the allocation is scoped to the object being created or
manipulated.

When an implementation requires host memory, it will make callbacks to the application using the
most specific allocator and allocation scope available:

• If an allocation is scoped to the duration of a command, the allocator will use the
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND allocation scope. The most specific allocator available is
used: if the object being created or manipulated has an allocator, that object’s allocator will be
used, else if the parent VkDevice has an allocator it will be used, else if the parent VkInstance has
an allocator it will be used. Else,

• If an allocation is associated with a VkValidationCacheEXT or VkPipelineCache object, the allocator
will use the VK_SYSTEM_ALLOCATION_SCOPE_CACHE allocation scope. The most specific allocator
available is used (cache, else device, else instance). Else,

874

• If an allocation is scoped to the lifetime of an object, that object is being created or manipulated
by the command, and that object’s type is not VkDevice or VkInstance, the allocator will use an
allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT. The most specific allocator available is
used (object, else device, else instance). Else,

• If an allocation is scoped to the lifetime of a device, the allocator will use an allocation scope of
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE. The most specific allocator available is used (device, else
instance). Else,

• If the allocation is scoped to the lifetime of an instance and the instance has an allocator, its
allocator will be used with an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE.

• Otherwise an implementation will allocate memory through an alternative mechanism that is
unspecified.

Objects that are allocated from pools do not specify their own allocator. When an implementation
requires host memory for such an object, that memory is sourced from the object’s parent pool’s
allocator.

The application is not expected to handle allocating memory that is intended for execution by the
host due to the complexities of differing security implementations across multiple platforms. The
implementation will allocate such memory internally and invoke an application provided
informational callback when these internal allocations are allocated and freed. Upon allocation of
executable memory, pfnInternalAllocation will be called. Upon freeing executable memory,
pfnInternalFree will be called. An implementation will only call an informational callback for
executable memory allocations and frees.

The allocationType parameter to the pfnInternalAllocation and pfnInternalFree functions may be
one of the following values:

// Provided by VK_VERSION_1_0
typedef enum VkInternalAllocationType {
 VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE = 0,
} VkInternalAllocationType;

• VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE specifies that the allocation is intended for execution
by the host.

An implementation must only make calls into an application-provided allocator during the
execution of an API command. An implementation must only make calls into an application-
provided allocator from the same thread that called the provoking API command. The
implementation should not synchronize calls to any of the callbacks. If synchronization is needed,
the callbacks must provide it themselves. The informational callbacks are subject to the same
restrictions as the allocation callbacks.

If an implementation intends to make calls through a VkAllocationCallbacks structure between the
time a vkCreate* command returns and the time a corresponding vkDestroy* command begins, that
implementation must save a copy of the allocator before the vkCreate* command returns. The
callback functions and any data structures they rely upon must remain valid for the lifetime of the
object they are associated with.

875

If an allocator is provided to a vkCreate* command, a compatible allocator must be provided to the
corresponding vkDestroy* command. Two VkAllocationCallbacks structures are compatible if
memory allocated with pfnAllocation or pfnReallocation in each can be freed with pfnReallocation
or pfnFree in the other. An allocator must not be provided to a vkDestroy* command if an allocator
was not provided to the corresponding vkCreate* command.

If a non-NULL allocator is used, the pfnAllocation, pfnReallocation and pfnFree members must be
non-NULL and point to valid implementations of the callbacks. An application can choose to not
provide informational callbacks by setting both pfnInternalAllocation and pfnInternalFree to NULL.
pfnInternalAllocation and pfnInternalFree must either both be NULL or both be non-NULL.

If pfnAllocation or pfnReallocation fail, the implementation may fail object creation and/or
generate a VK_ERROR_OUT_OF_HOST_MEMORY error, as appropriate.

Allocation callbacks must not call any Vulkan commands.

The following sets of rules define when an implementation is permitted to call the allocator
callbacks.

pfnAllocation or pfnReallocation may be called in the following situations:

• Allocations scoped to a VkDevice or VkInstance may be allocated from any API command.

• Allocations scoped to a command may be allocated from any API command.

• Allocations scoped to a VkPipelineCache may only be allocated from:

◦ vkCreatePipelineCache

◦ vkMergePipelineCaches for dstCache

◦ vkCreateGraphicsPipelines for pipelineCache

◦ vkCreateComputePipelines for pipelineCache

• Allocations scoped to a VkValidationCacheEXT may only be allocated from:

◦ vkCreateValidationCacheEXT

◦ vkMergeValidationCachesEXT for dstCache

◦ vkCreateShaderModule for validationCache in VkShaderModuleValidationCacheCreateInfoEXT

• Allocations scoped to a VkDescriptorPool may only be allocated from:

◦ any command that takes the pool as a direct argument

◦ vkAllocateDescriptorSets for the descriptorPool member of its pAllocateInfo parameter

◦ vkCreateDescriptorPool

• Allocations scoped to a VkCommandPool may only be allocated from:

◦ any command that takes the pool as a direct argument

◦ vkCreateCommandPool

◦ vkAllocateCommandBuffers for the commandPool member of its pAllocateInfo parameter

◦ any vkCmd* command whose commandBuffer was allocated from that VkCommandPool

876

• Allocations scoped to any other object may only be allocated in that object’s vkCreate*
command.

pfnFree, or pfnReallocation with zero size, may be called in the following situations:

• Allocations scoped to a VkDevice or VkInstance may be freed from any API command.

• Allocations scoped to a command must be freed by any API command which allocates such
memory.

• Allocations scoped to a VkPipelineCache may be freed from vkDestroyPipelineCache.

• Allocations scoped to a VkValidationCacheEXT may be freed from vkDestroyValidationCacheEXT.

• Allocations scoped to a VkDescriptorPool may be freed from

◦ any command that takes the pool as a direct argument

• Allocations scoped to a VkCommandPool may be freed from:

◦ any command that takes the pool as a direct argument

◦ vkResetCommandBuffer whose commandBuffer was allocated from that VkCommandPool

• Allocations scoped to any other object may be freed in that object’s vkDestroy* command.

• Any command that allocates host memory may also free host memory of the same scope.

11.2. Device Memory
Device memory is memory that is visible to the device — for example the contents of the image or
buffer objects, which can be natively used by the device.

11.2.1. Device Memory Properties

Memory properties of a physical device describe the memory heaps and memory types available.

To query memory properties, call:

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceMemoryProperties(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties* pMemoryProperties);

• physicalDevice is the handle to the device to query.

• pMemoryProperties is a pointer to a VkPhysicalDeviceMemoryProperties structure in which the
properties are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceMemoryProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceMemoryProperties-pMemoryProperties-parameter

877

pMemoryProperties must be a valid pointer to a VkPhysicalDeviceMemoryProperties
structure

The VkPhysicalDeviceMemoryProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceMemoryProperties {
 uint32_t memoryTypeCount;
 VkMemoryType memoryTypes[VK_MAX_MEMORY_TYPES];
 uint32_t memoryHeapCount;
 VkMemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];
} VkPhysicalDeviceMemoryProperties;

• memoryTypeCount is the number of valid elements in the memoryTypes array.

• memoryTypes is an array of VK_MAX_MEMORY_TYPES VkMemoryType structures describing the
memory types that can be used to access memory allocated from the heaps specified by
memoryHeaps.

• memoryHeapCount is the number of valid elements in the memoryHeaps array.

• memoryHeaps is an array of VK_MAX_MEMORY_HEAPS VkMemoryHeap structures describing the
memory heaps from which memory can be allocated.

The VkPhysicalDeviceMemoryProperties structure describes a number of memory heaps as well as a
number of memory types that can be used to access memory allocated in those heaps. Each heap
describes a memory resource of a particular size, and each memory type describes a set of memory
properties (e.g. host cached vs. uncached) that can be used with a given memory heap. Allocations
using a particular memory type will consume resources from the heap indicated by that memory
type’s heap index. More than one memory type may share each heap, and the heaps and memory
types provide a mechanism to advertise an accurate size of the physical memory resources while
allowing the memory to be used with a variety of different properties.

The number of memory heaps is given by memoryHeapCount and is less than or equal to
VK_MAX_MEMORY_HEAPS. Each heap is described by an element of the memoryHeaps array as a
VkMemoryHeap structure. The number of memory types available across all memory heaps is
given by memoryTypeCount and is less than or equal to VK_MAX_MEMORY_TYPES. Each memory type is
described by an element of the memoryTypes array as a VkMemoryType structure.

At least one heap must include VK_MEMORY_HEAP_DEVICE_LOCAL_BIT in VkMemoryHeap::flags. If there
are multiple heaps that all have similar performance characteristics, they may all include
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT. In a unified memory architecture (UMA) system there is often
only a single memory heap which is considered to be equally “local” to the host and to the device,
and such an implementation must advertise the heap as device-local.

Each memory type returned by vkGetPhysicalDeviceMemoryProperties must have its propertyFlags
set to one of the following values:

• 0

878

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

• VK_MEMORY_PROPERTY_PROTECTED_BIT

• VK_MEMORY_PROPERTY_PROTECTED_BIT | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |

879

VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV

There must be at least one memory type with both the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bits set in its propertyFlags. There must be at least one
memory type with the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set in its propertyFlags. If the
deviceCoherentMemory feature is enabled, there must be at least one memory type with the
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD bit set in its propertyFlags.

For each pair of elements X and Y returned in memoryTypes, X must be placed at a lower index
position than Y if:

• the set of bit flags returned in the propertyFlags member of X is a strict subset of the set of bit
flags returned in the propertyFlags member of Y; or

• the propertyFlags members of X and Y are equal, and X belongs to a memory heap with greater
performance (as determined in an implementation-specific manner) ; or

• the propertyFlags members of Y includes VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD or
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD and X does not

Note

There is no ordering requirement between X and Y elements for the case their
propertyFlags members are not in a subset relation. That potentially allows more
than one possible way to order the same set of memory types. Notice that the list of
all allowed memory property flag combinations is written in a valid order. But if

880

instead VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT was before
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, the
list would still be in a valid order.

There may be a performance penalty for using device coherent or uncached device
memory types, and using these accidentally is undesirable. In order to avoid this,
memory types with these properties always appear at the end of the list; but are
subject to the same rules otherwise.

This ordering requirement enables applications to use a simple search loop to select the desired
memory type along the lines of:

// Find a memory in `memoryTypeBitsRequirement` that includes all of
`requiredProperties`
int32_t findProperties(const VkPhysicalDeviceMemoryProperties* pMemoryProperties,
 uint32_t memoryTypeBitsRequirement,
 VkMemoryPropertyFlags requiredProperties) {
 const uint32_t memoryCount = pMemoryProperties->memoryTypeCount;
 for (uint32_t memoryIndex = 0; memoryIndex < memoryCount; ++memoryIndex) {
 const uint32_t memoryTypeBits = (1 << memoryIndex);
 const bool isRequiredMemoryType = memoryTypeBitsRequirement & memoryTypeBits;

 const VkMemoryPropertyFlags properties =
 pMemoryProperties->memoryTypes[memoryIndex].propertyFlags;
 const bool hasRequiredProperties =
 (properties & requiredProperties) == requiredProperties;

 if (isRequiredMemoryType && hasRequiredProperties)
 return static_cast<int32_t>(memoryIndex);
 }

 // failed to find memory type
 return -1;
}

// Try to find an optimal memory type, or if it does not exist try fallback memory
type
// `device` is the VkDevice
// `image` is the VkImage that requires memory to be bound
// `memoryProperties` properties as returned by vkGetPhysicalDeviceMemoryProperties
// `requiredProperties` are the property flags that must be present
// `optimalProperties` are the property flags that are preferred by the application
VkMemoryRequirements memoryRequirements;
vkGetImageMemoryRequirements(device, image, &memoryRequirements);
int32_t memoryType =
 findProperties(&memoryProperties, memoryRequirements.memoryTypeBits,
optimalProperties);
if (memoryType == -1) // not found; try fallback properties
 memoryType =
 findProperties(&memoryProperties, memoryRequirements.memoryTypeBits,

881

requiredProperties);

VK_MAX_MEMORY_TYPES is the length of an array of VkMemoryType structures describing memory
types, as returned in VkPhysicalDeviceMemoryProperties::memoryTypes.

#define VK_MAX_MEMORY_TYPES 32U

VK_MAX_MEMORY_HEAPS is the length of an array of VkMemoryHeap structures describing memory
heaps, as returned in VkPhysicalDeviceMemoryProperties::memoryHeaps.

#define VK_MAX_MEMORY_HEAPS 16U

To query memory properties, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceMemoryProperties2(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties2* pMemoryProperties);

or the equivalent command

// Provided by VK_KHR_get_physical_device_properties2
void vkGetPhysicalDeviceMemoryProperties2KHR(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties2* pMemoryProperties);

• physicalDevice is the handle to the device to query.

• pMemoryProperties is a pointer to a VkPhysicalDeviceMemoryProperties2 structure in which the
properties are returned.

vkGetPhysicalDeviceMemoryProperties2 behaves similarly to vkGetPhysicalDeviceMemoryProperties,
with the ability to return extended information in a pNext chain of output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceMemoryProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceMemoryProperties2-pMemoryProperties-parameter
pMemoryProperties must be a valid pointer to a VkPhysicalDeviceMemoryProperties2
structure

The VkPhysicalDeviceMemoryProperties2 structure is defined as:

882

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceMemoryProperties2 {
 VkStructureType sType;
 void* pNext;
 VkPhysicalDeviceMemoryProperties memoryProperties;
} VkPhysicalDeviceMemoryProperties2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkPhysicalDeviceMemoryProperties2 VkPhysicalDeviceMemoryProperties2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryProperties is a VkPhysicalDeviceMemoryProperties structure which is populated with the
same values as in vkGetPhysicalDeviceMemoryProperties.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMemoryProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2

• VUID-VkPhysicalDeviceMemoryProperties2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkPhysicalDeviceMemoryBudgetPropertiesEXT

• VUID-VkPhysicalDeviceMemoryProperties2-sType-unique
The sType value of each struct in the pNext chain must be unique

The VkMemoryHeap structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryHeap {
 VkDeviceSize size;
 VkMemoryHeapFlags flags;
} VkMemoryHeap;

• size is the total memory size in bytes in the heap.

• flags is a bitmask of VkMemoryHeapFlagBits specifying attribute flags for the heap.

Bits which may be set in VkMemoryHeap::flags, indicating attribute flags for the heap, are:

// Provided by VK_VERSION_1_0
typedef enum VkMemoryHeapFlagBits {
 VK_MEMORY_HEAP_DEVICE_LOCAL_BIT = 0x00000001,

883

 // Provided by VK_VERSION_1_1
 VK_MEMORY_HEAP_MULTI_INSTANCE_BIT = 0x00000002,
 // Provided by VK_KHR_device_group_creation
 VK_MEMORY_HEAP_MULTI_INSTANCE_BIT_KHR = VK_MEMORY_HEAP_MULTI_INSTANCE_BIT,
} VkMemoryHeapFlagBits;

• VK_MEMORY_HEAP_DEVICE_LOCAL_BIT specifies that the heap corresponds to device-local memory.
Device-local memory may have different performance characteristics than host-local memory,
and may support different memory property flags.

• VK_MEMORY_HEAP_MULTI_INSTANCE_BIT specifies that in a logical device representing more than one
physical device, there is a per-physical device instance of the heap memory. By default, an
allocation from such a heap will be replicated to each physical device’s instance of the heap.

// Provided by VK_VERSION_1_0
typedef VkFlags VkMemoryHeapFlags;

VkMemoryHeapFlags is a bitmask type for setting a mask of zero or more VkMemoryHeapFlagBits.

The VkMemoryType structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryType {
 VkMemoryPropertyFlags propertyFlags;
 uint32_t heapIndex;
} VkMemoryType;

• heapIndex describes which memory heap this memory type corresponds to, and must be less
than memoryHeapCount from the VkPhysicalDeviceMemoryProperties structure.

• propertyFlags is a bitmask of VkMemoryPropertyFlagBits of properties for this memory type.

Bits which may be set in VkMemoryType::propertyFlags, indicating properties of a memory type,
are:

// Provided by VK_VERSION_1_0
typedef enum VkMemoryPropertyFlagBits {
 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002,
 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,
 VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,
 VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010,
 // Provided by VK_VERSION_1_1
 VK_MEMORY_PROPERTY_PROTECTED_BIT = 0x00000020,
 // Provided by VK_AMD_device_coherent_memory
 VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD = 0x00000040,
 // Provided by VK_AMD_device_coherent_memory
 VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD = 0x00000080,

884

 // Provided by VK_NV_external_memory_rdma
 VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV = 0x00000100,
} VkMemoryPropertyFlagBits;

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit specifies that memory allocated with this type is the
most efficient for device access. This property will be set if and only if the memory type belongs
to a heap with the VK_MEMORY_HEAP_DEVICE_LOCAL_BIT set.

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit specifies that memory allocated with this type can be
mapped for host access using vkMapMemory.

• VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit specifies that the host cache management commands
vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are not needed to
flush host writes to the device or make device writes visible to the host, respectively.

• VK_MEMORY_PROPERTY_HOST_CACHED_BIT bit specifies that memory allocated with this type is cached
on the host. Host memory accesses to uncached memory are slower than to cached memory,
however uncached memory is always host coherent.

• VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit specifies that the memory type only allows device
access to the memory. Memory types must not have both
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT and VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set.
Additionally, the object’s backing memory may be provided by the implementation lazily as
specified in Lazily Allocated Memory.

• VK_MEMORY_PROPERTY_PROTECTED_BIT bit specifies that the memory type only allows device access
to the memory, and allows protected queue operations to access the memory. Memory types
must not have VK_MEMORY_PROPERTY_PROTECTED_BIT set and any of
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set, or VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, or
VK_MEMORY_PROPERTY_HOST_CACHED_BIT set.

• VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD bit specifies that device accesses to allocations of
this memory type are automatically made available and visible.

• VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD bit specifies that memory allocated with this type is
not cached on the device. Uncached device memory is always device coherent.

• VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV bit specifies that external devices can access this
memory directly.

For any memory allocated with both the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT and the
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD, host or device accesses also perform automatic
memory domain transfer operations, such that writes are always automatically available and
visible to both host and device memory domains.

Note

Device coherence is a useful property for certain debugging use cases (e.g. crash
analysis, where performing separate coherence actions could mean values are not
reported correctly). However, device coherent accesses may be slower than
equivalent accesses without device coherence, particularly if they are also device
uncached. For device uncached memory in particular, repeated accesses to the
same or neighbouring memory locations over a short time period (e.g. within a

885

frame) may be slower than it would be for the equivalent cached memory type. As
such, it is generally inadvisable to use device coherent or device uncached
memory except when really needed.

// Provided by VK_VERSION_1_0
typedef VkFlags VkMemoryPropertyFlags;

VkMemoryPropertyFlags is a bitmask type for setting a mask of zero or more
VkMemoryPropertyFlagBits.

If the VkPhysicalDeviceMemoryBudgetPropertiesEXT structure is included in the pNext chain of
VkPhysicalDeviceMemoryProperties2, it is filled with the current memory budgets and usages.

The VkPhysicalDeviceMemoryBudgetPropertiesEXT structure is defined as:

// Provided by VK_EXT_memory_budget
typedef struct VkPhysicalDeviceMemoryBudgetPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize heapBudget[VK_MAX_MEMORY_HEAPS];
 VkDeviceSize heapUsage[VK_MAX_MEMORY_HEAPS];
} VkPhysicalDeviceMemoryBudgetPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• heapBudget is an array of VK_MAX_MEMORY_HEAPS VkDeviceSize values in which memory budgets are
returned, with one element for each memory heap. A heap’s budget is a rough estimate of how
much memory the process can allocate from that heap before allocations may fail or cause
performance degradation. The budget includes any currently allocated device memory.

• heapUsage is an array of VK_MAX_MEMORY_HEAPS VkDeviceSize values in which memory usages are
returned, with one element for each memory heap. A heap’s usage is an estimate of how much
memory the process is currently using in that heap.

The values returned in this structure are not invariant. The heapBudget and heapUsage values must
be zero for array elements greater than or equal to VkPhysicalDeviceMemoryProperties
::memoryHeapCount. The heapBudget value must be non-zero for array elements less than
VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget value must be less than or
equal to VkMemoryHeap::size for each heap.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMemoryBudgetPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT

886

11.2.2. Device Memory Objects

A Vulkan device operates on data in device memory via memory objects that are represented in the
API by a VkDeviceMemory handle:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDeviceMemory)

11.2.3. Device Memory Allocation

To allocate memory objects, call:

// Provided by VK_VERSION_1_0
VkResult vkAllocateMemory(
 VkDevice device,
 const VkMemoryAllocateInfo* pAllocateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDeviceMemory* pMemory);

• device is the logical device that owns the memory.

• pAllocateInfo is a pointer to a VkMemoryAllocateInfo structure describing parameters of the
allocation. A successfully returned allocation must use the requested parameters — no
substitution is permitted by the implementation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pMemory is a pointer to a VkDeviceMemory handle in which information about the allocated
memory is returned.

Allocations returned by vkAllocateMemory are guaranteed to meet any alignment requirement of the
implementation. For example, if an implementation requires 128 byte alignment for images and 64
byte alignment for buffers, the device memory returned through this mechanism would be 128-
byte aligned. This ensures that applications can correctly suballocate objects of different types
(with potentially different alignment requirements) in the same memory object.

When memory is allocated, its contents are undefined with the following constraint:

• The contents of unprotected memory must not be a function of the contents of data protected
memory objects, even if those memory objects were previously freed.

Note

The contents of memory allocated by one application should not be a function of
data from protected memory objects of another application, even if those memory
objects were previously freed.

The maximum number of valid memory allocations that can exist simultaneously within a
VkDevice may be restricted by implementation- or platform-dependent limits. The
maxMemoryAllocationCount feature describes the number of allocations that can exist simultaneously

887

before encountering these internal limits.

Note

For historical reasons, if maxMemoryAllocationCount is exceeded, some
implementations may return VK_ERROR_TOO_MANY_OBJECTS. Exceeding this limit will
result in undefined behavior, and an application should not rely on the use of the
returned error code in order to identify when the limit is reached.

Note

Many protected memory implementations involve complex hardware and system
software support, and often have additional and much lower limits on the number
of simultaneous protected memory allocations (from memory types with the
VK_MEMORY_PROPERTY_PROTECTED_BIT property) than for non-protected memory
allocations. These limits can be system-wide, and depend on a variety of factors
outside of the Vulkan implementation, so they cannot be queried in Vulkan.
Applications should use as few allocations as possible from such memory types by
suballocating aggressively, and be prepared for allocation failure even when there
is apparently plenty of capacity remaining in the memory heap. As a guideline, the
Vulkan conformance test suite requires that at least 80 minimum-size allocations
can exist concurrently when no other uses of protected memory are active in the
system.

Some platforms may have a limit on the maximum size of a single allocation. For example, certain
systems may fail to create allocations with a size greater than or equal to 4GB. Such a limit is
implementation-dependent, and if such a failure occurs then the error
VK_ERROR_OUT_OF_DEVICE_MEMORY must be returned. This limit is advertised in
VkPhysicalDeviceMaintenance3Properties::maxMemoryAllocationSize.

The cumulative memory size allocated to a heap can be limited by the size of the specified heap. In
such cases, allocated memory is tracked on a per-device and per-heap basis. Some platforms allow
overallocation into other heaps. The overallocation behavior can be specified through the
VK_AMD_memory_overallocation_behavior extension.

If the VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT::pageableDeviceLocalMemory
feature is enabled, memory allocations made from a heap that includes
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT in VkMemoryHeap::flags may be transparently moved to host-
local memory allowing multiple applications to share device-local memory. If there is no space left
in device-local memory when this new allocation is made, other allocations may be moved out
transparently to make room. The operating system will determine which allocations to move to
device-local memory or host-local memory based on platform-specific criteria. To help the
operating system make good choices, the application should set the appropriate memory priority
with VkMemoryPriorityAllocateInfoEXT and adjust it as necessary with
vkSetDeviceMemoryPriorityEXT. Higher priority allocations will moved to device-local memory
first.

Memory allocations made on heaps without the VK_MEMORY_HEAP_DEVICE_LOCAL_BIT property will not
be transparently promoted to device-local memory by the operating system.

888

Valid Usage

• VUID-vkAllocateMemory-pAllocateInfo-01713
pAllocateInfo->allocationSize must be less than or equal to
VkPhysicalDeviceMemoryProperties::memoryHeaps[memindex].size where memindex =
VkPhysicalDeviceMemoryProperties::memoryTypes[pAllocateInfo->memoryTypeIndex
].heapIndex as returned by vkGetPhysicalDeviceMemoryProperties for the
VkPhysicalDevice that device was created from

• VUID-vkAllocateMemory-pAllocateInfo-01714
pAllocateInfo->memoryTypeIndex must be less than VkPhysicalDeviceMemoryProperties
::memoryTypeCount as returned by vkGetPhysicalDeviceMemoryProperties for the
VkPhysicalDevice that device was created from

• VUID-vkAllocateMemory-deviceCoherentMemory-02790
If the deviceCoherentMemory feature is not enabled, pAllocateInfo->memoryTypeIndex must
not identify a memory type supporting VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD

• VUID-vkAllocateMemory-maxMemoryAllocationCount-04101
There must be less than VkPhysicalDeviceLimits::maxMemoryAllocationCount device memory
allocations currently allocated on the device

Valid Usage (Implicit)

• VUID-vkAllocateMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkAllocateMemory-pAllocateInfo-parameter
pAllocateInfo must be a valid pointer to a valid VkMemoryAllocateInfo structure

• VUID-vkAllocateMemory-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkAllocateMemory-pMemory-parameter
pMemory must be a valid pointer to a VkDeviceMemory handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

889

The VkMemoryAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDeviceSize allocationSize;
 uint32_t memoryTypeIndex;
} VkMemoryAllocateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• allocationSize is the size of the allocation in bytes.

• memoryTypeIndex is an index identifying a memory type from the memoryTypes array of the
VkPhysicalDeviceMemoryProperties structure.

The internal data of an allocated device memory object must include a reference to
implementation-specific resources, referred to as the memory object’s payload. Applications can
also import and export that internal data to and from device memory objects to share data between
Vulkan instances and other compatible APIs. A VkMemoryAllocateInfo structure defines a memory
import operation if its pNext chain includes one of the following structures:

• VkImportMemoryWin32HandleInfoKHR with a non-zero handleType value

• VkImportMemoryFdInfoKHR with a non-zero handleType value

• VkImportMemoryHostPointerInfoEXT with a non-zero handleType value

• VkImportAndroidHardwareBufferInfoANDROID with a non-NULL buffer value

• VkImportMemoryZirconHandleInfoFUCHSIA with a non-zero handleType value

• VkImportMemoryBufferCollectionFUCHSIA

• VkImportScreenBufferInfoQNX with a non-NULL buffer value

If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT, or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT, allocationSize is ignored. The implementation
must query the size of these allocations from the OS.

Whether device memory objects constructed via a memory import operation hold a reference to
their payload depends on the properties of the handle type used to perform the import, as defined
below for each valid handle type. Importing memory must not modify the content of the memory.
Implementations must ensure that importing memory does not enable the importing Vulkan
instance to access any memory or resources in other Vulkan instances other than that
corresponding to the memory object imported. Implementations must also ensure accessing
imported memory which has not been initialized does not allow the importing Vulkan instance to
obtain data from the exporting Vulkan instance or vice-versa.

890

Note

How exported and imported memory is isolated is left to the implementation, but
applications should be aware that such isolation may prevent implementations
from placing multiple exportable memory objects in the same physical or virtual
page. Hence, applications should avoid creating many small external memory
objects whenever possible.

Importing memory must not increase overall heap usage within a system. However, it must affect
the following per-process values:

• VkPhysicalDeviceMaintenance3Properties::maxMemoryAllocationCount

• VkPhysicalDeviceMemoryBudgetPropertiesEXT::heapUsage

When performing a memory import operation, it is the responsibility of the application to ensure
the external handles and their associated payloads meet all valid usage requirements. However,
implementations must perform sufficient validation of external handles and payloads to ensure
that the operation results in a valid memory object which will not cause program termination,
device loss, queue stalls, or corruption of other resources when used as allowed according to its
allocation parameters. If the external handle provided does not meet these requirements, the
implementation must fail the memory import operation with the error code
VK_ERROR_INVALID_EXTERNAL_HANDLE. If the parameters define an export operation and the external
handle type is VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID,
implementations should not strictly follow memoryTypeIndex. Instead, they should modify the
allocation internally to use the required memory type for the application’s given usage. This is
because for an export operation, there is currently no way for the client to know the memory type
index before allocating.

Valid Usage

• VUID-VkMemoryAllocateInfo-allocationSize-07897
If the parameters do not define an import or export operation, allocationSize must be
greater than 0

• VUID-VkMemoryAllocateInfo-None-06657
The parameters must not define more than one import operation

• VUID-VkMemoryAllocateInfo-allocationSize-07899
If the parameters define an export operation and the handle type is not
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID , allocationSize
must be greater than 0

• VUID-VkMemoryAllocateInfo-buffer-06380
If the parameters define an import operation from an VkBufferCollectionFUCHSIA, and
VkMemoryDedicatedAllocateInfo::buffer is present and non-NULL,
VkImportMemoryBufferCollectionFUCHSIA::collection and
VkImportMemoryBufferCollectionFUCHSIA::index must match
VkBufferCollectionBufferCreateInfoFUCHSIA::collection and
VkBufferCollectionBufferCreateInfoFUCHSIA::index, respectively, of the
VkBufferCollectionBufferCreateInfoFUCHSIA structure used to create the

891

VkMemoryDedicatedAllocateInfo::buffer

• VUID-VkMemoryAllocateInfo-image-06381
If the parameters define an import operation from an VkBufferCollectionFUCHSIA, and
VkMemoryDedicatedAllocateInfo::image is present and non-NULL,
VkImportMemoryBufferCollectionFUCHSIA::collection and
VkImportMemoryBufferCollectionFUCHSIA::index must match
VkBufferCollectionImageCreateInfoFUCHSIA::collection and
VkBufferCollectionImageCreateInfoFUCHSIA::index, respectively, of the
VkBufferCollectionImageCreateInfoFUCHSIA structure used to create the
VkMemoryDedicatedAllocateInfo::image

• VUID-VkMemoryAllocateInfo-allocationSize-06382
If the parameters define an import operation from an VkBufferCollectionFUCHSIA,
allocationSize must match VkMemoryRequirements::size value retrieved by
vkGetImageMemoryRequirements or vkGetBufferMemoryRequirements for image-based
or buffer-based collections respectively

• VUID-VkMemoryAllocateInfo-pNext-06383
If the parameters define an import operation from an VkBufferCollectionFUCHSIA, the
pNext chain must include a VkMemoryDedicatedAllocateInfo structure with either its
image or buffer field set to a value other than VK_NULL_HANDLE

• VUID-VkMemoryAllocateInfo-image-06384
If the parameters define an import operation from an VkBufferCollectionFUCHSIA and
VkMemoryDedicatedAllocateInfo::image is not VK_NULL_HANDLE, the image must be
created with a VkBufferCollectionImageCreateInfoFUCHSIA structure chained to its
VkImageCreateInfo::pNext pointer

• VUID-VkMemoryAllocateInfo-buffer-06385
If the parameters define an import operation from an VkBufferCollectionFUCHSIA and
VkMemoryDedicatedAllocateInfo::buffer is not VK_NULL_HANDLE, the buffer must be
created with a VkBufferCollectionBufferCreateInfoFUCHSIA structure chained to its
VkBufferCreateInfo::pNext pointer

• VUID-VkMemoryAllocateInfo-memoryTypeIndex-06386
If the parameters define an import operation from an VkBufferCollectionFUCHSIA,
memoryTypeIndex must be from VkBufferCollectionPropertiesFUCHSIA as retrieved by
vkGetBufferCollectionPropertiesFUCHSIA

• VUID-VkMemoryAllocateInfo-pNext-00639
If the pNext chain includes a VkExportMemoryAllocateInfo structure, and any of the handle
types specified in VkExportMemoryAllocateInfo::handleTypes require a dedicated allocation,
as reported by vkGetPhysicalDeviceImageFormatProperties2 in
VkExternalImageFormatProperties::externalMemoryProperties.externalMemoryFeatures, or by
vkGetPhysicalDeviceExternalBufferProperties in VkExternalBufferProperties
::externalMemoryProperties.externalMemoryFeatures, the pNext chain must include a
VkMemoryDedicatedAllocateInfo or VkDedicatedAllocationMemoryAllocateInfoNV structure
with either its image or buffer member set to a value other than VK_NULL_HANDLE

• VUID-VkMemoryAllocateInfo-pNext-00640
If the pNext chain includes a VkExportMemoryAllocateInfo structure, it must not include a
VkExportMemoryAllocateInfoNV or VkExportMemoryWin32HandleInfoNV structure

892

• VUID-VkMemoryAllocateInfo-pNext-00641
If the pNext chain includes a VkImportMemoryWin32HandleInfoKHR structure, it must
not include a VkImportMemoryWin32HandleInfoNV structure

• VUID-VkMemoryAllocateInfo-allocationSize-01742
If the parameters define an import operation, the external handle specified was created
by the Vulkan API, and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT, then the values of allocationSize and
memoryTypeIndex must match those specified when the payload being imported was
created

• VUID-VkMemoryAllocateInfo-None-00643
If the parameters define an import operation and the external handle specified was
created by the Vulkan API, the device mask specified by VkMemoryAllocateFlagsInfo
must match the mask specified when the payload being imported was allocated

• VUID-VkMemoryAllocateInfo-None-00644
If the parameters define an import operation and the external handle specified was
created by the Vulkan API, the list of physical devices that comprise the logical device
passed to vkAllocateMemory must match the list of physical devices that comprise the
logical device on which the payload was originally allocated

• VUID-VkMemoryAllocateInfo-memoryTypeIndex-00645
If the parameters define an import operation and the external handle is an NT handle or a
global share handle created outside of the Vulkan API, the value of memoryTypeIndex must
be one of those returned by vkGetMemoryWin32HandlePropertiesKHR

• VUID-VkMemoryAllocateInfo-allocationSize-01743
If the parameters define an import operation, the external handle was created by the
Vulkan API, and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT, then the values of allocationSize
and memoryTypeIndex must match those specified when the payload being imported was
created

• VUID-VkMemoryAllocateInfo-allocationSize-00647
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT, allocationSize must match the size
specified when creating the Direct3D 12 heap from which the payload was extracted

• VUID-VkMemoryAllocateInfo-memoryTypeIndex-00648
If the parameters define an import operation and the external handle is a POSIX file
descriptor created outside of the Vulkan API, the value of memoryTypeIndex must be one of
those returned by vkGetMemoryFdPropertiesKHR

• VUID-VkMemoryAllocateInfo-memoryTypeIndex-01872
If the protectedMemory feature is not enabled, the VkMemoryAllocateInfo::memoryTypeIndex
must not indicate a memory type that reports VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkMemoryAllocateInfo-memoryTypeIndex-01744
If the parameters define an import operation and the external handle is a host pointer,
the value of memoryTypeIndex must be one of those returned by
vkGetMemoryHostPointerPropertiesEXT

893

• VUID-VkMemoryAllocateInfo-allocationSize-01745
If the parameters define an import operation and the external handle is a host pointer,
allocationSize must be an integer multiple of
VkPhysicalDeviceExternalMemoryHostPropertiesEXT::minImportedHostPointerAlignment

• VUID-VkMemoryAllocateInfo-pNext-02805
If the parameters define an import operation and the external handle is a host pointer,
the pNext chain must not include a VkDedicatedAllocationMemoryAllocateInfoNV
structure with either its image or buffer field set to a value other than VK_NULL_HANDLE

• VUID-VkMemoryAllocateInfo-pNext-02806
If the parameters define an import operation and the external handle is a host pointer,
the pNext chain must not include a VkMemoryDedicatedAllocateInfo structure with either
its image or buffer field set to a value other than VK_NULL_HANDLE

• VUID-VkMemoryAllocateInfo-allocationSize-02383
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, allocationSize
must be the size returned by vkGetAndroidHardwareBufferPropertiesANDROID for the
Android hardware buffer

• VUID-VkMemoryAllocateInfo-pNext-02384
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, and the pNext chain
does not include a VkMemoryDedicatedAllocateInfo structure or
VkMemoryDedicatedAllocateInfo::image is VK_NULL_HANDLE, the Android hardware
buffer must have a AHardwareBuffer_Desc::format of AHARDWAREBUFFER_FORMAT_BLOB and a
AHardwareBuffer_Desc::usage that includes AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER

• VUID-VkMemoryAllocateInfo-memoryTypeIndex-02385
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, memoryTypeIndex
must be one of those returned by vkGetAndroidHardwareBufferPropertiesANDROID for
the Android hardware buffer

• VUID-VkMemoryAllocateInfo-pNext-01874
If the parameters do not define an import operation, and the pNext chain includes a
VkExportMemoryAllocateInfo structure with
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID included in its
handleTypes member, and the pNext chain includes a VkMemoryDedicatedAllocateInfo
structure with image not equal to VK_NULL_HANDLE, then allocationSize must be 0

• VUID-VkMemoryAllocateInfo-pNext-07900
If the parameters define an export operation, the handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, and the pNext does
not include a VkMemoryDedicatedAllocateInfo structure, allocationSize must be greater
than 0

• VUID-VkMemoryAllocateInfo-pNext-07901
If the parameters define an export operation, the handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, and the pNext chain
includes a VkMemoryDedicatedAllocateInfo structure with buffer set to a valid VkBuffer
object, allocationSize must be greater than 0

894

• VUID-VkMemoryAllocateInfo-pNext-02386
If the parameters define an import operation, the external handle is an Android hardware
buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo with image that is
not VK_NULL_HANDLE, the Android hardware buffer’s AHardwareBuffer::usage must
include at least one of AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER,
AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE or AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER

• VUID-VkMemoryAllocateInfo-pNext-02387
If the parameters define an import operation, the external handle is an Android hardware
buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo with image that is
not VK_NULL_HANDLE, the format of image must be VK_FORMAT_UNDEFINED or the format
returned by vkGetAndroidHardwareBufferPropertiesANDROID in
VkAndroidHardwareBufferFormatPropertiesANDROID::format for the Android hardware
buffer

• VUID-VkMemoryAllocateInfo-pNext-02388
If the parameters define an import operation, the external handle is an Android hardware
buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with
image that is not VK_NULL_HANDLE, the width, height, and array layer dimensions of
image and the Android hardware buffer’s AHardwareBuffer_Desc must be identical

• VUID-VkMemoryAllocateInfo-pNext-02389
If the parameters define an import operation, the external handle is an Android hardware
buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with
image that is not VK_NULL_HANDLE, and the Android hardware buffer’s
AHardwareBuffer::usage includes AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE, the image
must have a complete mipmap chain

• VUID-VkMemoryAllocateInfo-pNext-02586
If the parameters define an import operation, the external handle is an Android hardware
buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with
image that is not VK_NULL_HANDLE, and the Android hardware buffer’s
AHardwareBuffer::usage does not include AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE, the
image must have exactly one mipmap level

• VUID-VkMemoryAllocateInfo-pNext-02390
If the parameters define an import operation, the external handle is an Android hardware
buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with
image that is not VK_NULL_HANDLE, each bit set in the usage of image must be listed in
AHardwareBuffer Usage Equivalence, and if there is a corresponding
AHARDWAREBUFFER_USAGE bit listed that bit must be included in the Android hardware
buffer’s AHardwareBuffer_Desc::usage

• VUID-VkMemoryAllocateInfo-screenBufferImport-08941
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX,
VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX::screenBufferImport must be
enabled

• VUID-VkMemoryAllocateInfo-allocationSize-08942
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX, allocationSize must be the size

895

returned by vkGetScreenBufferPropertiesQNX for the QNX Screen buffer

• VUID-VkMemoryAllocateInfo-memoryTypeIndex-08943
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX, memoryTypeIndex must be one of
those returned by vkGetScreenBufferPropertiesQNX for the QNX Screen buffer

• VUID-VkMemoryAllocateInfo-pNext-08944
If the parameters define an import operation, the external handle is a QNX Screen buffer,
and the pNext chain includes a VkMemoryDedicatedAllocateInfo with image that is not
VK_NULL_HANDLE, the QNX Screen’s buffer must be a valid QNX Screen buffer

• VUID-VkMemoryAllocateInfo-pNext-08945
If the parameters define an import operation, the external handle is an QNX Screen
buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo with image that is
not VK_NULL_HANDLE, the format of image must be VK_FORMAT_UNDEFINED or the format
returned by vkGetScreenBufferPropertiesQNX in VkScreenBufferFormatPropertiesQNX
::format for the QNX Screen buffer

• VUID-VkMemoryAllocateInfo-pNext-08946
If the parameters define an import operation, the external handle is a QNX Screen buffer,
and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with image that
is not VK_NULL_HANDLE, the width, height, and array layer dimensions of image and the
QNX Screen buffer’s _screen_buffer must be identical

• VUID-VkMemoryAllocateInfo-opaqueCaptureAddress-03329
If VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress is not zero,
VkMemoryAllocateFlagsInfo::flags must include
VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

• VUID-VkMemoryAllocateInfo-flags-03330
If VkMemoryAllocateFlagsInfo::flags includes
VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, the
bufferDeviceAddressCaptureReplay feature must be enabled

• VUID-VkMemoryAllocateInfo-flags-03331
If VkMemoryAllocateFlagsInfo::flags includes VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT, the
bufferDeviceAddress feature must be enabled

• VUID-VkMemoryAllocateInfo-pNext-03332
If the pNext chain includes a VkImportMemoryHostPointerInfoEXT structure,
VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress must be zero

• VUID-VkMemoryAllocateInfo-opaqueCaptureAddress-03333
If the parameters define an import operation,
VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress must be zero

• VUID-VkMemoryAllocateInfo-None-04749
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA, the value of memoryTypeIndex
must be an index identifying a memory type from the memoryTypeBits field of the
VkMemoryZirconHandlePropertiesFUCHSIA structure populated by a call to
vkGetMemoryZirconHandlePropertiesFUCHSIA

896

• VUID-VkMemoryAllocateInfo-allocationSize-07902
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA, the value of allocationSize must
be greater than 0

• VUID-VkMemoryAllocateInfo-allocationSize-07903
If the parameters define an import operation and the external handle type is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA, the value of allocationSize must
be less than or equal to the size of the VMO as determined by zx_vmo_get_size(handle)
where handle is the VMO handle to the imported external memory

• VUID-VkMemoryAllocateInfo-pNext-06780
If the pNext chain includes a VkExportMetalObjectCreateInfoEXT structure, its
exportObjectType member must be VK_EXPORT_METAL_OBJECT_TYPE_METAL_BUFFER_BIT_EXT

Valid Usage (Implicit)

• VUID-VkMemoryAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO

• VUID-VkMemoryAllocateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDedicatedAllocationMemoryAllocateInfoNV,
VkExportMemoryAllocateInfo, VkExportMemoryAllocateInfoNV,
VkExportMemoryWin32HandleInfoKHR, VkExportMemoryWin32HandleInfoNV,
VkExportMetalObjectCreateInfoEXT, VkImportAndroidHardwareBufferInfoANDROID,
VkImportMemoryBufferCollectionFUCHSIA, VkImportMemoryFdInfoKHR,
VkImportMemoryHostPointerInfoEXT, VkImportMemoryWin32HandleInfoKHR,
VkImportMemoryWin32HandleInfoNV, VkImportMemoryZirconHandleInfoFUCHSIA,
VkImportMetalBufferInfoEXT, VkImportScreenBufferInfoQNX,
VkMemoryAllocateFlagsInfo, VkMemoryDedicatedAllocateInfo,
VkMemoryOpaqueCaptureAddressAllocateInfo, or VkMemoryPriorityAllocateInfoEXT

• VUID-VkMemoryAllocateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkExportMetalObjectCreateInfoEXT

If the pNext chain includes a VkMemoryDedicatedAllocateInfo structure, then that structure includes a
handle of the sole buffer or image resource that the memory can be bound to.

The VkMemoryDedicatedAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkMemoryDedicatedAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
 VkBuffer buffer;

897

} VkMemoryDedicatedAllocateInfo;

or the equivalent

// Provided by VK_KHR_dedicated_allocation
typedef VkMemoryDedicatedAllocateInfo VkMemoryDedicatedAllocateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is VK_NULL_HANDLE or a handle of an image which this memory will be bound to.

• buffer is VK_NULL_HANDLE or a handle of a buffer which this memory will be bound to.

Valid Usage

• VUID-VkMemoryDedicatedAllocateInfo-image-01432
At least one of image and buffer must be VK_NULL_HANDLE

• VUID-VkMemoryDedicatedAllocateInfo-image-02964
If image is not VK_NULL_HANDLE and the memory is not an imported Android Hardware
Buffer or an imported QNX Screen buffer , VkMemoryAllocateInfo::allocationSize must
equal the VkMemoryRequirements::size of the image

• VUID-VkMemoryDedicatedAllocateInfo-image-01434
If image is not VK_NULL_HANDLE, image must have been created without
VK_IMAGE_CREATE_SPARSE_BINDING_BIT set in VkImageCreateInfo::flags

• VUID-VkMemoryDedicatedAllocateInfo-buffer-02965
If buffer is not VK_NULL_HANDLE and the memory is not an imported Android Hardware
Buffer or an imported QNX Screen buffer , VkMemoryAllocateInfo::allocationSize must
equal the VkMemoryRequirements::size of the buffer

• VUID-VkMemoryDedicatedAllocateInfo-buffer-01436
If buffer is not VK_NULL_HANDLE, buffer must have been created without
VK_BUFFER_CREATE_SPARSE_BINDING_BIT set in VkBufferCreateInfo::flags

• VUID-VkMemoryDedicatedAllocateInfo-image-01876
If image is not VK_NULL_HANDLE and VkMemoryAllocateInfo defines a memory import
operation with handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT, or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT, and the external handle was created
by the Vulkan API, then the memory being imported must also be a dedicated image
allocation and image must be identical to the image associated with the imported memory

• VUID-VkMemoryDedicatedAllocateInfo-buffer-01877
If buffer is not VK_NULL_HANDLE and VkMemoryAllocateInfo defines a memory import
operation with handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT,

898

VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT, or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT, and the external handle was created
by the Vulkan API, then the memory being imported must also be a dedicated buffer
allocation and buffer must be identical to the buffer associated with the imported
memory

• VUID-VkMemoryDedicatedAllocateInfo-image-01878
If image is not VK_NULL_HANDLE and VkMemoryAllocateInfo defines a memory import
operation with handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT, the memory
being imported must also be a dedicated image allocation and image must be identical to
the image associated with the imported memory

• VUID-VkMemoryDedicatedAllocateInfo-buffer-01879
If buffer is not VK_NULL_HANDLE and VkMemoryAllocateInfo defines a memory import
operation with handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT, the memory
being imported must also be a dedicated buffer allocation and buffer must be identical to
the buffer associated with the imported memory

• VUID-VkMemoryDedicatedAllocateInfo-image-01797
If image is not VK_NULL_HANDLE, image must not have been created with
VK_IMAGE_CREATE_DISJOINT_BIT set in VkImageCreateInfo::flags

• VUID-VkMemoryDedicatedAllocateInfo-image-04751
If image is not VK_NULL_HANDLE and VkMemoryAllocateInfo defines a memory import
operation with handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA, the
memory being imported must also be a dedicated image allocation and image must be
identical to the image associated with the imported memory

• VUID-VkMemoryDedicatedAllocateInfo-buffer-04752
If buffer is not VK_NULL_HANDLE and VkMemoryAllocateInfo defines a memory import
operation with handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA, the
memory being imported must also be a dedicated buffer allocation and buffer must be
identical to the buffer associated with the imported memory

Valid Usage (Implicit)

• VUID-VkMemoryDedicatedAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO

• VUID-VkMemoryDedicatedAllocateInfo-image-parameter
If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

• VUID-VkMemoryDedicatedAllocateInfo-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• VUID-VkMemoryDedicatedAllocateInfo-commonparent
Both of buffer, and image that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

899

If the pNext chain includes a VkDedicatedAllocationMemoryAllocateInfoNV structure, then that
structure includes a handle of the sole buffer or image resource that the memory can be bound to.

The VkDedicatedAllocationMemoryAllocateInfoNV structure is defined as:

// Provided by VK_NV_dedicated_allocation
typedef struct VkDedicatedAllocationMemoryAllocateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
 VkBuffer buffer;
} VkDedicatedAllocationMemoryAllocateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is VK_NULL_HANDLE or a handle of an image which this memory will be bound to.

• buffer is VK_NULL_HANDLE or a handle of a buffer which this memory will be bound to.

Valid Usage

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-image-00649
At least one of image and buffer must be VK_NULL_HANDLE

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-image-00650
If image is not VK_NULL_HANDLE, the image must have been created with
VkDedicatedAllocationImageCreateInfoNV::dedicatedAllocation equal to VK_TRUE

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-buffer-00651
If buffer is not VK_NULL_HANDLE, the buffer must have been created with
VkDedicatedAllocationBufferCreateInfoNV::dedicatedAllocation equal to VK_TRUE

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-image-00652
If image is not VK_NULL_HANDLE, VkMemoryAllocateInfo::allocationSize must equal the
VkMemoryRequirements::size of the image

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-buffer-00653
If buffer is not VK_NULL_HANDLE, VkMemoryAllocateInfo::allocationSize must equal the
VkMemoryRequirements::size of the buffer

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-image-00654
If image is not VK_NULL_HANDLE and VkMemoryAllocateInfo defines a memory import
operation, the memory being imported must also be a dedicated image allocation and
image must be identical to the image associated with the imported memory

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-buffer-00655
If buffer is not VK_NULL_HANDLE and VkMemoryAllocateInfo defines a memory import
operation, the memory being imported must also be a dedicated buffer allocation and
buffer must be identical to the buffer associated with the imported memory

900

Valid Usage (Implicit)

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-image-parameter
If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• VUID-VkDedicatedAllocationMemoryAllocateInfoNV-commonparent
Both of buffer, and image that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

If the pNext chain includes a VkMemoryPriorityAllocateInfoEXT structure, then that structure includes
a priority for the memory.

The VkMemoryPriorityAllocateInfoEXT structure is defined as:

// Provided by VK_EXT_memory_priority
typedef struct VkMemoryPriorityAllocateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 float priority;
} VkMemoryPriorityAllocateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• priority is a floating-point value between 0 and 1, indicating the priority of the allocation
relative to other memory allocations. Larger values are higher priority. The granularity of the
priorities is implementation-dependent.

Memory allocations with higher priority may be more likely to stay in device-local memory when
the system is under memory pressure.

If this structure is not included, it is as if the priority value were 0.5.

Valid Usage

• VUID-VkMemoryPriorityAllocateInfoEXT-priority-02602
priority must be between 0 and 1, inclusive

Valid Usage (Implicit)

• VUID-VkMemoryPriorityAllocateInfoEXT-sType-sType

901

sType must be VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT

To modify the priority of an existing memory allocation, call:

// Provided by VK_EXT_pageable_device_local_memory
void vkSetDeviceMemoryPriorityEXT(
 VkDevice device,
 VkDeviceMemory memory,
 float priority);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to which the new priority will be applied.

• priority is a floating-point value between 0 and 1, indicating the priority of the allocation
relative to other memory allocations. Larger values are higher priority. The granularity of the
priorities is implementation-dependent.

Memory allocations with higher priority may be more likely to stay in device-local memory when
the system is under memory pressure.

Valid Usage

• VUID-vkSetDeviceMemoryPriorityEXT-priority-06258
priority must be between 0 and 1, inclusive

Valid Usage (Implicit)

• VUID-vkSetDeviceMemoryPriorityEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetDeviceMemoryPriorityEXT-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkSetDeviceMemoryPriorityEXT-memory-parent
memory must have been created, allocated, or retrieved from device

When allocating memory whose payload may be exported to another process or Vulkan instance,
add a VkExportMemoryAllocateInfo structure to the pNext chain of the VkMemoryAllocateInfo
structure, specifying the handle types that may be exported.

The VkExportMemoryAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExportMemoryAllocateInfo {
 VkStructureType sType;
 const void* pNext;

902

 VkExternalMemoryHandleTypeFlags handleTypes;
} VkExportMemoryAllocateInfo;

or the equivalent

// Provided by VK_KHR_external_memory
typedef VkExportMemoryAllocateInfo VkExportMemoryAllocateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is zero or a bitmask of VkExternalMemoryHandleTypeFlagBits specifying one or
more memory handle types the application can export from the resulting allocation. The
application can request multiple handle types for the same allocation.

Valid Usage

• VUID-VkExportMemoryAllocateInfo-handleTypes-00656
The bits in handleTypes must be supported and compatible, as reported by
VkExternalImageFormatProperties or VkExternalBufferProperties

Valid Usage (Implicit)

• VUID-VkExportMemoryAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO

• VUID-VkExportMemoryAllocateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalMemoryHandleTypeFlagBits
values

When allocating memory that may be exported to another process or Vulkan instance, add a
VkExportMemoryAllocateInfoNV structure to the pNext chain of the VkMemoryAllocateInfo
structure, specifying the handle types that may be exported.

The VkExportMemoryAllocateInfoNV structure is defined as:

// Provided by VK_NV_external_memory
typedef struct VkExportMemoryAllocateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagsNV handleTypes;
} VkExportMemoryAllocateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

903

• handleTypes is a bitmask of VkExternalMemoryHandleTypeFlagBitsNV specifying one or more
memory handle types that may be exported. Multiple handle types may be requested for the
same allocation as long as they are compatible, as reported by
vkGetPhysicalDeviceExternalImageFormatPropertiesNV.

Valid Usage (Implicit)

• VUID-VkExportMemoryAllocateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV

• VUID-VkExportMemoryAllocateInfoNV-handleTypes-parameter
handleTypes must be a valid combination of VkExternalMemoryHandleTypeFlagBitsNV
values

11.2.4. Win32 External Memory

To specify additional attributes of NT handles exported from a memory object, add a
VkExportMemoryWin32HandleInfoKHR structure to the pNext chain of the VkMemoryAllocateInfo
structure. The VkExportMemoryWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_memory_win32
typedef struct VkExportMemoryWin32HandleInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const SECURITY_ATTRIBUTES* pAttributes;
 DWORD dwAccess;
 LPCWSTR name;
} VkExportMemoryWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pAttributes is a pointer to a Windows SECURITY_ATTRIBUTES structure specifying security
attributes of the handle.

• dwAccess is a DWORD specifying access rights of the handle.

• name is a null-terminated UTF-16 string to associate with the payload referenced by NT handles
exported from the created memory.

If VkExportMemoryAllocateInfo is not included in the same pNext chain, this structure is ignored.

If VkExportMemoryAllocateInfo is included in the pNext chain of VkMemoryAllocateInfo with a
Windows handleType, but either VkExportMemoryWin32HandleInfoKHR is not included in the pNext chain,
or it is included but pAttributes is set to NULL, default security descriptor values will be used, and
child processes created by the application will not inherit the handle, as described in the MSDN
documentation for “Synchronization Object Security and Access Rights”1. Further, if the structure is
not present, the access rights used depend on the handle type.

904

For handles of the following types:

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT

The implementation must ensure the access rights allow read and write access to the memory.

1

https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-
access-rights

Valid Usage

• VUID-VkExportMemoryWin32HandleInfoKHR-handleTypes-00657
If VkExportMemoryAllocateInfo::handleTypes does not include
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT, a VkExportMemoryWin32HandleInfoKHR
structure must not be included in the pNext chain of VkMemoryAllocateInfo

Valid Usage (Implicit)

• VUID-VkExportMemoryWin32HandleInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR

• VUID-VkExportMemoryWin32HandleInfoKHR-pAttributes-parameter
If pAttributes is not NULL, pAttributes must be a valid pointer to a valid
SECURITY_ATTRIBUTES value

To import memory from a Windows handle, add a VkImportMemoryWin32HandleInfoKHR
structure to the pNext chain of the VkMemoryAllocateInfo structure.

The VkImportMemoryWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_memory_win32
typedef struct VkImportMemoryWin32HandleInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagBits handleType;
 HANDLE handle;
 LPCWSTR name;
} VkImportMemoryWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of handle or
name.

• handle is NULL or the external handle to import.

905

https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-access-rights
https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-access-rights

• name is NULL or a null-terminated UTF-16 string naming the payload to import.

Importing memory object payloads from Windows handles does not transfer ownership of the
handle to the Vulkan implementation. For handle types defined as NT handles, the application
must release handle ownership using the CloseHandle system call when the handle is no longer
needed. For handle types defined as NT handles, the imported memory object holds a reference to
its payload.

Note

Non-NT handle import operations do not add a reference to their associated
payload. If the original object owning the payload is destroyed, all resources and
handles sharing that payload will become invalid.

Applications can import the same payload into multiple instances of Vulkan, into the same instance
from which it was exported, and multiple times into a given Vulkan instance. In all cases, each
import operation must create a distinct VkDeviceMemory object.

Valid Usage

• VUID-VkImportMemoryWin32HandleInfoKHR-handleType-00658
If handleType is not 0, it must be supported for import, as reported by
VkExternalImageFormatProperties or VkExternalBufferProperties

• VUID-VkImportMemoryWin32HandleInfoKHR-handle-00659
The memory from which handle was exported, or the memory named by name must have
been created on the same underlying physical device as device

• VUID-VkImportMemoryWin32HandleInfoKHR-handleType-00660
If handleType is not 0, it must be defined as an NT handle or a global share handle

• VUID-VkImportMemoryWin32HandleInfoKHR-handleType-01439
If handleType is not VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT, or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT, name must be NULL

• VUID-VkImportMemoryWin32HandleInfoKHR-handleType-01440
If handleType is not 0 and handle is NULL, name must name a valid memory resource of the
type specified by handleType

• VUID-VkImportMemoryWin32HandleInfoKHR-handleType-00661
If handleType is not 0 and name is NULL, handle must be a valid handle of the type specified
by handleType

• VUID-VkImportMemoryWin32HandleInfoKHR-handle-01441
If handle is not NULL, name must be NULL

• VUID-VkImportMemoryWin32HandleInfoKHR-handle-01518
If handle is not NULL, it must obey any requirements listed for handleType in external
memory handle types compatibility

• VUID-VkImportMemoryWin32HandleInfoKHR-name-01519

906

If name is not NULL, it must obey any requirements listed for handleType in external
memory handle types compatibility

Valid Usage (Implicit)

• VUID-VkImportMemoryWin32HandleInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR

• VUID-VkImportMemoryWin32HandleInfoKHR-handleType-parameter
If handleType is not 0, handleType must be a valid VkExternalMemoryHandleTypeFlagBits
value

To export a Windows handle representing the payload of a Vulkan device memory object, call:

// Provided by VK_KHR_external_memory_win32
VkResult vkGetMemoryWin32HandleKHR(
 VkDevice device,
 const VkMemoryGetWin32HandleInfoKHR* pGetWin32HandleInfo,
 HANDLE* pHandle);

• device is the logical device that created the device memory being exported.

• pGetWin32HandleInfo is a pointer to a VkMemoryGetWin32HandleInfoKHR structure containing
parameters of the export operation.

• pHandle will return the Windows handle representing the payload of the device memory object.

For handle types defined as NT handles, the handles returned by vkGetMemoryWin32HandleKHR are
owned by the application and hold a reference to their payload. To avoid leaking resources, the
application must release ownership of them using the CloseHandle system call when they are no
longer needed.

Note

Non-NT handle types do not add a reference to their associated payload. If the
original object owning the payload is destroyed, all resources and handles sharing
that payload will become invalid.

Valid Usage (Implicit)

• VUID-vkGetMemoryWin32HandleKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryWin32HandleKHR-pGetWin32HandleInfo-parameter
pGetWin32HandleInfo must be a valid pointer to a valid
VkMemoryGetWin32HandleInfoKHR structure

• VUID-vkGetMemoryWin32HandleKHR-pHandle-parameter
pHandle must be a valid pointer to a HANDLE value

907

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkMemoryGetWin32HandleInfoKHR structure is defined as:

// Provided by VK_KHR_external_memory_win32
typedef struct VkMemoryGetWin32HandleInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
 VkExternalMemoryHandleTypeFlagBits handleType;
} VkMemoryGetWin32HandleInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory is the memory object from which the handle will be exported.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of handle
requested.

The properties of the handle returned depend on the value of handleType. See
VkExternalMemoryHandleTypeFlagBits for a description of the properties of the defined external
memory handle types.

Valid Usage

• VUID-VkMemoryGetWin32HandleInfoKHR-handleType-00662
handleType must have been included in VkExportMemoryAllocateInfo::handleTypes when
memory was created

• VUID-VkMemoryGetWin32HandleInfoKHR-handleType-00663
If handleType is defined as an NT handle, vkGetMemoryWin32HandleKHR must be called
no more than once for each valid unique combination of memory and handleType

• VUID-VkMemoryGetWin32HandleInfoKHR-handleType-00664
handleType must be defined as an NT handle or a global share handle

Valid Usage (Implicit)

• VUID-VkMemoryGetWin32HandleInfoKHR-sType-sType

908

sType must be VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR

• VUID-VkMemoryGetWin32HandleInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkMemoryGetWin32HandleInfoKHR-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-VkMemoryGetWin32HandleInfoKHR-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

Windows memory handles compatible with Vulkan may also be created by non-Vulkan APIs using
methods beyond the scope of this specification. To determine the correct parameters to use when
importing such handles, call:

// Provided by VK_KHR_external_memory_win32
VkResult vkGetMemoryWin32HandlePropertiesKHR(
 VkDevice device,
 VkExternalMemoryHandleTypeFlagBits handleType,
 HANDLE handle,
 VkMemoryWin32HandlePropertiesKHR* pMemoryWin32HandleProperties);

• device is the logical device that will be importing handle.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of the handle
handle.

• handle is the handle which will be imported.

• pMemoryWin32HandleProperties is a pointer to a VkMemoryWin32HandlePropertiesKHR structure
in which properties of handle are returned.

Valid Usage

• VUID-vkGetMemoryWin32HandlePropertiesKHR-handle-00665
handle must point to a valid Windows memory handle

• VUID-vkGetMemoryWin32HandlePropertiesKHR-handleType-00666
handleType must not be one of the handle types defined as opaque

Valid Usage (Implicit)

• VUID-vkGetMemoryWin32HandlePropertiesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryWin32HandlePropertiesKHR-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

• VUID-vkGetMemoryWin32HandlePropertiesKHR-pMemoryWin32HandleProperties-
parameter
pMemoryWin32HandleProperties must be a valid pointer to a

909

VkMemoryWin32HandlePropertiesKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkMemoryWin32HandlePropertiesKHR structure returned is defined as:

// Provided by VK_KHR_external_memory_win32
typedef struct VkMemoryWin32HandlePropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t memoryTypeBits;
} VkMemoryWin32HandlePropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryTypeBits is a bitmask containing one bit set for every memory type which the specified
windows handle can be imported as.

Valid Usage (Implicit)

• VUID-VkMemoryWin32HandlePropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR

• VUID-VkMemoryWin32HandlePropertiesKHR-pNext-pNext
pNext must be NULL

When VkExportMemoryAllocateInfoNV::handleTypes includes
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV, add a VkExportMemoryWin32HandleInfoNV
structure to the pNext chain of the VkExportMemoryAllocateInfoNV structure to specify security
attributes and access rights for the memory object’s external handle.

The VkExportMemoryWin32HandleInfoNV structure is defined as:

// Provided by VK_NV_external_memory_win32
typedef struct VkExportMemoryWin32HandleInfoNV {
 VkStructureType sType;
 const void* pNext;

910

 const SECURITY_ATTRIBUTES* pAttributes;
 DWORD dwAccess;
} VkExportMemoryWin32HandleInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pAttributes is a pointer to a Windows SECURITY_ATTRIBUTES structure specifying security
attributes of the handle.

• dwAccess is a DWORD specifying access rights of the handle.

If this structure is not present, or if pAttributes is set to NULL, default security descriptor values will
be used, and child processes created by the application will not inherit the handle, as described in
the MSDN documentation for “Synchronization Object Security and Access Rights”1. Further, if the
structure is not present, the access rights will be

DXGI_SHARED_RESOURCE_READ | DXGI_SHARED_RESOURCE_WRITE

1

https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-
access-rights

Valid Usage (Implicit)

• VUID-VkExportMemoryWin32HandleInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV

• VUID-VkExportMemoryWin32HandleInfoNV-pAttributes-parameter
If pAttributes is not NULL, pAttributes must be a valid pointer to a valid
SECURITY_ATTRIBUTES value

To import memory created on the same physical device but outside of the current Vulkan instance,
add a VkImportMemoryWin32HandleInfoNV structure to the pNext chain of the
VkMemoryAllocateInfo structure, specifying a handle to and the type of the memory.

The VkImportMemoryWin32HandleInfoNV structure is defined as:

// Provided by VK_NV_external_memory_win32
typedef struct VkImportMemoryWin32HandleInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagsNV handleType;
 HANDLE handle;
} VkImportMemoryWin32HandleInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

911

https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-access-rights
https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-object-security-and-access-rights

• handleType is 0 or a VkExternalMemoryHandleTypeFlagBitsNV value specifying the type of
memory handle in handle.

• handle is a Windows HANDLE referring to the memory.

If handleType is 0, this structure is ignored by consumers of the VkMemoryAllocateInfo structure it is
chained from.

Valid Usage

• VUID-VkImportMemoryWin32HandleInfoNV-handleType-01327
handleType must not have more than one bit set

• VUID-VkImportMemoryWin32HandleInfoNV-handle-01328
handle must be a valid handle to memory, obtained as specified by handleType

Valid Usage (Implicit)

• VUID-VkImportMemoryWin32HandleInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV

• VUID-VkImportMemoryWin32HandleInfoNV-handleType-parameter
handleType must be a valid combination of VkExternalMemoryHandleTypeFlagBitsNV
values

Bits which can be set in handleType are:

Possible values of VkImportMemoryWin32HandleInfoNV::handleType, specifying the type of an
external memory handle, are:

// Provided by VK_NV_external_memory_capabilities
typedef enum VkExternalMemoryHandleTypeFlagBitsNV {
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV = 0x00000001,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV = 0x00000002,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV = 0x00000004,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_KMT_BIT_NV = 0x00000008,
} VkExternalMemoryHandleTypeFlagBitsNV;

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV specifies a handle to memory returned
by vkGetMemoryWin32HandleNV.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV specifies a handle to memory returned by
vkGetMemoryWin32HandleNV, or one duplicated from such a handle using DuplicateHandle().

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV specifies a valid NT handle to memory
returned by IDXGIResource1::CreateSharedHandle, or a handle duplicated from such a handle
using DuplicateHandle().

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_KMT_BIT_NV specifies a handle to memory returned

912

by IDXGIResource::GetSharedHandle().

// Provided by VK_NV_external_memory_capabilities
typedef VkFlags VkExternalMemoryHandleTypeFlagsNV;

VkExternalMemoryHandleTypeFlagsNV is a bitmask type for setting a mask of zero or more
VkExternalMemoryHandleTypeFlagBitsNV.

To retrieve the handle corresponding to a device memory object created with
VkExportMemoryAllocateInfoNV::handleTypes set to include
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV, call:

// Provided by VK_NV_external_memory_win32
VkResult vkGetMemoryWin32HandleNV(
 VkDevice device,
 VkDeviceMemory memory,
 VkExternalMemoryHandleTypeFlagsNV handleType,
 HANDLE* pHandle);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object.

• handleType is a bitmask of VkExternalMemoryHandleTypeFlagBitsNV containing a single bit
specifying the type of handle requested.

• handle is a pointer to a Windows HANDLE in which the handle is returned.

Valid Usage

• VUID-vkGetMemoryWin32HandleNV-handleType-01326
handleType must be a flag specified in VkExportMemoryAllocateInfoNV::handleTypes when
allocating memory

Valid Usage (Implicit)

• VUID-vkGetMemoryWin32HandleNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryWin32HandleNV-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkGetMemoryWin32HandleNV-handleType-parameter
handleType must be a valid combination of VkExternalMemoryHandleTypeFlagBitsNV
values

• VUID-vkGetMemoryWin32HandleNV-handleType-requiredbitmask
handleType must not be 0

913

• VUID-vkGetMemoryWin32HandleNV-pHandle-parameter
pHandle must be a valid pointer to a HANDLE value

• VUID-vkGetMemoryWin32HandleNV-memory-parent
memory must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

11.2.5. File Descriptor External Memory

To import memory from a POSIX file descriptor handle, add a VkImportMemoryFdInfoKHR
structure to the pNext chain of the VkMemoryAllocateInfo structure. The VkImportMemoryFdInfoKHR
structure is defined as:

// Provided by VK_KHR_external_memory_fd
typedef struct VkImportMemoryFdInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagBits handleType;
 int fd;
} VkImportMemoryFdInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the handle type of fd.

• fd is the external handle to import.

Importing memory from a file descriptor transfers ownership of the file descriptor from the
application to the Vulkan implementation. The application must not perform any operations on the
file descriptor after a successful import. The imported memory object holds a reference to its
payload.

Applications can import the same payload into multiple instances of Vulkan, into the same instance
from which it was exported, and multiple times into a given Vulkan instance. In all cases, each
import operation must create a distinct VkDeviceMemory object.

914

Valid Usage

• VUID-VkImportMemoryFdInfoKHR-handleType-00667
If handleType is not 0, it must be supported for import, as reported by
VkExternalImageFormatProperties or VkExternalBufferProperties

• VUID-VkImportMemoryFdInfoKHR-fd-00668
The memory from which fd was exported must have been created on the same
underlying physical device as device

• VUID-VkImportMemoryFdInfoKHR-handleType-00669
If handleType is not 0, it must be VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT

• VUID-VkImportMemoryFdInfoKHR-handleType-00670
If handleType is not 0, fd must be a valid handle of the type specified by handleType

• VUID-VkImportMemoryFdInfoKHR-fd-01746
The memory represented by fd must have been created from a physical device and driver
that is compatible with device and handleType, as described in External memory handle
types compatibility

• VUID-VkImportMemoryFdInfoKHR-fd-01520
fd must obey any requirements listed for handleType in external memory handle types
compatibility

Valid Usage (Implicit)

• VUID-VkImportMemoryFdInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR

• VUID-VkImportMemoryFdInfoKHR-handleType-parameter
If handleType is not 0, handleType must be a valid VkExternalMemoryHandleTypeFlagBits
value

To export a POSIX file descriptor referencing the payload of a Vulkan device memory object, call:

// Provided by VK_KHR_external_memory_fd
VkResult vkGetMemoryFdKHR(
 VkDevice device,
 const VkMemoryGetFdInfoKHR* pGetFdInfo,
 int* pFd);

• device is the logical device that created the device memory being exported.

• pGetFdInfo is a pointer to a VkMemoryGetFdInfoKHR structure containing parameters of the
export operation.

• pFd will return a file descriptor referencing the payload of the device memory object.

915

Each call to vkGetMemoryFdKHR must create a new file descriptor holding a reference to the memory
object’s payload and transfer ownership of the file descriptor to the application. To avoid leaking
resources, the application must release ownership of the file descriptor using the close system call
when it is no longer needed, or by importing a Vulkan memory object from it. Where supported by
the operating system, the implementation must set the file descriptor to be closed automatically
when an execve system call is made.

Valid Usage (Implicit)

• VUID-vkGetMemoryFdKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryFdKHR-pGetFdInfo-parameter
pGetFdInfo must be a valid pointer to a valid VkMemoryGetFdInfoKHR structure

• VUID-vkGetMemoryFdKHR-pFd-parameter
pFd must be a valid pointer to an int value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkMemoryGetFdInfoKHR structure is defined as:

// Provided by VK_KHR_external_memory_fd
typedef struct VkMemoryGetFdInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
 VkExternalMemoryHandleTypeFlagBits handleType;
} VkMemoryGetFdInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory is the memory object from which the handle will be exported.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of handle
requested.

The properties of the file descriptor exported depend on the value of handleType. See
VkExternalMemoryHandleTypeFlagBits for a description of the properties of the defined external

916

memory handle types.

Note

The size of the exported file may be larger than the size requested by
VkMemoryAllocateInfo::allocationSize. If handleType is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, then the application can query
the file’s actual size with lseek.

Valid Usage

• VUID-VkMemoryGetFdInfoKHR-handleType-00671
handleType must have been included in VkExportMemoryAllocateInfo::handleTypes when
memory was created

• VUID-VkMemoryGetFdInfoKHR-handleType-00672
handleType must be VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT

Valid Usage (Implicit)

• VUID-VkMemoryGetFdInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR

• VUID-VkMemoryGetFdInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkMemoryGetFdInfoKHR-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-VkMemoryGetFdInfoKHR-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

POSIX file descriptor memory handles compatible with Vulkan may also be created by non-Vulkan
APIs using methods beyond the scope of this specification. To determine the correct parameters to
use when importing such handles, call:

// Provided by VK_KHR_external_memory_fd
VkResult vkGetMemoryFdPropertiesKHR(
 VkDevice device,
 VkExternalMemoryHandleTypeFlagBits handleType,
 int fd,
 VkMemoryFdPropertiesKHR* pMemoryFdProperties);

• device is the logical device that will be importing fd.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of the handle
fd.

917

https://man7.org/linux/man-pages/man2/lseek.2.html

• fd is the handle which will be imported.

• pMemoryFdProperties is a pointer to a VkMemoryFdPropertiesKHR structure in which the
properties of the handle fd are returned.

Valid Usage

• VUID-vkGetMemoryFdPropertiesKHR-fd-00673
fd must point to a valid POSIX file descriptor memory handle

• VUID-vkGetMemoryFdPropertiesKHR-handleType-00674
handleType must not be VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT

Valid Usage (Implicit)

• VUID-vkGetMemoryFdPropertiesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryFdPropertiesKHR-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

• VUID-vkGetMemoryFdPropertiesKHR-pMemoryFdProperties-parameter
pMemoryFdProperties must be a valid pointer to a VkMemoryFdPropertiesKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkMemoryFdPropertiesKHR structure returned is defined as:

// Provided by VK_KHR_external_memory_fd
typedef struct VkMemoryFdPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t memoryTypeBits;
} VkMemoryFdPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryTypeBits is a bitmask containing one bit set for every memory type which the specified
file descriptor can be imported as.

918

Valid Usage (Implicit)

• VUID-VkMemoryFdPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR

• VUID-VkMemoryFdPropertiesKHR-pNext-pNext
pNext must be NULL

11.2.6. Host External Memory

To import memory from a host pointer, add a VkImportMemoryHostPointerInfoEXT structure to
the pNext chain of the VkMemoryAllocateInfo structure. The VkImportMemoryHostPointerInfoEXT
structure is defined as:

// Provided by VK_EXT_external_memory_host
typedef struct VkImportMemoryHostPointerInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagBits handleType;
 void* pHostPointer;
} VkImportMemoryHostPointerInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the handle type.

• pHostPointer is the host pointer to import from.

Importing memory from a host pointer shares ownership of the memory between the host and the
Vulkan implementation. The application can continue to access the memory through the host
pointer but it is the application’s responsibility to synchronize device and non-device access to the
payload as defined in Host Access to Device Memory Objects.

Applications can import the same payload into multiple instances of Vulkan and multiple times into
a given Vulkan instance. However, implementations may fail to import the same payload multiple
times into a given physical device due to platform constraints.

Importing memory from a particular host pointer may not be possible due to additional platform-
specific restrictions beyond the scope of this specification in which case the implementation must
fail the memory import operation with the error code VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR.

Whether device memory objects imported from a host pointer hold a reference to their payload is
undefined. As such, the application must ensure that the imported memory range remains valid
and accessible for the lifetime of the imported memory object.

919

Valid Usage

• VUID-VkImportMemoryHostPointerInfoEXT-handleType-01747
If handleType is not 0, it must be supported for import, as reported in
VkExternalMemoryProperties

• VUID-VkImportMemoryHostPointerInfoEXT-handleType-01748
If handleType is not 0, it must be VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT
or VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT

• VUID-VkImportMemoryHostPointerInfoEXT-pHostPointer-01749
pHostPointer must be a pointer aligned to an integer multiple of
VkPhysicalDeviceExternalMemoryHostPropertiesEXT::minImportedHostPointerAlignment

• VUID-VkImportMemoryHostPointerInfoEXT-handleType-01750
If handleType is VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, pHostPointer
must be a pointer to allocationSize number of bytes of host memory, where
allocationSize is the member of the VkMemoryAllocateInfo structure this structure is
chained to

• VUID-VkImportMemoryHostPointerInfoEXT-handleType-01751
If handleType is VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT,
pHostPointer must be a pointer to allocationSize number of bytes of host mapped foreign
memory, where allocationSize is the member of the VkMemoryAllocateInfo structure this
structure is chained to

Valid Usage (Implicit)

• VUID-VkImportMemoryHostPointerInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT

• VUID-VkImportMemoryHostPointerInfoEXT-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

• VUID-VkImportMemoryHostPointerInfoEXT-pHostPointer-parameter
pHostPointer must be a pointer value

To determine the correct parameters to use when importing host pointers, call:

// Provided by VK_EXT_external_memory_host
VkResult vkGetMemoryHostPointerPropertiesEXT(
 VkDevice device,
 VkExternalMemoryHandleTypeFlagBits handleType,
 const void* pHostPointer,
 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties);

• device is the logical device that will be importing pHostPointer.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of the handle

920

pHostPointer.

• pHostPointer is the host pointer to import from.

• pMemoryHostPointerProperties is a pointer to a VkMemoryHostPointerPropertiesEXT structure in
which the host pointer properties are returned.

Valid Usage

• VUID-vkGetMemoryHostPointerPropertiesEXT-handleType-01752
handleType must be VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT

• VUID-vkGetMemoryHostPointerPropertiesEXT-pHostPointer-01753
pHostPointer must be a pointer aligned to an integer multiple of
VkPhysicalDeviceExternalMemoryHostPropertiesEXT::minImportedHostPointerAlignment

• VUID-vkGetMemoryHostPointerPropertiesEXT-handleType-01754
If handleType is VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, pHostPointer
must be a pointer to host memory

• VUID-vkGetMemoryHostPointerPropertiesEXT-handleType-01755
If handleType is VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT,
pHostPointer must be a pointer to host mapped foreign memory

Valid Usage (Implicit)

• VUID-vkGetMemoryHostPointerPropertiesEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryHostPointerPropertiesEXT-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

• VUID-vkGetMemoryHostPointerPropertiesEXT-pHostPointer-parameter
pHostPointer must be a pointer value

• VUID-vkGetMemoryHostPointerPropertiesEXT-pMemoryHostPointerProperties-
parameter
pMemoryHostPointerProperties must be a valid pointer to a
VkMemoryHostPointerPropertiesEXT structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

921

The VkMemoryHostPointerPropertiesEXT structure is defined as:

// Provided by VK_EXT_external_memory_host
typedef struct VkMemoryHostPointerPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t memoryTypeBits;
} VkMemoryHostPointerPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryTypeBits is a bitmask containing one bit set for every memory type which the specified
host pointer can be imported as.

The value returned by memoryTypeBits must only include bits that identify memory types which are
host visible.

Valid Usage (Implicit)

• VUID-VkMemoryHostPointerPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT

• VUID-VkMemoryHostPointerPropertiesEXT-pNext-pNext
pNext must be NULL

11.2.7. Android Hardware Buffer External Memory

To import memory created outside of the current Vulkan instance from an Android hardware
buffer, add a VkImportAndroidHardwareBufferInfoANDROID structure to the pNext chain of the
VkMemoryAllocateInfo structure. The VkImportAndroidHardwareBufferInfoANDROID structure is
defined as:

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
typedef struct VkImportAndroidHardwareBufferInfoANDROID {
 VkStructureType sType;
 const void* pNext;
 struct AHardwareBuffer* buffer;
} VkImportAndroidHardwareBufferInfoANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is the Android hardware buffer to import.

If the vkAllocateMemory command succeeds, the implementation must acquire a reference to the
imported hardware buffer, which it must release when the device memory object is freed. If the

922

command fails, the implementation must not retain a reference.

Valid Usage

• VUID-VkImportAndroidHardwareBufferInfoANDROID-buffer-01880
If buffer is not NULL, Android hardware buffers must be supported for import, as reported
by VkExternalImageFormatProperties or VkExternalBufferProperties

• VUID-VkImportAndroidHardwareBufferInfoANDROID-buffer-01881
If buffer is not NULL, it must be a valid Android hardware buffer object with
AHardwareBuffer_Desc::usage compatible with Vulkan as described in Android Hardware
Buffers

Valid Usage (Implicit)

• VUID-VkImportAndroidHardwareBufferInfoANDROID-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID

• VUID-VkImportAndroidHardwareBufferInfoANDROID-buffer-parameter
buffer must be a valid pointer to an AHardwareBuffer value

To export an Android hardware buffer referencing the payload of a Vulkan device memory object,
call:

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
VkResult vkGetMemoryAndroidHardwareBufferANDROID(
 VkDevice device,
 const VkMemoryGetAndroidHardwareBufferInfoANDROID* pInfo,
 struct AHardwareBuffer** pBuffer);

• device is the logical device that created the device memory being exported.

• pInfo is a pointer to a VkMemoryGetAndroidHardwareBufferInfoANDROID structure containing
parameters of the export operation.

• pBuffer will return an Android hardware buffer referencing the payload of the device memory
object.

Each call to vkGetMemoryAndroidHardwareBufferANDROID must return an Android hardware buffer
with a new reference acquired in addition to the reference held by the VkDeviceMemory. To avoid
leaking resources, the application must release the reference by calling AHardwareBuffer_release
when it is no longer needed. When called with the same handle in
VkMemoryGetAndroidHardwareBufferInfoANDROID::memory,
vkGetMemoryAndroidHardwareBufferANDROID must return the same Android hardware buffer object. If
the device memory was created by importing an Android hardware buffer,
vkGetMemoryAndroidHardwareBufferANDROID must return that same Android hardware buffer object.

923

Valid Usage (Implicit)

• VUID-vkGetMemoryAndroidHardwareBufferANDROID-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryAndroidHardwareBufferANDROID-pInfo-parameter
pInfo must be a valid pointer to a valid
VkMemoryGetAndroidHardwareBufferInfoANDROID structure

• VUID-vkGetMemoryAndroidHardwareBufferANDROID-pBuffer-parameter
pBuffer must be a valid pointer to a valid pointer to an AHardwareBuffer value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkMemoryGetAndroidHardwareBufferInfoANDROID structure is defined as:

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
typedef struct VkMemoryGetAndroidHardwareBufferInfoANDROID {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
} VkMemoryGetAndroidHardwareBufferInfoANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory is the memory object from which the Android hardware buffer will be exported.

Valid Usage

• VUID-VkMemoryGetAndroidHardwareBufferInfoANDROID-handleTypes-01882
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID must have been
included in VkExportMemoryAllocateInfo::handleTypes when memory was created

• VUID-VkMemoryGetAndroidHardwareBufferInfoANDROID-pNext-01883
If the pNext chain of the VkMemoryAllocateInfo used to allocate memory included a
VkMemoryDedicatedAllocateInfo with non-NULL image member, then that image must
already be bound to memory

924

Valid Usage (Implicit)

• VUID-VkMemoryGetAndroidHardwareBufferInfoANDROID-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_GET_ANDROID_HARDWARE_BUFFER_INFO_ANDROID

• VUID-VkMemoryGetAndroidHardwareBufferInfoANDROID-pNext-pNext
pNext must be NULL

• VUID-VkMemoryGetAndroidHardwareBufferInfoANDROID-memory-parameter
memory must be a valid VkDeviceMemory handle

To determine the memory parameters to use when importing an Android hardware buffer, call:

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
VkResult vkGetAndroidHardwareBufferPropertiesANDROID(
 VkDevice device,
 const struct AHardwareBuffer* buffer,
 VkAndroidHardwareBufferPropertiesANDROID* pProperties);

• device is the logical device that will be importing buffer.

• buffer is the Android hardware buffer which will be imported.

• pProperties is a pointer to a VkAndroidHardwareBufferPropertiesANDROID structure in which
the properties of buffer are returned.

Valid Usage

• VUID-vkGetAndroidHardwareBufferPropertiesANDROID-buffer-01884
buffer must be a valid Android hardware buffer object with at least one of the
AHARDWAREBUFFER_USAGE_GPU_* flags in its AHardwareBuffer_Desc::usage

Valid Usage (Implicit)

• VUID-vkGetAndroidHardwareBufferPropertiesANDROID-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetAndroidHardwareBufferPropertiesANDROID-buffer-parameter
buffer must be a valid pointer to a valid AHardwareBuffer value

• VUID-vkGetAndroidHardwareBufferPropertiesANDROID-pProperties-parameter
pProperties must be a valid pointer to a VkAndroidHardwareBufferPropertiesANDROID
structure

925

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR

The VkAndroidHardwareBufferPropertiesANDROID structure returned is defined as:

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
typedef struct VkAndroidHardwareBufferPropertiesANDROID {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize allocationSize;
 uint32_t memoryTypeBits;
} VkAndroidHardwareBufferPropertiesANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• allocationSize is the size of the external memory

• memoryTypeBits is a bitmask containing one bit set for every memory type which the specified
Android hardware buffer can be imported as.

Valid Usage (Implicit)

• VUID-VkAndroidHardwareBufferPropertiesANDROID-sType-sType
sType must be VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID

• VUID-VkAndroidHardwareBufferPropertiesANDROID-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of
VkAndroidHardwareBufferFormatProperties2ANDROID,
VkAndroidHardwareBufferFormatPropertiesANDROID, or
VkAndroidHardwareBufferFormatResolvePropertiesANDROID

• VUID-VkAndroidHardwareBufferPropertiesANDROID-sType-unique
The sType value of each struct in the pNext chain must be unique

To obtain format properties of an Android hardware buffer, include a
VkAndroidHardwareBufferFormatPropertiesANDROID structure in the pNext chain of the
VkAndroidHardwareBufferPropertiesANDROID structure passed to
vkGetAndroidHardwareBufferPropertiesANDROID. This structure is defined as:

926

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
typedef struct VkAndroidHardwareBufferFormatPropertiesANDROID {
 VkStructureType sType;
 void* pNext;
 VkFormat format;
 uint64_t externalFormat;
 VkFormatFeatureFlags formatFeatures;
 VkComponentMapping samplerYcbcrConversionComponents;
 VkSamplerYcbcrModelConversion suggestedYcbcrModel;
 VkSamplerYcbcrRange suggestedYcbcrRange;
 VkChromaLocation suggestedXChromaOffset;
 VkChromaLocation suggestedYChromaOffset;
} VkAndroidHardwareBufferFormatPropertiesANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• format is the Vulkan format corresponding to the Android hardware buffer’s format, or
VK_FORMAT_UNDEFINED if there is not an equivalent Vulkan format.

• externalFormat is an implementation-defined external format identifier for use with
VkExternalFormatANDROID. It must not be zero.

• formatFeatures describes the capabilities of this external format when used with an image
bound to memory imported from buffer.

• samplerYcbcrConversionComponents is the component swizzle that should be used in
VkSamplerYcbcrConversionCreateInfo.

• suggestedYcbcrModel is a suggested color model to use in the
VkSamplerYcbcrConversionCreateInfo.

• suggestedYcbcrRange is a suggested numerical value range to use in
VkSamplerYcbcrConversionCreateInfo.

• suggestedXChromaOffset is a suggested X chroma offset to use in
VkSamplerYcbcrConversionCreateInfo.

• suggestedYChromaOffset is a suggested Y chroma offset to use in
VkSamplerYcbcrConversionCreateInfo.

If the Android hardware buffer has one of the formats listed in the Format Equivalence table, then
format must have the equivalent Vulkan format listed in the table. Otherwise, format may be
VK_FORMAT_UNDEFINED, indicating the Android hardware buffer can only be used with an external
format.

The formatFeatures member must include VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT and at least one of
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT or VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT,
and should include VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT.

 Note

927

The formatFeatures member only indicates the features available when using an
external-format image created from the Android hardware buffer. Images from
Android hardware buffers with a format other than VK_FORMAT_UNDEFINED are
subject to the format capabilities obtained from
vkGetPhysicalDeviceFormatProperties2, and
vkGetPhysicalDeviceImageFormatProperties2 with appropriate parameters. These
sets of features are independent of each other, e.g. the external format will support
sampler Y′CBCR conversion even if the non-external format does not, and rendering
directly to the external format will not be supported even if the non-external
format does support this.

Android hardware buffers with the same external format must have the same support for
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT,
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT, VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT,
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT,
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT, and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT.
in formatFeatures. Other format features may differ between Android hardware buffers that have
the same external format. This allows applications to use the same VkSamplerYcbcrConversion
object (and samplers and pipelines created from them) for any Android hardware buffers that have
the same external format.

If format is not VK_FORMAT_UNDEFINED, then the value of samplerYcbcrConversionComponents must be
valid when used as the components member of VkSamplerYcbcrConversionCreateInfo with that
format. If format is VK_FORMAT_UNDEFINED, all members of samplerYcbcrConversionComponents must be
the identity swizzle.

Implementations may not always be able to determine the color model, numerical range, or
chroma offsets of the image contents, so the values in
VkAndroidHardwareBufferFormatPropertiesANDROID are only suggestions. Applications should treat
these values as sensible defaults to use in the absence of more reliable information obtained
through some other means. If the underlying physical device is also usable via OpenGL ES with the
GL_OES_EGL_image_external extension, the implementation should suggest values that will produce
similar sampled values as would be obtained by sampling the same external image via
samplerExternalOES in OpenGL ES using equivalent sampler parameters.

Note

Since GL_OES_EGL_image_external does not require the same sampling and
conversion calculations as Vulkan does, achieving identical results between APIs
may not be possible on some implementations.

Valid Usage (Implicit)

• VUID-VkAndroidHardwareBufferFormatPropertiesANDROID-sType-sType
sType must be VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID

The format properties of an Android hardware buffer can be obtained by including a

928

https://registry.khronos.org/OpenGL/extensions/OES/OES_EGL_image_external.txt
https://registry.khronos.org/OpenGL/extensions/OES/OES_EGL_image_external.txt

VkAndroidHardwareBufferFormatProperties2ANDROID structure in the pNext chain of the
VkAndroidHardwareBufferPropertiesANDROID structure passed to
vkGetAndroidHardwareBufferPropertiesANDROID. This structure is defined as:

// Provided by VK_KHR_format_feature_flags2 with
VK_ANDROID_external_memory_android_hardware_buffer
typedef struct VkAndroidHardwareBufferFormatProperties2ANDROID {
 VkStructureType sType;
 void* pNext;
 VkFormat format;
 uint64_t externalFormat;
 VkFormatFeatureFlags2 formatFeatures;
 VkComponentMapping samplerYcbcrConversionComponents;
 VkSamplerYcbcrModelConversion suggestedYcbcrModel;
 VkSamplerYcbcrRange suggestedYcbcrRange;
 VkChromaLocation suggestedXChromaOffset;
 VkChromaLocation suggestedYChromaOffset;
} VkAndroidHardwareBufferFormatProperties2ANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• format is the Vulkan format corresponding to the Android hardware buffer’s format, or
VK_FORMAT_UNDEFINED if there is not an equivalent Vulkan format.

• externalFormat is an implementation-defined external format identifier for use with
VkExternalFormatANDROID. It must not be zero.

• formatFeatures describes the capabilities of this external format when used with an image
bound to memory imported from buffer.

• samplerYcbcrConversionComponents is the component swizzle that should be used in
VkSamplerYcbcrConversionCreateInfo.

• suggestedYcbcrModel is a suggested color model to use in the
VkSamplerYcbcrConversionCreateInfo.

• suggestedYcbcrRange is a suggested numerical value range to use in
VkSamplerYcbcrConversionCreateInfo.

• suggestedXChromaOffset is a suggested X chroma offset to use in
VkSamplerYcbcrConversionCreateInfo.

• suggestedYChromaOffset is a suggested Y chroma offset to use in
VkSamplerYcbcrConversionCreateInfo.

The bits reported in formatFeatures must include the bits reported in the corresponding fields of
VkAndroidHardwareBufferFormatPropertiesANDROID::formatFeatures.

Valid Usage (Implicit)

• VUID-VkAndroidHardwareBufferFormatProperties2ANDROID-sType-sType

929

sType must be VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_2_ANDROID

The VkAndroidHardwareBufferFormatResolvePropertiesANDROID structure is defined as:

// Provided by VK_ANDROID_external_format_resolve
typedef struct VkAndroidHardwareBufferFormatResolvePropertiesANDROID {
 VkStructureType sType;
 void* pNext;
 VkFormat colorAttachmentFormat;
} VkAndroidHardwareBufferFormatResolvePropertiesANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• colorAttachmentFormat is a VkFormat specifying the format of color attachment images that
must be used for color attachments when resolving to the specified external format. If the
implementation supports external format resolves for the specified external format, this value
will be set to a color format supporting the VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT in
VkFormatProperties::optimalTilingFeatures as returned by
vkGetPhysicalDeviceFormatProperties with format equal to colorAttachmentFormat If external
format resolves are not supported, this value will be set to VK_FORMAT_UNDEFINED.

Any Android hardware buffer created with the GRALLOC_USAGE_HW_RENDER flag must be renderable in
some way in Vulkan, either:

• VkAndroidHardwareBufferFormatPropertiesANDROID::format must be a format that supports
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT in
VkFormatProperties::optimalTilingFeatures; or

• colorAttachmentFormat must be a format that supports VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT
in VkFormatProperties::optimalTilingFeatures.

Valid Usage (Implicit)

• VUID-VkAndroidHardwareBufferFormatResolvePropertiesANDROID-sType-sType
sType must be
VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_RESOLVE_PROPERTIES_ANDROID

11.2.8. Remote Device External Memory

To export an address representing the payload of a Vulkan device memory object accessible by
remote devices, call:

// Provided by VK_NV_external_memory_rdma
VkResult vkGetMemoryRemoteAddressNV(
 VkDevice device,
 const VkMemoryGetRemoteAddressInfoNV* pMemoryGetRemoteAddressInfo,

930

 VkRemoteAddressNV* pAddress);

• device is the logical device that created the device memory being exported.

• pMemoryGetRemoteAddressInfo is a pointer to a VkMemoryGetRemoteAddressInfoNV structure
containing parameters of the export operation.

• pAddress is a pointer to a VkRemoteAddressNV value in which an address representing the
payload of the device memory object is returned.

More communication may be required between the kernel-mode drivers of the devices involved.
This information is out of scope of this documentation and should be requested from the vendors of
the devices.

Valid Usage (Implicit)

• VUID-vkGetMemoryRemoteAddressNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryRemoteAddressNV-pMemoryGetRemoteAddressInfo-parameter
pMemoryGetRemoteAddressInfo must be a valid pointer to a valid
VkMemoryGetRemoteAddressInfoNV structure

• VUID-vkGetMemoryRemoteAddressNV-pAddress-parameter
pAddress must be a valid pointer to a VkRemoteAddressNV value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkMemoryGetRemoteAddressInfoNV structure is defined as:

// Provided by VK_NV_external_memory_rdma
typedef struct VkMemoryGetRemoteAddressInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
 VkExternalMemoryHandleTypeFlagBits handleType;
} VkMemoryGetRemoteAddressInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory is the memory object from which the remote accessible address will be exported.

931

• handleType is the type of handle requested.

Valid Usage

• VUID-VkMemoryGetRemoteAddressInfoNV-handleType-04966
handleType must have been included in VkExportMemoryAllocateInfo::handleTypes when
memory was created

Valid Usage (Implicit)

• VUID-VkMemoryGetRemoteAddressInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_GET_REMOTE_ADDRESS_INFO_NV

• VUID-VkMemoryGetRemoteAddressInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkMemoryGetRemoteAddressInfoNV-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-VkMemoryGetRemoteAddressInfoNV-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

VkRemoteAddressNV represents an address of a memory object accessible by remote devices, as
returned in vkGetMemoryRemoteAddressNV::pAddress.

// Provided by VK_NV_external_memory_rdma
typedef void* VkRemoteAddressNV;

11.2.9. Fuchsia External Memory

On Fuchsia, when allocating memory that may be imported from another device, process or Vulkan
instance, add a VkImportMemoryZirconHandleInfoFUCHSIA structure to the pNext chain of the
VkMemoryAllocateInfo structure.

External memory on Fuchsia is imported and exported using VMO handles of type zx_handle_t.
VMO handles to external memory are canonically obtained from Fuchsia’s Sysmem service or from
syscalls such as zx_vmo_create(). VMO handles for import can also be obtained by exporting them
from another Vulkan instance as described in exporting fuchsia device memory.

Importing VMO handles to the Vulkan instance transfers ownership of the handle to the instance
from the application. The application must not perform any operations on the handle after
successful import.

Applications can import the same underlying memory into multiple instances of Vulkan, into the
same instance from which it was exported, and multiple times into a given Vulkan instance. In all
cases, each import operation must create a distinct VkDeviceMemory object.

932

Importing Fuchsia External Memory

The VkImportMemoryZirconHandleInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_external_memory
typedef struct VkImportMemoryZirconHandleInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagBits handleType;
 zx_handle_t handle;
} VkImportMemoryZirconHandleInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of handle.

• handle is a zx_handle_t (Zircon) handle to the external memory.

Valid Usage

• VUID-VkImportMemoryZirconHandleInfoFUCHSIA-handleType-04771
handleType must be VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA

• VUID-VkImportMemoryZirconHandleInfoFUCHSIA-handle-04772
handle must be a valid VMO handle

Valid Usage (Implicit)

• VUID-VkImportMemoryZirconHandleInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_MEMORY_ZIRCON_HANDLE_INFO_FUCHSIA

• VUID-VkImportMemoryZirconHandleInfoFUCHSIA-handleType-parameter
If handleType is not 0, handleType must be a valid VkExternalMemoryHandleTypeFlagBits
value

To obtain the memoryTypeIndex for the VkMemoryAllocateInfo structure, call
vkGetMemoryZirconHandlePropertiesFUCHSIA:

// Provided by VK_FUCHSIA_external_memory
VkResult vkGetMemoryZirconHandlePropertiesFUCHSIA(
 VkDevice device,
 VkExternalMemoryHandleTypeFlagBits handleType,
 zx_handle_t zirconHandle,
 VkMemoryZirconHandlePropertiesFUCHSIA* pMemoryZirconHandleProperties);

• device is the VkDevice.

933

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of zirconHandle

• zirconHandle is a zx_handle_t (Zircon) handle to the external resource.

• pMemoryZirconHandleProperties is a pointer to a VkMemoryZirconHandlePropertiesFUCHSIA
structure in which the result will be stored.

Valid Usage

• VUID-vkGetMemoryZirconHandlePropertiesFUCHSIA-handleType-04773
handleType must be VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA

• VUID-vkGetMemoryZirconHandlePropertiesFUCHSIA-zirconHandle-04774
zirconHandle must reference a valid VMO

Valid Usage (Implicit)

• VUID-vkGetMemoryZirconHandlePropertiesFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryZirconHandlePropertiesFUCHSIA-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

• VUID-vkGetMemoryZirconHandlePropertiesFUCHSIA-pMemoryZirconHandleProperties-
parameter
pMemoryZirconHandleProperties must be a valid pointer to a
VkMemoryZirconHandlePropertiesFUCHSIA structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkMemoryZirconHandlePropertiesFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_external_memory
typedef struct VkMemoryZirconHandlePropertiesFUCHSIA {
 VkStructureType sType;
 void* pNext;
 uint32_t memoryTypeBits;
} VkMemoryZirconHandlePropertiesFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

934

• memoryTypeBits a bitmask containing one bit set for every memory type which the specified
handle can be imported as.

Valid Usage (Implicit)

• VUID-VkMemoryZirconHandlePropertiesFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_ZIRCON_HANDLE_PROPERTIES_FUCHSIA

• VUID-VkMemoryZirconHandlePropertiesFUCHSIA-pNext-pNext
pNext must be NULL

With pMemoryZirconHandleProperties now successfully populated by
vkGetMemoryZirconHandlePropertiesFUCHSIA, assign the VkMemoryAllocateInfo
memoryTypeIndex field to a memory type which has a bit set in the
VkMemoryZirconHandlePropertiesFUCHSIA memoryTypeBits field.

Exporting Fuchsia Device Memory

Similar to importing, exporting a VMO handle from Vulkan transfers ownership of the handle from
the Vulkan instance to the application. The application is responsible for closing the handle with
zx_handle_close() when it is no longer in use.

To export device memory as a Zircon handle that can be used by another instance, device, or
process, the handle to the VkDeviceMemory must be retrieved using
vkGetMemoryZirconHandleFUCHSIA:

// Provided by VK_FUCHSIA_external_memory
VkResult vkGetMemoryZirconHandleFUCHSIA(
 VkDevice device,
 const VkMemoryGetZirconHandleInfoFUCHSIA* pGetZirconHandleInfo,
 zx_handle_t* pZirconHandle);

• device is the VkDevice.

• pGetZirconHandleInfo is a pointer to a VkMemoryGetZirconHandleInfoFUCHSIA structure.

• pZirconHandle is a pointer to a zx_handle_t which holds the resulting Zircon handle.

Valid Usage (Implicit)

• VUID-vkGetMemoryZirconHandleFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMemoryZirconHandleFUCHSIA-pGetZirconHandleInfo-parameter
pGetZirconHandleInfo must be a valid pointer to a valid
VkMemoryGetZirconHandleInfoFUCHSIA structure

• VUID-vkGetMemoryZirconHandleFUCHSIA-pZirconHandle-parameter
pZirconHandle must be a valid pointer to a zx_handle_t value

935

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

VkMemoryGetZirconHandleInfoFUCHSIA is defined as:

// Provided by VK_FUCHSIA_external_memory
typedef struct VkMemoryGetZirconHandleInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
 VkExternalMemoryHandleTypeFlagBits handleType;
} VkMemoryGetZirconHandleInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory the VkDeviceMemory being exported.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the type of the handle
pointed to by vkGetMemoryZirconHandleFUCHSIA::pZirconHandle.

Valid Usage

• VUID-VkMemoryGetZirconHandleInfoFUCHSIA-handleType-04775
handleType must be VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA

• VUID-VkMemoryGetZirconHandleInfoFUCHSIA-handleType-04776
handleType must have been included in the handleTypes field of the
VkExportMemoryAllocateInfo structure when the external memory was allocated

Valid Usage (Implicit)

• VUID-VkMemoryGetZirconHandleInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_GET_ZIRCON_HANDLE_INFO_FUCHSIA

• VUID-VkMemoryGetZirconHandleInfoFUCHSIA-pNext-pNext
pNext must be NULL

• VUID-VkMemoryGetZirconHandleInfoFUCHSIA-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-VkMemoryGetZirconHandleInfoFUCHSIA-handleType-parameter

936

handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

With the result pZirconHandle now obtained, the memory properties for the handle can be retrieved
using vkGetMemoryZirconHandlePropertiesFUCHSIA as documented above substituting the
dereferenced, retrieved pZirconHandle in for the zirconHandle argument.

11.2.10. Metal Objects

A Vulkan implementation that is layered on top of Metal on Apple device platform, and implements
the VK_EXT_metal_objects extension, supports the ability to import and export the underlying Metal
objects associated with specific Vulkan objects.

The underlying Metal objects associated with certain Vulkan objects can be exported from those
Vulkan objects using the pNext chain of the VkExportMetalObjectsInfoEXT parameter of the
vkExportMetalObjectsEXT command.

An VkDeviceMemory object can be allocated on an existing MTLBuffer object, by including the
MTLBuffer object in a VkImportMetalBufferInfoEXT structure in the pNext chain of the
VkMemoryAllocateInfo structure in the vkAllocateMemory command.

A new VkImage object can be created on an existing IOSurface object, or one or more existing Metal
MTLTexture objects, by including those Metal objects in either VkImportMetalIOSurfaceInfoEXT or
VkImportMetalTextureInfoEXT structures in the pNext chain of the VkImageCreateInfo structure in
the vkCreateImage command.

To export Metal objects from Vulkan objects, the app must first indicate the intention to do so
during the creation of the Vulkan object, by including one or more
VkExportMetalObjectCreateInfoEXT structures in the pNext chain of the VkInstanceCreateInfo,
VkMemoryAllocateInfo, VkImageCreateInfo, VkImageViewCreateInfo, VkBufferViewCreateInfo,
VkSemaphoreCreateInfo, or VkEventCreateInfo, in the corresponding Vulkan object creation
command.

The VkExportMetalObjectCreateInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkExportMetalObjectCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkExportMetalObjectTypeFlagBitsEXT exportObjectType;
} VkExportMetalObjectCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• exportObjectType is a VkExportMetalObjectTypeFlagBitsEXT indicating the type of Metal object
that the application may request to be exported from the Vulkan object.

937

Valid Usage (Implicit)

• VUID-VkExportMetalObjectCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_METAL_OBJECT_CREATE_INFO_EXT

• VUID-VkExportMetalObjectCreateInfoEXT-exportObjectType-parameter
If exportObjectType is not 0, exportObjectType must be a valid
VkExportMetalObjectTypeFlagBitsEXT value

Bits which indicate the types of Metal objects that may be exported from a corresponding Vulkan
object are:

// Provided by VK_EXT_metal_objects
typedef enum VkExportMetalObjectTypeFlagBitsEXT {
 VK_EXPORT_METAL_OBJECT_TYPE_METAL_DEVICE_BIT_EXT = 0x00000001,
 VK_EXPORT_METAL_OBJECT_TYPE_METAL_COMMAND_QUEUE_BIT_EXT = 0x00000002,
 VK_EXPORT_METAL_OBJECT_TYPE_METAL_BUFFER_BIT_EXT = 0x00000004,
 VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT = 0x00000008,
 VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT = 0x00000010,
 VK_EXPORT_METAL_OBJECT_TYPE_METAL_SHARED_EVENT_BIT_EXT = 0x00000020,
} VkExportMetalObjectTypeFlagBitsEXT;

• VK_EXPORT_METAL_OBJECT_TYPE_METAL_DEVICE_BIT_EXT indicates a Metal MTLDevice may be exported.

• VK_EXPORT_METAL_OBJECT_TYPE_METAL_COMMAND_QUEUE_BIT_EXT indicates a Metal MTLCommandQueue
may be exported.

• VK_EXPORT_METAL_OBJECT_TYPE_METAL_BUFFER_BIT_EXT indicates a Metal MTLBuffer may be exported.

• VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT indicates a Metal MTLTexture may be
exported.

• VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT indicates a Metal IOSurface may be
exported.

• VK_EXPORT_METAL_OBJECT_TYPE_METAL_SHARED_EVENT_BIT_EXT indicates a Metal MTLSharedEvent may
be exported.

// Provided by VK_EXT_metal_objects
typedef VkFlags VkExportMetalObjectTypeFlagsEXT;

VkExportMetalObjectTypeFlagsEXT is a bitmask type for setting a mask of zero or more
VkExportMetalObjectTypeFlagBitsEXT.

To export Metal objects that underlie Vulkan objects, call:

// Provided by VK_EXT_metal_objects
void vkExportMetalObjectsEXT(
 VkDevice device,

938

 VkExportMetalObjectsInfoEXT* pMetalObjectsInfo);

• device is the device that created the Vulkan objects.

• pMetalObjectsInfo is a pointer to a VkExportMetalObjectsInfoEXT structure whose pNext chain
contains structures, each identifying a Vulkan object and providing a pointer through which the
Metal object will be returned.

Valid Usage (Implicit)

• VUID-vkExportMetalObjectsEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkExportMetalObjectsEXT-pMetalObjectsInfo-parameter
pMetalObjectsInfo must be a valid pointer to a VkExportMetalObjectsInfoEXT structure

The VkExportMetalObjectsInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkExportMetalObjectsInfoEXT {
 VkStructureType sType;
 const void* pNext;
} VkExportMetalObjectsInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

Valid Usage

• VUID-VkExportMetalObjectsInfoEXT-pNext-06791
If the pNext chain includes a VkExportMetalDeviceInfoEXT structure, the VkInstance must
have been created with VK_EXPORT_METAL_OBJECT_TYPE_METAL_DEVICE_BIT_EXT in the
exportObjectType member of a VkExportMetalObjectCreateInfoEXT structure in the pNext
chain of the VkInstanceCreateInfo structure in the vkCreateInstance command

• VUID-VkExportMetalObjectsInfoEXT-pNext-06792
If the pNext chain includes a VkExportMetalCommandQueueInfoEXT structure, the
VkInstance must have been created with
VK_EXPORT_METAL_OBJECT_TYPE_METAL_COMMAND_QUEUE_BIT_EXT in the exportObjectType
member of a VkExportMetalObjectCreateInfoEXT structure in the pNext chain of the
VkInstanceCreateInfo structure in the vkCreateInstance command

• VUID-VkExportMetalObjectsInfoEXT-pNext-06793
If the pNext chain includes a VkExportMetalBufferInfoEXT structure, the
VkDeviceMemory in its memory member must have been allocated with
VK_EXPORT_METAL_OBJECT_TYPE_METAL_BUFFER_BIT_EXT in the exportObjectType member of a
VkExportMetalObjectCreateInfoEXT structure in the pNext chain of the
VkMemoryAllocateInfo structure in the vkAllocateMemory command

939

• VUID-VkExportMetalObjectsInfoEXT-pNext-06794
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, exactly one of its
image, imageView, or bufferView members must not be VK_NULL_HANDLE

• VUID-VkExportMetalObjectsInfoEXT-pNext-06795
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, and its image
member is not VK_NULL_HANDLE, the VkImage in its image member must have been
created with VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT in the exportObjectType
member of a VkExportMetalObjectCreateInfoEXT structure in the pNext chain of the
VkImageCreateInfo structure in the vkCreateImage command

• VUID-VkExportMetalObjectsInfoEXT-pNext-06796
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, and its imageView
member is not VK_NULL_HANDLE, the VkImageView in its imageView member must have
been created with VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT in the
exportObjectType member of a VkExportMetalObjectCreateInfoEXT structure in the pNext
chain of the VkImageViewCreateInfo structure in the vkCreateImageView command

• VUID-VkExportMetalObjectsInfoEXT-pNext-06797
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, and its bufferView
member is not VK_NULL_HANDLE, the VkBufferView in its bufferView member must have
been created with VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT in the
exportObjectType member of a VkExportMetalObjectCreateInfoEXT structure in the pNext
chain of the VkBufferViewCreateInfo structure in the vkCreateBufferView command

• VUID-VkExportMetalObjectsInfoEXT-pNext-06798
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, and if either its
image or imageView member is not VK_NULL_HANDLE, then plane must be
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, or VK_IMAGE_ASPECT_PLANE_2_BIT

• VUID-VkExportMetalObjectsInfoEXT-pNext-06799
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, and if the VkImage
in its image member does not have a multi-planar format, then its plane member must be
VK_IMAGE_ASPECT_PLANE_0_BIT

• VUID-VkExportMetalObjectsInfoEXT-pNext-06800
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, and if the VkImage
in its image member has a multi-planar format with only two planes, then its plane
member must not be VK_IMAGE_ASPECT_PLANE_2_BIT

• VUID-VkExportMetalObjectsInfoEXT-pNext-06801
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, and if the
VkImageView in its imageView member does not have a multi-planar format, then its plane
member must be VK_IMAGE_ASPECT_PLANE_0_BIT

• VUID-VkExportMetalObjectsInfoEXT-pNext-06802
If the pNext chain includes a VkExportMetalTextureInfoEXT structure, and if the
VkImageView in its imageView member has a multi-planar format with only two planes,
then its plane member must not be VK_IMAGE_ASPECT_PLANE_2_BIT

• VUID-VkExportMetalObjectsInfoEXT-pNext-06803
If the pNext chain includes a VkExportMetalIOSurfaceInfoEXT structure, the VkImage in
its image member must have been created with

940

VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT in the exportObjectType member of
a VkExportMetalObjectCreateInfoEXT structure in the pNext chain of the
VkImageCreateInfo structure in the vkCreateImage command

• VUID-VkExportMetalObjectsInfoEXT-pNext-06804
If the pNext chain includes a VkExportMetalSharedEventInfoEXT structure, exactly one of
its semaphore or event members must not be VK_NULL_HANDLE

• VUID-VkExportMetalObjectsInfoEXT-pNext-06805
If the pNext chain includes a VkExportMetalSharedEventInfoEXT structure, and its
semaphore member is not VK_NULL_HANDLE, the VkSemaphore in its semaphore member
must have been created with VK_EXPORT_METAL_OBJECT_TYPE_METAL_SHARED_EVENT_BIT_EXT in
the exportObjectType member of a VkExportMetalObjectCreateInfoEXT structure in the
pNext chain of the VkSemaphoreCreateInfo structure in the vkCreateSemaphore
command

• VUID-VkExportMetalObjectsInfoEXT-pNext-06806
If the pNext chain includes a VkExportMetalSharedEventInfoEXT structure, and its event
member is not VK_NULL_HANDLE, the VkEvent in its event member must have been
created with VK_EXPORT_METAL_OBJECT_TYPE_METAL_SHARED_EVENT_BIT_EXT in the
exportObjectType member of a VkExportMetalObjectCreateInfoEXT structure in the pNext
chain of the VkEventCreateInfo structure in the vkCreateEvent command

Valid Usage (Implicit)

• VUID-VkExportMetalObjectsInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_METAL_OBJECTS_INFO_EXT

• VUID-VkExportMetalObjectsInfoEXT-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExportMetalBufferInfoEXT,
VkExportMetalCommandQueueInfoEXT, VkExportMetalDeviceInfoEXT,
VkExportMetalIOSurfaceInfoEXT, VkExportMetalSharedEventInfoEXT, or
VkExportMetalTextureInfoEXT

• VUID-VkExportMetalObjectsInfoEXT-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkExportMetalBufferInfoEXT, VkExportMetalCommandQueueInfoEXT,
VkExportMetalIOSurfaceInfoEXT, VkExportMetalSharedEventInfoEXT, or
VkExportMetalTextureInfoEXT

To export the Metal MTLDevice object underlying the VkPhysicalDevice associated with a VkDevice
object, include a VkExportMetalDeviceInfoEXT structure in the pNext chain of the pMetalObjectsInfo
parameter of a vkExportMetalObjectsEXT call.

The VkExportMetalDeviceInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkExportMetalDeviceInfoEXT {

941

 VkStructureType sType;
 const void* pNext;
 MTLDevice_id mtlDevice;
} VkExportMetalDeviceInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• mtlDevice is the Metal id<MTLDevice> object underlying the VkPhysicalDevice associated with the
VkDevice object identified in the call. The implementation will return the MTLDevice in this
member, or it will return NULL if no MTLDevice could be found underlying the VkPhysicalDevice
object.

Valid Usage (Implicit)

• VUID-VkExportMetalDeviceInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_METAL_DEVICE_INFO_EXT

The type id<MTLDevice> is defined in Apple’s Metal framework, but to remove an unnecessary
compile time dependency, an incomplete type definition of MTLDevice_id is provided in the Vulkan
headers:

// Provided by VK_EXT_metal_objects
#ifdef __OBJC__
@protocol MTLDevice;
typedef id<MTLDevice> MTLDevice_id;
#else
typedef void* MTLDevice_id;
#endif

To export the Metal MTLCommandQueue object underlying a VkQueue object, include a
VkExportMetalCommandQueueInfoEXT structure in the pNext chain of the pMetalObjectsInfo parameter
of a vkExportMetalObjectsEXT call.

The VkExportMetalCommandQueueInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkExportMetalCommandQueueInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkQueue queue;
 MTLCommandQueue_id mtlCommandQueue;
} VkExportMetalCommandQueueInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

942

• queue is a VkQueue.

• mtlCommandQueue is the Metal id<MTLCommandQueue> object underlying the VkQueue object in queue.
The implementation will return the MTLCommandQueue in this member, or it will return NULL if no
MTLCommandQueue could be found underlying the VkQueue object.

Valid Usage (Implicit)

• VUID-VkExportMetalCommandQueueInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_METAL_COMMAND_QUEUE_INFO_EXT

• VUID-VkExportMetalCommandQueueInfoEXT-queue-parameter
queue must be a valid VkQueue handle

The type id<MTLCommandQueue> is defined in Apple’s Metal framework, but to remove an unnecessary
compile time dependency, an incomplete type definition of MTLCommandQueue_id is provided in
the Vulkan headers:

// Provided by VK_EXT_metal_objects
#ifdef __OBJC__
@protocol MTLCommandQueue;
typedef id<MTLCommandQueue> MTLCommandQueue_id;
#else
typedef void* MTLCommandQueue_id;
#endif

To export the Metal MTLBuffer object underlying a VkDeviceMemory object, include a
VkExportMetalBufferInfoEXT structure in the pNext chain of the pMetalObjectsInfo parameter of a
vkExportMetalObjectsEXT call.

The VkExportMetalBufferInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkExportMetalBufferInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
 MTLBuffer_id mtlBuffer;
} VkExportMetalBufferInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory is a VkDeviceMemory.

• mtlBuffer is the Metal id<MTLBuffer> object underlying the VkDeviceMemory object in memory.
The implementation will return the MTLBuffer in this member, or it will return NULL if no
MTLBuffer could be found underlying the VkDeviceMemory object.

943

Valid Usage (Implicit)

• VUID-VkExportMetalBufferInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_METAL_BUFFER_INFO_EXT

• VUID-VkExportMetalBufferInfoEXT-memory-parameter
memory must be a valid VkDeviceMemory handle

To import a Metal MTLBuffer object to underlie a VkDeviceMemory object, include a
VkImportMetalBufferInfoEXT structure in the pNext chain of the VkMemoryAllocateInfo structure in a
vkAllocateMemory command.

The VkImportMetalBufferInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkImportMetalBufferInfoEXT {
 VkStructureType sType;
 const void* pNext;
 MTLBuffer_id mtlBuffer;
} VkImportMetalBufferInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• mtlBuffer is the Metal id<MTLBuffer> object that is to underlie the VkDeviceMemory.

The app must ensure that the configuration of the id<MTLBuffer> object is compatible with the
configuration of the VkDeviceMemory. Failure to do so results in undefined behavior.

Valid Usage (Implicit)

• VUID-VkImportMetalBufferInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_METAL_BUFFER_INFO_EXT

The type id<MTLBuffer> is defined in Apple’s Metal framework, but to remove an unnecessary
compile time dependency, an incomplete type definition of MTLBuffer_id is provided in the Vulkan
headers:

// Provided by VK_EXT_metal_objects
#ifdef __OBJC__
@protocol MTLBuffer;
typedef id<MTLBuffer> MTLBuffer_id;
#else
typedef void* MTLBuffer_id;
#endif

944

To export a Metal MTLTexture object underlying a VkImage, VkImageView, or VkBufferView object,
include a VkExportMetalTextureInfoEXT structure in the pNext chain of the pMetalObjectsInfo
parameter of a vkExportMetalObjectsEXT call.

The VkExportMetalTextureInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkExportMetalTextureInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
 VkImageView imageView;
 VkBufferView bufferView;
 VkImageAspectFlagBits plane;
 MTLTexture_id mtlTexture;
} VkExportMetalTextureInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is VK_NULL_HANDLE or a VkImage.

• imageView is VK_NULL_HANDLE or a VkImageView.

• bufferView is VK_NULL_HANDLE or a VkBufferView.

• plane indicates the plane of a multi-planar VkImage or VkImageView.

• mtlTexture is the Metal id<MTLTexture> object underlying the VkImage, VkImageView, or
VkBufferView object in image, imageView, or bufferView, respectively, at the plane indicated in
aspectMask. The implementation will return the MTLTexture in this member, or it will return NULL
if no MTLTexture could be found underlying the VkImage, VkImageView, or VkBufferView object,
at the plane indicated in aspectMask.

Valid Usage (Implicit)

• VUID-VkExportMetalTextureInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_METAL_TEXTURE_INFO_EXT

• VUID-VkExportMetalTextureInfoEXT-image-parameter
If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

• VUID-VkExportMetalTextureInfoEXT-imageView-parameter
If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• VUID-VkExportMetalTextureInfoEXT-bufferView-parameter
If bufferView is not VK_NULL_HANDLE, bufferView must be a valid VkBufferView handle

• VUID-VkExportMetalTextureInfoEXT-plane-parameter
plane must be a valid VkImageAspectFlagBits value

• VUID-VkExportMetalTextureInfoEXT-commonparent
Each of bufferView, image, and imageView that are valid handles of non-ignored parameters

945

must have been created, allocated, or retrieved from the same VkDevice

To import one or more existing Metal MTLTexture objects to underlie a VkImage object, include one
or more VkImportMetalTextureInfoEXT structures in the pNext chain of the VkImageCreateInfo
structure in a vkCreateImage command.

The VkImportMetalTextureInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkImportMetalTextureInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkImageAspectFlagBits plane;
 MTLTexture_id mtlTexture;
} VkImportMetalTextureInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• plane indicates the plane of the VkImage that the id<MTLTexture> object should be attached to.

• mtlTexture is a the Metal id<MTLTexture> object that is to underlie the VkImage plane.

The pNext chain must include one VkImportMetalTextureInfoEXT structure for each plane in the
VkImage. The app must ensure that the configuration of the Metal id<MTLTexture> objects are
compatible with the configuration of the VkImage. Failure to do so results in undefined behavior.

Valid Usage (Implicit)

• VUID-VkImportMetalTextureInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_METAL_TEXTURE_INFO_EXT

• VUID-VkImportMetalTextureInfoEXT-plane-parameter
plane must be a valid VkImageAspectFlagBits value

The type id<MTLTexture> is defined in Apple’s Metal framework, but to remove an unnecessary
compile time dependency, an incomplete type definition of MTLTexture_id is provided in the
Vulkan headers:

// Provided by VK_EXT_metal_objects
#ifdef __OBJC__
@protocol MTLTexture;
typedef id<MTLTexture> MTLTexture_id;
#else
typedef void* MTLTexture_id;
#endif

946

To export the Metal IOSurfaceRef object underlying a VkImage object, include a
VkExportMetalIOSurfaceInfoEXT structure in the pNext chain of the pMetalObjectsInfo parameter of a
vkExportMetalObjectsEXT call.

The VkExportMetalIOSurfaceInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkExportMetalIOSurfaceInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
 IOSurfaceRef ioSurface;
} VkExportMetalIOSurfaceInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is a VkImage.

• ioSurface is the Metal IOSurfaceRef object underlying the VkImage object in image. The
implementation will return the IOSurfaceRef in this member, or it will return NULL if no
IOSurfaceRef could be found underlying the VkImage object.

Valid Usage (Implicit)

• VUID-VkExportMetalIOSurfaceInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_METAL_IO_SURFACE_INFO_EXT

• VUID-VkExportMetalIOSurfaceInfoEXT-image-parameter
image must be a valid VkImage handle

To import, or create, a Metal IOSurfaceRef object to underlie a VkImage object, include a
VkImportMetalIOSurfaceInfoEXT structure in the pNext chain of the VkImageCreateInfo structure in a
vkCreateImage command.

The VkImportMetalIOSurfaceInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkImportMetalIOSurfaceInfoEXT {
 VkStructureType sType;
 const void* pNext;
 IOSurfaceRef ioSurface;
} VkImportMetalIOSurfaceInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• ioSurface is VK_NULL_HANDLE or the Metal IOSurfaceRef object that is to underlie the

947

VkImage.

If ioSurface is not VK_NULL_HANDLE, it will be used to underlie the VkImage. If ioSurface is
VK_NULL_HANDLE, the implementation will create a new IOSurface to underlie the VkImage.

If provided, the app must ensure that the configuration of the IOSurfaceRef object is compatible
with the configuration of the VkImage. Failure to do so results in undefined behavior.

Valid Usage (Implicit)

• VUID-VkImportMetalIOSurfaceInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_METAL_IO_SURFACE_INFO_EXT

The type IOSurfaceRef is defined in Apple’s CoreGraphics framework, but to remove an
unnecessary compile time dependency, an incomplete type definition of IOSurfaceRef is provided
in the Vulkan headers:

// Provided by VK_EXT_metal_objects
typedef struct __IOSurface* IOSurfaceRef;

To export the Metal MTLSharedEvent object underlying a VkSemaphore or VkEvent object, include a
VkExportMetalSharedEventInfoEXT structure in the pNext chain of the pMetalObjectsInfo parameter of
a vkExportMetalObjectsEXT call.

The VkExportMetalSharedEventInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkExportMetalSharedEventInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 VkEvent event;
 MTLSharedEvent_id mtlSharedEvent;
} VkExportMetalSharedEventInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is VK_NULL_HANDLE or a VkSemaphore.

• event is VK_NULL_HANDLE or a VkEvent.

• mtlSharedEvent is the Metal id<MTLSharedEvent> object underlying the VkSemaphore or VkEvent
object in semaphore or event, respectively. The implementation will return the MTLSharedEvent in
this member, or it will return NULL if no MTLSharedEvent could be found underlying the
VkSemaphore or VkEvent object.

948

Valid Usage (Implicit)

• VUID-VkExportMetalSharedEventInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_METAL_SHARED_EVENT_INFO_EXT

• VUID-VkExportMetalSharedEventInfoEXT-semaphore-parameter
If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

• VUID-VkExportMetalSharedEventInfoEXT-event-parameter
If event is not VK_NULL_HANDLE, event must be a valid VkEvent handle

• VUID-VkExportMetalSharedEventInfoEXT-commonparent
Both of event, and semaphore that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

To import a Metal id<MTLSharedEvent> object to underlie a VkSemaphore or VkEvent object, include
a VkImportMetalSharedEventInfoEXT structure in the pNext chain of the VkSemaphoreCreateInfo or
VkEventCreateInfo structure in a vkCreateSemaphore or vkCreateEvent command, respectively.

The VkImportMetalSharedEventInfoEXT structure is defined as:

// Provided by VK_EXT_metal_objects
typedef struct VkImportMetalSharedEventInfoEXT {
 VkStructureType sType;
 const void* pNext;
 MTLSharedEvent_id mtlSharedEvent;
} VkImportMetalSharedEventInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• mtlSharedEvent is the Metal id<MTLSharedEvent> object that is to underlie the VkSemaphore or
VkEvent.

If the pNext chain of the VkSemaphoreCreateInfo structure includes both
VkImportMetalSharedEventInfoEXT and VkSemaphoreTypeCreateInfo, the signaledValue property of
the imported id<MTLSharedEvent> object will be set to initialValue of VkSemaphoreTypeCreateInfo.

Valid Usage (Implicit)

• VUID-VkImportMetalSharedEventInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_METAL_SHARED_EVENT_INFO_EXT

The type id<MTLSharedEvent> is defined in Apple’s Metal framework, but to remove an unnecessary
compile time dependency, an incomplete type definition of MTLSharedEvent_id is provided in the
Vulkan headers:

949

// Provided by VK_EXT_metal_objects
#ifdef __OBJC__
@protocol MTLSharedEvent;
typedef id<MTLSharedEvent> MTLSharedEvent_id;
#else
typedef void* MTLSharedEvent_id;
#endif

11.2.11. QNX Screen Buffer External Memory

To import memory created outside of the current Vulkan instance from a QNX Screen buffer, add a
VkImportScreenBufferInfoQNX structure to the pNext chain of the VkMemoryAllocateInfo structure.
The VkImportScreenBufferInfoQNX structure is defined as:

// Provided by VK_QNX_external_memory_screen_buffer
typedef struct VkImportScreenBufferInfoQNX {
 VkStructureType sType;
 const void* pNext;
 struct _screen_buffer* buffer;
} VkImportScreenBufferInfoQNX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is a pointer to a struct _screen_buffer, the QNX Screen buffer to import

The implementation may not acquire a reference to the imported Screen buffer. Therefore, the
application must ensure that the object referred to by buffer stays valid as long as the device
memory to which it is imported is being used.

Valid Usage

• VUID-VkImportScreenBufferInfoQNX-buffer-08966
If buffer is not NULL, QNX Screen Buffers must be supported for import, as reported by
VkExternalImageFormatProperties or VkExternalBufferProperties

• VUID-VkImportScreenBufferInfoQNX-buffer-08967
buffer is not NULL, it must be a pointer to valid QNX Screen buffer

Valid Usage (Implicit)

• VUID-VkImportScreenBufferInfoQNX-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_SCREEN_BUFFER_INFO_QNX

To determine the memory parameters to use when importing a QNX Screen buffer, call:

950

// Provided by VK_QNX_external_memory_screen_buffer
VkResult vkGetScreenBufferPropertiesQNX(
 VkDevice device,
 const struct _screen_buffer* buffer,
 VkScreenBufferPropertiesQNX* pProperties);

• device is the logical device that will be importing buffer.

• buffer is the QNX Screen buffer which will be imported.

• pProperties is a pointer to a VkScreenBufferPropertiesQNX structure in which the properties of
buffer are returned.

Valid Usage

• VUID-vkGetScreenBufferPropertiesQNX-buffer-08968
buffer must be a valid QNX Screen buffer

Valid Usage (Implicit)

• VUID-vkGetScreenBufferPropertiesQNX-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetScreenBufferPropertiesQNX-buffer-parameter
buffer must be a valid pointer to a valid _screen_buffer value

• VUID-vkGetScreenBufferPropertiesQNX-pProperties-parameter
pProperties must be a valid pointer to a VkScreenBufferPropertiesQNX structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR

The VkScreenBufferPropertiesQNX structure returned is defined as:

// Provided by VK_QNX_external_memory_screen_buffer
typedef struct VkScreenBufferPropertiesQNX {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize allocationSize;
 uint32_t memoryTypeBits;

951

} VkScreenBufferPropertiesQNX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• allocationSize is the size of the external memory.

• memoryTypeBits is a bitmask containing one bit set for every memory type which the specified
Screen buffer can be imported as.

Valid Usage (Implicit)

• VUID-VkScreenBufferPropertiesQNX-sType-sType
sType must be VK_STRUCTURE_TYPE_SCREEN_BUFFER_PROPERTIES_QNX

• VUID-VkScreenBufferPropertiesQNX-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkScreenBufferFormatPropertiesQNX

• VUID-VkScreenBufferPropertiesQNX-sType-unique
The sType value of each struct in the pNext chain must be unique

To obtain format properties of a QNX Screen buffer, include a VkScreenBufferFormatPropertiesQNX
structure in the pNext chain of the VkScreenBufferPropertiesQNX structure passed to
vkGetScreenBufferPropertiesQNX. This structure is defined as:

// Provided by VK_QNX_external_memory_screen_buffer
typedef struct VkScreenBufferFormatPropertiesQNX {
 VkStructureType sType;
 void* pNext;
 VkFormat format;
 uint64_t externalFormat;
 uint64_t screenUsage;
 VkFormatFeatureFlags formatFeatures;
 VkComponentMapping samplerYcbcrConversionComponents;
 VkSamplerYcbcrModelConversion suggestedYcbcrModel;
 VkSamplerYcbcrRange suggestedYcbcrRange;
 VkChromaLocation suggestedXChromaOffset;
 VkChromaLocation suggestedYChromaOffset;
} VkScreenBufferFormatPropertiesQNX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• format is the Vulkan format corresponding to the Screen buffer’s format or VK_FORMAT_UNDEFINED
if there is not an equivalent Vulkan format.

• externalFormat is an implementation-defined external format identifier for use with
VkExternalFormatQNX. It must not be zero.

952

• screenUsage is an implementation-defined external usage identifier for the QNX Screen buffer.

• formatFeatures describes the capabilities of this external format when used with an image
bound to memory imported from buffer.

• samplerYcbcrConversionComponents is the component swizzle that should be used in
VkSamplerYcbcrConversionCreateInfo.

• suggestedYcbcrModel is a suggested color model to use in the
VkSamplerYcbcrConversionCreateInfo.

• suggestedYcbcrRange is a suggested numerical value range to use in
VkSamplerYcbcrConversionCreateInfo.

• suggestedXChromaOffset is a suggested X chroma offset to use in
VkSamplerYcbcrConversionCreateInfo.

• suggestedYChromaOffset is a suggested Y chroma offset to use in
VkSamplerYcbcrConversionCreateInfo.

If the QNX Screen buffer has one of the formats listed in the QNX Screen Format Equivalence table,
then format must have the equivalent Vulkan format listed in the table. Otherwise, format may be
VK_FORMAT_UNDEFINED, indicating the QNX Screen buffer can only be used with an external format.
The formatFeatures member must include VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT and should include
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT.

Valid Usage (Implicit)

• VUID-VkScreenBufferFormatPropertiesQNX-sType-sType
sType must be VK_STRUCTURE_TYPE_SCREEN_BUFFER_FORMAT_PROPERTIES_QNX

11.2.12. Device Group Memory Allocations

If the pNext chain of VkMemoryAllocateInfo includes a VkMemoryAllocateFlagsInfo structure, then
that structure includes flags and a device mask controlling how many instances of the memory will
be allocated.

The VkMemoryAllocateFlagsInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkMemoryAllocateFlagsInfo {
 VkStructureType sType;
 const void* pNext;
 VkMemoryAllocateFlags flags;
 uint32_t deviceMask;
} VkMemoryAllocateFlagsInfo;

or the equivalent

953

// Provided by VK_KHR_device_group
typedef VkMemoryAllocateFlagsInfo VkMemoryAllocateFlagsInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkMemoryAllocateFlagBits controlling the allocation.

• deviceMask is a mask of physical devices in the logical device, indicating that memory must be
allocated on each device in the mask, if VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT is set in flags.

If VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT is not set, the number of instances allocated depends on
whether VK_MEMORY_HEAP_MULTI_INSTANCE_BIT is set in the memory heap. If
VK_MEMORY_HEAP_MULTI_INSTANCE_BIT is set, then memory is allocated for every physical device in the
logical device (as if deviceMask has bits set for all device indices). If
VK_MEMORY_HEAP_MULTI_INSTANCE_BIT is not set, then a single instance of memory is allocated (as if
deviceMask is set to one).

On some implementations, allocations from a multi-instance heap may consume memory on all
physical devices even if the deviceMask excludes some devices. If
VkPhysicalDeviceGroupProperties::subsetAllocation is VK_TRUE, then memory is only consumed for
the devices in the device mask.

Note

In practice, most allocations on a multi-instance heap will be allocated across all
physical devices. Unicast allocation support is an optional optimization for a
minority of allocations.

Valid Usage

• VUID-VkMemoryAllocateFlagsInfo-deviceMask-00675
If VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT is set, deviceMask must be a valid device mask

• VUID-VkMemoryAllocateFlagsInfo-deviceMask-00676
If VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT is set, deviceMask must not be zero

Valid Usage (Implicit)

• VUID-VkMemoryAllocateFlagsInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO

• VUID-VkMemoryAllocateFlagsInfo-flags-parameter
flags must be a valid combination of VkMemoryAllocateFlagBits values

Bits which can be set in VkMemoryAllocateFlagsInfo::flags, controlling device memory allocation,
are:

954

// Provided by VK_VERSION_1_1
typedef enum VkMemoryAllocateFlagBits {
 VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT = 0x00000001,
 // Provided by VK_VERSION_1_2
 VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT = 0x00000002,
 // Provided by VK_VERSION_1_2
 VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT = 0x00000004,
 // Provided by VK_KHR_device_group
 VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT_KHR = VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT,
 // Provided by VK_KHR_buffer_device_address
 VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT,
 // Provided by VK_KHR_buffer_device_address
 VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR =
VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT,
} VkMemoryAllocateFlagBits;

or the equivalent

// Provided by VK_KHR_device_group
typedef VkMemoryAllocateFlagBits VkMemoryAllocateFlagBitsKHR;

• VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT specifies that memory will be allocated for the devices in
VkMemoryAllocateFlagsInfo::deviceMask.

• VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT specifies that the memory can be attached to a buffer
object created with the VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT bit set in usage, and that the
memory handle can be used to retrieve an opaque address via
vkGetDeviceMemoryOpaqueCaptureAddress.

• VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT specifies that the memory’s address can
be saved and reused on a subsequent run (e.g. for trace capture and replay), see
VkBufferOpaqueCaptureAddressCreateInfo for more detail.

// Provided by VK_VERSION_1_1
typedef VkFlags VkMemoryAllocateFlags;

or the equivalent

// Provided by VK_KHR_device_group
typedef VkMemoryAllocateFlags VkMemoryAllocateFlagsKHR;

VkMemoryAllocateFlags is a bitmask type for setting a mask of zero or more
VkMemoryAllocateFlagBits.

955

11.2.13. Opaque Capture Address Allocation

To request a specific device address for a memory allocation, add a
VkMemoryOpaqueCaptureAddressAllocateInfo structure to the pNext chain of the
VkMemoryAllocateInfo structure. The VkMemoryOpaqueCaptureAddressAllocateInfo structure is
defined as:

// Provided by VK_VERSION_1_2
typedef struct VkMemoryOpaqueCaptureAddressAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 uint64_t opaqueCaptureAddress;
} VkMemoryOpaqueCaptureAddressAllocateInfo;

or the equivalent

// Provided by VK_KHR_buffer_device_address
typedef VkMemoryOpaqueCaptureAddressAllocateInfo
VkMemoryOpaqueCaptureAddressAllocateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• opaqueCaptureAddress is the opaque capture address requested for the memory allocation.

If opaqueCaptureAddress is zero, no specific address is requested.

If opaqueCaptureAddress is not zero, it should be an address retrieved from
vkGetDeviceMemoryOpaqueCaptureAddress on an identically created memory allocation on the
same implementation.

Note

In most cases, it is expected that a non-zero opaqueAddress is an address retrieved
from vkGetDeviceMemoryOpaqueCaptureAddress on an identically created
memory allocation. If this is not the case, it is likely that
VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS errors will occur.

This is, however, not a strict requirement because trace capture/replay tools may
need to adjust memory allocation parameters for imported memory.

If this structure is not present, it is as if opaqueCaptureAddress is zero.

Valid Usage (Implicit)

• VUID-VkMemoryOpaqueCaptureAddressAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO

956

11.2.14. Freeing Device Memory

To free a memory object, call:

// Provided by VK_VERSION_1_0
void vkFreeMemory(
 VkDevice device,
 VkDeviceMemory memory,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to be freed.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Before freeing a memory object, an application must ensure the memory object is no longer in use
by the device — for example by command buffers in the pending state. Memory can be freed whilst
still bound to resources, but those resources must not be used afterwards. Freeing a memory object
releases the reference it held, if any, to its payload. If there are still any bound images or buffers,
the memory object’s payload may not be immediately released by the implementation, but must be
released by the time all bound images and buffers have been destroyed. Once all references to a
payload are released, it is returned to the heap from which it was allocated.

How memory objects are bound to Images and Buffers is described in detail in the Resource
Memory Association section.

If a memory object is mapped at the time it is freed, it is implicitly unmapped.

Note

As described below, host writes are not implicitly flushed when the memory object
is unmapped, but the implementation must guarantee that writes that have not
been flushed do not affect any other memory.

Valid Usage

• VUID-vkFreeMemory-memory-00677
All submitted commands that refer to memory (via images or buffers) must have completed
execution

Valid Usage (Implicit)

• VUID-vkFreeMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkFreeMemory-memory-parameter
If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

957

• VUID-vkFreeMemory-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkFreeMemory-memory-parent
If memory is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

11.2.15. Host Access to Device Memory Objects

Memory objects created with vkAllocateMemory are not directly host accessible.

Memory objects created with the memory property VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT are
considered mappable. Memory objects must be mappable in order to be successfully mapped on
the host.

To retrieve a host virtual address pointer to a region of a mappable memory object, call:

// Provided by VK_VERSION_1_0
VkResult vkMapMemory(
 VkDevice device,
 VkDeviceMemory memory,
 VkDeviceSize offset,
 VkDeviceSize size,
 VkMemoryMapFlags flags,
 void** ppData);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to be mapped.

• offset is a zero-based byte offset from the beginning of the memory object.

• size is the size of the memory range to map, or VK_WHOLE_SIZE to map from offset to the end of
the allocation.

• flags is a bitmask of VkMemoryMapFlagBits specifying additional parameters of the memory
map operation.

• ppData is a pointer to a void* variable in which a host-accessible pointer to the beginning of the
mapped range is returned. This pointer minus offset must be aligned to at least
VkPhysicalDeviceLimits::minMemoryMapAlignment.

After a successful call to vkMapMemory the memory object memory is considered to be currently host
mapped.

 Note

958

It is an application error to call vkMapMemory on a memory object that is already
host mapped.

Note

vkMapMemory will fail if the implementation is unable to allocate an appropriately
sized contiguous virtual address range, e.g. due to virtual address space
fragmentation or platform limits. In such cases, vkMapMemory must return
VK_ERROR_MEMORY_MAP_FAILED. The application can improve the likelihood of success
by reducing the size of the mapped range and/or removing unneeded mappings
using vkUnmapMemory.

vkMapMemory does not check whether the device memory is currently in use before returning the
host-accessible pointer. The application must guarantee that any previously submitted command
that writes to this range has completed before the host reads from or writes to that range, and that
any previously submitted command that reads from that range has completed before the host
writes to that region (see here for details on fulfilling such a guarantee). If the device memory was
allocated without the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, these guarantees must be made for
an extended range: the application must round down the start of the range to the nearest multiple
of VkPhysicalDeviceLimits::nonCoherentAtomSize, and round the end of the range up to the nearest
multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize.

While a range of device memory is host mapped, the application is responsible for synchronizing
both device and host access to that memory range.

Note

It is important for the application developer to become meticulously familiar with
all of the mechanisms described in the chapter on Synchronization and Cache
Control as they are crucial to maintaining memory access ordering.

Calling vkMapMemory is equivalent to calling vkMapMemory2KHR with an empty pNext chain.

Valid Usage

• VUID-vkMapMemory-memory-00678
memory must not be currently host mapped

• VUID-vkMapMemory-offset-00679
offset must be less than the size of memory

• VUID-vkMapMemory-size-00680
If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-vkMapMemory-size-00681
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of the
memory minus offset

• VUID-vkMapMemory-memory-00682
memory must have been created with a memory type that reports
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

959

• VUID-vkMapMemory-memory-00683
memory must not have been allocated with multiple instances

• VUID-vkMapMemory-flags-09568
VK_MEMORY_MAP_PLACED_BIT_EXT must not be set in flags

Valid Usage (Implicit)

• VUID-vkMapMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkMapMemory-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkMapMemory-flags-parameter
flags must be a valid combination of VkMemoryMapFlagBits values

• VUID-vkMapMemory-ppData-parameter
ppData must be a valid pointer to a pointer value

• VUID-vkMapMemory-memory-parent
memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_MEMORY_MAP_FAILED

Bits which can be set in vkMapMemory::flags and VkMemoryMapInfoKHR::flags, specifying
additional properties of a memory map, are:

// Provided by VK_VERSION_1_0
typedef enum VkMemoryMapFlagBits {
 // Provided by VK_EXT_map_memory_placed
 VK_MEMORY_MAP_PLACED_BIT_EXT = 0x00000001,
} VkMemoryMapFlagBits;

960

• VK_MEMORY_MAP_PLACED_BIT_EXT requests that the implementation place the memory map at the
virtual address specified by the client via VkMemoryMapPlacedInfoEXT::pPlacedAddress,
replacing any existing mapping at that address. This flag must not be used with vkMapMemory
as there is no way to specify the placement address.

// Provided by VK_VERSION_1_0
typedef VkFlags VkMemoryMapFlags;

VkMemoryMapFlags is a bitmask type for setting a mask of zero or more VkMemoryMapFlagBits.

Alternatively, to retrieve a host virtual address pointer to a region of a mappable memory object,
call:

// Provided by VK_KHR_map_memory2
VkResult vkMapMemory2KHR(
 VkDevice device,
 const VkMemoryMapInfoKHR* pMemoryMapInfo,
 void** ppData);

• device is the logical device that owns the memory.

• pMemoryMapInfo is a pointer to a VkMemoryMapInfoKHR structure describing parameters of the
map.

• ppData is a pointer to a void * variable in which is returned a host-accessible pointer to the
beginning of the mapped range. This pointer minus VkMemoryMapInfoKHR::offset must be
aligned to at least VkPhysicalDeviceLimits::minMemoryMapAlignment.

This function behaves identically to vkMapMemory except that it gets its parameters via an
extensible structure pointer rather than directly as function arguments.

Valid Usage (Implicit)

• VUID-vkMapMemory2KHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkMapMemory2KHR-pMemoryMapInfo-parameter
pMemoryMapInfo must be a valid pointer to a valid VkMemoryMapInfoKHR structure

• VUID-vkMapMemory2KHR-ppData-parameter
ppData must be a valid pointer to a pointer value

Return Codes

Success

• VK_SUCCESS

961

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_MEMORY_MAP_FAILED

The VkMemoryMapInfoKHR structure is defined as:

// Provided by VK_KHR_map_memory2
typedef struct VkMemoryMapInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkMemoryMapFlags flags;
 VkDeviceMemory memory;
 VkDeviceSize offset;
 VkDeviceSize size;
} VkMemoryMapInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkMemoryMapFlagBits specifying additional parameters of the memory
map operation.

• memory is the VkDeviceMemory object to be mapped.

• offset is a zero-based byte offset from the beginning of the memory object.

• size is the size of the memory range to map, or VK_WHOLE_SIZE to map from offset to the end of
the allocation.

Valid Usage

• VUID-VkMemoryMapInfoKHR-memory-07958
memory must not be currently host mapped

• VUID-VkMemoryMapInfoKHR-offset-07959
offset must be less than the size of memory

• VUID-VkMemoryMapInfoKHR-size-07960
If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-VkMemoryMapInfoKHR-size-07961
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of the
memory minus offset

• VUID-VkMemoryMapInfoKHR-memory-07962
memory must have been created with a memory type that reports
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

• VUID-VkMemoryMapInfoKHR-memory-07963
memory must not have been allocated with multiple instances

962

• VUID-VkMemoryMapInfoKHR-flags-09569
If VK_MEMORY_MAP_PLACED_BIT_EXT is set in flags, the memoryMapPlaced feature must be
enabled

• VUID-VkMemoryMapInfoKHR-flags-09570
If VK_MEMORY_MAP_PLACED_BIT_EXT is set in flags, the pNext chain must include a
VkMemoryMapPlacedInfoEXT structure and VkMemoryMapPlacedInfoEXT::pPlacedAddress
must not be NULL

• VUID-VkMemoryMapInfoKHR-flags-09571
If VK_MEMORY_MAP_PLACED_BIT_EXT is set in flags and the memoryMapRangePlaced feature is not
enabled, offset must be zero

• VUID-VkMemoryMapInfoKHR-flags-09572
If VK_MEMORY_MAP_PLACED_BIT_EXT is set in flags and the memoryMapRangePlaced feature is not
enabled, size must be VK_WHOLE_SIZE

• VUID-VkMemoryMapInfoKHR-flags-09573
If VK_MEMORY_MAP_PLACED_BIT_EXT is set in flags and the memoryMapRangePlaced feature is
enabled, offset must be aligned to an integer multiple of
VkPhysicalDeviceMapMemoryPlacedPropertiesEXT::minPlacedMemoryMapAlignment

• VUID-VkMemoryMapInfoKHR-flags-09574
If VK_MEMORY_MAP_PLACED_BIT_EXT is set in flags and the memoryMapRangePlaced feature is
enabled, size must be VK_WHOLE_SIZE or be aligned to an integer multiple of
VkPhysicalDeviceMapMemoryPlacedPropertiesEXT::minPlacedMemoryMapAlignment

• VUID-VkMemoryMapInfoKHR-flags-09575
If VK_MEMORY_MAP_PLACED_BIT_EXT is set in flags, the memory object must not have been
imported from a handle type of VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT
or VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT

Valid Usage (Implicit)

• VUID-VkMemoryMapInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_MAP_INFO_KHR

• VUID-VkMemoryMapInfoKHR-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkMemoryMapPlacedInfoEXT

• VUID-VkMemoryMapInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkMemoryMapInfoKHR-flags-parameter
flags must be a valid combination of VkMemoryMapFlagBits values

• VUID-VkMemoryMapInfoKHR-memory-parameter
memory must be a valid VkDeviceMemory handle

Host Synchronization

• Host access to memory must be externally synchronized

963

If VK_MEMORY_MAP_PLACED_BIT_EXT is set in VkMemoryMapInfoKHR::flags and the pNext chain of
VkMemoryMapInfoKHR includes a VkMemoryMapPlacedInfoEXT structure, then that structure specifies
the placement address of the memory map. The implementation will place the memory map at the
specified address, replacing any existing maps in the specified memory range. Replacing memory
maps in this way does not implicitly unmap Vulkan memory objects. Instead, the client must
ensure no other Vulkan memory objects are mapped anywhere in the specified virtual address
range. If successful, ppData will be set to the same value as VkMemoryMapPlacedInfoEXT::pPlacedAddress
and vkMapMemory2KHR will return VK_SUCCESS. If it cannot place the map at the requested address for
any reason, the memory object is left unmapped and vkMapMemory2KHR will return
VK_ERROR_MEMORY_MAP_FAILED.

The VkMemoryMapPlacedInfoEXT structure is defined as:

// Provided by VK_EXT_map_memory_placed
typedef struct VkMemoryMapPlacedInfoEXT {
 VkStructureType sType;
 const void* pNext;
 void* pPlacedAddress;
} VkMemoryMapPlacedInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pPlacedAddress is the virtual address at which to place the address. If VkMemoryMapInfoKHR::flags
does not contain VK_MEMORY_MAP_PLACED_BIT_EXT, this value is ignored.

Valid Usage

• VUID-VkMemoryMapPlacedInfoEXT-flags-09576
If VkMemoryMapInfoKHR::flags contains VK_MEMORY_MAP_PLACED_BIT_EXT, pPlacedAddress must
not be NULL

• VUID-VkMemoryMapPlacedInfoEXT-pPlacedAddress-09577
pPlacedAddress must be aligned to an integer multiple of
VkPhysicalDeviceMapMemoryPlacedPropertiesEXT::minPlacedMemoryMapAlignment

• VUID-VkMemoryMapPlacedInfoEXT-pPlacedAddress-09578
The address range specified by pPlacedAddress and VkMemoryMapInfoKHR::size must not
overlap any existing Vulkan memory object mapping.

Valid Usage (Implicit)

• VUID-VkMemoryMapPlacedInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_MAP_PLACED_INFO_EXT

Two commands are provided to enable applications to work with non-coherent memory
allocations: vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges.

964

Note

If the memory object was created with the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
set, vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are
unnecessary and may have a performance cost. However, availability and
visibility operations still need to be managed on the device. See the description of
host access types for more information.

Note

While memory objects imported from a handle type of
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT are
inherently mapped to host address space, they are not considered to be host
mapped device memory unless they are explicitly host mapped using
vkMapMemory. That means flushing or invalidating host caches with respect to
host accesses performed on such memory through the original host pointer
specified at import time is the responsibility of the application and must be
performed with appropriate synchronization primitives provided by the platform
which are outside the scope of Vulkan. vkFlushMappedMemoryRanges and
vkInvalidateMappedMemoryRanges, however, can still be used on such memory
objects to synchronize host accesses performed through the host pointer of the
host mapped device memory range returned by vkMapMemory.

After a successful call to vkMapMemory or vkMapMemory2KHR the memory object memory is considered to
be currently host mapped.

To flush ranges of non-coherent memory from the host caches, call:

// Provided by VK_VERSION_1_0
VkResult vkFlushMappedMemoryRanges(
 VkDevice device,
 uint32_t memoryRangeCount,
 const VkMappedMemoryRange* pMemoryRanges);

• device is the logical device that owns the memory ranges.

• memoryRangeCount is the length of the pMemoryRanges array.

• pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the
memory ranges to flush.

vkFlushMappedMemoryRanges guarantees that host writes to the memory ranges described by
pMemoryRanges are made available to the host memory domain, such that they can be made
available to the device memory domain via memory domain operations using the
VK_ACCESS_HOST_WRITE_BIT access type.

Within each range described by pMemoryRanges, each set of nonCoherentAtomSize bytes in that range is
flushed if any byte in that set has been written by the host since it was first host mapped, or the last
time it was flushed. If pMemoryRanges includes sets of nonCoherentAtomSize bytes where no bytes have

965

been written by the host, those bytes must not be flushed.

Unmapping non-coherent memory does not implicitly flush the host mapped memory, and host
writes that have not been flushed may not ever be visible to the device. However, implementations
must ensure that writes that have not been flushed do not become visible to any other memory.

Note

The above guarantee avoids a potential memory corruption in scenarios where
host writes to a mapped memory object have not been flushed before the memory
is unmapped (or freed), and the virtual address range is subsequently reused for a
different mapping (or memory allocation).

Valid Usage (Implicit)

• VUID-vkFlushMappedMemoryRanges-device-parameter
device must be a valid VkDevice handle

• VUID-vkFlushMappedMemoryRanges-pMemoryRanges-parameter
pMemoryRanges must be a valid pointer to an array of memoryRangeCount valid
VkMappedMemoryRange structures

• VUID-vkFlushMappedMemoryRanges-memoryRangeCount-arraylength
memoryRangeCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To invalidate ranges of non-coherent memory from the host caches, call:

// Provided by VK_VERSION_1_0
VkResult vkInvalidateMappedMemoryRanges(
 VkDevice device,
 uint32_t memoryRangeCount,
 const VkMappedMemoryRange* pMemoryRanges);

• device is the logical device that owns the memory ranges.

• memoryRangeCount is the length of the pMemoryRanges array.

• pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the
memory ranges to invalidate.

966

vkInvalidateMappedMemoryRanges guarantees that device writes to the memory ranges described by
pMemoryRanges, which have been made available to the host memory domain using the
VK_ACCESS_HOST_WRITE_BIT and VK_ACCESS_HOST_READ_BIT access types, are made visible to the host. If
a range of non-coherent memory is written by the host and then invalidated without first being
flushed, its contents are undefined.

Within each range described by pMemoryRanges, each set of nonCoherentAtomSize bytes in that range is
invalidated if any byte in that set has been written by the device since it was first host mapped, or
the last time it was invalidated.

Note

Mapping non-coherent memory does not implicitly invalidate that memory.

Valid Usage (Implicit)

• VUID-vkInvalidateMappedMemoryRanges-device-parameter
device must be a valid VkDevice handle

• VUID-vkInvalidateMappedMemoryRanges-pMemoryRanges-parameter
pMemoryRanges must be a valid pointer to an array of memoryRangeCount valid
VkMappedMemoryRange structures

• VUID-vkInvalidateMappedMemoryRanges-memoryRangeCount-arraylength
memoryRangeCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkMappedMemoryRange structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMappedMemoryRange {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
 VkDeviceSize offset;
 VkDeviceSize size;
} VkMappedMemoryRange;

• sType is a VkStructureType value identifying this structure.

967

• pNext is NULL or a pointer to a structure extending this structure.

• memory is the memory object to which this range belongs.

• offset is the zero-based byte offset from the beginning of the memory object.

• size is either the size of range, or VK_WHOLE_SIZE to affect the range from offset to the end of the
current mapping of the allocation.

Valid Usage

• VUID-VkMappedMemoryRange-memory-00684
memory must be currently host mapped

• VUID-VkMappedMemoryRange-size-00685
If size is not equal to VK_WHOLE_SIZE, offset and size must specify a range contained
within the currently mapped range of memory

• VUID-VkMappedMemoryRange-size-00686
If size is equal to VK_WHOLE_SIZE, offset must be within the currently mapped range of
memory

• VUID-VkMappedMemoryRange-offset-00687
offset must be a multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize

• VUID-VkMappedMemoryRange-size-01389
If size is equal to VK_WHOLE_SIZE, the end of the current mapping of memory must either be a
multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize bytes from the beginning of the
memory object, or be equal to the end of the memory object

• VUID-VkMappedMemoryRange-size-01390
If size is not equal to VK_WHOLE_SIZE, size must either be a multiple of
VkPhysicalDeviceLimits::nonCoherentAtomSize, or offset plus size must equal the size of
memory

Valid Usage (Implicit)

• VUID-VkMappedMemoryRange-sType-sType
sType must be VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE

• VUID-VkMappedMemoryRange-pNext-pNext
pNext must be NULL

• VUID-VkMappedMemoryRange-memory-parameter
memory must be a valid VkDeviceMemory handle

To unmap a memory object once host access to it is no longer needed by the application, call:

// Provided by VK_VERSION_1_0
void vkUnmapMemory(
 VkDevice device,

968

 VkDeviceMemory memory);

• device is the logical device that owns the memory.

• memory is the memory object to be unmapped.

Calling vkUnmapMemory is equivalent to calling vkUnmapMemory2KHR with an empty pNext chain
and the flags parameter set to zero.

Valid Usage

• VUID-vkUnmapMemory-memory-00689
memory must be currently host mapped

Valid Usage (Implicit)

• VUID-vkUnmapMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkUnmapMemory-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkUnmapMemory-memory-parent
memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

Alternatively, to unmap a memory object once host access to it is no longer needed by the
application, call:

// Provided by VK_KHR_map_memory2
VkResult vkUnmapMemory2KHR(
 VkDevice device,
 const VkMemoryUnmapInfoKHR* pMemoryUnmapInfo);

• device is the logical device that owns the memory.

• pMemoryUnmapInfo is a pointer to a VkMemoryUnmapInfoKHR structure describing parameters of
the unmap.

This function behaves identically to vkUnmapMemory except that it gets its parameters via an
extensible structure pointer rather than directly as function arguments.

969

Valid Usage (Implicit)

• VUID-vkUnmapMemory2KHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkUnmapMemory2KHR-pMemoryUnmapInfo-parameter
pMemoryUnmapInfo must be a valid pointer to a valid VkMemoryUnmapInfoKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_MEMORY_MAP_FAILED

The VkMemoryUnmapInfoKHR structure is defined as:

// Provided by VK_KHR_map_memory2
typedef struct VkMemoryUnmapInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkMemoryUnmapFlagsKHR flags;
 VkDeviceMemory memory;
} VkMemoryUnmapInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkMemoryUnmapFlagBitsKHR specifying additional parameters of the
memory map operation.

• memory is the VkDeviceMemory object to be unmapped.

Valid Usage

• VUID-VkMemoryUnmapInfoKHR-memory-07964
memory must be currently host mapped

• VUID-VkMemoryUnmapInfoKHR-flags-09579
If VK_MEMORY_UNMAP_RESERVE_BIT_EXT is set in flags, the memoryUnmapReserve must be enabled

• VUID-VkMemoryUnmapInfoKHR-flags-09580
If VK_MEMORY_UNMAP_RESERVE_BIT_EXT is set in flags, the memory object must not have been
imported from a handle type of VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT
or VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT

970

Valid Usage (Implicit)

• VUID-VkMemoryUnmapInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_UNMAP_INFO_KHR

• VUID-VkMemoryUnmapInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkMemoryUnmapInfoKHR-flags-parameter
flags must be a valid combination of VkMemoryUnmapFlagBitsKHR values

• VUID-VkMemoryUnmapInfoKHR-memory-parameter
memory must be a valid VkDeviceMemory handle

Host Synchronization

• Host access to memory must be externally synchronized

Bits which can be set in VkMemoryUnmapInfoKHR::flags, specifying additional properties of a
memory unmap, are:

// Provided by VK_KHR_map_memory2
typedef enum VkMemoryUnmapFlagBitsKHR {
 // Provided by VK_EXT_map_memory_placed
 VK_MEMORY_UNMAP_RESERVE_BIT_EXT = 0x00000001,
} VkMemoryUnmapFlagBitsKHR;

• VK_MEMORY_UNMAP_RESERVE_BIT_EXT requests that virtual address range currently occupied by the
memory map remain reserved after the vkUnmapMemory2KHR call completes. Future system
memory map operations or calls to vkMapMemory or vkMapMemory2KHR will not return
addresses in that range unless the range has since been unreserved by the client or the mapping
is explicitly placed in that range by calling vkMapMemory2KHR with
VK_MEMORY_MAP_PLACED_BIT_EXT, or doing the system memory map equivalent. When
VK_MEMORY_UNMAP_RESERVE_BIT_EXT is set, the memory unmap operation may fail, in which case
the memory object will remain host mapped and vkUnmapMemory2KHR will return
VK_ERROR_MEMORY_MAP_FAILED.

// Provided by VK_KHR_map_memory2
typedef VkFlags VkMemoryUnmapFlagsKHR;

VkMemoryUnmapFlagsKHR is a bitmask type for setting a mask of zero or more
VkMemoryUnmapFlagBitsKHR.

11.2.16. Lazily Allocated Memory

If the memory object is allocated from a heap with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit

971

set, that object’s backing memory may be provided by the implementation lazily. The actual
committed size of the memory may initially be as small as zero (or as large as the requested size),
and monotonically increases as additional memory is needed.

A memory type with this flag set is only allowed to be bound to a VkImage whose usage flags include
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT.

Note

Using lazily allocated memory objects for framebuffer attachments that are not
needed once a render pass instance has completed may allow some
implementations to never allocate memory for such attachments.

To determine the amount of lazily-allocated memory that is currently committed for a memory
object, call:

// Provided by VK_VERSION_1_0
void vkGetDeviceMemoryCommitment(
 VkDevice device,
 VkDeviceMemory memory,
 VkDeviceSize* pCommittedMemoryInBytes);

• device is the logical device that owns the memory.

• memory is the memory object being queried.

• pCommittedMemoryInBytes is a pointer to a VkDeviceSize value in which the number of bytes
currently committed is returned, on success.

The implementation may update the commitment at any time, and the value returned by this query
may be out of date.

The implementation guarantees to allocate any committed memory from the heapIndex indicated by
the memory type that the memory object was created with.

Valid Usage

• VUID-vkGetDeviceMemoryCommitment-memory-00690
memory must have been created with a memory type that reports
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

Valid Usage (Implicit)

• VUID-vkGetDeviceMemoryCommitment-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceMemoryCommitment-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkGetDeviceMemoryCommitment-pCommittedMemoryInBytes-parameter

972

pCommittedMemoryInBytes must be a valid pointer to a VkDeviceSize value

• VUID-vkGetDeviceMemoryCommitment-memory-parent
memory must have been created, allocated, or retrieved from device

11.2.17. Protected Memory

Protected memory divides device memory into protected device memory and unprotected device
memory.

Protected memory adds the following concepts:

• Memory:

◦ Unprotected device memory, which can be visible to the device and can be visible to the
host

◦ Protected device memory, which can be visible to the device but must not be visible to the
host

• Resources:

◦ Unprotected images and unprotected buffers, to which unprotected memory can be bound

◦ Protected images and protected buffers, to which protected memory can be bound

• Command buffers:

◦ Unprotected command buffers, which can be submitted to a device queue to execute
unprotected queue operations

◦ Protected command buffers, which can be submitted to a protected-capable device queue to
execute protected queue operations

• Device queues:

◦ Unprotected device queues, to which unprotected command buffers can be submitted

◦ Protected-capable device queues, to which unprotected command buffers or protected
command buffers can be submitted

• Queue submissions

◦ Unprotected queue submissions, through which unprotected command buffers can be
submitted

◦ Protected queue submissions, through which protected command buffers can be submitted

• Queue operations

◦ Unprotected queue operations

◦ Protected queue operations

Note

When the protectedMemory feature is enabled, all pipelines may be recorded in
either protected or unprotected command buffers (or both), which may incur an
extra cost on some implementations. This can be mitigated by enabling the

973

pipelineProtectedAccess feature, in which case pipelines created with
VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT may only be recorded in
protected command buffers, and pipelines created with
VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT may only be recorded in
unprotected command buffers.

Protected Memory Access Rules

If VkPhysicalDeviceProtectedMemoryProperties::protectedNoFault is VK_FALSE, applications must
not perform any of the following operations:

• Write to unprotected memory within protected queue operations.

• Access protected memory within protected queue operations other than in framebuffer-space
pipeline stages, the compute shader stage, or the transfer stage.

• Perform a query within protected queue operations.

If VkPhysicalDeviceProtectedMemoryProperties::protectedNoFault is VK_TRUE, these operations are
valid, but reads will return undefined values, and writes will either be dropped or store undefined
values.

Additionally, indirect operations must not be performed within protected queue operations.

Whether these operations are valid or not, or if any other invalid usage is performed, the
implementation must guarantee that:

• Protected device memory must never be visible to the host.

• Values written to unprotected device memory must not be a function of values from protected
memory.

11.2.18. External Memory Handle Types

Android Hardware Buffer

Android’s NDK defines AHardwareBuffer objects, which represent device memory that is shareable
across processes and that can be accessed by a variety of media APIs and the hardware used to
implement them. These Android hardware buffer objects may be imported into VkDeviceMemory
objects for access via Vulkan, or exported from Vulkan. An VkImage or VkBuffer can be bound to
the imported or exported VkDeviceMemory object if it is created with
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID.

To remove an unnecessary compile time dependency, an incomplete type definition of
AHardwareBuffer is provided in the Vulkan headers:

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
struct AHardwareBuffer;

The actual AHardwareBuffer type is defined in Android NDK headers.

974

Note

The NDK format, usage, and size/dimensions of an AHardwareBuffer object can be
obtained with the AHardwareBuffer_describe function. While Android hardware
buffers can be imported to or exported from Vulkan without using that function,
valid usage and implementation behavior is defined in terms of the
AHardwareBuffer_Desc properties it returns.

Android hardware buffer objects are reference-counted using Android NDK functions outside of
the scope of this specification. A VkDeviceMemory imported from an Android hardware buffer or
that can be exported to an Android hardware buffer must acquire a reference to its
AHardwareBuffer object, and must release this reference when the device memory is freed. During
the host execution of a Vulkan command that has an Android hardware buffer as a parameter
(including indirect parameters via pNext chains), the application must not decrement the Android
hardware buffer’s reference count to zero.

Android hardware buffers can be mapped and unmapped for CPU access using the NDK functions.
These lock and unlock APIs are considered to acquire and release ownership of the Android
hardware buffer, and applications must follow the rules described in External Resource Sharing to
transfer ownership between the Vulkan instance and these native APIs.

Android hardware buffers can be shared with external APIs and Vulkan instances on the same
device, and also with foreign devices. When transferring ownership of the Android hardware
buffer, the external and foreign special queue families described in Queue Family Ownership
Transfer are not identical. All APIs which produce or consume Android hardware buffers are
considered to use foreign devices, except OpenGL ES contexts and Vulkan logical devices that have
matching device and driver UUIDs. Implementations may treat a transfer to or from the foreign
queue family as if it were a transfer to or from the external queue family when the Android
hardware buffer’s usage only permits it to be used on the same physical device.

Android Hardware Buffer Optimal Usages

Vulkan buffer and image usage flags do not correspond exactly to Android hardware buffer usage
flags. When allocating Android hardware buffers with non-Vulkan APIs, if any
AHARDWAREBUFFER_USAGE_GPU_* usage bits are included, by default the allocator must allocate the
memory in such a way that it supports Vulkan usages and creation flags in the usage equivalence
table which do not have Android hardware buffer equivalents.

An VkAndroidHardwareBufferUsageANDROID structure can be included in the pNext chain of a
VkImageFormatProperties2 structure passed to vkGetPhysicalDeviceImageFormatProperties2 to
obtain optimal Android hardware buffer usage flags for specific Vulkan resource creation
parameters. Some usage flags returned by these commands are required based on the input
parameters, but additional vendor-specific usage flags (AHARDWAREBUFFER_USAGE_VENDOR_*) may also
be returned. Any Android hardware buffer allocated with these vendor-specific usage flags and
imported to Vulkan must only be bound to resources created with parameters that are a subset of
the parameters used to obtain the Android hardware buffer usage, since the memory may have
been allocated in a way incompatible with other parameters. If an Android hardware buffer is
successfully allocated with additional non-vendor-specific usage flags in addition to the
recommended usage, it must support being used in the same ways as an Android hardware buffer

975

allocated with only the recommended usage, and also in ways indicated by the additional usage.

Android Hardware Buffer External Formats

Android hardware buffers may represent images using implementation-specific formats, layouts,
color models, etc., which do not have Vulkan equivalents. Such external formats are commonly used
by external image sources such as video decoders or cameras. Vulkan can import Android
hardware buffers that have external formats, but since the image contents are in an
undiscoverable and possibly proprietary representation, images with external formats must only
be used as resolve images or sampled images, and must have optimal tiling. Images with external
formats must only be sampled with a sampler that has Y′CBCR conversion enabled.

Images that will be backed by an Android hardware buffer can use an external format by setting
VkImageCreateInfo::format to VK_FORMAT_UNDEFINED and including a VkExternalFormatANDROID
structure in the pNext chain. Images can be created with an external format even if the Android
hardware buffer has a format which has an equivalent Vulkan format to enable consistent
handling of images from sources that might use either category of format. However, all images
created with an external format are subject to the valid usage requirements associated with
external formats, even if the Android hardware buffer’s format has a Vulkan equivalent. The
external format of an Android hardware buffer can be obtained by passing a
VkAndroidHardwareBufferFormatPropertiesANDROID structure to
vkGetAndroidHardwareBufferPropertiesANDROID.

Android Hardware Buffer Image Resources

Android hardware buffers have intrinsic width, height, format, and usage properties, so Vulkan
images bound to memory imported from an Android hardware buffer must use dedicated
allocations: VkMemoryDedicatedRequirements::requiresDedicatedAllocation must be VK_TRUE for
images created with VkExternalMemoryImageCreateInfo::handleTypes that includes
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID. When creating an image that
will be bound to an imported Android hardware buffer, the image creation parameters must be
equivalent to the AHardwareBuffer properties as described by the valid usage of
VkMemoryAllocateInfo. Similarly, device memory allocated for a dedicated image must not be
exported to an Android hardware buffer until it has been bound to that image, and the
implementation must return an Android hardware buffer with properties derived from the image:

• The width and height members of AHardwareBuffer_Desc must be the same as the width and
height members of VkImageCreateInfo::extent, respectively.

• The layers member of AHardwareBuffer_Desc must be the same as the arrayLayers member of
VkImageCreateInfo.

• The format member of AHardwareBuffer_Desc must be equivalent to VkImageCreateInfo::format
as defined by AHardwareBuffer Format Equivalence.

• The usage member of AHardwareBuffer_Desc must include bits corresponding to bits included in
VkImageCreateInfo::usage and VkImageCreateInfo::flags where such a correspondence exists
according to AHardwareBuffer Usage Equivalence. It may also include additional usage bits,
including vendor-specific usages. Presence of vendor usage bits may make the Android
hardware buffer only usable in ways indicated by the image creation parameters, even when
used outside Vulkan, in a similar way that allocating the Android hardware buffer with usage

976

returned in VkAndroidHardwareBufferUsageANDROID does.

Implementations may support fewer combinations of image creation parameters for images with
Android hardware buffer external handle type than for non-external images. Support for a given
set of parameters can be determined by passing VkExternalImageFormatProperties to
vkGetPhysicalDeviceImageFormatProperties2 with handleType set to
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID. Any Android hardware
buffer successfully allocated outside Vulkan with usage that includes AHARDWAREBUFFER_USAGE_GPU_*
must be supported when using equivalent Vulkan image parameters. If a given choice of image
parameters are supported for import, they can also be used to create an image and memory that
will be exported to an Android hardware buffer.

Table 13. AHardwareBuffer Format Equivalence

AHardwareBuffer Format Vulkan Format

AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM VK_FORMAT_R8G8B8A8_UNORM

AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM 1 VK_FORMAT_R8G8B8A8_UNORM

AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM VK_FORMAT_R8G8B8_UNORM

AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM VK_FORMAT_R5G6B5_UNORM_PACK16

AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT VK_FORMAT_R16G16B16A16_SFLOAT

AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM VK_FORMAT_A2B10G10R10_UNORM_PACK32

AHARDWAREBUFFER_FORMAT_D16_UNORM VK_FORMAT_D16_UNORM

AHARDWAREBUFFER_FORMAT_D24_UNORM VK_FORMAT_X8_D24_UNORM_PACK32

AHARDWAREBUFFER_FORMAT_D24_UNORM_S8_UINT VK_FORMAT_D24_UNORM_S8_UINT

AHARDWAREBUFFER_FORMAT_D32_FLOAT VK_FORMAT_D32_SFLOAT

AHARDWAREBUFFER_FORMAT_D32_FLOAT_S8_UINT VK_FORMAT_D32_SFLOAT_S8_UINT

AHARDWAREBUFFER_FORMAT_S8_UINT VK_FORMAT_S8_UINT

Table 14. AHardwareBuffer Usage Equivalence

AHardwareBuffer Usage Vulkan Usage or Creation Flag

None VK_IMAGE_USAGE_TRANSFER_SRC_BIT

None VK_IMAGE_USAGE_TRANSFER_DST_BIT

AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE VK_IMAGE_USAGE_SAMPLED_BIT

AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER 3 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER 3 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE None 2

AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT VK_IMAGE_CREATE_PROTECTED_BIT

None VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

None VK_IMAGE_CREATE_EXTENDED_USAGE_BIT

AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER 4 VK_IMAGE_USAGE_STORAGE_BIT

977

1

Vulkan does not differentiate between AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM and
AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM: they both behave as VK_FORMAT_R8G8B8A8_UNORM. After an
external entity writes to a AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM Android hardware buffer, the
values read by Vulkan from the X/A component are undefined. To emulate the traditional
behavior of the X component during sampling or blending, applications should use
VK_COMPONENT_SWIZZLE_ONE in image view component mappings and VK_BLEND_FACTOR_ONE in color
blend factors. There is no way to avoid copying these undefined values when copying from such
an image to another image or buffer.

2

The AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE flag does not correspond to a Vulkan image
usage or creation flag. Instead, its presence indicates that the Android hardware buffer contains
a complete mipmap chain, and its absence indicates that the Android hardware buffer contains
only a single mip level.

3

Only image usages valid for the format are valid. It would be invalid to take a Android Hardware
Buffer with a format of AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM that has a
AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER usage and try to create an image with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT.

4

In combination with a hardware buffer format other than BLOB.

Note

When using VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT with Android hardware buffer
images, applications should use VkImageFormatListCreateInfo to inform the
implementation which view formats will be used with the image. For some
common sets of format, this allows some implementations to provide significantly
better performance when accessing the image via Vulkan.

Android Hardware Buffer Buffer Resources

Android hardware buffers with a format of AHARDWAREBUFFER_FORMAT_BLOB and usage that includes
AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER can be used as the backing store for VkBuffer objects. Such
Android hardware buffers have a size in bytes specified by their width; height and layers are both 1.

Unlike images, buffer resources backed by Android hardware buffers do not require dedicated
allocations.

Exported AHardwareBuffer objects that do not have dedicated images must have a format of
AHARDWAREBUFFER_FORMAT_BLOB, usage must include AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER, width
must equal the device memory allocation size, and height and layers must be 1.

QNX Screen Buffer

The QNX SDP defines _screen_buffer objects, which represent a buffer that the QNX Screen graphics

978

subsystem can use directly in its windowing system APIs. More specifically, a Screen buffer is an
area of memory that stores pixel data. It can be attached to Screen windows, streams, or pixmaps.
These QNX Screen buffer objects may be imported into VkDeviceMemory objects for access via
Vulkan. An VkImage or VkBuffer can be bound to the imported VkDeviceMemory object if it is
created with VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX.

struct _screen_buffer is strongly typed, so naming the handle type is redundant. The internal layout
and therefore size of a struct _screen_buffer image may depend on native usage flags that do not
have corresponding Vulkan counterparts.

QNX Screen Buffer Validity

The design of Screen in the QNX SDP makes it difficult to determine the validity of objects from
outside of Screen. Therefore, applications must ensure that QNX Screen buffer objects provided
used in various Vulkan interfaces are ones created explicitly with QNX Screen APIs. See QNX SDP
documentation for more information.

A VkDeviceMemory imported from a QNX Screen buffer has no way to acquire a reference to its
_screen_buffer object. Therefore, during the host execution of a Vulkan command that has a QNX
Screen buffer as a parameter (including indirect parameters via pNext chains), the application must
ensure that the QNX Screen buffer resource remains valid.

Generally, for a _screen_buffer object to be valid for use within a Vulkan implementation, the
buffer object should have a _screen_buffer::SCREEN_PROPERTY_USAGE that includes at least one of:
SCREEN_USAGE_VULKAN, SCREEN_USAGE_OPENGL_ES2, SCREEN_USAGE_OPENGL_ES3, or SCREEN_USAGE_NATIVE. The
exact Screen-native usage flags required depends on the Vulkan implementation, and QNX Screen
itself will not necessarily enforce these requirements. Note that Screen-native usage flags are in no
way related to usage flags in the Vulkan specification.

QNX Screen Buffer External Formats

QNX Screen buffers may represent images using implementation-specific formats, layouts, color
models, etc., which do not have Vulkan equivalents. Such external formats are commonly used by
external image sources such as video decoders or cameras. Vulkan can import QNX Screen buffers
that have external formats, but since the image contents are in an undiscoverable and possibly
proprietary representation, images with external formats must only be used as sampled images,
must only be sampled with a sampler that has Y′CBCR conversion enabled, and must have optimal
tiling.

Images that will be backed by a QNX Screen buffer can use an external format by setting
VkImageCreateInfo::format to VK_FORMAT_UNDEFINED and including a VkExternalFormatQNX structure
in the pNext chain. Images can be created with an external format even if the QNX Screen buffer
has a format which has an equivalent Vulkan format to enable consistent handling of images from
sources that might use either category of format. The external format of a QNX Screen buffer can
be obtained by passing a VkScreenBufferFormatPropertiesQNX structure to
vkGetScreenBufferPropertiesQNX.

QNX Screen Buffer Image Resources

QNX Screen buffers have intrinsic width, height, format, and usage properties, so Vulkan images

979

bound to memory imported from a QNX Screen buffer must use dedicated allocations:
VkMemoryDedicatedRequirements::requiresDedicatedAllocation must be VK_TRUE for images created
with VkExternalMemoryImageCreateInfo::handleTypes that includes
VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX. When creating an image that will be bound
to an imported QNX Screen buffer, the image creation parameters must be equivalent to the
_screen_buffer properties as described by the valid usage of VkMemoryAllocateInfo.

Table 15. QNX Screen Buffer Format Equivalence

QNX Screen Format Vulkan Format

SCREEN_FORMAT_RGBA8888 VK_FORMAT_B8G8R8A8_UNORM

SCREEN_FORMAT_RGBX8888 1 VK_FORMAT_B8G8R8A8_UNORM

SCREEN_FORMAT_BGRA8888 VK_FORMAT_R8G8B8A8_UNORM

SCREEN_FORMAT_BGRX8888 1 VK_FORMAT_R8G8B8A8_UNORM

SCREEN_FORMAT_RGBA1010102 VK_FORMAT_A2R10G10B10_UNORM_PACK32

SCREEN_FORMAT_RGBX1010102 1 VK_FORMAT_A2R10G10B10_UNORM_PACK32

SCREEN_FORMAT_BGRA1010102 VK_FORMAT_A2B10G10R10_UNORM_PACK32

SCREEN_FORMAT_BGRX1010102 1 VK_FORMAT_A2B10G10R10_UNORM_PACK32

SCREEN_FORMAT_RGBA5551 VK_FORMAT_A1R5G5B5_UNORM_PACK16

SCREEN_FORMAT_RGBX5551 1 VK_FORMAT_A1R5G5B5_UNORM_PACK16

SCREEN_FORMAT_RGB565 VK_FORMAT_R5G6B5_UNORM_PACK16

SCREEN_FORMAT_RGB888 VK_FORMAT_R8G8B8_UNORM

1

Vulkan does not differentiate between SCREEN_FORMAT_RGBA8888 and SCREEN_FORMAT_RGBX8888: they
both behave as VK_FORMAT_R8G8B8A8_UNORM. After an external entity writes to a
SCREEN_FORMAT_RGBX8888 QNX Screen buffer, the values read by Vulkan from the X/A component
are undefined. To emulate the traditional behavior of the X component during sampling or
blending, applications should use VK_COMPONENT_SWIZZLE_ONE in image view component mappings
and VK_BLEND_FACTOR_ONE in color blend factors. There is no way to avoid copying these undefined
values when copying from such an image to another image or buffer. The same behavior applies
to the following pairs: SCREEN_FORMAT_BGRA8888 and SCREEN_FORMAT_BGRX8888,
SCREEN_FORMAT_RGBA1010102 and SCREEN_FORMAT_RGBX1010102, SCREEN_FORMAT_BGRA1010102 and
SCREEN_FORMAT_BGRX1010102, SCREEN_FORMAT_RGBA5551 and SCREEN_FORMAT_RGBX5551

11.2.19. Peer Memory Features

Peer memory is memory that is allocated for a given physical device and then bound to a resource
and accessed by a different physical device, in a logical device that represents multiple physical
devices. Some ways of reading and writing peer memory may not be supported by a device.

To determine how peer memory can be accessed, call:

// Provided by VK_VERSION_1_1
void vkGetDeviceGroupPeerMemoryFeatures(

980

 VkDevice device,
 uint32_t heapIndex,
 uint32_t localDeviceIndex,
 uint32_t remoteDeviceIndex,
 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures);

or the equivalent command

// Provided by VK_KHR_device_group
void vkGetDeviceGroupPeerMemoryFeaturesKHR(
 VkDevice device,
 uint32_t heapIndex,
 uint32_t localDeviceIndex,
 uint32_t remoteDeviceIndex,
 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures);

• device is the logical device that owns the memory.

• heapIndex is the index of the memory heap from which the memory is allocated.

• localDeviceIndex is the device index of the physical device that performs the memory access.

• remoteDeviceIndex is the device index of the physical device that the memory is allocated for.

• pPeerMemoryFeatures is a pointer to a VkPeerMemoryFeatureFlags bitmask indicating which
types of memory accesses are supported for the combination of heap, local, and remote devices.

Valid Usage

• VUID-vkGetDeviceGroupPeerMemoryFeatures-heapIndex-00691
heapIndex must be less than memoryHeapCount

• VUID-vkGetDeviceGroupPeerMemoryFeatures-localDeviceIndex-00692
localDeviceIndex must be a valid device index

• VUID-vkGetDeviceGroupPeerMemoryFeatures-remoteDeviceIndex-00693
remoteDeviceIndex must be a valid device index

• VUID-vkGetDeviceGroupPeerMemoryFeatures-localDeviceIndex-00694
localDeviceIndex must not equal remoteDeviceIndex

Valid Usage (Implicit)

• VUID-vkGetDeviceGroupPeerMemoryFeatures-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceGroupPeerMemoryFeatures-pPeerMemoryFeatures-parameter
pPeerMemoryFeatures must be a valid pointer to a VkPeerMemoryFeatureFlags value

Bits which may be set in vkGetDeviceGroupPeerMemoryFeatures::pPeerMemoryFeatures, indicating

981

supported peer memory features, are:

// Provided by VK_VERSION_1_1
typedef enum VkPeerMemoryFeatureFlagBits {
 VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT = 0x00000001,
 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT = 0x00000002,
 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT = 0x00000004,
 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT = 0x00000008,
 // Provided by VK_KHR_device_group
 VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT_KHR = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT,
 // Provided by VK_KHR_device_group
 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT_KHR = VK_PEER_MEMORY_FEATURE_COPY_DST_BIT,
 // Provided by VK_KHR_device_group
 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT_KHR =
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT,
 // Provided by VK_KHR_device_group
 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT_KHR =
VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT,
} VkPeerMemoryFeatureFlagBits;

or the equivalent

// Provided by VK_KHR_device_group
typedef VkPeerMemoryFeatureFlagBits VkPeerMemoryFeatureFlagBitsKHR;

• VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT specifies that the memory can be accessed as the source of
any vkCmdCopy* command.

• VK_PEER_MEMORY_FEATURE_COPY_DST_BIT specifies that the memory can be accessed as the
destination of any vkCmdCopy* command.

• VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT specifies that the memory can be read as any memory
access type.

• VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT specifies that the memory can be written as any
memory access type. Shader atomics are considered to be writes.

Note

The peer memory features of a memory heap also apply to any accesses that may
be performed during image layout transitions.

VK_PEER_MEMORY_FEATURE_COPY_DST_BIT must be supported for all host local heaps and for at least one
device-local memory heap.

If a device does not support a peer memory feature, it is still valid to use a resource that includes
both local and peer memory bindings with the corresponding access type as long as only the local
bindings are actually accessed. For example, an application doing split-frame rendering would use
framebuffer attachments that include both local and peer memory bindings, but would scissor the
rendering to only update local memory.

982

// Provided by VK_VERSION_1_1
typedef VkFlags VkPeerMemoryFeatureFlags;

or the equivalent

// Provided by VK_KHR_device_group
typedef VkPeerMemoryFeatureFlags VkPeerMemoryFeatureFlagsKHR;

VkPeerMemoryFeatureFlags is a bitmask type for setting a mask of zero or more
VkPeerMemoryFeatureFlagBits.

11.2.20. Opaque Capture Address Query

To query a 64-bit opaque capture address value from a memory object, call:

// Provided by VK_VERSION_1_2
uint64_t vkGetDeviceMemoryOpaqueCaptureAddress(
 VkDevice device,
 const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo);

or the equivalent command

// Provided by VK_KHR_buffer_device_address
uint64_t vkGetDeviceMemoryOpaqueCaptureAddressKHR(
 VkDevice device,
 const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo);

• device is the logical device that the memory object was allocated on.

• pInfo is a pointer to a VkDeviceMemoryOpaqueCaptureAddressInfo structure specifying the
memory object to retrieve an address for.

The 64-bit return value is an opaque address representing the start of pInfo->memory.

If the memory object was allocated with a non-zero value of
VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress, the return value must be the
same address.

Note

The expected usage for these opaque addresses is only for trace capture/replay
tools to store these addresses in a trace and subsequently specify them during
replay.

983

Valid Usage

• VUID-vkGetDeviceMemoryOpaqueCaptureAddress-None-03334
The bufferDeviceAddress feature must be enabled

• VUID-vkGetDeviceMemoryOpaqueCaptureAddress-device-03335
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetDeviceMemoryOpaqueCaptureAddress-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceMemoryOpaqueCaptureAddress-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceMemoryOpaqueCaptureAddressInfo
structure

The VkDeviceMemoryOpaqueCaptureAddressInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkDeviceMemoryOpaqueCaptureAddressInfo {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
} VkDeviceMemoryOpaqueCaptureAddressInfo;

or the equivalent

// Provided by VK_KHR_buffer_device_address
typedef VkDeviceMemoryOpaqueCaptureAddressInfo
VkDeviceMemoryOpaqueCaptureAddressInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory specifies the memory whose address is being queried.

Valid Usage

• VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-memory-03336
memory must have been allocated with VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT

984

Valid Usage (Implicit)

• VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO

• VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-pNext-pNext
pNext must be NULL

• VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-memory-parameter
memory must be a valid VkDeviceMemory handle

985

Chapter 12. Resource Creation
Vulkan supports two primary resource types: buffers and images. Resources are views of memory
with associated formatting and dimensionality. Buffers provide access to raw arrays of bytes,
whereas images can be multidimensional and may have associated metadata.

Other resource types, such as acceleration structures and micromaps use buffers as the backing
store for opaque data structures.

12.1. Buffers
Buffers represent linear arrays of data which are used for various purposes by binding them to a
graphics or compute pipeline via descriptor sets or certain commands, or by directly specifying
them as parameters to certain commands.

Buffers are represented by VkBuffer handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBuffer)

To create buffers, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateBuffer(
 VkDevice device,
 const VkBufferCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkBuffer* pBuffer);

• device is the logical device that creates the buffer object.

• pCreateInfo is a pointer to a VkBufferCreateInfo structure containing parameters affecting
creation of the buffer.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pBuffer is a pointer to a VkBuffer handle in which the resulting buffer object is returned.

Valid Usage

• VUID-vkCreateBuffer-flags-00911
If the flags member of pCreateInfo includes VK_BUFFER_CREATE_SPARSE_BINDING_BIT, and the
extendedSparseAddressSpace feature is not enabled, creating this VkBuffer must not cause
the total required sparse memory for all currently valid sparse resources on the device to
exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize

• VUID-vkCreateBuffer-flags-09383
If the flags member of pCreateInfo includes VK_BUFFER_CREATE_SPARSE_BINDING_BIT, the

986

extendedSparseAddressSpace feature is enabled, and the usage member of pCreateInfo
contains bits not in VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV
::extendedSparseBufferUsageFlags, creating this VkBuffer must not cause the total required
sparse memory for all currently valid sparse resources on the device, excluding VkBuffer
created with usage member of pCreateInfo containing bits in
VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV::extendedSparseBufferUsageFlags
and VkImage created with usage member of pCreateInfo containing bits in
VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV::extendedSparseImageUsageFlags,
to exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize

• VUID-vkCreateBuffer-flags-09384
If the flags member of pCreateInfo includes VK_BUFFER_CREATE_SPARSE_BINDING_BIT and the
extendedSparseAddressSpace feature is enabled, creating this VkBuffer must not cause the
total required sparse memory for all currently valid sparse resources on the device to
exceed VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV
::extendedSparseAddressSpaceSize

• VUID-vkCreateBuffer-pNext-06387
If using the VkBuffer for an import operation from a VkBufferCollectionFUCHSIA where a
VkBufferCollectionBufferCreateInfoFUCHSIA has been chained to pNext, pCreateInfo must
match the VkBufferConstraintsInfoFUCHSIA::createInfo used when setting the constraints
on the buffer collection with vkSetBufferCollectionBufferConstraintsFUCHSIA

Valid Usage (Implicit)

• VUID-vkCreateBuffer-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateBuffer-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkBufferCreateInfo structure

• VUID-vkCreateBuffer-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateBuffer-pBuffer-parameter
pBuffer must be a valid pointer to a VkBuffer handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

987

The VkBufferCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkBufferCreateFlags flags;
 VkDeviceSize size;
 VkBufferUsageFlags usage;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
} VkBufferCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkBufferCreateFlagBits specifying additional parameters of the buffer.

• size is the size in bytes of the buffer to be created.

• usage is a bitmask of VkBufferUsageFlagBits specifying allowed usages of the buffer.

• sharingMode is a VkSharingMode value specifying the sharing mode of the buffer when it will be
accessed by multiple queue families.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a pointer to an array of queue families that will access this buffer. It is
ignored if sharingMode is not VK_SHARING_MODE_CONCURRENT.

If a VkBufferUsageFlags2CreateInfoKHR structure is present in the pNext chain,
VkBufferUsageFlags2CreateInfoKHR::usage from that structure is used instead of usage from this
structure.

Valid Usage

• VUID-VkBufferCreateInfo-None-09499
If the pNext chain does not include a VkBufferUsageFlags2CreateInfoKHR structure, usage
must be a valid combination of VkBufferUsageFlagBits values

• VUID-VkBufferCreateInfo-None-09500
If the pNext chain does not include a VkBufferUsageFlags2CreateInfoKHR structure, usage
must not be 0

• VUID-VkBufferCreateInfo-size-00912
size must be greater than 0

• VUID-VkBufferCreateInfo-sharingMode-00913
If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a valid pointer
to an array of queueFamilyIndexCount uint32_t values

• VUID-VkBufferCreateInfo-sharingMode-00914

988

If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than
1

• VUID-VkBufferCreateInfo-sharingMode-01419
If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be
unique and must be less than pQueueFamilyPropertyCount returned by either
vkGetPhysicalDeviceQueueFamilyProperties2 or
vkGetPhysicalDeviceQueueFamilyProperties for the physicalDevice that was used to
create device

• VUID-VkBufferCreateInfo-flags-00915
If the sparseBinding feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_BINDING_BIT

• VUID-VkBufferCreateInfo-flags-00916
If the sparseResidencyBuffer feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkBufferCreateInfo-flags-00917
If the sparseResidencyAliased feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT

• VUID-VkBufferCreateInfo-flags-00918
If flags contains VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT, it must also contain
VK_BUFFER_CREATE_SPARSE_BINDING_BIT

• VUID-VkBufferCreateInfo-pNext-00920
If the pNext chain includes a VkExternalMemoryBufferCreateInfo structure, its
handleTypes member must only contain bits that are also in VkExternalBufferProperties
::externalMemoryProperties.compatibleHandleTypes, as returned by
vkGetPhysicalDeviceExternalBufferProperties with pExternalBufferInfo->handleType
equal to any one of the handle types specified in VkExternalMemoryBufferCreateInfo
::handleTypes

• VUID-VkBufferCreateInfo-flags-01887
If the protectedMemory feature is not enabled, flags must not contain
VK_BUFFER_CREATE_PROTECTED_BIT

• VUID-VkBufferCreateInfo-None-01888
If any of the bits VK_BUFFER_CREATE_SPARSE_BINDING_BIT,
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT, or VK_BUFFER_CREATE_SPARSE_ALIASED_BIT are set,
VK_BUFFER_CREATE_PROTECTED_BIT must not also be set

• VUID-VkBufferCreateInfo-pNext-01571
If the pNext chain includes a VkDedicatedAllocationBufferCreateInfoNV structure, and the
dedicatedAllocation member of the chained structure is VK_TRUE, then flags must not
include VK_BUFFER_CREATE_SPARSE_BINDING_BIT, VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT, or
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT

• VUID-VkBufferCreateInfo-deviceAddress-02604
If VkBufferDeviceAddressCreateInfoEXT::deviceAddress is not zero, flags must include
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

989

• VUID-VkBufferCreateInfo-opaqueCaptureAddress-03337
If VkBufferOpaqueCaptureAddressCreateInfo::opaqueCaptureAddress is not zero, flags
must include VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

• VUID-VkBufferCreateInfo-flags-03338
If flags includes VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, the
bufferDeviceAddressCaptureReplay feature must be enabled

• VUID-VkBufferCreateInfo-usage-04813
If usage includes VK_BUFFER_USAGE_VIDEO_DECODE_SRC_BIT_KHR or
VK_BUFFER_USAGE_VIDEO_DECODE_DST_BIT_KHR, and flags does not include
VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then the pNext chain must include a
VkVideoProfileListInfoKHR structure with profileCount greater than 0 and pProfiles
including at least one VkVideoProfileInfoKHR structure with a videoCodecOperation
member specifying a decode operation

• VUID-VkBufferCreateInfo-usage-04814
If usage includes VK_BUFFER_USAGE_VIDEO_ENCODE_SRC_BIT_KHR or
VK_BUFFER_USAGE_VIDEO_ENCODE_DST_BIT_KHR, and flags does not include
VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then the pNext chain must include a
VkVideoProfileListInfoKHR structure with profileCount greater than 0 and pProfiles
including at least one VkVideoProfileInfoKHR structure with a videoCodecOperation
member specifying an encode operation

• VUID-VkBufferCreateInfo-flags-08325
If flags includes VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then
videoMaintenance1 must be enabled

• VUID-VkBufferCreateInfo-size-06409
size must be less than or equal to VkPhysicalDeviceMaintenance4Properties
::maxBufferSize

• VUID-VkBufferCreateInfo-usage-08097
If usage includes VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT, creating this
VkBuffer must not cause the total required space for all currently valid buffers using this
flag on the device to exceed VkPhysicalDeviceDescriptorBufferPropertiesEXT
::samplerDescriptorBufferAddressSpaceSize or
VkPhysicalDeviceDescriptorBufferPropertiesEXT::descriptorBufferAddressSpaceSize

• VUID-VkBufferCreateInfo-usage-08098
If usage includes VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT, creating this
VkBuffer must not cause the total required space for all currently valid buffers using this
flag on the device to exceed VkPhysicalDeviceDescriptorBufferPropertiesEXT
::resourceDescriptorBufferAddressSpaceSize or
VkPhysicalDeviceDescriptorBufferPropertiesEXT::descriptorBufferAddressSpaceSize

• VUID-VkBufferCreateInfo-flags-08099
If flags includes VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT, the
descriptorBufferCaptureReplay feature must be enabled

• VUID-VkBufferCreateInfo-pNext-08100
If the pNext chain includes a VkOpaqueCaptureDescriptorDataCreateInfoEXT structure,
flags must contain VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

990

• VUID-VkBufferCreateInfo-usage-08101
If usage includes VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT, the
descriptorBufferPushDescriptors feature must be enabled

• VUID-VkBufferCreateInfo-usage-08102
If usage includes VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT
VkPhysicalDeviceDescriptorBufferPropertiesEXT::bufferlessPushDescriptors must be
VK_FALSE

• VUID-VkBufferCreateInfo-usage-08103
If usage includes VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT, usage must
contain at least one of VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT or
VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT

Valid Usage (Implicit)

• VUID-VkBufferCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO

• VUID-VkBufferCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkBufferCollectionBufferCreateInfoFUCHSIA,
VkBufferDeviceAddressCreateInfoEXT, VkBufferOpaqueCaptureAddressCreateInfo,
VkBufferUsageFlags2CreateInfoKHR, VkDedicatedAllocationBufferCreateInfoNV,
VkExternalMemoryBufferCreateInfo, VkOpaqueCaptureDescriptorDataCreateInfoEXT, or
VkVideoProfileListInfoKHR

• VUID-VkBufferCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBufferCreateInfo-flags-parameter
flags must be a valid combination of VkBufferCreateFlagBits values

• VUID-VkBufferCreateInfo-sharingMode-parameter
sharingMode must be a valid VkSharingMode value

The VkBufferUsageFlags2CreateInfoKHR structure is defined as:

// Provided by VK_KHR_maintenance5
typedef struct VkBufferUsageFlags2CreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkBufferUsageFlags2KHR usage;
} VkBufferUsageFlags2CreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• usage is a bitmask of VkBufferUsageFlagBits2KHR specifying allowed usages of the buffer.

991

If this structure is included in the pNext chain of a buffer creation structure, usage is used instead of
the corresponding usage value passed in that creation structure, allowing additional usage flags to
be specified. If this structure is included in the pNext chain of a buffer query structure, the usage
flags of the buffer are returned in usage of this structure, and the usage flags representable in usage
of the buffer query structure are also returned in that field.

Valid Usage (Implicit)

• VUID-VkBufferUsageFlags2CreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR

• VUID-VkBufferUsageFlags2CreateInfoKHR-usage-parameter
usage must be a valid combination of VkBufferUsageFlagBits2KHR values

• VUID-VkBufferUsageFlags2CreateInfoKHR-usage-requiredbitmask
usage must not be 0

Bits which can be set in VkBufferUsageFlags2CreateInfoKHR::usage, specifying usage behavior of a
buffer, are:

// Provided by VK_KHR_maintenance5
// Flag bits for VkBufferUsageFlagBits2KHR
typedef VkFlags64 VkBufferUsageFlagBits2KHR;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_TRANSFER_SRC_BIT_KHR =
0x00000001ULL;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_TRANSFER_DST_BIT_KHR =
0x00000002ULL;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_UNIFORM_TEXEL_BUFFER_BIT_KHR
= 0x00000004ULL;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_STORAGE_TEXEL_BUFFER_BIT_KHR
= 0x00000008ULL;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_UNIFORM_BUFFER_BIT_KHR =
0x00000010ULL;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_STORAGE_BUFFER_BIT_KHR =
0x00000020ULL;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_INDEX_BUFFER_BIT_KHR =
0x00000040ULL;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_VERTEX_BUFFER_BIT_KHR =
0x00000080ULL;
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_INDIRECT_BUFFER_BIT_KHR =
0x00000100ULL;
// Provided by VK_KHR_maintenance5 with VK_AMDX_shader_enqueue
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_EXECUTION_GRAPH_SCRATCH_BIT_AMDX = 0x02000000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_conditional_rendering
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_CONDITIONAL_RENDERING_BIT_EXT
= 0x00000200ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_ray_tracing_pipeline
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_SHADER_BINDING_TABLE_BIT_KHR
= 0x00000400ULL;

992

// Provided by VK_KHR_maintenance5 with VK_NV_ray_tracing
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_RAY_TRACING_BIT_NV =
0x00000400ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_transform_feedback
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT = 0x00000800ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_transform_feedback
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT = 0x00001000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_video_decode_queue
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_VIDEO_DECODE_SRC_BIT_KHR =
0x00002000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_video_decode_queue
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_VIDEO_DECODE_DST_BIT_KHR =
0x00004000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_video_encode_queue
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_VIDEO_ENCODE_DST_BIT_KHR =
0x00008000ULL;
// Provided by VK_KHR_maintenance5 with VK_KHR_video_encode_queue
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_VIDEO_ENCODE_SRC_BIT_KHR =
0x00010000ULL;
// Provided by VK_KHR_maintenance5 with (VK_VERSION_1_2 or
VK_KHR_buffer_device_address) or VK_EXT_buffer_device_address
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_SHADER_DEVICE_ADDRESS_BIT_KHR
= 0x00020000ULL;
// Provided by VK_KHR_acceleration_structure with VK_KHR_maintenance5
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR =
0x00080000ULL;
// Provided by VK_KHR_acceleration_structure with VK_KHR_maintenance5
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR = 0x00100000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_descriptor_buffer
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT = 0x00200000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_descriptor_buffer
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT = 0x00400000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_descriptor_buffer
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT = 0x04000000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_opacity_micromap
static const VkBufferUsageFlagBits2KHR
VK_BUFFER_USAGE_2_MICROMAP_BUILD_INPUT_READ_ONLY_BIT_EXT = 0x00800000ULL;
// Provided by VK_KHR_maintenance5 with VK_EXT_opacity_micromap
static const VkBufferUsageFlagBits2KHR VK_BUFFER_USAGE_2_MICROMAP_STORAGE_BIT_EXT =
0x01000000ULL;

• VK_BUFFER_USAGE_2_TRANSFER_SRC_BIT_KHR specifies that the buffer can be used as the source of a
transfer command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT).

993

• VK_BUFFER_USAGE_2_TRANSFER_DST_BIT_KHR specifies that the buffer can be used as the destination
of a transfer command.

• VK_BUFFER_USAGE_2_UNIFORM_TEXEL_BUFFER_BIT_KHR specifies that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

• VK_BUFFER_USAGE_2_STORAGE_TEXEL_BUFFER_BIT_KHR specifies that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

• VK_BUFFER_USAGE_2_UNIFORM_BUFFER_BIT_KHR specifies that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_2_STORAGE_BUFFER_BIT_KHR specifies that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_2_INDEX_BUFFER_BIT_KHR specifies that the buffer is suitable for passing as the
buffer parameter to vkCmdBindIndexBuffer2KHR and vkCmdBindIndexBuffer.

• VK_BUFFER_USAGE_2_VERTEX_BUFFER_BIT_KHR specifies that the buffer is suitable for passing as an
element of the pBuffers array to vkCmdBindVertexBuffers.

• VK_BUFFER_USAGE_2_INDIRECT_BUFFER_BIT_KHR specifies that the buffer is suitable for passing as the
buffer parameter to vkCmdDrawIndirect, vkCmdDrawIndexedIndirect,
vkCmdDrawMeshTasksIndirectNV, vkCmdDrawMeshTasksIndirectCountNV,
vkCmdDrawMeshTasksIndirectEXT, vkCmdDrawMeshTasksIndirectCountEXT,
vkCmdDrawClusterIndirectHUAWEI, or vkCmdDispatchIndirect. It is also suitable for passing as
the buffer member of VkIndirectCommandsStreamNV, or sequencesCountBuffer or
sequencesIndexBuffer or preprocessedBuffer member of VkGeneratedCommandsInfoNV

• VK_BUFFER_USAGE_2_CONDITIONAL_RENDERING_BIT_EXT specifies that the buffer is suitable for passing
as the buffer parameter to vkCmdBeginConditionalRenderingEXT.

• VK_BUFFER_USAGE_2_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT specifies that the buffer is suitable for
using for binding as a transform feedback buffer with
vkCmdBindTransformFeedbackBuffersEXT.

• VK_BUFFER_USAGE_2_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT specifies that the buffer is
suitable for using as a counter buffer with vkCmdBeginTransformFeedbackEXT and
vkCmdEndTransformFeedbackEXT.

• VK_BUFFER_USAGE_2_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT specifies that the buffer is suitable to
contain sampler and combined image sampler descriptors when bound as a descriptor buffer.
Buffers containing combined image sampler descriptors must also specify
VK_BUFFER_USAGE_2_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT.

• VK_BUFFER_USAGE_2_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT specifies that the buffer is suitable to
contain resource descriptors when bound as a descriptor buffer.

• VK_BUFFER_USAGE_2_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT specifies that the buffer, when
bound, can be used by the implementation to support push descriptors when using descriptor
buffers.

994

• VK_BUFFER_USAGE_2_RAY_TRACING_BIT_NV specifies that the buffer is suitable for use in
vkCmdTraceRaysNV.

• VK_BUFFER_USAGE_2_SHADER_BINDING_TABLE_BIT_KHR specifies that the buffer is suitable for use as a
Shader Binding Table.

• VK_BUFFER_USAGE_2_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR specifies that the
buffer is suitable for use as a read-only input to an acceleration structure build.

• VK_BUFFER_USAGE_2_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR specifies that the buffer is suitable
for storage space for a VkAccelerationStructureKHR.

• VK_BUFFER_USAGE_2_SHADER_DEVICE_ADDRESS_BIT_KHR specifies that the buffer can be used to
retrieve a buffer device address via vkGetBufferDeviceAddress and use that address to access
the buffer’s memory from a shader.

• VK_BUFFER_USAGE_2_VIDEO_DECODE_SRC_BIT_KHR specifies that the buffer can be used as the source
video bitstream buffer in a video decode operation.

• VK_BUFFER_USAGE_2_VIDEO_DECODE_DST_BIT_KHR is reserved for future use.

• VK_BUFFER_USAGE_2_VIDEO_ENCODE_DST_BIT_KHR specifies that the buffer can be used as the
destination video bitstream buffer in a video encode operation.

• VK_BUFFER_USAGE_2_VIDEO_ENCODE_SRC_BIT_KHR is reserved for future use.

• VK_BUFFER_USAGE_2_EXECUTION_GRAPH_SCRATCH_BIT_AMDX specifies that the buffer can be used for as
scratch memory for execution graph dispatch.

// Provided by VK_KHR_maintenance5
typedef VkFlags64 VkBufferUsageFlags2KHR;

VkBufferUsageFlags2KHR is a bitmask type for setting a mask of zero or more
VkBufferUsageFlagBits2KHR.

Bits which can be set in VkBufferCreateInfo::usage, specifying usage behavior of a buffer, are:

// Provided by VK_VERSION_1_0
typedef enum VkBufferUsageFlagBits {
 VK_BUFFER_USAGE_TRANSFER_SRC_BIT = 0x00000001,
 VK_BUFFER_USAGE_TRANSFER_DST_BIT = 0x00000002,
 VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000004,
 VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT = 0x00000008,
 VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT = 0x00000010,
 VK_BUFFER_USAGE_STORAGE_BUFFER_BIT = 0x00000020,
 VK_BUFFER_USAGE_INDEX_BUFFER_BIT = 0x00000040,
 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT = 0x00000080,
 VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT = 0x00000100,
 // Provided by VK_VERSION_1_2
 VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT = 0x00020000,
 // Provided by VK_KHR_video_decode_queue
 VK_BUFFER_USAGE_VIDEO_DECODE_SRC_BIT_KHR = 0x00002000,
 // Provided by VK_KHR_video_decode_queue

995

 VK_BUFFER_USAGE_VIDEO_DECODE_DST_BIT_KHR = 0x00004000,
 // Provided by VK_EXT_transform_feedback
 VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT = 0x00000800,
 // Provided by VK_EXT_transform_feedback
 VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT = 0x00001000,
 // Provided by VK_EXT_conditional_rendering
 VK_BUFFER_USAGE_CONDITIONAL_RENDERING_BIT_EXT = 0x00000200,
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_AMDX_shader_enqueue
 VK_BUFFER_USAGE_EXECUTION_GRAPH_SCRATCH_BIT_AMDX = 0x02000000,
#endif
 // Provided by VK_KHR_acceleration_structure
 VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR = 0x00080000,
 // Provided by VK_KHR_acceleration_structure
 VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR = 0x00100000,
 // Provided by VK_KHR_ray_tracing_pipeline
 VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR = 0x00000400,
 // Provided by VK_KHR_video_encode_queue
 VK_BUFFER_USAGE_VIDEO_ENCODE_DST_BIT_KHR = 0x00008000,
 // Provided by VK_KHR_video_encode_queue
 VK_BUFFER_USAGE_VIDEO_ENCODE_SRC_BIT_KHR = 0x00010000,
 // Provided by VK_EXT_descriptor_buffer
 VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT = 0x00200000,
 // Provided by VK_EXT_descriptor_buffer
 VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT = 0x00400000,
 // Provided by VK_EXT_descriptor_buffer
 VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT = 0x04000000,
 // Provided by VK_EXT_opacity_micromap
 VK_BUFFER_USAGE_MICROMAP_BUILD_INPUT_READ_ONLY_BIT_EXT = 0x00800000,
 // Provided by VK_EXT_opacity_micromap
 VK_BUFFER_USAGE_MICROMAP_STORAGE_BIT_EXT = 0x01000000,
 // Provided by VK_NV_ray_tracing
 VK_BUFFER_USAGE_RAY_TRACING_BIT_NV = VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR,
 // Provided by VK_EXT_buffer_device_address
 VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT =
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
 // Provided by VK_KHR_buffer_device_address
 VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_KHR =
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
} VkBufferUsageFlagBits;

• VK_BUFFER_USAGE_TRANSFER_SRC_BIT specifies that the buffer can be used as the source of a
transfer command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT).

• VK_BUFFER_USAGE_TRANSFER_DST_BIT specifies that the buffer can be used as the destination of a
transfer command.

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT specifies that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

• VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT specifies that the buffer can be used to create a

996

VkBufferView suitable for occupying a VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

• VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT specifies that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_STORAGE_BUFFER_BIT specifies that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_INDEX_BUFFER_BIT specifies that the buffer is suitable for passing as the buffer
parameter to vkCmdBindIndexBuffer2KHR and vkCmdBindIndexBuffer.

• VK_BUFFER_USAGE_VERTEX_BUFFER_BIT specifies that the buffer is suitable for passing as an element
of the pBuffers array to vkCmdBindVertexBuffers.

• VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT specifies that the buffer is suitable for passing as the
buffer parameter to vkCmdDrawIndirect, vkCmdDrawIndexedIndirect,
vkCmdDrawMeshTasksIndirectNV, vkCmdDrawMeshTasksIndirectCountNV,
vkCmdDrawMeshTasksIndirectEXT, vkCmdDrawMeshTasksIndirectCountEXT,
vkCmdDrawClusterIndirectHUAWEI, or vkCmdDispatchIndirect. It is also suitable for passing as
the buffer member of VkIndirectCommandsStreamNV, or sequencesCountBuffer or
sequencesIndexBuffer or preprocessedBuffer member of VkGeneratedCommandsInfoNV

• VK_BUFFER_USAGE_CONDITIONAL_RENDERING_BIT_EXT specifies that the buffer is suitable for passing
as the buffer parameter to vkCmdBeginConditionalRenderingEXT.

• VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT specifies that the buffer is suitable for using
for binding as a transform feedback buffer with vkCmdBindTransformFeedbackBuffersEXT.

• VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT specifies that the buffer is suitable
for using as a counter buffer with vkCmdBeginTransformFeedbackEXT and
vkCmdEndTransformFeedbackEXT.

• VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT specifies that the buffer is suitable to
contain sampler and combined image sampler descriptors when bound as a descriptor buffer.
Buffers containing combined image sampler descriptors must also specify
VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT.

• VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT specifies that the buffer is suitable to
contain resource descriptors when bound as a descriptor buffer.

• VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT specifies that the buffer, when
bound, can be used by the implementation to support push descriptors when using descriptor
buffers.

• VK_BUFFER_USAGE_RAY_TRACING_BIT_NV specifies that the buffer is suitable for use in
vkCmdTraceRaysNV.

• VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR specifies that the buffer is suitable for use as a
Shader Binding Table.

• VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR specifies that the buffer
is suitable for use as a read-only input to an acceleration structure build.

• VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR specifies that the buffer is suitable for

997

storage space for a VkAccelerationStructureKHR.

• VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT specifies that the buffer can be used to retrieve a
buffer device address via vkGetBufferDeviceAddress and use that address to access the buffer’s
memory from a shader.

• VK_BUFFER_USAGE_VIDEO_DECODE_SRC_BIT_KHR specifies that the buffer can be used as the source
video bitstream buffer in a video decode operation.

• VK_BUFFER_USAGE_VIDEO_DECODE_DST_BIT_KHR is reserved for future use.

• VK_BUFFER_USAGE_VIDEO_ENCODE_DST_BIT_KHR specifies that the buffer can be used as the
destination video bitstream buffer in a video encode operation.

• VK_BUFFER_USAGE_VIDEO_ENCODE_SRC_BIT_KHR is reserved for future use.

• VK_BUFFER_USAGE_EXECUTION_GRAPH_SCRATCH_BIT_AMDX specifies that the buffer can be used for as
scratch memory for execution graph dispatch.

// Provided by VK_VERSION_1_0
typedef VkFlags VkBufferUsageFlags;

VkBufferUsageFlags is a bitmask type for setting a mask of zero or more VkBufferUsageFlagBits.

Bits which can be set in VkBufferCreateInfo::flags, specifying additional parameters of a buffer,
are:

// Provided by VK_VERSION_1_0
typedef enum VkBufferCreateFlagBits {
 VK_BUFFER_CREATE_SPARSE_BINDING_BIT = 0x00000001,
 VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
 VK_BUFFER_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
 // Provided by VK_VERSION_1_1
 VK_BUFFER_CREATE_PROTECTED_BIT = 0x00000008,
 // Provided by VK_VERSION_1_2
 VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT = 0x00000010,
 // Provided by VK_EXT_descriptor_buffer
 VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT = 0x00000020,
 // Provided by VK_KHR_video_maintenance1
 VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR = 0x00000040,
 // Provided by VK_EXT_buffer_device_address
 VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_EXT =
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT,
 // Provided by VK_KHR_buffer_device_address
 VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR =
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT,
} VkBufferCreateFlagBits;

• VK_BUFFER_CREATE_SPARSE_BINDING_BIT specifies that the buffer will be backed using sparse
memory binding.

• VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT specifies that the buffer can be partially backed using

998

sparse memory binding. Buffers created with this flag must also be created with the
VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag.

• VK_BUFFER_CREATE_SPARSE_ALIASED_BIT specifies that the buffer will be backed using sparse
memory binding with memory ranges that might also simultaneously be backing another buffer
(or another portion of the same buffer). Buffers created with this flag must also be created with
the VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag.

• VK_BUFFER_CREATE_PROTECTED_BIT specifies that the buffer is a protected buffer.

• VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT specifies that the buffer’s address can be
saved and reused on a subsequent run (e.g. for trace capture and replay), see
VkBufferOpaqueCaptureAddressCreateInfo for more detail.

• VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT specifies that the buffer can be
used with descriptor buffers when capturing and replaying (e.g. for trace capture and replay),
see VkOpaqueCaptureDescriptorDataCreateInfoEXT for more detail.

• VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR specifies that the buffer can be used in
video coding operations without having to specify at buffer creation time the set of video
profiles the buffer will be used with.

See Sparse Resource Features and Physical Device Features for details of the sparse memory
features supported on a device.

// Provided by VK_VERSION_1_0
typedef VkFlags VkBufferCreateFlags;

VkBufferCreateFlags is a bitmask type for setting a mask of zero or more VkBufferCreateFlagBits.

If the pNext chain includes a VkDedicatedAllocationBufferCreateInfoNV structure, then that structure
includes an enable controlling whether the buffer will have a dedicated memory allocation bound
to it.

The VkDedicatedAllocationBufferCreateInfoNV structure is defined as:

// Provided by VK_NV_dedicated_allocation
typedef struct VkDedicatedAllocationBufferCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkBool32 dedicatedAllocation;
} VkDedicatedAllocationBufferCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dedicatedAllocation specifies whether the buffer will have a dedicated allocation bound to it.

999

Valid Usage (Implicit)

• VUID-VkDedicatedAllocationBufferCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV

To define a set of external memory handle types that may be used as backing store for a buffer, add
a VkExternalMemoryBufferCreateInfo structure to the pNext chain of the VkBufferCreateInfo
structure. The VkExternalMemoryBufferCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalMemoryBufferCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlags handleTypes;
} VkExternalMemoryBufferCreateInfo;

or the equivalent

// Provided by VK_KHR_external_memory
typedef VkExternalMemoryBufferCreateInfo VkExternalMemoryBufferCreateInfoKHR;

Note

A VkExternalMemoryBufferCreateInfo structure with a non-zero handleTypes field
must be included in the creation parameters for a buffer that will be bound to
memory that is either exported or imported.

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is zero or a bitmask of VkExternalMemoryHandleTypeFlagBits specifying one or
more external memory handle types.

Valid Usage (Implicit)

• VUID-VkExternalMemoryBufferCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO

• VUID-VkExternalMemoryBufferCreateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalMemoryHandleTypeFlagBits
values

To request a specific device address for a buffer, add a VkBufferOpaqueCaptureAddressCreateInfo
structure to the pNext chain of the VkBufferCreateInfo structure. The
VkBufferOpaqueCaptureAddressCreateInfo structure is defined as:

1000

// Provided by VK_VERSION_1_2
typedef struct VkBufferOpaqueCaptureAddressCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint64_t opaqueCaptureAddress;
} VkBufferOpaqueCaptureAddressCreateInfo;

or the equivalent

// Provided by VK_KHR_buffer_device_address
typedef VkBufferOpaqueCaptureAddressCreateInfo
VkBufferOpaqueCaptureAddressCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• opaqueCaptureAddress is the opaque capture address requested for the buffer.

If opaqueCaptureAddress is zero, no specific address is requested.

If opaqueCaptureAddress is not zero, then it should be an address retrieved from
vkGetBufferOpaqueCaptureAddress for an identically created buffer on the same implementation.

If this structure is not present, it is as if opaqueCaptureAddress is zero.

Apps should avoid creating buffers with app-provided addresses and implementation-provided
addresses in the same process, to reduce the likelihood of VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS
errors.

Note

The expected usage for this is that a trace capture/replay tool will add the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT flag to all buffers that use
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, and during capture will save the
queried opaque device addresses in the trace. During replay, the buffers will be
created specifying the original address so any address values stored in the trace
data will remain valid.

Implementations are expected to separate such buffers in the GPU address space
so normal allocations will avoid using these addresses. Apps/tools should avoid
mixing app-provided and implementation-provided addresses for buffers created
with VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, to avoid address space
allocation conflicts.

Valid Usage (Implicit)

• VUID-VkBufferOpaqueCaptureAddressCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO

1001

Alternatively, to request a specific device address for a buffer, add a
VkBufferDeviceAddressCreateInfoEXT structure to the pNext chain of the VkBufferCreateInfo
structure. The VkBufferDeviceAddressCreateInfoEXT structure is defined as:

// Provided by VK_EXT_buffer_device_address
typedef struct VkBufferDeviceAddressCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDeviceAddress deviceAddress;
} VkBufferDeviceAddressCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceAddress is the device address requested for the buffer.

If deviceAddress is zero, no specific address is requested.

If deviceAddress is not zero, then it must be an address retrieved from an identically created buffer
on the same implementation. The buffer must also be bound to an identically created
VkDeviceMemory object.

If this structure is not present, it is as if deviceAddress is zero.

Apps should avoid creating buffers with app-provided addresses and implementation-provided
addresses in the same process, to reduce the likelihood of VK_ERROR_INVALID_DEVICE_ADDRESS_EXT
errors.

Valid Usage (Implicit)

• VUID-VkBufferDeviceAddressCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_CREATE_INFO_EXT

The VkBufferCollectionBufferCreateInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkBufferCollectionBufferCreateInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkBufferCollectionFUCHSIA collection;
 uint32_t index;
} VkBufferCollectionBufferCreateInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• collection is the VkBufferCollectionFUCHSIA handle

1002

• index is the index of the buffer in the buffer collection from which the memory will be imported

Valid Usage

• VUID-VkBufferCollectionBufferCreateInfoFUCHSIA-index-06388
index must be less than VkBufferCollectionPropertiesFUCHSIA::bufferCount

Valid Usage (Implicit)

• VUID-VkBufferCollectionBufferCreateInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_COLLECTION_BUFFER_CREATE_INFO_FUCHSIA

• VUID-VkBufferCollectionBufferCreateInfoFUCHSIA-collection-parameter
collection must be a valid VkBufferCollectionFUCHSIA handle

To destroy a buffer, call:

// Provided by VK_VERSION_1_0
void vkDestroyBuffer(
 VkDevice device,
 VkBuffer buffer,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer.

• buffer is the buffer to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyBuffer-buffer-00922
All submitted commands that refer to buffer, either directly or via a VkBufferView, must
have completed execution

• VUID-vkDestroyBuffer-buffer-00923
If VkAllocationCallbacks were provided when buffer was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyBuffer-buffer-00924
If no VkAllocationCallbacks were provided when buffer was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyBuffer-device-parameter
device must be a valid VkDevice handle

1003

• VUID-vkDestroyBuffer-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• VUID-vkDestroyBuffer-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyBuffer-buffer-parent
If buffer is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to buffer must be externally synchronized

12.2. Buffer Views
A buffer view represents a contiguous range of a buffer and a specific format to be used to interpret
the data. Buffer views are used to enable shaders to access buffer contents using image operations.
In order to create a valid buffer view, the buffer must have been created with at least one of the
following usage flags:

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT

• VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

Buffer views are represented by VkBufferView handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBufferView)

To create a buffer view, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateBufferView(
 VkDevice device,
 const VkBufferViewCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkBufferView* pView);

• device is the logical device that creates the buffer view.

• pCreateInfo is a pointer to a VkBufferViewCreateInfo structure containing parameters to be
used to create the buffer view.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pView is a pointer to a VkBufferView handle in which the resulting buffer view object is
returned.

1004

Valid Usage (Implicit)

• VUID-vkCreateBufferView-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateBufferView-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkBufferViewCreateInfo structure

• VUID-vkCreateBufferView-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateBufferView-pView-parameter
pView must be a valid pointer to a VkBufferView handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBufferViewCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferViewCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkBufferViewCreateFlags flags;
 VkBuffer buffer;
 VkFormat format;
 VkDeviceSize offset;
 VkDeviceSize range;
} VkBufferViewCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• buffer is a VkBuffer on which the view will be created.

• format is a VkFormat describing the format of the data elements in the buffer.

• offset is an offset in bytes from the base address of the buffer. Accesses to the buffer view from
shaders use addressing that is relative to this starting offset.

• range is a size in bytes of the buffer view. If range is equal to VK_WHOLE_SIZE, the range from

1005

offset to the end of the buffer is used. If VK_WHOLE_SIZE is used and the remaining size of the
buffer is not a multiple of the texel block size of format, the nearest smaller multiple is used.

The buffer view has a buffer view usage identifying which descriptor types can be created from it.
This usage can be defined by including the VkBufferUsageFlags2CreateInfoKHR structure in the
pNext chain, and specifying the usage value there. If this structure is not included, it is equal to the
VkBufferCreateInfo::usage value used to create buffer.

Valid Usage

• VUID-VkBufferViewCreateInfo-offset-00925
offset must be less than the size of buffer

• VUID-VkBufferViewCreateInfo-range-00928
If range is not equal to VK_WHOLE_SIZE, range must be greater than 0

• VUID-VkBufferViewCreateInfo-range-00929
If range is not equal to VK_WHOLE_SIZE, range must be an integer multiple of the texel block
size of format

• VUID-VkBufferViewCreateInfo-range-00930
If range is not equal to VK_WHOLE_SIZE, the number of texel buffer elements given by (⌊range
/ (texel block size)⌋ × (texels per block)) where texel block size and texels per block are as
defined in the Compatible Formats table for format, must be less than or equal to
VkPhysicalDeviceLimits::maxTexelBufferElements

• VUID-VkBufferViewCreateInfo-offset-00931
If range is not equal to VK_WHOLE_SIZE, the sum of offset and range must be less than or
equal to the size of buffer

• VUID-VkBufferViewCreateInfo-range-04059
If range is equal to VK_WHOLE_SIZE, the number of texel buffer elements given by (⌊(size -
offset) / (texel block size)⌋ × (texels per block)) where size is the size of buffer, and texel
block size and texels per block are as defined in the Compatible Formats table for format,
must be less than or equal to VkPhysicalDeviceLimits::maxTexelBufferElements

• VUID-VkBufferViewCreateInfo-buffer-00932
buffer must have been created with a usage value containing at least one of
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

• VUID-VkBufferViewCreateInfo-format-08778
If the buffer view usage contains VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, then format
features of format must contain VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

• VUID-VkBufferViewCreateInfo-format-08779
If the buffer view usage contains VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, then format
features of format must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

• VUID-VkBufferViewCreateInfo-buffer-00935
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBufferViewCreateInfo-offset-02749
If the texelBufferAlignment feature is not enabled, offset must be a multiple of

1006

VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment

• VUID-VkBufferViewCreateInfo-buffer-02750
If the texelBufferAlignment feature is enabled and if buffer was created with usage
containing VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, offset must be a multiple of the
lesser of VkPhysicalDeviceTexelBufferAlignmentProperties
::storageTexelBufferOffsetAlignmentBytes or, if
VkPhysicalDeviceTexelBufferAlignmentProperties::storageTexelBufferOffsetSingleTexelAl
ignment is VK_TRUE, the size of a texel of the requested format. If the size of a texel is a
multiple of three bytes, then the size of a single component of format is used instead

• VUID-VkBufferViewCreateInfo-buffer-02751
If the texelBufferAlignment feature is enabled and if buffer was created with usage
containing VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, offset must be a multiple of the
lesser of VkPhysicalDeviceTexelBufferAlignmentProperties
::uniformTexelBufferOffsetAlignmentBytes or, if
VkPhysicalDeviceTexelBufferAlignmentProperties::uniformTexelBufferOffsetSingleTexelAl
ignment is VK_TRUE, the size of a texel of the requested format. If the size of a texel is a
multiple of three bytes, then the size of a single component of format is used instead

• VUID-VkBufferViewCreateInfo-pNext-06782
If the pNext chain includes a VkExportMetalObjectCreateInfoEXT structure, its
exportObjectType member must be VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT

• VUID-VkBufferViewCreateInfo-pNext-08780
If the pNext chain includes a VkBufferUsageFlags2CreateInfoKHR, its usage must not
contain any other bit than VK_BUFFER_USAGE_2_UNIFORM_TEXEL_BUFFER_BIT_KHR or
VK_BUFFER_USAGE_2_STORAGE_TEXEL_BUFFER_BIT_KHR

• VUID-VkBufferViewCreateInfo-pNext-08781
If the pNext chain includes a VkBufferUsageFlags2CreateInfoKHR, its usage must be a
subset of the VkBufferCreateInfo::usage specified or VkBufferUsageFlags2CreateInfoKHR
::usage from VkBufferCreateInfo::pNext when creating buffer

Valid Usage (Implicit)

• VUID-VkBufferViewCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO

• VUID-VkBufferViewCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkBufferUsageFlags2CreateInfoKHR or
VkExportMetalObjectCreateInfoEXT

• VUID-VkBufferViewCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkExportMetalObjectCreateInfoEXT

• VUID-VkBufferViewCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkBufferViewCreateInfo-buffer-parameter

1007

buffer must be a valid VkBuffer handle

• VUID-VkBufferViewCreateInfo-format-parameter
format must be a valid VkFormat value

// Provided by VK_VERSION_1_0
typedef VkFlags VkBufferViewCreateFlags;

VkBufferViewCreateFlags is a bitmask type for setting a mask, but is currently reserved for future
use.

To destroy a buffer view, call:

// Provided by VK_VERSION_1_0
void vkDestroyBufferView(
 VkDevice device,
 VkBufferView bufferView,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer view.

• bufferView is the buffer view to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyBufferView-bufferView-00936
All submitted commands that refer to bufferView must have completed execution

• VUID-vkDestroyBufferView-bufferView-00937
If VkAllocationCallbacks were provided when bufferView was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyBufferView-bufferView-00938
If no VkAllocationCallbacks were provided when bufferView was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyBufferView-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyBufferView-bufferView-parameter
If bufferView is not VK_NULL_HANDLE, bufferView must be a valid VkBufferView handle

• VUID-vkDestroyBufferView-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

1008

• VUID-vkDestroyBufferView-bufferView-parent
If bufferView is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to bufferView must be externally synchronized

12.2.1. Buffer View Format Features

Valid uses of a VkBufferView may depend on the buffer view’s format features, defined below. Such
constraints are documented in the affected valid usage statement.

• If Vulkan 1.3 is supported or the VK_KHR_format_feature_flags2 extension is supported, then the
buffer view’s set of format features is the value of VkFormatProperties3::bufferFeatures found
by calling vkGetPhysicalDeviceFormatProperties2 on the same format as
VkBufferViewCreateInfo::format.

12.3. Images
Images represent multidimensional - up to 3 - arrays of data which can be used for various
purposes (e.g. attachments, textures), by binding them to a graphics or compute pipeline via
descriptor sets, or by directly specifying them as parameters to certain commands.

Images are represented by VkImage handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImage)

To create images, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateImage(
 VkDevice device,
 const VkImageCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkImage* pImage);

• device is the logical device that creates the image.

• pCreateInfo is a pointer to a VkImageCreateInfo structure containing parameters to be used to
create the image.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pImage is a pointer to a VkImage handle in which the resulting image object is returned.

1009

Valid Usage

• VUID-vkCreateImage-flags-00939
If the flags member of pCreateInfo includes VK_IMAGE_CREATE_SPARSE_BINDING_BIT, and the
extendedSparseAddressSpace feature is not enabled, creating this VkImage must not cause
the total required sparse memory for all currently valid sparse resources on the device to
exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize

• VUID-vkCreateImage-flags-09385
If the flags member of pCreateInfo includes VK_IMAGE_CREATE_SPARSE_BINDING_BIT, the
extendedSparseAddressSpace feature is enabled, and the usage member of pCreateInfo
contains bits not in VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV
::extendedSparseImageUsageFlags, creating this VkImage must not cause the total required
sparse memory for all currently valid sparse resources on the device, excluding VkBuffer
created with usage member of pCreateInfo containing bits in
VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV::extendedSparseBufferUsageFlags
and VkImage created with usage member of pCreateInfo containing bits in
VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV::extendedSparseImageUsageFlags,
to exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize

• VUID-vkCreateImage-flags-09386
If the flags member of pCreateInfo includes VK_IMAGE_CREATE_SPARSE_BINDING_BIT and the
extendedSparseAddressSpace feature is enabled, creating this VkImage must not cause the
total required sparse memory for all currently valid sparse resources on the device to
exceed VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV
::extendedSparseAddressSpaceSize

• VUID-vkCreateImage-pNext-06389
If a VkBufferCollectionImageCreateInfoFUCHSIA has been chained to pNext, pCreateInfo
must match the Sysmem chosen VkImageCreateInfo excepting members
VkImageCreateInfo::extent and VkImageCreateInfo::usage in the match criteria

Valid Usage (Implicit)

• VUID-vkCreateImage-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateImage-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkImageCreateInfo structure

• VUID-vkCreateImage-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateImage-pImage-parameter
pImage must be a valid pointer to a VkImage handle

1010

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_COMPRESSION_EXHAUSTED_EXT

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

The VkImageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageCreateFlags flags;
 VkImageType imageType;
 VkFormat format;
 VkExtent3D extent;
 uint32_t mipLevels;
 uint32_t arrayLayers;
 VkSampleCountFlagBits samples;
 VkImageTiling tiling;
 VkImageUsageFlags usage;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
 VkImageLayout initialLayout;
} VkImageCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkImageCreateFlagBits describing additional parameters of the image.

• imageType is a VkImageType value specifying the basic dimensionality of the image. Layers in
array textures do not count as a dimension for the purposes of the image type.

• format is a VkFormat describing the format and type of the texel blocks that will be contained in
the image.

• extent is a VkExtent3D describing the number of data elements in each dimension of the base
level.

• mipLevels describes the number of levels of detail available for minified sampling of the image.

• arrayLayers is the number of layers in the image.

1011

• samples is a VkSampleCountFlagBits value specifying the number of samples per texel.

• tiling is a VkImageTiling value specifying the tiling arrangement of the texel blocks in memory.

• usage is a bitmask of VkImageUsageFlagBits describing the intended usage of the image.

• sharingMode is a VkSharingMode value specifying the sharing mode of the image when it will be
accessed by multiple queue families.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a pointer to an array of queue families that will access this image. It is
ignored if sharingMode is not VK_SHARING_MODE_CONCURRENT.

• initialLayout is a VkImageLayout value specifying the initial VkImageLayout of all image
subresources of the image. See Image Layouts.

Images created with tiling equal to VK_IMAGE_TILING_LINEAR have further restrictions on their limits
and capabilities compared to images created with tiling equal to VK_IMAGE_TILING_OPTIMAL. Creation
of images with tiling VK_IMAGE_TILING_LINEAR may not be supported unless other parameters meet
all of the constraints:

• imageType is VK_IMAGE_TYPE_2D

• format is not a depth/stencil format

• mipLevels is 1

• arrayLayers is 1

• samples is VK_SAMPLE_COUNT_1_BIT

• usage only includes VK_IMAGE_USAGE_TRANSFER_SRC_BIT and/or VK_IMAGE_USAGE_TRANSFER_DST_BIT

Images created with one of the formats that require a sampler Y′CBCR conversion, have further
restrictions on their limits and capabilities compared to images created with other formats.
Creation of images with a format requiring Y′CBCR conversion may not be supported unless other
parameters meet all of the constraints:

• imageType is VK_IMAGE_TYPE_2D

• mipLevels is 1

• arrayLayers is 1, unless the ycbcrImageArrays feature is enabled, or otherwise indicated by
VkImageFormatProperties::maxArrayLayers, as returned by
vkGetPhysicalDeviceImageFormatProperties

• samples is VK_SAMPLE_COUNT_1_BIT

Implementations may support additional limits and capabilities beyond those listed above.

To determine the set of valid usage bits for a given format, call
vkGetPhysicalDeviceFormatProperties.

If the size of the resultant image would exceed maxResourceSize, then vkCreateImage must fail and
return VK_ERROR_OUT_OF_DEVICE_MEMORY. This failure may occur even when all image creation
parameters satisfy their valid usage requirements.

1012

If the implementation reports VK_TRUE in VkPhysicalDeviceHostImageCopyPropertiesEXT
::identicalMemoryTypeRequirements, usage of VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT must not affect
the memory type requirements of the image as described in Sparse Resource Memory
Requirements and Resource Memory Association.

Note

For images created without VK_IMAGE_CREATE_EXTENDED_USAGE_BIT a usage bit is valid
if it is supported for the format the image is created with.

For images created with VK_IMAGE_CREATE_EXTENDED_USAGE_BIT a usage bit is valid if it
is supported for at least one of the formats a VkImageView created from the image
can have (see Image Views for more detail).

Image Creation Limits

Valid values for some image creation parameters are limited by a numerical upper bound or
by inclusion in a bitset. For example, VkImageCreateInfo::arrayLayers is limited by
imageCreateMaxArrayLayers, defined below; and VkImageCreateInfo::samples is limited by
imageCreateSampleCounts, also defined below.

Several limiting values are defined below, as well as assisting values from which the limiting
values are derived. The limiting values are referenced by the relevant valid usage statements
of VkImageCreateInfo.

• Let uint64_t imageCreateDrmFormatModifiers[] be the set of Linux DRM format modifiers
that the resultant image may have.

◦ If tiling is not VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then
imageCreateDrmFormatModifiers is empty.

◦ If VkImageCreateInfo::pNext contains
VkImageDrmFormatModifierExplicitCreateInfoEXT, then
imageCreateDrmFormatModifiers contains exactly one modifier,
VkImageDrmFormatModifierExplicitCreateInfoEXT::drmFormatModifier.

◦ If VkImageCreateInfo::pNext contains VkImageDrmFormatModifierListCreateInfoEXT,
then imageCreateDrmFormatModifiers contains the entire array
VkImageDrmFormatModifierListCreateInfoEXT::pDrmFormatModifiers.

• Let VkBool32 imageCreateMaybeLinear indicate if the resultant image may be linear.

◦ If tiling is VK_IMAGE_TILING_LINEAR, then imageCreateMaybeLinear is VK_TRUE.

◦ If tiling is VK_IMAGE_TILING_OPTIMAL, then imageCreateMaybeLinear is VK_FALSE.

◦ If tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then imageCreateMaybeLinear is
VK_TRUE if and only if imageCreateDrmFormatModifiers contains DRM_FORMAT_MOD_LINEAR.

• Let VkFormatFeatureFlags imageCreateFormatFeatures be the set of valid format features
available during image creation.

◦ If tiling is VK_IMAGE_TILING_LINEAR, then imageCreateFormatFeatures is the value of
VkFormatProperties::linearTilingFeatures found by calling

1013

vkGetPhysicalDeviceFormatProperties with parameter format equal to
VkImageCreateInfo::format.

◦ If tiling is VK_IMAGE_TILING_OPTIMAL, and if the pNext chain includes no
VkExternalFormatANDROID or VkExternalFormatQNX structure with non-zero
externalFormat, then imageCreateFormatFeatures is the value of VkFormatProperties
::optimalTilingFeatures found by calling vkGetPhysicalDeviceFormatProperties with
parameter format equal to VkImageCreateInfo::format.

◦ If tiling is VK_IMAGE_TILING_OPTIMAL, and if the pNext chain includes a
VkExternalFormatANDROID structure with non-zero externalFormat, then
imageCreateFormatFeatures is the value of
VkAndroidHardwareBufferFormatPropertiesANDROID::formatFeatures obtained by
vkGetAndroidHardwareBufferPropertiesANDROID with a matching externalFormat
value.

◦ If tiling is VK_IMAGE_TILING_OPTIMAL, and if the pNext chain includes a
VkExternalFormatQNX structure with non-zero externalFormat, then
imageCreateFormatFeatures is the value of VkScreenBufferFormatPropertiesQNX
::formatFeatures obtained by vkGetScreenBufferPropertiesQNX with a matching
externalFormat value.

◦ If the pNext chain includes a VkBufferCollectionImageCreateInfoFUCHSIA structure,
then imageCreateFormatFeatures is the value of VkBufferCollectionPropertiesFUCHSIA
::formatFeatures found by calling vkGetBufferCollectionPropertiesFUCHSIA with a
parameter collection equal to VkBufferCollectionImageCreateInfoFUCHSIA
::collection

◦ If tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then the value of
imageCreateFormatFeatures is found by calling vkGetPhysicalDeviceFormatProperties2
with VkImageFormatProperties::format equal to VkImageCreateInfo::format and with
VkDrmFormatModifierPropertiesListEXT chained into VkFormatProperties2; by
collecting all members of the returned array
VkDrmFormatModifierPropertiesListEXT::pDrmFormatModifierProperties whose
drmFormatModifier belongs to imageCreateDrmFormatModifiers; and by taking the bitwise
intersection, over the collected array members, of drmFormatModifierTilingFeatures.
(The resultant imageCreateFormatFeatures may be empty).

• Let VkImageFormatProperties2 imageCreateImageFormatPropertiesList[] be defined as
follows.

◦ If VkImageCreateInfo::pNext contains no VkExternalFormatANDROID or
VkExternalFormatQNX structure with non-zero externalFormat, then
imageCreateImageFormatPropertiesList is the list of structures obtained by calling
vkGetPhysicalDeviceImageFormatProperties2, possibly multiple times, as follows:

▪ The parameters VkPhysicalDeviceImageFormatInfo2::format, imageType, tiling,
usage, and flags must be equal to those in VkImageCreateInfo.

▪ If VkImageCreateInfo::pNext contains a VkExternalMemoryImageCreateInfo
structure whose handleTypes is not 0, then VkPhysicalDeviceImageFormatInfo2
::pNext must contain a VkPhysicalDeviceExternalImageFormatInfo structure
whose handleType is not 0; and vkGetPhysicalDeviceImageFormatProperties2 must

1014

be called for each handle type in VkExternalMemoryImageCreateInfo::handleTypes,
successively setting VkPhysicalDeviceExternalImageFormatInfo::handleType on
each call.

▪ If VkImageCreateInfo::pNext contains no VkExternalMemoryImageCreateInfo
structure, or contains a structure whose handleTypes is 0, then
VkPhysicalDeviceImageFormatInfo2::pNext must either contain no
VkPhysicalDeviceExternalImageFormatInfo structure, or contain a structure
whose handleType is 0.

▪ If VkImageCreateInfo::pNext contains a VkVideoProfileListInfoKHR structure then
VkPhysicalDeviceImageFormatInfo2::pNext must also contain the same
VkVideoProfileListInfoKHR structure on each call.

▪ If tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then:

▪ VkPhysicalDeviceImageFormatInfo2::pNext must contain a
VkPhysicalDeviceImageDrmFormatModifierInfoEXT structure where
sharingMode is equal to VkImageCreateInfo::sharingMode;

▪ if sharingMode is VK_SHARING_MODE_CONCURRENT, then queueFamilyIndexCount and
pQueueFamilyIndices must be equal to those in VkImageCreateInfo;

▪ if flags contains VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, then the
VkImageFormatListCreateInfo structure included in the pNext chain of
VkPhysicalDeviceImageFormatInfo2 must be equivalent to the one included in
the pNext chain of VkImageCreateInfo;

▪ if VkImageCreateInfo::pNext contains a VkImageCompressionControlEXT
structure, then the VkPhysicalDeviceImageFormatInfo2::pNext chain must
contain an equivalent structure;

▪ vkGetPhysicalDeviceImageFormatProperties2 must be called for each modifier
in imageCreateDrmFormatModifiers, successively setting
VkPhysicalDeviceImageDrmFormatModifierInfoEXT::drmFormatModifier on
each call.

▪ If tiling is not VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then
VkPhysicalDeviceImageFormatInfo2::pNext must contain no
VkPhysicalDeviceImageDrmFormatModifierInfoEXT structure.

▪ If any call to vkGetPhysicalDeviceImageFormatProperties2 returns an error, then
imageCreateImageFormatPropertiesList is defined to be the empty list.

◦ If VkImageCreateInfo::pNext contains a VkExternalFormatANDROID structure with
non-zero externalFormat, then imageCreateImageFormatPropertiesList contains a single
element where:

▪ VkImageFormatProperties::maxMipLevels is ⌊log2(max(extent.width, extent.height,
extent.depth))⌋ + 1.

▪ VkImageFormatProperties::maxArrayLayers is VkPhysicalDeviceLimits
::maxImageArrayLayers.

▪ Each component of VkImageFormatProperties::maxExtent is VkPhysicalDeviceLimits
::maxImageDimension2D.

1015

▪ VkImageFormatProperties::sampleCounts contains exactly VK_SAMPLE_COUNT_1_BIT.

• Let uint32_t imageCreateMaxMipLevels be the minimum value of
VkImageFormatProperties::maxMipLevels in imageCreateImageFormatPropertiesList. The
value is undefined if imageCreateImageFormatPropertiesList is empty.

• Let uint32_t imageCreateMaxArrayLayers be the minimum value of
VkImageFormatProperties::maxArrayLayers in imageCreateImageFormatPropertiesList. The
value is undefined if imageCreateImageFormatPropertiesList is empty.

• Let VkExtent3D imageCreateMaxExtent be the component-wise minimum over all
VkImageFormatProperties::maxExtent values in imageCreateImageFormatPropertiesList. The
value is undefined if imageCreateImageFormatPropertiesList is empty.

• Let VkSampleCountFlags imageCreateSampleCounts be the intersection of each
VkImageFormatProperties::sampleCounts in imageCreateImageFormatPropertiesList. The
value is undefined if imageCreateImageFormatPropertiesList is empty.

• Let VkVideoFormatPropertiesKHR videoFormatProperties[] be defined as follows.

◦ If VkImageCreateInfo::pNext contains a VkVideoProfileListInfoKHR structure, then
videoFormatProperties is the list of structures obtained by calling
vkGetPhysicalDeviceVideoFormatPropertiesKHR with
VkPhysicalDeviceVideoFormatInfoKHR::imageUsage equal to the usage member of
VkImageCreateInfo and VkPhysicalDeviceVideoFormatInfoKHR::pNext containing the
same VkVideoProfileListInfoKHR structure chained to VkImageCreateInfo.

◦ If VkImageCreateInfo::pNext contains no VkVideoProfileListInfoKHR structure, then
videoFormatProperties is an empty list.

• Let VkBool32 supportedVideoFormat indicate if the image parameters are supported by the
specified video profiles.

◦ supportedVideoFormat is VK_TRUE if there exists an element in the videoFormatProperties
list for which all of the following conditions are true:

▪ VkImageCreateInfo::format equals VkVideoFormatPropertiesKHR::format.

▪ VkImageCreateInfo::flags only contains bits also set in
VkVideoFormatPropertiesKHR::imageCreateFlags.

▪ VkImageCreateInfo::imageType equals VkVideoFormatPropertiesKHR::imageType.

▪ VkImageCreateInfo::tiling equals VkVideoFormatPropertiesKHR::imageTiling.

▪ VkImageCreateInfo::usage only contains bits also set in
VkVideoFormatPropertiesKHR::imageUsageFlags.

◦ Otherwise supportedVideoFormat is VK_FALSE.

Valid Usage

• VUID-VkImageCreateInfo-imageCreateMaxMipLevels-02251
Each of the following values (as described in Image Creation Limits) must not be
undefined : imageCreateMaxMipLevels, imageCreateMaxArrayLayers, imageCreateMaxExtent,
and imageCreateSampleCounts

1016

• VUID-VkImageCreateInfo-sharingMode-00941
If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a valid pointer
to an array of queueFamilyIndexCount uint32_t values

• VUID-VkImageCreateInfo-sharingMode-00942
If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than
1

• VUID-VkImageCreateInfo-sharingMode-01420
If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be
unique and must be less than pQueueFamilyPropertyCount returned by either
vkGetPhysicalDeviceQueueFamilyProperties or
vkGetPhysicalDeviceQueueFamilyProperties2 for the physicalDevice that was used to
create device

• VUID-VkImageCreateInfo-pNext-01974
If the pNext chain includes a VkExternalFormatANDROID structure, and its externalFormat
member is non-zero the format must be VK_FORMAT_UNDEFINED

• VUID-VkImageCreateInfo-pNext-01975
If the pNext chain does not include a VkExternalFormatANDROID structure, or does and its
externalFormat member is 0, the format must not be VK_FORMAT_UNDEFINED

• VUID-VkImageCreateInfo-extent-00944
extent.width must be greater than 0

• VUID-VkImageCreateInfo-extent-00945
extent.height must be greater than 0

• VUID-VkImageCreateInfo-extent-00946
extent.depth must be greater than 0

• VUID-VkImageCreateInfo-mipLevels-00947
mipLevels must be greater than 0

• VUID-VkImageCreateInfo-arrayLayers-00948
arrayLayers must be greater than 0

• VUID-VkImageCreateInfo-flags-00949
If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, imageType must be
VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-flags-08865
If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, extent.width and extent.height
must be equal

• VUID-VkImageCreateInfo-flags-08866
If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, arrayLayers must be greater than
or equal to 6

• VUID-VkImageCreateInfo-flags-02557
If flags contains VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT, imageType must be
VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-flags-00950
If flags contains VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, imageType must be

1017

VK_IMAGE_TYPE_3D

• VUID-VkImageCreateInfo-flags-09403
If flags contains VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, flags must not include
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT, VK_IMAGE_CREATE_SPARSE_BINDING_BIT, or
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-flags-07755
If flags contains VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT, imageType must be
VK_IMAGE_TYPE_3D

• VUID-VkImageCreateInfo-extent-02252
extent.width must be less than or equal to imageCreateMaxExtent.width (as defined in
Image Creation Limits)

• VUID-VkImageCreateInfo-extent-02253
extent.height must be less than or equal to imageCreateMaxExtent.height (as defined in
Image Creation Limits)

• VUID-VkImageCreateInfo-extent-02254
extent.depth must be less than or equal to imageCreateMaxExtent.depth (as defined in
Image Creation Limits)

• VUID-VkImageCreateInfo-imageType-00956
If imageType is VK_IMAGE_TYPE_1D, both extent.height and extent.depth must be 1

• VUID-VkImageCreateInfo-imageType-00957
If imageType is VK_IMAGE_TYPE_2D, extent.depth must be 1

• VUID-VkImageCreateInfo-mipLevels-00958
mipLevels must be less than or equal to the number of levels in the complete mipmap
chain based on extent.width, extent.height, and extent.depth

• VUID-VkImageCreateInfo-mipLevels-02255
mipLevels must be less than or equal to imageCreateMaxMipLevels (as defined in Image
Creation Limits)

• VUID-VkImageCreateInfo-arrayLayers-02256
arrayLayers must be less than or equal to imageCreateMaxArrayLayers (as defined in Image
Creation Limits)

• VUID-VkImageCreateInfo-imageType-00961
If imageType is VK_IMAGE_TYPE_3D, arrayLayers must be 1

• VUID-VkImageCreateInfo-samples-02257
If samples is not VK_SAMPLE_COUNT_1_BIT, then imageType must be VK_IMAGE_TYPE_2D, flags
must not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, mipLevels must be equal to 1, and
imageCreateMaybeLinear (as defined in Image Creation Limits) must be VK_FALSE,

• VUID-VkImageCreateInfo-samples-02558
If samples is not VK_SAMPLE_COUNT_1_BIT, usage must not contain
VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT

• VUID-VkImageCreateInfo-usage-00963
If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, then bits other than
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and

1018

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must not be set

• VUID-VkImageCreateInfo-usage-00964
If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,
or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.width must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferWidth

• VUID-VkImageCreateInfo-usage-00965
If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,
or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.height must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferHeight

• VUID-VkImageCreateInfo-fragmentDensityMapOffset-06514
If the fragmentDensityMapOffset feature is not enabled and usage includes
VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT, extent.width must be less than or equal to

• VUID-VkImageCreateInfo-fragmentDensityMapOffset-06515
If the fragmentDensityMapOffset feature is not enabled and usage includes
VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT, extent.height must be less than or equal to

• VUID-VkImageCreateInfo-usage-00966
If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, usage must also contain at
least one of VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-samples-02258
samples must be a valid VkSampleCountFlagBits value that is set in
imageCreateSampleCounts (as defined in Image Creation Limits)

• VUID-VkImageCreateInfo-usage-00968
If the shaderStorageImageMultisample feature is not enabled, and usage contains
VK_IMAGE_USAGE_STORAGE_BIT, samples must be VK_SAMPLE_COUNT_1_BIT

• VUID-VkImageCreateInfo-flags-00969
If the sparseBinding feature is not enabled, flags must not contain
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

• VUID-VkImageCreateInfo-flags-01924
If the sparseResidencyAliased feature is not enabled, flags must not contain
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT

• VUID-VkImageCreateInfo-tiling-04121
If tiling is VK_IMAGE_TILING_LINEAR, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00970
If imageType is VK_IMAGE_TYPE_1D, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00971
If the sparseResidencyImage2D feature is not enabled, and imageType is VK_IMAGE_TYPE_2D,

1019

flags must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00972
If the sparseResidencyImage3D feature is not enabled, and imageType is VK_IMAGE_TYPE_3D,
flags must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00973
If the sparseResidency2Samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D, and
samples is VK_SAMPLE_COUNT_2_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00974
If the sparseResidency4Samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D, and
samples is VK_SAMPLE_COUNT_4_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00975
If the sparseResidency8Samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D, and
samples is VK_SAMPLE_COUNT_8_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00976
If the sparseResidency16Samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D, and
samples is VK_SAMPLE_COUNT_16_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-flags-00987
If flags contains VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT, it must also contain
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

• VUID-VkImageCreateInfo-None-01925
If any of the bits VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or VK_IMAGE_CREATE_SPARSE_ALIASED_BIT are set,
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT must not also be set

• VUID-VkImageCreateInfo-flags-01890
If the protectedMemory feature is not enabled, flags must not contain
VK_IMAGE_CREATE_PROTECTED_BIT

• VUID-VkImageCreateInfo-None-01891
If any of the bits VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or VK_IMAGE_CREATE_SPARSE_ALIASED_BIT are set,
VK_IMAGE_CREATE_PROTECTED_BIT must not also be set

• VUID-VkImageCreateInfo-pNext-00988
If the pNext chain includes a VkExternalMemoryImageCreateInfoNV structure, it must not
contain a VkExternalMemoryImageCreateInfo structure

• VUID-VkImageCreateInfo-pNext-00990
If the pNext chain includes a VkExternalMemoryImageCreateInfo structure, its handleTypes
member must only contain bits that are also in VkExternalImageFormatProperties
::externalMemoryProperties.compatibleHandleTypes, as returned by
vkGetPhysicalDeviceImageFormatProperties2 with format, imageType, tiling, usage, and

1020

flags equal to those in this structure, and with a
VkPhysicalDeviceExternalImageFormatInfo structure included in the pNext chain, with a
handleType equal to any one of the handle types specified in
VkExternalMemoryImageCreateInfo::handleTypes

• VUID-VkImageCreateInfo-pNext-00991
If the pNext chain includes a VkExternalMemoryImageCreateInfoNV structure, its
handleTypes member must only contain bits that are also in
VkExternalImageFormatPropertiesNV::externalMemoryProperties.compatibleHandleTypes,
as returned by vkGetPhysicalDeviceExternalImageFormatPropertiesNV with format,
imageType, tiling, usage, and flags equal to those in this structure, and with
externalHandleType equal to any one of the handle types specified in
VkExternalMemoryImageCreateInfoNV::handleTypes

• VUID-VkImageCreateInfo-physicalDeviceCount-01421
If the logical device was created with VkDeviceGroupDeviceCreateInfo
::physicalDeviceCount equal to 1, flags must not contain
VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT

• VUID-VkImageCreateInfo-flags-02259
If flags contains VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT, then mipLevels must
be one, arrayLayers must be one, imageType must be VK_IMAGE_TYPE_2D. and
imageCreateMaybeLinear (as defined in Image Creation Limits) must be VK_FALSE

• VUID-VkImageCreateInfo-flags-01572
If flags contains VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT, then format must be a
compressed image format

• VUID-VkImageCreateInfo-flags-01573
If flags contains VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT, then flags must also
contain VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

• VUID-VkImageCreateInfo-initialLayout-00993
initialLayout must be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkImageCreateInfo-pNext-01443
If the pNext chain includes a VkExternalMemoryImageCreateInfo or
VkExternalMemoryImageCreateInfoNV structure whose handleTypes member is not 0,
initialLayout must be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkImageCreateInfo-format-06410
If the image format is one of the formats that require a sampler Y′CBCR conversion,
mipLevels must be 1

• VUID-VkImageCreateInfo-format-06411
If the image format is one of the formats that require a sampler Y′CBCR conversion, samples
must be VK_SAMPLE_COUNT_1_BIT

• VUID-VkImageCreateInfo-format-06412
If the image format is one of the formats that require a sampler Y′CBCR conversion,
imageType must be VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-imageCreateFormatFeatures-02260
If format is a multi-planar format, and if imageCreateFormatFeatures (as defined in Image

1021

Creation Limits) does not contain VK_FORMAT_FEATURE_DISJOINT_BIT, then flags must not
contain VK_IMAGE_CREATE_DISJOINT_BIT

• VUID-VkImageCreateInfo-format-01577
If format is not a multi-planar format, and flags does not include
VK_IMAGE_CREATE_ALIAS_BIT, flags must not contain VK_IMAGE_CREATE_DISJOINT_BIT

• VUID-VkImageCreateInfo-format-04712
If format has a _422 or _420 suffix, extent.width must be a multiple of 2

• VUID-VkImageCreateInfo-format-04713
If format has a _420 suffix, extent.height must be a multiple of 2

• VUID-VkImageCreateInfo-format-09583
If format is one of the VK_FORMAT_PVTRC1_*_IMG formats, extent.width must be a power of 2

• VUID-VkImageCreateInfo-format-09584
If format is one of the VK_FORMAT_PVTRC1_*_IMG formats, extent.height must be a power of 2

• VUID-VkImageCreateInfo-tiling-02261
If tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then the pNext chain must include
exactly one of VkImageDrmFormatModifierListCreateInfoEXT or
VkImageDrmFormatModifierExplicitCreateInfoEXT structures

• VUID-VkImageCreateInfo-pNext-02262
If the pNext chain includes a VkImageDrmFormatModifierListCreateInfoEXT or
VkImageDrmFormatModifierExplicitCreateInfoEXT structure, then tiling must be
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT

• VUID-VkImageCreateInfo-tiling-02353
If tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT and flags contains
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, then the pNext chain must include a
VkImageFormatListCreateInfo structure with non-zero viewFormatCount

• VUID-VkImageCreateInfo-flags-01533
If flags contains VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT format must
be a depth or depth/stencil format

• VUID-VkImageCreateInfo-pNext-02393
If the pNext chain includes a VkExternalMemoryImageCreateInfo structure whose
handleTypes member includes
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, imageType must be
VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-pNext-02394
If the pNext chain includes a VkExternalMemoryImageCreateInfo structure whose
handleTypes member includes
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, mipLevels must
either be 1 or equal to the number of levels in the complete mipmap chain based on
extent.width, extent.height, and extent.depth

• VUID-VkImageCreateInfo-pNext-02396
If the pNext chain includes a VkExternalFormatANDROID structure whose externalFormat
member is not 0, flags must not include VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

• VUID-VkImageCreateInfo-pNext-02397

1022

If the pNext chain includes a VkExternalFormatANDROID structure whose externalFormat
member is not 0, usage must not include any usages except
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, or
VK_IMAGE_USAGE_SAMPLED_BIT

• VUID-VkImageCreateInfo-pNext-09457
If the pNext chain includes a VkExternalFormatANDROID structure whose externalFormat
member is not 0, and externalFormatResolve feature is not enabled, usage must not include
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT or VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-pNext-02398
If the pNext chain includes a VkExternalFormatANDROID structure whose externalFormat
member is not 0, tiling must be VK_IMAGE_TILING_OPTIMAL

• VUID-VkImageCreateInfo-pNext-08951
If the pNext chain includes a VkExternalMemoryImageCreateInfo structure whose
handleTypes member includes VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX,
imageType must be VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-pNext-08952
If the pNext chain includes a VkExternalMemoryImageCreateInfo structure whose
handleTypes member includes VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX,
mipLevels must either be 1 or equal to the number of levels in the complete mipmap chain
based on extent.width, extent.height, and extent.depth

• VUID-VkImageCreateInfo-pNext-08953
If the pNext chain includes a VkExternalFormatQNX structure whose externalFormat
member is not 0, flags must not include VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

• VUID-VkImageCreateInfo-pNext-08954
If the pNext chain includes a VkExternalFormatQNX structure whose externalFormat
member is not 0, usage must not include any usages except VK_IMAGE_USAGE_SAMPLED_BIT

• VUID-VkImageCreateInfo-pNext-08955
If the pNext chain includes a VkExternalFormatQNX structure whose externalFormat
member is not 0, tiling must be VK_IMAGE_TILING_OPTIMAL

• VUID-VkImageCreateInfo-format-02795
If format is a depth-stencil format, usage includes
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and the pNext chain includes a
VkImageStencilUsageCreateInfo structure, then its VkImageStencilUsageCreateInfo
::stencilUsage member must also include VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-format-02796
If format is a depth-stencil format, usage does not include
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and the pNext chain includes a
VkImageStencilUsageCreateInfo structure, then its VkImageStencilUsageCreateInfo
::stencilUsage member must also not include
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-format-02797
If format is a depth-stencil format, usage includes
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, and the pNext chain includes a
VkImageStencilUsageCreateInfo structure, then its VkImageStencilUsageCreateInfo

1023

::stencilUsage member must also include VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-format-02798
If format is a depth-stencil format, usage does not include
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, and the pNext chain includes a
VkImageStencilUsageCreateInfo structure, then its VkImageStencilUsageCreateInfo
::stencilUsage member must also not include VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-Format-02536
If Format is a depth-stencil format and the pNext chain includes a
VkImageStencilUsageCreateInfo structure with its stencilUsage member including
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.width must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferWidth

• VUID-VkImageCreateInfo-format-02537
If format is a depth-stencil format and the pNext chain includes a
VkImageStencilUsageCreateInfo structure with its stencilUsage member including
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.height must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferHeight

• VUID-VkImageCreateInfo-format-02538
If the shaderStorageImageMultisample feature is not enabled, format is a depth-stencil
format and the pNext chain includes a VkImageStencilUsageCreateInfo structure with its
stencilUsage including VK_IMAGE_USAGE_STORAGE_BIT, samples must be
VK_SAMPLE_COUNT_1_BIT

• VUID-VkImageCreateInfo-flags-02050
If flags contains VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV, imageType must be
VK_IMAGE_TYPE_2D or VK_IMAGE_TYPE_3D

• VUID-VkImageCreateInfo-flags-02051
If flags contains VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV, it must not contain
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT and the format must not be a depth/stencil format

• VUID-VkImageCreateInfo-flags-02052
If flags contains VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV and imageType is VK_IMAGE_TYPE_2D,
extent.width and extent.height must be greater than 1

• VUID-VkImageCreateInfo-flags-02053
If flags contains VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV and imageType is VK_IMAGE_TYPE_3D,
extent.width, extent.height, and extent.depth must be greater than 1

• VUID-VkImageCreateInfo-imageType-02082
If usage includes VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR, imageType
must be VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-samples-02083
If usage includes VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR, samples must
be VK_SAMPLE_COUNT_1_BIT

• VUID-VkImageCreateInfo-shadingRateImage-07727
If the shadingRateImage feature is enabled and usage includes
VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV, tiling must be VK_IMAGE_TILING_OPTIMAL

• VUID-VkImageCreateInfo-flags-02565

1024

If flags contains VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT, tiling must be
VK_IMAGE_TILING_OPTIMAL

• VUID-VkImageCreateInfo-flags-02566
If flags contains VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT, imageType must be VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-flags-02567
If flags contains VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT, flags must not contain
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

• VUID-VkImageCreateInfo-flags-02568
If flags contains VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT, mipLevels must be 1

• VUID-VkImageCreateInfo-usage-04992
If usage includes VK_IMAGE_USAGE_INVOCATION_MASK_BIT_HUAWEI, tiling must be
VK_IMAGE_TILING_LINEAR

• VUID-VkImageCreateInfo-imageView2DOn3DImage-04459
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::imageView2DOn3DImage is VK_FALSE, flags
must not contain VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT

• VUID-VkImageCreateInfo-multisampleArrayImage-04460
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::multisampleArrayImage is VK_FALSE, and
samples is not VK_SAMPLE_COUNT_1_BIT, then arrayLayers must be 1

• VUID-VkImageCreateInfo-pNext-06722
If a VkImageFormatListCreateInfo structure was included in the pNext chain and
VkImageFormatListCreateInfo::viewFormatCount is not zero, then each format in
VkImageFormatListCreateInfo::pViewFormats must either be compatible with the format as
described in the compatibility table or, if flags contains
VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT, be an uncompressed format that is
size-compatible with format

• VUID-VkImageCreateInfo-flags-04738
If flags does not contain VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT and the pNext chain includes
a VkImageFormatListCreateInfo structure, then VkImageFormatListCreateInfo
::viewFormatCount must be 0 or 1

• VUID-VkImageCreateInfo-usage-04815
If usage includes VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR,
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR, or VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR,
and flags does not include VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then the
pNext chain must include a VkVideoProfileListInfoKHR structure with profileCount
greater than 0 and pProfiles including at least one VkVideoProfileInfoKHR structure with
a videoCodecOperation member specifying a decode operation

• VUID-VkImageCreateInfo-usage-04816
If usage includes VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR,
VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR, or VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR,
and flags does not include VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then the
pNext chain must include a VkVideoProfileListInfoKHR structure with profileCount
greater than 0 and pProfiles including at least one VkVideoProfileInfoKHR structure with

1025

a videoCodecOperation member specifying an encode operation

• VUID-VkImageCreateInfo-flags-08328
If flags includes VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then
videoMaintenance1 must be enabled

• VUID-VkImageCreateInfo-flags-08329
If flags includes VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR and usage does not
include VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR, then usage must not include
VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR

• VUID-VkImageCreateInfo-flags-08331
If flags includes VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then usage must not
include VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR

• VUID-VkImageCreateInfo-pNext-06811
If the pNext chain includes a VkVideoProfileListInfoKHR structure with profileCount
greater than 0, then supportedVideoFormat must be VK_TRUE

• VUID-VkImageCreateInfo-pNext-06390
If the VkImage is to be used to import memory from a VkBufferCollectionFUCHSIA, a
VkBufferCollectionImageCreateInfoFUCHSIA structure must be chained to pNext

• VUID-VkImageCreateInfo-multisampledRenderToSingleSampled-06882
If the multisampledRenderToSingleSampled feature is not enabled, flags must not contain
VK_IMAGE_CREATE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_BIT_EXT

• VUID-VkImageCreateInfo-flags-06883
If flags contains VK_IMAGE_CREATE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_BIT_EXT, samples
must be VK_SAMPLE_COUNT_1_BIT

• VUID-VkImageCreateInfo-pNext-06743
If the pNext chain includes a VkImageCompressionControlEXT structure, format is a multi-
planar format, and VkImageCompressionControlEXT::flags includes
VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT, then VkImageCompressionControlEXT
::compressionControlPlaneCount must be equal to the number of planes in format

• VUID-VkImageCreateInfo-pNext-06744
If the pNext chain includes a VkImageCompressionControlEXT structure, format is not a
multi-planar format, and VkImageCompressionControlEXT::flags includes
VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT, then VkImageCompressionControlEXT
::compressionControlPlaneCount must be 1

• VUID-VkImageCreateInfo-pNext-06746
If the pNext chain includes a VkImageCompressionControlEXT structure, it must not
contain a VkImageDrmFormatModifierExplicitCreateInfoEXT structure

• VUID-VkImageCreateInfo-flags-08104
If flags includes VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT, the
descriptorBufferCaptureReplay feature must be enabled

• VUID-VkImageCreateInfo-pNext-08105
If the pNext chain includes a VkOpaqueCaptureDescriptorDataCreateInfoEXT structure,
flags must contain VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

• VUID-VkImageCreateInfo-pNext-06783

1026

If the pNext chain includes a VkExportMetalObjectCreateInfoEXT structure, its
exportObjectType member must be either
VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT or
VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT

• VUID-VkImageCreateInfo-pNext-06784
If the pNext chain includes a VkImportMetalTextureInfoEXT structure its plane member
must be VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, or
VK_IMAGE_ASPECT_PLANE_2_BIT

• VUID-VkImageCreateInfo-pNext-06785
If the pNext chain includes a VkImportMetalTextureInfoEXT structure and the image does
not have a multi-planar format, then VkImportMetalTextureInfoEXT::plane must be
VK_IMAGE_ASPECT_PLANE_0_BIT

• VUID-VkImageCreateInfo-pNext-06786
If the pNext chain includes a VkImportMetalTextureInfoEXT structure and the image has a
multi-planar format with only two planes, then VkImportMetalTextureInfoEXT::plane
must not be VK_IMAGE_ASPECT_PLANE_2_BIT

• VUID-VkImageCreateInfo-imageCreateFormatFeatures-09048
If imageCreateFormatFeatures (as defined in Image Creation Limits) does not contain
VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT_EXT, then usage must not contain
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT

Valid Usage (Implicit)

• VUID-VkImageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO

• VUID-VkImageCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkBufferCollectionImageCreateInfoFUCHSIA,
VkDedicatedAllocationImageCreateInfoNV, VkExportMetalObjectCreateInfoEXT,
VkExternalFormatANDROID, VkExternalFormatQNX,
VkExternalMemoryImageCreateInfo, VkExternalMemoryImageCreateInfoNV,
VkImageCompressionControlEXT, VkImageDrmFormatModifierExplicitCreateInfoEXT,
VkImageDrmFormatModifierListCreateInfoEXT, VkImageFormatListCreateInfo,
VkImageStencilUsageCreateInfo, VkImageSwapchainCreateInfoKHR,
VkImportMetalIOSurfaceInfoEXT, VkImportMetalTextureInfoEXT,
VkOpaqueCaptureDescriptorDataCreateInfoEXT, VkOpticalFlowImageFormatInfoNV, or
VkVideoProfileListInfoKHR

• VUID-VkImageCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkExportMetalObjectCreateInfoEXT or VkImportMetalTextureInfoEXT

• VUID-VkImageCreateInfo-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

• VUID-VkImageCreateInfo-imageType-parameter

1027

imageType must be a valid VkImageType value

• VUID-VkImageCreateInfo-format-parameter
format must be a valid VkFormat value

• VUID-VkImageCreateInfo-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-VkImageCreateInfo-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-VkImageCreateInfo-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkImageCreateInfo-usage-requiredbitmask
usage must not be 0

• VUID-VkImageCreateInfo-sharingMode-parameter
sharingMode must be a valid VkSharingMode value

• VUID-VkImageCreateInfo-initialLayout-parameter
initialLayout must be a valid VkImageLayout value

The VkBufferCollectionImageCreateInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkBufferCollectionImageCreateInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkBufferCollectionFUCHSIA collection;
 uint32_t index;
} VkBufferCollectionImageCreateInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• collection is the VkBufferCollectionFUCHSIA handle

• index is the index of the buffer in the buffer collection from which the memory will be imported

Valid Usage

• VUID-VkBufferCollectionImageCreateInfoFUCHSIA-index-06391
index must be less than VkBufferCollectionPropertiesFUCHSIA::bufferCount

Valid Usage (Implicit)

• VUID-VkBufferCollectionImageCreateInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_COLLECTION_IMAGE_CREATE_INFO_FUCHSIA

• VUID-VkBufferCollectionImageCreateInfoFUCHSIA-collection-parameter

1028

collection must be a valid VkBufferCollectionFUCHSIA handle

The VkImageStencilUsageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkImageStencilUsageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageUsageFlags stencilUsage;
} VkImageStencilUsageCreateInfo;

or the equivalent

// Provided by VK_EXT_separate_stencil_usage
typedef VkImageStencilUsageCreateInfo VkImageStencilUsageCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stencilUsage is a bitmask of VkImageUsageFlagBits describing the intended usage of the stencil
aspect of the image.

If the pNext chain of VkImageCreateInfo includes a VkImageStencilUsageCreateInfo structure, then
that structure includes the usage flags specific to the stencil aspect of the image for an image with a
depth-stencil format.

This structure specifies image usages which only apply to the stencil aspect of a depth/stencil
format image. When this structure is included in the pNext chain of VkImageCreateInfo, the stencil
aspect of the image must only be used as specified by stencilUsage. When this structure is not
included in the pNext chain of VkImageCreateInfo, the stencil aspect of an image must only be used
as specified by VkImageCreateInfo::usage. Use of other aspects of an image are unaffected by this
structure.

This structure can also be included in the pNext chain of VkPhysicalDeviceImageFormatInfo2 to
query additional capabilities specific to image creation parameter combinations including a
separate set of usage flags for the stencil aspect of the image using
vkGetPhysicalDeviceImageFormatProperties2. When this structure is not included in the pNext
chain of VkPhysicalDeviceImageFormatInfo2 then the implicit value of stencilUsage matches that of
VkPhysicalDeviceImageFormatInfo2::usage.

Valid Usage

• VUID-VkImageStencilUsageCreateInfo-stencilUsage-02539
If stencilUsage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, it must not include bits
other than VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

1029

Valid Usage (Implicit)

• VUID-VkImageStencilUsageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO

• VUID-VkImageStencilUsageCreateInfo-stencilUsage-parameter
stencilUsage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkImageStencilUsageCreateInfo-stencilUsage-requiredbitmask
stencilUsage must not be 0

If the pNext chain includes a VkDedicatedAllocationImageCreateInfoNV structure, then that structure
includes an enable controlling whether the image will have a dedicated memory allocation bound
to it.

The VkDedicatedAllocationImageCreateInfoNV structure is defined as:

// Provided by VK_NV_dedicated_allocation
typedef struct VkDedicatedAllocationImageCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkBool32 dedicatedAllocation;
} VkDedicatedAllocationImageCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dedicatedAllocation specifies whether the image will have a dedicated allocation bound to it.

Note

Using a dedicated allocation for color and depth/stencil attachments or other large
images may improve performance on some devices.

Valid Usage

• VUID-VkDedicatedAllocationImageCreateInfoNV-dedicatedAllocation-00994
If dedicatedAllocation is VK_TRUE, VkImageCreateInfo::flags must not include
VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT

Valid Usage (Implicit)

• VUID-VkDedicatedAllocationImageCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV

1030

To define a set of external memory handle types that may be used as backing store for an image,
add a VkExternalMemoryImageCreateInfo structure to the pNext chain of the VkImageCreateInfo
structure. The VkExternalMemoryImageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalMemoryImageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlags handleTypes;
} VkExternalMemoryImageCreateInfo;

or the equivalent

// Provided by VK_KHR_external_memory
typedef VkExternalMemoryImageCreateInfo VkExternalMemoryImageCreateInfoKHR;

Note

A VkExternalMemoryImageCreateInfo structure with a non-zero handleTypes field
must be included in the creation parameters for an image that will be bound to
memory that is either exported or imported.

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is zero or a bitmask of VkExternalMemoryHandleTypeFlagBits specifying one or
more external memory handle types.

Valid Usage (Implicit)

• VUID-VkExternalMemoryImageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO

• VUID-VkExternalMemoryImageCreateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalMemoryHandleTypeFlagBits
values

If the pNext chain includes a VkExternalMemoryImageCreateInfoNV structure, then that structure
defines a set of external memory handle types that may be used as backing store for the image.

The VkExternalMemoryImageCreateInfoNV structure is defined as:

// Provided by VK_NV_external_memory
typedef struct VkExternalMemoryImageCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagsNV handleTypes;

1031

} VkExternalMemoryImageCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is zero or a bitmask of VkExternalMemoryHandleTypeFlagBitsNV specifying one or
more external memory handle types.

Valid Usage (Implicit)

• VUID-VkExternalMemoryImageCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV

• VUID-VkExternalMemoryImageCreateInfoNV-handleTypes-parameter
handleTypes must be a valid combination of VkExternalMemoryHandleTypeFlagBitsNV
values

VkExternalFormatANDROID is defined as:

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
typedef struct VkExternalFormatANDROID {
 VkStructureType sType;
 void* pNext;
 uint64_t externalFormat;
} VkExternalFormatANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• externalFormat is an implementation-defined identifier for the external format

When included in the pNext chain of another structure, it indicates additional format information
beyond what is provided by VkFormat values for an Android hardware buffer. If externalFormat is
zero, it indicates that no external format is used, and implementations should rely only on other
format information. If this structure is not present, it is equivalent to setting externalFormat to zero.

Valid Usage

• VUID-VkExternalFormatANDROID-externalFormat-01894
externalFormat must be 0 or a value returned in the externalFormat member of
VkAndroidHardwareBufferFormatPropertiesANDROID by an earlier call to
vkGetAndroidHardwareBufferPropertiesANDROID

Valid Usage (Implicit)

• VUID-VkExternalFormatANDROID-sType-sType

1032

sType must be VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID

To create an image with an QNX Screen external format, add a VkExternalFormatQNX structure in the
pNext chain of VkImageCreateInfo. VkExternalFormatQNX is defined as:

// Provided by VK_QNX_external_memory_screen_buffer
typedef struct VkExternalFormatQNX {
 VkStructureType sType;
 void* pNext;
 uint64_t externalFormat;
} VkExternalFormatQNX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• externalFormat is an implementation-defined identifier for the external format

If externalFormat is zero, the effect is as if the VkExternalFormatQNX structure was not present.
Otherwise, the image will have the specified external format.

Valid Usage

• VUID-VkExternalFormatQNX-externalFormat-08956
externalFormat must be 0 or a value returned in the externalFormat member of
VkScreenBufferFormatPropertiesQNX by an earlier call to
vkGetScreenBufferPropertiesQNX

Valid Usage (Implicit)

• VUID-VkExternalFormatQNX-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_QNX

If the pNext chain of VkImageCreateInfo includes a VkImageSwapchainCreateInfoKHR structure, then
that structure includes a swapchain handle indicating that the image will be bound to memory
from that swapchain.

The VkImageSwapchainCreateInfoKHR structure is defined as:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
typedef struct VkImageSwapchainCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSwapchainKHR swapchain;
} VkImageSwapchainCreateInfoKHR;

1033

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchain is VK_NULL_HANDLE or a handle of a swapchain that the image will be bound to.

Valid Usage

• VUID-VkImageSwapchainCreateInfoKHR-swapchain-00995
If swapchain is not VK_NULL_HANDLE, the fields of VkImageCreateInfo must match the
implied image creation parameters of the swapchain

Valid Usage (Implicit)

• VUID-VkImageSwapchainCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR

• VUID-VkImageSwapchainCreateInfoKHR-swapchain-parameter
If swapchain is not VK_NULL_HANDLE, swapchain must be a valid VkSwapchainKHR
handle

If the pNext chain of VkImageCreateInfo includes a VkImageFormatListCreateInfo structure, then that
structure contains a list of all formats that can be used when creating views of this image.

The VkImageFormatListCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkImageFormatListCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t viewFormatCount;
 const VkFormat* pViewFormats;
} VkImageFormatListCreateInfo;

or the equivalent

// Provided by VK_KHR_image_format_list
typedef VkImageFormatListCreateInfo VkImageFormatListCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• viewFormatCount is the number of entries in the pViewFormats array.

• pViewFormats is a pointer to an array of VkFormat values specifying all formats which can be
used when creating views of this image.

If viewFormatCount is zero, pViewFormats is ignored and the image is created as if the

1034

VkImageFormatListCreateInfo structure were not included in the pNext chain of VkImageCreateInfo.

Valid Usage

• VUID-VkImageFormatListCreateInfo-viewFormatCount-09540
If viewFormatCount is not 0, each element of pViewFormats must not be VK_FORMAT_UNDEFINED

Valid Usage (Implicit)

• VUID-VkImageFormatListCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO

• VUID-VkImageFormatListCreateInfo-pViewFormats-parameter
If viewFormatCount is not 0, pViewFormats must be a valid pointer to an array of
viewFormatCount valid VkFormat values

If the pNext chain of VkImageCreateInfo includes a VkImageDrmFormatModifierListCreateInfoEXT
structure, then the image will be created with one of the Linux DRM format modifiers listed in the
structure. The choice of modifier is implementation-dependent.

The VkImageDrmFormatModifierListCreateInfoEXT structure is defined as:

// Provided by VK_EXT_image_drm_format_modifier
typedef struct VkImageDrmFormatModifierListCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t drmFormatModifierCount;
 const uint64_t* pDrmFormatModifiers;
} VkImageDrmFormatModifierListCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• drmFormatModifierCount is the length of the pDrmFormatModifiers array.

• pDrmFormatModifiers is a pointer to an array of Linux DRM format modifiers.

Valid Usage

• VUID-VkImageDrmFormatModifierListCreateInfoEXT-pDrmFormatModifiers-02263
Each modifier in pDrmFormatModifiers must be compatible with the parameters in
VkImageCreateInfo and its pNext chain, as determined by querying
VkPhysicalDeviceImageFormatInfo2 extended with
VkPhysicalDeviceImageDrmFormatModifierInfoEXT

1035

Valid Usage (Implicit)

• VUID-VkImageDrmFormatModifierListCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT

• VUID-VkImageDrmFormatModifierListCreateInfoEXT-pDrmFormatModifiers-parameter
pDrmFormatModifiers must be a valid pointer to an array of drmFormatModifierCount
uint64_t values

• VUID-VkImageDrmFormatModifierListCreateInfoEXT-drmFormatModifierCount-
arraylength
drmFormatModifierCount must be greater than 0

If the pNext chain of VkImageCreateInfo includes a
VkImageDrmFormatModifierExplicitCreateInfoEXT structure, then the image will be created with
the Linux DRM format modifier and memory layout defined by the structure.

The VkImageDrmFormatModifierExplicitCreateInfoEXT structure is defined as:

// Provided by VK_EXT_image_drm_format_modifier
typedef struct VkImageDrmFormatModifierExplicitCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint64_t drmFormatModifier;
 uint32_t drmFormatModifierPlaneCount;
 const VkSubresourceLayout* pPlaneLayouts;
} VkImageDrmFormatModifierExplicitCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• drmFormatModifier is the Linux DRM format modifier with which the image will be created.

• drmFormatModifierPlaneCount is the number of memory planes in the image (as reported by
VkDrmFormatModifierPropertiesEXT) as well as the length of the pPlaneLayouts array.

• pPlaneLayouts is a pointer to an array of VkSubresourceLayout structures describing the image’s
memory planes.

The ith member of pPlaneLayouts describes the layout of the image’s ith memory plane (that is,
VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT). In each element of pPlaneLayouts, the implementation
must ignore size. The implementation calculates the size of each plane, which the application can
query with vkGetImageSubresourceLayout.

When creating an image with VkImageDrmFormatModifierExplicitCreateInfoEXT, it is the
application’s responsibility to satisfy all valid usage requirements. However, the implementation
must validate that the provided pPlaneLayouts, when combined with the provided
drmFormatModifier and other creation parameters in VkImageCreateInfo and its pNext chain,
produce a valid image. (This validation is necessarily implementation-dependent and outside the
scope of Vulkan, and therefore not described by valid usage requirements). If this validation fails,

1036

then vkCreateImage returns VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT.

Valid Usage

• VUID-VkImageDrmFormatModifierExplicitCreateInfoEXT-drmFormatModifier-02264
drmFormatModifier must be compatible with the parameters in VkImageCreateInfo and its
pNext chain, as determined by querying VkPhysicalDeviceImageFormatInfo2 extended
with VkPhysicalDeviceImageDrmFormatModifierInfoEXT

• VUID-VkImageDrmFormatModifierExplicitCreateInfoEXT-
drmFormatModifierPlaneCount-02265
drmFormatModifierPlaneCount must be equal to the VkDrmFormatModifierPropertiesEXT
::drmFormatModifierPlaneCount associated with VkImageCreateInfo::format and
drmFormatModifier, as found by querying VkDrmFormatModifierPropertiesListEXT

• VUID-VkImageDrmFormatModifierExplicitCreateInfoEXT-size-02267
For each element of pPlaneLayouts, size must be 0

• VUID-VkImageDrmFormatModifierExplicitCreateInfoEXT-arrayPitch-02268
For each element of pPlaneLayouts, arrayPitch must be 0 if VkImageCreateInfo
::arrayLayers is 1

• VUID-VkImageDrmFormatModifierExplicitCreateInfoEXT-depthPitch-02269
For each element of pPlaneLayouts, depthPitch must be 0 if VkImageCreateInfo
::extent.depth is 1

Valid Usage (Implicit)

• VUID-VkImageDrmFormatModifierExplicitCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT

• VUID-VkImageDrmFormatModifierExplicitCreateInfoEXT-pPlaneLayouts-parameter
pPlaneLayouts must be a valid pointer to an array of drmFormatModifierPlaneCount
VkSubresourceLayout structures

• VUID-VkImageDrmFormatModifierExplicitCreateInfoEXT-
drmFormatModifierPlaneCount-arraylength
drmFormatModifierPlaneCount must be greater than 0

If the pNext list of VkImageCreateInfo includes a VkImageCompressionControlEXT structure, then that
structure describes compression controls for this image.

The VkImageCompressionControlEXT structure is defined as:

// Provided by VK_EXT_image_compression_control
typedef struct VkImageCompressionControlEXT {
 VkStructureType sType;
 const void* pNext;
 VkImageCompressionFlagsEXT flags;
 uint32_t compressionControlPlaneCount;

1037

 VkImageCompressionFixedRateFlagsEXT* pFixedRateFlags;
} VkImageCompressionControlEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkImageCompressionFlagBitsEXT describing compression controls for the
image.

• compressionControlPlaneCount is the number of entries in the pFixedRateFlags array.

• pFixedRateFlags is NULL or a pointer to an array of VkImageCompressionFixedRateFlagsEXT
bitfields describing allowed fixed-rate compression rates of each image plane. It is ignored if
flags does not include VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT.

If enabled, fixed-rate compression is done in an implementation-defined manner and may be
applied at block granularity. In that case, a write to an individual texel may modify the value of
other texels in the same block.

Valid Usage

• VUID-VkImageCompressionControlEXT-flags-06747
flags must be one of VK_IMAGE_COMPRESSION_DEFAULT_EXT,
VK_IMAGE_COMPRESSION_FIXED_RATE_DEFAULT_EXT,
VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT, or VK_IMAGE_COMPRESSION_DISABLED_EXT

• VUID-VkImageCompressionControlEXT-flags-06748
If flags includes VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT, pFixedRateFlags must not
be NULL

Valid Usage (Implicit)

• VUID-VkImageCompressionControlEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT

Note

Some combinations of compression properties may not be supported. For example,
some implementations may not support different fixed-rate compression rates per
plane of a multi-planar format and will not be able to enable fixed-rate
compression for any plane if the requested rates differ.

Possible values of VkImageCompressionControlEXT::flags, specifying compression controls for an
image, are:

// Provided by VK_EXT_image_compression_control
typedef enum VkImageCompressionFlagBitsEXT {
 VK_IMAGE_COMPRESSION_DEFAULT_EXT = 0,

1038

 VK_IMAGE_COMPRESSION_FIXED_RATE_DEFAULT_EXT = 0x00000001,
 VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT = 0x00000002,
 VK_IMAGE_COMPRESSION_DISABLED_EXT = 0x00000004,
} VkImageCompressionFlagBitsEXT;

• VK_IMAGE_COMPRESSION_DEFAULT_EXT specifies that the default image compression setting is used.
Implementations must not apply fixed-rate compression.

• VK_IMAGE_COMPRESSION_FIXED_RATE_DEFAULT_EXT specifies that the implementation may choose any
supported fixed-rate compression setting in an implementation-defined manner based on the
properties of the image.

• VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT specifies that fixed-rate compression may be
used and that the allowed compression rates are specified by VkImageCompressionControlEXT
::pFixedRateFlags.

• VK_IMAGE_COMPRESSION_DISABLED_EXT specifies that all lossless and fixed-rate compression should
be disabled.

If VkImageCompressionControlEXT::flags is VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT, then
the ith member of the pFixedRateFlags array specifies the allowed compression rates for the image’s
ith plane.

Note

If VK_IMAGE_COMPRESSION_DISABLED_EXT is included in
VkImageCompressionControlEXT::flags, both lossless and fixed-rate compression
will be disabled. This is likely to have a negative impact on performance and is
only intended to be used for debugging purposes.

// Provided by VK_EXT_image_compression_control
typedef VkFlags VkImageCompressionFlagsEXT;

VkImageCompressionFlagsEXT is a bitmask type for setting a mask of zero or more
VkImageCompressionFlagBitsEXT.

// Provided by VK_EXT_image_compression_control
typedef VkFlags VkImageCompressionFixedRateFlagsEXT;

VkImageCompressionFixedRateFlagsEXT is a bitmask type for setting a mask of zero or more
VkImageCompressionFixedRateFlagBitsEXT.

Bits which can be set in VkImageCompressionControlEXT::pFixedRateFlags, specifying allowed
compression rates for an image plane, are:

// Provided by VK_EXT_image_compression_control
typedef enum VkImageCompressionFixedRateFlagBitsEXT {
 VK_IMAGE_COMPRESSION_FIXED_RATE_NONE_EXT = 0,
 VK_IMAGE_COMPRESSION_FIXED_RATE_1BPC_BIT_EXT = 0x00000001,

1039

 VK_IMAGE_COMPRESSION_FIXED_RATE_2BPC_BIT_EXT = 0x00000002,
 VK_IMAGE_COMPRESSION_FIXED_RATE_3BPC_BIT_EXT = 0x00000004,
 VK_IMAGE_COMPRESSION_FIXED_RATE_4BPC_BIT_EXT = 0x00000008,
 VK_IMAGE_COMPRESSION_FIXED_RATE_5BPC_BIT_EXT = 0x00000010,
 VK_IMAGE_COMPRESSION_FIXED_RATE_6BPC_BIT_EXT = 0x00000020,
 VK_IMAGE_COMPRESSION_FIXED_RATE_7BPC_BIT_EXT = 0x00000040,
 VK_IMAGE_COMPRESSION_FIXED_RATE_8BPC_BIT_EXT = 0x00000080,
 VK_IMAGE_COMPRESSION_FIXED_RATE_9BPC_BIT_EXT = 0x00000100,
 VK_IMAGE_COMPRESSION_FIXED_RATE_10BPC_BIT_EXT = 0x00000200,
 VK_IMAGE_COMPRESSION_FIXED_RATE_11BPC_BIT_EXT = 0x00000400,
 VK_IMAGE_COMPRESSION_FIXED_RATE_12BPC_BIT_EXT = 0x00000800,
 VK_IMAGE_COMPRESSION_FIXED_RATE_13BPC_BIT_EXT = 0x00001000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_14BPC_BIT_EXT = 0x00002000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_15BPC_BIT_EXT = 0x00004000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_16BPC_BIT_EXT = 0x00008000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_17BPC_BIT_EXT = 0x00010000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_18BPC_BIT_EXT = 0x00020000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_19BPC_BIT_EXT = 0x00040000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_20BPC_BIT_EXT = 0x00080000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_21BPC_BIT_EXT = 0x00100000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_22BPC_BIT_EXT = 0x00200000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_23BPC_BIT_EXT = 0x00400000,
 VK_IMAGE_COMPRESSION_FIXED_RATE_24BPC_BIT_EXT = 0x00800000,
} VkImageCompressionFixedRateFlagBitsEXT;

• VK_IMAGE_COMPRESSION_FIXED_RATE_NONE_EXT specifies that fixed-rate compression must not be
used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_1BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [1,2) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_2BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [2,3) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_3BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [3,4) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_4BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [4,5) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_5BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [5,6) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_6BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [6,7) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_7BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [7,8) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_8BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [8,9) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_9BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [9,10) bits per component may be used.

1040

• VK_IMAGE_COMPRESSION_FIXED_RATE_10BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [10,11) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_11BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of [11,12) bits per component may be used.

• VK_IMAGE_COMPRESSION_FIXED_RATE_12BPC_BIT_EXT specifies that fixed-rate compression with a
bitrate of at least 12 bits per component may be used.

If the format has a different bit rate for different components, VkImageCompressionControlEXT
::pFixedRateFlags describes the rate of the component with the largest number of bits assigned to it,
scaled pro rata. For example, to request that a VK_FORMAT_A2R10G10B10_UNORM_PACK32 format be stored
at a rate of 8 bits per pixel, use VK_IMAGE_COMPRESSION_FIXED_RATE_2BPC_BIT_EXT (10 bits for the largest
component, stored at quarter the original size, 2.5 bits, rounded down).

If flags includes VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT, and multiple bits are set in
VkImageCompressionControlEXT::pFixedRateFlags for a plane, implementations should apply the
lowest allowed bitrate that is supported.

Note

The choice of “bits per component” terminology was chosen so that the same
compression rate describes the same degree of compression applied to formats
that differ only in the number of components. For example, VK_FORMAT_R8G8_UNORM
compressed to half its original size is a rate of 4 bits per component, 8 bits per
pixel. VK_FORMAT_R8G8B8A8_UNORM compressed to half its original size is 4 bits per
component, 16 bits per pixel. Both of these cases can be requested with
VK_IMAGE_COMPRESSION_FIXED_RATE_4BPC_BIT_EXT.

To query the compression properties of an image, add a VkImageCompressionPropertiesEXT
structure to the pNext chain of the VkSubresourceLayout2EXT structure in a call to
vkGetImageSubresourceLayout2KHR or vkGetImageSubresourceLayout2EXT.

To determine the compression rates that are supported for a given image format, add a
VkImageCompressionPropertiesEXT structure to the pNext chain of the VkImageFormatProperties2
structure in a call to vkGetPhysicalDeviceImageFormatProperties2.

Note

Since fixed-rate compression is disabled by default, the
VkImageCompressionPropertiesEXT structure passed to
vkGetPhysicalDeviceImageFormatProperties2 will not indicate any fixed-rate
compression support unless a VkImageCompressionControlEXT structure is also
included in the pNext chain of the VkPhysicalDeviceImageFormatInfo2 structure
passed to the same command.

The VkImageCompressionPropertiesEXT structure is defined as:

// Provided by VK_EXT_image_compression_control
typedef struct VkImageCompressionPropertiesEXT {
 VkStructureType sType;

1041

 void* pNext;
 VkImageCompressionFlagsEXT imageCompressionFlags;
 VkImageCompressionFixedRateFlagsEXT imageCompressionFixedRateFlags;
} VkImageCompressionPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageCompressionFlags returns a value describing the compression controls that apply to the
image. The value will be either VK_IMAGE_COMPRESSION_DEFAULT_EXT to indicate no fixed-rate
compression, VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT to indicate fixed-rate compression,
or VK_IMAGE_COMPRESSION_DISABLED_EXT to indicate no compression.

• imageCompressionFixedRateFlags returns a VkImageCompressionFixedRateFlagsEXT value
describing the compression rates that apply to the specified aspect of the image.

Valid Usage (Implicit)

• VUID-VkImageCompressionPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT

Bits which can be set in

• VkImageViewUsageCreateInfo::usage

• VkImageStencilUsageCreateInfo::stencilUsage

• VkImageCreateInfo::usage

specify intended usage of an image, and are:

// Provided by VK_VERSION_1_0
typedef enum VkImageUsageFlagBits {
 VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,
 VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
 VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,
 VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000020,
 VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,
 // Provided by VK_KHR_video_decode_queue
 VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR = 0x00000400,
 // Provided by VK_KHR_video_decode_queue
 VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR = 0x00000800,
 // Provided by VK_KHR_video_decode_queue
 VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR = 0x00001000,
 // Provided by VK_EXT_fragment_density_map
 VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT = 0x00000200,
 // Provided by VK_KHR_fragment_shading_rate

1042

 VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR = 0x00000100,
 // Provided by VK_EXT_host_image_copy
 VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT = 0x00400000,
 // Provided by VK_KHR_video_encode_queue
 VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR = 0x00002000,
 // Provided by VK_KHR_video_encode_queue
 VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR = 0x00004000,
 // Provided by VK_KHR_video_encode_queue
 VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR = 0x00008000,
 // Provided by VK_EXT_attachment_feedback_loop_layout
 VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT = 0x00080000,
 // Provided by VK_HUAWEI_invocation_mask
 VK_IMAGE_USAGE_INVOCATION_MASK_BIT_HUAWEI = 0x00040000,
 // Provided by VK_QCOM_image_processing
 VK_IMAGE_USAGE_SAMPLE_WEIGHT_BIT_QCOM = 0x00100000,
 // Provided by VK_QCOM_image_processing
 VK_IMAGE_USAGE_SAMPLE_BLOCK_MATCH_BIT_QCOM = 0x00200000,
 // Provided by VK_NV_shading_rate_image
 VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV =
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR,
} VkImageUsageFlagBits;

• VK_IMAGE_USAGE_TRANSFER_SRC_BIT specifies that the image can be used as the source of a transfer
command.

• VK_IMAGE_USAGE_TRANSFER_DST_BIT specifies that the image can be used as the destination of a
transfer command.

• VK_IMAGE_USAGE_SAMPLED_BIT specifies that the image can be used to create a VkImageView suitable
for occupying a VkDescriptorSet slot either of type VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and be sampled by a shader.

• VK_IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkImageView suitable
for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

• VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for use as a color or resolve attachment in a VkFramebuffer.

• VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for use as a depth/stencil or depth/stencil resolve attachment in a
VkFramebuffer.

• VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT specifies that implementations may support using
memory allocations with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT to back an image with
this usage. This bit can be set for any image that can be used to create a VkImageView suitable for
use as a color, resolve, depth/stencil, or input attachment.

• VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for occupying VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; be read from a shader as an input attachment; and be
used as an input attachment in a framebuffer.

• VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT specifies that the image can be used to create a

1043

VkImageView suitable for use as a fragment density map image.

• VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR specifies that the image can be used
to create a VkImageView suitable for use as a fragment shading rate attachment or shading rate
image

• VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR specifies that the image can be used as a decode
output picture in a video decode operation.

• VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR is reserved for future use.

• VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR specifies that the image can be used as an output
reconstructed picture or an input reference picture in a video decode operation.

• VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR is reserved for future use.

• VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR specifies that the image can be used as an encode
input picture in a video encode operation.

• VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR specifies that the image can be used as an output
reconstructed picture or an input reference picture in a video encode operation.

• VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT specifies that the image can be transitioned to
the VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT layout to be used as a color or
depth/stencil attachment in a VkFramebuffer and/or as a read-only input resource in a shader
(sampled image, combined image sampler or input attachment) in the same render pass.

• VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT specifies that the image can be used with host copy
commands and host layout transitions.

// Provided by VK_VERSION_1_0
typedef VkFlags VkImageUsageFlags;

VkImageUsageFlags is a bitmask type for setting a mask of zero or more VkImageUsageFlagBits.

When creating a VkImageView one of the following VkImageUsageFlagBits must be set:

• VK_IMAGE_USAGE_SAMPLED_BIT

• VK_IMAGE_USAGE_STORAGE_BIT

• VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

• VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT

• VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR

• VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR

• VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR

• VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR

1044

• VK_IMAGE_USAGE_SAMPLE_WEIGHT_BIT_QCOM

• VK_IMAGE_USAGE_SAMPLE_BLOCK_MATCH_BIT_QCOM

Bits which can be set in VkImageCreateInfo::flags, specifying additional parameters of an image,
are:

// Provided by VK_VERSION_1_0
typedef enum VkImageCreateFlagBits {
 VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
 VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
 VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
 VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
 VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_ALIAS_BIT = 0x00000400,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT = 0x00000040,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT = 0x00000020,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT = 0x00000080,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_EXTENDED_USAGE_BIT = 0x00000100,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_PROTECTED_BIT = 0x00000800,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_DISJOINT_BIT = 0x00000200,
 // Provided by VK_NV_corner_sampled_image
 VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV = 0x00002000,
 // Provided by VK_EXT_sample_locations
 VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT = 0x00001000,
 // Provided by VK_EXT_fragment_density_map
 VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT = 0x00004000,
 // Provided by VK_EXT_descriptor_buffer
 VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT = 0x00010000,
 // Provided by VK_EXT_multisampled_render_to_single_sampled
 VK_IMAGE_CREATE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_BIT_EXT = 0x00040000,
 // Provided by VK_EXT_image_2d_view_of_3d
 VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT = 0x00020000,
 // Provided by VK_QCOM_fragment_density_map_offset
 VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM = 0x00008000,
 // Provided by VK_KHR_video_maintenance1
 VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR = 0x00100000,
 // Provided by VK_KHR_bind_memory2 with VK_KHR_device_group
 VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR =
VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT,
 // Provided by VK_KHR_maintenance1
 VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR =
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT,
 // Provided by VK_KHR_maintenance2

1045

 VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR =
VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT,
 // Provided by VK_KHR_maintenance2
 VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR = VK_IMAGE_CREATE_EXTENDED_USAGE_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_IMAGE_CREATE_DISJOINT_BIT_KHR = VK_IMAGE_CREATE_DISJOINT_BIT,
 // Provided by VK_KHR_bind_memory2
 VK_IMAGE_CREATE_ALIAS_BIT_KHR = VK_IMAGE_CREATE_ALIAS_BIT,
} VkImageCreateFlagBits;

• VK_IMAGE_CREATE_SPARSE_BINDING_BIT specifies that the image will be backed using sparse
memory binding.

• VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT specifies that the image can be partially backed using
sparse memory binding. Images created with this flag must also be created with the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

• VK_IMAGE_CREATE_SPARSE_ALIASED_BIT specifies that the image will be backed using sparse
memory binding with memory ranges that might also simultaneously be backing another image
(or another portion of the same image). Images created with this flag must also be created with
the VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

• VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a VkImageView
with a different format from the image. For multi-planar formats,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that a VkImageView can be created of a plane of the
image.

• VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT specifies that the image can be used to create a
VkImageView of type VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

• VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT specifies that the image can be used to create a
VkImageView of type VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY.

• VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT specifies that the image can be used to create a
VkImageView of type VK_IMAGE_VIEW_TYPE_2D.

• VK_IMAGE_CREATE_PROTECTED_BIT specifies that the image is a protected image.

• VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT specifies that the image can be used with a
non-zero value of the splitInstanceBindRegionCount member of a
VkBindImageMemoryDeviceGroupInfo structure passed into vkBindImageMemory2. This flag
also has the effect of making the image use the standard sparse image block dimensions.

• VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT specifies that the image having a compressed
format can be used to create a VkImageView with an uncompressed format where each texel in
the image view corresponds to a compressed texel block of the image.

• VK_IMAGE_CREATE_EXTENDED_USAGE_BIT specifies that the image can be created with usage flags that
are not supported for the format the image is created with but are supported for at least one
format a VkImageView created from the image can have.

• VK_IMAGE_CREATE_DISJOINT_BIT specifies that an image with a multi-planar format must have
each plane separately bound to memory, rather than having a single memory binding for the
whole image; the presence of this bit distinguishes a disjoint image from an image without this
bit set.

1046

• VK_IMAGE_CREATE_ALIAS_BIT specifies that two images created with the same creation parameters
and aliased to the same memory can interpret the contents of the memory consistently with
each other, subject to the rules described in the Memory Aliasing section. This flag further
specifies that each plane of a disjoint image can share an in-memory non-linear representation
with single-plane images, and that a single-plane image can share an in-memory non-linear
representation with a plane of a multi-planar disjoint image, according to the rules in
Compatible Formats of Planes of Multi-Planar Formats. If the pNext chain includes a
VkExternalMemoryImageCreateInfo or VkExternalMemoryImageCreateInfoNV structure whose
handleTypes member is not 0, it is as if VK_IMAGE_CREATE_ALIAS_BIT is set.

• VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT specifies that an image with a
depth or depth/stencil format can be used with custom sample locations when used as a
depth/stencil attachment.

• VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV specifies that the image is a corner-sampled image.

• VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT specifies that an image can be in a subsampled format
which may be more optimal when written as an attachment by a render pass that has a
fragment density map attachment. Accessing a subsampled image has additional
considerations:

◦ Image data read as an image sampler will have undefined values if the sampler was not
created with flags containing VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT or was not sampled
through the use of a combined image sampler with an immutable sampler in
VkDescriptorSetLayoutBinding.

◦ Image data read with an input attachment will have undefined values if the contents were
not written as an attachment in an earlier subpass of the same render pass.

◦ Image data read as an image sampler in the fragment shader will be additionally be read by
the device during VK_PIPELINE_STAGE_VERTEX_SHADER_BIT if
VkPhysicalDeviceFragmentDensityMap2PropertiesEXT::subsampledCoarseReconstructionEarlyAcce
ss is VK_TRUE and the sampler was created with flags containing
VK_SAMPLER_CREATE_SUBSAMPLED_COARSE_RECONSTRUCTION_BIT_EXT.

◦ Image data read with load operations are resampled to the fragment density of the render
pass if VkPhysicalDeviceFragmentDensityMap2PropertiesEXT::subsampledLoads is VK_TRUE.
Otherwise, values of image data are undefined.

◦ Image contents outside of the render area take on undefined values if the image is stored as
a render pass attachment.

• VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM specifies that an image can be used in a
render pass with non-zero fragment density map offsets. In a render pass with non-zero offsets,
fragment density map attachments, input attachments, color attachments, depth/stencil
attachment, resolve attachments, and preserve attachments must be created with
VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM.

• VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT specifies that the image can be used
with descriptor buffers when capturing and replaying (e.g. for trace capture and replay), see
VkOpaqueCaptureDescriptorDataCreateInfoEXT for more detail.

• VK_IMAGE_CREATE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_BIT_EXT specifies that an image can be
used with multisampled rendering as a single-sampled framebuffer attachment

1047

• VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR specifies that the image can be used in
video coding operations without having to specify at image creation time the set of video
profiles the image will be used with, except for images used only as DPB pictures, as long as the
image is otherwise compatible with the video profile in question.

Note

This enables exchanging video picture data without additional copies or
conversions when used as:

◦ Decode output pictures, indifferent of the video profile used to produce
them.

◦ Encode input pictures, indifferent of the video profile used to consume
them.

This includes images created with both
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR and
VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR, which is necessary to use the same
video picture as the reconstructed picture and decode output picture in a video
decode operation on implementations supporting
VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_COINCIDE_BIT_KHR.

However, images with only DPB usage remain tied to the video profiles the
image was created with, as the data layout of such DPB-only images may be
implementation- and codec-dependent.

If an application would like to share or reuse the device memory backing such
images (e.g. for the purposes of temporal aliasing), then it should create
separate image objects for each video profile and bind them to the same
underlying device memory range, similar to how memory resources can be
shared across separate video sessions or any other memory-backed resource.

See Sparse Resource Features and Sparse Physical Device Features for more details.

// Provided by VK_VERSION_1_0
typedef VkFlags VkImageCreateFlags;

VkImageCreateFlags is a bitmask type for setting a mask of zero or more VkImageCreateFlagBits.

Possible values of VkImageCreateInfo::imageType, specifying the basic dimensionality of an image,
are:

// Provided by VK_VERSION_1_0
typedef enum VkImageType {
 VK_IMAGE_TYPE_1D = 0,
 VK_IMAGE_TYPE_2D = 1,
 VK_IMAGE_TYPE_3D = 2,
} VkImageType;

1048

• VK_IMAGE_TYPE_1D specifies a one-dimensional image.

• VK_IMAGE_TYPE_2D specifies a two-dimensional image.

• VK_IMAGE_TYPE_3D specifies a three-dimensional image.

Possible values of VkImageCreateInfo::tiling, specifying the tiling arrangement of texel blocks in
an image, are:

// Provided by VK_VERSION_1_0
typedef enum VkImageTiling {
 VK_IMAGE_TILING_OPTIMAL = 0,
 VK_IMAGE_TILING_LINEAR = 1,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT = 1000158000,
} VkImageTiling;

• VK_IMAGE_TILING_OPTIMAL specifies optimal tiling (texels are laid out in an implementation-
dependent arrangement, for more efficient memory access).

• VK_IMAGE_TILING_LINEAR specifies linear tiling (texels are laid out in memory in row-major order,
possibly with some padding on each row).

• VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT indicates that the image’s tiling is defined by a Linux
DRM format modifier. The modifier is specified at image creation with
VkImageDrmFormatModifierListCreateInfoEXT or
VkImageDrmFormatModifierExplicitCreateInfoEXT, and can be queried with
vkGetImageDrmFormatModifierPropertiesEXT.

To query the memory layout of an image subresource, call:

// Provided by VK_VERSION_1_0
void vkGetImageSubresourceLayout(
 VkDevice device,
 VkImage image,
 const VkImageSubresource* pSubresource,
 VkSubresourceLayout* pLayout);

• device is the logical device that owns the image.

• image is the image whose layout is being queried.

• pSubresource is a pointer to a VkImageSubresource structure selecting a specific image
subresource from the image.

• pLayout is a pointer to a VkSubresourceLayout structure in which the layout is returned.

If the image is linear, then the returned layout is valid for host access.

If the image’s tiling is VK_IMAGE_TILING_LINEAR and its format is a multi-planar format, then
vkGetImageSubresourceLayout describes one format plane of the image. If the image’s tiling is
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then vkGetImageSubresourceLayout describes one memory

1049

plane of the image. If the image’s tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT and the image is
non-linear, then the returned layout has an implementation-dependent meaning; the vendor of the
image’s DRM format modifier may provide documentation that explains how to interpret the
returned layout.

vkGetImageSubresourceLayout is invariant for the lifetime of a single image. However, the
subresource layout of images in Android hardware buffer or QNX Screen buffer external memory
is not known until the image has been bound to memory, so applications must not call
vkGetImageSubresourceLayout for such an image before it has been bound.

Valid Usage

• VUID-vkGetImageSubresourceLayout-image-07790
image must have been created with tiling equal to VK_IMAGE_TILING_LINEAR or
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT

• VUID-vkGetImageSubresourceLayout-aspectMask-00997
The aspectMask member of pSubresource must only have a single bit set

• VUID-vkGetImageSubresourceLayout-mipLevel-01716
The mipLevel member of pSubresource must be less than the mipLevels specified in image

• VUID-vkGetImageSubresourceLayout-arrayLayer-01717
The arrayLayer member of pSubresource must be less than the arrayLayers specified in
image

• VUID-vkGetImageSubresourceLayout-format-08886
If format of the image is a color format that is not a multi-planar image format, and tiling
of the image is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, the aspectMask member
of pSubresource must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkGetImageSubresourceLayout-format-04462
If format of the image has a depth component, the aspectMask member of pSubresource
must contain VK_IMAGE_ASPECT_DEPTH_BIT

• VUID-vkGetImageSubresourceLayout-format-04463
If format of the image has a stencil component, the aspectMask member of pSubresource
must contain VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkGetImageSubresourceLayout-format-04464
If format of the image does not contain a stencil or depth component, the aspectMask
member of pSubresource must not contain VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkGetImageSubresourceLayout-tiling-08717
If the tiling of the image is VK_IMAGE_TILING_LINEAR and has a multi-planar image format,
then the aspectMask member of pSubresource must be a single valid multi-planar aspect
mask bit

• VUID-vkGetImageSubresourceLayout-image-09432
If image was created with the
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID external memory
handle type, then image must be bound to memory

1050

• VUID-vkGetImageSubresourceLayout-tiling-09433
If the tiling of the image is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then the aspectMask
member of pSubresource must be VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT and the index i
must be less than the VkDrmFormatModifierPropertiesEXT::drmFormatModifierPlaneCount
associated with the image’s format and VkImageDrmFormatModifierPropertiesEXT
::drmFormatModifier

Valid Usage (Implicit)

• VUID-vkGetImageSubresourceLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageSubresourceLayout-image-parameter
image must be a valid VkImage handle

• VUID-vkGetImageSubresourceLayout-pSubresource-parameter
pSubresource must be a valid pointer to a valid VkImageSubresource structure

• VUID-vkGetImageSubresourceLayout-pLayout-parameter
pLayout must be a valid pointer to a VkSubresourceLayout structure

• VUID-vkGetImageSubresourceLayout-image-parent
image must have been created, allocated, or retrieved from device

The VkImageSubresource structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageSubresource {
 VkImageAspectFlags aspectMask;
 uint32_t mipLevel;
 uint32_t arrayLayer;
} VkImageSubresource;

• aspectMask is a VkImageAspectFlags value selecting the image aspect.

• mipLevel selects the mipmap level.

• arrayLayer selects the array layer.

Valid Usage (Implicit)

• VUID-VkImageSubresource-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkImageSubresource-aspectMask-requiredbitmask
aspectMask must not be 0

Information about the layout of the image subresource is returned in a VkSubresourceLayout
structure:

1051

// Provided by VK_VERSION_1_0
typedef struct VkSubresourceLayout {
 VkDeviceSize offset;
 VkDeviceSize size;
 VkDeviceSize rowPitch;
 VkDeviceSize arrayPitch;
 VkDeviceSize depthPitch;
} VkSubresourceLayout;

• offset is the byte offset from the start of the image or the plane where the image subresource
begins.

• size is the size in bytes of the image subresource. size includes any extra memory that is
required based on rowPitch.

• rowPitch describes the number of bytes between each row of texels in an image.

• arrayPitch describes the number of bytes between each array layer of an image.

• depthPitch describes the number of bytes between each slice of 3D image.

If the image is linear, then rowPitch, arrayPitch and depthPitch describe the layout of the image
subresource in linear memory. For uncompressed formats, rowPitch is the number of bytes between
texels with the same x coordinate in adjacent rows (y coordinates differ by one). arrayPitch is the
number of bytes between texels with the same x and y coordinate in adjacent array layers of the
image (array layer values differ by one). depthPitch is the number of bytes between texels with the
same x and y coordinate in adjacent slices of a 3D image (z coordinates differ by one). Expressed as
an addressing formula, the starting byte of a texel in the image subresource has address:

// (x,y,z,layer) are in texel coordinates
address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x*elementSize +
offset

For compressed formats, the rowPitch is the number of bytes between compressed texel blocks in
adjacent rows. arrayPitch is the number of bytes between compressed texel blocks in adjacent
array layers. depthPitch is the number of bytes between compressed texel blocks in adjacent slices
of a 3D image.

// (x,y,z,layer) are in compressed texel block coordinates
address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x
*compressedTexelBlockByteSize + offset;

The value of arrayPitch is undefined for images that were not created as arrays. depthPitch is
defined only for 3D images.

If the image has a single-plane color format and its tiling is VK_IMAGE_TILING_LINEAR , then the
aspectMask member of VkImageSubresource must be VK_IMAGE_ASPECT_COLOR_BIT.

If the image has a depth/stencil format and its tiling is VK_IMAGE_TILING_LINEAR , then aspectMask

1052

must be either VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT. On implementations that
store depth and stencil aspects separately, querying each of these image subresource layouts will
return a different offset and size representing the region of memory used for that aspect. On
implementations that store depth and stencil aspects interleaved, the same offset and size are
returned and represent the interleaved memory allocation.

If the image has a multi-planar format and its tiling is VK_IMAGE_TILING_LINEAR , then the aspectMask
member of VkImageSubresource must be VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT,
or (for 3-plane formats only) VK_IMAGE_ASPECT_PLANE_2_BIT. Querying each of these image
subresource layouts will return a different offset and size representing the region of memory used
for that plane. If the image is disjoint, then the offset is relative to the base address of the plane. If
the image is non-disjoint, then the offset is relative to the base address of the image.

If the image’s tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then the aspectMask member of
VkImageSubresource must be one of VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT, where the maximum
allowed plane index i is defined by the VkDrmFormatModifierPropertiesEXT
::drmFormatModifierPlaneCount associated with the image’s VkImageCreateInfo::format and modifier.
The memory range used by the subresource is described by offset and size. If the image is disjoint,
then the offset is relative to the base address of the memory plane. If the image is non-disjoint, then
the offset is relative to the base address of the image. If the image is non-linear, then rowPitch,
arrayPitch, and depthPitch have an implementation-dependent meaning.

To query the memory layout of an image subresource, call:

// Provided by VK_KHR_maintenance5
void vkGetImageSubresourceLayout2KHR(
 VkDevice device,
 VkImage image,
 const VkImageSubresource2KHR* pSubresource,
 VkSubresourceLayout2KHR* pLayout);

or the equivalent command

// Provided by VK_EXT_host_image_copy, VK_EXT_image_compression_control
void vkGetImageSubresourceLayout2EXT(
 VkDevice device,
 VkImage image,
 const VkImageSubresource2KHR* pSubresource,
 VkSubresourceLayout2KHR* pLayout);

• device is the logical device that owns the image.

• image is the image whose layout is being queried.

• pSubresource is a pointer to a VkImageSubresource2KHR structure selecting a specific image for
the image subresource.

• pLayout is a pointer to a VkSubresourceLayout2KHR structure in which the layout is returned.

1053

vkGetImageSubresourceLayout2KHR behaves similarly to vkGetImageSubresourceLayout, with the
ability to specify extended inputs via chained input structures, and to return extended information
via chained output structures.

It is legal to call vkGetImageSubresourceLayout2KHR with an image created with tiling equal to
VK_IMAGE_TILING_OPTIMAL, but the members of VkSubresourceLayout2KHR::subresourceLayout will
have undefined values in this case.

Note

Structures chained from VkImageSubresource2KHR::pNext will also be updated
when tiling is equal to VK_IMAGE_TILING_OPTIMAL.

Valid Usage

• VUID-vkGetImageSubresourceLayout2KHR-aspectMask-00997
The aspectMask member of pSubresource must only have a single bit set

• VUID-vkGetImageSubresourceLayout2KHR-mipLevel-01716
The mipLevel member of pSubresource must be less than the mipLevels specified in image

• VUID-vkGetImageSubresourceLayout2KHR-arrayLayer-01717
The arrayLayer member of pSubresource must be less than the arrayLayers specified in
image

• VUID-vkGetImageSubresourceLayout2KHR-format-08886
If format of the image is a color format that is not a multi-planar image format, and tiling
of the image is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, the aspectMask member
of pSubresource must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkGetImageSubresourceLayout2KHR-format-04462
If format of the image has a depth component, the aspectMask member of pSubresource
must contain VK_IMAGE_ASPECT_DEPTH_BIT

• VUID-vkGetImageSubresourceLayout2KHR-format-04463
If format of the image has a stencil component, the aspectMask member of pSubresource
must contain VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkGetImageSubresourceLayout2KHR-format-04464
If format of the image does not contain a stencil or depth component, the aspectMask
member of pSubresource must not contain VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkGetImageSubresourceLayout2KHR-tiling-08717
If the tiling of the image is VK_IMAGE_TILING_LINEAR and has a multi-planar image format,
then the aspectMask member of pSubresource must be a single valid multi-planar aspect
mask bit

• VUID-vkGetImageSubresourceLayout2KHR-image-09434
If image was created with the
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID external memory
handle type, then image must be bound to memory

• VUID-vkGetImageSubresourceLayout2KHR-tiling-09435

1054

If the tiling of the image is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then the aspectMask
member of pSubresource must be VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT and the index i
must be less than the VkDrmFormatModifierPropertiesEXT::drmFormatModifierPlaneCount
associated with the image’s format and VkImageDrmFormatModifierPropertiesEXT
::drmFormatModifier

Valid Usage (Implicit)

• VUID-vkGetImageSubresourceLayout2KHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageSubresourceLayout2KHR-image-parameter
image must be a valid VkImage handle

• VUID-vkGetImageSubresourceLayout2KHR-pSubresource-parameter
pSubresource must be a valid pointer to a valid VkImageSubresource2KHR structure

• VUID-vkGetImageSubresourceLayout2KHR-pLayout-parameter
pLayout must be a valid pointer to a VkSubresourceLayout2KHR structure

• VUID-vkGetImageSubresourceLayout2KHR-image-parent
image must have been created, allocated, or retrieved from device

The VkImageSubresource2KHR structure is defined as:

// Provided by VK_KHR_maintenance5
typedef struct VkImageSubresource2KHR {
 VkStructureType sType;
 void* pNext;
 VkImageSubresource imageSubresource;
} VkImageSubresource2KHR;

or the equivalent

// Provided by VK_EXT_host_image_copy, VK_EXT_image_compression_control
typedef VkImageSubresource2KHR VkImageSubresource2EXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageSubresource is a VkImageSubresource structure.

Valid Usage (Implicit)

• VUID-VkImageSubresource2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_SUBRESOURCE_2_KHR

• VUID-VkImageSubresource2KHR-pNext-pNext

1055

pNext must be NULL

• VUID-VkImageSubresource2KHR-imageSubresource-parameter
imageSubresource must be a valid VkImageSubresource structure

Information about the layout of the image subresource is returned in a VkSubresourceLayout2KHR
structure:

// Provided by VK_KHR_maintenance5
typedef struct VkSubresourceLayout2KHR {
 VkStructureType sType;
 void* pNext;
 VkSubresourceLayout subresourceLayout;
} VkSubresourceLayout2KHR;

or the equivalent

// Provided by VK_EXT_host_image_copy, VK_EXT_image_compression_control
typedef VkSubresourceLayout2KHR VkSubresourceLayout2EXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• subresourceLayout is a VkSubresourceLayout structure.

Valid Usage (Implicit)

• VUID-VkSubresourceLayout2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBRESOURCE_LAYOUT_2_KHR

• VUID-VkSubresourceLayout2KHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkImageCompressionPropertiesEXT or
VkSubresourceHostMemcpySizeEXT

• VUID-VkSubresourceLayout2KHR-sType-unique
The sType value of each struct in the pNext chain must be unique

To query the memory size needed to copy to or from an image using vkCopyMemoryToImageEXT or
vkCopyImageToMemoryEXT when the VK_HOST_IMAGE_COPY_MEMCPY_EXT flag is specified, add a
VkSubresourceHostMemcpySizeEXT structure to the pNext chain of the VkSubresourceLayout2EXT
structure in a call to vkGetImageSubresourceLayout2EXT.

The VkSubresourceHostMemcpySizeEXT structure is defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkSubresourceHostMemcpySizeEXT {

1056

 VkStructureType sType;
 void* pNext;
 VkDeviceSize size;
} VkSubresourceHostMemcpySizeEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• size is the size in bytes of the image subresource.

Valid Usage (Implicit)

• VUID-VkSubresourceHostMemcpySizeEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBRESOURCE_HOST_MEMCPY_SIZE_EXT

To query the memory layout of an image subresource, without an image object, call:

// Provided by VK_KHR_maintenance5
void vkGetDeviceImageSubresourceLayoutKHR(
 VkDevice device,
 const VkDeviceImageSubresourceInfoKHR* pInfo,
 VkSubresourceLayout2KHR* pLayout);

• device is the logical device that owns the image.

• pInfo is a pointer to a VkDeviceImageSubresourceInfoKHR structure containing parameters
required for the subresource layout query.

• pLayout is a pointer to a VkSubresourceLayout2KHR structure in which the layout is returned.

vkGetDeviceImageSubresourceLayoutKHR behaves similarly to vkGetImageSubresourceLayout2KHR,
but uses a VkImageCreateInfo structure to specify the image rather than a VkImage object.

Valid Usage (Implicit)

• VUID-vkGetDeviceImageSubresourceLayoutKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceImageSubresourceLayoutKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceImageSubresourceInfoKHR structure

• VUID-vkGetDeviceImageSubresourceLayoutKHR-pLayout-parameter
pLayout must be a valid pointer to a VkSubresourceLayout2KHR structure

The VkDeviceImageSubresourceInfoKHR structure is defined as:

// Provided by VK_KHR_maintenance5
typedef struct VkDeviceImageSubresourceInfoKHR {

1057

 VkStructureType sType;
 const void* pNext;
 const VkImageCreateInfo* pCreateInfo;
 const VkImageSubresource2KHR* pSubresource;
} VkDeviceImageSubresourceInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pCreateInfo is a pointer to a VkImageCreateInfo structure containing parameters affecting
creation of the image to query.

• pSubresource pSubresource is a pointer to a VkImageSubresource2KHR structure selecting a
specific image subresource for the query.

Valid Usage

• VUID-VkDeviceImageSubresourceInfoKHR-aspectMask-00997
The aspectMask member of pSubresource must only have a single bit set

• VUID-VkDeviceImageSubresourceInfoKHR-mipLevel-01716
The mipLevel member of pSubresource must be less than the mipLevels specified in
pCreateInfo

• VUID-VkDeviceImageSubresourceInfoKHR-arrayLayer-01717
The arrayLayer member of pSubresource must be less than the arrayLayers specified in
pCreateInfo

• VUID-VkDeviceImageSubresourceInfoKHR-format-08886
If format of the image is a color format that is not a multi-planar image format, and tiling
of the pCreateInfo is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, the aspectMask
member of pSubresource must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkDeviceImageSubresourceInfoKHR-format-04462
If format of the pCreateInfo has a depth component, the aspectMask member of
pSubresource must contain VK_IMAGE_ASPECT_DEPTH_BIT

• VUID-VkDeviceImageSubresourceInfoKHR-format-04463
If format of the pCreateInfo has a stencil component, the aspectMask member of
pSubresource must contain VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkDeviceImageSubresourceInfoKHR-format-04464
If format of the pCreateInfo does not contain a stencil or depth component, the aspectMask
member of pSubresource must not contain VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkDeviceImageSubresourceInfoKHR-tiling-08717
If the tiling of the pCreateInfo is VK_IMAGE_TILING_LINEAR and has a multi-planar image
format, then the aspectMask member of pSubresource must be a single valid multi-planar
aspect mask bit

1058

Valid Usage (Implicit)

• VUID-VkDeviceImageSubresourceInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_IMAGE_SUBRESOURCE_INFO_KHR

• VUID-VkDeviceImageSubresourceInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkDeviceImageSubresourceInfoKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkImageCreateInfo structure

• VUID-VkDeviceImageSubresourceInfoKHR-pSubresource-parameter
pSubresource must be a valid pointer to a valid VkImageSubresource2KHR structure

If an image was created with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then the image has a Linux
DRM format modifier. To query the modifier, call:

// Provided by VK_EXT_image_drm_format_modifier
VkResult vkGetImageDrmFormatModifierPropertiesEXT(
 VkDevice device,
 VkImage image,
 VkImageDrmFormatModifierPropertiesEXT* pProperties);

• device is the logical device that owns the image.

• image is the queried image.

• pProperties is a pointer to a VkImageDrmFormatModifierPropertiesEXT structure in which
properties of the image’s DRM format modifier are returned.

Valid Usage

• VUID-vkGetImageDrmFormatModifierPropertiesEXT-image-02272
image must have been created with tiling equal to
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT

Valid Usage (Implicit)

• VUID-vkGetImageDrmFormatModifierPropertiesEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageDrmFormatModifierPropertiesEXT-image-parameter
image must be a valid VkImage handle

• VUID-vkGetImageDrmFormatModifierPropertiesEXT-pProperties-parameter
pProperties must be a valid pointer to a VkImageDrmFormatModifierPropertiesEXT
structure

• VUID-vkGetImageDrmFormatModifierPropertiesEXT-image-parent

1059

image must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkImageDrmFormatModifierPropertiesEXT structure is defined as:

// Provided by VK_EXT_image_drm_format_modifier
typedef struct VkImageDrmFormatModifierPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint64_t drmFormatModifier;
} VkImageDrmFormatModifierPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• drmFormatModifier returns the image’s Linux DRM format modifier.

If the image was created with VkImageDrmFormatModifierListCreateInfoEXT, then the returned
drmFormatModifier must belong to the list of modifiers provided at time of image creation in
VkImageDrmFormatModifierListCreateInfoEXT::pDrmFormatModifiers. If the image was created with
VkImageDrmFormatModifierExplicitCreateInfoEXT, then the returned drmFormatModifier must be
the modifier provided at time of image creation in
VkImageDrmFormatModifierExplicitCreateInfoEXT::drmFormatModifier.

Valid Usage (Implicit)

• VUID-VkImageDrmFormatModifierPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT

• VUID-VkImageDrmFormatModifierPropertiesEXT-pNext-pNext
pNext must be NULL

To destroy an image, call:

// Provided by VK_VERSION_1_0
void vkDestroyImage(
 VkDevice device,
 VkImage image,

1060

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the image.

• image is the image to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyImage-image-01000
All submitted commands that refer to image, either directly or via a VkImageView, must
have completed execution

• VUID-vkDestroyImage-image-01001
If VkAllocationCallbacks were provided when image was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyImage-image-01002
If no VkAllocationCallbacks were provided when image was created, pAllocator must be
NULL

• VUID-vkDestroyImage-image-04882
image must not have been acquired from vkGetSwapchainImagesKHR

Valid Usage (Implicit)

• VUID-vkDestroyImage-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyImage-image-parameter
If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

• VUID-vkDestroyImage-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyImage-image-parent
If image is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to image must be externally synchronized

12.3.1. Image Format Features

Valid uses of a VkImage may depend on the image’s format features, defined below. Such
constraints are documented in the affected valid usage statement.

1061

• If the image was created with VK_IMAGE_TILING_LINEAR, then its set of format features is the value
of VkFormatProperties::linearTilingFeatures found by calling
vkGetPhysicalDeviceFormatProperties on the same format as VkImageCreateInfo::format.

• If the image was created with VK_IMAGE_TILING_OPTIMAL, but without an Android hardware
buffer external format, or a QNX Screen Buffer external format or an
VkBufferCollectionImageCreateInfoFUCHSIA, then its set of format features is the value of
VkFormatProperties::optimalTilingFeatures found by calling
vkGetPhysicalDeviceFormatProperties on the same format as VkImageCreateInfo::format.

• If the image was created with an Android hardware buffer external format, then its set of
format features is the value of VkAndroidHardwareBufferFormatPropertiesANDROID
::formatFeatures found by calling vkGetAndroidHardwareBufferPropertiesANDROID on the
Android hardware buffer that was imported to the VkDeviceMemory to which the image is
bound.

• If the image was created with an QNX Screen buffer external format, then its set of format
features is the value of VkScreenBufferFormatPropertiesQNX::formatFeatures found by calling
vkGetScreenBufferPropertiesQNX on the QNX Screen buffer that was imported to the
VkDeviceMemory to which the image is bound.

• If the image was created with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then:

◦ The image’s DRM format modifier is the value of
VkImageDrmFormatModifierPropertiesEXT::drmFormatModifier found by calling
vkGetImageDrmFormatModifierPropertiesEXT.

◦ Let VkDrmFormatModifierPropertiesListEXT::pDrmFormatModifierProperties be the array
found by calling vkGetPhysicalDeviceFormatProperties2 on the same format as
VkImageCreateInfo::format.

◦ Let VkDrmFormatModifierPropertiesEXT prop be the array element whose drmFormatModifier
member is the value of the image’s DRM format modifier.

◦ Then the image’s set of format features is the value of prop::drmFormatModifierTilingFeatures.

12.3.2. Corner-Sampled Images

A corner-sampled image is an image where unnormalized texel coordinates are centered on integer
values rather than half-integer values.

A corner-sampled image has a number of differences compared to conventional texture image:

• Texels are centered on integer coordinates. See Unnormalized Texel Coordinate Operations

• Normalized coordinates are scaled using coord × (dim - 1) rather than coord × dim, where dim is
the size of one dimension of the image. See normalized texel coordinate transform.

• Partial derivatives are scaled using coord × (dim - 1) rather than coord × dim. See Scale Factor
Operation.

• Calculation of the next higher LOD size goes according to ⌈dim / 2⌉ rather than ⌊dim / 2⌋. See
Image Mip Level Sizing.

• The minimum level size is 2x2 for 2D images and 2x2x2 for 3D images. See Image Mip Level
Sizing.

1062

Corner-sampling is only supported for 2D and 3D images. When sampling a corner-sampled image,
the sampler addressing mode must be VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE. Corner-sampled
images are not supported as cube maps or depth/stencil images.

12.3.3. Image Mip Level Sizing

A complete mipmap chain is the full set of mip levels, from the largest mip level provided, down to
the minimum mip level size.

Conventional Images

For conventional images, the dimensions of each successive mip level, n+1, are:

widthn+1 = max(⌊widthn/2⌋, 1)

heightn+1 = max(⌊heightn/2⌋, 1)

depthn+1 = max(⌊depthn/2⌋, 1)

where widthn, heightn, and depthn are the dimensions of the next larger mip level, n.

The minimum mip level size is:

• 1 for one-dimensional images,

• 1x1 for two-dimensional images, and

• 1x1x1 for three-dimensional images.

The number of levels in a complete mipmap chain is:

⌊log2(max(width0, height0, depth0))⌋ + 1

where width0, height0, and depth0 are the dimensions of the largest (most detailed) mip level, 0.

Corner-Sampled Images

For corner-sampled images, the dimensions of each successive mip level, n+1, are:

widthn+1 = max(⌈widthn/2⌉, 2)

heightn+1 = max(⌈heightn/2⌉, 2)

depthn+1 = max(⌈depthn/2⌉, 2)

1063

where widthn, heightn, and depthn are the dimensions of the next larger mip level, n.

The minimum mip level size is:

• 2x2 for two-dimensional images, and

• 2x2x2 for three-dimensional images.

The number of levels in a complete mipmap chain is:

⌈log2(max(width0, height0, depth0))⌉

where width0, height0, and depth0 are the dimensions of the largest (most detailed) mip level, 0.

12.4. Image Layouts
Images are stored in implementation-dependent opaque layouts in memory. Each layout has
limitations on what kinds of operations are supported for image subresources using the layout. At
any given time, the data representing an image subresource in memory exists in a particular layout
which is determined by the most recent layout transition that was performed on that image
subresource. Applications have control over which layout each image subresource uses, and can
transition an image subresource from one layout to another. Transitions can happen with an image
memory barrier, included as part of a vkCmdPipelineBarrier or a vkCmdWaitEvents command
buffer command (see Image Memory Barriers), or as part of a subpass dependency within a render
pass (see VkSubpassDependency).

Image layout is per-image subresource. Separate image subresources of the same image can be in
different layouts at the same time, with the exception that depth and stencil aspects of a given
image subresource can only be in different layouts if the separateDepthStencilLayouts feature is
enabled.

Note

Each layout may offer optimal performance for a specific usage of image memory.
For example, an image with a layout of VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
may provide optimal performance for use as a color attachment, but be
unsupported for use in transfer commands. Applications can transition an image
subresource from one layout to another in order to achieve optimal performance
when the image subresource is used for multiple kinds of operations. After
initialization, applications need not use any layout other than the general layout,
though this may produce suboptimal performance on some implementations.

Upon creation, all image subresources of an image are initially in the same layout, where that
layout is selected by the VkImageCreateInfo::initialLayout member. The initialLayout must be
either VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED. If it is
VK_IMAGE_LAYOUT_PREINITIALIZED, then the image data can be preinitialized by the host while using
this layout, and the transition away from this layout will preserve that data. If it is
VK_IMAGE_LAYOUT_UNDEFINED, then the contents of the data are considered to be undefined, and the
transition away from this layout is not guaranteed to preserve that data. For either of these initial

1064

layouts, any image subresources must be transitioned to another layout before they are accessed
by the device.

Host access to image memory is only well-defined for linear images and for image subresources of
those images which are currently in either the VK_IMAGE_LAYOUT_PREINITIALIZED or
VK_IMAGE_LAYOUT_GENERAL layout. Calling vkGetImageSubresourceLayout for a linear image returns a
subresource layout mapping that is valid for either of those image layouts.

The set of image layouts consists of:

// Provided by VK_VERSION_1_0
typedef enum VkImageLayout {
 VK_IMAGE_LAYOUT_UNDEFINED = 0,
 VK_IMAGE_LAYOUT_GENERAL = 1,
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL = 2,
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL = 3,
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL = 4,
 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,
 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL = 7,
 VK_IMAGE_LAYOUT_PREINITIALIZED = 8,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL = 1000117000,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL = 1000117001,
 // Provided by VK_VERSION_1_2
 VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL = 1000241000,
 // Provided by VK_VERSION_1_2
 VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL = 1000241001,
 // Provided by VK_VERSION_1_2
 VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL = 1000241002,
 // Provided by VK_VERSION_1_2
 VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL = 1000241003,
 // Provided by VK_VERSION_1_3
 VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL = 1000314000,
 // Provided by VK_VERSION_1_3
 VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL = 1000314001,
 // Provided by VK_KHR_swapchain
 VK_IMAGE_LAYOUT_PRESENT_SRC_KHR = 1000001002,
 // Provided by VK_KHR_video_decode_queue
 VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR = 1000024000,
 // Provided by VK_KHR_video_decode_queue
 VK_IMAGE_LAYOUT_VIDEO_DECODE_SRC_KHR = 1000024001,
 // Provided by VK_KHR_video_decode_queue
 VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR = 1000024002,
 // Provided by VK_KHR_shared_presentable_image
 VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR = 1000111000,
 // Provided by VK_EXT_fragment_density_map
 VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT = 1000218000,
 // Provided by VK_KHR_fragment_shading_rate

1065

 VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR = 1000164003,
 // Provided by VK_KHR_dynamic_rendering_local_read
 VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR = 1000232000,
 // Provided by VK_KHR_video_encode_queue
 VK_IMAGE_LAYOUT_VIDEO_ENCODE_DST_KHR = 1000299000,
 // Provided by VK_KHR_video_encode_queue
 VK_IMAGE_LAYOUT_VIDEO_ENCODE_SRC_KHR = 1000299001,
 // Provided by VK_KHR_video_encode_queue
 VK_IMAGE_LAYOUT_VIDEO_ENCODE_DPB_KHR = 1000299002,
 // Provided by VK_EXT_attachment_feedback_loop_layout
 VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT = 1000339000,
 // Provided by VK_KHR_maintenance2
 VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR =
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
 // Provided by VK_KHR_maintenance2
 VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR =
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
 // Provided by VK_NV_shading_rate_image
 VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV =
VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR,
 // Provided by VK_KHR_separate_depth_stencil_layouts
 VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR =
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
 // Provided by VK_KHR_separate_depth_stencil_layouts
 VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR =
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
 // Provided by VK_KHR_separate_depth_stencil_layouts
 VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR =
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL,
 // Provided by VK_KHR_separate_depth_stencil_layouts
 VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR =
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,
 // Provided by VK_KHR_synchronization2
 VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR = VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL,
 // Provided by VK_KHR_synchronization2
 VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL,
} VkImageLayout;

The type(s) of device access supported by each layout are:

• VK_IMAGE_LAYOUT_UNDEFINED specifies that the layout is unknown. Image memory cannot be
transitioned into this layout. This layout can be used as the initialLayout member of
VkImageCreateInfo. This layout can be used in place of the current image layout in a layout
transition, but doing so will cause the contents of the image’s memory to be undefined.

• VK_IMAGE_LAYOUT_PREINITIALIZED specifies that an image’s memory is in a defined layout and can
be populated by data, but that it has not yet been initialized by the driver. Image memory
cannot be transitioned into this layout. This layout can be used as the initialLayout member of
VkImageCreateInfo. This layout is intended to be used as the initial layout for an image whose
contents are written by the host, and hence the data can be written to memory immediately,

1066

without first executing a layout transition. Currently, VK_IMAGE_LAYOUT_PREINITIALIZED is only
useful with linear images because there is not a standard layout defined for
VK_IMAGE_TILING_OPTIMAL images.

• VK_IMAGE_LAYOUT_GENERAL supports all types of device access.

• VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL specifies a layout that must only be used with attachment
accesses in the graphics pipeline.

• VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL specifies a layout allowing read only access as an
attachment, or in shaders as a sampled image, combined image/sampler, or input attachment.

• VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL must only be used as a color or resolve attachment in
a VkFramebuffer. This layout is valid only for image subresources of images created with the
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL specifies a layout for both the depth and
stencil aspects of a depth/stencil format image allowing read and write access as a depth/stencil
attachment. It is equivalent to VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL and
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL specifies a layout for both the depth and
stencil aspects of a depth/stencil format image allowing read only access as a depth/stencil
attachment or in shaders as a sampled image, combined image/sampler, or input attachment. It
is equivalent to VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL and
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL.

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL specifies a layout for depth/stencil
format images allowing read and write access to the stencil aspect as a stencil attachment, and
read only access to the depth aspect as a depth attachment or in shaders as a sampled image,
combined image/sampler, or input attachment. It is equivalent to
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL and VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL.

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL specifies a layout for depth/stencil
format images allowing read and write access to the depth aspect as a depth attachment, and
read only access to the stencil aspect as a stencil attachment or in shaders as a sampled image,
combined image/sampler, or input attachment. It is equivalent to
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL and VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL.

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL specifies a layout for the depth aspect of a
depth/stencil format image allowing read and write access as a depth attachment.

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL specifies a layout for the depth aspect of a
depth/stencil format image allowing read-only access as a depth attachment or in shaders as a
sampled image, combined image/sampler, or input attachment.

• VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL specifies a layout for the stencil aspect of a
depth/stencil format image allowing read and write access as a stencil attachment.

• VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL specifies a layout for the stencil aspect of a
depth/stencil format image allowing read-only access as a stencil attachment or in shaders as a
sampled image, combined image/sampler, or input attachment.

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL specifies a layout allowing read-only access in a
shader as a sampled image, combined image/sampler, or input attachment. This layout is valid
only for image subresources of images created with the VK_IMAGE_USAGE_SAMPLED_BIT or

1067

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT usage bits enabled.

• VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL must only be used as a source image of a transfer
command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT). This layout is valid only for
image subresources of images created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit
enabled.

• VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL must only be used as a destination image of a transfer
command. This layout is valid only for image subresources of images created with the
VK_IMAGE_USAGE_TRANSFER_DST_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_PRESENT_SRC_KHR must only be used for presenting a presentable image for
display.

• VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR is valid only for shared presentable images, and must be
used for any usage the image supports.

• VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR must only be used as a
fragment shading rate attachment or shading rate image. This layout is valid only for image
subresources of images created with the
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR usage bit enabled.

• VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT must only be used as a fragment density
map attachment in a VkRenderPass. This layout is valid only for image subresources of images
created with the VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT usage bit enabled.

• VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR must only be used as a decode output picture in a video
decode operation. This layout is valid only for image subresources of images created with the
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR usage bit enabled.

• VK_IMAGE_LAYOUT_VIDEO_DECODE_SRC_KHR is reserved for future use.

• VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR must only be used as an output reconstructed picture or
an input reference picture in a video decode operation. This layout is valid only for image
subresources of images created with the VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR usage bit
enabled.

• VK_IMAGE_LAYOUT_VIDEO_ENCODE_DST_KHR is reserved for future use.

• VK_IMAGE_LAYOUT_VIDEO_ENCODE_SRC_KHR must only be used as an encode input picture in a video
encode operation. This layout is valid only for image subresources of images created with the
VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR usage bit enabled.

• VK_IMAGE_LAYOUT_VIDEO_ENCODE_DPB_KHR must only be used as an output reconstructed picture or
an input reference picture in a video encode operation. This layout is valid only for image
subresources of images created with the VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR usage bit
enabled.

• VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT must only be used as either a color
attachment or depth/stencil attachment in a VkFramebuffer and/or read-only access in a shader
as a sampled image, combined image/sampler, or input attachment. This layout is valid only for
image subresources of images created with the
VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT usage bit enabled and either the
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT and either
the VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT or VK_IMAGE_USAGE_SAMPLED_BIT usage bits enabled.

1068

• VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR must only be used as either a storage image, or a
color or depth/stencil attachment and an input attachment. This layout is valid only for image
subresources of images created with either VK_IMAGE_USAGE_STORAGE_BIT, or both
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT and either of VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT.

The layout of each image subresource is not a state of the image subresource itself, but is rather a
property of how the data in memory is organized, and thus for each mechanism of accessing an
image in the API the application must specify a parameter or structure member that indicates
which image layout the image subresource(s) are considered to be in when the image will be
accessed. For transfer commands, this is a parameter to the command (see Clear Commands and
Copy Commands). For use as a framebuffer attachment, this is a member in the substructures of the
VkRenderPassCreateInfo (see Render Pass). For use in a descriptor set, this is a member in the
VkDescriptorImageInfo structure (see Descriptor Set Updates).

12.4.1. Image Layout Matching Rules

At the time that any command buffer command accessing an image executes on any queue, the
layouts of the image subresources that are accessed must all match exactly the layout specified via
the API controlling those accesses, except in case of accesses to an image with a depth/stencil
format performed through descriptors referring to only a single aspect of the image, where the
following relaxed matching rules apply:

• Descriptors referring just to the depth aspect of a depth/stencil image only need to match in the
image layout of the depth aspect, thus VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL and
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL are considered to match.

• Descriptors referring just to the stencil aspect of a depth/stencil image only need to match in the
image layout of the stencil aspect, thus VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL and
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL are considered to match.

When performing a layout transition on an image subresource, the old layout value must either
equal the current layout of the image subresource (at the time the transition executes), or else be
VK_IMAGE_LAYOUT_UNDEFINED (implying that the contents of the image subresource need not be
preserved). The new layout used in a transition must not be VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED.

The image layout of each image subresource of a depth/stencil image created with
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT is dependent on the last sample
locations used to render to the image subresource as a depth/stencil attachment, thus applications
must provide the same sample locations that were last used to render to the given image
subresource whenever a layout transition of the image subresource happens, otherwise the
contents of the depth aspect of the image subresource become undefined.

In addition, depth reads from a depth/stencil attachment referring to an image subresource range
of a depth/stencil image created with VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT
using different sample locations than what have been last used to perform depth writes to the
image subresources of the same image subresource range return undefined values.

Similarly, depth writes to a depth/stencil attachment referring to an image subresource range of a

1069

depth/stencil image created with VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT using
different sample locations than what have been last used to perform depth writes to the image
subresources of the same image subresource range make the contents of the depth aspect of those
image subresources undefined.

12.5. Image Views
Image objects are not directly accessed by pipeline shaders for reading or writing image data.
Instead, image views representing contiguous ranges of the image subresources and containing
additional metadata are used for that purpose. Views must be created on images of compatible
types, and must represent a valid subset of image subresources.

Image views are represented by VkImageView handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImageView)

VK_REMAINING_ARRAY_LAYERS is a special constant value used for image views to indicate that all
remaining array layers in an image after the base layer should be included in the view.

#define VK_REMAINING_ARRAY_LAYERS (~0U)

VK_REMAINING_MIP_LEVELS is a special constant value used for image views to indicate that all
remaining mipmap levels in an image after the base level should be included in the view.

#define VK_REMAINING_MIP_LEVELS (~0U)

The types of image views that can be created are:

// Provided by VK_VERSION_1_0
typedef enum VkImageViewType {
 VK_IMAGE_VIEW_TYPE_1D = 0,
 VK_IMAGE_VIEW_TYPE_2D = 1,
 VK_IMAGE_VIEW_TYPE_3D = 2,
 VK_IMAGE_VIEW_TYPE_CUBE = 3,
 VK_IMAGE_VIEW_TYPE_1D_ARRAY = 4,
 VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,
 VK_IMAGE_VIEW_TYPE_CUBE_ARRAY = 6,
} VkImageViewType;

To create an image view, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateImageView(
 VkDevice device,

1070

 const VkImageViewCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkImageView* pView);

• device is the logical device that creates the image view.

• pCreateInfo is a pointer to a VkImageViewCreateInfo structure containing parameters to be used
to create the image view.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pView is a pointer to a VkImageView handle in which the resulting image view object is
returned.

Valid Usage

• VUID-vkCreateImageView-image-09179
VkImageViewCreateInfo::image must have been created from device

Valid Usage (Implicit)

• VUID-vkCreateImageView-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateImageView-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkImageViewCreateInfo structure

• VUID-vkCreateImageView-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateImageView-pView-parameter
pView must be a valid pointer to a VkImageView handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

The VkImageViewCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0

1071

typedef struct VkImageViewCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageViewCreateFlags flags;
 VkImage image;
 VkImageViewType viewType;
 VkFormat format;
 VkComponentMapping components;
 VkImageSubresourceRange subresourceRange;
} VkImageViewCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkImageViewCreateFlagBits specifying additional parameters of the image
view.

• image is a VkImage on which the view will be created.

• viewType is a VkImageViewType value specifying the type of the image view.

• format is a VkFormat specifying the format and type used to interpret texel blocks of the image.

• components is a VkComponentMapping structure specifying a remapping of color components
(or of depth or stencil components after they have been converted into color components).

• subresourceRange is a VkImageSubresourceRange structure selecting the set of mipmap levels
and array layers to be accessible to the view.

Some of the image creation parameters are inherited by the view. In particular, image view creation
inherits the implicit parameter usage specifying the allowed usages of the image view that, by
default, takes the value of the corresponding usage parameter specified in VkImageCreateInfo at
image creation time. The implicit usage can be overridden by adding a
VkImageViewUsageCreateInfo structure to the pNext chain, but the view usage must be a subset of
the image usage. If image has a depth-stencil format and was created with a
VkImageStencilUsageCreateInfo structure included in the pNext chain of VkImageCreateInfo, the
usage is calculated based on the subresource.aspectMask provided:

• If aspectMask includes only VK_IMAGE_ASPECT_STENCIL_BIT, the implicit usage is equal to
VkImageStencilUsageCreateInfo::stencilUsage.

• If aspectMask includes only VK_IMAGE_ASPECT_DEPTH_BIT, the implicit usage is equal to
VkImageCreateInfo::usage.

• If both aspects are included in aspectMask, the implicit usage is equal to the intersection of
VkImageCreateInfo::usage and VkImageStencilUsageCreateInfo::stencilUsage.

If image is a 3D image, its Z range can be restricted to a subset by adding a
VkImageViewSlicedCreateInfoEXT to the pNext chain.

If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, and if the format of the image
is not multi-planar, format can be different from the image’s format, but if image was created
without the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag and they are not equal they must

1072

be compatible. Image format compatibility is defined in the Format Compatibility Classes section.
Views of compatible formats will have the same mapping between texel coordinates and memory
locations irrespective of the format, with only the interpretation of the bit pattern changing.

If image was created with a multi-planar format, and the image view’s aspectMask is one of
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT or VK_IMAGE_ASPECT_PLANE_2_BIT, the
view’s aspect mask is considered to be equivalent to VK_IMAGE_ASPECT_COLOR_BIT when used as a
framebuffer attachment.

Note

Values intended to be used with one view format may not be exactly preserved
when written or read through a different format. For example, an integer value
that happens to have the bit pattern of a floating point denorm or NaN may be
flushed or canonicalized when written or read through a view with a floating
point format. Similarly, a value written through a signed normalized format that
has a bit pattern exactly equal to -2b may be changed to -2b + 1 as described in
Conversion from Normalized Fixed-Point to Floating-Point.

If image was created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag, format must be
compatible with the image’s format as described above; or must be an uncompressed format, in
which case it must be size-compatible with the image’s format. In this case, the resulting image
view’s texel dimensions equal the dimensions of the selected mip level divided by the compressed
texel block size and rounded up.

The VkComponentMapping components member describes a remapping from components of the
image to components of the vector returned by shader image instructions. This remapping must be
the identity swizzle for storage image descriptors, input attachment descriptors, framebuffer
attachments, and any VkImageView used with a combined image sampler that enables sampler Y′CBCR

conversion.

If the image view is to be used with a sampler which supports sampler Y′CBCR conversion, an
identically defined object of type VkSamplerYcbcrConversion to that used to create the sampler
must be passed to vkCreateImageView in a VkSamplerYcbcrConversionInfo included in the pNext
chain of VkImageViewCreateInfo. Conversely, if a VkSamplerYcbcrConversion object is passed to
vkCreateImageView, an identically defined VkSamplerYcbcrConversion object must be used when
sampling the image.

If the image has a multi-planar format, subresourceRange.aspectMask is VK_IMAGE_ASPECT_COLOR_BIT,
and usage includes VK_IMAGE_USAGE_SAMPLED_BIT, then the format must be identical to the image
format and the sampler to be used with the image view must enable sampler Y′CBCR conversion.

When such an image is used in a video coding operation, the sampler Y′CBCR conversion has no
effect.

If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT and the image has a multi-planar
format, and if subresourceRange.aspectMask is VK_IMAGE_ASPECT_PLANE_0_BIT,
VK_IMAGE_ASPECT_PLANE_1_BIT, or VK_IMAGE_ASPECT_PLANE_2_BIT, format must be compatible with the
corresponding plane of the image, and the sampler to be used with the image view must not enable
sampler Y′CBCR conversion. The width and height of the single-plane image view must be derived

1073

from the multi-planar image’s dimensions in the manner listed for plane compatibility for the
plane.

Any view of an image plane will have the same mapping between texel coordinates and memory
locations as used by the components of the color aspect, subject to the formulae relating texel
coordinates to lower-resolution planes as described in Chroma Reconstruction. That is, if an R or B
plane has a reduced resolution relative to the G plane of the multi-planar image, the image view
operates using the (uplane, vplane) unnormalized coordinates of the reduced-resolution plane, and these
coordinates access the same memory locations as the (ucolor, vcolor) unnormalized coordinates of the
color aspect for which chroma reconstruction operations operate on the same (uplane, vplane) or (iplane,
jplane) coordinates.

Table 16. Image type and image view type compatibility requirements

Image View Type Compatible Image Types

VK_IMAGE_VIEW_TYPE_1D VK_IMAGE_TYPE_1D

VK_IMAGE_VIEW_TYPE_1D_ARRAY VK_IMAGE_TYPE_1D

VK_IMAGE_VIEW_TYPE_2D VK_IMAGE_TYPE_2D , VK_IMAGE_TYPE_3D

VK_IMAGE_VIEW_TYPE_2D_ARRAY VK_IMAGE_TYPE_2D , VK_IMAGE_TYPE_3D

VK_IMAGE_VIEW_TYPE_CUBE VK_IMAGE_TYPE_2D

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY VK_IMAGE_TYPE_2D

VK_IMAGE_VIEW_TYPE_3D VK_IMAGE_TYPE_3D

Valid Usage

• VUID-VkImageViewCreateInfo-image-01003
If image was not created with VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT then viewType must not
be VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-VkImageViewCreateInfo-viewType-01004
If the imageCubeArray feature is not enabled, viewType must not be
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-VkImageViewCreateInfo-image-06723
If image was created with VK_IMAGE_TYPE_3D but without
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set then viewType must not be
VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-VkImageViewCreateInfo-image-06728
If image was created with VK_IMAGE_TYPE_3D but without
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT or VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT
set, then viewType must not be VK_IMAGE_VIEW_TYPE_2D

• VUID-VkImageViewCreateInfo-image-04970
If image was created with VK_IMAGE_TYPE_3D and viewType is VK_IMAGE_VIEW_TYPE_2D or
VK_IMAGE_VIEW_TYPE_2D_ARRAY then subresourceRange.levelCount must be 1

• VUID-VkImageViewCreateInfo-image-04971
If image was created with VK_IMAGE_TYPE_3D and viewType is VK_IMAGE_VIEW_TYPE_2D or

1074

VK_IMAGE_VIEW_TYPE_2D_ARRAY then VkImageCreateInfo::flags must not contain any of
VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, and
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT

• VUID-VkImageViewCreateInfo-image-04972
If image was created with a samples value not equal to VK_SAMPLE_COUNT_1_BIT then viewType
must be either VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-VkImageViewCreateInfo-image-04441
image must have been created with a usage value containing at least one of the usages
defined in the valid image usage list for image views

• VUID-VkImageViewCreateInfo-None-02273
The format features of the resultant image view must contain at least one bit

• VUID-VkImageViewCreateInfo-usage-02274
If usage contains VK_IMAGE_USAGE_SAMPLED_BIT, then the format features of the resultant
image view must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

• VUID-VkImageViewCreateInfo-usage-02275
If usage contains VK_IMAGE_USAGE_STORAGE_BIT, then the image view’s format features must
contain VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

• VUID-VkImageViewCreateInfo-usage-08931
If usage contains VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, then the image view’s format
features must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkImageViewCreateInfo-usage-02277
If usage contains VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, then the image view’s
format features must contain VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageViewCreateInfo-image-08333
If image was created with VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR and usage
contains VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR, then the image view’s format features
must contain VK_FORMAT_FEATURE_VIDEO_DECODE_OUTPUT_BIT_KHR

• VUID-VkImageViewCreateInfo-image-08334
If image was created with VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR and usage
contains VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR, then the image view’s format features
must contain VK_FORMAT_FEATURE_VIDEO_DECODE_DPB_BIT_KHR

• VUID-VkImageViewCreateInfo-image-08335
If image was created with VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then usage
must not include VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR

• VUID-VkImageViewCreateInfo-image-08336
If image was created with VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR and usage
contains VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR, then the image view’s format features
must contain VK_FORMAT_FEATURE_VIDEO_ENCODE_INPUT_BIT_KHR

• VUID-VkImageViewCreateInfo-image-08337
If image was created with VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR and usage
contains VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR, then the image view’s format features
must contain VK_FORMAT_FEATURE_VIDEO_ENCODE_DPB_BIT_KHR

1075

• VUID-VkImageViewCreateInfo-image-08338
If image was created with VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR, then usage
must not include VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR

• VUID-VkImageViewCreateInfo-usage-08932
If usage contains VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, and any of the following is true:

◦ the externalFormatResolve feature is not enabled

◦ the nullColorAttachmentWithExternalFormatResolve property is VK_FALSE

◦ image was created with an VkExternalFormatANDROID::externalFormat value of 0

then the image view’s format features must contain at least one of
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkImageViewCreateInfo-subresourceRange-01478
subresourceRange.baseMipLevel must be less than the mipLevels specified in
VkImageCreateInfo when image was created

• VUID-VkImageViewCreateInfo-subresourceRange-01718
If subresourceRange.levelCount is not VK_REMAINING_MIP_LEVELS,
subresourceRange.baseMipLevel + subresourceRange.levelCount must be less than or equal
to the mipLevels specified in VkImageCreateInfo when image was created

• VUID-VkImageViewCreateInfo-image-02571
If image was created with usage containing VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT,
subresourceRange.levelCount must be 1

• VUID-VkImageViewCreateInfo-image-06724
If image is not a 3D image created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT or
VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT set, or viewType is not VK_IMAGE_VIEW_TYPE_2D
or VK_IMAGE_VIEW_TYPE_2D_ARRAY, subresourceRange.baseArrayLayer must be less than the
arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkImageViewCreateInfo-subresourceRange-06725
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS, image is not a 3D image
created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT or
VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT set, or viewType is not VK_IMAGE_VIEW_TYPE_2D
or VK_IMAGE_VIEW_TYPE_2D_ARRAY, subresourceRange.layerCount must be non-zero and
subresourceRange.baseArrayLayer + subresourceRange.layerCount must be less than or
equal to the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkImageViewCreateInfo-image-02724
If image is a 3D image created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set, and
viewType is VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY,
subresourceRange.baseArrayLayer must be less than the depth computed from baseMipLevel
and extent.depth specified in VkImageCreateInfo when image was created, according to
the formula defined in Image Mip Level Sizing

• VUID-VkImageViewCreateInfo-subresourceRange-02725
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS, image is a 3D image
created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set, and viewType is

1076

VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY, subresourceRange.layerCount must
be non-zero and subresourceRange.baseArrayLayer + subresourceRange.layerCount must be
less than or equal to the depth computed from baseMipLevel and extent.depth specified in
VkImageCreateInfo when image was created, according to the formula defined in Image
Mip Level Sizing

• VUID-VkImageViewCreateInfo-image-01761
If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, but without the
VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag, and if the format of the image is not
a multi-planar format, format must be compatible with the format used to create image, as
defined in Format Compatibility Classes

• VUID-VkImageViewCreateInfo-image-01583
If image was created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag,
format must be compatible with, or must be an uncompressed format that is size-
compatible with, the format used to create image

• VUID-VkImageViewCreateInfo-image-07072
If image was created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag and
format is a non-compressed format, the levelCount member of subresourceRange must be 1

• VUID-VkImageViewCreateInfo-image-09487
If image was created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag, the
VkPhysicalDeviceMaintenance6PropertiesKHR::blockTexelViewCompatibleMultipleLayers
property is not set to VK_TRUE, and format is a non-compressed format, then the layerCount
member of subresourceRange must be 1

• VUID-VkImageViewCreateInfo-pNext-01585
If a VkImageFormatListCreateInfo structure was included in the pNext chain of the
VkImageCreateInfo structure used when creating image and
VkImageFormatListCreateInfo::viewFormatCount is not zero then format must be one of the
formats in VkImageFormatListCreateInfo::pViewFormats

• VUID-VkImageViewCreateInfo-image-01586
If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, if the format of the
image is a multi-planar format, and if subresourceRange.aspectMask is one of the multi-
planar aspect mask bits, then format must be compatible with the VkFormat for the plane
of the image format indicated by subresourceRange.aspectMask, as defined in Compatible
Formats of Planes of Multi-Planar Formats

• VUID-VkImageViewCreateInfo-subresourceRange-07818
subresourceRange.aspectMask must only have at most 1 valid multi-planar aspect mask bit

• VUID-VkImageViewCreateInfo-image-01762
If image was not created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, or if the format
of the image is a multi-planar format and if subresourceRange.aspectMask is
VK_IMAGE_ASPECT_COLOR_BIT, format must be identical to the format used to create image

• VUID-VkImageViewCreateInfo-format-06415
If the image view requires a sampler Y′CBCR conversion and usage contains
VK_IMAGE_USAGE_SAMPLED_BIT, then the pNext chain must include a
VkSamplerYcbcrConversionInfo structure with a conversion value other than
VK_NULL_HANDLE

1077

• VUID-VkImageViewCreateInfo-format-04714
If format has a _422 or _420 suffix then image must have been created with a width that is a
multiple of 2

• VUID-VkImageViewCreateInfo-format-04715
If format has a _420 suffix then image must have been created with a height that is a
multiple of 2

• VUID-VkImageViewCreateInfo-pNext-01970
If the pNext chain includes a VkSamplerYcbcrConversionInfo structure with a conversion
value other than VK_NULL_HANDLE, all members of components must have the identity
swizzle

• VUID-VkImageViewCreateInfo-pNext-06658
If the pNext chain includes a VkSamplerYcbcrConversionInfo structure with a conversion
value other than VK_NULL_HANDLE, format must be the same used in
VkSamplerYcbcrConversionCreateInfo::format

• VUID-VkImageViewCreateInfo-image-01020
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkImageViewCreateInfo-subResourceRange-01021
viewType must be compatible with the type of image as shown in the view type
compatibility table

• VUID-VkImageViewCreateInfo-image-02399
If image has an Android external format, format must be VK_FORMAT_UNDEFINED

• VUID-VkImageViewCreateInfo-image-02400
If image has an Android external format, the pNext chain must include a
VkSamplerYcbcrConversionInfo structure with a conversion object created with the same
external format as image

• VUID-VkImageViewCreateInfo-image-02401
If image has an Android external format, all members of components must be the identity
swizzle

• VUID-VkImageViewCreateInfo-image-08957
If image has an QNX Screen external format, format must be VK_FORMAT_UNDEFINED

• VUID-VkImageViewCreateInfo-image-08958
If image has an QNX Screen external format, the pNext chain must include a
VkSamplerYcbcrConversionInfo structure with a conversion object created with the same
external format as image

• VUID-VkImageViewCreateInfo-image-08959
If image has an QNX Screen external format, all members of components must be the
identity swizzle

• VUID-VkImageViewCreateInfo-image-02086
If image was created with usage containing
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR, viewType must be
VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-VkImageViewCreateInfo-image-02087

1078

If the shadingRateImage feature is enabled, and If image was created with usage containing
VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV, format must be VK_FORMAT_R8_UINT

• VUID-VkImageViewCreateInfo-usage-04550
If the attachmentFragmentShadingRate feature is enabled, and the usage for the image view
includes VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR, then the image view’s
format features must contain
VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-VkImageViewCreateInfo-usage-04551
If the attachmentFragmentShadingRate feature is enabled, the usage for the image view
includes VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR, and
layeredShadingRateAttachments is VK_FALSE, subresourceRange.layerCount must be 1

• VUID-VkImageViewCreateInfo-flags-02572
If the fragmentDensityMapDynamic feature is not enabled, flags must not contain
VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DYNAMIC_BIT_EXT

• VUID-VkImageViewCreateInfo-flags-03567
If the fragmentDensityMapDeferred feature is not enabled, flags must not contain
VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DEFERRED_BIT_EXT

• VUID-VkImageViewCreateInfo-flags-03568
If flags contains VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DEFERRED_BIT_EXT, flags must
not contain VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DYNAMIC_BIT_EXT

• VUID-VkImageViewCreateInfo-image-03569
If image was created with flags containing VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT and usage
containing VK_IMAGE_USAGE_SAMPLED_BIT, subresourceRange.layerCount must be less than or
equal to VkPhysicalDeviceFragmentDensityMap2PropertiesEXT::maxSubsampledArrayLayers

• VUID-VkImageViewCreateInfo-invocationMask-04993
If the invocationMask feature is enabled, and if image was created with usage containing
VK_IMAGE_USAGE_INVOCATION_MASK_BIT_HUAWEI, format must be VK_FORMAT_R8_UINT

• VUID-VkImageViewCreateInfo-flags-04116
If flags does not contain VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DYNAMIC_BIT_EXT and
image was created with usage containing VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT, its
flags must not contain any of VK_IMAGE_CREATE_PROTECTED_BIT,
VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT

• VUID-VkImageViewCreateInfo-pNext-02662
If the pNext chain includes a VkImageViewUsageCreateInfo structure, and image was not
created with a VkImageStencilUsageCreateInfo structure included in the pNext chain of
VkImageCreateInfo, its usage member must not include any bits that were not set in the
usage member of the VkImageCreateInfo structure used to create image

• VUID-VkImageViewCreateInfo-pNext-02663
If the pNext chain includes a VkImageViewUsageCreateInfo structure, image was created
with a VkImageStencilUsageCreateInfo structure included in the pNext chain of
VkImageCreateInfo, and subresourceRange.aspectMask includes
VK_IMAGE_ASPECT_STENCIL_BIT, the usage member of the VkImageViewUsageCreateInfo
structure must not include any bits that were not set in the usage member of the

1079

VkImageStencilUsageCreateInfo structure used to create image

• VUID-VkImageViewCreateInfo-pNext-02664
If the pNext chain includes a VkImageViewUsageCreateInfo structure, image was created
with a VkImageStencilUsageCreateInfo structure included in the pNext chain of
VkImageCreateInfo, and subresourceRange.aspectMask includes bits other than
VK_IMAGE_ASPECT_STENCIL_BIT, the usage member of the VkImageViewUsageCreateInfo
structure must not include any bits that were not set in the usage member of the
VkImageCreateInfo structure used to create image

• VUID-VkImageViewCreateInfo-imageViewType-04973
If viewType is VK_IMAGE_VIEW_TYPE_1D, VK_IMAGE_VIEW_TYPE_2D, or VK_IMAGE_VIEW_TYPE_3D; and
subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS, then
subresourceRange.layerCount must be 1

• VUID-VkImageViewCreateInfo-imageViewType-04974
If viewType is VK_IMAGE_VIEW_TYPE_1D, VK_IMAGE_VIEW_TYPE_2D, or VK_IMAGE_VIEW_TYPE_3D; and
subresourceRange.layerCount is VK_REMAINING_ARRAY_LAYERS, then the remaining number of
layers must be 1

• VUID-VkImageViewCreateInfo-viewType-02960
If viewType is VK_IMAGE_VIEW_TYPE_CUBE and subresourceRange.layerCount is not
VK_REMAINING_ARRAY_LAYERS, subresourceRange.layerCount must be 6

• VUID-VkImageViewCreateInfo-viewType-02961
If viewType is VK_IMAGE_VIEW_TYPE_CUBE_ARRAY and subresourceRange.layerCount is not
VK_REMAINING_ARRAY_LAYERS, subresourceRange.layerCount must be a multiple of 6

• VUID-VkImageViewCreateInfo-viewType-02962
If viewType is VK_IMAGE_VIEW_TYPE_CUBE and subresourceRange.layerCount is
VK_REMAINING_ARRAY_LAYERS, the remaining number of layers must be 6

• VUID-VkImageViewCreateInfo-viewType-02963
If viewType is VK_IMAGE_VIEW_TYPE_CUBE_ARRAY and subresourceRange.layerCount is
VK_REMAINING_ARRAY_LAYERS, the remaining number of layers must be a multiple of 6

• VUID-VkImageViewCreateInfo-imageViewFormatSwizzle-04465
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::imageViewFormatSwizzle is VK_FALSE, all
elements of components must have the identity swizzle

• VUID-VkImageViewCreateInfo-imageViewFormatReinterpretation-04466
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::imageViewFormatReinterpretation is
VK_FALSE, the VkFormat in format must not contain a different number of components, or
a different number of bits in each component, than the format of the VkImage in image

• VUID-VkImageViewCreateInfo-image-04817
If image was created with usage containing VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR,
VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR, or VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR,
then the viewType must be VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-VkImageViewCreateInfo-image-04818
If image was created with usage containing VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR,

1080

VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR, or VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR,
then the viewType must be VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-VkImageViewCreateInfo-flags-08106
If flags includes VK_IMAGE_VIEW_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT, the
descriptorBufferCaptureReplay feature must be enabled

• VUID-VkImageViewCreateInfo-pNext-08107
If the pNext chain includes a VkOpaqueCaptureDescriptorDataCreateInfoEXT structure,
flags must contain VK_IMAGE_VIEW_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

• VUID-VkImageViewCreateInfo-pNext-06787
If the pNext chain includes a VkExportMetalObjectCreateInfoEXT structure, its
exportObjectType member must be VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT

• VUID-VkImageViewCreateInfo-pNext-06944
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure, then
textureSampleWeighted feature must be enabled

• VUID-VkImageViewCreateInfo-pNext-06945
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure, then
image must have been created with usage containing
VK_IMAGE_USAGE_SAMPLE_WEIGHT_BIT_QCOM

• VUID-VkImageViewCreateInfo-pNext-06946
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure, then
components must be VK_COMPONENT_SWIZZLE_IDENTITY for all components

• VUID-VkImageViewCreateInfo-pNext-06947
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure, then
subresourceRange.aspectMask must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageViewCreateInfo-pNext-06948
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure, then
subresourceRange.levelCount must be 1

• VUID-VkImageViewCreateInfo-pNext-06949
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure, then
viewType must be VK_IMAGE_VIEW_TYPE_1D_ARRAY or VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-VkImageViewCreateInfo-pNext-06950
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure and if
viewType is VK_IMAGE_VIEW_TYPE_1D_ARRAY, then image must have been created with
imageType VK_IMAGE_TYPE_1D

• VUID-VkImageViewCreateInfo-pNext-06951
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure and
viewType is VK_IMAGE_VIEW_TYPE_1D_ARRAY, then subresourceRange.layerCount must be equal
to 2

• VUID-VkImageViewCreateInfo-pNext-06952
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure and
viewType is VK_IMAGE_VIEW_TYPE_1D_ARRAY, then image must have been created with width
equal to or greater than

• VUID-VkImageViewCreateInfo-pNext-06953

1081

If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure and if
viewType is VK_IMAGE_VIEW_TYPE_2D_ARRAY, then image must have been created with
imageType VK_IMAGE_TYPE_2D

• VUID-VkImageViewCreateInfo-pNext-06954
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure and
viewType is VK_IMAGE_VIEW_TYPE_2D_ARRAY, then subresourceRange.layerCount must be equal
or greater than numPhases

• VUID-VkImageViewCreateInfo-pNext-06955
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure and
viewType is VK_IMAGE_VIEW_TYPE_2D_ARRAY, then image must have been created with width
equal to or greater than filterSize.width

• VUID-VkImageViewCreateInfo-pNext-06956
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure and
viewType is VK_IMAGE_VIEW_TYPE_2D_ARRAY, then image must have been created with height
equal to or greater than filterSize.height

• VUID-VkImageViewCreateInfo-pNext-06957
If the pNext chain includes VkImageViewSampleWeightCreateInfoQCOM structure then
VkImageViewSampleWeightCreateInfoQCOM::filterSize.height must be less than or
equal to VkPhysicalDeviceImageProcessingPropertiesQCOM::maxWeightFilterDimension.height

• VUID-VkImageViewCreateInfo-subresourceRange-09594
subresourceRange.aspectMask must be valid for the format the image was created with

Valid Usage (Implicit)

• VUID-VkImageViewCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO

• VUID-VkImageViewCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExportMetalObjectCreateInfoEXT,
VkImageViewASTCDecodeModeEXT, VkImageViewMinLodCreateInfoEXT,
VkImageViewSampleWeightCreateInfoQCOM, VkImageViewSlicedCreateInfoEXT,
VkImageViewUsageCreateInfo, VkOpaqueCaptureDescriptorDataCreateInfoEXT, or
VkSamplerYcbcrConversionInfo

• VUID-VkImageViewCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkExportMetalObjectCreateInfoEXT

• VUID-VkImageViewCreateInfo-flags-parameter
flags must be a valid combination of VkImageViewCreateFlagBits values

• VUID-VkImageViewCreateInfo-image-parameter
image must be a valid VkImage handle

• VUID-VkImageViewCreateInfo-viewType-parameter
viewType must be a valid VkImageViewType value

1082

• VUID-VkImageViewCreateInfo-format-parameter
format must be a valid VkFormat value

• VUID-VkImageViewCreateInfo-components-parameter
components must be a valid VkComponentMapping structure

• VUID-VkImageViewCreateInfo-subresourceRange-parameter
subresourceRange must be a valid VkImageSubresourceRange structure

Bits which can be set in VkImageViewCreateInfo::flags, specifying additional parameters of an
image view, are:

// Provided by VK_VERSION_1_0
typedef enum VkImageViewCreateFlagBits {
 // Provided by VK_EXT_fragment_density_map
 VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DYNAMIC_BIT_EXT = 0x00000001,
 // Provided by VK_EXT_descriptor_buffer
 VK_IMAGE_VIEW_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT = 0x00000004,
 // Provided by VK_EXT_fragment_density_map2
 VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DEFERRED_BIT_EXT = 0x00000002,
} VkImageViewCreateFlagBits;

• VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DYNAMIC_BIT_EXT specifies that the fragment density
map will be read by device during VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DEFERRED_BIT_EXT specifies that the fragment density
map will be read by the host during vkEndCommandBuffer for the primary command buffer
that the render pass is recorded into

• VK_IMAGE_VIEW_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT specifies that the image view
can be used with descriptor buffers when capturing and replaying (e.g. for trace capture and
replay), see VkOpaqueCaptureDescriptorDataCreateInfoEXT for more detail.

// Provided by VK_VERSION_1_0
typedef VkFlags VkImageViewCreateFlags;

VkImageViewCreateFlags is a bitmask type for setting a mask of zero or more
VkImageViewCreateFlagBits.

The set of usages for the created image view can be restricted compared to the parent image’s usage
flags by adding a VkImageViewUsageCreateInfo structure to the pNext chain of
VkImageViewCreateInfo.

The VkImageViewUsageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImageViewUsageCreateInfo {
 VkStructureType sType;
 const void* pNext;

1083

 VkImageUsageFlags usage;
} VkImageViewUsageCreateInfo;

or the equivalent

// Provided by VK_KHR_maintenance2
typedef VkImageViewUsageCreateInfo VkImageViewUsageCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• usage is a bitmask of VkImageUsageFlagBits specifying allowed usages of the image view.

When this structure is chained to VkImageViewCreateInfo the usage field overrides the implicit
usage parameter inherited from image creation time and its value is used instead for the purposes
of determining the valid usage conditions of VkImageViewCreateInfo.

Valid Usage (Implicit)

• VUID-VkImageViewUsageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO

• VUID-VkImageViewUsageCreateInfo-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkImageViewUsageCreateInfo-usage-requiredbitmask
usage must not be 0

The range of 3D slices for the created image view can be restricted to a subset of the parent image’s
Z range by adding a VkImageViewSlicedCreateInfoEXT structure to the pNext chain of
VkImageViewCreateInfo.

The VkImageViewSlicedCreateInfoEXT structure is defined as:

// Provided by VK_EXT_image_sliced_view_of_3d
typedef struct VkImageViewSlicedCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t sliceOffset;
 uint32_t sliceCount;
} VkImageViewSlicedCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• sliceOffset is the Z-offset for the first 3D slice accessible to the image view.

• sliceCount is the number of 3D slices accessible to the image view.

1084

When this structure is chained to VkImageViewCreateInfo the sliceOffset field is treated as a Z-
offset for the sliced view and sliceCount specifies the range. Shader accesses using a Z coordinate of
0 will access the depth slice corresponding to sliceOffset in the image, and in a shader, the
maximum in-bounds Z coordinate for the view is sliceCount - 1.

A sliced 3D view must only be used with a single mip level. The slice coordinates are integer
coordinates within the subresourceRange.baseMipLevel used to create the image view.

The effective view depth is equal to extent.depth used to create the image for this view adjusted by
subresourceRange.baseMipLevel as specified in Image Mip Level Sizing.

Shader access to this image view is only affected by VkImageViewSlicedCreateInfoEXT if it uses a
descriptor of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE. For access using any other descriptor type, the
contents of VkImageViewSlicedCreateInfoEXT are ignored; instead, sliceOffset is treated as being
equal to 0, and sliceCount is treated as being equal to VK_REMAINING_3D_SLICES_EXT.

Valid Usage

• VUID-VkImageViewSlicedCreateInfoEXT-sliceOffset-07867
sliceOffset must be less than the effective view depth as specified in Image Mip Level
Sizing

• VUID-VkImageViewSlicedCreateInfoEXT-sliceCount-07868
If sliceCount is not VK_REMAINING_3D_SLICES_EXT, it must be be non-zero and sliceOffset +
sliceCount must be less than or equal to the effective view depth as specified in Image
Mip Level Sizing

• VUID-VkImageViewSlicedCreateInfoEXT-image-07869
image must have been created with imageType equal to VK_IMAGE_TYPE_3D

• VUID-VkImageViewSlicedCreateInfoEXT-viewType-07909
viewType must be VK_IMAGE_VIEW_TYPE_3D

• VUID-VkImageViewSlicedCreateInfoEXT-None-07870
The image view must reference exactly 1 mip level

• VUID-VkImageViewSlicedCreateInfoEXT-None-07871
The imageSlicedViewOf3D feature must be enabled on the device

Valid Usage (Implicit)

• VUID-VkImageViewSlicedCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_SLICED_CREATE_INFO_EXT

VK_REMAINING_3D_SLICES_EXT is a special constant value used for VkImageViewSlicedCreateInfoEXT
::sliceCount to indicate that all remaining 3D slices in an image after the first slice offset specified
should be included in the view.

1085

#define VK_REMAINING_3D_SLICES_EXT (~0U)

The VkImageSubresourceRange structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageSubresourceRange {
 VkImageAspectFlags aspectMask;
 uint32_t baseMipLevel;
 uint32_t levelCount;
 uint32_t baseArrayLayer;
 uint32_t layerCount;
} VkImageSubresourceRange;

• aspectMask is a bitmask of VkImageAspectFlagBits specifying which aspect(s) of the image are
included in the view.

• baseMipLevel is the first mipmap level accessible to the view.

• levelCount is the number of mipmap levels (starting from baseMipLevel) accessible to the view.

• baseArrayLayer is the first array layer accessible to the view.

• layerCount is the number of array layers (starting from baseArrayLayer) accessible to the view.

The number of mipmap levels and array layers must be a subset of the image subresources in the
image. If an application wants to use all mip levels or layers in an image after the baseMipLevel or
baseArrayLayer, it can set levelCount and layerCount to the special values VK_REMAINING_MIP_LEVELS
and VK_REMAINING_ARRAY_LAYERS without knowing the exact number of mip levels or layers.

For cube and cube array image views, the layers of the image view starting at baseArrayLayer
correspond to faces in the order +X, -X, +Y, -Y, +Z, -Z. For cube arrays, each set of six sequential
layers is a single cube, so the number of cube maps in a cube map array view is layerCount / 6, and
image array layer (baseArrayLayer + i) is face index (i mod 6) of cube i / 6. If the number of layers in
the view, whether set explicitly in layerCount or implied by VK_REMAINING_ARRAY_LAYERS, is not a
multiple of 6, the last cube map in the array must not be accessed.

aspectMask must be only VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT if format is a color, depth-only or stencil-only format, respectively,
except if format is a multi-planar format. If using a depth/stencil format with both depth and stencil
components, aspectMask must include at least one of VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT, and can include both.

When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D image’s
mip level in order to create a 2D or 2D array image view of a 3D image created with
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first slice index
and the number of slices to include in the created image view. Such an image view can be used as a
framebuffer attachment that refers only to the specified range of slices of the selected mip level.
However, any layout transitions performed on such an attachment view during a render pass
instance still apply to the entire subresource referenced which includes all the slices of the selected
mip level.

1086

When using an image view of a depth/stencil image to populate a descriptor set (e.g. for sampling in
the shader, or for use as an input attachment), the aspectMask must only include one bit, which
selects whether the image view is used for depth reads (i.e. using a floating-point sampler or input
attachment in the shader) or stencil reads (i.e. using an unsigned integer sampler or input
attachment in the shader). When an image view of a depth/stencil image is used as a depth/stencil
framebuffer attachment, the aspectMask is ignored and both depth and stencil image subresources
are used.

When creating a VkImageView, if sampler Y′CBCR conversion is enabled in the sampler, the aspectMask
of a subresourceRange used by the VkImageView must be VK_IMAGE_ASPECT_COLOR_BIT.

When creating a VkImageView, if sampler Y′CBCR conversion is not enabled in the sampler and the
image format is multi-planar, the image must have been created with
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, and the aspectMask of the VkImageView’s subresourceRange must
be VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT or VK_IMAGE_ASPECT_PLANE_2_BIT.

Valid Usage

• VUID-VkImageSubresourceRange-levelCount-01720
If levelCount is not VK_REMAINING_MIP_LEVELS, it must be greater than 0

• VUID-VkImageSubresourceRange-layerCount-01721
If layerCount is not VK_REMAINING_ARRAY_LAYERS, it must be greater than 0

• VUID-VkImageSubresourceRange-aspectMask-01670
If aspectMask includes VK_IMAGE_ASPECT_COLOR_BIT, then it must not include any of
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, or VK_IMAGE_ASPECT_PLANE_2_BIT

• VUID-VkImageSubresourceRange-aspectMask-02278
aspectMask must not include VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT for any index i

Valid Usage (Implicit)

• VUID-VkImageSubresourceRange-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkImageSubresourceRange-aspectMask-requiredbitmask
aspectMask must not be 0

Bits which can be set in an aspect mask to specify aspects of an image for purposes such as
identifying a subresource, are:

// Provided by VK_VERSION_1_0
typedef enum VkImageAspectFlagBits {
 VK_IMAGE_ASPECT_COLOR_BIT = 0x00000001,
 VK_IMAGE_ASPECT_DEPTH_BIT = 0x00000002,
 VK_IMAGE_ASPECT_STENCIL_BIT = 0x00000004,
 VK_IMAGE_ASPECT_METADATA_BIT = 0x00000008,
 // Provided by VK_VERSION_1_1

1087

 VK_IMAGE_ASPECT_PLANE_0_BIT = 0x00000010,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_ASPECT_PLANE_1_BIT = 0x00000020,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_ASPECT_PLANE_2_BIT = 0x00000040,
 // Provided by VK_VERSION_1_3
 VK_IMAGE_ASPECT_NONE = 0,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT = 0x00000080,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT = 0x00000100,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT = 0x00000200,
 // Provided by VK_EXT_image_drm_format_modifier
 VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT = 0x00000400,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_IMAGE_ASPECT_PLANE_0_BIT_KHR = VK_IMAGE_ASPECT_PLANE_0_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_IMAGE_ASPECT_PLANE_1_BIT_KHR = VK_IMAGE_ASPECT_PLANE_1_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_IMAGE_ASPECT_PLANE_2_BIT_KHR = VK_IMAGE_ASPECT_PLANE_2_BIT,
 // Provided by VK_KHR_maintenance4
 VK_IMAGE_ASPECT_NONE_KHR = VK_IMAGE_ASPECT_NONE,
} VkImageAspectFlagBits;

• VK_IMAGE_ASPECT_NONE specifies no image aspect, or the image aspect is not applicable.

• VK_IMAGE_ASPECT_COLOR_BIT specifies the color aspect.

• VK_IMAGE_ASPECT_DEPTH_BIT specifies the depth aspect.

• VK_IMAGE_ASPECT_STENCIL_BIT specifies the stencil aspect.

• VK_IMAGE_ASPECT_METADATA_BIT specifies the metadata aspect used for sparse resource operations.

• VK_IMAGE_ASPECT_PLANE_0_BIT specifies plane 0 of a multi-planar image format.

• VK_IMAGE_ASPECT_PLANE_1_BIT specifies plane 1 of a multi-planar image format.

• VK_IMAGE_ASPECT_PLANE_2_BIT specifies plane 2 of a multi-planar image format.

• VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT specifies memory plane 0.

• VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT specifies memory plane 1.

• VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT specifies memory plane 2.

• VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT specifies memory plane 3.

// Provided by VK_VERSION_1_0
typedef VkFlags VkImageAspectFlags;

VkImageAspectFlags is a bitmask type for setting a mask of zero or more VkImageAspectFlagBits.

The VkComponentMapping structure is defined as:

1088

// Provided by VK_VERSION_1_0
typedef struct VkComponentMapping {
 VkComponentSwizzle r;
 VkComponentSwizzle g;
 VkComponentSwizzle b;
 VkComponentSwizzle a;
} VkComponentMapping;

• r is a VkComponentSwizzle specifying the component value placed in the R component of the
output vector.

• g is a VkComponentSwizzle specifying the component value placed in the G component of the
output vector.

• b is a VkComponentSwizzle specifying the component value placed in the B component of the
output vector.

• a is a VkComponentSwizzle specifying the component value placed in the A component of the
output vector.

Valid Usage (Implicit)

• VUID-VkComponentMapping-r-parameter
r must be a valid VkComponentSwizzle value

• VUID-VkComponentMapping-g-parameter
g must be a valid VkComponentSwizzle value

• VUID-VkComponentMapping-b-parameter
b must be a valid VkComponentSwizzle value

• VUID-VkComponentMapping-a-parameter
a must be a valid VkComponentSwizzle value

Possible values of the members of VkComponentMapping, specifying the component values placed
in each component of the output vector, are:

// Provided by VK_VERSION_1_0
typedef enum VkComponentSwizzle {
 VK_COMPONENT_SWIZZLE_IDENTITY = 0,
 VK_COMPONENT_SWIZZLE_ZERO = 1,
 VK_COMPONENT_SWIZZLE_ONE = 2,
 VK_COMPONENT_SWIZZLE_R = 3,
 VK_COMPONENT_SWIZZLE_G = 4,
 VK_COMPONENT_SWIZZLE_B = 5,
 VK_COMPONENT_SWIZZLE_A = 6,
} VkComponentSwizzle;

• VK_COMPONENT_SWIZZLE_IDENTITY specifies that the component is set to the identity swizzle.

1089

• VK_COMPONENT_SWIZZLE_ZERO specifies that the component is set to zero.

• VK_COMPONENT_SWIZZLE_ONE specifies that the component is set to either 1 or 1.0, depending on
whether the type of the image view format is integer or floating-point respectively, as
determined by the Format Definition section for each VkFormat.

• VK_COMPONENT_SWIZZLE_R specifies that the component is set to the value of the R component of
the image.

• VK_COMPONENT_SWIZZLE_G specifies that the component is set to the value of the G component of
the image.

• VK_COMPONENT_SWIZZLE_B specifies that the component is set to the value of the B component of
the image.

• VK_COMPONENT_SWIZZLE_A specifies that the component is set to the value of the A component of
the image.

Setting the identity swizzle on a component is equivalent to setting the identity mapping on that
component. That is:

Table 17. Component Mappings Equivalent To VK_COMPONENT_SWIZZLE_IDENTITY

Component Identity Mapping

components.r VK_COMPONENT_SWIZZLE_R

components.g VK_COMPONENT_SWIZZLE_G

components.b VK_COMPONENT_SWIZZLE_B

components.a VK_COMPONENT_SWIZZLE_A

If the pNext chain includes a VkImageViewASTCDecodeModeEXT structure, then that structure includes a
parameter specifying the decode mode for image views using ASTC compressed formats.

The VkImageViewASTCDecodeModeEXT structure is defined as:

// Provided by VK_EXT_astc_decode_mode
typedef struct VkImageViewASTCDecodeModeEXT {
 VkStructureType sType;
 const void* pNext;
 VkFormat decodeMode;
} VkImageViewASTCDecodeModeEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• decodeMode is the intermediate format used to decode ASTC compressed formats.

Valid Usage

• VUID-VkImageViewASTCDecodeModeEXT-decodeMode-02230
decodeMode must be one of VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM, or
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

1090

• VUID-VkImageViewASTCDecodeModeEXT-decodeMode-02231
If the decodeModeSharedExponent feature is not enabled, decodeMode must not be
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

• VUID-VkImageViewASTCDecodeModeEXT-decodeMode-02232
If decodeMode is VK_FORMAT_R8G8B8A8_UNORM the image view must not include blocks using
any of the ASTC HDR modes

• VUID-VkImageViewASTCDecodeModeEXT-format-04084
format of the image view must be one of the ASTC Compressed Image Formats

If format uses sRGB encoding then the decodeMode has no effect.

Valid Usage (Implicit)

• VUID-VkImageViewASTCDecodeModeEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_ASTC_DECODE_MODE_EXT

• VUID-VkImageViewASTCDecodeModeEXT-decodeMode-parameter
decodeMode must be a valid VkFormat value

If the pNext chain includes a VkImageViewSampleWeightCreateInfoQCOM structure, then that structure
includes a parameter specifying the parameters for weight image views used in weight image
sampling.

The VkImageViewSampleWeightCreateInfoQCOM structure is defined as:

// Provided by VK_QCOM_image_processing
typedef struct VkImageViewSampleWeightCreateInfoQCOM {
 VkStructureType sType;
 const void* pNext;
 VkOffset2D filterCenter;
 VkExtent2D filterSize;
 uint32_t numPhases;
} VkImageViewSampleWeightCreateInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• filterCenter is a VkOffset2D describing the location of the weight filter origin.

• filterSize is a VkExtent2D specifying weight filter dimensions.

• numPhases is number of sub-pixel filter phases.

The filterCenter specifies the origin or center of the filter kernel, as described in Weight Sampling
Operation. The numPhases describes the number of sub-pixel filter phases as described in Weight
Sampling Phases.

1091

Valid Usage

• VUID-VkImageViewSampleWeightCreateInfoQCOM-filterSize-06958
filterSize.width must be less than or equal to
VkPhysicalDeviceImageProcessingPropertiesQCOM::maxWeightFilterDimension.width

• VUID-VkImageViewSampleWeightCreateInfoQCOM-filterSize-06959
filterSize.height must be less than or equal to
VkPhysicalDeviceImageProcessingPropertiesQCOM::maxWeightFilterDimension.height

• VUID-VkImageViewSampleWeightCreateInfoQCOM-filterCenter-06960
filterCenter.x must be less than or equal to (filterSize.width - 1)

• VUID-VkImageViewSampleWeightCreateInfoQCOM-filterCenter-06961
filterCenter.y must be less than or equal to (filterSize.height - 1)

• VUID-VkImageViewSampleWeightCreateInfoQCOM-numPhases-06962
numPhases must be a power of two squared value (i.e., 1, 4, 16, 64, 256, etc.)

• VUID-VkImageViewSampleWeightCreateInfoQCOM-numPhases-06963
numPhases must be less than or equal to VkPhysicalDeviceImageProcessingPropertiesQCOM
::maxWeightFilterPhases

Valid Usage (Implicit)

• VUID-VkImageViewSampleWeightCreateInfoQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_SAMPLE_WEIGHT_CREATE_INFO_QCOM

To destroy an image view, call:

// Provided by VK_VERSION_1_0
void vkDestroyImageView(
 VkDevice device,
 VkImageView imageView,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the image view.

• imageView is the image view to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyImageView-imageView-01026
All submitted commands that refer to imageView must have completed execution

• VUID-vkDestroyImageView-imageView-01027
If VkAllocationCallbacks were provided when imageView was created, a compatible set of

1092

callbacks must be provided here

• VUID-vkDestroyImageView-imageView-01028
If no VkAllocationCallbacks were provided when imageView was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyImageView-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyImageView-imageView-parameter
If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• VUID-vkDestroyImageView-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyImageView-imageView-parent
If imageView is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to imageView must be externally synchronized

To get the handle for an image view, call:

// Provided by VK_NVX_image_view_handle
uint32_t vkGetImageViewHandleNVX(
 VkDevice device,
 const VkImageViewHandleInfoNVX* pInfo);

• device is the logical device that owns the image view.

• pInfo describes the image view to query and type of handle.

Valid Usage (Implicit)

• VUID-vkGetImageViewHandleNVX-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageViewHandleNVX-pInfo-parameter
pInfo must be a valid pointer to a valid VkImageViewHandleInfoNVX structure

The VkImageViewHandleInfoNVX structure is defined as:

1093

// Provided by VK_NVX_image_view_handle
typedef struct VkImageViewHandleInfoNVX {
 VkStructureType sType;
 const void* pNext;
 VkImageView imageView;
 VkDescriptorType descriptorType;
 VkSampler sampler;
} VkImageViewHandleInfoNVX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageView is the image view to query.

• descriptorType is the type of descriptor for which to query a handle.

• sampler is the sampler to combine with the image view when generating the handle.

Valid Usage

• VUID-VkImageViewHandleInfoNVX-descriptorType-02654
descriptorType must be VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

• VUID-VkImageViewHandleInfoNVX-sampler-02655
sampler must be a valid VkSampler if descriptorType is
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

• VUID-VkImageViewHandleInfoNVX-imageView-02656
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the image that imageView was created from
must have been created with the VK_IMAGE_USAGE_SAMPLED_BIT usage bit set

• VUID-VkImageViewHandleInfoNVX-imageView-02657
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, the image that imageView was
created from must have been created with the VK_IMAGE_USAGE_STORAGE_BIT usage bit set

Valid Usage (Implicit)

• VUID-VkImageViewHandleInfoNVX-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_HANDLE_INFO_NVX

• VUID-VkImageViewHandleInfoNVX-pNext-pNext
pNext must be NULL

• VUID-VkImageViewHandleInfoNVX-imageView-parameter
imageView must be a valid VkImageView handle

• VUID-VkImageViewHandleInfoNVX-descriptorType-parameter
descriptorType must be a valid VkDescriptorType value

1094

• VUID-VkImageViewHandleInfoNVX-sampler-parameter
If sampler is not VK_NULL_HANDLE, sampler must be a valid VkSampler handle

• VUID-VkImageViewHandleInfoNVX-commonparent
Both of imageView, and sampler that are valid handles of non-ignored parameters must
have been created, allocated, or retrieved from the same VkDevice

To get the device address for an image view, call:

// Provided by VK_NVX_image_view_handle
VkResult vkGetImageViewAddressNVX(
 VkDevice device,
 VkImageView imageView,
 VkImageViewAddressPropertiesNVX* pProperties);

• device is the logical device that owns the image view.

• imageView is a handle to the image view.

• pProperties contains the device address and size when the call returns.

Valid Usage (Implicit)

• VUID-vkGetImageViewAddressNVX-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageViewAddressNVX-imageView-parameter
imageView must be a valid VkImageView handle

• VUID-vkGetImageViewAddressNVX-pProperties-parameter
pProperties must be a valid pointer to a VkImageViewAddressPropertiesNVX structure

• VUID-vkGetImageViewAddressNVX-imageView-parent
imageView must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_UNKNOWN

The VkImageViewAddressPropertiesNVX structure is defined as:

// Provided by VK_NVX_image_view_handle
typedef struct VkImageViewAddressPropertiesNVX {

1095

 VkStructureType sType;
 void* pNext;
 VkDeviceAddress deviceAddress;
 VkDeviceSize size;
} VkImageViewAddressPropertiesNVX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceAddress is the device address of the image view.

• size is the size in bytes of the image view device memory.

Valid Usage (Implicit)

• VUID-VkImageViewAddressPropertiesNVX-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_ADDRESS_PROPERTIES_NVX

• VUID-VkImageViewAddressPropertiesNVX-pNext-pNext
pNext must be NULL

12.5.1. Image View Format Features

Valid uses of a VkImageView may depend on the image view’s format features, defined below. Such
constraints are documented in the affected valid usage statement.

• If Vulkan 1.3 is supported or the VK_KHR_format_feature_flags2 extension is supported, and
VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_LINEAR, then the image view’s
set of format features is the value of VkFormatProperties3::linearTilingFeatures found by
calling vkGetPhysicalDeviceFormatProperties2 on the same format as VkImageViewCreateInfo
::format.

• If Vulkan 1.3 is not supported and the VK_KHR_format_feature_flags2 extension is not supported,
and VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_LINEAR, then the image
view’s set of format features is the union of the value of VkFormatProperties
::linearTilingFeatures found by calling vkGetPhysicalDeviceFormatProperties on the same
format as VkImageViewCreateInfo::format, with:

◦ VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT if the format is a depth/stencil
format and the image view features also contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT.

◦ VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT if the format is one of the extended
storage formats and shaderStorageImageReadWithoutFormat is enabled on the device.

◦ VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT if the format is one of the extended
storage formats and shaderStorageImageWriteWithoutFormat is enabled on the device.

• If Vulkan 1.3 is supported or the VK_KHR_format_feature_flags2 extension is supported, and
VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_OPTIMAL, but without an
Android hardware buffer external format, or a QNX Screen buffer external format, then the
image view’s set of format features is the value of VkFormatProperties::optimalTilingFeatures or

1096

VkFormatProperties3::optimalTilingFeatures found by calling
vkGetPhysicalDeviceFormatProperties or vkGetPhysicalDeviceImageFormatProperties2 on the
same format as VkImageViewCreateInfo::format.

• If Vulkan 1.3 is not supported and the VK_KHR_format_feature_flags2 extension is not supported,
and VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_OPTIMAL, but without an
Android hardware buffer external format, or a QNX Screen buffer external format, then the
image view’s set of format features is the union of the value of VkFormatProperties
::optimalTilingFeatures found by calling vkGetPhysicalDeviceFormatProperties on the same
format as VkImageViewCreateInfo::format, with:

◦ VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT if the format is a depth/stencil
format and the image view features also contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT.

◦ VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT if the format is one of the extended
storage formats and shaderStorageImageReadWithoutFormat is enabled on the device.

◦ VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT if the format is one of the extended
storage formats and shaderStorageImageWriteWithoutFormat is enabled on the device.

• If VkImageViewCreateInfo::image was created with an Android hardware buffer external
format, then the image views’s set of format features is the value of
VkAndroidHardwareBufferFormatPropertiesANDROID::formatFeatures found by calling
vkGetAndroidHardwareBufferPropertiesANDROID on the Android hardware buffer that was
imported to the VkDeviceMemory to which the VkImageViewCreateInfo::image is bound.

• If VkImageViewCreateInfo::image was created with a QNX Screen buffer external format, then
the image views’s set of format features is the value of VkScreenBufferFormatPropertiesQNX
::formatFeatures found by calling vkGetScreenBufferPropertiesQNX on the QNX Screen buffer
that was imported to the VkDeviceMemory to which the VkImageViewCreateInfo::image is
bound.

• If VkImageViewCreateInfo::image was created with a chained
VkBufferCollectionImageCreateInfoFUCHSIA, then the image view’s set of format features is the
value of VkBufferCollectionPropertiesFUCHSIA::formatFeatures found by calling
vkGetBufferCollectionPropertiesFUCHSIA on the buffer collection passed as
VkBufferCollectionImageCreateInfoFUCHSIA::collection when the image was created.

• If VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,
then:

◦ The image’s DRM format modifier is the value of
VkImageDrmFormatModifierPropertiesEXT::drmFormatModifier found by calling
vkGetImageDrmFormatModifierPropertiesEXT.

◦ Let VkDrmFormatModifierPropertiesListEXT::pDrmFormatModifierProperties be the array
found by calling vkGetPhysicalDeviceFormatProperties2 on the same format as
VkImageViewCreateInfo::format.

◦ Let VkDrmFormatModifierPropertiesEXT prop be the array element whose drmFormatModifier
member is the value of the image’s DRM format modifier.

◦ Then the image view’s set of format features is prop::drmFormatModifierTilingFeatures.

The VkImageViewMinLodCreateInfoEXT structure is defined as:

1097

// Provided by VK_EXT_image_view_min_lod
typedef struct VkImageViewMinLodCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 float minLod;
} VkImageViewMinLodCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minLod is the value to clamp the minimum LOD accessible by this VkImageView.

If the pNext chain includes a VkImageViewMinLodCreateInfoEXT structure, then that structure includes
a parameter specifying a value to clamp the minimum LOD value during Image Level(s) Selection,
Texel Gathering and Integer Texel Coordinate Operations.

If the image view contains VkImageViewMinLodCreateInfoEXT and it is used as part of a sampling
operation:

minLodFloatimageView = minLod

otherwise:

minLodFloatimageView = 0.0

An integer variant of this parameter is also defined for sampling operations which access integer
mipmap levels:

minLodIntegerimageView = ⌊minLodFloatimageView⌋

Valid Usage

• VUID-VkImageViewMinLodCreateInfoEXT-minLod-06455
If the minLod feature is not enabled, minLod must be 0.0

• VUID-VkImageViewMinLodCreateInfoEXT-minLod-06456
minLod must be less or equal to the index of the last mipmap level accessible to the view

Valid Usage (Implicit)

• VUID-VkImageViewMinLodCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_MIN_LOD_CREATE_INFO_EXT

12.6. Acceleration Structures
Acceleration structures are opaque data structures that are built by the implementation to more
efficiently perform spatial queries on the provided geometric data. For this extension, an

1098

acceleration structure is either a top-level acceleration structure containing a set of bottom-level
acceleration structures or a bottom-level acceleration structure containing either a set of axis-
aligned bounding boxes for custom geometry or a set of triangles.

Each instance in the top-level acceleration structure contains a reference to a bottom-level
acceleration structure as well as an instance transform plus information required to index into the
shader bindings. The top-level acceleration structure is what is bound to the acceleration
descriptor, for example to trace inside the shader in the ray tracing pipeline.

Acceleration structures are represented by VkAccelerationStructureKHR handles:

// Provided by VK_KHR_acceleration_structure
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkAccelerationStructureKHR)

Acceleration structures for the VK_NV_ray_tracing extension are represented by the similar
VkAccelerationStructureNV handles:

// Provided by VK_NV_ray_tracing
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkAccelerationStructureNV)

To create acceleration structures, call:

// Provided by VK_NV_ray_tracing
VkResult vkCreateAccelerationStructureNV(
 VkDevice device,
 const VkAccelerationStructureCreateInfoNV* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkAccelerationStructureNV* pAccelerationStructure);

• device is the logical device that creates the buffer object.

• pCreateInfo is a pointer to a VkAccelerationStructureCreateInfoNV structure containing
parameters affecting creation of the acceleration structure.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pAccelerationStructure is a pointer to a VkAccelerationStructureNV handle in which the
resulting acceleration structure object is returned.

Similarly to other objects in Vulkan, the acceleration structure creation merely creates an object
with a specific “shape” as specified by the information in VkAccelerationStructureInfoNV and
compactedSize in pCreateInfo.

Once memory has been bound to the acceleration structure using
vkBindAccelerationStructureMemoryNV, that memory is populated by calls to
vkCmdBuildAccelerationStructureNV and vkCmdCopyAccelerationStructureNV.

Acceleration structure creation uses the count and type information from the geometries, but does
not use the data references in the structures.

1099

Valid Usage (Implicit)

• VUID-vkCreateAccelerationStructureNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateAccelerationStructureNV-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkAccelerationStructureCreateInfoNV
structure

• VUID-vkCreateAccelerationStructureNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateAccelerationStructureNV-pAccelerationStructure-parameter
pAccelerationStructure must be a valid pointer to a VkAccelerationStructureNV handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkAccelerationStructureCreateInfoNV structure is defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkAccelerationStructureCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkDeviceSize compactedSize;
 VkAccelerationStructureInfoNV info;
} VkAccelerationStructureCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• compactedSize is the size from the result of vkCmdWriteAccelerationStructuresPropertiesNV if
this acceleration structure is going to be the target of a compacting copy.

• info is the VkAccelerationStructureInfoNV structure specifying further parameters of the
created acceleration structure.

Valid Usage

• VUID-VkAccelerationStructureCreateInfoNV-compactedSize-02421
If compactedSize is not 0 then both info.geometryCount and info.instanceCount must be 0

1100

Valid Usage (Implicit)

• VUID-VkAccelerationStructureCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_NV

• VUID-VkAccelerationStructureCreateInfoNV-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkOpaqueCaptureDescriptorDataCreateInfoEXT

• VUID-VkAccelerationStructureCreateInfoNV-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkAccelerationStructureCreateInfoNV-info-parameter
info must be a valid VkAccelerationStructureInfoNV structure

The VkAccelerationStructureInfoNV structure is defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkAccelerationStructureInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkAccelerationStructureTypeNV type;
 VkBuildAccelerationStructureFlagsNV flags;
 uint32_t instanceCount;
 uint32_t geometryCount;
 const VkGeometryNV* pGeometries;
} VkAccelerationStructureInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• type is a VkAccelerationStructureTypeNV value specifying the type of acceleration structure that
will be created.

• flags is a bitmask of VkBuildAccelerationStructureFlagBitsNV specifying additional parameters
of the acceleration structure.

• instanceCount specifies the number of instances that will be in the new acceleration structure.

• geometryCount specifies the number of geometries that will be in the new acceleration structure.

• pGeometries is a pointer to an array of geometryCount VkGeometryNV structures containing the
scene data being passed into the acceleration structure.

VkAccelerationStructureInfoNV contains information that is used both for acceleration structure
creation with vkCreateAccelerationStructureNV and in combination with the actual geometric data
to build the acceleration structure with vkCmdBuildAccelerationStructureNV.

Valid Usage

• VUID-VkAccelerationStructureInfoNV-geometryCount-02422

1101

geometryCount must be less than or equal to VkPhysicalDeviceRayTracingPropertiesNV
::maxGeometryCount

• VUID-VkAccelerationStructureInfoNV-instanceCount-02423
instanceCount must be less than or equal to VkPhysicalDeviceRayTracingPropertiesNV
::maxInstanceCount

• VUID-VkAccelerationStructureInfoNV-maxTriangleCount-02424
The total number of triangles in all geometries must be less than or equal to
VkPhysicalDeviceRayTracingPropertiesNV::maxTriangleCount

• VUID-VkAccelerationStructureInfoNV-type-02425
If type is VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_NV then geometryCount must be 0

• VUID-VkAccelerationStructureInfoNV-type-02426
If type is VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV then instanceCount must be 0

• VUID-VkAccelerationStructureInfoNV-type-02786
If type is VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV then the geometryType member
of each geometry in pGeometries must be the same

• VUID-VkAccelerationStructureInfoNV-type-04623
type must not be VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-VkAccelerationStructureInfoNV-flags-02592
If flags has the VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_NV bit set, then it
must not have the VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_NV bit set

• VUID-VkAccelerationStructureInfoNV-scratch-02781
scratch must have been created with VK_BUFFER_USAGE_RAY_TRACING_BIT_NV usage flag

• VUID-VkAccelerationStructureInfoNV-instanceData-02782
If instanceData is not VK_NULL_HANDLE, instanceData must have been created with
VK_BUFFER_USAGE_RAY_TRACING_BIT_NV usage flag

Valid Usage (Implicit)

• VUID-VkAccelerationStructureInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_INFO_NV

• VUID-VkAccelerationStructureInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkAccelerationStructureInfoNV-type-parameter
type must be a valid VkAccelerationStructureTypeNV value

• VUID-VkAccelerationStructureInfoNV-flags-parameter
flags must be a valid combination of VkBuildAccelerationStructureFlagBitsNV values

• VUID-VkAccelerationStructureInfoNV-pGeometries-parameter
If geometryCount is not 0, pGeometries must be a valid pointer to an array of geometryCount
valid VkGeometryNV structures

To create an acceleration structure, call:

1102

// Provided by VK_KHR_acceleration_structure
VkResult vkCreateAccelerationStructureKHR(
 VkDevice device,
 const VkAccelerationStructureCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkAccelerationStructureKHR* pAccelerationStructure);

• device is the logical device that creates the acceleration structure object.

• pCreateInfo is a pointer to a VkAccelerationStructureCreateInfoKHR structure containing
parameters affecting creation of the acceleration structure.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pAccelerationStructure is a pointer to a VkAccelerationStructureKHR handle in which the
resulting acceleration structure object is returned.

Similar to other objects in Vulkan, the acceleration structure creation merely creates an object with
a specific “shape”. The type and quantity of geometry that can be built into an acceleration
structure is determined by the parameters of VkAccelerationStructureCreateInfoKHR.

The acceleration structure data is stored in the object referred to by
VkAccelerationStructureCreateInfoKHR::buffer. Once memory has been bound to that buffer, it must
be populated by acceleration structure build or acceleration structure copy commands such as
vkCmdBuildAccelerationStructuresKHR, vkBuildAccelerationStructuresKHR,
vkCmdCopyAccelerationStructureKHR, and vkCopyAccelerationStructureKHR.

Note

The expected usage for a trace capture/replay tool is that it will serialize and later
deserialize the acceleration structure data using acceleration structure copy
commands. During capture the tool will use
vkCopyAccelerationStructureToMemoryKHR or
vkCmdCopyAccelerationStructureToMemoryKHR with a mode of
VK_COPY_ACCELERATION_STRUCTURE_MODE_SERIALIZE_KHR, and
vkCopyMemoryToAccelerationStructureKHR or
vkCmdCopyMemoryToAccelerationStructureKHR with a mode of
VK_COPY_ACCELERATION_STRUCTURE_MODE_DESERIALIZE_KHR during replay.

Note

Memory does not need to be bound to the underlying buffer when
vkCreateAccelerationStructureKHR is called.

The input buffers passed to acceleration structure build commands will be referenced by the
implementation for the duration of the command. After the command completes, the acceleration
structure may hold a reference to any acceleration structure specified by an active instance
contained therein. Apart from this referencing, acceleration structures must be fully self-contained.
The application can reuse or free any memory which was used by the command as an input or as
scratch without affecting the results of ray traversal.

1103

Valid Usage

• VUID-vkCreateAccelerationStructureKHR-accelerationStructure-03611
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

• VUID-vkCreateAccelerationStructureKHR-deviceAddress-03488
If VkAccelerationStructureCreateInfoKHR::deviceAddress is not zero, the
accelerationStructureCaptureReplay feature must be enabled

• VUID-vkCreateAccelerationStructureKHR-device-03489
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkCreateAccelerationStructureKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateAccelerationStructureKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkAccelerationStructureCreateInfoKHR
structure

• VUID-vkCreateAccelerationStructureKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateAccelerationStructureKHR-pAccelerationStructure-parameter
pAccelerationStructure must be a valid pointer to a VkAccelerationStructureKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

The VkAccelerationStructureCreateInfoKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkAccelerationStructureCreateFlagsKHR createFlags;
 VkBuffer buffer;

1104

 VkDeviceSize offset;
 VkDeviceSize size;
 VkAccelerationStructureTypeKHR type;
 VkDeviceAddress deviceAddress;
} VkAccelerationStructureCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• createFlags is a bitmask of VkAccelerationStructureCreateFlagBitsKHR specifying additional
creation parameters of the acceleration structure.

• buffer is the buffer on which the acceleration structure will be stored.

• offset is an offset in bytes from the base address of the buffer at which the acceleration
structure will be stored, and must be a multiple of 256.

• size is the size required for the acceleration structure.

• type is a VkAccelerationStructureTypeKHR value specifying the type of acceleration structure
that will be created.

• deviceAddress is the device address requested for the acceleration structure if the
accelerationStructureCaptureReplay feature is being used. If deviceAddress is zero, no specific
address is requested.

Applications should avoid creating acceleration structures with application-provided addresses
and implementation-provided addresses in the same process, to reduce the likelihood of
VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR errors.

Note

The expected usage for this is that a trace capture/replay tool will add the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT flag to all buffers that use
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, and will add
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT to all buffers used as storage for an
acceleration structure where deviceAddress is not zero. This also means that the
tool will need to add VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT to memory allocations
to allow the flag to be set where the application may not have otherwise required
it. During capture the tool will save the queried opaque device addresses in the
trace. During replay, the buffers will be created specifying the original address so
any address values stored in the trace data will remain valid.

Implementations are expected to separate such buffers in the GPU address space
so normal allocations will avoid using these addresses. Apps/tools should avoid
mixing app-provided and implementation-provided addresses for buffers created
with VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, to avoid address space
allocation conflicts.

Applications should create an acceleration structure with a specific
VkAccelerationStructureTypeKHR other than VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR.

1105

Note

VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR is intended to be used by API
translation layers. This can be used at acceleration structure creation time in cases
where the actual acceleration structure type (top or bottom) is not yet known. The
actual acceleration structure type must be specified as
VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR or
VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR when the build is performed.

If the acceleration structure will be the target of a build operation, the required size for an
acceleration structure can be queried with vkGetAccelerationStructureBuildSizesKHR. If the
acceleration structure is going to be the target of a compacting copy,
vkCmdWriteAccelerationStructuresPropertiesKHR or vkWriteAccelerationStructuresPropertiesKHR
can be used to obtain the compacted size required.

If the acceleration structure will be the target of a build operation with
VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV it must include
VK_ACCELERATION_STRUCTURE_CREATE_MOTION_BIT_NV in createFlags and include
VkAccelerationStructureMotionInfoNV as an extension structure in pNext with the number of
instances as metadata for the object.

Valid Usage

• VUID-VkAccelerationStructureCreateInfoKHR-deviceAddress-03612
If deviceAddress is not zero, createFlags must include
VK_ACCELERATION_STRUCTURE_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR

• VUID-VkAccelerationStructureCreateInfoKHR-deviceAddress-09488
If deviceAddress is not zero, it must have been retrieved from an identically created
acceleration structure, except for buffer and deviceAddress

• VUID-VkAccelerationStructureCreateInfoKHR-deviceAddress-09489
If deviceAddress is not zero, buffer must have been created identically to the buffer used
to create the acceleration structure from which deviceAddress was retrieved, except for
VkBufferOpaqueCaptureAddressCreateInfo::opaqueCaptureAddress

• VUID-VkAccelerationStructureCreateInfoKHR-deviceAddress-09490
If deviceAddress is not zero, buffer must have been created with a
VkBufferOpaqueCaptureAddressCreateInfo::opaqueCaptureAddress that was retrieved from
vkGetBufferOpaqueCaptureAddress for the buffer that was used to create the acceleration
structure from which deviceAddress was retrieved

• VUID-VkAccelerationStructureCreateInfoKHR-createFlags-03613
If createFlags includes
VK_ACCELERATION_STRUCTURE_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR,
VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructureCaptureReplay
must be VK_TRUE

• VUID-VkAccelerationStructureCreateInfoKHR-buffer-03614
buffer must have been created with a usage value containing
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR

1106

• VUID-VkAccelerationStructureCreateInfoKHR-buffer-03615
buffer must not have been created with VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkAccelerationStructureCreateInfoKHR-offset-03616
The sum of offset and size must be less than the size of buffer

• VUID-VkAccelerationStructureCreateInfoKHR-offset-03734
offset must be a multiple of 256 bytes

• VUID-VkAccelerationStructureCreateInfoKHR-createFlags-04954
If VK_ACCELERATION_STRUCTURE_CREATE_MOTION_BIT_NV is set in createFlags and type is
VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, one member of the pNext chain must be a
pointer to a valid instance of VkAccelerationStructureMotionInfoNV

• VUID-VkAccelerationStructureCreateInfoKHR-createFlags-04955
If any geometry includes VkAccelerationStructureGeometryMotionTrianglesDataNV then
createFlags must contain VK_ACCELERATION_STRUCTURE_CREATE_MOTION_BIT_NV

• VUID-VkAccelerationStructureCreateInfoKHR-createFlags-08108
If createFlags includes
VK_ACCELERATION_STRUCTURE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT, the
descriptorBufferCaptureReplay feature must be enabled

• VUID-VkAccelerationStructureCreateInfoKHR-pNext-08109
If the pNext chain includes a VkOpaqueCaptureDescriptorDataCreateInfoEXT structure,
createFlags must contain
VK_ACCELERATION_STRUCTURE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

Valid Usage (Implicit)

• VUID-VkAccelerationStructureCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR

• VUID-VkAccelerationStructureCreateInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkAccelerationStructureMotionInfoNV or
VkOpaqueCaptureDescriptorDataCreateInfoEXT

• VUID-VkAccelerationStructureCreateInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkAccelerationStructureCreateInfoKHR-createFlags-parameter
createFlags must be a valid combination of VkAccelerationStructureCreateFlagBitsKHR
values

• VUID-VkAccelerationStructureCreateInfoKHR-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-VkAccelerationStructureCreateInfoKHR-type-parameter
type must be a valid VkAccelerationStructureTypeKHR value

The VkAccelerationStructureMotionInfoNV structure is defined as:

1107

// Provided by VK_NV_ray_tracing_motion_blur
typedef struct VkAccelerationStructureMotionInfoNV {
 VkStructureType sType;
 const void* pNext;
 uint32_t maxInstances;
 VkAccelerationStructureMotionInfoFlagsNV flags;
} VkAccelerationStructureMotionInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxInstances is the maximum number of instances that may be used in the motion top-level
acceleration structure.

• flags is 0 and reserved for future use.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureMotionInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MOTION_INFO_NV

• VUID-VkAccelerationStructureMotionInfoNV-flags-zerobitmask
flags must be 0

// Provided by VK_NV_ray_tracing_motion_blur
typedef VkFlags VkAccelerationStructureMotionInfoFlagsNV;

VkAccelerationStructureMotionInfoFlagsNV is a bitmask type for setting a mask, but is currently
reserved for future use.

To get the build sizes for an acceleration structure, call:

// Provided by VK_KHR_acceleration_structure
void vkGetAccelerationStructureBuildSizesKHR(
 VkDevice device,
 VkAccelerationStructureBuildTypeKHR buildType,
 const VkAccelerationStructureBuildGeometryInfoKHR* pBuildInfo,
 const uint32_t* pMaxPrimitiveCounts,
 VkAccelerationStructureBuildSizesInfoKHR* pSizeInfo);

• device is the logical device that will be used for creating the acceleration structure.

• buildType defines whether host or device operations (or both) are being queried for.

• pBuildInfo is a pointer to a VkAccelerationStructureBuildGeometryInfoKHR structure
describing parameters of a build operation.

• pMaxPrimitiveCounts is a pointer to an array of pBuildInfo->geometryCount uint32_t values

1108

defining the number of primitives built into each geometry.

• pSizeInfo is a pointer to a VkAccelerationStructureBuildSizesInfoKHR structure which returns
the size required for an acceleration structure and the sizes required for the scratch buffers,
given the build parameters.

The srcAccelerationStructure, dstAccelerationStructure, and mode members of pBuildInfo are
ignored. Any VkDeviceOrHostAddressKHR or VkDeviceOrHostAddressConstKHR members of
pBuildInfo are ignored by this command, except that the hostAddress member of
VkAccelerationStructureGeometryTrianglesDataKHR::transformData will be examined to check if it
is NULL.

An acceleration structure created with the accelerationStructureSize returned by this command
supports any build or update with a VkAccelerationStructureBuildGeometryInfoKHR structure and
array of VkAccelerationStructureBuildRangeInfoKHR structures subject to the following properties:

• The build command is a host build command, and buildType is
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR or
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_OR_DEVICE_KHR

• The build command is a device build command, and buildType is
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR or
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_OR_DEVICE_KHR

• For VkAccelerationStructureBuildGeometryInfoKHR:

◦ Its type, and flags members are equal to pBuildInfo->type and pBuildInfo->flags,
respectively.

◦ geometryCount is less than or equal to pBuildInfo->geometryCount.

◦ For each element of either pGeometries or ppGeometries at a given index, its geometryType
member is equal to pBuildInfo->geometryType.

◦ For each element of either pGeometries or ppGeometries at a given index, its flags member is
equal to the corresponding member of the same element in pBuildInfo.

◦ For each element of either pGeometries or ppGeometries at a given index, with a geometryType
member equal to VK_GEOMETRY_TYPE_TRIANGLES_KHR, the vertexFormat and indexType members
of geometry.triangles are equal to the corresponding members of the same element in
pBuildInfo.

◦ For each element of either pGeometries or ppGeometries at a given index, with a geometryType
member equal to VK_GEOMETRY_TYPE_TRIANGLES_KHR, the maxVertex member of
geometry.triangles is less than or equal to the corresponding member of the same element
in pBuildInfo.

◦ For each element of either pGeometries or ppGeometries at a given index, with a geometryType
member equal to VK_GEOMETRY_TYPE_TRIANGLES_KHR, if the applicable address in the
transformData member of geometry.triangles is not NULL, the corresponding
transformData.hostAddress parameter in pBuildInfo is not NULL.

• For each VkAccelerationStructureBuildRangeInfoKHR corresponding to the
VkAccelerationStructureBuildGeometryInfoKHR:

◦ Its primitiveCount member is less than or equal to the corresponding element of

1109

pMaxPrimitiveCounts.

◦ For each element of either pGeometries or ppGeometries at a given index, with a geometryType
member equal to VK_GEOMETRY_TYPE_TRIANGLES_KHR, if the pNext chain contains
VkAccelerationStructureTrianglesOpacityMicromapEXT the corresponding member of
pBuildInfo also contains VkAccelerationStructureTrianglesOpacityMicromapEXT and with
an equivalent micromap.

◦ For each element of either pGeometries or ppGeometries at a given index, with a geometryType
member equal to VK_GEOMETRY_TYPE_TRIANGLES_KHR, if the pNext chain contains
VkAccelerationStructureTrianglesDisplacementMicromapNV the corresponding member of
pBuildInfo also contains VkAccelerationStructureTrianglesDisplacementMicromapNV and
with an equivalent micromap.

Similarly, the updateScratchSize value will support any build command specifying the
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR mode under the above conditions, and the
buildScratchSize value will support any build command specifying the
VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR mode under the above conditions.

Valid Usage

• VUID-vkGetAccelerationStructureBuildSizesKHR-accelerationStructure-08933
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

• VUID-vkGetAccelerationStructureBuildSizesKHR-device-03618
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

• VUID-vkGetAccelerationStructureBuildSizesKHR-pBuildInfo-03619
If pBuildInfo->geometryCount is not 0, pMaxPrimitiveCounts must be a valid pointer to an
array of pBuildInfo->geometryCount uint32_t values

• VUID-vkGetAccelerationStructureBuildSizesKHR-pBuildInfo-03785
If pBuildInfo->pGeometries or pBuildInfo->ppGeometries has a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, each pMaxPrimitiveCounts[i] must be less than or equal to
VkPhysicalDeviceAccelerationStructurePropertiesKHR::maxInstanceCount

Valid Usage (Implicit)

• VUID-vkGetAccelerationStructureBuildSizesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetAccelerationStructureBuildSizesKHR-buildType-parameter
buildType must be a valid VkAccelerationStructureBuildTypeKHR value

• VUID-vkGetAccelerationStructureBuildSizesKHR-pBuildInfo-parameter
pBuildInfo must be a valid pointer to a valid
VkAccelerationStructureBuildGeometryInfoKHR structure

• VUID-vkGetAccelerationStructureBuildSizesKHR-pMaxPrimitiveCounts-parameter

1110

If pMaxPrimitiveCounts is not NULL, pMaxPrimitiveCounts must be a valid pointer to an array
of pBuildInfo->geometryCount uint32_t values

• VUID-vkGetAccelerationStructureBuildSizesKHR-pSizeInfo-parameter
pSizeInfo must be a valid pointer to a VkAccelerationStructureBuildSizesInfoKHR
structure

The VkAccelerationStructureBuildSizesInfoKHR structure describes the required build sizes for an
acceleration structure and scratch buffers and is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureBuildSizesInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkDeviceSize accelerationStructureSize;
 VkDeviceSize updateScratchSize;
 VkDeviceSize buildScratchSize;
} VkAccelerationStructureBuildSizesInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• accelerationStructureSize is the size in bytes required in a VkAccelerationStructureKHR for a
build or update operation.

• updateScratchSize is the size in bytes required in a scratch buffer for an update operation.

• buildScratchSize is the size in bytes required in a scratch buffer for a build operation.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureBuildSizesInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR

• VUID-VkAccelerationStructureBuildSizesInfoKHR-pNext-pNext
pNext must be NULL

Values which can be set in VkAccelerationStructureCreateInfoKHR::type or
VkAccelerationStructureInfoNV::type specifying the type of acceleration structure, are:

// Provided by VK_KHR_acceleration_structure
typedef enum VkAccelerationStructureTypeKHR {
 VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR = 0,
 VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR = 1,
 VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR = 2,
 // Provided by VK_NV_ray_tracing
 VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_NV =
VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR,
 // Provided by VK_NV_ray_tracing

1111

 VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV =
VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR,
} VkAccelerationStructureTypeKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkAccelerationStructureTypeKHR VkAccelerationStructureTypeNV;

• VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR is a top-level acceleration structure containing
instance data referring to bottom-level acceleration structures.

• VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR is a bottom-level acceleration structure
containing the AABBs or geometry to be intersected.

• VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR is an acceleration structure whose type is
determined at build time used for special circumstances. In these cases, the acceleration
structure type is not known at creation time, but must be specified at build time as either top or
bottom.

Bits which can be set in VkAccelerationStructureCreateInfoKHR::createFlags, specifying additional
creation parameters for acceleration structures, are:

// Provided by VK_KHR_acceleration_structure
typedef enum VkAccelerationStructureCreateFlagBitsKHR {
 VK_ACCELERATION_STRUCTURE_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR =
0x00000001,
 // Provided by VK_EXT_descriptor_buffer
 VK_ACCELERATION_STRUCTURE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT =
0x00000008,
 // Provided by VK_NV_ray_tracing_motion_blur
 VK_ACCELERATION_STRUCTURE_CREATE_MOTION_BIT_NV = 0x00000004,
} VkAccelerationStructureCreateFlagBitsKHR;

• VK_ACCELERATION_STRUCTURE_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR specifies that the
acceleration structure’s address can be saved and reused on a subsequent run.

• VK_ACCELERATION_STRUCTURE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT specifies that the
acceleration structure can be used with descriptor buffers when capturing and replaying (e.g.
for trace capture and replay), see VkOpaqueCaptureDescriptorDataCreateInfoEXT for more
detail.

// Provided by VK_KHR_acceleration_structure
typedef VkFlags VkAccelerationStructureCreateFlagsKHR;

VkAccelerationStructureCreateFlagsKHR is a bitmask type for setting a mask of zero or more
VkAccelerationStructureCreateFlagBitsKHR.

1112

Bits which can be set in VkAccelerationStructureBuildGeometryInfoKHR::flags or
VkAccelerationStructureInfoNV::flags specifying additional parameters for acceleration structure
builds, are:

// Provided by VK_KHR_acceleration_structure
typedef enum VkBuildAccelerationStructureFlagBitsKHR {
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR = 0x00000001,
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR = 0x00000002,
 VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR = 0x00000004,
 VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_KHR = 0x00000008,
 VK_BUILD_ACCELERATION_STRUCTURE_LOW_MEMORY_BIT_KHR = 0x00000010,
 // Provided by VK_NV_ray_tracing_motion_blur
 VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV = 0x00000020,
 // Provided by VK_EXT_opacity_micromap
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_UPDATE_EXT = 0x00000040,
 // Provided by VK_EXT_opacity_micromap
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISABLE_OPACITY_MICROMAPS_EXT = 0x00000080,
 // Provided by VK_EXT_opacity_micromap
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_DATA_UPDATE_EXT =
0x00000100,
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_NV_displacement_micromap
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISPLACEMENT_MICROMAP_UPDATE_NV =
0x00000200,
#endif
 // Provided by VK_KHR_ray_tracing_position_fetch
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DATA_ACCESS_KHR = 0x00000800,
 // Provided by VK_NV_ray_tracing
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_NV =
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_NV =
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_NV =
VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_NV =
VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_BUILD_ACCELERATION_STRUCTURE_LOW_MEMORY_BIT_NV =
VK_BUILD_ACCELERATION_STRUCTURE_LOW_MEMORY_BIT_KHR,
} VkBuildAccelerationStructureFlagBitsKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkBuildAccelerationStructureFlagBitsKHR

1113

VkBuildAccelerationStructureFlagBitsNV;

• VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR indicates that the specified acceleration
structure can be updated with a mode of VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR in
VkAccelerationStructureBuildGeometryInfoKHR or an update of VK_TRUE in
vkCmdBuildAccelerationStructureNV .

• VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR indicates that the specified
acceleration structure can act as the source for a copy acceleration structure command with
mode of VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR to produce a compacted acceleration
structure.

• VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR indicates that the given
acceleration structure build should prioritize trace performance over build time.

• VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_KHR indicates that the given
acceleration structure build should prioritize build time over trace performance.

• VK_BUILD_ACCELERATION_STRUCTURE_LOW_MEMORY_BIT_KHR indicates that this acceleration structure
should minimize the size of the scratch memory and the final result acceleration structure,
potentially at the expense of build time or trace performance.

• VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_UPDATE_EXT indicates that the opacity
micromaps associated with the specified acceleration structure may change with an
acceleration structure update.

• VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_DATA_UPDATE_EXT indicates that the
data of the opacity micromaps associated with the specified acceleration structure may change
with an acceleration structure update.

• VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISABLE_OPACITY_MICROMAPS_EXT indicates that the
specified acceleration structure may be referenced in an instance with
VK_GEOMETRY_INSTANCE_DISABLE_OPACITY_MICROMAPS_EXT set.

• VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DATA_ACCESS_KHR indicates that the specified acceleration
structure can be used when fetching the vertex positions of a hit triangle.

• VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISPLACEMENT_MICROMAP_UPDATE_NV indicates that the
displacement micromaps associated with the specified acceleration structure may change with
an acceleration structure update.

Note

VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR and
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR may take more time
and memory than a normal build, and so should only be used when those features
are needed.

// Provided by VK_KHR_acceleration_structure
typedef VkFlags VkBuildAccelerationStructureFlagsKHR;

or the equivalent

1114

// Provided by VK_NV_ray_tracing
typedef VkBuildAccelerationStructureFlagsKHR VkBuildAccelerationStructureFlagsNV;

VkBuildAccelerationStructureFlagsKHR is a bitmask type for setting a mask of zero or more
VkBuildAccelerationStructureFlagBitsKHR.

The VkGeometryNV structure describes geometry in a bottom-level acceleration structure and is
defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkGeometryNV {
 VkStructureType sType;
 const void* pNext;
 VkGeometryTypeKHR geometryType;
 VkGeometryDataNV geometry;
 VkGeometryFlagsKHR flags;
} VkGeometryNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• geometryType specifies the VkGeometryTypeKHR which this geometry refers to.

• geometry contains the geometry data as described in VkGeometryDataNV.

• flags has VkGeometryFlagBitsKHR describing options for this geometry.

Valid Usage

• VUID-VkGeometryNV-geometryType-03503
geometryType must be VK_GEOMETRY_TYPE_TRIANGLES_NV or VK_GEOMETRY_TYPE_AABBS_NV

Valid Usage (Implicit)

• VUID-VkGeometryNV-sType-sType
sType must be VK_STRUCTURE_TYPE_GEOMETRY_NV

• VUID-VkGeometryNV-pNext-pNext
pNext must be NULL

• VUID-VkGeometryNV-geometryType-parameter
geometryType must be a valid VkGeometryTypeKHR value

• VUID-VkGeometryNV-geometry-parameter
geometry must be a valid VkGeometryDataNV structure

• VUID-VkGeometryNV-flags-parameter
flags must be a valid combination of VkGeometryFlagBitsKHR values

1115

Geometry types are specified by VkGeometryTypeKHR, which takes values:

// Provided by VK_KHR_acceleration_structure
typedef enum VkGeometryTypeKHR {
 VK_GEOMETRY_TYPE_TRIANGLES_KHR = 0,
 VK_GEOMETRY_TYPE_AABBS_KHR = 1,
 VK_GEOMETRY_TYPE_INSTANCES_KHR = 2,
 // Provided by VK_NV_ray_tracing
 VK_GEOMETRY_TYPE_TRIANGLES_NV = VK_GEOMETRY_TYPE_TRIANGLES_KHR,
 // Provided by VK_NV_ray_tracing
 VK_GEOMETRY_TYPE_AABBS_NV = VK_GEOMETRY_TYPE_AABBS_KHR,
} VkGeometryTypeKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkGeometryTypeKHR VkGeometryTypeNV;

• VK_GEOMETRY_TYPE_TRIANGLES_KHR specifies a geometry type consisting of triangles.

• VK_GEOMETRY_TYPE_AABBS_KHR specifies a geometry type consisting of axis-aligned bounding boxes.

• VK_GEOMETRY_TYPE_INSTANCES_KHR specifies a geometry type consisting of acceleration structure
instances.

Bits specifying additional parameters for geometries in acceleration structure builds, are:

// Provided by VK_KHR_acceleration_structure
typedef enum VkGeometryFlagBitsKHR {
 VK_GEOMETRY_OPAQUE_BIT_KHR = 0x00000001,
 VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR = 0x00000002,
 // Provided by VK_NV_ray_tracing
 VK_GEOMETRY_OPAQUE_BIT_NV = VK_GEOMETRY_OPAQUE_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_NV =
VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR,
} VkGeometryFlagBitsKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkGeometryFlagBitsKHR VkGeometryFlagBitsNV;

• VK_GEOMETRY_OPAQUE_BIT_KHR indicates that this geometry does not invoke the any-hit shaders
even if present in a hit group.

• VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR indicates that the implementation must
only call the any-hit shader a single time for each primitive in this geometry. If this bit is absent

1116

an implementation may invoke the any-hit shader more than once for this geometry.

// Provided by VK_KHR_acceleration_structure
typedef VkFlags VkGeometryFlagsKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkGeometryFlagsKHR VkGeometryFlagsNV;

VkGeometryFlagsKHR is a bitmask type for setting a mask of zero or more VkGeometryFlagBitsKHR.

The VkGeometryDataNV structure specifies geometry in a bottom-level acceleration structure and is
defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkGeometryDataNV {
 VkGeometryTrianglesNV triangles;
 VkGeometryAABBNV aabbs;
} VkGeometryDataNV;

• triangles contains triangle data if VkGeometryNV::geometryType is
VK_GEOMETRY_TYPE_TRIANGLES_NV.

• aabbs contains axis-aligned bounding box data if VkGeometryNV::geometryType is
VK_GEOMETRY_TYPE_AABBS_NV.

Valid Usage (Implicit)

• VUID-VkGeometryDataNV-triangles-parameter
triangles must be a valid VkGeometryTrianglesNV structure

• VUID-VkGeometryDataNV-aabbs-parameter
aabbs must be a valid VkGeometryAABBNV structure

The VkGeometryTrianglesNV structure specifies triangle geometry in a bottom-level acceleration
structure and is defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkGeometryTrianglesNV {
 VkStructureType sType;
 const void* pNext;
 VkBuffer vertexData;
 VkDeviceSize vertexOffset;
 uint32_t vertexCount;
 VkDeviceSize vertexStride;

1117

 VkFormat vertexFormat;
 VkBuffer indexData;
 VkDeviceSize indexOffset;
 uint32_t indexCount;
 VkIndexType indexType;
 VkBuffer transformData;
 VkDeviceSize transformOffset;
} VkGeometryTrianglesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• vertexData is the buffer containing vertex data for this geometry.

• vertexOffset is the offset in bytes within vertexData containing vertex data for this geometry.

• vertexCount is the number of valid vertices.

• vertexStride is the stride in bytes between each vertex.

• vertexFormat is a VkFormat describing the format of each vertex element.

• indexData is the buffer containing index data for this geometry.

• indexOffset is the offset in bytes within indexData containing index data for this geometry.

• indexCount is the number of indices to include in this geometry.

• indexType is a VkIndexType describing the format of each index.

• transformData is an optional buffer containing an VkTransformMatrixNV structure defining a
transformation to be applied to this geometry.

• transformOffset is the offset in bytes in transformData of the transform information described
above.

If indexType is VK_INDEX_TYPE_NONE_NV, then this structure describes a set of triangles determined by
vertexCount. Otherwise, this structure describes a set of indexed triangles determined by indexCount.

Valid Usage

• VUID-VkGeometryTrianglesNV-vertexOffset-02428
vertexOffset must be less than the size of vertexData

• VUID-VkGeometryTrianglesNV-vertexOffset-02429
vertexOffset must be a multiple of the component size of vertexFormat

• VUID-VkGeometryTrianglesNV-vertexFormat-02430
vertexFormat must be one of VK_FORMAT_R32G32B32_SFLOAT, VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R16G16B16_SFLOAT, VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R16G16_SNORM, or
VK_FORMAT_R16G16B16_SNORM

• VUID-VkGeometryTrianglesNV-vertexStride-03818
vertexStride must be less than or equal to 232-1

• VUID-VkGeometryTrianglesNV-indexOffset-02431

1118

indexOffset must be less than the size of indexData

• VUID-VkGeometryTrianglesNV-indexOffset-02432
indexOffset must be a multiple of the element size of indexType

• VUID-VkGeometryTrianglesNV-indexType-02433
indexType must be VK_INDEX_TYPE_UINT16, VK_INDEX_TYPE_UINT32, or VK_INDEX_TYPE_NONE_NV

• VUID-VkGeometryTrianglesNV-indexData-02434
indexData must be VK_NULL_HANDLE if indexType is VK_INDEX_TYPE_NONE_NV

• VUID-VkGeometryTrianglesNV-indexData-02435
indexData must be a valid VkBuffer handle if indexType is not VK_INDEX_TYPE_NONE_NV

• VUID-VkGeometryTrianglesNV-indexCount-02436
indexCount must be 0 if indexType is VK_INDEX_TYPE_NONE_NV

• VUID-VkGeometryTrianglesNV-transformOffset-02437
transformOffset must be less than the size of transformData

• VUID-VkGeometryTrianglesNV-transformOffset-02438
transformOffset must be a multiple of 16

Valid Usage (Implicit)

• VUID-VkGeometryTrianglesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_GEOMETRY_TRIANGLES_NV

• VUID-VkGeometryTrianglesNV-pNext-pNext
pNext must be NULL

• VUID-VkGeometryTrianglesNV-vertexData-parameter
If vertexData is not VK_NULL_HANDLE, vertexData must be a valid VkBuffer handle

• VUID-VkGeometryTrianglesNV-vertexFormat-parameter
vertexFormat must be a valid VkFormat value

• VUID-VkGeometryTrianglesNV-indexData-parameter
If indexData is not VK_NULL_HANDLE, indexData must be a valid VkBuffer handle

• VUID-VkGeometryTrianglesNV-indexType-parameter
indexType must be a valid VkIndexType value

• VUID-VkGeometryTrianglesNV-transformData-parameter
If transformData is not VK_NULL_HANDLE, transformData must be a valid VkBuffer handle

• VUID-VkGeometryTrianglesNV-commonparent
Each of indexData, transformData, and vertexData that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

The VkGeometryAABBNV structure specifies axis-aligned bounding box geometry in a bottom-level
acceleration structure, and is defined as:

// Provided by VK_NV_ray_tracing

1119

typedef struct VkGeometryAABBNV {
 VkStructureType sType;
 const void* pNext;
 VkBuffer aabbData;
 uint32_t numAABBs;
 uint32_t stride;
 VkDeviceSize offset;
} VkGeometryAABBNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• aabbData is the buffer containing axis-aligned bounding box data.

• numAABBs is the number of AABBs in this geometry.

• stride is the stride in bytes between AABBs in aabbData.

• offset is the offset in bytes of the first AABB in aabbData.

The AABB data in memory is six 32-bit floats consisting of the minimum x, y, and z values followed
by the maximum x, y, and z values.

Valid Usage

• VUID-VkGeometryAABBNV-offset-02439
offset must be less than the size of aabbData

• VUID-VkGeometryAABBNV-offset-02440
offset must be a multiple of 8

• VUID-VkGeometryAABBNV-stride-02441
stride must be a multiple of 8

Valid Usage (Implicit)

• VUID-VkGeometryAABBNV-sType-sType
sType must be VK_STRUCTURE_TYPE_GEOMETRY_AABB_NV

• VUID-VkGeometryAABBNV-pNext-pNext
pNext must be NULL

• VUID-VkGeometryAABBNV-aabbData-parameter
If aabbData is not VK_NULL_HANDLE, aabbData must be a valid VkBuffer handle

To destroy an acceleration structure, call:

// Provided by VK_KHR_acceleration_structure
void vkDestroyAccelerationStructureKHR(
 VkDevice device,

1120

 VkAccelerationStructureKHR accelerationStructure,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the acceleration structure.

• accelerationStructure is the acceleration structure to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyAccelerationStructureKHR-accelerationStructure-08934
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

• VUID-vkDestroyAccelerationStructureKHR-accelerationStructure-02442
All submitted commands that refer to accelerationStructure must have completed
execution

• VUID-vkDestroyAccelerationStructureKHR-accelerationStructure-02443
If VkAllocationCallbacks were provided when accelerationStructure was created, a
compatible set of callbacks must be provided here

• VUID-vkDestroyAccelerationStructureKHR-accelerationStructure-02444
If no VkAllocationCallbacks were provided when accelerationStructure was created,
pAllocator must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyAccelerationStructureKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyAccelerationStructureKHR-accelerationStructure-parameter
If accelerationStructure is not VK_NULL_HANDLE, accelerationStructure must be a valid
VkAccelerationStructureKHR handle

• VUID-vkDestroyAccelerationStructureKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyAccelerationStructureKHR-accelerationStructure-parent
If accelerationStructure is a valid handle, it must have been created, allocated, or
retrieved from device

Host Synchronization

• Host access to accelerationStructure must be externally synchronized

To destroy an acceleration structure, call:

1121

// Provided by VK_NV_ray_tracing
void vkDestroyAccelerationStructureNV(
 VkDevice device,
 VkAccelerationStructureNV accelerationStructure,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer.

• accelerationStructure is the acceleration structure to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyAccelerationStructureNV-accelerationStructure-03752
All submitted commands that refer to accelerationStructure must have completed
execution

• VUID-vkDestroyAccelerationStructureNV-accelerationStructure-03753
If VkAllocationCallbacks were provided when accelerationStructure was created, a
compatible set of callbacks must be provided here

• VUID-vkDestroyAccelerationStructureNV-accelerationStructure-03754
If no VkAllocationCallbacks were provided when accelerationStructure was created,
pAllocator must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyAccelerationStructureNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyAccelerationStructureNV-accelerationStructure-parameter
If accelerationStructure is not VK_NULL_HANDLE, accelerationStructure must be a valid
VkAccelerationStructureNV handle

• VUID-vkDestroyAccelerationStructureNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyAccelerationStructureNV-accelerationStructure-parent
If accelerationStructure is a valid handle, it must have been created, allocated, or
retrieved from device

Host Synchronization

• Host access to accelerationStructure must be externally synchronized

An acceleration structure has memory requirements for the structure object itself, scratch space for

1122

the build, and scratch space for the update.

Scratch space is allocated as a VkBuffer, so for
VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_NV and
VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_UPDATE_SCRATCH_NV the pMemoryRequirements-
>alignment and pMemoryRequirements->memoryTypeBits values returned by this call must be filled with
zero, and should be ignored by the application.

To query the memory requirements, call:

// Provided by VK_NV_ray_tracing
void vkGetAccelerationStructureMemoryRequirementsNV(
 VkDevice device,
 const VkAccelerationStructureMemoryRequirementsInfoNV* pInfo,
 VkMemoryRequirements2KHR* pMemoryRequirements);

• device is the logical device on which the acceleration structure was created.

• pInfo is a pointer to a VkAccelerationStructureMemoryRequirementsInfoNV structure
specifying the acceleration structure to get memory requirements for.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2KHR structure in which the
requested acceleration structure memory requirements are returned.

Valid Usage (Implicit)

• VUID-vkGetAccelerationStructureMemoryRequirementsNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetAccelerationStructureMemoryRequirementsNV-pInfo-parameter
pInfo must be a valid pointer to a valid
VkAccelerationStructureMemoryRequirementsInfoNV structure

• VUID-vkGetAccelerationStructureMemoryRequirementsNV-pMemoryRequirements-
parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2KHR structure

The VkAccelerationStructureMemoryRequirementsInfoNV structure is defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkAccelerationStructureMemoryRequirementsInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkAccelerationStructureMemoryRequirementsTypeNV type;
 VkAccelerationStructureNV accelerationStructure;
} VkAccelerationStructureMemoryRequirementsInfoNV;

• sType is a VkStructureType value identifying this structure.

1123

• pNext is NULL or a pointer to a structure extending this structure.

• type selects the type of memory requirement being queried.
VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV returns the memory
requirements for the object itself.
VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_NV returns the memory
requirements for the scratch memory when doing a build.
VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_UPDATE_SCRATCH_NV returns the memory
requirements for the scratch memory when doing an update.

• accelerationStructure is the acceleration structure to be queried for memory requirements.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureMemoryRequirementsInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_NV

• VUID-VkAccelerationStructureMemoryRequirementsInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkAccelerationStructureMemoryRequirementsInfoNV-type-parameter
type must be a valid VkAccelerationStructureMemoryRequirementsTypeNV value

• VUID-VkAccelerationStructureMemoryRequirementsInfoNV-accelerationStructure-
parameter
accelerationStructure must be a valid VkAccelerationStructureNV handle

Possible values of type in VkAccelerationStructureMemoryRequirementsInfoNV are:,

// Provided by VK_NV_ray_tracing
typedef enum VkAccelerationStructureMemoryRequirementsTypeNV {
 VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV = 0,
 VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_NV = 1,
 VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_UPDATE_SCRATCH_NV = 2,
} VkAccelerationStructureMemoryRequirementsTypeNV;

• VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV requests the memory
requirement for the VkAccelerationStructureNV backing store.

• VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_NV requests the memory
requirement for scratch space during the initial build.

• VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_UPDATE_SCRATCH_NV requests the memory
requirement for scratch space during an update.

Possible values of buildType in vkGetAccelerationStructureBuildSizesKHR are:

// Provided by VK_KHR_acceleration_structure
typedef enum VkAccelerationStructureBuildTypeKHR {
 VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR = 0,
 VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR = 1,

1124

 VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_OR_DEVICE_KHR = 2,
} VkAccelerationStructureBuildTypeKHR;

• VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR requests the memory requirement for
operations performed by the host.

• VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR requests the memory requirement for
operations performed by the device.

• VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_OR_DEVICE_KHR requests the memory requirement
for operations performed by either the host, or the device.

To attach memory to one or more acceleration structures at a time, call:

// Provided by VK_NV_ray_tracing
VkResult vkBindAccelerationStructureMemoryNV(
 VkDevice device,
 uint32_t bindInfoCount,
 const VkBindAccelerationStructureMemoryInfoNV* pBindInfos);

• device is the logical device that owns the acceleration structures and memory.

• bindInfoCount is the number of elements in pBindInfos.

• pBindInfos is a pointer to an array of VkBindAccelerationStructureMemoryInfoNV structures
describing acceleration structures and memory to bind.

Valid Usage (Implicit)

• VUID-vkBindAccelerationStructureMemoryNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindAccelerationStructureMemoryNV-pBindInfos-parameter
pBindInfos must be a valid pointer to an array of bindInfoCount valid
VkBindAccelerationStructureMemoryInfoNV structures

• VUID-vkBindAccelerationStructureMemoryNV-bindInfoCount-arraylength
bindInfoCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBindAccelerationStructureMemoryInfoNV structure is defined as:

1125

// Provided by VK_NV_ray_tracing
typedef struct VkBindAccelerationStructureMemoryInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkAccelerationStructureNV accelerationStructure;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
 uint32_t deviceIndexCount;
 const uint32_t* pDeviceIndices;
} VkBindAccelerationStructureMemoryInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• accelerationStructure is the acceleration structure to be attached to memory.

• memory is a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory that is to be bound to the acceleration
structure. The number of bytes returned in the VkMemoryRequirements::size member in
memory, starting from memoryOffset bytes, will be bound to the specified acceleration structure.

• deviceIndexCount is the number of elements in pDeviceIndices.

• pDeviceIndices is a pointer to an array of device indices.

Valid Usage

• VUID-VkBindAccelerationStructureMemoryInfoNV-accelerationStructure-03620
accelerationStructure must not already be backed by a memory object

• VUID-VkBindAccelerationStructureMemoryInfoNV-memoryOffset-03621
memoryOffset must be less than the size of memory

• VUID-VkBindAccelerationStructureMemoryInfoNV-memory-03622
memory must have been allocated using one of the memory types allowed in the
memoryTypeBits member of the VkMemoryRequirements structure returned from a call to
vkGetAccelerationStructureMemoryRequirementsNV with accelerationStructure and type
of VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV

• VUID-VkBindAccelerationStructureMemoryInfoNV-memoryOffset-03623
memoryOffset must be an integer multiple of the alignment member of the
VkMemoryRequirements structure returned from a call to
vkGetAccelerationStructureMemoryRequirementsNV with accelerationStructure and type
of VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV

• VUID-VkBindAccelerationStructureMemoryInfoNV-size-03624
The size member of the VkMemoryRequirements structure returned from a call to
vkGetAccelerationStructureMemoryRequirementsNV with accelerationStructure and type
of VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV must be less than or
equal to the size of memory minus memoryOffset

1126

Valid Usage (Implicit)

• VUID-VkBindAccelerationStructureMemoryInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_ACCELERATION_STRUCTURE_MEMORY_INFO_NV

• VUID-VkBindAccelerationStructureMemoryInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkBindAccelerationStructureMemoryInfoNV-accelerationStructure-parameter
accelerationStructure must be a valid VkAccelerationStructureNV handle

• VUID-VkBindAccelerationStructureMemoryInfoNV-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-VkBindAccelerationStructureMemoryInfoNV-pDeviceIndices-parameter
If deviceIndexCount is not 0, pDeviceIndices must be a valid pointer to an array of
deviceIndexCount uint32_t values

• VUID-VkBindAccelerationStructureMemoryInfoNV-commonparent
Both of accelerationStructure, and memory must have been created, allocated, or retrieved
from the same VkDevice

To allow constructing geometry instances with device code if desired, we need to be able to query a
opaque handle for an acceleration structure. This handle is a value of 8 bytes. To get this handle,
call:

// Provided by VK_NV_ray_tracing
VkResult vkGetAccelerationStructureHandleNV(
 VkDevice device,
 VkAccelerationStructureNV accelerationStructure,
 size_t dataSize,
 void* pData);

• device is the logical device that owns the acceleration structures.

• accelerationStructure is the acceleration structure.

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written.

Valid Usage

• VUID-vkGetAccelerationStructureHandleNV-dataSize-02240
dataSize must be large enough to contain the result of the query, as described above

• VUID-vkGetAccelerationStructureHandleNV-accelerationStructure-02787
accelerationStructure must be bound completely and contiguously to a single
VkDeviceMemory object via vkBindAccelerationStructureMemoryNV

1127

Valid Usage (Implicit)

• VUID-vkGetAccelerationStructureHandleNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetAccelerationStructureHandleNV-accelerationStructure-parameter
accelerationStructure must be a valid VkAccelerationStructureNV handle

• VUID-vkGetAccelerationStructureHandleNV-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-vkGetAccelerationStructureHandleNV-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkGetAccelerationStructureHandleNV-accelerationStructure-parent
accelerationStructure must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To query the 64-bit device address for an acceleration structure, call:

// Provided by VK_KHR_acceleration_structure
VkDeviceAddress vkGetAccelerationStructureDeviceAddressKHR(
 VkDevice device,
 const VkAccelerationStructureDeviceAddressInfoKHR* pInfo);

• device is the logical device that the acceleration structure was created on.

• pInfo is a pointer to a VkAccelerationStructureDeviceAddressInfoKHR structure specifying the
acceleration structure to retrieve an address for.

The 64-bit return value is an address of the acceleration structure, which can be used for device
and shader operations that involve acceleration structures, such as ray traversal and acceleration
structure building.

If the acceleration structure was created with a non-zero value of
VkAccelerationStructureCreateInfoKHR::deviceAddress, the return value will be the same address.

If the acceleration structure was created with a type of VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR,
the returned address must be consistent with the relative offset to other acceleration structures
with type VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR allocated with the same VkBuffer. That is, the

1128

difference in returned addresses between the two must be the same as the difference in offsets
provided at acceleration structure creation.

The returned address must be aligned to 256 bytes.

Note

The acceleration structure device address may be different from the buffer device
address corresponding to the acceleration structure’s start offset in its storage
buffer for acceleration structure types other than
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR.

Valid Usage

• VUID-vkGetAccelerationStructureDeviceAddressKHR-accelerationStructure-08935
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

• VUID-vkGetAccelerationStructureDeviceAddressKHR-device-03504
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

• VUID-vkGetAccelerationStructureDeviceAddressKHR-pInfo-09541
If the buffer on which pInfo->accelerationStructure was placed is non-sparse then it must
be bound completely and contiguously to a single VkDeviceMemory object

• VUID-vkGetAccelerationStructureDeviceAddressKHR-pInfo-09542
The buffer on which pInfo->accelerationStructure was placed must have been created
with the VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT usage flag

Valid Usage (Implicit)

• VUID-vkGetAccelerationStructureDeviceAddressKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetAccelerationStructureDeviceAddressKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkAccelerationStructureDeviceAddressInfoKHR
structure

The VkAccelerationStructureDeviceAddressInfoKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureDeviceAddressInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkAccelerationStructureKHR accelerationStructure;
} VkAccelerationStructureDeviceAddressInfoKHR;

1129

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• accelerationStructure specifies the acceleration structure whose address is being queried.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureDeviceAddressInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR

• VUID-VkAccelerationStructureDeviceAddressInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkAccelerationStructureDeviceAddressInfoKHR-accelerationStructure-parameter
accelerationStructure must be a valid VkAccelerationStructureKHR handle

12.7. Micromaps
Micromaps are opaque data structures that are built by the implementation to encode sub-triangle
data to be included in an acceleration structure.

Micromaps are represented by VkMicromapEXT handles:

// Provided by VK_EXT_opacity_micromap
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkMicromapEXT)

To create a micromap, call:

// Provided by VK_EXT_opacity_micromap
VkResult vkCreateMicromapEXT(
 VkDevice device,
 const VkMicromapCreateInfoEXT* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkMicromapEXT* pMicromap);

• device is the logical device that creates the acceleration structure object.

• pCreateInfo is a pointer to a VkMicromapCreateInfoEXT structure containing parameters
affecting creation of the micromap.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pMicromap is a pointer to a VkMicromapEXT handle in which the resulting micromap object is
returned.

Similar to other objects in Vulkan, the micromap creation merely creates an object with a specific
“shape”. The type and quantity of geometry that can be built into a micromap is determined by the
parameters of VkMicromapCreateInfoEXT.

1130

The micromap data is stored in the object referred to by VkMicromapCreateInfoEXT::buffer. Once
memory has been bound to that buffer, it must be populated by micromap build or micromap copy
commands such as vkCmdBuildMicromapsEXT, vkBuildMicromapsEXT, vkCmdCopyMicromapEXT,
and vkCopyMicromapEXT.

Note

The expected usage for a trace capture/replay tool is that it will serialize and later
deserialize the micromap data using micromap copy commands. During capture
the tool will use vkCopyMicromapToMemoryEXT or
vkCmdCopyMicromapToMemoryEXT with a mode of
VK_COPY_MICROMAP_MODE_SERIALIZE_EXT, and vkCopyMemoryToMicromapEXT or
vkCmdCopyMemoryToMicromapEXT with a mode of
VK_COPY_MICROMAP_MODE_DESERIALIZE_EXT during replay.

The input buffers passed to micromap build commands will be referenced by the implementation
for the duration of the command. Micromaps must be fully self-contained. The application can
reuse or free any memory which was used by the command as an input or as scratch without
affecting the results of a subsequent acceleration structure build using the micromap or traversal
of that acceleration structure.

Valid Usage

• VUID-vkCreateMicromapEXT-micromap-07430
The micromap feature must be enabled

• VUID-vkCreateMicromapEXT-deviceAddress-07431
If VkMicromapCreateInfoEXT::deviceAddress is not zero, the micromapCaptureReplay feature
must be enabled

• VUID-vkCreateMicromapEXT-device-07432
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkCreateMicromapEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateMicromapEXT-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkMicromapCreateInfoEXT structure

• VUID-vkCreateMicromapEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateMicromapEXT-pMicromap-parameter
pMicromap must be a valid pointer to a VkMicromapEXT handle

1131

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

The VkMicromapCreateInfoEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkMicromapCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkMicromapCreateFlagsEXT createFlags;
 VkBuffer buffer;
 VkDeviceSize offset;
 VkDeviceSize size;
 VkMicromapTypeEXT type;
 VkDeviceAddress deviceAddress;
} VkMicromapCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• createFlags is a bitmask of VkMicromapCreateFlagBitsEXT specifying additional creation
parameters of the micromap.

• buffer is the buffer on which the micromap will be stored.

• offset is an offset in bytes from the base address of the buffer at which the micromap will be
stored, and must be a multiple of 256.

• size is the size required for the micromap.

• type is a VkMicromapTypeEXT value specifying the type of micromap that will be created.

• deviceAddress is the device address requested for the micromap if the micromapCaptureReplay
feature is being used.

If deviceAddress is zero, no specific address is requested.

If deviceAddress is not zero, deviceAddress must be an address retrieved from an identically created
micromap on the same implementation. The micromap must also be placed on an identically
created buffer and at the same offset.

Applications should avoid creating micromaps with application-provided addresses and
implementation-provided addresses in the same process, to reduce the likelihood of
VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR errors.

1132

Note

The expected usage for this is that a trace capture/replay tool will add the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT flag to all buffers that use
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, and will add
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT to all buffers used as storage for a
micromap where deviceAddress is not zero. This also means that the tool will need
to add VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT to memory allocations to allow the
flag to be set where the application may not have otherwise required it. During
capture the tool will save the queried opaque device addresses in the trace. During
replay, the buffers will be created specifying the original address so any address
values stored in the trace data will remain valid.

Implementations are expected to separate such buffers in the GPU address space
so normal allocations will avoid using these addresses. Apps/tools should avoid
mixing app-provided and implementation-provided addresses for buffers created
with VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, to avoid address space
allocation conflicts.

If the micromap will be the target of a build operation, the required size for a micromap can be
queried with vkGetMicromapBuildSizesEXT.

Valid Usage

• VUID-VkMicromapCreateInfoEXT-deviceAddress-07433
If deviceAddress is not zero, createFlags must include
VK_MICROMAP_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_EXT

• VUID-VkMicromapCreateInfoEXT-createFlags-07434
If createFlags includes VK_MICROMAP_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_EXT,
VkPhysicalDeviceOpacityMicromapFeaturesEXT::micromapCaptureReplay must be VK_TRUE

• VUID-VkMicromapCreateInfoEXT-buffer-07435
buffer must have been created with a usage value containing
VK_BUFFER_USAGE_MICROMAP_STORAGE_BIT_EXT

• VUID-VkMicromapCreateInfoEXT-buffer-07436
buffer must not have been created with VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkMicromapCreateInfoEXT-offset-07437
The sum of offset and size must be less than the size of buffer

• VUID-VkMicromapCreateInfoEXT-offset-07438
offset must be a multiple of 256 bytes

Valid Usage (Implicit)

• VUID-VkMicromapCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MICROMAP_CREATE_INFO_EXT

• VUID-VkMicromapCreateInfoEXT-pNext-pNext

1133

pNext must be NULL

• VUID-VkMicromapCreateInfoEXT-createFlags-parameter
createFlags must be a valid combination of VkMicromapCreateFlagBitsEXT values

• VUID-VkMicromapCreateInfoEXT-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-VkMicromapCreateInfoEXT-type-parameter
type must be a valid VkMicromapTypeEXT value

To get the build sizes for a micromap, call:

// Provided by VK_EXT_opacity_micromap
void vkGetMicromapBuildSizesEXT(
 VkDevice device,
 VkAccelerationStructureBuildTypeKHR buildType,
 const VkMicromapBuildInfoEXT* pBuildInfo,
 VkMicromapBuildSizesInfoEXT* pSizeInfo);

• device is the logical device that will be used for creating the micromap.

• buildType defines whether host or device operations (or both) are being queried for.

• pBuildInfo is a pointer to a VkMicromapBuildInfoEXT structure describing parameters of a
build operation.

• pSizeInfo is a pointer to a VkMicromapBuildSizesInfoEXT structure which returns the size
required for a micromap and the sizes required for the scratch buffers, given the build
parameters.

The dstMicromap and mode members of pBuildInfo are ignored. Any VkDeviceOrHostAddressKHR
members of pBuildInfo are ignored by this command.

A micromap created with the micromapSize returned by this command supports any build with a
VkMicromapBuildInfoEXT structure subject to the following properties:

• The build command is a host build command, and buildType is
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR or
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_OR_DEVICE_KHR

• The build command is a device build command, and buildType is
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR or
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_OR_DEVICE_KHR

• For VkMicromapBuildInfoEXT:

◦ Its type, and flags members are equal to pBuildInfo->type and pBuildInfo->flags,
respectively.

◦ The sum of usage information in either pUsageCounts or ppUsageCounts is equal to the sum of
usage information in either pBuildInfo->pUsageCounts or pBuildInfo->ppUsageCounts.

Similarly, the buildScratchSize value will support any build command specifying the

1134

VK_BUILD_MICROMAP_MODE_BUILD_EXT mode under the above conditions.

Valid Usage

• VUID-vkGetMicromapBuildSizesEXT-dstMicromap-09180
VkMicromapBuildInfoEXT::dstMicromap must have been created from device

• VUID-vkGetMicromapBuildSizesEXT-micromap-07439
The micromap feature must be enabled

• VUID-vkGetMicromapBuildSizesEXT-device-07440
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetMicromapBuildSizesEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetMicromapBuildSizesEXT-buildType-parameter
buildType must be a valid VkAccelerationStructureBuildTypeKHR value

• VUID-vkGetMicromapBuildSizesEXT-pBuildInfo-parameter
pBuildInfo must be a valid pointer to a valid VkMicromapBuildInfoEXT structure

• VUID-vkGetMicromapBuildSizesEXT-pSizeInfo-parameter
pSizeInfo must be a valid pointer to a VkMicromapBuildSizesInfoEXT structure

The VkMicromapBuildSizesInfoEXT structure describes the required build sizes for a micromap and
scratch buffers and is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkMicromapBuildSizesInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDeviceSize micromapSize;
 VkDeviceSize buildScratchSize;
 VkBool32 discardable;
} VkMicromapBuildSizesInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• micromapSize is the size in bytes required in a VkMicromapEXT for a build or update operation.

• buildScratchSize is the size in bytes required in a scratch buffer for a build operation.

• discardable indicates whether or not the micromap object may be destroyed after an
acceleration structure build or update. A false value means that acceleration structures built
with this micromap may contain references to the data contained therein, and the application

1135

must not destroy the micromap until ray traversal has concluded. A true value means that the
information in the micromap will be copied by value into the acceleration structure, and the
micromap may be destroyed after the acceleration structure build concludes.

Valid Usage (Implicit)

• VUID-VkMicromapBuildSizesInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MICROMAP_BUILD_SIZES_INFO_EXT

• VUID-VkMicromapBuildSizesInfoEXT-pNext-pNext
pNext must be NULL

Values which can be set in VkMicromapCreateInfoEXT::type specifying the type of micromap, are:

// Provided by VK_EXT_opacity_micromap
typedef enum VkMicromapTypeEXT {
 VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT = 0,
#ifdef VK_ENABLE_BETA_EXTENSIONS
 // Provided by VK_NV_displacement_micromap
 VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV = 1000397000,
#endif
} VkMicromapTypeEXT;

• VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT is a micromap containing data to control the opacity of a
triangle.

• VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV is a micromap containing data to control the
displacement of subtriangles within a triangle.

Bits which can be set in VkMicromapCreateInfoEXT::createFlags, specifying additional creation
parameters for micromaps, are:

// Provided by VK_EXT_opacity_micromap
typedef enum VkMicromapCreateFlagBitsEXT {
 VK_MICROMAP_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_EXT = 0x00000001,
} VkMicromapCreateFlagBitsEXT;

• VK_MICROMAP_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_EXT specifies that the micromap’s
address can be saved and reused on a subsequent run.

// Provided by VK_EXT_opacity_micromap
typedef VkFlags VkMicromapCreateFlagsEXT;

VkMicromapCreateFlagsEXT is a bitmask type for setting a mask of zero or more
VkMicromapCreateFlagBitsEXT.

Bits which can be set in VkMicromapBuildInfoEXT::flags specifying additional parameters for

1136

micromap builds, are:

// Provided by VK_EXT_opacity_micromap
typedef enum VkBuildMicromapFlagBitsEXT {
 VK_BUILD_MICROMAP_PREFER_FAST_TRACE_BIT_EXT = 0x00000001,
 VK_BUILD_MICROMAP_PREFER_FAST_BUILD_BIT_EXT = 0x00000002,
 VK_BUILD_MICROMAP_ALLOW_COMPACTION_BIT_EXT = 0x00000004,
} VkBuildMicromapFlagBitsEXT;

• VK_BUILD_MICROMAP_PREFER_FAST_TRACE_BIT_EXT indicates that the given micromap build should
prioritize trace performance over build time.

• VK_BUILD_MICROMAP_PREFER_FAST_BUILD_BIT_EXT indicates that the given micromap build should
prioritize build time over trace performance.

// Provided by VK_EXT_opacity_micromap
typedef VkFlags VkBuildMicromapFlagsEXT;

VkBuildMicromapFlagsEXT is a bitmask type for setting a mask of zero or more
VkBuildMicromapFlagBitsEXT.

To destroy a micromap, call:

// Provided by VK_EXT_opacity_micromap
void vkDestroyMicromapEXT(
 VkDevice device,
 VkMicromapEXT micromap,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the micromap.

• micromap is the micromap to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyMicromapEXT-micromap-07441
All submitted commands that refer to micromap must have completed execution

• VUID-vkDestroyMicromapEXT-micromap-07442
If VkAllocationCallbacks were provided when micromap was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyMicromapEXT-micromap-07443
If no VkAllocationCallbacks were provided when micromap was created, pAllocator must
be NULL

1137

Valid Usage (Implicit)

• VUID-vkDestroyMicromapEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyMicromapEXT-micromap-parameter
If micromap is not VK_NULL_HANDLE, micromap must be a valid VkMicromapEXT handle

• VUID-vkDestroyMicromapEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyMicromapEXT-micromap-parent
If micromap is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to micromap must be externally synchronized

12.8. Resource Memory Association
Resources are initially created as virtual allocations with no backing memory. Device memory is
allocated separately (see Device Memory) and then associated with the resource. This association is
done differently for sparse and non-sparse resources.

Resources created with any of the sparse creation flags are considered sparse resources. Resources
created without these flags are non-sparse. The details on resource memory association for sparse
resources is described in Sparse Resources.

Non-sparse resources must be bound completely and contiguously to a single VkDeviceMemory object
before the resource is passed as a parameter to any of the following operations:

• creating image or buffer views

• updating descriptor sets

• recording commands in a command buffer

Once bound, the memory binding is immutable for the lifetime of the resource.

In a logical device representing more than one physical device, buffer and image resources exist on
all physical devices but can be bound to memory differently on each. Each such replicated resource
is an instance of the resource. For sparse resources, each instance can be bound to memory
arbitrarily differently. For non-sparse resources, each instance can either be bound to the local or a
peer instance of the memory, or for images can be bound to rectangular regions from the local
and/or peer instances. When a resource is used in a descriptor set, each physical device interprets
the descriptor according to its own instance’s binding to memory.

 Note

1138

There are no new copy commands to transfer data between physical devices.
Instead, an application can create a resource with a peer mapping and use it as the
source or destination of a transfer command executed by a single physical device
to copy the data from one physical device to another.

To determine the memory requirements for a buffer resource, call:

// Provided by VK_VERSION_1_0
void vkGetBufferMemoryRequirements(
 VkDevice device,
 VkBuffer buffer,
 VkMemoryRequirements* pMemoryRequirements);

• device is the logical device that owns the buffer.

• buffer is the buffer to query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements structure in which the memory
requirements of the buffer object are returned.

Valid Usage (Implicit)

• VUID-vkGetBufferMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferMemoryRequirements-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkGetBufferMemoryRequirements-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements structure

• VUID-vkGetBufferMemoryRequirements-buffer-parent
buffer must have been created, allocated, or retrieved from device

To determine the memory requirements for an image resource which is not created with the
VK_IMAGE_CREATE_DISJOINT_BIT flag set, call:

// Provided by VK_VERSION_1_0
void vkGetImageMemoryRequirements(
 VkDevice device,
 VkImage image,
 VkMemoryRequirements* pMemoryRequirements);

• device is the logical device that owns the image.

• image is the image to query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements structure in which the memory
requirements of the image object are returned.

1139

Valid Usage

• VUID-vkGetImageMemoryRequirements-image-01588
image must not have been created with the VK_IMAGE_CREATE_DISJOINT_BIT flag set

• VUID-vkGetImageMemoryRequirements-image-04004
If image was created with the
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID external memory
handle type, then image must be bound to memory

• VUID-vkGetImageMemoryRequirements-image-08960
If image was created with the VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX
external memory handle type, then image must be bound to memory

Valid Usage (Implicit)

• VUID-vkGetImageMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageMemoryRequirements-image-parameter
image must be a valid VkImage handle

• VUID-vkGetImageMemoryRequirements-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements structure

• VUID-vkGetImageMemoryRequirements-image-parent
image must have been created, allocated, or retrieved from device

The VkMemoryRequirements structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryRequirements {
 VkDeviceSize size;
 VkDeviceSize alignment;
 uint32_t memoryTypeBits;
} VkMemoryRequirements;

• size is the size, in bytes, of the memory allocation required for the resource.

• alignment is the alignment, in bytes, of the offset within the allocation required for the
resource.

• memoryTypeBits is a bitmask and contains one bit set for every supported memory type for the
resource. Bit i is set if and only if the memory type i in the VkPhysicalDeviceMemoryProperties
structure for the physical device is supported for the resource.

The precise size of images that will be bound to external Android hardware buffer memory is
unknown until the memory has been imported or allocated, so applications must not call
vkGetImageMemoryRequirements or vkGetImageMemoryRequirements2 with such a VkImage

1140

before it has been bound to memory. For this reason, applications also must not call
vkGetDeviceImageMemoryRequirements with a VkImageCreateInfo describing an external
Android hardware buffer. When importing Android hardware buffer memory, the allocationSize
can be determined by calling vkGetAndroidHardwareBufferPropertiesANDROID. When allocating
new memory for a VkImage that can be exported to an Android hardware buffer, the memory’s
allocationSize must be zero; the actual size will be determined by the dedicated image’s
parameters. After the memory has been allocated, the amount of space allocated from the
memory’s heap can be obtained by getting the image’s memory requirements or by calling
vkGetAndroidHardwareBufferPropertiesANDROID with the Android hardware buffer exported
from the memory.

When allocating new memory for a VkBuffer that can be exported to an Android hardware buffer
an application may still call vkGetBufferMemoryRequirements or
vkGetBufferMemoryRequirements2 with VkBuffer before it has been bound to memory.

If the resource being queried was created with the
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT, or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT external memory handle type, the value of size
has no meaning and should be ignored.

The implementation guarantees certain properties about the memory requirements returned by
vkGetBufferMemoryRequirements2, vkGetImageMemoryRequirements2,
vkGetDeviceBufferMemoryRequirements, vkGetDeviceImageMemoryRequirements,
vkGetBufferMemoryRequirements and vkGetImageMemoryRequirements:

• The memoryTypeBits member always contains at least one bit set.

• If buffer is a VkBuffer not created with the VK_BUFFER_CREATE_SPARSE_BINDING_BIT or
VK_BUFFER_CREATE_PROTECTED_BIT bits set, or if image is a linear image that was not created with
the VK_IMAGE_CREATE_PROTECTED_BIT bit set, then the memoryTypeBits member always contains at
least one bit set corresponding to a VkMemoryType with a propertyFlags that has both the
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit and the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit set.
In other words, mappable coherent memory can always be attached to these objects.

• If buffer was created with VkExternalMemoryBufferCreateInfo::handleTypes set to 0 or image
was created with VkExternalMemoryImageCreateInfo::handleTypes set to 0, the memoryTypeBits
member always contains at least one bit set corresponding to a VkMemoryType with a
propertyFlags that has the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set.

• The memoryTypeBits member is identical for all VkBuffer objects created with the same value for
the flags and usage members in the VkBufferCreateInfo structure and the handleTypes member
of the VkExternalMemoryBufferCreateInfo structure passed to vkCreateBuffer. Further, if
usage1 and usage2 of type VkBufferUsageFlags are such that the bits set in usage2 are a subset of
the bits set in usage1, and they have the same flags and VkExternalMemoryBufferCreateInfo
::handleTypes, then the bits set in memoryTypeBits returned for usage1 must be a subset of the bits
set in memoryTypeBits returned for usage2, for all values of flags.

• The alignment member is a power of two.

• The alignment member is identical for all VkBuffer objects created with the same combination of
values for the usage and flags members in the VkBufferCreateInfo structure passed to

1141

vkCreateBuffer.

• If the maintenance4 feature is enabled, then the alignment member is identical for all VkImage
objects created with the same combination of values for the flags, imageType, format, extent,
mipLevels, arrayLayers, samples, tiling and usage members in the VkImageCreateInfo structure
passed to vkCreateImage.

• The alignment member satisfies the buffer descriptor offset alignment requirements associated
with the VkBuffer’s usage:

◦ If usage included VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, alignment must be an integer multiple of
VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment.

◦ If usage included VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, alignment must be an integer multiple
of VkPhysicalDeviceLimits::minUniformBufferOffsetAlignment.

◦ If usage included VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, alignment must be an integer multiple
of VkPhysicalDeviceLimits::minStorageBufferOffsetAlignment.

• For images created with a color format, the memoryTypeBits member is identical for all VkImage
objects created with the same combination of values for the tiling member, the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit of the flags member, the
VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT bit of the flags member, the
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT bit of the usage member if the
VkPhysicalDeviceHostImageCopyPropertiesEXT::identicalMemoryTypeRequirements property is
VK_FALSE, handleTypes member of VkExternalMemoryImageCreateInfo, and the
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in the VkImageCreateInfo
structure passed to vkCreateImage.

• For images created with a depth/stencil format, the memoryTypeBits member is identical for all
VkImage objects created with the same combination of values for the format member, the tiling
member, the VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit of the flags member, the
VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT bit of the flags member, the
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT bit of the usage member if the
VkPhysicalDeviceHostImageCopyPropertiesEXT::identicalMemoryTypeRequirements property is
VK_FALSE, handleTypes member of VkExternalMemoryImageCreateInfo, and the
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in the VkImageCreateInfo
structure passed to vkCreateImage.

• If the memory requirements are for a VkImage, the memoryTypeBits member must not refer to a
VkMemoryType with a propertyFlags that has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set if
the image did not have VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT bit set in the usage member of
the VkImageCreateInfo structure passed to vkCreateImage.

• If the memory requirements are for a VkBuffer, the memoryTypeBits member must not refer to a
VkMemoryType with a propertyFlags that has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set.

Note

The implication of this requirement is that lazily allocated memory is
disallowed for buffers in all cases.

• The size member is identical for all VkBuffer objects created with the same combination of

1142

creation parameters specified in VkBufferCreateInfo and its pNext chain.

• The size member is identical for all VkImage objects created with the same combination of
creation parameters specified in VkImageCreateInfo and its pNext chain.

Note

This, however, does not imply that they interpret the contents of the bound
memory identically with each other. That additional guarantee, however, can
be explicitly requested using VK_IMAGE_CREATE_ALIAS_BIT.

• If the maintenance4 feature is enabled, these additional guarantees apply:

◦ For a VkBuffer, the size memory requirement is never greater than that of another VkBuffer
created with a greater or equal size specified in VkBufferCreateInfo, all other creation
parameters being identical.

◦ For a VkBuffer, the size memory requirement is never greater than the result of aligning
VkBufferCreateInfo::size with the alignment memory requirement.

◦ For a VkImage, the size memory requirement is never greater than that of another VkImage
created with a greater or equal value in each of extent.width, extent.height, and
extent.depth; all other creation parameters being identical.

◦ The memory requirements returned by vkGetDeviceBufferMemoryRequirements are
identical to those that would be returned by vkGetBufferMemoryRequirements2 if it were
called with a VkBuffer created with the same VkBufferCreateInfo values.

◦ The memory requirements returned by vkGetDeviceImageMemoryRequirements are
identical to those that would be returned by vkGetImageMemoryRequirements2 if it were
called with a VkImage created with the same VkImageCreateInfo values.

To determine the memory requirements for a buffer resource, call:

// Provided by VK_VERSION_1_1
void vkGetBufferMemoryRequirements2(
 VkDevice device,
 const VkBufferMemoryRequirementsInfo2* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

or the equivalent command

// Provided by VK_KHR_get_memory_requirements2
void vkGetBufferMemoryRequirements2KHR(
 VkDevice device,
 const VkBufferMemoryRequirementsInfo2* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device that owns the buffer.

• pInfo is a pointer to a VkBufferMemoryRequirementsInfo2 structure containing parameters
required for the memory requirements query.

1143

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the buffer object are returned.

Valid Usage (Implicit)

• VUID-vkGetBufferMemoryRequirements2-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferMemoryRequirements2-pInfo-parameter
pInfo must be a valid pointer to a valid VkBufferMemoryRequirementsInfo2 structure

• VUID-vkGetBufferMemoryRequirements2-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

To determine the memory requirements for a buffer resource without creating an object, call:

// Provided by VK_VERSION_1_3
void vkGetDeviceBufferMemoryRequirements(
 VkDevice device,
 const VkDeviceBufferMemoryRequirements* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

or the equivalent command

// Provided by VK_KHR_maintenance4
void vkGetDeviceBufferMemoryRequirementsKHR(
 VkDevice device,
 const VkDeviceBufferMemoryRequirements* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device intended to own the buffer.

• pInfo is a pointer to a VkDeviceBufferMemoryRequirements structure containing parameters
required for the memory requirements query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the buffer object are returned.

Valid Usage (Implicit)

• VUID-vkGetDeviceBufferMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceBufferMemoryRequirements-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceBufferMemoryRequirements structure

• VUID-vkGetDeviceBufferMemoryRequirements-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

1144

The VkBufferMemoryRequirementsInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBufferMemoryRequirementsInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkBuffer buffer;
} VkBufferMemoryRequirementsInfo2;

or the equivalent

// Provided by VK_KHR_get_memory_requirements2
typedef VkBufferMemoryRequirementsInfo2 VkBufferMemoryRequirementsInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is the buffer to query.

Valid Usage (Implicit)

• VUID-VkBufferMemoryRequirementsInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2

• VUID-VkBufferMemoryRequirementsInfo2-pNext-pNext
pNext must be NULL

• VUID-VkBufferMemoryRequirementsInfo2-buffer-parameter
buffer must be a valid VkBuffer handle

The VkDeviceBufferMemoryRequirements structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkDeviceBufferMemoryRequirements {
 VkStructureType sType;
 const void* pNext;
 const VkBufferCreateInfo* pCreateInfo;
} VkDeviceBufferMemoryRequirements;

or the equivalent

// Provided by VK_KHR_maintenance4
typedef VkDeviceBufferMemoryRequirements VkDeviceBufferMemoryRequirementsKHR;

• sType is a VkStructureType value identifying this structure.

1145

• pNext is NULL or a pointer to a structure extending this structure.

• pCreateInfo is a pointer to a VkBufferCreateInfo structure containing parameters affecting
creation of the buffer to query.

Valid Usage (Implicit)

• VUID-VkDeviceBufferMemoryRequirements-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS

• VUID-VkDeviceBufferMemoryRequirements-pNext-pNext
pNext must be NULL

• VUID-VkDeviceBufferMemoryRequirements-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkBufferCreateInfo structure

To determine the memory requirements for an image resource, call:

// Provided by VK_VERSION_1_1
void vkGetImageMemoryRequirements2(
 VkDevice device,
 const VkImageMemoryRequirementsInfo2* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

or the equivalent command

// Provided by VK_KHR_get_memory_requirements2
void vkGetImageMemoryRequirements2KHR(
 VkDevice device,
 const VkImageMemoryRequirementsInfo2* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device that owns the image.

• pInfo is a pointer to a VkImageMemoryRequirementsInfo2 structure containing parameters
required for the memory requirements query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the image object are returned.

Valid Usage (Implicit)

• VUID-vkGetImageMemoryRequirements2-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageMemoryRequirements2-pInfo-parameter
pInfo must be a valid pointer to a valid VkImageMemoryRequirementsInfo2 structure

• VUID-vkGetImageMemoryRequirements2-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

1146

To determine the memory requirements for an image resource without creating an object, call:

// Provided by VK_VERSION_1_3
void vkGetDeviceImageMemoryRequirements(
 VkDevice device,
 const VkDeviceImageMemoryRequirements* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

or the equivalent command

// Provided by VK_KHR_maintenance4
void vkGetDeviceImageMemoryRequirementsKHR(
 VkDevice device,
 const VkDeviceImageMemoryRequirements* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device intended to own the image.

• pInfo is a pointer to a VkDeviceImageMemoryRequirements structure containing parameters
required for the memory requirements query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the image object are returned.

Valid Usage (Implicit)

• VUID-vkGetDeviceImageMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceImageMemoryRequirements-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceImageMemoryRequirements structure

• VUID-vkGetDeviceImageMemoryRequirements-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

The VkImageMemoryRequirementsInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImageMemoryRequirementsInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
} VkImageMemoryRequirementsInfo2;

or the equivalent

// Provided by VK_KHR_get_memory_requirements2

1147

typedef VkImageMemoryRequirementsInfo2 VkImageMemoryRequirementsInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is the image to query.

Valid Usage

• VUID-VkImageMemoryRequirementsInfo2-image-01589
If image was created with a multi-planar format and the VK_IMAGE_CREATE_DISJOINT_BIT flag,
there must be a VkImagePlaneMemoryRequirementsInfo included in the pNext chain of
the VkImageMemoryRequirementsInfo2 structure

• VUID-VkImageMemoryRequirementsInfo2-image-02279
If image was created with VK_IMAGE_CREATE_DISJOINT_BIT and with
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then there must be a
VkImagePlaneMemoryRequirementsInfo included in the pNext chain of the
VkImageMemoryRequirementsInfo2 structure

• VUID-VkImageMemoryRequirementsInfo2-image-01590
If image was not created with the VK_IMAGE_CREATE_DISJOINT_BIT flag, there must not be a
VkImagePlaneMemoryRequirementsInfo included in the pNext chain of the
VkImageMemoryRequirementsInfo2 structure

• VUID-VkImageMemoryRequirementsInfo2-image-02280
If image was created with a single-plane format and with any tiling other than
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then there must not be a
VkImagePlaneMemoryRequirementsInfo included in the pNext chain of the
VkImageMemoryRequirementsInfo2 structure

• VUID-VkImageMemoryRequirementsInfo2-image-01897
If image was created with the
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID external memory
handle type, then image must be bound to memory

• VUID-VkImageMemoryRequirementsInfo2-image-08961
If image was created with the VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX
external memory handle type, then image must be bound to memory

Valid Usage (Implicit)

• VUID-VkImageMemoryRequirementsInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2

• VUID-VkImageMemoryRequirementsInfo2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkImagePlaneMemoryRequirementsInfo

• VUID-VkImageMemoryRequirementsInfo2-sType-unique

1148

The sType value of each struct in the pNext chain must be unique

• VUID-VkImageMemoryRequirementsInfo2-image-parameter
image must be a valid VkImage handle

The VkDeviceImageMemoryRequirements structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkDeviceImageMemoryRequirements {
 VkStructureType sType;
 const void* pNext;
 const VkImageCreateInfo* pCreateInfo;
 VkImageAspectFlagBits planeAspect;
} VkDeviceImageMemoryRequirements;

or the equivalent

// Provided by VK_KHR_maintenance4
typedef VkDeviceImageMemoryRequirements VkDeviceImageMemoryRequirementsKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pCreateInfo is a pointer to a VkImageCreateInfo structure containing parameters affecting
creation of the image to query.

• planeAspect is a VkImageAspectFlagBits value specifying the aspect corresponding to the image
plane to query. This parameter is ignored unless pCreateInfo->tiling is
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, or pCreateInfo->flags has
VK_IMAGE_CREATE_DISJOINT_BIT set.

Valid Usage

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-06416
The pCreateInfo->pNext chain must not contain a VkImageSwapchainCreateInfoKHR
structure

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-06776
The pCreateInfo->pNext chain must not contain a
VkImageDrmFormatModifierExplicitCreateInfoEXT structure

• VUID-VkDeviceImageMemoryRequirements-pNext-06996
Applications also must not call vkGetDeviceImageMemoryRequirements with a
VkImageCreateInfo whose pNext chain includes a VkExternalFormatANDROID structure
with non-zero externalFormat

• VUID-VkDeviceImageMemoryRequirements-pNext-08962
Applications also must not call vkGetDeviceImageMemoryRequirements with a
VkImageCreateInfo whose pNext chain includes a VkExternalFormatQNX structure with

1149

non-zero externalFormat

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-06417
If pCreateInfo->format specifies a multi-planar format and pCreateInfo->flags has
VK_IMAGE_CREATE_DISJOINT_BIT set then planeAspect must not be VK_IMAGE_ASPECT_NONE_KHR

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-06419
If pCreateInfo->flags has VK_IMAGE_CREATE_DISJOINT_BIT set and if the pCreateInfo->tiling
is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, then planeAspect must be a single
valid multi-planar aspect mask bit

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-06420
If pCreateInfo->tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then planeAspect must
be a single valid memory plane for the image (that is, aspectMask must specify a plane
index that is less than the VkDrmFormatModifierPropertiesEXT
::drmFormatModifierPlaneCount associated with the image’s format and
VkImageDrmFormatModifierPropertiesEXT::drmFormatModifier)

Valid Usage (Implicit)

• VUID-VkDeviceImageMemoryRequirements-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS

• VUID-VkDeviceImageMemoryRequirements-pNext-pNext
pNext must be NULL

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkImageCreateInfo structure

• VUID-VkDeviceImageMemoryRequirements-planeAspect-parameter
If planeAspect is not 0, planeAspect must be a valid VkImageAspectFlagBits value

To determine the memory requirements for a plane of a disjoint image, add a
VkImagePlaneMemoryRequirementsInfo structure to the pNext chain of the
VkImageMemoryRequirementsInfo2 structure.

The VkImagePlaneMemoryRequirementsInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImagePlaneMemoryRequirementsInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageAspectFlagBits planeAspect;
} VkImagePlaneMemoryRequirementsInfo;

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion

1150

typedef VkImagePlaneMemoryRequirementsInfo VkImagePlaneMemoryRequirementsInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• planeAspect is a VkImageAspectFlagBits value specifying the aspect corresponding to the image
plane to query.

Valid Usage

• VUID-VkImagePlaneMemoryRequirementsInfo-planeAspect-02281
If the image’s tiling is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, then
planeAspect must be a single valid multi-planar aspect mask bit

• VUID-VkImagePlaneMemoryRequirementsInfo-planeAspect-02282
If the image’s tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then planeAspect must
be a single valid memory plane for the image (that is, aspectMask must specify a plane
index that is less than the VkDrmFormatModifierPropertiesEXT
::drmFormatModifierPlaneCount associated with the image’s format and
VkImageDrmFormatModifierPropertiesEXT::drmFormatModifier)

Valid Usage (Implicit)

• VUID-VkImagePlaneMemoryRequirementsInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO

• VUID-VkImagePlaneMemoryRequirementsInfo-planeAspect-parameter
planeAspect must be a valid VkImageAspectFlagBits value

The VkMemoryRequirements2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkMemoryRequirements2 {
 VkStructureType sType;
 void* pNext;
 VkMemoryRequirements memoryRequirements;
} VkMemoryRequirements2;

or the equivalent

// Provided by VK_KHR_get_memory_requirements2, VK_KHR_get_memory_requirements2 with
VK_NV_ray_tracing
typedef VkMemoryRequirements2 VkMemoryRequirements2KHR;

• sType is a VkStructureType value identifying this structure.

1151

• pNext is NULL or a pointer to a structure extending this structure.

• memoryRequirements is a VkMemoryRequirements structure describing the memory
requirements of the resource.

Valid Usage (Implicit)

• VUID-VkMemoryRequirements2-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2

• VUID-VkMemoryRequirements2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkMemoryDedicatedRequirements

• VUID-VkMemoryRequirements2-sType-unique
The sType value of each struct in the pNext chain must be unique

The VkMemoryDedicatedRequirements structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkMemoryDedicatedRequirements {
 VkStructureType sType;
 void* pNext;
 VkBool32 prefersDedicatedAllocation;
 VkBool32 requiresDedicatedAllocation;
} VkMemoryDedicatedRequirements;

or the equivalent

// Provided by VK_KHR_dedicated_allocation
typedef VkMemoryDedicatedRequirements VkMemoryDedicatedRequirementsKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• prefersDedicatedAllocation specifies that the implementation would prefer a dedicated
allocation for this resource. The application is still free to suballocate the resource but it may
get better performance if a dedicated allocation is used.

• requiresDedicatedAllocation specifies that a dedicated allocation is required for this resource.

To determine the dedicated allocation requirements of a buffer or image resource, add a
VkMemoryDedicatedRequirements structure to the pNext chain of the VkMemoryRequirements2
structure passed as the pMemoryRequirements parameter of vkGetBufferMemoryRequirements2 or
vkGetImageMemoryRequirements2, respectively.

Constraints on the values returned for buffer resources are:

• requiresDedicatedAllocation may be VK_TRUE if the pNext chain of VkBufferCreateInfo for the call
to vkCreateBuffer used to create the buffer being queried included a

1152

VkExternalMemoryBufferCreateInfo structure, and any of the handle types specified in
VkExternalMemoryBufferCreateInfo::handleTypes requires dedicated allocation, as reported by
vkGetPhysicalDeviceExternalBufferProperties in VkExternalBufferProperties
::externalMemoryProperties.externalMemoryFeatures. Otherwise, requiresDedicatedAllocation will
be VK_FALSE.

• When the implementation sets requiresDedicatedAllocation to VK_TRUE, it must also set
prefersDedicatedAllocation to VK_TRUE.

• If VK_BUFFER_CREATE_SPARSE_BINDING_BIT was set in VkBufferCreateInfo::flags when buffer was
created, then both prefersDedicatedAllocation and requiresDedicatedAllocation will be VK_FALSE.

Constraints on the values returned for image resources are:

• requiresDedicatedAllocation may be VK_TRUE if the pNext chain of VkImageCreateInfo for the call
to vkCreateImage used to create the image being queried included a
VkExternalMemoryImageCreateInfo structure, and any of the handle types specified in
VkExternalMemoryImageCreateInfo::handleTypes requires dedicated allocation, as reported by
vkGetPhysicalDeviceImageFormatProperties2 in VkExternalImageFormatProperties
::externalMemoryProperties.externalMemoryFeatures.

• requiresDedicatedAllocation may be VK_TRUE if the image’s tiling is
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.

• requiresDedicatedAllocation will otherwise be VK_FALSE

• If VK_IMAGE_CREATE_SPARSE_BINDING_BIT was set in VkImageCreateInfo::flags when image was
created, then both prefersDedicatedAllocation and requiresDedicatedAllocation will be VK_FALSE.

Valid Usage (Implicit)

• VUID-VkMemoryDedicatedRequirements-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS

To attach memory to a buffer object, call:

// Provided by VK_VERSION_1_0
VkResult vkBindBufferMemory(
 VkDevice device,
 VkBuffer buffer,
 VkDeviceMemory memory,
 VkDeviceSize memoryOffset);

• device is the logical device that owns the buffer and memory.

• buffer is the buffer to be attached to memory.

• memory is a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the buffer. The
number of bytes returned in the VkMemoryRequirements::size member in memory, starting from
memoryOffset bytes, will be bound to the specified buffer.

1153

vkBindBufferMemory is equivalent to passing the same parameters through
VkBindBufferMemoryInfo to vkBindBufferMemory2.

Valid Usage

• VUID-vkBindBufferMemory-buffer-07459
buffer must not have been bound to a memory object

• VUID-vkBindBufferMemory-buffer-01030
buffer must not have been created with any sparse memory binding flags

• VUID-vkBindBufferMemory-memoryOffset-01031
memoryOffset must be less than the size of memory

• VUID-vkBindBufferMemory-memory-01035
memory must have been allocated using one of the memory types allowed in the
memoryTypeBits member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer

• VUID-vkBindBufferMemory-memoryOffset-01036
memoryOffset must be an integer multiple of the alignment member of the
VkMemoryRequirements structure returned from a call to vkGetBufferMemoryRequirements with
buffer

• VUID-vkBindBufferMemory-size-01037
The size member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer must be less than or equal to the size of memory
minus memoryOffset

• VUID-vkBindBufferMemory-buffer-01444
If buffer requires a dedicated allocation (as reported by
vkGetBufferMemoryRequirements2 in VkMemoryDedicatedRequirements
::requiresDedicatedAllocation for buffer), memory must have been allocated with
VkMemoryDedicatedAllocateInfo::buffer equal to buffer

• VUID-vkBindBufferMemory-memory-01508
If the VkMemoryAllocateInfo provided when memory was allocated included a
VkMemoryDedicatedAllocateInfo structure in its pNext chain, and
VkMemoryDedicatedAllocateInfo::buffer was not VK_NULL_HANDLE, then buffer must
equal VkMemoryDedicatedAllocateInfo::buffer, and memoryOffset must be zero

• VUID-vkBindBufferMemory-None-01898
If buffer was created with the VK_BUFFER_CREATE_PROTECTED_BIT bit set, the buffer must be
bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-vkBindBufferMemory-None-01899
If buffer was created with the VK_BUFFER_CREATE_PROTECTED_BIT bit not set, the buffer must
not be bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-vkBindBufferMemory-buffer-01038
If buffer was created with VkDedicatedAllocationBufferCreateInfoNV

1154

::dedicatedAllocation equal to VK_TRUE, memory must have been allocated with
VkDedicatedAllocationMemoryAllocateInfoNV::buffer equal to a buffer handle created
with identical creation parameters to buffer and memoryOffset must be zero

• VUID-vkBindBufferMemory-apiVersion-07920
If the VK_KHR_dedicated_allocation extension is not enabled,
VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, and buffer was not
created with VkDedicatedAllocationBufferCreateInfoNV::dedicatedAllocation equal to
VK_TRUE, memory must not have been allocated dedicated for a specific buffer or image

• VUID-vkBindBufferMemory-memory-02726
If the value of VkExportMemoryAllocateInfo::handleTypes used to allocate memory is not 0, it
must include at least one of the handles set in VkExternalMemoryBufferCreateInfo
::handleTypes when buffer was created

• VUID-vkBindBufferMemory-memory-02985
If memory was allocated by a memory import operation, that is not
VkImportAndroidHardwareBufferInfoANDROID with a non-NULL buffer value, the
external handle type of the imported memory must also have been set in
VkExternalMemoryBufferCreateInfo::handleTypes when buffer was created

• VUID-vkBindBufferMemory-memory-02986
If memory was allocated with the VkImportAndroidHardwareBufferInfoANDROID memory
import operation with a non-NULL buffer value,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID must also have
been set in VkExternalMemoryBufferCreateInfo::handleTypes when buffer was created

• VUID-vkBindBufferMemory-bufferDeviceAddress-03339
If the VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress feature is
enabled and buffer was created with the VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT bit
set, memory must have been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit
set

• VUID-vkBindBufferMemory-bufferDeviceAddressCaptureReplay-09200
If the VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddressCaptureReplay
feature is enabled and buffer was created with the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set, memory must have been
allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set

• VUID-vkBindBufferMemory-buffer-06408
If buffer was created with VkBufferCollectionBufferCreateInfoFUCHSIA chained to
VkBufferCreateInfo::pNext, memory must be allocated with a
VkImportMemoryBufferCollectionFUCHSIA chained to VkMemoryAllocateInfo::pNext

• VUID-vkBindBufferMemory-descriptorBufferCaptureReplay-08112
If the buffer was created with the
VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, memory must have
been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit set

• VUID-vkBindBufferMemory-buffer-09201
If the buffer was created with the
VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, memory must have
been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set

1155

Valid Usage (Implicit)

• VUID-vkBindBufferMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindBufferMemory-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkBindBufferMemory-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkBindBufferMemory-buffer-parent
buffer must have been created, allocated, or retrieved from device

• VUID-vkBindBufferMemory-memory-parent
memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to buffer must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

To attach memory to buffer objects for one or more buffers at a time, call:

// Provided by VK_VERSION_1_1
VkResult vkBindBufferMemory2(
 VkDevice device,
 uint32_t bindInfoCount,
 const VkBindBufferMemoryInfo* pBindInfos);

or the equivalent command

// Provided by VK_KHR_bind_memory2
VkResult vkBindBufferMemory2KHR(
 VkDevice device,
 uint32_t bindInfoCount,

1156

 const VkBindBufferMemoryInfo* pBindInfos);

• device is the logical device that owns the buffers and memory.

• bindInfoCount is the number of elements in pBindInfos.

• pBindInfos is a pointer to an array of bindInfoCount VkBindBufferMemoryInfo structures
describing buffers and memory to bind.

On some implementations, it may be more efficient to batch memory bindings into a single
command.

If the maintenance6 feature is enabled, this command must attempt to perform all of the memory
binding operations described by pBindInfos, and must not early exit on the first failure.

If any of the memory binding operations described by pBindInfos fail, the VkResult returned by this
command must be the return value of any one of the memory binding operations which did not
return VK_SUCCESS.

Note

If the vkBindBufferMemory2 command failed, VkBindMemoryStatusKHR structures
were not included in the pNext chains of each element of pBindInfos, and
bindInfoCount was greater than one, then the buffers referenced by pBindInfos will
be in an indeterminate state, and must not be used.

Applications should destroy these buffers.

Valid Usage (Implicit)

• VUID-vkBindBufferMemory2-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindBufferMemory2-pBindInfos-parameter
pBindInfos must be a valid pointer to an array of bindInfoCount valid
VkBindBufferMemoryInfo structures

• VUID-vkBindBufferMemory2-bindInfoCount-arraylength
bindInfoCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

1157

VkBindBufferMemoryInfo contains members corresponding to the parameters of
vkBindBufferMemory.

The VkBindBufferMemoryInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindBufferMemoryInfo {
 VkStructureType sType;
 const void* pNext;
 VkBuffer buffer;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
} VkBindBufferMemoryInfo;

or the equivalent

// Provided by VK_KHR_bind_memory2
typedef VkBindBufferMemoryInfo VkBindBufferMemoryInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is the buffer to be attached to memory.

• memory is a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the buffer. The
number of bytes returned in the VkMemoryRequirements::size member in memory, starting from
memoryOffset bytes, will be bound to the specified buffer.

Valid Usage

• VUID-VkBindBufferMemoryInfo-buffer-07459
buffer must not have been bound to a memory object

• VUID-VkBindBufferMemoryInfo-buffer-01030
buffer must not have been created with any sparse memory binding flags

• VUID-VkBindBufferMemoryInfo-memoryOffset-01031
memoryOffset must be less than the size of memory

• VUID-VkBindBufferMemoryInfo-memory-01035
memory must have been allocated using one of the memory types allowed in the
memoryTypeBits member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer

• VUID-VkBindBufferMemoryInfo-memoryOffset-01036
memoryOffset must be an integer multiple of the alignment member of the
VkMemoryRequirements structure returned from a call to vkGetBufferMemoryRequirements with
buffer

1158

• VUID-VkBindBufferMemoryInfo-size-01037
The size member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer must be less than or equal to the size of memory
minus memoryOffset

• VUID-VkBindBufferMemoryInfo-buffer-01444
If buffer requires a dedicated allocation (as reported by
vkGetBufferMemoryRequirements2 in VkMemoryDedicatedRequirements
::requiresDedicatedAllocation for buffer), memory must have been allocated with
VkMemoryDedicatedAllocateInfo::buffer equal to buffer

• VUID-VkBindBufferMemoryInfo-memory-01508
If the VkMemoryAllocateInfo provided when memory was allocated included a
VkMemoryDedicatedAllocateInfo structure in its pNext chain, and
VkMemoryDedicatedAllocateInfo::buffer was not VK_NULL_HANDLE, then buffer must
equal VkMemoryDedicatedAllocateInfo::buffer, and memoryOffset must be zero

• VUID-VkBindBufferMemoryInfo-None-01898
If buffer was created with the VK_BUFFER_CREATE_PROTECTED_BIT bit set, the buffer must be
bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkBindBufferMemoryInfo-None-01899
If buffer was created with the VK_BUFFER_CREATE_PROTECTED_BIT bit not set, the buffer must
not be bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkBindBufferMemoryInfo-buffer-01038
If buffer was created with VkDedicatedAllocationBufferCreateInfoNV
::dedicatedAllocation equal to VK_TRUE, memory must have been allocated with
VkDedicatedAllocationMemoryAllocateInfoNV::buffer equal to a buffer handle created
with identical creation parameters to buffer and memoryOffset must be zero

• VUID-VkBindBufferMemoryInfo-apiVersion-07920
If the VK_KHR_dedicated_allocation extension is not enabled,
VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, and buffer was not
created with VkDedicatedAllocationBufferCreateInfoNV::dedicatedAllocation equal to
VK_TRUE, memory must not have been allocated dedicated for a specific buffer or image

• VUID-VkBindBufferMemoryInfo-memory-02726
If the value of VkExportMemoryAllocateInfo::handleTypes used to allocate memory is not 0, it
must include at least one of the handles set in VkExternalMemoryBufferCreateInfo
::handleTypes when buffer was created

• VUID-VkBindBufferMemoryInfo-memory-02985
If memory was allocated by a memory import operation, that is not
VkImportAndroidHardwareBufferInfoANDROID with a non-NULL buffer value, the
external handle type of the imported memory must also have been set in
VkExternalMemoryBufferCreateInfo::handleTypes when buffer was created

• VUID-VkBindBufferMemoryInfo-memory-02986
If memory was allocated with the VkImportAndroidHardwareBufferInfoANDROID memory
import operation with a non-NULL buffer value,

1159

VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID must also have
been set in VkExternalMemoryBufferCreateInfo::handleTypes when buffer was created

• VUID-VkBindBufferMemoryInfo-bufferDeviceAddress-03339
If the VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress feature is
enabled and buffer was created with the VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT bit
set, memory must have been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit
set

• VUID-VkBindBufferMemoryInfo-bufferDeviceAddressCaptureReplay-09200
If the VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddressCaptureReplay
feature is enabled and buffer was created with the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set, memory must have been
allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set

• VUID-VkBindBufferMemoryInfo-buffer-06408
If buffer was created with VkBufferCollectionBufferCreateInfoFUCHSIA chained to
VkBufferCreateInfo::pNext, memory must be allocated with a
VkImportMemoryBufferCollectionFUCHSIA chained to VkMemoryAllocateInfo::pNext

• VUID-VkBindBufferMemoryInfo-descriptorBufferCaptureReplay-08112
If the buffer was created with the
VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, memory must have
been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit set

• VUID-VkBindBufferMemoryInfo-buffer-09201
If the buffer was created with the
VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, memory must have
been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set

• VUID-VkBindBufferMemoryInfo-pNext-01605
If the pNext chain includes a VkBindBufferMemoryDeviceGroupInfo structure, all
instances of memory specified by VkBindBufferMemoryDeviceGroupInfo::pDeviceIndices
must have been allocated

Valid Usage (Implicit)

• VUID-VkBindBufferMemoryInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO

• VUID-VkBindBufferMemoryInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkBindBufferMemoryDeviceGroupInfo or
VkBindMemoryStatusKHR

• VUID-VkBindBufferMemoryInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBindBufferMemoryInfo-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-VkBindBufferMemoryInfo-memory-parameter
memory must be a valid VkDeviceMemory handle

1160

• VUID-VkBindBufferMemoryInfo-commonparent
Both of buffer, and memory must have been created, allocated, or retrieved from the same
VkDevice

The VkBindBufferMemoryDeviceGroupInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindBufferMemoryDeviceGroupInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t deviceIndexCount;
 const uint32_t* pDeviceIndices;
} VkBindBufferMemoryDeviceGroupInfo;

or the equivalent

// Provided by VK_KHR_bind_memory2 with VK_KHR_device_group
typedef VkBindBufferMemoryDeviceGroupInfo VkBindBufferMemoryDeviceGroupInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceIndexCount is the number of elements in pDeviceIndices.

• pDeviceIndices is a pointer to an array of device indices.

If the pNext chain of VkBindBufferMemoryInfo includes a VkBindBufferMemoryDeviceGroupInfo
structure, then that structure determines how memory is bound to buffers across multiple devices
in a device group.

If deviceIndexCount is greater than zero, then on device index i the buffer is attached to the instance
of memory on the physical device with device index pDeviceIndices[i].

If deviceIndexCount is zero and memory comes from a memory heap with the
VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit set, then it is as if pDeviceIndices contains consecutive
indices from zero to the number of physical devices in the logical device, minus one. In other
words, by default each physical device attaches to its own instance of memory.

If deviceIndexCount is zero and memory comes from a memory heap without the
VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit set, then it is as if pDeviceIndices contains an array of zeros.
In other words, by default each physical device attaches to instance zero.

Valid Usage

• VUID-VkBindBufferMemoryDeviceGroupInfo-deviceIndexCount-01606
deviceIndexCount must either be zero or equal to the number of physical devices in the
logical device

1161

• VUID-VkBindBufferMemoryDeviceGroupInfo-pDeviceIndices-01607
All elements of pDeviceIndices must be valid device indices

Valid Usage (Implicit)

• VUID-VkBindBufferMemoryDeviceGroupInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO

• VUID-VkBindBufferMemoryDeviceGroupInfo-pDeviceIndices-parameter
If deviceIndexCount is not 0, pDeviceIndices must be a valid pointer to an array of
deviceIndexCount uint32_t values

The VkBindMemoryStatusKHR structure is defined as:

// Provided by VK_KHR_maintenance6
typedef struct VkBindMemoryStatusKHR {
 VkStructureType sType;
 const void* pNext;
 VkResult* pResult;
} VkBindMemoryStatusKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pResult is a pointer to a VkResult value.

If the pNext chain of VkBindBufferMemoryInfo or VkBindImageMemoryInfo includes a
VkBindMemoryStatusKHR structure, then the VkBindMemoryStatusKHR::pResult will be populated with a
value describing the result of the corresponding memory binding operation.

Valid Usage (Implicit)

• VUID-VkBindMemoryStatusKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_MEMORY_STATUS_KHR

• VUID-VkBindMemoryStatusKHR-pResult-parameter
pResult must be a valid pointer to a VkResult value

To attach memory to a VkImage object created without the VK_IMAGE_CREATE_DISJOINT_BIT set, call:

// Provided by VK_VERSION_1_0
VkResult vkBindImageMemory(
 VkDevice device,
 VkImage image,
 VkDeviceMemory memory,
 VkDeviceSize memoryOffset);

1162

• device is the logical device that owns the image and memory.

• image is the image.

• memory is the VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the image. The
number of bytes returned in the VkMemoryRequirements::size member in memory, starting from
memoryOffset bytes, will be bound to the specified image.

vkBindImageMemory is equivalent to passing the same parameters through VkBindImageMemoryInfo
to vkBindImageMemory2.

Valid Usage

• VUID-vkBindImageMemory-image-07460
image must not have been bound to a memory object

• VUID-vkBindImageMemory-image-01045
image must not have been created with any sparse memory binding flags

• VUID-vkBindImageMemory-memoryOffset-01046
memoryOffset must be less than the size of memory

• VUID-vkBindImageMemory-image-01445
If image requires a dedicated allocation (as reported by
vkGetImageMemoryRequirements2 in VkMemoryDedicatedRequirements
::requiresDedicatedAllocation for image), memory must have been created with
VkMemoryDedicatedAllocateInfo::image equal to image

• VUID-vkBindImageMemory-memory-02628
If the dedicatedAllocationImageAliasing feature is not enabled, and the
VkMemoryAllocateInfo provided when memory was allocated included a
VkMemoryDedicatedAllocateInfo structure in its pNext chain, and
VkMemoryDedicatedAllocateInfo::image was not VK_NULL_HANDLE, then image must
equal VkMemoryDedicatedAllocateInfo::image and memoryOffset must be zero

• VUID-vkBindImageMemory-memory-02629
If the dedicatedAllocationImageAliasing feature is enabled, and the VkMemoryAllocateInfo
provided when memory was allocated included a VkMemoryDedicatedAllocateInfo
structure in its pNext chain, and VkMemoryDedicatedAllocateInfo::image was not
VK_NULL_HANDLE, then memoryOffset must be zero, and image must be either equal to
VkMemoryDedicatedAllocateInfo::image or an image that was created using the same
parameters in VkImageCreateInfo, with the exception that extent and arrayLayers may
differ subject to the following restrictions: every dimension in the extent parameter of the
image being bound must be equal to or smaller than the original image for which the
allocation was created; and the arrayLayers parameter of the image being bound must be
equal to or smaller than the original image for which the allocation was created

• VUID-vkBindImageMemory-None-01901
If image was created with the VK_IMAGE_CREATE_PROTECTED_BIT bit set, the image must be
bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

1163

• VUID-vkBindImageMemory-None-01902
If image was created with the VK_IMAGE_CREATE_PROTECTED_BIT bit not set, the image must
not be bound to a memory object created with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-vkBindImageMemory-image-01050
If image was created with VkDedicatedAllocationImageCreateInfoNV::dedicatedAllocation
equal to VK_TRUE, memory must have been created with
VkDedicatedAllocationMemoryAllocateInfoNV::image equal to an image handle created
with identical creation parameters to image and memoryOffset must be zero

• VUID-vkBindImageMemory-apiVersion-07921
If the VK_KHR_dedicated_allocation extension is not enabled,
VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, and image was not created
with VkDedicatedAllocationImageCreateInfoNV::dedicatedAllocation equal to VK_TRUE,
memory must not have been allocated dedicated for a specific buffer or image

• VUID-vkBindImageMemory-memory-02728
If the value of VkExportMemoryAllocateInfo::handleTypes used to allocate memory is not 0, it
must include at least one of the handles set in VkExternalMemoryImageCreateInfo
::handleTypes when image was created

• VUID-vkBindImageMemory-memory-02989
If memory was created by a memory import operation, that is not
VkImportAndroidHardwareBufferInfoANDROID with a non-NULL buffer value, the
external handle type of the imported memory must also have been set in
VkExternalMemoryImageCreateInfo::handleTypes when image was created

• VUID-vkBindImageMemory-memory-02990
If memory was created with the VkImportAndroidHardwareBufferInfoANDROID memory
import operation with a non-NULL buffer value,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID must also have
been set in VkExternalMemoryImageCreateInfo::handleTypes when image was created

• VUID-vkBindImageMemory-descriptorBufferCaptureReplay-08113
If the image was created with the
VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, memory must have been
allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit set

• VUID-vkBindImageMemory-image-09202
If the image was created with the
VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, memory must have been
allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set

• VUID-vkBindImageMemory-image-01608
image must not have been created with the VK_IMAGE_CREATE_DISJOINT_BIT set

• VUID-vkBindImageMemory-memory-01047
memory must have been allocated using one of the memory types allowed in the
memoryTypeBits member of the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements with image

• VUID-vkBindImageMemory-memoryOffset-01048
memoryOffset must be an integer multiple of the alignment member of the

1164

VkMemoryRequirements structure returned from a call to vkGetImageMemoryRequirements
with image

• VUID-vkBindImageMemory-size-01049
The difference of the size of memory and memoryOffset must be greater than or equal to the
size member of the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements with the same image

• VUID-vkBindImageMemory-image-06392
If image was created with VkBufferCollectionImageCreateInfoFUCHSIA chained to
VkImageCreateInfo::pNext, memory must be allocated with a
VkImportMemoryBufferCollectionFUCHSIA chained to VkMemoryAllocateInfo::pNext

Valid Usage (Implicit)

• VUID-vkBindImageMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindImageMemory-image-parameter
image must be a valid VkImage handle

• VUID-vkBindImageMemory-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkBindImageMemory-image-parent
image must have been created, allocated, or retrieved from device

• VUID-vkBindImageMemory-memory-parent
memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to image must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To attach memory to image objects for one or more images at a time, call:

// Provided by VK_VERSION_1_1
VkResult vkBindImageMemory2(

1165

 VkDevice device,
 uint32_t bindInfoCount,
 const VkBindImageMemoryInfo* pBindInfos);

or the equivalent command

// Provided by VK_KHR_bind_memory2
VkResult vkBindImageMemory2KHR(
 VkDevice device,
 uint32_t bindInfoCount,
 const VkBindImageMemoryInfo* pBindInfos);

• device is the logical device that owns the images and memory.

• bindInfoCount is the number of elements in pBindInfos.

• pBindInfos is a pointer to an array of VkBindImageMemoryInfo structures, describing images
and memory to bind.

On some implementations, it may be more efficient to batch memory bindings into a single
command.

If the maintenance6 feature is enabled, this command must attempt to perform all of the memory
binding operations described by pBindInfos, and must not early exit on the first failure.

If any of the memory binding operations described by pBindInfos fail, the VkResult returned by this
command must be the return value of any one of the memory binding operations which did not
return VK_SUCCESS.

Note

If the vkBindImageMemory2 command failed, VkBindMemoryStatusKHR structures
were not included in the pNext chains of each element of pBindInfos, and
bindInfoCount was greater than one, then the images referenced by pBindInfos will
be in an indeterminate state, and must not be used.

Applications should destroy these images.

Valid Usage

• VUID-vkBindImageMemory2-pBindInfos-02858
If any VkBindImageMemoryInfo::image was created with VK_IMAGE_CREATE_DISJOINT_BIT
then all planes of VkBindImageMemoryInfo::image must be bound individually in
separate pBindInfos

• VUID-vkBindImageMemory2-pBindInfos-04006
pBindInfos must not refer to the same image subresource more than once

1166

Valid Usage (Implicit)

• VUID-vkBindImageMemory2-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindImageMemory2-pBindInfos-parameter
pBindInfos must be a valid pointer to an array of bindInfoCount valid
VkBindImageMemoryInfo structures

• VUID-vkBindImageMemory2-bindInfoCount-arraylength
bindInfoCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

VkBindImageMemoryInfo contains members corresponding to the parameters of
vkBindImageMemory.

The VkBindImageMemoryInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindImageMemoryInfo {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
} VkBindImageMemoryInfo;

or the equivalent

// Provided by VK_KHR_bind_memory2
typedef VkBindImageMemoryInfo VkBindImageMemoryInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is the image to be attached to memory.

• memory is a VkDeviceMemory object describing the device memory to attach.

1167

• memoryOffset is the start offset of the region of memory which is to be bound to the image. The
number of bytes returned in the VkMemoryRequirements::size member in memory, starting from
memoryOffset bytes, will be bound to the specified image.

Valid Usage

• VUID-VkBindImageMemoryInfo-image-07460
image must not have been bound to a memory object

• VUID-VkBindImageMemoryInfo-image-01045
image must not have been created with any sparse memory binding flags

• VUID-VkBindImageMemoryInfo-memoryOffset-01046
memoryOffset must be less than the size of memory

• VUID-VkBindImageMemoryInfo-image-01445
If image requires a dedicated allocation (as reported by
vkGetImageMemoryRequirements2 in VkMemoryDedicatedRequirements
::requiresDedicatedAllocation for image), memory must have been created with
VkMemoryDedicatedAllocateInfo::image equal to image

• VUID-VkBindImageMemoryInfo-memory-02628
If the dedicatedAllocationImageAliasing feature is not enabled, and the
VkMemoryAllocateInfo provided when memory was allocated included a
VkMemoryDedicatedAllocateInfo structure in its pNext chain, and
VkMemoryDedicatedAllocateInfo::image was not VK_NULL_HANDLE, then image must
equal VkMemoryDedicatedAllocateInfo::image and memoryOffset must be zero

• VUID-VkBindImageMemoryInfo-memory-02629
If the dedicatedAllocationImageAliasing feature is enabled, and the VkMemoryAllocateInfo
provided when memory was allocated included a VkMemoryDedicatedAllocateInfo
structure in its pNext chain, and VkMemoryDedicatedAllocateInfo::image was not
VK_NULL_HANDLE, then memoryOffset must be zero, and image must be either equal to
VkMemoryDedicatedAllocateInfo::image or an image that was created using the same
parameters in VkImageCreateInfo, with the exception that extent and arrayLayers may
differ subject to the following restrictions: every dimension in the extent parameter of the
image being bound must be equal to or smaller than the original image for which the
allocation was created; and the arrayLayers parameter of the image being bound must be
equal to or smaller than the original image for which the allocation was created

• VUID-VkBindImageMemoryInfo-None-01901
If image was created with the VK_IMAGE_CREATE_PROTECTED_BIT bit set, the image must be
bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkBindImageMemoryInfo-None-01902
If image was created with the VK_IMAGE_CREATE_PROTECTED_BIT bit not set, the image must
not be bound to a memory object created with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkBindImageMemoryInfo-image-01050
If image was created with VkDedicatedAllocationImageCreateInfoNV::dedicatedAllocation

1168

equal to VK_TRUE, memory must have been created with
VkDedicatedAllocationMemoryAllocateInfoNV::image equal to an image handle created
with identical creation parameters to image and memoryOffset must be zero

• VUID-VkBindImageMemoryInfo-apiVersion-07921
If the VK_KHR_dedicated_allocation extension is not enabled,
VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, and image was not created
with VkDedicatedAllocationImageCreateInfoNV::dedicatedAllocation equal to VK_TRUE,
memory must not have been allocated dedicated for a specific buffer or image

• VUID-VkBindImageMemoryInfo-memory-02728
If the value of VkExportMemoryAllocateInfo::handleTypes used to allocate memory is not 0, it
must include at least one of the handles set in VkExternalMemoryImageCreateInfo
::handleTypes when image was created

• VUID-VkBindImageMemoryInfo-memory-02989
If memory was created by a memory import operation, that is not
VkImportAndroidHardwareBufferInfoANDROID with a non-NULL buffer value, the
external handle type of the imported memory must also have been set in
VkExternalMemoryImageCreateInfo::handleTypes when image was created

• VUID-VkBindImageMemoryInfo-memory-02990
If memory was created with the VkImportAndroidHardwareBufferInfoANDROID memory
import operation with a non-NULL buffer value,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID must also have
been set in VkExternalMemoryImageCreateInfo::handleTypes when image was created

• VUID-VkBindImageMemoryInfo-descriptorBufferCaptureReplay-08113
If the image was created with the
VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, memory must have been
allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit set

• VUID-VkBindImageMemoryInfo-image-09202
If the image was created with the
VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, memory must have been
allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set

• VUID-VkBindImageMemoryInfo-pNext-01615
If the pNext chain does not include a VkBindImagePlaneMemoryInfo structure, memory
must have been allocated using one of the memory types allowed in the memoryTypeBits
member of the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with image

• VUID-VkBindImageMemoryInfo-pNext-01616
If the pNext chain does not include a VkBindImagePlaneMemoryInfo structure,
memoryOffset must be an integer multiple of the alignment member of the
VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with image

• VUID-VkBindImageMemoryInfo-pNext-01617
If the pNext chain does not include a VkBindImagePlaneMemoryInfo structure, the
difference of the size of memory and memoryOffset must be greater than or equal to the size
member of the VkMemoryRequirements structure returned from a call to

1169

vkGetImageMemoryRequirements2 with the same image

• VUID-VkBindImageMemoryInfo-pNext-01618
If the pNext chain includes a VkBindImagePlaneMemoryInfo structure, image must have
been created with the VK_IMAGE_CREATE_DISJOINT_BIT bit set

• VUID-VkBindImageMemoryInfo-image-07736
If image was created with the VK_IMAGE_CREATE_DISJOINT_BIT bit set, then the pNext chain
must include a VkBindImagePlaneMemoryInfo structure

• VUID-VkBindImageMemoryInfo-pNext-01619
If the pNext chain includes a VkBindImagePlaneMemoryInfo structure, memory must have
been allocated using one of the memory types allowed in the memoryTypeBits member of
the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with image and where
VkBindImagePlaneMemoryInfo::planeAspect corresponds to the
VkImagePlaneMemoryRequirementsInfo::planeAspect in the
VkImageMemoryRequirementsInfo2 structure’s pNext chain

• VUID-VkBindImageMemoryInfo-pNext-01620
If the pNext chain includes a VkBindImagePlaneMemoryInfo structure, memoryOffset must
be an integer multiple of the alignment member of the VkMemoryRequirements structure
returned from a call to vkGetImageMemoryRequirements2 with image and where
VkBindImagePlaneMemoryInfo::planeAspect corresponds to the
VkImagePlaneMemoryRequirementsInfo::planeAspect in the
VkImageMemoryRequirementsInfo2 structure’s pNext chain

• VUID-VkBindImageMemoryInfo-pNext-01621
If the pNext chain includes a VkBindImagePlaneMemoryInfo structure, the difference of
the size of memory and memoryOffset must be greater than or equal to the size member of
the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with the same image and where
VkBindImagePlaneMemoryInfo::planeAspect corresponds to the
VkImagePlaneMemoryRequirementsInfo::planeAspect in the
VkImageMemoryRequirementsInfo2 structure’s pNext chain

• VUID-VkBindImageMemoryInfo-pNext-01626
If the pNext chain includes a VkBindImageMemoryDeviceGroupInfo structure, all
instances of memory specified by VkBindImageMemoryDeviceGroupInfo::pDeviceIndices
must have been allocated

• VUID-VkBindImageMemoryInfo-pNext-01627
If the pNext chain includes a VkBindImageMemoryDeviceGroupInfo structure, and
VkBindImageMemoryDeviceGroupInfo::splitInstanceBindRegionCount is not zero, then
image must have been created with the VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT
bit set

• VUID-VkBindImageMemoryInfo-pNext-01628
If the pNext chain includes a VkBindImageMemoryDeviceGroupInfo structure, all
elements of VkBindImageMemoryDeviceGroupInfo::pSplitInstanceBindRegions must be
valid rectangles contained within the dimensions of image

• VUID-VkBindImageMemoryInfo-pNext-01629

1170

If the pNext chain includes a VkBindImageMemoryDeviceGroupInfo structure, the union
of the areas of all elements of VkBindImageMemoryDeviceGroupInfo
::pSplitInstanceBindRegions that correspond to the same instance of image must cover the
entire image

• VUID-VkBindImageMemoryInfo-image-01630
If image was created with a valid swapchain handle in
VkImageSwapchainCreateInfoKHR::swapchain, then the pNext chain must include a
VkBindImageMemorySwapchainInfoKHR structure containing the same swapchain
handle

• VUID-VkBindImageMemoryInfo-pNext-01631
If the pNext chain includes a VkBindImageMemorySwapchainInfoKHR structure, memory
must be VK_NULL_HANDLE

• VUID-VkBindImageMemoryInfo-pNext-01632
If the pNext chain does not include a VkBindImageMemorySwapchainInfoKHR structure,
memory must be a valid VkDeviceMemory handle

Valid Usage (Implicit)

• VUID-VkBindImageMemoryInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO

• VUID-VkBindImageMemoryInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkBindImageMemoryDeviceGroupInfo,
VkBindImageMemorySwapchainInfoKHR, VkBindImagePlaneMemoryInfo, or
VkBindMemoryStatusKHR

• VUID-VkBindImageMemoryInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBindImageMemoryInfo-image-parameter
image must be a valid VkImage handle

• VUID-VkBindImageMemoryInfo-commonparent
Both of image, and memory that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

The VkBindImageMemoryDeviceGroupInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindImageMemoryDeviceGroupInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t deviceIndexCount;
 const uint32_t* pDeviceIndices;
 uint32_t splitInstanceBindRegionCount;
 const VkRect2D* pSplitInstanceBindRegions;

1171

} VkBindImageMemoryDeviceGroupInfo;

or the equivalent

// Provided by VK_KHR_bind_memory2 with VK_KHR_device_group
typedef VkBindImageMemoryDeviceGroupInfo VkBindImageMemoryDeviceGroupInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceIndexCount is the number of elements in pDeviceIndices.

• pDeviceIndices is a pointer to an array of device indices.

• splitInstanceBindRegionCount is the number of elements in pSplitInstanceBindRegions.

• pSplitInstanceBindRegions is a pointer to an array of VkRect2D structures describing which
regions of the image are attached to each instance of memory.

If the pNext chain of VkBindImageMemoryInfo includes a VkBindImageMemoryDeviceGroupInfo
structure, then that structure determines how memory is bound to images across multiple devices
in a device group.

If deviceIndexCount is greater than zero, then on device index i image is attached to the instance of
the memory on the physical device with device index pDeviceIndices[i].

Let N be the number of physical devices in the logical device. If splitInstanceBindRegionCount is
greater than zero, then pSplitInstanceBindRegions is a pointer to an array of N2 rectangles, where
the image region specified by the rectangle at element i*N+j in resource instance i is bound to the
memory instance j. The blocks of the memory that are bound to each sparse image block region use
an offset in memory, relative to memoryOffset, computed as if the whole image was being bound to a
contiguous range of memory. In other words, horizontally adjacent image blocks use consecutive
blocks of memory, vertically adjacent image blocks are separated by the number of bytes per block
multiplied by the width in blocks of image, and the block at (0,0) corresponds to memory starting at
memoryOffset.

If splitInstanceBindRegionCount and deviceIndexCount are zero and the memory comes from a
memory heap with the VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit set, then it is as if pDeviceIndices
contains consecutive indices from zero to the number of physical devices in the logical device,
minus one. In other words, by default each physical device attaches to its own instance of the
memory.

If splitInstanceBindRegionCount and deviceIndexCount are zero and the memory comes from a
memory heap without the VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit set, then it is as if pDeviceIndices
contains an array of zeros. In other words, by default each physical device attaches to instance zero.

Valid Usage

• VUID-VkBindImageMemoryDeviceGroupInfo-deviceIndexCount-01633

1172

At least one of deviceIndexCount and splitInstanceBindRegionCount must be zero

• VUID-VkBindImageMemoryDeviceGroupInfo-deviceIndexCount-01634
deviceIndexCount must either be zero or equal to the number of physical devices in the
logical device

• VUID-VkBindImageMemoryDeviceGroupInfo-pDeviceIndices-01635
All elements of pDeviceIndices must be valid device indices

• VUID-VkBindImageMemoryDeviceGroupInfo-splitInstanceBindRegionCount-01636
splitInstanceBindRegionCount must either be zero or equal to the number of physical
devices in the logical device squared

• VUID-VkBindImageMemoryDeviceGroupInfo-pSplitInstanceBindRegions-01637
Elements of pSplitInstanceBindRegions that correspond to the same instance of an image
must not overlap

• VUID-VkBindImageMemoryDeviceGroupInfo-offset-01638
The offset.x member of any element of pSplitInstanceBindRegions must be a multiple of
the sparse image block width (VkSparseImageFormatProperties::imageGranularity.width) of
all non-metadata aspects of the image

• VUID-VkBindImageMemoryDeviceGroupInfo-offset-01639
The offset.y member of any element of pSplitInstanceBindRegions must be a multiple of
the sparse image block height (VkSparseImageFormatProperties::imageGranularity.height) of
all non-metadata aspects of the image

• VUID-VkBindImageMemoryDeviceGroupInfo-extent-01640
The extent.width member of any element of pSplitInstanceBindRegions must either be a
multiple of the sparse image block width of all non-metadata aspects of the image, or else
extent.width + offset.x must equal the width of the image subresource

• VUID-VkBindImageMemoryDeviceGroupInfo-extent-01641
The extent.height member of any element of pSplitInstanceBindRegions must either be a
multiple of the sparse image block height of all non-metadata aspects of the image, or else
extent.height + offset.y must equal the height of the image subresource

Valid Usage (Implicit)

• VUID-VkBindImageMemoryDeviceGroupInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO

• VUID-VkBindImageMemoryDeviceGroupInfo-pDeviceIndices-parameter
If deviceIndexCount is not 0, pDeviceIndices must be a valid pointer to an array of
deviceIndexCount uint32_t values

• VUID-VkBindImageMemoryDeviceGroupInfo-pSplitInstanceBindRegions-parameter
If splitInstanceBindRegionCount is not 0, pSplitInstanceBindRegions must be a valid
pointer to an array of splitInstanceBindRegionCount VkRect2D structures

If the pNext chain of VkBindImageMemoryInfo includes a VkBindImageMemorySwapchainInfoKHR
structure, then that structure includes a swapchain handle and image index indicating that the

1173

image will be bound to memory from that swapchain.

The VkBindImageMemorySwapchainInfoKHR structure is defined as:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
typedef struct VkBindImageMemorySwapchainInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSwapchainKHR swapchain;
 uint32_t imageIndex;
} VkBindImageMemorySwapchainInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchain is VK_NULL_HANDLE or a swapchain handle.

• imageIndex is an image index within swapchain.

If swapchain is not NULL, the swapchain and imageIndex are used to determine the memory that the
image is bound to, instead of memory and memoryOffset.

Memory can be bound to a swapchain and use the pDeviceIndices or pSplitInstanceBindRegions
members of VkBindImageMemoryDeviceGroupInfo.

Valid Usage

• VUID-VkBindImageMemorySwapchainInfoKHR-imageIndex-01644
imageIndex must be less than the number of images in swapchain

• VUID-VkBindImageMemorySwapchainInfoKHR-swapchain-07756
If the swapchain has been created with
VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT, imageIndex must be one that has
previously been returned by vkAcquireNextImageKHR or vkAcquireNextImage2KHR

Valid Usage (Implicit)

• VUID-VkBindImageMemorySwapchainInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR

• VUID-VkBindImageMemorySwapchainInfoKHR-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

Host Synchronization

• Host access to swapchain must be externally synchronized

1174

In order to bind planes of a disjoint image, add a VkBindImagePlaneMemoryInfo structure to the pNext
chain of VkBindImageMemoryInfo.

The VkBindImagePlaneMemoryInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindImagePlaneMemoryInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageAspectFlagBits planeAspect;
} VkBindImagePlaneMemoryInfo;

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkBindImagePlaneMemoryInfo VkBindImagePlaneMemoryInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• planeAspect is a VkImageAspectFlagBits value specifying the aspect of the disjoint image plane to
bind.

Valid Usage

• VUID-VkBindImagePlaneMemoryInfo-planeAspect-02283
If the image’s tiling is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, then
planeAspect must be a single valid multi-planar aspect mask bit

• VUID-VkBindImagePlaneMemoryInfo-planeAspect-02284
If the image’s tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then planeAspect must
be a single valid memory plane for the image (that is, aspectMask must specify a plane
index that is less than the VkDrmFormatModifierPropertiesEXT
::drmFormatModifierPlaneCount associated with the image’s format and
VkImageDrmFormatModifierPropertiesEXT::drmFormatModifier)

Valid Usage (Implicit)

• VUID-VkBindImagePlaneMemoryInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO

• VUID-VkBindImagePlaneMemoryInfo-planeAspect-parameter
planeAspect must be a valid VkImageAspectFlagBits value

Buffer-Image Granularity

The implementation-dependent limit bufferImageGranularity specifies a page-like granularity at

1175

which linear and non-linear resources must be placed in adjacent memory locations to avoid
aliasing. Two resources which do not satisfy this granularity requirement are said to alias.
bufferImageGranularity is specified in bytes, and must be a power of two. Implementations which
do not impose a granularity restriction may report a bufferImageGranularity value of one.

Note

Despite its name, bufferImageGranularity is really a granularity between “linear”
and “non-linear” resources.

Given resourceA at the lower memory offset and resourceB at the higher memory offset in the
same VkDeviceMemory object, where one resource is linear and the other is non-linear (as defined in
the Glossary), and the following:

resourceA.end = resourceA.memoryOffset + resourceA.size - 1
resourceA.endPage = resourceA.end & ~(bufferImageGranularity-1)
resourceB.start = resourceB.memoryOffset
resourceB.startPage = resourceB.start & ~(bufferImageGranularity-1)

The following property must hold:

resourceA.endPage < resourceB.startPage

That is, the end of the first resource (A) and the beginning of the second resource (B) must be on
separate “pages” of size bufferImageGranularity. bufferImageGranularity may be different than the
physical page size of the memory heap. This restriction is only needed when a linear resource and a
non-linear resource are adjacent in memory and will be used simultaneously. The memory ranges
of adjacent resources can be closer than bufferImageGranularity, provided they meet the alignment
requirement for the objects in question.

Sparse block size in bytes and sparse image and buffer memory alignments must all be multiples of
the bufferImageGranularity. Therefore, memory bound to sparse resources naturally satisfies the
bufferImageGranularity.

12.9. Resource Sharing Mode
Buffer and image objects are created with a sharing mode controlling how they can be accessed
from queues. The supported sharing modes are:

// Provided by VK_VERSION_1_0
typedef enum VkSharingMode {
 VK_SHARING_MODE_EXCLUSIVE = 0,
 VK_SHARING_MODE_CONCURRENT = 1,
} VkSharingMode;

• VK_SHARING_MODE_EXCLUSIVE specifies that access to any range or image subresource of the object

1176

will be exclusive to a single queue family at a time.

• VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image subresource
of the object from multiple queue families is supported.

Note

VK_SHARING_MODE_CONCURRENT may result in lower performance access to the buffer
or image than VK_SHARING_MODE_EXCLUSIVE.

Ranges of buffers and image subresources of image objects created using VK_SHARING_MODE_EXCLUSIVE
must only be accessed by queues in the queue family that has ownership of the resource. Upon
creation, such resources are not owned by any queue family; ownership is implicitly acquired upon
first use within a queue. Once a resource using VK_SHARING_MODE_EXCLUSIVE is owned by some queue
family, the application must perform a queue family ownership transfer to make the memory
contents of a range or image subresource accessible to a different queue family.

Note

Images still require a layout transition from VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED before being used on the first queue.

A queue family can take ownership of an image subresource or buffer range of a resource created
with VK_SHARING_MODE_EXCLUSIVE, without an ownership transfer, in the same way as for a resource
that was just created; however, taking ownership in this way has the effect that the contents of the
image subresource or buffer range are undefined.

Ranges of buffers and image subresources of image objects created using
VK_SHARING_MODE_CONCURRENT must only be accessed by queues from the queue families specified
through the queueFamilyIndexCount and pQueueFamilyIndices members of the corresponding create
info structures.

12.9.1. External Resource Sharing

Resources should only be accessed in the Vulkan instance that has exclusive ownership of their
underlying memory. Only one Vulkan instance has exclusive ownership of a resource’s underlying
memory at a given time, regardless of whether the resource was created using
VK_SHARING_MODE_EXCLUSIVE or VK_SHARING_MODE_CONCURRENT. Applications can transfer ownership of a
resource’s underlying memory only if the memory has been imported from or exported to another
instance or external API using external memory handles. The semantics for transferring ownership
outside of the instance are similar to those used for transferring ownership of
VK_SHARING_MODE_EXCLUSIVE resources between queues, and is also accomplished using
VkBufferMemoryBarrier or VkImageMemoryBarrier operations. To make the contents of the
underlying memory accessible in the destination instance or API, applications must

1. Release exclusive ownership from the source instance or API.

2. Ensure the release operation has completed using semaphores or fences.

3. Acquire exclusive ownership in the destination instance or API

Unlike queue family ownership transfers, the destination instance or API is not specified explicitly

1177

when releasing ownership, nor is the source instance or API specified when acquiring ownership.
Instead, the image or memory barrier’s dstQueueFamilyIndex or srcQueueFamilyIndex parameters are
set to the reserved queue family index VK_QUEUE_FAMILY_EXTERNAL or VK_QUEUE_FAMILY_FOREIGN_EXT to
represent the external destination or source respectively.

Binding a resource to a memory object shared between multiple Vulkan instances or other APIs
does not change the ownership of the underlying memory. The first entity to access the resource
implicitly acquires ownership. An entity can also implicitly take ownership from another entity in
the same way without an explicit ownership transfer. However, taking ownership in this way has
the effect that the contents of the underlying memory are undefined.

Accessing a resource backed by memory that is owned by a particular instance or API has the same
semantics as accessing a VK_SHARING_MODE_EXCLUSIVE resource, with one exception: Implementations
must ensure layout transitions performed on one member of a set of identical subresources of
identical images that alias the same range of an underlying memory object affect the layout of all
the subresources in the set.

As a corollary, writes to any image subresources in such a set must not make the contents of
memory used by other subresources in the set undefined. An application can define the content of
a subresource of one image by performing device writes to an identical subresource of another
image provided both images are bound to the same region of external memory. Applications may
also add resources to such a set after the content of the existing set members has been defined
without making the content undefined by creating a new image with the initial layout
VK_IMAGE_LAYOUT_UNDEFINED and binding it to the same region of external memory as the existing
images.

Note

Because layout transitions apply to all identical images aliasing the same region of
external memory, the actual layout of the memory backing a new image as well as
an existing image with defined content will not be undefined. Such an image is not
usable until it acquires ownership of its memory from the existing owner.
Therefore, the layout specified as part of this transition will be the true initial
layout of the image. The undefined layout specified when creating it is a
placeholder to simplify valid usage requirements.

12.10. Memory Aliasing
A range of a VkDeviceMemory allocation is aliased if it is bound to multiple resources simultaneously,
as described below, via vkBindImageMemory, vkBindBufferMemory,
vkBindAccelerationStructureMemoryNV, via sparse memory bindings, or by binding the memory to
resources in multiple Vulkan instances or external APIs using external memory handle export and
import mechanisms.

Consider two resources, resourceA and resourceB, bound respectively to memory rangeA and rangeB.
Let paddedRangeA and paddedRangeB be, respectively, rangeA and rangeB aligned to
bufferImageGranularity. If the resources are both linear or both non-linear (as defined in the
Glossary), then the resources alias the memory in the intersection of rangeA and rangeB. If one
resource is linear and the other is non-linear, then the resources alias the memory in the

1178

intersection of paddedRangeA and paddedRangeB.

Applications can alias memory, but use of multiple aliases is subject to several constraints.

Note

Memory aliasing can be useful to reduce the total device memory footprint of an
application, if some large resources are used for disjoint periods of time.

When a non-linear, non-VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image is bound to an aliased range,
all image subresources of the image overlap the range. When a linear image is bound to an aliased
range, the image subresources that (according to the image’s advertised layout) include bytes from
the aliased range overlap the range. When a VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image has
sparse image blocks bound to an aliased range, only image subresources including those sparse
image blocks overlap the range, and when the memory bound to the image’s mip tail overlaps an
aliased range all image subresources in the mip tail overlap the range.

Buffers, and linear image subresources in either the VK_IMAGE_LAYOUT_PREINITIALIZED or
VK_IMAGE_LAYOUT_GENERAL layouts, are host-accessible subresources. That is, the host has a well-
defined addressing scheme to interpret the contents, and thus the layout of the data in memory can
be consistently interpreted across aliases if each of those aliases is a host-accessible subresource.
Non-linear images, and linear image subresources in other layouts, are not host-accessible.

If two aliases are both host-accessible, then they interpret the contents of the memory in consistent
ways, and data written to one alias can be read by the other alias.

If two aliases are both images that were created with identical creation parameters, both were
created with the VK_IMAGE_CREATE_ALIAS_BIT flag set, and both are bound identically to memory
except for VkBindImageMemoryDeviceGroupInfo::pDeviceIndices and
VkBindImageMemoryDeviceGroupInfo::pSplitInstanceBindRegions, then they interpret the contents
of the memory in consistent ways, and data written to one alias can be read by the other alias.

Additionally, if an individual plane of a multi-planar image and a single-plane image alias the same
memory, then they also interpret the contents of the memory in consistent ways under the same
conditions, but with the following modifications:

• Both must have been created with the VK_IMAGE_CREATE_DISJOINT_BIT flag.

• The single-plane image must have a VkFormat that is equivalent to that of the multi-planar
image’s individual plane.

• The single-plane image and the individual plane of the multi-planar image must be bound
identically to memory except for VkBindImageMemoryDeviceGroupInfo::pDeviceIndices and
VkBindImageMemoryDeviceGroupInfo::pSplitInstanceBindRegions.

• The width and height of the single-plane image are derived from the multi-planar image’s
dimensions in the manner listed for plane compatibility for the aliased plane.

• If either image’s tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then both images must be
linear.

• All other creation parameters must be identical

1179

Aliases created by binding the same memory to resources in multiple Vulkan instances or external
APIs using external memory handle export and import mechanisms interpret the contents of the
memory in consistent ways, and data written to one alias can be read by the other alias.

Otherwise, the aliases interpret the contents of the memory differently, and writes via one alias
make the contents of memory partially or completely undefined to the other alias. If the first alias is
a host-accessible subresource, then the bytes affected are those written by the memory operations
according to its addressing scheme. If the first alias is not host-accessible, then the bytes affected
are those overlapped by the image subresources that were written. If the second alias is a host-
accessible subresource, the affected bytes become undefined. If the second alias is not host-
accessible, all sparse image blocks (for sparse partially-resident images) or all image subresources
(for non-sparse image and fully resident sparse images) that overlap the affected bytes become
undefined.

If any image subresources are made undefined due to writes to an alias, then each of those image
subresources must have its layout transitioned from VK_IMAGE_LAYOUT_UNDEFINED to a valid layout
before it is used, or from VK_IMAGE_LAYOUT_PREINITIALIZED if the memory has been written by the
host. If any sparse blocks of a sparse image have been made undefined, then only the image
subresources containing them must be transitioned.

Use of an overlapping range by two aliases must be separated by a memory dependency using the
appropriate access types if at least one of those uses performs writes, whether the aliases interpret
memory consistently or not. If buffer or image memory barriers are used, the scope of the barrier
must contain the entire range and/or set of image subresources that overlap.

If two aliasing image views are used in the same framebuffer, then the render pass must declare
the attachments using the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, and follow the other rules
listed in that section.

Note

Memory recycled via an application suballocator (i.e. without freeing and
reallocating the memory objects) is not substantially different from memory
aliasing. However, a suballocator usually waits on a fence before recycling a
region of memory, and signaling a fence involves sufficient implicit dependencies
to satisfy all the above requirements.

12.10.1. Resource Memory Overlap

Applications can safely access a resource concurrently as long as the memory locations do not
overlap as defined in Memory Location. This includes aliased resources if such aliasing is well-
defined. It also includes access from different queues and/or queue families if such concurrent
access is supported by the resource. Transfer commands only access memory locations specified by
the range of the transfer command.

Note

The intent is that buffers (or linear images) can be accessed concurrently, even
when they share cache lines, but otherwise do not access the same memory range.
The concept of a device cache line size is not exposed in the memory model.

1180

12.11. Buffer Collections
Fuchsia’s FIDL-based Sysmem service interoperates with Vulkan via the
VK_FUCHSIA_buffer_collection extension.

A buffer collection is a set of one or more buffers which were allocated together as a group and
which all have the same properties. These properties describe the buffers' internal representation,
such as its dimensions and memory layout. This ensures that all of the buffers can be used
interchangeably by tasks that require swapping among multiple buffers, such as double-buffered
graphics rendering.

On Fuchsia, the Sysmem service uses buffer collections as a core construct in its design.

Buffer collections are represented by VkBufferCollectionFUCHSIA handles:

// Provided by VK_FUCHSIA_buffer_collection
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBufferCollectionFUCHSIA)

12.11.1. Definitions

• FIDL - Fuchsia Interface Definition Language. The declarative language used to define FIDL
interprocess communication interfaces on Fuchsia. FIDL files use the fidl extension. FIDL is
also used to refer to the services defined by interfaces declared in the FIDL language

• Sysmem - The FIDL service that facilitates optimal buffer sharing and reuse on Fuchsia

• client - Any participant of the buffer collection e.g. the Vulkan application

• token - A zx_handle_t Zircon channel object that allows participation in the buffer collection

12.11.2. Platform Initialization for Buffer Collections

To initialize a buffer collection on Fuchsia:

• Connect to the Sysmem service to initialize a Sysmem allocator

• Create an initial buffer collection token using the Sysmem allocator

• Duplicate the token for each participant beyond the initiator

• See the Sysmem Overview and fuchsia.sysmem FIDL documentation on fuchsia.dev for more
detailed information

12.11.3. Create the Buffer Collection

To create a VkBufferCollectionFUCHSIA for Vulkan to participate in the buffer collection:

// Provided by VK_FUCHSIA_buffer_collection
VkResult vkCreateBufferCollectionFUCHSIA(
 VkDevice device,
 const VkBufferCollectionCreateInfoFUCHSIA* pCreateInfo,

1181

 const VkAllocationCallbacks* pAllocator,
 VkBufferCollectionFUCHSIA* pCollection);

• device is the logical device that creates the VkBufferCollectionFUCHSIA

• pCreateInfo is a pointer to a VkBufferCollectionCreateInfoFUCHSIA structure containing
parameters affecting creation of the buffer collection

• pAllocator is a pointer to a VkAllocationCallbacks structure controlling host memory allocation
as described in the Memory Allocation chapter

• pBufferCollection is a pointer to a VkBufferCollectionFUCHSIA handle in which the resulting
buffer collection object is returned

Valid Usage (Implicit)

• VUID-vkCreateBufferCollectionFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateBufferCollectionFUCHSIA-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkBufferCollectionCreateInfoFUCHSIA
structure

• VUID-vkCreateBufferCollectionFUCHSIA-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateBufferCollectionFUCHSIA-pCollection-parameter
pCollection must be a valid pointer to a VkBufferCollectionFUCHSIA handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

• VK_ERROR_INITIALIZATION_FAILED

Host Access

All functions referencing a VkBufferCollectionFUCHSIA must be externally synchronized
with the exception of vkCreateBufferCollectionFUCHSIA.

The VkBufferCollectionCreateInfoFUCHSIA structure is defined as:

1182

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkBufferCollectionCreateInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 zx_handle_t collectionToken;
} VkBufferCollectionCreateInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• collectionToken is a zx_handle_t containing the Sysmem client’s buffer collection token

Valid Usage

• VUID-VkBufferCollectionCreateInfoFUCHSIA-collectionToken-06393
collectionToken must be a valid zx_handle_t to a Zircon channel allocated from Sysmem
(fuchsia.sysmem.Allocator/AllocateSharedCollection) with ZX_DEFAULT_CHANNEL_RIGHTS
rights

Valid Usage (Implicit)

• VUID-VkBufferCollectionCreateInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_COLLECTION_CREATE_INFO_FUCHSIA

• VUID-VkBufferCollectionCreateInfoFUCHSIA-pNext-pNext
pNext must be NULL

12.11.4. Set the Constraints

Buffer collections can be established for VkImage allocations or VkBuffer allocations.

Set Image-based Buffer Collection Constraints

Setting the constraints on the buffer collection initiates the format negotiation and allocation of the
buffer collection. To set the constraints on a VkImage buffer collection, call:

// Provided by VK_FUCHSIA_buffer_collection
VkResult vkSetBufferCollectionImageConstraintsFUCHSIA(
 VkDevice device,
 VkBufferCollectionFUCHSIA collection,
 const VkImageConstraintsInfoFUCHSIA* pImageConstraintsInfo);

• device is the logical device

• collection is the VkBufferCollectionFUCHSIA handle

• pImageConstraintsInfo is a pointer to a VkImageConstraintsInfoFUCHSIA structure

1183

vkSetBufferCollectionImageConstraintsFUCHSIA may fail if pImageConstraintsInfo-
>formatConstraintsCount is larger than the implementation-defined limit. If that occurs,
vkSetBufferCollectionImageConstraintsFUCHSIA will return VK_ERROR_INITIALIZATION_FAILED.

vkSetBufferCollectionImageConstraintsFUCHSIA may fail if the implementation does not support any
of the formats described by the pImageConstraintsInfo structure. If that occurs,
vkSetBufferCollectionImageConstraintsFUCHSIA will return VK_ERROR_FORMAT_NOT_SUPPORTED.

Valid Usage

• VUID-vkSetBufferCollectionImageConstraintsFUCHSIA-collection-06394
vkSetBufferCollectionImageConstraintsFUCHSIA or
vkSetBufferCollectionBufferConstraintsFUCHSIA must not have already been called on
collection

Valid Usage (Implicit)

• VUID-vkSetBufferCollectionImageConstraintsFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetBufferCollectionImageConstraintsFUCHSIA-collection-parameter
collection must be a valid VkBufferCollectionFUCHSIA handle

• VUID-vkSetBufferCollectionImageConstraintsFUCHSIA-pImageConstraintsInfo-parameter
pImageConstraintsInfo must be a valid pointer to a valid VkImageConstraintsInfoFUCHSIA
structure

• VUID-vkSetBufferCollectionImageConstraintsFUCHSIA-collection-parent
collection must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

The VkImageConstraintsInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkImageConstraintsInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;

1184

 uint32_t formatConstraintsCount;
 const VkImageFormatConstraintsInfoFUCHSIA* pFormatConstraints;
 VkBufferCollectionConstraintsInfoFUCHSIA bufferCollectionConstraints;
 VkImageConstraintsInfoFlagsFUCHSIA flags;
} VkImageConstraintsInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• formatConstraintsCount is the number of elements in pFormatConstraints.

• pFormatConstraints is a pointer to an array of VkImageFormatConstraintsInfoFUCHSIA
structures of size formatConstraintsCount that is used to further constrain buffer collection
format selection for image-based buffer collections.

• bufferCollectionConstraints is a VkBufferCollectionConstraintsInfoFUCHSIA structure used to
supply parameters for the negotiation and allocation for buffer-based buffer collections.

• flags is a VkImageConstraintsInfoFlagBitsFUCHSIA value specifying hints about the type of
memory Sysmem should allocate for the buffer collection.

Valid Usage

• VUID-VkImageConstraintsInfoFUCHSIA-pFormatConstraints-06395
All elements of pFormatConstraints must have at least one bit set in its
VkImageFormatConstraintsInfoFUCHSIA::requiredFormatFeatures

• VUID-VkImageConstraintsInfoFUCHSIA-pFormatConstraints-06396
If pFormatConstraints->imageCreateInfo->usage contains VK_IMAGE_USAGE_SAMPLED_BIT, then
pFormatConstraints->requiredFormatFeatures must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

• VUID-VkImageConstraintsInfoFUCHSIA-pFormatConstraints-06397
If pFormatConstraints->imageCreateInfo->usage contains VK_IMAGE_USAGE_STORAGE_BIT, then
pFormatConstraints->requiredFormatFeatures must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

• VUID-VkImageConstraintsInfoFUCHSIA-pFormatConstraints-06398
If pFormatConstraints->imageCreateInfo->usage contains
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, then pFormatConstraints->requiredFormatFeatures
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkImageConstraintsInfoFUCHSIA-pFormatConstraints-06399
If pFormatConstraints->imageCreateInfo->usage contains
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, then pFormatConstraints-
>requiredFormatFeatures must contain VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageConstraintsInfoFUCHSIA-pFormatConstraints-06400
If pFormatConstraints->imageCreateInfo->usage contains
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, then pFormatConstraints->requiredFormatFeatures
must contain at least one of VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

1185

• VUID-VkImageConstraintsInfoFUCHSIA-attachmentFragmentShadingRate-06401
If the attachmentFragmentShadingRate feature is enabled, and pFormatConstraints-
>imageCreateInfo->usage contains
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR, then pFormatConstraints-
>requiredFormatFeatures must contain
VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

Valid Usage (Implicit)

• VUID-VkImageConstraintsInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_CONSTRAINTS_INFO_FUCHSIA

• VUID-VkImageConstraintsInfoFUCHSIA-pNext-pNext
pNext must be NULL

• VUID-VkImageConstraintsInfoFUCHSIA-pFormatConstraints-parameter
pFormatConstraints must be a valid pointer to an array of formatConstraintsCount valid
VkImageFormatConstraintsInfoFUCHSIA structures

• VUID-VkImageConstraintsInfoFUCHSIA-bufferCollectionConstraints-parameter
bufferCollectionConstraints must be a valid VkBufferCollectionConstraintsInfoFUCHSIA
structure

• VUID-VkImageConstraintsInfoFUCHSIA-flags-parameter
flags must be a valid combination of VkImageConstraintsInfoFlagBitsFUCHSIA values

• VUID-VkImageConstraintsInfoFUCHSIA-formatConstraintsCount-arraylength
formatConstraintsCount must be greater than 0

// Provided by VK_FUCHSIA_buffer_collection
typedef VkFlags VkImageConstraintsInfoFlagsFUCHSIA;

VkImageConstraintsInfoFlagsFUCHSIA is a bitmask type for setting a mask of zero or more
VkImageConstraintsInfoFlagBitsFUCHSIA bits.

Bits which can be set in VkImageConstraintsInfoFlagBitsFUCHSIA::flags include:

// Provided by VK_FUCHSIA_buffer_collection
typedef enum VkImageConstraintsInfoFlagBitsFUCHSIA {
 VK_IMAGE_CONSTRAINTS_INFO_CPU_READ_RARELY_FUCHSIA = 0x00000001,
 VK_IMAGE_CONSTRAINTS_INFO_CPU_READ_OFTEN_FUCHSIA = 0x00000002,
 VK_IMAGE_CONSTRAINTS_INFO_CPU_WRITE_RARELY_FUCHSIA = 0x00000004,
 VK_IMAGE_CONSTRAINTS_INFO_CPU_WRITE_OFTEN_FUCHSIA = 0x00000008,
 VK_IMAGE_CONSTRAINTS_INFO_PROTECTED_OPTIONAL_FUCHSIA = 0x00000010,
} VkImageConstraintsInfoFlagBitsFUCHSIA;

General hints about the type of memory that should be allocated by Sysmem based on the expected
usage of the images in the buffer collection include:

1186

• VK_IMAGE_CONSTRAINTS_INFO_CPU_READ_RARELY_FUCHSIA

• VK_IMAGE_CONSTRAINTS_INFO_CPU_READ_OFTEN_FUCHSIA

• VK_IMAGE_CONSTRAINTS_INFO_CPU_WRITE_RARELY_FUCHSIA

• VK_IMAGE_CONSTRAINTS_INFO_CPU_WRITE_OFTEN_FUCHSIA

For protected memory:

• VK_IMAGE_CONSTRAINTS_INFO_PROTECTED_OPTIONAL_FUCHSIA specifies that protected memory is
optional for the buffer collection.

Note that if all participants in the buffer collection (Vulkan or otherwise) specify that protected
memory is optional, Sysmem will not allocate protected memory.

The VkImageFormatConstraintsInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkImageFormatConstraintsInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkImageCreateInfo imageCreateInfo;
 VkFormatFeatureFlags requiredFormatFeatures;
 VkImageFormatConstraintsFlagsFUCHSIA flags;
 uint64_t sysmemPixelFormat;
 uint32_t colorSpaceCount;
 const VkSysmemColorSpaceFUCHSIA* pColorSpaces;
} VkImageFormatConstraintsInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• imageCreateInfo is the VkImageCreateInfo used to create a VkImage that is to use memory from
the VkBufferCollectionFUCHSIA

• requiredFormatFeatures is a bitmask of VkFormatFeatureFlagBits specifying required features of
the buffers in the buffer collection

• flags is reserved for future use

• sysmemPixelFormat is a PixelFormatType value from the fuchsia.sysmem/image_formats.fidl FIDL
interface

• colorSpaceCount the element count of pColorSpaces

• pColorSpaces is a pointer to an array of VkSysmemColorSpaceFUCHSIA structs of size
colorSpaceCount

Valid Usage (Implicit)

• VUID-VkImageFormatConstraintsInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_FORMAT_CONSTRAINTS_INFO_FUCHSIA

1187

• VUID-VkImageFormatConstraintsInfoFUCHSIA-pNext-pNext
pNext must be NULL

• VUID-VkImageFormatConstraintsInfoFUCHSIA-imageCreateInfo-parameter
imageCreateInfo must be a valid VkImageCreateInfo structure

• VUID-VkImageFormatConstraintsInfoFUCHSIA-requiredFormatFeatures-parameter
requiredFormatFeatures must be a valid combination of VkFormatFeatureFlagBits values

• VUID-VkImageFormatConstraintsInfoFUCHSIA-requiredFormatFeatures-requiredbitmask
requiredFormatFeatures must not be 0

• VUID-VkImageFormatConstraintsInfoFUCHSIA-flags-zerobitmask
flags must be 0

• VUID-VkImageFormatConstraintsInfoFUCHSIA-pColorSpaces-parameter
pColorSpaces must be a valid pointer to an array of colorSpaceCount valid
VkSysmemColorSpaceFUCHSIA structures

• VUID-VkImageFormatConstraintsInfoFUCHSIA-colorSpaceCount-arraylength
colorSpaceCount must be greater than 0

// Provided by VK_FUCHSIA_buffer_collection
typedef VkFlags VkImageFormatConstraintsFlagsFUCHSIA;

VkImageFormatConstraintsFlagsFUCHSIA is a bitmask type for setting a mask, but is currently reserved
for future use.

The VkBufferCollectionConstraintsInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkBufferCollectionConstraintsInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 uint32_t minBufferCount;
 uint32_t maxBufferCount;
 uint32_t minBufferCountForCamping;
 uint32_t minBufferCountForDedicatedSlack;
 uint32_t minBufferCountForSharedSlack;
} VkBufferCollectionConstraintsInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• minBufferCount is the minimum number of buffers available in the collection

• maxBufferCount is the maximum number of buffers allowed in the collection

• minBufferCountForCamping is the per-participant minimum buffers for camping

• minBufferCountForDedicatedSlack is the per-participant minimum buffers for dedicated slack

1188

• minBufferCountForSharedSlack is the per-participant minimum buffers for shared slack

Sysmem uses all buffer count parameters in combination to determine the number of buffers it will
allocate. Sysmem defines buffer count constraints in fuchsia.sysmem/constraints.fidl.

Camping as referred to by minBufferCountForCamping, is the number of buffers that should be
available for the participant that are not for transient use. This number of buffers is required for
the participant to logically operate.

Slack as referred to by minBufferCountForDedicatedSlack and minBufferCountForSharedSlack, refers to
the number of buffers desired by participants for optimal performance.
minBufferCountForDedicatedSlack refers to the current participant. minBufferCountForSharedSlack
refers to buffer slack for all participants in the collection.

Valid Usage (Implicit)

• VUID-VkBufferCollectionConstraintsInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_COLLECTION_CONSTRAINTS_INFO_FUCHSIA

• VUID-VkBufferCollectionConstraintsInfoFUCHSIA-pNext-pNext
pNext must be NULL

The VkSysmemColorSpaceFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkSysmemColorSpaceFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 uint32_t colorSpace;
} VkSysmemColorSpaceFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• colorSpace value of the Sysmem ColorSpaceType

Valid Usage

• VUID-VkSysmemColorSpaceFUCHSIA-colorSpace-06402
colorSpace must be a ColorSpaceType as defined in fuchsia.sysmem/image_formats.fidl

Valid Usage (Implicit)

• VUID-VkSysmemColorSpaceFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_SYSMEM_COLOR_SPACE_FUCHSIA

• VUID-VkSysmemColorSpaceFUCHSIA-pNext-pNext

1189

pNext must be NULL

Set Buffer-based Buffer Collection Constraints

To set the constraints on a VkBuffer buffer collection, call:

// Provided by VK_FUCHSIA_buffer_collection
VkResult vkSetBufferCollectionBufferConstraintsFUCHSIA(
 VkDevice device,
 VkBufferCollectionFUCHSIA collection,
 const VkBufferConstraintsInfoFUCHSIA* pBufferConstraintsInfo);

• device is the logical device

• collection is the VkBufferCollectionFUCHSIA handle

• pBufferConstraintsInfo is a pointer to a VkBufferConstraintsInfoFUCHSIA structure

vkSetBufferCollectionBufferConstraintsFUCHSIA may fail if the implementation does not support the
constraints specified in the bufferCollectionConstraints structure. If that occurs,
vkSetBufferCollectionBufferConstraintsFUCHSIA will return VK_ERROR_FORMAT_NOT_SUPPORTED.

Valid Usage

• VUID-vkSetBufferCollectionBufferConstraintsFUCHSIA-collection-06403
vkSetBufferCollectionImageConstraintsFUCHSIA or
vkSetBufferCollectionBufferConstraintsFUCHSIA must not have already been called on
collection

Valid Usage (Implicit)

• VUID-vkSetBufferCollectionBufferConstraintsFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetBufferCollectionBufferConstraintsFUCHSIA-collection-parameter
collection must be a valid VkBufferCollectionFUCHSIA handle

• VUID-vkSetBufferCollectionBufferConstraintsFUCHSIA-pBufferConstraintsInfo-parameter
pBufferConstraintsInfo must be a valid pointer to a valid
VkBufferConstraintsInfoFUCHSIA structure

• VUID-vkSetBufferCollectionBufferConstraintsFUCHSIA-collection-parent
collection must have been created, allocated, or retrieved from device

1190

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

The VkBufferConstraintsInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkBufferConstraintsInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkBufferCreateInfo createInfo;
 VkFormatFeatureFlags requiredFormatFeatures;
 VkBufferCollectionConstraintsInfoFUCHSIA bufferCollectionConstraints;
} VkBufferConstraintsInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• pBufferCreateInfo a pointer to a VkBufferCreateInfo struct describing the buffer attributes for
the buffer collection

• requiredFormatFeatures bitmask of VkFormatFeatureFlagBits required features of the buffers in
the buffer collection

• bufferCollectionConstraints is used to supply parameters for the negotiation and allocation of
the buffer collection

Valid Usage

• VUID-VkBufferConstraintsInfoFUCHSIA-requiredFormatFeatures-06404
The requiredFormatFeatures bitmask of VkFormatFeatureFlagBits must be chosen from
among the buffer compatible format features listed in buffer compatible format features

Valid Usage (Implicit)

• VUID-VkBufferConstraintsInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_CONSTRAINTS_INFO_FUCHSIA

• VUID-VkBufferConstraintsInfoFUCHSIA-pNext-pNext
pNext must be NULL

1191

• VUID-VkBufferConstraintsInfoFUCHSIA-createInfo-parameter
createInfo must be a valid VkBufferCreateInfo structure

• VUID-VkBufferConstraintsInfoFUCHSIA-requiredFormatFeatures-parameter
requiredFormatFeatures must be a valid combination of VkFormatFeatureFlagBits values

• VUID-VkBufferConstraintsInfoFUCHSIA-bufferCollectionConstraints-parameter
bufferCollectionConstraints must be a valid VkBufferCollectionConstraintsInfoFUCHSIA
structure

12.11.5. Retrieve Buffer Collection Properties

After constraints have been set on the buffer collection by calling
vkSetBufferCollectionImageConstraintsFUCHSIA or
vkSetBufferCollectionBufferConstraintsFUCHSIA, call vkGetBufferCollectionPropertiesFUCHSIA to
retrieve the negotiated and finalized properties of the buffer collection.

The call to vkGetBufferCollectionPropertiesFUCHSIA is synchronous. It waits for the Sysmem format
negotiation and buffer collection allocation to complete before returning.

// Provided by VK_FUCHSIA_buffer_collection
VkResult vkGetBufferCollectionPropertiesFUCHSIA(
 VkDevice device,
 VkBufferCollectionFUCHSIA collection,
 VkBufferCollectionPropertiesFUCHSIA* pProperties);

• device is the logical device handle

• collection is the VkBufferCollectionFUCHSIA handle

• pProperties is a pointer to the retrieved VkBufferCollectionPropertiesFUCHSIA struct

For image-based buffer collections, upon calling vkGetBufferCollectionPropertiesFUCHSIA, Sysmem
will choose an element of the VkImageConstraintsInfoFUCHSIA::pImageCreateInfos established by
the preceding call to vkSetBufferCollectionImageConstraintsFUCHSIA. The index of the element
chosen is stored in and can be retrieved from VkBufferCollectionPropertiesFUCHSIA
::createInfoIndex.

For buffer-based buffer collections, a single VkBufferCreateInfo is specified as
VkBufferConstraintsInfoFUCHSIA::createInfo. VkBufferCollectionPropertiesFUCHSIA
::createInfoIndex will therefore always be zero.

vkGetBufferCollectionPropertiesFUCHSIA may fail if Sysmem is unable to resolve the constraints of
all of the participants in the buffer collection. If that occurs,
vkGetBufferCollectionPropertiesFUCHSIA will return VK_ERROR_INITIALIZATION_FAILED.

Valid Usage

• VUID-vkGetBufferCollectionPropertiesFUCHSIA-None-06405

1192

Prior to calling vkGetBufferCollectionPropertiesFUCHSIA, the constraints on the buffer
collection must have been set by either vkSetBufferCollectionImageConstraintsFUCHSIA
or vkSetBufferCollectionBufferConstraintsFUCHSIA

Valid Usage (Implicit)

• VUID-vkGetBufferCollectionPropertiesFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferCollectionPropertiesFUCHSIA-collection-parameter
collection must be a valid VkBufferCollectionFUCHSIA handle

• VUID-vkGetBufferCollectionPropertiesFUCHSIA-pProperties-parameter
pProperties must be a valid pointer to a VkBufferCollectionPropertiesFUCHSIA structure

• VUID-vkGetBufferCollectionPropertiesFUCHSIA-collection-parent
collection must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

The VkBufferCollectionPropertiesFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkBufferCollectionPropertiesFUCHSIA {
 VkStructureType sType;
 void* pNext;
 uint32_t memoryTypeBits;
 uint32_t bufferCount;
 uint32_t createInfoIndex;
 uint64_t sysmemPixelFormat;
 VkFormatFeatureFlags formatFeatures;
 VkSysmemColorSpaceFUCHSIA sysmemColorSpaceIndex;
 VkComponentMapping samplerYcbcrConversionComponents;
 VkSamplerYcbcrModelConversion suggestedYcbcrModel;
 VkSamplerYcbcrRange suggestedYcbcrRange;
 VkChromaLocation suggestedXChromaOffset;
 VkChromaLocation suggestedYChromaOffset;
} VkBufferCollectionPropertiesFUCHSIA;

• sType is a VkStructureType value identifying this structure.

1193

• pNext is NULL or a pointer to a structure extending this structure

• memoryTypeBits is a bitmask containing one bit set for every memory type which the buffer
collection can be imported as buffer collection

• bufferCount is the number of buffers in the collection

• createInfoIndex as described in Sysmem chosen create infos

• sysmemPixelFormat is the Sysmem PixelFormatType as defined in
fuchsia.sysmem/image_formats.fidl

• formatFeatures is a bitmask of VkFormatFeatureFlagBits shared by the buffer collection

• sysmemColorSpaceIndex is a VkSysmemColorSpaceFUCHSIA struct specifying the color space

• samplerYcbcrConversionComponents is a VkComponentMapping struct specifying the component
mapping

• suggestedYcbcrModel is a VkSamplerYcbcrModelConversion value specifying the suggested Y′CBCR

model

• suggestedYcbcrRange is a VkSamplerYcbcrRange value specifying the suggested Y′CBCR range

• suggestedXChromaOffset is a VkChromaLocation value specifying the suggested X chroma offset

• suggestedYChromaOffset is a VkChromaLocation value specifying the suggested Y chroma offset

sysmemColorSpace is only set for image-based buffer collections where the constraints were specified
using VkImageConstraintsInfoFUCHSIA in a call to vkSetBufferCollectionImageConstraintsFUCHSIA.

For image-based buffer collections, createInfoIndex will identify both the
VkImageConstraintsInfoFUCHSIA::pImageCreateInfos element and the
VkImageConstraintsInfoFUCHSIA::pFormatConstraints element chosen by Sysmem when
vkSetBufferCollectionImageConstraintsFUCHSIA was called. The value of sysmemColorSpaceIndex will
be an index to one of the color spaces provided in the VkImageFormatConstraintsInfoFUCHSIA
::pColorSpaces array.

The implementation must have formatFeatures with all bits set that were set in
VkImageFormatConstraintsInfoFUCHSIA::requiredFormatFeatures, by the call to
vkSetBufferCollectionImageConstraintsFUCHSIA, at createInfoIndex (other bits could be set as well).

Valid Usage (Implicit)

• VUID-VkBufferCollectionPropertiesFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_COLLECTION_PROPERTIES_FUCHSIA

• VUID-VkBufferCollectionPropertiesFUCHSIA-pNext-pNext
pNext must be NULL

12.11.6. Memory Allocation

To import memory from a buffer collection into a VkImage or a VkBuffer, chain a
VkImportMemoryBufferCollectionFUCHSIA structure to the pNext member of the
VkMemoryAllocateInfo in the call to vkAllocateMemory.

1194

The VkImportMemoryBufferCollectionFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_buffer_collection
typedef struct VkImportMemoryBufferCollectionFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkBufferCollectionFUCHSIA collection;
 uint32_t index;
} VkImportMemoryBufferCollectionFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• collection is the VkBufferCollectionFUCHSIA handle

• index the index of the buffer to import from collection

Valid Usage

• VUID-VkImportMemoryBufferCollectionFUCHSIA-index-06406
index must be less than the value retrieved as
VkBufferCollectionPropertiesFUCHSIA:bufferCount

Valid Usage (Implicit)

• VUID-VkImportMemoryBufferCollectionFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_IMPORT_MEMORY_BUFFER_COLLECTION_FUCHSIA

• VUID-VkImportMemoryBufferCollectionFUCHSIA-collection-parameter
collection must be a valid VkBufferCollectionFUCHSIA handle

To release a VkBufferCollectionFUCHSIA:

// Provided by VK_FUCHSIA_buffer_collection
void vkDestroyBufferCollectionFUCHSIA(
 VkDevice device,
 VkBufferCollectionFUCHSIA collection,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that creates the VkBufferCollectionFUCHSIA

• collection is the VkBufferCollectionFUCHSIA handle

• pAllocator is a pointer to a VkAllocationCallbacks structure controlling host memory allocation
as described in the Memory Allocation chapter

1195

Valid Usage

• VUID-vkDestroyBufferCollectionFUCHSIA-collection-06407
VkImage and VkBuffer objects that referenced collection upon creation by inclusion of a
VkBufferCollectionImageCreateInfoFUCHSIA or
VkBufferCollectionBufferCreateInfoFUCHSIA chained to their VkImageCreateInfo or
VkBufferCreateInfo structures respectively, may outlive collection

Valid Usage (Implicit)

• VUID-vkDestroyBufferCollectionFUCHSIA-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyBufferCollectionFUCHSIA-collection-parameter
collection must be a valid VkBufferCollectionFUCHSIA handle

• VUID-vkDestroyBufferCollectionFUCHSIA-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyBufferCollectionFUCHSIA-collection-parent
collection must have been created, allocated, or retrieved from device

1196

Chapter 13. Samplers
VkSampler objects represent the state of an image sampler which is used by the implementation to
read image data and apply filtering and other transformations for the shader.

Samplers are represented by VkSampler handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSampler)

To create a sampler object, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateSampler(
 VkDevice device,
 const VkSamplerCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSampler* pSampler);

• device is the logical device that creates the sampler.

• pCreateInfo is a pointer to a VkSamplerCreateInfo structure specifying the state of the sampler
object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSampler is a pointer to a VkSampler handle in which the resulting sampler object is returned.

Valid Usage

• VUID-vkCreateSampler-maxSamplerAllocationCount-04110
There must be less than VkPhysicalDeviceLimits::maxSamplerAllocationCount VkSampler
objects currently created on the device

Valid Usage (Implicit)

• VUID-vkCreateSampler-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateSampler-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkSamplerCreateInfo structure

• VUID-vkCreateSampler-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateSampler-pSampler-parameter
pSampler must be a valid pointer to a VkSampler handle

1197

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

The VkSamplerCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSamplerCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSamplerCreateFlags flags;
 VkFilter magFilter;
 VkFilter minFilter;
 VkSamplerMipmapMode mipmapMode;
 VkSamplerAddressMode addressModeU;
 VkSamplerAddressMode addressModeV;
 VkSamplerAddressMode addressModeW;
 float mipLodBias;
 VkBool32 anisotropyEnable;
 float maxAnisotropy;
 VkBool32 compareEnable;
 VkCompareOp compareOp;
 float minLod;
 float maxLod;
 VkBorderColor borderColor;
 VkBool32 unnormalizedCoordinates;
} VkSamplerCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSamplerCreateFlagBits describing additional parameters of the sampler.

• magFilter is a VkFilter value specifying the magnification filter to apply to lookups.

• minFilter is a VkFilter value specifying the minification filter to apply to lookups.

• mipmapMode is a VkSamplerMipmapMode value specifying the mipmap filter to apply to lookups.

• addressModeU is a VkSamplerAddressMode value specifying the addressing mode for U
coordinates outside [0,1).

• addressModeV is a VkSamplerAddressMode value specifying the addressing mode for V
coordinates outside [0,1).

1198

• addressModeW is a VkSamplerAddressMode value specifying the addressing mode for W
coordinates outside [0,1).

• mipLodBias is the bias to be added to mipmap LOD calculation and bias provided by image
sampling functions in SPIR-V, as described in the LOD Operation section.

• anisotropyEnable is VK_TRUE to enable anisotropic filtering, as described in the Texel Anisotropic
Filtering section, or VK_FALSE otherwise.

• maxAnisotropy is the anisotropy value clamp used by the sampler when anisotropyEnable is
VK_TRUE. If anisotropyEnable is VK_FALSE, maxAnisotropy is ignored.

• compareEnable is VK_TRUE to enable comparison against a reference value during lookups, or
VK_FALSE otherwise.

◦ Note: Some implementations will default to shader state if this member does not match.

• compareOp is a VkCompareOp value specifying the comparison operator to apply to fetched data
before filtering as described in the Depth Compare Operation section.

• minLod is used to clamp the minimum of the computed LOD value.

• maxLod is used to clamp the maximum of the computed LOD value. To avoid clamping the
maximum value, set maxLod to the constant VK_LOD_CLAMP_NONE.

• borderColor is a VkBorderColor value specifying the predefined border color to use.

• unnormalizedCoordinates controls whether to use unnormalized or normalized texel coordinates
to address texels of the image. When set to VK_TRUE, the range of the image coordinates used to
lookup the texel is in the range of zero to the image size in each dimension. When set to
VK_FALSE the range of image coordinates is zero to one.

When unnormalizedCoordinates is VK_TRUE, images the sampler is used with in the shader have
the following requirements:

◦ The viewType must be either VK_IMAGE_VIEW_TYPE_1D or VK_IMAGE_VIEW_TYPE_2D.

◦ The image view must have a single layer and a single mip level.
When unnormalizedCoordinates is VK_TRUE, image built-in functions in the shader that use the
sampler have the following requirements:

◦ The functions must not use projection.

◦ The functions must not use offsets.

Mapping of OpenGL to Vulkan filter modes

magFilter values of VK_FILTER_NEAREST and VK_FILTER_LINEAR directly correspond to
GL_NEAREST and GL_LINEAR magnification filters. minFilter and mipmapMode combine
to correspond to the similarly named OpenGL minification filter of
GL_minFilter_MIPMAP_mipmapMode (e.g. minFilter of VK_FILTER_LINEAR and mipmapMode
of VK_SAMPLER_MIPMAP_MODE_NEAREST correspond to GL_LINEAR_MIPMAP_NEAREST).

There are no Vulkan filter modes that directly correspond to OpenGL minification
filters of GL_LINEAR or GL_NEAREST, but they can be emulated using
VK_SAMPLER_MIPMAP_MODE_NEAREST, minLod = 0, and maxLod = 0.25, and using minFilter =
VK_FILTER_LINEAR or minFilter = VK_FILTER_NEAREST, respectively.

1199

Note that using a maxLod of zero would cause magnification to always be
performed, and the magFilter to always be used. This is valid, just not an exact
match for OpenGL behavior. Clamping the maximum LOD to 0.25 allows the λ
value to be non-zero and minification to be performed, while still always rounding
down to the base level. If the minFilter and magFilter are equal, then using a
maxLod of zero also works.

The maximum number of sampler objects which can be simultaneously created on a device is
implementation-dependent and specified by the maxSamplerAllocationCount member of the
VkPhysicalDeviceLimits structure.

Note

For historical reasons, if maxSamplerAllocationCount is exceeded, some
implementations may return VK_ERROR_TOO_MANY_OBJECTS. Exceeding this limit will
result in undefined behavior, and an application should not rely on the use of the
returned error code in order to identify when the limit is reached.

Since VkSampler is a non-dispatchable handle type, implementations may return the same handle
for sampler state vectors that are identical. In such cases, all such objects would only count once
against the maxSamplerAllocationCount limit.

Valid Usage

• VUID-VkSamplerCreateInfo-mipLodBias-01069
The absolute value of mipLodBias must be less than or equal to VkPhysicalDeviceLimits
::maxSamplerLodBias

• VUID-VkSamplerCreateInfo-samplerMipLodBias-04467
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::samplerMipLodBias is VK_FALSE, mipLodBias
must be zero

• VUID-VkSamplerCreateInfo-maxLod-01973
maxLod must be greater than or equal to minLod

• VUID-VkSamplerCreateInfo-anisotropyEnable-01070
If the samplerAnisotropy feature is not enabled, anisotropyEnable must be VK_FALSE

• VUID-VkSamplerCreateInfo-anisotropyEnable-01071
If anisotropyEnable is VK_TRUE, maxAnisotropy must be between 1.0 and
VkPhysicalDeviceLimits::maxSamplerAnisotropy, inclusive

• VUID-VkSamplerCreateInfo-minFilter-01645
If sampler Y′CBCR conversion is enabled and the potential format features of the sampler
Y′CBCR conversion do not support
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT,
minFilter and magFilter must be equal to the sampler Y′CBCR conversion’s chromaFilter

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01072
If unnormalizedCoordinates is VK_TRUE, minFilter and magFilter must be equal

1200

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01073
If unnormalizedCoordinates is VK_TRUE, mipmapMode must be VK_SAMPLER_MIPMAP_MODE_NEAREST

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01074
If unnormalizedCoordinates is VK_TRUE, minLod and maxLod must be zero

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01075
If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be either
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01076
If unnormalizedCoordinates is VK_TRUE, anisotropyEnable must be VK_FALSE

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01077
If unnormalizedCoordinates is VK_TRUE, compareEnable must be VK_FALSE

• VUID-VkSamplerCreateInfo-addressModeU-01078
If any of addressModeU, addressModeV or addressModeW are
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER, borderColor must be a valid VkBorderColor
value

• VUID-VkSamplerCreateInfo-addressModeU-01646
If sampler Y′CBCR conversion is enabled, addressModeU, addressModeV, and addressModeW
must be VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, anisotropyEnable must be VK_FALSE, and
unnormalizedCoordinates must be VK_FALSE

• VUID-VkSamplerCreateInfo-None-01647
If sampler Y′CBCR conversion is enabled and the pNext chain includes a
VkSamplerReductionModeCreateInfo structure, then the sampler reduction mode must
be set to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE

• VUID-VkSamplerCreateInfo-pNext-06726
If samplerFilterMinmax is not enabled and the pNext chain includes a
VkSamplerReductionModeCreateInfo structure, then the sampler reduction mode must
be set to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE

• VUID-VkSamplerCreateInfo-addressModeU-01079
If samplerMirrorClampToEdge is not enabled, and if the VK_KHR_sampler_mirror_clamp_to_edge
extension is not enabled, addressModeU, addressModeV and addressModeW must not be
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE

• VUID-VkSamplerCreateInfo-compareEnable-01080
If compareEnable is VK_TRUE, compareOp must be a valid VkCompareOp value

• VUID-VkSamplerCreateInfo-magFilter-01081
If either magFilter or minFilter is VK_FILTER_CUBIC_EXT, anisotropyEnable must be VK_FALSE

• VUID-VkSamplerCreateInfo-magFilter-07911
If the VK_EXT_filter_cubic extension is not enabled and either magFilter or minFilter is
VK_FILTER_CUBIC_EXT, the reductionMode member of VkSamplerReductionModeCreateInfo
must be VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE

• VUID-VkSamplerCreateInfo-compareEnable-01423
If compareEnable is VK_TRUE, the reductionMode member of
VkSamplerReductionModeCreateInfo must be
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE

1201

• VUID-VkSamplerCreateInfo-flags-02574
If flags includes VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT, then minFilter and magFilter
must be equal

• VUID-VkSamplerCreateInfo-flags-02575
If flags includes VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT, then mipmapMode must be
VK_SAMPLER_MIPMAP_MODE_NEAREST

• VUID-VkSamplerCreateInfo-flags-02576
If flags includes VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT, then minLod and maxLod must be
zero

• VUID-VkSamplerCreateInfo-flags-02577
If flags includes VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT, then addressModeU and
addressModeV must each be either VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER

• VUID-VkSamplerCreateInfo-flags-02578
If flags includes VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT, then anisotropyEnable must be
VK_FALSE

• VUID-VkSamplerCreateInfo-flags-02579
If flags includes VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT, then compareEnable must be
VK_FALSE

• VUID-VkSamplerCreateInfo-flags-02580
If flags includes VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT, then unnormalizedCoordinates
must be VK_FALSE

• VUID-VkSamplerCreateInfo-nonSeamlessCubeMap-06788
If the nonSeamlessCubeMap feature is not enabled, flags must not include
VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT

• VUID-VkSamplerCreateInfo-borderColor-04011
If borderColor is one of VK_BORDER_COLOR_FLOAT_CUSTOM_EXT or
VK_BORDER_COLOR_INT_CUSTOM_EXT, then a VkSamplerCustomBorderColorCreateInfoEXT
must be included in the pNext chain

• VUID-VkSamplerCreateInfo-customBorderColors-04085
If the customBorderColors feature is not enabled, borderColor must not be
VK_BORDER_COLOR_FLOAT_CUSTOM_EXT or VK_BORDER_COLOR_INT_CUSTOM_EXT

• VUID-VkSamplerCreateInfo-borderColor-04442
If borderColor is one of VK_BORDER_COLOR_FLOAT_CUSTOM_EXT or
VK_BORDER_COLOR_INT_CUSTOM_EXT, and VkSamplerCustomBorderColorCreateInfoEXT::format
is not VK_FORMAT_UNDEFINED, VkSamplerCustomBorderColorCreateInfoEXT
::customBorderColor must be within the range of values representable in format

• VUID-VkSamplerCreateInfo-None-04012
The maximum number of samplers with custom border colors which can be
simultaneously created on a device is implementation-dependent and specified by the
maxCustomBorderColorSamplers member of the
VkPhysicalDeviceCustomBorderColorPropertiesEXT structure

• VUID-VkSamplerCreateInfo-flags-08110

1202

If flags includes VK_SAMPLER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT, the
descriptorBufferCaptureReplay feature must be enabled

• VUID-VkSamplerCreateInfo-pNext-08111
If the pNext chain includes a VkOpaqueCaptureDescriptorDataCreateInfoEXT structure,
flags must contain VK_SAMPLER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

• VUID-VkSamplerCreateInfo-flags-06964
If flags includes VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM, then minFilter and
magFilter must be VK_FILTER_NEAREST

• VUID-VkSamplerCreateInfo-flags-06965
If flags includes VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM, then mipmapMode must be
VK_SAMPLER_MIPMAP_MODE_NEAREST

• VUID-VkSamplerCreateInfo-flags-06966
[If flags includes VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM, then minLod and maxLod
must be zero

• VUID-VkSamplerCreateInfo-flags-06967
If flags includes VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM, then addressModeU and
addressModeV must each be either VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER

• VUID-VkSamplerCreateInfo-flags-06968
If flags includes VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM, and if addressModeU or
addressModeV is VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER, then borderColor must be
VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK

• VUID-VkSamplerCreateInfo-flags-06969
If flags includes VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM, then anisotropyEnable
must be VK_FALSE

• VUID-VkSamplerCreateInfo-flags-06970
If flags includes VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM, then compareEnable must
be VK_FALSE

Valid Usage (Implicit)

• VUID-VkSamplerCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO

• VUID-VkSamplerCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkOpaqueCaptureDescriptorDataCreateInfoEXT,
VkSamplerBlockMatchWindowCreateInfoQCOM,
VkSamplerBorderColorComponentMappingCreateInfoEXT,
VkSamplerCubicWeightsCreateInfoQCOM, VkSamplerCustomBorderColorCreateInfoEXT,
VkSamplerReductionModeCreateInfo, or VkSamplerYcbcrConversionInfo

• VUID-VkSamplerCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

1203

• VUID-VkSamplerCreateInfo-flags-parameter
flags must be a valid combination of VkSamplerCreateFlagBits values

• VUID-VkSamplerCreateInfo-magFilter-parameter
magFilter must be a valid VkFilter value

• VUID-VkSamplerCreateInfo-minFilter-parameter
minFilter must be a valid VkFilter value

• VUID-VkSamplerCreateInfo-mipmapMode-parameter
mipmapMode must be a valid VkSamplerMipmapMode value

• VUID-VkSamplerCreateInfo-addressModeU-parameter
addressModeU must be a valid VkSamplerAddressMode value

• VUID-VkSamplerCreateInfo-addressModeV-parameter
addressModeV must be a valid VkSamplerAddressMode value

• VUID-VkSamplerCreateInfo-addressModeW-parameter
addressModeW must be a valid VkSamplerAddressMode value

VK_LOD_CLAMP_NONE is a special constant value used for VkSamplerCreateInfo::maxLod to indicate that
maximum LOD clamping should not be performed.

#define VK_LOD_CLAMP_NONE 1000.0F

Bits which can be set in VkSamplerCreateInfo::flags, specifying additional parameters of a sampler,
are:

// Provided by VK_VERSION_1_0
typedef enum VkSamplerCreateFlagBits {
 // Provided by VK_EXT_fragment_density_map
 VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT = 0x00000001,
 // Provided by VK_EXT_fragment_density_map
 VK_SAMPLER_CREATE_SUBSAMPLED_COARSE_RECONSTRUCTION_BIT_EXT = 0x00000002,
 // Provided by VK_EXT_descriptor_buffer
 VK_SAMPLER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT = 0x00000008,
 // Provided by VK_EXT_non_seamless_cube_map
 VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT = 0x00000004,
 // Provided by VK_QCOM_image_processing
 VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM = 0x00000010,
} VkSamplerCreateFlagBits;

• VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT specifies that the sampler will read from an image
created with flags containing VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT.

• VK_SAMPLER_CREATE_SUBSAMPLED_COARSE_RECONSTRUCTION_BIT_EXT specifies that the implementation
may use approximations when reconstructing a full color value for texture access from a
subsampled image.

• VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT specifies that cube map edge handling is not

1204

performed.

• VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM specifies that the sampler will read from images
using only OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM.

Note

The approximations used when
VK_SAMPLER_CREATE_SUBSAMPLED_COARSE_RECONSTRUCTION_BIT_EXT is specified are
implementation defined. Some implementations may interpolate between
fragment density levels in a subsampled image. In that case, this bit may be used
to decide whether the interpolation factors are calculated per fragment or at a
coarser granularity.

• VK_SAMPLER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT specifies that the sampler can be
used with descriptor buffers when capturing and replaying (e.g. for trace capture and replay),
see VkOpaqueCaptureDescriptorDataCreateInfoEXT for more detail.

// Provided by VK_VERSION_1_0
typedef VkFlags VkSamplerCreateFlags;

VkSamplerCreateFlags is a bitmask type for setting a mask of zero or more VkSamplerCreateFlagBits.

The VkSamplerReductionModeCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSamplerReductionModeCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSamplerReductionMode reductionMode;
} VkSamplerReductionModeCreateInfo;

or the equivalent

// Provided by VK_EXT_sampler_filter_minmax
typedef VkSamplerReductionModeCreateInfo VkSamplerReductionModeCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• reductionMode is a VkSamplerReductionMode value controlling how texture filtering combines
texel values.

If the pNext chain of VkSamplerCreateInfo includes a VkSamplerReductionModeCreateInfo structure,
then that structure includes a mode controlling how texture filtering combines texel values.

1205

If this structure is not present, reductionMode is considered to be
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE.

Valid Usage (Implicit)

• VUID-VkSamplerReductionModeCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO

• VUID-VkSamplerReductionModeCreateInfo-reductionMode-parameter
reductionMode must be a valid VkSamplerReductionMode value

Reduction modes are specified by VkSamplerReductionMode, which takes values:

// Provided by VK_VERSION_1_2
typedef enum VkSamplerReductionMode {
 VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE = 0,
 VK_SAMPLER_REDUCTION_MODE_MIN = 1,
 VK_SAMPLER_REDUCTION_MODE_MAX = 2,
 // Provided by VK_QCOM_filter_cubic_clamp
 VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM = 1000521000,
 // Provided by VK_EXT_sampler_filter_minmax
 VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT =
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE,
 // Provided by VK_EXT_sampler_filter_minmax
 VK_SAMPLER_REDUCTION_MODE_MIN_EXT = VK_SAMPLER_REDUCTION_MODE_MIN,
 // Provided by VK_EXT_sampler_filter_minmax
 VK_SAMPLER_REDUCTION_MODE_MAX_EXT = VK_SAMPLER_REDUCTION_MODE_MAX,
} VkSamplerReductionMode;

or the equivalent

// Provided by VK_EXT_sampler_filter_minmax
typedef VkSamplerReductionMode VkSamplerReductionModeEXT;

• VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE specifies that texel values are combined by
computing a weighted average of values in the footprint, using weights as specified in the image
operations chapter.

• VK_SAMPLER_REDUCTION_MODE_MIN specifies that texel values are combined by taking the
component-wise minimum of values in the footprint with non-zero weights.

• VK_SAMPLER_REDUCTION_MODE_MAX specifies that texel values are combined by taking the
component-wise maximum of values in the footprint with non-zero weights.

• VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM specifies values are combined as
described by VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, followed by a texel range clamp.

The VkSamplerCubicWeightsCreateInfoQCOM structure is defined as:

1206

// Provided by VK_QCOM_filter_cubic_weights
typedef struct VkSamplerCubicWeightsCreateInfoQCOM {
 VkStructureType sType;
 const void* pNext;
 VkCubicFilterWeightsQCOM cubicWeights;
} VkSamplerCubicWeightsCreateInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• cubicWeights is a VkCubicFilterWeightsQCOM value controlling which cubic weights are used.

If the pNext chain of VkSamplerCreateInfo includes a VkSamplerCubicWeightsCreateInfoQCOM
structure, then that structure specifies which cubic weights are used.

If that structure is not present, cubicWeights is considered to be
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM.

Valid Usage (Implicit)

• VUID-VkSamplerCubicWeightsCreateInfoQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_CUBIC_WEIGHTS_CREATE_INFO_QCOM

• VUID-VkSamplerCubicWeightsCreateInfoQCOM-cubicWeights-parameter
cubicWeights must be a valid VkCubicFilterWeightsQCOM value

Possible values of the VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights, specifying cubic
weights used in Texel Cubic Filtering are:

// Provided by VK_QCOM_filter_cubic_weights
typedef enum VkCubicFilterWeightsQCOM {
 VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM = 0,
 VK_CUBIC_FILTER_WEIGHTS_ZERO_TANGENT_CARDINAL_QCOM = 1,
 VK_CUBIC_FILTER_WEIGHTS_B_SPLINE_QCOM = 2,
 VK_CUBIC_FILTER_WEIGHTS_MITCHELL_NETRAVALI_QCOM = 3,
} VkCubicFilterWeightsQCOM;

• VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM specifies Catmull-Rom weights.

• VK_CUBIC_FILTER_WEIGHTS_ZERO_TANGENT_CARDINAL_QCOM specifies Zero Tangent Cardinal weights.

• VK_CUBIC_FILTER_WEIGHTS_B_SPLINE_QCOM specifies B-Spline weights.

• VK_CUBIC_FILTER_WEIGHTS_MITCHELL_NETRAVALI_QCOM specifies Mitchell-Netravali weights.

Possible values of the VkSamplerCreateInfo::magFilter and minFilter parameters, specifying filters
used for texture lookups, are:

// Provided by VK_VERSION_1_0

1207

typedef enum VkFilter {
 VK_FILTER_NEAREST = 0,
 VK_FILTER_LINEAR = 1,
 // Provided by VK_EXT_filter_cubic
 VK_FILTER_CUBIC_EXT = 1000015000,
 // Provided by VK_IMG_filter_cubic
 VK_FILTER_CUBIC_IMG = VK_FILTER_CUBIC_EXT,
} VkFilter;

• VK_FILTER_NEAREST specifies nearest filtering.

• VK_FILTER_LINEAR specifies linear filtering.

• VK_FILTER_CUBIC_EXT specifies cubic filtering.

These filters are described in detail in Texel Filtering.

Possible values of the VkSamplerCreateInfo::mipmapMode, specifying the mipmap mode used for
texture lookups, are:

// Provided by VK_VERSION_1_0
typedef enum VkSamplerMipmapMode {
 VK_SAMPLER_MIPMAP_MODE_NEAREST = 0,
 VK_SAMPLER_MIPMAP_MODE_LINEAR = 1,
} VkSamplerMipmapMode;

• VK_SAMPLER_MIPMAP_MODE_NEAREST specifies nearest filtering.

• VK_SAMPLER_MIPMAP_MODE_LINEAR specifies linear filtering.

These modes are described in detail in Texel Filtering.

Possible values of the VkSamplerCreateInfo::addressMode* parameters, specifying the behavior of
sampling with coordinates outside the range [0,1] for the respective u, v, or w coordinate as defined
in the Wrapping Operation section, are:

// Provided by VK_VERSION_1_0
typedef enum VkSamplerAddressMode {
 VK_SAMPLER_ADDRESS_MODE_REPEAT = 0,
 VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT = 1,
 VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE = 2,
 VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER = 3,
 // Provided by VK_VERSION_1_2, VK_KHR_sampler_mirror_clamp_to_edge
 VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE = 4,
 // Provided by VK_KHR_sampler_mirror_clamp_to_edge
 VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE_KHR =
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE,
} VkSamplerAddressMode;

• VK_SAMPLER_ADDRESS_MODE_REPEAT specifies that the repeat wrap mode will be used.

1208

• VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT specifies that the mirrored repeat wrap mode will be
used.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE specifies that the clamp to edge wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER specifies that the clamp to border wrap mode will be
used.

• VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE specifies that the mirror clamp to edge wrap
mode will be used. This is only valid if samplerMirrorClampToEdge is enabled, or if the
VK_KHR_sampler_mirror_clamp_to_edge extension is enabled.

Comparison operators compare a reference and a test value, and return a true (“passed”) or false
(“failed”) value depending on the comparison operator chosen. The supported operators are:

// Provided by VK_VERSION_1_0
typedef enum VkCompareOp {
 VK_COMPARE_OP_NEVER = 0,
 VK_COMPARE_OP_LESS = 1,
 VK_COMPARE_OP_EQUAL = 2,
 VK_COMPARE_OP_LESS_OR_EQUAL = 3,
 VK_COMPARE_OP_GREATER = 4,
 VK_COMPARE_OP_NOT_EQUAL = 5,
 VK_COMPARE_OP_GREATER_OR_EQUAL = 6,
 VK_COMPARE_OP_ALWAYS = 7,
} VkCompareOp;

• VK_COMPARE_OP_NEVER specifies that the comparison always evaluates false.

• VK_COMPARE_OP_LESS specifies that the comparison evaluates reference < test.

• VK_COMPARE_OP_EQUAL specifies that the comparison evaluates reference = test.

• VK_COMPARE_OP_LESS_OR_EQUAL specifies that the comparison evaluates reference ≤ test.

• VK_COMPARE_OP_GREATER specifies that the comparison evaluates reference > test.

• VK_COMPARE_OP_NOT_EQUAL specifies that the comparison evaluates reference ≠ test.

• VK_COMPARE_OP_GREATER_OR_EQUAL specifies that the comparison evaluates reference ≥ test.

• VK_COMPARE_OP_ALWAYS specifies that the comparison always evaluates true.

Comparison operators are used for:

• The Depth Compare Operation operator for a sampler, specified by VkSamplerCreateInfo
::compareOp.

• The stencil comparison operator for the stencil test, specified by vkCmdSetStencilOp::compareOp
or VkStencilOpState::compareOp.

• The Depth Comparison operator for the depth test, specified by vkCmdSetDepthCompareOp
::depthCompareOp or VkPipelineDepthStencilStateCreateInfo::depthCompareOp.

Each such use describes how the reference and test values for that comparison are determined.

1209

Possible values of VkSamplerCreateInfo::borderColor, specifying the border color used for texture
lookups, are:

// Provided by VK_VERSION_1_0
typedef enum VkBorderColor {
 VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK = 0,
 VK_BORDER_COLOR_INT_TRANSPARENT_BLACK = 1,
 VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK = 2,
 VK_BORDER_COLOR_INT_OPAQUE_BLACK = 3,
 VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE = 4,
 VK_BORDER_COLOR_INT_OPAQUE_WHITE = 5,
 // Provided by VK_EXT_custom_border_color
 VK_BORDER_COLOR_FLOAT_CUSTOM_EXT = 1000287003,
 // Provided by VK_EXT_custom_border_color
 VK_BORDER_COLOR_INT_CUSTOM_EXT = 1000287004,
} VkBorderColor;

• VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK specifies a transparent, floating-point format, black
color.

• VK_BORDER_COLOR_INT_TRANSPARENT_BLACK specifies a transparent, integer format, black color.

• VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK specifies an opaque, floating-point format, black color.

• VK_BORDER_COLOR_INT_OPAQUE_BLACK specifies an opaque, integer format, black color.

• VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE specifies an opaque, floating-point format, white color.

• VK_BORDER_COLOR_INT_OPAQUE_WHITE specifies an opaque, integer format, white color.

• VK_BORDER_COLOR_FLOAT_CUSTOM_EXT indicates that a VkSamplerCustomBorderColorCreateInfoEXT
structure is included in the VkSamplerCreateInfo::pNext chain containing the color data in
floating-point format.

• VK_BORDER_COLOR_INT_CUSTOM_EXT indicates that a VkSamplerCustomBorderColorCreateInfoEXT
structure is included in the VkSamplerCreateInfo::pNext chain containing the color data in
integer format.

These colors are described in detail in Texel Replacement.

To destroy a sampler, call:

// Provided by VK_VERSION_1_0
void vkDestroySampler(
 VkDevice device,
 VkSampler sampler,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the sampler.

• sampler is the sampler to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

1210

Valid Usage

• VUID-vkDestroySampler-sampler-01082
All submitted commands that refer to sampler must have completed execution

• VUID-vkDestroySampler-sampler-01083
If VkAllocationCallbacks were provided when sampler was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroySampler-sampler-01084
If no VkAllocationCallbacks were provided when sampler was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroySampler-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroySampler-sampler-parameter
If sampler is not VK_NULL_HANDLE, sampler must be a valid VkSampler handle

• VUID-vkDestroySampler-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroySampler-sampler-parent
If sampler is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to sampler must be externally synchronized

13.1. Sampler Y′CBCR Conversion
To create a sampler with Y′CBCR conversion enabled, add a VkSamplerYcbcrConversionInfo
structure to the pNext chain of the VkSamplerCreateInfo structure. To create a sampler Y′CBCR

conversion, the samplerYcbcrConversion feature must be enabled. Conversion must be fixed at
pipeline creation time, through use of a combined image sampler with an immutable sampler in
VkDescriptorSetLayoutBinding.

A VkSamplerYcbcrConversionInfo must be provided for samplers to be used with image views that
access VK_IMAGE_ASPECT_COLOR_BIT if the format is one of the formats that require a sampler Y′CBCR

conversion , or if the image view has an external format .

The VkSamplerYcbcrConversionInfo structure is defined as:

// Provided by VK_VERSION_1_1

1211

typedef struct VkSamplerYcbcrConversionInfo {
 VkStructureType sType;
 const void* pNext;
 VkSamplerYcbcrConversion conversion;
} VkSamplerYcbcrConversionInfo;

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkSamplerYcbcrConversionInfo VkSamplerYcbcrConversionInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• conversion is a VkSamplerYcbcrConversion handle created with
vkCreateSamplerYcbcrConversion.

Valid Usage (Implicit)

• VUID-VkSamplerYcbcrConversionInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO

• VUID-VkSamplerYcbcrConversionInfo-conversion-parameter
conversion must be a valid VkSamplerYcbcrConversion handle

A sampler Y′CBCR conversion is an opaque representation of a device-specific sampler Y′CBCR

conversion description, represented as a VkSamplerYcbcrConversion handle:

// Provided by VK_VERSION_1_1
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSamplerYcbcrConversion)

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkSamplerYcbcrConversion VkSamplerYcbcrConversionKHR;

To create a VkSamplerYcbcrConversion, call:

// Provided by VK_VERSION_1_1
VkResult vkCreateSamplerYcbcrConversion(
 VkDevice device,
 const VkSamplerYcbcrConversionCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSamplerYcbcrConversion* pYcbcrConversion);

1212

or the equivalent command

// Provided by VK_KHR_sampler_ycbcr_conversion
VkResult vkCreateSamplerYcbcrConversionKHR(
 VkDevice device,
 const VkSamplerYcbcrConversionCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSamplerYcbcrConversion* pYcbcrConversion);

• device is the logical device that creates the sampler Y′CBCR conversion.

• pCreateInfo is a pointer to a VkSamplerYcbcrConversionCreateInfo structure specifying the
requested sampler Y′CBCR conversion.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pYcbcrConversion is a pointer to a VkSamplerYcbcrConversion handle in which the resulting
sampler Y′CBCR conversion is returned.

The interpretation of the configured sampler Y′CBCR conversion is described in more detail in the
description of sampler Y′CBCR conversion in the Image Operations chapter.

Valid Usage

• VUID-vkCreateSamplerYcbcrConversion-None-01648
The samplerYcbcrConversion feature must be enabled

Valid Usage (Implicit)

• VUID-vkCreateSamplerYcbcrConversion-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateSamplerYcbcrConversion-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkSamplerYcbcrConversionCreateInfo
structure

• VUID-vkCreateSamplerYcbcrConversion-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateSamplerYcbcrConversion-pYcbcrConversion-parameter
pYcbcrConversion must be a valid pointer to a VkSamplerYcbcrConversion handle

Return Codes

Success

• VK_SUCCESS

1213

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSamplerYcbcrConversionCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkSamplerYcbcrConversionCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkFormat format;
 VkSamplerYcbcrModelConversion ycbcrModel;
 VkSamplerYcbcrRange ycbcrRange;
 VkComponentMapping components;
 VkChromaLocation xChromaOffset;
 VkChromaLocation yChromaOffset;
 VkFilter chromaFilter;
 VkBool32 forceExplicitReconstruction;
} VkSamplerYcbcrConversionCreateInfo;

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkSamplerYcbcrConversionCreateInfo VkSamplerYcbcrConversionCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• format is the format of the image from which color information will be retrieved.

• ycbcrModel describes the color matrix for conversion between color models.

• ycbcrRange describes whether the encoded values have headroom and foot room, or whether
the encoding uses the full numerical range.

• components applies a swizzle based on VkComponentSwizzle enums prior to range expansion
and color model conversion.

• xChromaOffset describes the sample location associated with downsampled chroma components
in the x dimension. xChromaOffset has no effect for formats in which chroma components are
not downsampled horizontally.

• yChromaOffset describes the sample location associated with downsampled chroma components
in the y dimension. yChromaOffset has no effect for formats in which the chroma components
are not downsampled vertically.

• chromaFilter is the filter for chroma reconstruction.

• forceExplicitReconstruction can be used to ensure that reconstruction is done explicitly, if
supported.

1214

Note

Setting forceExplicitReconstruction to VK_TRUE may have a performance penalty
on implementations where explicit reconstruction is not the default mode of
operation.

If format supports
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT
_BIT the forceExplicitReconstruction value behaves as if it was set to VK_TRUE.

If the pNext chain includes a VkExternalFormatANDROID structure with non-zero externalFormat
member, the sampler Y′CBCR conversion object represents an external format conversion, and format
must be VK_FORMAT_UNDEFINED. Such conversions must only be used to sample image views with a
matching external format. When creating an external format conversion, the value of components is
ignored.

Valid Usage

• VUID-VkSamplerYcbcrConversionCreateInfo-format-01904
If an external format conversion is being created, format must be VK_FORMAT_UNDEFINED

• VUID-VkSamplerYcbcrConversionCreateInfo-format-04061
If an external format conversion is not being created, format must represent unsigned
normalized values (i.e. the format must be a UNORM format)

• VUID-VkSamplerYcbcrConversionCreateInfo-format-01650
The potential format features of the sampler Y′CBCR conversion must support
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT or
VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT

• VUID-VkSamplerYcbcrConversionCreateInfo-xChromaOffset-01651
If the potential format features of the sampler Y′CBCR conversion do not support
VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT, xChromaOffset and yChromaOffset must not
be VK_CHROMA_LOCATION_COSITED_EVEN if the corresponding components are downsampled

• VUID-VkSamplerYcbcrConversionCreateInfo-xChromaOffset-01652
If the potential format features of the sampler Y′CBCR conversion do not support
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT, xChromaOffset and yChromaOffset must
not be VK_CHROMA_LOCATION_MIDPOINT if the corresponding components are downsampled

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02581
If the format has a _422 or _420 suffix, then components.g must be the identity swizzle

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02582
If the format has a _422 or _420 suffix, then components.a must be the identity swizzle,
VK_COMPONENT_SWIZZLE_ONE, or VK_COMPONENT_SWIZZLE_ZERO

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02583
If the format has a _422 or _420 suffix, then components.r must be the identity swizzle or
VK_COMPONENT_SWIZZLE_B

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02584
If the format has a _422 or _420 suffix, then components.b must be the identity swizzle or

1215

VK_COMPONENT_SWIZZLE_R

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02585
If the format has a _422 or _420 suffix, and if either components.r or components.b is the
identity swizzle, both values must be the identity swizzle

• VUID-VkSamplerYcbcrConversionCreateInfo-ycbcrModel-01655
If ycbcrModel is not VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY, then components.r,
components.g, and components.b must correspond to components of the format; that is,
components.r, components.g, and components.b must not be VK_COMPONENT_SWIZZLE_ZERO or
VK_COMPONENT_SWIZZLE_ONE, and must not correspond to a component containing zero or
one as a consequence of conversion to RGBA

• VUID-VkSamplerYcbcrConversionCreateInfo-ycbcrRange-02748
If ycbcrRange is VK_SAMPLER_YCBCR_RANGE_ITU_NARROW then the R, G and B components
obtained by applying the component swizzle to format must each have a bit-depth greater
than or equal to 8

• VUID-VkSamplerYcbcrConversionCreateInfo-forceExplicitReconstruction-01656
If the potential format features of the sampler Y′CBCR conversion do not support
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCE
ABLE_BIT forceExplicitReconstruction must be VK_FALSE

• VUID-VkSamplerYcbcrConversionCreateInfo-chromaFilter-01657
If the potential format features of the sampler Y′CBCR conversion do not support
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT, chromaFilter must
not be VK_FILTER_LINEAR

• VUID-VkSamplerYcbcrConversionCreateInfo-pNext-09207
If the pNext chain includes a VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM
structure, and if the ycbcrDegamma feature is not enabled, then
VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM::enableYDegamma must be
VK_FALSE

• VUID-VkSamplerYcbcrConversionCreateInfo-pNext-09208
If the pNext chain includes a VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM
structure, and if the ycbcrDegamma feature is not enabled, then
VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM::enableCbCrDegamma must be
VK_FALSE

• VUID-VkSamplerYcbcrConversionCreateInfo-pNext-09209
If the pNext chain includes a VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM
structure, format must be a format with 8-bit R, G, and B components.

Valid Usage (Implicit)

• VUID-VkSamplerYcbcrConversionCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO

• VUID-VkSamplerYcbcrConversionCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExternalFormatANDROID,

1216

VkExternalFormatQNX, or VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM

• VUID-VkSamplerYcbcrConversionCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSamplerYcbcrConversionCreateInfo-format-parameter
format must be a valid VkFormat value

• VUID-VkSamplerYcbcrConversionCreateInfo-ycbcrModel-parameter
ycbcrModel must be a valid VkSamplerYcbcrModelConversion value

• VUID-VkSamplerYcbcrConversionCreateInfo-ycbcrRange-parameter
ycbcrRange must be a valid VkSamplerYcbcrRange value

• VUID-VkSamplerYcbcrConversionCreateInfo-components-parameter
components must be a valid VkComponentMapping structure

• VUID-VkSamplerYcbcrConversionCreateInfo-xChromaOffset-parameter
xChromaOffset must be a valid VkChromaLocation value

• VUID-VkSamplerYcbcrConversionCreateInfo-yChromaOffset-parameter
yChromaOffset must be a valid VkChromaLocation value

• VUID-VkSamplerYcbcrConversionCreateInfo-chromaFilter-parameter
chromaFilter must be a valid VkFilter value

If chromaFilter is VK_FILTER_NEAREST, chroma samples are reconstructed to luma component
resolution using nearest-neighbour sampling. Otherwise, chroma samples are reconstructed using
interpolation. More details can be found in the description of sampler Y′CBCR conversion in the
Image Operations chapter.

VkSamplerYcbcrModelConversion defines the conversion from the source color model to the
shader color model. Possible values are:

// Provided by VK_VERSION_1_1
typedef enum VkSamplerYcbcrModelConversion {
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY = 0,
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY = 1,
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709 = 2,
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601 = 3,
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020 = 4,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY_KHR =
VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY_KHR =
VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709_KHR =
VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601_KHR =
VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601,

1217

 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020_KHR =
VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020,
} VkSamplerYcbcrModelConversion;

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkSamplerYcbcrModelConversion VkSamplerYcbcrModelConversionKHR;

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY specifies that the input values to the
conversion are unmodified.

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY specifies no model conversion but the inputs
are range expanded as for Y′CBCR.

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709 specifies the color model conversion from Y′CBCR

to R′G′B′ defined in BT.709 and described in the “BT.709 Y′CBCR conversion” section of the
Khronos Data Format Specification.

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601 specifies the color model conversion from Y′CBCR

to R′G′B′ defined in BT.601 and described in the “BT.601 Y′CBCR conversion” section of the
Khronos Data Format Specification.

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020 specifies the color model conversion from Y′CBCR

to R′G′B′ defined in BT.2020 and described in the “BT.2020 Y′CBCR conversion” section of the
Khronos Data Format Specification.

In the VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_* color models, for the input to the sampler Y′CBCR

range expansion and model conversion:

• the Y (Y′ luma) component corresponds to the G component of an RGB image.

• the CB (CB or “U” blue color difference) component corresponds to the B component of an RGB
image.

• the CR (CR or “V” red color difference) component corresponds to the R component of an RGB
image.

• the alpha component, if present, is not modified by color model conversion.

These rules reflect the mapping of components after the component swizzle operation (controlled
by VkSamplerYcbcrConversionCreateInfo::components).

Note

For example, an “YUVA” 32-bit format comprising four 8-bit components can be
implemented as VK_FORMAT_R8G8B8A8_UNORM with a component mapping:

• components.a = VK_COMPONENT_SWIZZLE_IDENTITY

• components.r = VK_COMPONENT_SWIZZLE_B

• components.g = VK_COMPONENT_SWIZZLE_R

1218

• components.b = VK_COMPONENT_SWIZZLE_G

The VkSamplerYcbcrRange enum describes whether color components are encoded using the full
range of numerical values or whether values are reserved for headroom and foot room.
VkSamplerYcbcrRange is defined as:

// Provided by VK_VERSION_1_1
typedef enum VkSamplerYcbcrRange {
 VK_SAMPLER_YCBCR_RANGE_ITU_FULL = 0,
 VK_SAMPLER_YCBCR_RANGE_ITU_NARROW = 1,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_SAMPLER_YCBCR_RANGE_ITU_FULL_KHR = VK_SAMPLER_YCBCR_RANGE_ITU_FULL,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_SAMPLER_YCBCR_RANGE_ITU_NARROW_KHR = VK_SAMPLER_YCBCR_RANGE_ITU_NARROW,
} VkSamplerYcbcrRange;

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkSamplerYcbcrRange VkSamplerYcbcrRangeKHR;

• VK_SAMPLER_YCBCR_RANGE_ITU_FULL specifies that the full range of the encoded values are valid and
interpreted according to the ITU “full range” quantization rules.

• VK_SAMPLER_YCBCR_RANGE_ITU_NARROW specifies that headroom and foot room are reserved in the
numerical range of encoded values, and the remaining values are expanded according to the
ITU “narrow range” quantization rules.

The formulae for these conversions is described in the Sampler Y′CBCR Range Expansion section of
the Image Operations chapter.

No range modification takes place if ycbcrModel is VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
the ycbcrRange field of VkSamplerYcbcrConversionCreateInfo is ignored in this case.

The VkChromaLocation enum defines the location of downsampled chroma component samples
relative to the luma samples, and is defined as:

// Provided by VK_VERSION_1_1
typedef enum VkChromaLocation {
 VK_CHROMA_LOCATION_COSITED_EVEN = 0,
 VK_CHROMA_LOCATION_MIDPOINT = 1,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_CHROMA_LOCATION_COSITED_EVEN_KHR = VK_CHROMA_LOCATION_COSITED_EVEN,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_CHROMA_LOCATION_MIDPOINT_KHR = VK_CHROMA_LOCATION_MIDPOINT,
} VkChromaLocation;

1219

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkChromaLocation VkChromaLocationKHR;

• VK_CHROMA_LOCATION_COSITED_EVEN specifies that downsampled chroma samples are aligned with
luma samples with even coordinates.

• VK_CHROMA_LOCATION_MIDPOINT specifies that downsampled chroma samples are located half way
between each even luma sample and the nearest higher odd luma sample.

Applications can enable sRGB to linear conversion for the R, G, and B components of a Y′CBCR image
during format conversion by including VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM
structure in the pNext chain of VkSamplerYcbcrConversionCreateInfo.

The VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM structure is defined as:

// Provided by VK_QCOM_ycbcr_degamma
typedef struct VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 enableYDegamma;
 VkBool32 enableCbCrDegamma;
} VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• enableYDegamma indicates sRGB to linear conversion is enabled for the G component.

• enableCbCrDegamma indicates sRGB to linear conversion is enabled for the R and B components.

Valid Usage (Implicit)

• VUID-VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM-sType-sType
sType must be
VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_YCBCR_DEGAMMA_CREATE_INFO_QCOM

To destroy a sampler Y′CBCR conversion, call:

// Provided by VK_VERSION_1_1
void vkDestroySamplerYcbcrConversion(
 VkDevice device,
 VkSamplerYcbcrConversion ycbcrConversion,
 const VkAllocationCallbacks* pAllocator);

or the equivalent command

1220

// Provided by VK_KHR_sampler_ycbcr_conversion
void vkDestroySamplerYcbcrConversionKHR(
 VkDevice device,
 VkSamplerYcbcrConversion ycbcrConversion,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the Y′CBCR conversion.

• ycbcrConversion is the conversion to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage (Implicit)

• VUID-vkDestroySamplerYcbcrConversion-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroySamplerYcbcrConversion-ycbcrConversion-parameter
If ycbcrConversion is not VK_NULL_HANDLE, ycbcrConversion must be a valid
VkSamplerYcbcrConversion handle

• VUID-vkDestroySamplerYcbcrConversion-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroySamplerYcbcrConversion-ycbcrConversion-parent
If ycbcrConversion is a valid handle, it must have been created, allocated, or retrieved
from device

Host Synchronization

• Host access to ycbcrConversion must be externally synchronized

In addition to the predefined border color values, applications can provide a custom border color
value by including the VkSamplerCustomBorderColorCreateInfoEXT structure in the
VkSamplerCreateInfo::pNext chain.

The VkSamplerCustomBorderColorCreateInfoEXT structure is defined as:

// Provided by VK_EXT_custom_border_color
typedef struct VkSamplerCustomBorderColorCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkClearColorValue customBorderColor;
 VkFormat format;
} VkSamplerCustomBorderColorCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

1221

• pNext is NULL or a pointer to a structure extending this structure.

• customBorderColor is a VkClearColorValue representing the desired custom sampler border
color.

• format is a VkFormat representing the format of the sampled image view(s). This field may be
VK_FORMAT_UNDEFINED if the customBorderColorWithoutFormat feature is enabled.

Note

If format is a depth/stencil format, the aspect is determined by the value of
VkSamplerCreateInfo::borderColor. If VkSamplerCreateInfo::borderColor is
VK_BORDER_COLOR_FLOAT_CUSTOM_EXT, the depth aspect is considered. If
VkSamplerCreateInfo::borderColor is VK_BORDER_COLOR_INT_CUSTOM_EXT, the stencil
aspect is considered.

If format is VK_FORMAT_UNDEFINED, the VkSamplerCreateInfo::borderColor is
VK_BORDER_COLOR_INT_CUSTOM_EXT, and the sampler is used with an image with a
stencil format, then the implementation must source the custom border color
from either the first or second components of VkSamplerCreateInfo
::customBorderColor and should source it from the first component.

Valid Usage

• VUID-VkSamplerCustomBorderColorCreateInfoEXT-format-07605
If format is not VK_FORMAT_UNDEFINED and format is not a depth/stencil format then the
VkSamplerCreateInfo::borderColor type must match the sampled type of the provided
format, as shown in the SPIR-V Type column of the Interpretation of Numeric Format table

• VUID-VkSamplerCustomBorderColorCreateInfoEXT-format-04014
If the customBorderColorWithoutFormat feature is not enabled then format must not be
VK_FORMAT_UNDEFINED

• VUID-VkSamplerCustomBorderColorCreateInfoEXT-format-04015
If the sampler is used to sample an image view of VK_FORMAT_B4G4R4A4_UNORM_PACK16,
VK_FORMAT_B5G6R5_UNORM_PACK16, VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR, or
VK_FORMAT_B5G5R5A1_UNORM_PACK16 format then format must not be VK_FORMAT_UNDEFINED

Valid Usage (Implicit)

• VUID-VkSamplerCustomBorderColorCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT

• VUID-VkSamplerCustomBorderColorCreateInfoEXT-format-parameter
format must be a valid VkFormat value

If the sampler is created with VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK,
VK_BORDER_COLOR_INT_OPAQUE_BLACK, VK_BORDER_COLOR_FLOAT_CUSTOM_EXT, or
VK_BORDER_COLOR_INT_CUSTOM_EXT borderColor, and that sampler will be combined with an image view

1222

that does not have an identity swizzle, and VkPhysicalDeviceBorderColorSwizzleFeaturesEXT
::borderColorSwizzleFromImage is not enabled, then it is necessary to specify the component mapping
of the border color, by including the VkSamplerBorderColorComponentMappingCreateInfoEXT structure
in the VkSamplerCreateInfo::pNext chain, to get defined results.

The VkSamplerBorderColorComponentMappingCreateInfoEXT structure is defined as:

// Provided by VK_EXT_border_color_swizzle
typedef struct VkSamplerBorderColorComponentMappingCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkComponentMapping components;
 VkBool32 srgb;
} VkSamplerBorderColorComponentMappingCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• components is a VkComponentMapping structure specifying a remapping of the border color
components.

• srgb indicates that the sampler will be combined with an image view that has an image format
which is sRGB encoded.

The VkComponentMapping components member describes a remapping from components of the
border color to components of the vector returned by shader image instructions when the border
color is used.

Valid Usage

• VUID-VkSamplerBorderColorComponentMappingCreateInfoEXT-borderColorSwizzle-
06437
The borderColorSwizzle feature must be enabled

Valid Usage (Implicit)

• VUID-VkSamplerBorderColorComponentMappingCreateInfoEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_SAMPLER_BORDER_COLOR_COMPONENT_MAPPING_CREATE_INFO_EXT

• VUID-VkSamplerBorderColorComponentMappingCreateInfoEXT-components-parameter
components must be a valid VkComponentMapping structure

The VkSamplerBlockMatchWindowCreateInfoQCOM structure is defined as:

// Provided by VK_QCOM_image_processing2
typedef struct VkSamplerBlockMatchWindowCreateInfoQCOM {

1223

 VkStructureType sType;
 const void* pNext;
 VkExtent2D windowExtent;
 VkBlockMatchWindowCompareModeQCOM windowCompareMode;
} VkSamplerBlockMatchWindowCreateInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• windowExtent is a VkExtent2D specifying a the width and height of the block match window.

• windowCompareMode is a VkBlockMatchWindowCompareModeQCOM specifying the compare
mode.

Valid Usage

• VUID-VkSamplerBlockMatchWindowCreateInfoQCOM-WindowExtent-09210
WindowExtent must not be larger than
VkPhysicalDeviceImageProcessing2PropertiesQCOM::maxBlockMatchWindow.

Valid Usage (Implicit)

• VUID-VkSamplerBlockMatchWindowCreateInfoQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_BLOCK_MATCH_WINDOW_CREATE_INFO_QCOM

• VUID-VkSamplerBlockMatchWindowCreateInfoQCOM-windowCompareMode-parameter
windowCompareMode must be a valid VkBlockMatchWindowCompareModeQCOM value

The VkBlockMatchWindowCompareModeQCOM enum describes how block match values within
the window are compared. VkBlockMatchWindowCompareModeQCOM is defined as:

// Provided by VK_QCOM_image_processing2
typedef enum VkBlockMatchWindowCompareModeQCOM {
 VK_BLOCK_MATCH_WINDOW_COMPARE_MODE_MIN_QCOM = 0,
 VK_BLOCK_MATCH_WINDOW_COMPARE_MODE_MAX_QCOM = 1,
} VkBlockMatchWindowCompareModeQCOM;

• VK_BLOCK_MATCH_WINDOW_COMPARE_MODE_MIN_QCOM specifies that windowed block match operations
return the minimum error within the window.

• VK_BLOCK_MATCH_WINDOW_COMPARE_MODE_MAX_QCOM specifies that windowed block match operations
return the maximum error within the window.

1224

Chapter 14. Resource Descriptors
A descriptor is an opaque data structure representing a shader resource such as a buffer, buffer
view, image view, sampler, or combined image sampler. Descriptors are organized into descriptor
sets, which are bound during command recording for use in subsequent drawing commands. The
arrangement of content in each descriptor set is determined by a descriptor set layout, which
determines what descriptors can be stored within it. The sequence of descriptor set layouts that can
be used by a pipeline is specified in a pipeline layout. Each pipeline object can use up to
maxBoundDescriptorSets (see Limits) descriptor sets.

If the descriptorBuffer feature is enabled, the implementation supports placing descriptors into
descriptor buffers which are bound during command recording in a similar way to descriptor sets.

Shaders access resources via variables decorated with a descriptor set and binding number that
link them to a descriptor in a descriptor set. The shader interface mapping to bound descriptor sets
is described in the Shader Resource Interface section.

Shaders can also access buffers without going through descriptors by using Physical Storage Buffer
Access to access them through 64-bit addresses.

14.1. Descriptor Types
There are a number of different types of descriptor supported by Vulkan, corresponding to
different resources or usage. The following sections describe the API definitions of each descriptor
type. The mapping of each type to SPIR-V is listed in the Shader Resource and Descriptor Type
Correspondence and Shader Resource and Storage Class Correspondence tables in the Shader
Interfaces chapter.

14.1.1. Storage Image

A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type associated with an image
resource via an image view that load, store, and atomic operations can be performed on.

Storage image loads are supported in all shader stages for image views whose format features
contain VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT.

Stores to storage images are supported in task, mesh and compute shaders for image views whose
format features contain VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT.

Atomic operations on storage images are supported in task, mesh and compute shaders for image
views whose format features contain VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT.

When the fragmentStoresAndAtomics feature is enabled, stores and atomic operations are also
supported for storage images in fragment shaders with the same set of image formats as supported
in compute shaders. When the vertexPipelineStoresAndAtomics feature is enabled, stores and atomic
operations are also supported in vertex, tessellation, and geometry shaders with the same set of
image formats as supported in compute shaders.

The image subresources for a storage image must be in the VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR or

1225

VK_IMAGE_LAYOUT_GENERAL layout in order to access its data in a shader.

14.1.2. Sampler

A sampler descriptor (VK_DESCRIPTOR_TYPE_SAMPLER) is a descriptor type associated with a sampler
object, used to control the behavior of sampling operations performed on a sampled image.

14.1.3. Sampled Image

A sampled image (VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE) is a descriptor type associated with an image
resource via an image view that sampling operations can be performed on.

Shaders combine a sampled image variable and a sampler variable to perform sampling
operations.

Sampled images are supported in all shader stages for image views whose format features contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT.

An image subresources for a sampled image must be in one of the following layouts:

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_GENERAL

• VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

14.1.4. Combined Image Sampler

A combined image sampler (VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) is a single descriptor type
associated with both a sampler and an image resource, combining both a sampler and sampled
image descriptor into a single descriptor.

If the descriptor refers to a sampler that performs Y′CBCR conversion or samples a subsampled
image, the sampler must only be used to sample the image in the same descriptor. Otherwise, the
sampler and image in this type of descriptor can be used freely with any other samplers and
images.

An image subresources for a combined image sampler must be in one of the following layouts:

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

1226

• VK_IMAGE_LAYOUT_GENERAL

• VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

Note

On some implementations, it may be more efficient to sample from an image using
a combination of sampler and sampled image that are stored together in the
descriptor set in a combined descriptor.

14.1.5. Uniform Texel Buffer

A uniform texel buffer (VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) is a descriptor type associated
with a buffer resource via a buffer view that image sampling operations can be performed on.

Uniform texel buffers define a tightly-packed 1-dimensional linear array of texels, with texels going
through format conversion when read in a shader in the same way as they are for an image.

Load operations from uniform texel buffers are supported in all shader stages for buffer view
formats which report format features support for VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

14.1.6. Storage Texel Buffer

A storage texel buffer (VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER) is a descriptor type associated with
a buffer resource via a buffer view that image load, store, and atomic operations can be performed
on.

Storage texel buffers define a tightly-packed 1-dimensional linear array of texels, with texels going
through format conversion when read in a shader in the same way as they are for an image. Unlike
uniform texel buffers, these buffers can also be written to in the same way as for storage images.

Storage texel buffer loads are supported in all shader stages for texel buffer view formats which
report format features support for VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

Stores to storage texel buffers are supported in task, mesh and compute shaders for texel buffer
formats which report format features support for VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

Atomic operations on storage texel buffers are supported in task, mesh and compute shaders for
texel buffer formats which report format features support for
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

When the fragmentStoresAndAtomics feature is enabled, stores and atomic operations are also
supported for storage texel buffers in fragment shaders with the same set of texel buffer formats as

1227

supported in compute shaders. When the vertexPipelineStoresAndAtomics feature is enabled, stores
and atomic operations are also supported in vertex, tessellation, and geometry shaders with the
same set of texel buffer formats as supported in compute shaders.

14.1.7. Storage Buffer

A storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) is a descriptor type associated with a buffer
resource directly, described in a shader as a structure with various members that load, store, and
atomic operations can be performed on.

Note

Atomic operations can only be performed on members of certain types as defined
in the SPIR-V environment appendix.

14.1.8. Uniform Buffer

A uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) is a descriptor type associated with a buffer
resource directly, described in a shader as a structure with various members that load operations
can be performed on.

14.1.9. Dynamic Uniform Buffer

A dynamic uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) is almost identical to a
uniform buffer, and differs only in how the offset into the buffer is specified. The base offset
calculated by the VkDescriptorBufferInfo when initially updating the descriptor set is added to a
dynamic offset when binding the descriptor set.

14.1.10. Dynamic Storage Buffer

A dynamic storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) is almost identical to a
storage buffer, and differs only in how the offset into the buffer is specified. The base offset
calculated by the VkDescriptorBufferInfo when initially updating the descriptor set is added to a
dynamic offset when binding the descriptor set.

14.1.11. Inline Uniform Block

An inline uniform block (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) is almost identical to a uniform
buffer, and differs only in taking its storage directly from the encompassing descriptor set instead
of being backed by buffer memory. It is typically used to access a small set of constant data that
does not require the additional flexibility provided by the indirection enabled when using a
uniform buffer where the descriptor and the referenced buffer memory are decoupled. Compared
to push constants, they allow reusing the same set of constant data across multiple disjoint sets of
drawing and dispatching commands.

Inline uniform block descriptors cannot be aggregated into arrays. Instead, the array size specified
for an inline uniform block descriptor binding specifies the binding’s capacity in bytes.

1228

14.1.12. Sample Weight Image

A sample weight image (VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM) is a descriptor type
associated with an image resource via an image view that can be used in weight image sampling.
The image view must have been created with VkImageViewSampleWeightCreateInfoQCOM.

Shaders can combine a weight image variable, a sampled image variable, and a sampler variable to
perform weight image sampling.

Weight image sampling is supported in all shader stages if the weight image view specifies a format
that supports format feature VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM and the sampled image
view specifies a format that supports format feature
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

The image subresources for the weight image must be in the
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL layout in order to access its
data in a shader.

14.1.13. Block Matching Image

A block matching image (VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM) is a descriptor type associated
with an image resource via an image view that can be used in block matching.

Shaders can combine a target image variable, a reference image variable, and a sampler variable to
perform block matching.

Block matching is supported in all shader stages for if both the target view and reference view
specifies a format that supports format feature VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

The image subresources for block matching must be in the
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL layout in order to access its
data in a shader.

14.1.14. Input Attachment

An input attachment (VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) is a descriptor type associated with an
image resource via an image view that can be used for framebuffer local load operations in
fragment shaders.

All image formats that are supported for color attachments
(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV)
or depth/stencil attachments (VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) for a given image
tiling mode are also supported for input attachments.

An image view used as an input attachment must be in one of the following layouts:

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_GENERAL

1229

• VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

14.1.15. Acceleration Structure

An acceleration structure (VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR or
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV) is a descriptor type that is used to retrieve scene
geometry from within shaders that are used for ray traversal. Shaders have read-only access to the
memory.

14.1.16. Mutable

A descriptor of mutable (VK_DESCRIPTOR_TYPE_MUTABLE_EXT) type indicates that this descriptor can
mutate to any of the descriptor types given in the VkMutableDescriptorTypeListEXT
::pDescriptorTypes list of descriptor types in the pNext chain of VkDescriptorSetLayoutCreateInfo for
this binding. At any point, each individual descriptor of mutable type has an active descriptor type.
The active descriptor type can be any one of the declared types in pDescriptorTypes. Additionally, a
mutable descriptor’s active descriptor type can be of the VK_DESCRIPTOR_TYPE_MUTABLE_EXT type,
which is the initial active descriptor type. The active descriptor type can change when the
descriptor is updated. When a descriptor is consumed by binding a descriptor set, the active
descriptor type is considered, not VK_DESCRIPTOR_TYPE_MUTABLE_EXT.

An active descriptor type of VK_DESCRIPTOR_TYPE_MUTABLE_EXT is considered an undefined descriptor.
If a descriptor is consumed where the active descriptor type does not match what the shader
expects, the descriptor is considered an undefined descriptor.

Note

To find which descriptor types are supported as VK_DESCRIPTOR_TYPE_MUTABLE_EXT,
the application can use vkGetDescriptorSetLayoutSupport with an
VK_DESCRIPTOR_TYPE_MUTABLE_EXT binding, with the list of descriptor types to query
in the VkMutableDescriptorTypeCreateInfoEXT::pDescriptorTypes array for that
binding.

Note

The intention of a mutable descriptor type is that implementations allocate N bytes
per descriptor, where N is determined by the maximum descriptor size for a given
descriptor binding. Implementations are not expected to keep track of the active
descriptor type, and it should be considered a C-like union type.

A mutable descriptor type is not considered as efficient in terms of runtime
performance as using a non-mutable descriptor type, and applications are not
encouraged to use them outside API layering efforts. Mutable descriptor types can

1230

be more efficient if the alternative is using many different descriptors to emulate
mutable descriptor types.

14.2. Descriptor Sets
Descriptors are grouped together into descriptor set objects. A descriptor set object is an opaque
object containing storage for a set of descriptors, where the types and number of descriptors is
defined by a descriptor set layout. The layout object may be used to define the association of each
descriptor binding with memory or other implementation resources. The layout is used both for
determining the resources that need to be associated with the descriptor set, and determining the
interface between shader stages and shader resources.

14.2.1. Descriptor Set Layout

A descriptor set layout object is defined by an array of zero or more descriptor bindings. Each
individual descriptor binding is specified by a descriptor type, a count (array size) of the number of
descriptors in the binding, a set of shader stages that can access the binding, and (if using
immutable samplers) an array of sampler descriptors.

Descriptor set layout objects are represented by VkDescriptorSetLayout handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorSetLayout)

To create descriptor set layout objects, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateDescriptorSetLayout(
 VkDevice device,
 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorSetLayout* pSetLayout);

• device is the logical device that creates the descriptor set layout.

• pCreateInfo is a pointer to a VkDescriptorSetLayoutCreateInfo structure specifying the state of
the descriptor set layout object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSetLayout is a pointer to a VkDescriptorSetLayout handle in which the resulting descriptor set
layout object is returned.

Valid Usage

• VUID-vkCreateDescriptorSetLayout-support-09582
If the descriptor layout does not meet the limits reported through the physical device
limits, then vkGetDescriptorSetLayoutSupport must return

1231

VkDescriptorSetLayoutSupport with support equal to VK_TRUE for pCreateInfo

Valid Usage (Implicit)

• VUID-vkCreateDescriptorSetLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateDescriptorSetLayout-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDescriptorSetLayoutCreateInfo structure

• VUID-vkCreateDescriptorSetLayout-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDescriptorSetLayout-pSetLayout-parameter
pSetLayout must be a valid pointer to a VkDescriptorSetLayout handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the descriptor set layout is passed in a VkDescriptorSetLayoutCreateInfo
structure:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorSetLayoutCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSetLayoutCreateFlags flags;
 uint32_t bindingCount;
 const VkDescriptorSetLayoutBinding* pBindings;
} VkDescriptorSetLayoutCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkDescriptorSetLayoutCreateFlagBits specifying options for descriptor set
layout creation.

• bindingCount is the number of elements in pBindings.

• pBindings is a pointer to an array of VkDescriptorSetLayoutBinding structures.

1232

Valid Usage

• VUID-VkDescriptorSetLayoutCreateInfo-binding-00279
If the perStageDescriptorSet feature is not enabled, or flags does not contain
VK_DESCRIPTOR_SET_LAYOUT_CREATE_PER_STAGE_BIT_NV, then the
VkDescriptorSetLayoutBinding::binding members of the elements of the pBindings array
must each have different values

• VUID-VkDescriptorSetLayoutCreateInfo-flags-00280
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, then all
elements of pBindings must not have a descriptorType of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

• VUID-VkDescriptorSetLayoutCreateInfo-flags-02208
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, then all
elements of pBindings must not have a descriptorType of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

• VUID-VkDescriptorSetLayoutCreateInfo-flags-00281
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, then the total
number of elements of all bindings must be less than or equal to
VkPhysicalDevicePushDescriptorPropertiesKHR::maxPushDescriptors

• VUID-VkDescriptorSetLayoutCreateInfo-flags-04590
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, flags must
not contain VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT

• VUID-VkDescriptorSetLayoutCreateInfo-flags-04591
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, pBindings
must not have a descriptorType of VK_DESCRIPTOR_TYPE_MUTABLE_EXT

• VUID-VkDescriptorSetLayoutCreateInfo-flags-03000
If any binding has the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit set, flags must
include VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT

• VUID-VkDescriptorSetLayoutCreateInfo-descriptorType-03001
If any binding has the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit set, then all
bindings must not have descriptorType of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

• VUID-VkDescriptorSetLayoutCreateInfo-flags-04592
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, flags must
not contain VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT

• VUID-VkDescriptorSetLayoutCreateInfo-pBindings-07303
If any element pBindings[i] has a descriptorType of VK_DESCRIPTOR_TYPE_MUTABLE_EXT, then a
VkMutableDescriptorTypeCreateInfoEXT must be present in the pNext chain, and
mutableDescriptorTypeListCount must be greater than i

• VUID-VkDescriptorSetLayoutCreateInfo-descriptorType-04594
If a binding has a descriptorType value of VK_DESCRIPTOR_TYPE_MUTABLE_EXT, then
pImmutableSamplers must be NULL

• VUID-VkDescriptorSetLayoutCreateInfo-mutableDescriptorType-04595

1233

If VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT::mutableDescriptorType is not
enabled, pBindings must not contain a descriptorType of VK_DESCRIPTOR_TYPE_MUTABLE_EXT

• VUID-VkDescriptorSetLayoutCreateInfo-flags-04596
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT,
VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT::mutableDescriptorType must be
enabled

• VUID-VkDescriptorSetLayoutCreateInfo-flags-08000
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, then all
elements of pBindings must not have a descriptorType of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

• VUID-VkDescriptorSetLayoutCreateInfo-flags-08001
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT,
flags must also contain VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-VkDescriptorSetLayoutCreateInfo-flags-08002
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, then flags
must not contain VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT

• VUID-VkDescriptorSetLayoutCreateInfo-flags-08003
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, then flags
must not contain VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_VALVE

• VUID-VkDescriptorSetLayoutCreateInfo-flags-09463
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_PER_STAGE_BIT_NV, then
perStageDescriptorSet must be enabled

• VUID-VkDescriptorSetLayoutCreateInfo-flags-09464
If flags contains VK_DESCRIPTOR_SET_LAYOUT_CREATE_PER_STAGE_BIT_NV, then there must not
be any two elements of the pBindings array with the same VkDescriptorSetLayoutBinding
::binding value and their VkDescriptorSetLayoutBinding::stageFlags containing the same
bit

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO

• VUID-VkDescriptorSetLayoutCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDescriptorSetLayoutBindingFlagsCreateInfo or
VkMutableDescriptorTypeCreateInfoEXT

• VUID-VkDescriptorSetLayoutCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkDescriptorSetLayoutCreateInfo-flags-parameter
flags must be a valid combination of VkDescriptorSetLayoutCreateFlagBits values

• VUID-VkDescriptorSetLayoutCreateInfo-pBindings-parameter
If bindingCount is not 0, pBindings must be a valid pointer to an array of bindingCount valid

1234

VkDescriptorSetLayoutBinding structures

If the pNext chain of a VkDescriptorSetLayoutCreateInfo or VkDescriptorPoolCreateInfo structure
includes a VkMutableDescriptorTypeCreateInfoEXT structure, then that structure specifies
Information about the possible descriptor types for mutable descriptor types.

The VkMutableDescriptorTypeCreateInfoEXT structure is defined as:

// Provided by VK_EXT_mutable_descriptor_type
typedef struct VkMutableDescriptorTypeCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t mutableDescriptorTypeListCount;
 const VkMutableDescriptorTypeListEXT* pMutableDescriptorTypeLists;
} VkMutableDescriptorTypeCreateInfoEXT;

or the equivalent

// Provided by VK_VALVE_mutable_descriptor_type
typedef VkMutableDescriptorTypeCreateInfoEXT VkMutableDescriptorTypeCreateInfoVALVE;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• mutableDescriptorTypeListCount is the number of elements in pMutableDescriptorTypeLists.

• pMutableDescriptorTypeLists is a pointer to an array of VkMutableDescriptorTypeListEXT
structures.

If mutableDescriptorTypeListCount is zero or if this structure is not included in the pNext chain, the
VkMutableDescriptorTypeListEXT for each element is considered to be zero or NULL for each
member. Otherwise, the descriptor set layout binding at VkDescriptorSetLayoutCreateInfo
::pBindings[i] uses the descriptor type lists in VkMutableDescriptorTypeCreateInfoEXT
::pMutableDescriptorTypeLists[i].

Valid Usage (Implicit)

• VUID-VkMutableDescriptorTypeCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT

• VUID-VkMutableDescriptorTypeCreateInfoEXT-pMutableDescriptorTypeLists-parameter
If mutableDescriptorTypeListCount is not 0, pMutableDescriptorTypeLists must be a valid
pointer to an array of mutableDescriptorTypeListCount valid
VkMutableDescriptorTypeListEXT structures

The list of potential descriptor types a given mutable descriptor can mutate to is passed in a
VkMutableDescriptorTypeListEXT structure.

1235

The VkMutableDescriptorTypeListEXT structure is defined as:

// Provided by VK_EXT_mutable_descriptor_type
typedef struct VkMutableDescriptorTypeListEXT {
 uint32_t descriptorTypeCount;
 const VkDescriptorType* pDescriptorTypes;
} VkMutableDescriptorTypeListEXT;

or the equivalent

// Provided by VK_VALVE_mutable_descriptor_type
typedef VkMutableDescriptorTypeListEXT VkMutableDescriptorTypeListVALVE;

• descriptorTypeCount is the number of elements in pDescriptorTypes.

• pDescriptorTypes is NULL or a pointer to an array of descriptorTypeCount VkDescriptorType
values defining which descriptor types a given binding may mutate to.

Valid Usage

• VUID-VkMutableDescriptorTypeListEXT-descriptorTypeCount-04597
descriptorTypeCount must not be 0 if the corresponding binding is of
VK_DESCRIPTOR_TYPE_MUTABLE_EXT

• VUID-VkMutableDescriptorTypeListEXT-pDescriptorTypes-04598
pDescriptorTypes must be a valid pointer to an array of descriptorTypeCount valid, unique
VkDescriptorType values if the given binding is of VK_DESCRIPTOR_TYPE_MUTABLE_EXT type

• VUID-VkMutableDescriptorTypeListEXT-descriptorTypeCount-04599
descriptorTypeCount must be 0 if the corresponding binding is not of
VK_DESCRIPTOR_TYPE_MUTABLE_EXT

• VUID-VkMutableDescriptorTypeListEXT-pDescriptorTypes-04600
pDescriptorTypes must not contain VK_DESCRIPTOR_TYPE_MUTABLE_EXT

• VUID-VkMutableDescriptorTypeListEXT-pDescriptorTypes-04601
pDescriptorTypes must not contain VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

• VUID-VkMutableDescriptorTypeListEXT-pDescriptorTypes-04602
pDescriptorTypes must not contain VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC

• VUID-VkMutableDescriptorTypeListEXT-pDescriptorTypes-04603
pDescriptorTypes must not contain VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

Valid Usage (Implicit)

• VUID-VkMutableDescriptorTypeListEXT-pDescriptorTypes-parameter
If descriptorTypeCount is not 0, pDescriptorTypes must be a valid pointer to an array of
descriptorTypeCount valid VkDescriptorType values

1236

Bits which can be set in VkDescriptorSetLayoutCreateInfo::flags, specifying options for descriptor
set layout, are:

// Provided by VK_VERSION_1_0
typedef enum VkDescriptorSetLayoutCreateFlagBits {
 // Provided by VK_VERSION_1_2
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT = 0x00000002,
 // Provided by VK_KHR_push_descriptor
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR = 0x00000001,
 // Provided by VK_EXT_descriptor_buffer
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT = 0x00000010,
 // Provided by VK_EXT_descriptor_buffer
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT = 0x00000020,
 // Provided by VK_NV_device_generated_commands_compute
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_INDIRECT_BINDABLE_BIT_NV = 0x00000080,
 // Provided by VK_EXT_mutable_descriptor_type
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT = 0x00000004,
 // Provided by VK_NV_per_stage_descriptor_set
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_PER_STAGE_BIT_NV = 0x00000040,
 // Provided by VK_EXT_descriptor_indexing
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT =
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT,
 // Provided by VK_VALVE_mutable_descriptor_type
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_VALVE =
VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT,
} VkDescriptorSetLayoutCreateFlagBits;

• VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR specifies that descriptor sets must
not be allocated using this layout, and descriptors are instead pushed by
vkCmdPushDescriptorSetKHR.

• VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT specifies that descriptor sets using
this layout must be allocated from a descriptor pool created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit set. Descriptor set layouts created with this
bit set have alternate limits for the maximum number of descriptors per-stage and per-pipeline
layout. The non-UpdateAfterBind limits only count descriptors in sets created without this flag.
The UpdateAfterBind limits count all descriptors, but the limits may be higher than the non-
UpdateAfterBind limits.

• VK_DESCRIPTOR_SET_LAYOUT_CREATE_INDIRECT_BINDABLE_BIT_NV specifies that descriptor sets using
this layout allows them to be bound with compute pipelines that are created with
VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV flag set to be used in Device-Generated
Commands.

• VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT specifies that this layout must only
be used with descriptor buffers.

• VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT specifies that this is a
layout only containing immutable samplers that can be bound by
vkCmdBindDescriptorBufferEmbeddedSamplersEXT. Unlike normal immutable samplers,
embedded immutable samplers do not require the application to provide them in a descriptor

1237

buffer.

• VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT specifies that descriptor sets using this
layout must be allocated from a descriptor pool created with the
VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT bit set. Descriptor set layouts created with this bit
have no expressible limit for maximum number of descriptors per-stage. Host descriptor sets
are limited only by available host memory, but may be limited for implementation specific
reasons. Implementations may limit the number of supported descriptors to UpdateAfterBind
limits or non-UpdateAfterBind limits, whichever is larger.

• VK_DESCRIPTOR_SET_LAYOUT_CREATE_PER_STAGE_BIT_NV specifies that binding numbers in descriptor
sets using this layout may represent different resources and/or types of resources in each stage.

// Provided by VK_VERSION_1_0
typedef VkFlags VkDescriptorSetLayoutCreateFlags;

VkDescriptorSetLayoutCreateFlags is a bitmask type for setting a mask of zero or more
VkDescriptorSetLayoutCreateFlagBits.

The VkDescriptorSetLayoutBinding structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorSetLayoutBinding {
 uint32_t binding;
 VkDescriptorType descriptorType;
 uint32_t descriptorCount;
 VkShaderStageFlags stageFlags;
 const VkSampler* pImmutableSamplers;
} VkDescriptorSetLayoutBinding;

• binding is the binding number of this entry and corresponds to a resource of the same binding
number in the shader stages.

• descriptorType is a VkDescriptorType specifying which type of resource descriptors are used for
this binding.

• descriptorCount is the number of descriptors contained in the binding, accessed in a shader as
an array, except if descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK in which case
descriptorCount is the size in bytes of the inline uniform block. If descriptorCount is zero this
binding entry is reserved and the resource must not be accessed from any stage via this binding
within any pipeline using the set layout.

• stageFlags member is a bitmask of VkShaderStageFlagBits specifying which pipeline shader
stages can access a resource for this binding. VK_SHADER_STAGE_ALL is a shorthand specifying that
all defined shader stages, including any additional stages defined by extensions, can access the
resource.

If a shader stage is not included in stageFlags, then a resource must not be accessed from that
stage via this binding within any pipeline using the set layout. Other than input attachments
which are limited to the fragment shader, there are no limitations on what combinations of

1238

stages can use a descriptor binding, and in particular a binding can be used by both graphics
stages and the compute stage.

• pImmutableSamplers affects initialization of samplers. If descriptorType specifies a
VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
pImmutableSamplers can be used to initialize a set of immutable samplers. Immutable samplers
are permanently bound into the set layout and must not be changed; updating a
VK_DESCRIPTOR_TYPE_SAMPLER descriptor with immutable samplers is not allowed and updates to a
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor with immutable samplers does not
modify the samplers (the image views are updated, but the sampler updates are ignored). If
pImmutableSamplers is not NULL, then it is a pointer to an array of sampler handles that will be
copied into the set layout and used for the corresponding binding. Only the sampler handles are
copied; the sampler objects must not be destroyed before the final use of the set layout and any
descriptor pools and sets created using it. If pImmutableSamplers is NULL, then the sampler slots
are dynamic and sampler handles must be bound into descriptor sets using this layout. If
descriptorType is not one of these descriptor types, then pImmutableSamplers is ignored.

The above layout definition allows the descriptor bindings to be specified sparsely such that not all
binding numbers between 0 and the maximum binding number need to be specified in the
pBindings array. Bindings that are not specified have a descriptorCount and stageFlags of zero, and
the value of descriptorType is undefined. However, all binding numbers between 0 and the
maximum binding number in the VkDescriptorSetLayoutCreateInfo::pBindings array may consume
memory in the descriptor set layout even if not all descriptor bindings are used, though it should
not consume additional memory from the descriptor pool.

Note

The maximum binding number specified should be as compact as possible to
avoid wasted memory.

Valid Usage

• VUID-VkDescriptorSetLayoutBinding-descriptorType-00282
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and descriptorCount is not 0 and
pImmutableSamplers is not NULL, pImmutableSamplers must be a valid pointer to an array of
descriptorCount valid VkSampler handles

• VUID-VkDescriptorSetLayoutBinding-descriptorType-04604
If the inlineUniformBlock feature is not enabled, descriptorType must not be
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

• VUID-VkDescriptorSetLayoutBinding-descriptorType-02209
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount must
be a multiple of 4

• VUID-VkDescriptorSetLayoutBinding-descriptorType-08004
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK and
VkDescriptorSetLayoutCreateInfo::flags does not contain
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT then descriptorCount must be

1239

less than or equal to VkPhysicalDeviceInlineUniformBlockProperties
::maxInlineUniformBlockSize

• VUID-VkDescriptorSetLayoutBinding-flags-08005
If VkDescriptorSetLayoutCreateInfo::flags contains
VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT, descriptorType
must be VK_DESCRIPTOR_TYPE_SAMPLER

• VUID-VkDescriptorSetLayoutBinding-flags-08006
If VkDescriptorSetLayoutCreateInfo::flags contains
VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT, descriptorCount
must less than or equal to 1

• VUID-VkDescriptorSetLayoutBinding-flags-08007
If VkDescriptorSetLayoutCreateInfo::flags contains
VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT, and
descriptorCount is equal to 1, pImmutableSamplers must not be NULL

• VUID-VkDescriptorSetLayoutBinding-descriptorCount-09465
If descriptorCount is not 0, stageFlags must be VK_SHADER_STAGE_ALL or a valid combination
of other VkShaderStageFlagBits values

• VUID-VkDescriptorSetLayoutBinding-descriptorType-01510
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT and descriptorCount is not 0, then
stageFlags must be 0 or VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-VkDescriptorSetLayoutBinding-pImmutableSamplers-04009
The sampler objects indicated by pImmutableSamplers must not have a borderColor with
one of the values VK_BORDER_COLOR_FLOAT_CUSTOM_EXT or VK_BORDER_COLOR_INT_CUSTOM_EXT

• VUID-VkDescriptorSetLayoutBinding-descriptorType-04605
If descriptorType is VK_DESCRIPTOR_TYPE_MUTABLE_EXT, then pImmutableSamplers must be NULL

• VUID-VkDescriptorSetLayoutBinding-flags-09466
If VkDescriptorSetLayoutCreateInfo::flags contains
VK_DESCRIPTOR_SET_LAYOUT_CREATE_PER_STAGE_BIT_NV, and descriptorCount is not 0, then
stageFlags must be a valid combination of VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
VK_SHADER_STAGE_GEOMETRY_BIT, VK_SHADER_STAGE_FRAGMENT_BIT and
VK_SHADER_STAGE_COMPUTE_BIT values

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutBinding-descriptorType-parameter
descriptorType must be a valid VkDescriptorType value

If the pNext chain of a VkDescriptorSetLayoutCreateInfo structure includes a
VkDescriptorSetLayoutBindingFlagsCreateInfo structure, then that structure includes an array of
flags, one for each descriptor set layout binding.

The VkDescriptorSetLayoutBindingFlagsCreateInfo structure is defined as:

1240

// Provided by VK_VERSION_1_2
typedef struct VkDescriptorSetLayoutBindingFlagsCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t bindingCount;
 const VkDescriptorBindingFlags* pBindingFlags;
} VkDescriptorSetLayoutBindingFlagsCreateInfo;

or the equivalent

// Provided by VK_EXT_descriptor_indexing
typedef VkDescriptorSetLayoutBindingFlagsCreateInfo
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• bindingCount is zero or the number of elements in pBindingFlags.

• pBindingFlags is a pointer to an array of VkDescriptorBindingFlags bitfields, one for each
descriptor set layout binding.

If bindingCount is zero or if this structure is not included in the pNext chain, the
VkDescriptorBindingFlags for each descriptor set layout binding is considered to be zero.
Otherwise, the descriptor set layout binding at VkDescriptorSetLayoutCreateInfo::pBindings[i] uses
the flags in pBindingFlags[i].

Valid Usage

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-bindingCount-03002
If bindingCount is not zero, bindingCount must equal VkDescriptorSetLayoutCreateInfo
::bindingCount

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-flags-03003
If VkDescriptorSetLayoutCreateInfo::flags includes
VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, then all elements of
pBindingFlags must not include VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT,
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT, or
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-pBindingFlags-03004
If an element of pBindingFlags includes
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT, then it must be the element with
the highest binding number

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingUniformBufferUpdateAfterBind-03005
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingUniformBufferUpdateAfterBind is not enabled, all bindings with

1241

descriptor type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingSampledImageUpdateAfterBind-03006
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingSampledImageUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingStorageImageUpdateAfterBind-03007
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingStorageImageUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingStorageBufferUpdateAfterBind-03008
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingStorageBufferUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingUniformTexelBufferUpdateAfterBind-03009
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingUniformTexelBufferUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingStorageTexelBufferUpdateAfterBind-03010
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingStorageTexelBufferUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingInlineUniformBlockUpdateAfterBind-02211
If VkPhysicalDeviceInlineUniformBlockFeatures
::descriptorBindingInlineUniformBlockUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingAccelerationStructureUpdateAfterBind-03570
If VkPhysicalDeviceAccelerationStructureFeaturesKHR
::descriptorBindingAccelerationStructureUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR or
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV must not use

1242

VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-None-03011
All bindings with descriptor type VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
must not use VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingUpdateUnusedWhilePending-03012
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingUpdateUnusedWhilePending is not enabled, all elements of pBindingFlags
must not include VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-descriptorBindingPartiallyBound-
03013
If VkPhysicalDeviceDescriptorIndexingFeatures::descriptorBindingPartiallyBound is not
enabled, all elements of pBindingFlags must not include
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingVariableDescriptorCount-03014
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingVariableDescriptorCount is not enabled, all elements of pBindingFlags
must not include VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-pBindingFlags-03015
If an element of pBindingFlags includes
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT, that element’s descriptorType must
not be VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-pBindingFlags-parameter
If bindingCount is not 0, pBindingFlags must be a valid pointer to an array of bindingCount
valid combinations of VkDescriptorBindingFlagBits values

Bits which can be set in each element of VkDescriptorSetLayoutBindingFlagsCreateInfo
::pBindingFlags, specifying options for the corresponding descriptor set layout binding, are:

// Provided by VK_VERSION_1_2
typedef enum VkDescriptorBindingFlagBits {
 VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT = 0x00000001,
 VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT = 0x00000002,
 VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT = 0x00000004,
 VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT = 0x00000008,
 // Provided by VK_EXT_descriptor_indexing

1243

 VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT =
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT,
 // Provided by VK_EXT_descriptor_indexing
 VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT =
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT,
 // Provided by VK_EXT_descriptor_indexing
 VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT =
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT,
 // Provided by VK_EXT_descriptor_indexing
 VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT =
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT,
} VkDescriptorBindingFlagBits;

or the equivalent

// Provided by VK_EXT_descriptor_indexing
typedef VkDescriptorBindingFlagBits VkDescriptorBindingFlagBitsEXT;

• VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT indicates that if descriptors in this binding are
updated between when the descriptor set is bound in a command buffer and when that
command buffer is submitted to a queue, then the submission will use the most recently set
descriptors for this binding and the updates do not invalidate the command buffer. Descriptor
bindings created with this flag are also partially exempt from the external synchronization
requirement in vkUpdateDescriptorSetWithTemplateKHR and vkUpdateDescriptorSets. Multiple
descriptors with this flag set can be updated concurrently in different threads, though the same
descriptor must not be updated concurrently by two threads. Descriptors with this flag set can
be updated concurrently with the set being bound to a command buffer in another thread, but
not concurrently with the set being reset or freed.

• VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT indicates that descriptors in this binding that are
not dynamically used need not contain valid descriptors at the time the descriptors are
consumed. A descriptor is dynamically used if any shader invocation executes an instruction
that performs any memory access using the descriptor. If a descriptor is not dynamically used,
any resource referenced by the descriptor is not considered to be referenced during command
execution.

• VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT indicates that descriptors in this
binding can be updated after a command buffer has bound this descriptor set, or while a
command buffer that uses this descriptor set is pending execution, as long as the descriptors
that are updated are not used by those command buffers. Descriptor bindings created with this
flag are also partially exempt from the external synchronization requirement in
vkUpdateDescriptorSetWithTemplateKHR and vkUpdateDescriptorSets in the same way as for
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT. If VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT is
also set, then descriptors can be updated as long as they are not dynamically used by any
shader invocations. If VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT is not set, then descriptors
can be updated as long as they are not statically used by any shader invocations.

• VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT indicates that this is a variable-sized
descriptor binding whose size will be specified when a descriptor set is allocated using this

1244

layout. The value of descriptorCount is treated as an upper bound on the size of the binding.
This must only be used for the last binding in the descriptor set layout (i.e. the binding with the
largest value of binding). For the purposes of counting against limits such as maxDescriptorSet*
and maxPerStageDescriptor*, the full value of descriptorCount is counted, except for descriptor
bindings with a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, when
VkDescriptorSetLayoutCreateInfo::flags does not contain
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT. In this case, descriptorCount
specifies the upper bound on the byte size of the binding; thus it counts against the
maxInlineUniformBlockSize and maxInlineUniformTotalSize limits instead.

Note

Note that while VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT and
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT both involve updates to
descriptor sets after they are bound,
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT is a weaker requirement
since it is only about descriptors that are not used, whereas
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT requires the implementation to
observe updates to descriptors that are used.

// Provided by VK_VERSION_1_2
typedef VkFlags VkDescriptorBindingFlags;

or the equivalent

// Provided by VK_EXT_descriptor_indexing
typedef VkDescriptorBindingFlags VkDescriptorBindingFlagsEXT;

VkDescriptorBindingFlags is a bitmask type for setting a mask of zero or more
VkDescriptorBindingFlagBits.

To query information about whether a descriptor set layout can be created, call:

// Provided by VK_VERSION_1_1
void vkGetDescriptorSetLayoutSupport(
 VkDevice device,
 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
 VkDescriptorSetLayoutSupport* pSupport);

or the equivalent command

// Provided by VK_KHR_maintenance3
void vkGetDescriptorSetLayoutSupportKHR(
 VkDevice device,
 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,

1245

 VkDescriptorSetLayoutSupport* pSupport);

• device is the logical device that would create the descriptor set layout.

• pCreateInfo is a pointer to a VkDescriptorSetLayoutCreateInfo structure specifying the state of
the descriptor set layout object.

• pSupport is a pointer to a VkDescriptorSetLayoutSupport structure, in which information about
support for the descriptor set layout object is returned.

Some implementations have limitations on what fits in a descriptor set which are not easily
expressible in terms of existing limits like maxDescriptorSet*, for example if all descriptor types
share a limited space in memory but each descriptor is a different size or alignment. This command
returns information about whether a descriptor set satisfies this limit. If the descriptor set layout
satisfies the VkPhysicalDeviceMaintenance3Properties::maxPerSetDescriptors limit, this command is
guaranteed to return VK_TRUE in VkDescriptorSetLayoutSupport::supported. If the descriptor set
layout exceeds the VkPhysicalDeviceMaintenance3Properties::maxPerSetDescriptors limit, whether
the descriptor set layout is supported is implementation-dependent and may depend on whether
the descriptor sizes and alignments cause the layout to exceed an internal limit.

This command does not consider other limits such as maxPerStageDescriptor*, and so a descriptor
set layout that is supported according to this command must still satisfy the pipeline layout limits
such as maxPerStageDescriptor* in order to be used in a pipeline layout.

Note

This is a VkDevice query rather than VkPhysicalDevice because the answer may
depend on enabled features.

Valid Usage (Implicit)

• VUID-vkGetDescriptorSetLayoutSupport-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDescriptorSetLayoutSupport-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDescriptorSetLayoutCreateInfo structure

• VUID-vkGetDescriptorSetLayoutSupport-pSupport-parameter
pSupport must be a valid pointer to a VkDescriptorSetLayoutSupport structure

Information about support for the descriptor set layout is returned in a
VkDescriptorSetLayoutSupport structure:

// Provided by VK_VERSION_1_1
typedef struct VkDescriptorSetLayoutSupport {
 VkStructureType sType;
 void* pNext;
 VkBool32 supported;
} VkDescriptorSetLayoutSupport;

1246

or the equivalent

// Provided by VK_KHR_maintenance3
typedef VkDescriptorSetLayoutSupport VkDescriptorSetLayoutSupportKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• supported specifies whether the descriptor set layout can be created.

supported is set to VK_TRUE if the descriptor set can be created, or else is set to VK_FALSE.

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutSupport-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT

• VUID-VkDescriptorSetLayoutSupport-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDescriptorSetVariableDescriptorCountLayoutSupport

• VUID-VkDescriptorSetLayoutSupport-sType-unique
The sType value of each struct in the pNext chain must be unique

If the pNext chain of a VkDescriptorSetLayoutSupport structure includes a
VkDescriptorSetVariableDescriptorCountLayoutSupport structure, then that structure returns
additional information about whether the descriptor set layout is supported.

// Provided by VK_VERSION_1_2
typedef struct VkDescriptorSetVariableDescriptorCountLayoutSupport {
 VkStructureType sType;
 void* pNext;
 uint32_t maxVariableDescriptorCount;
} VkDescriptorSetVariableDescriptorCountLayoutSupport;

or the equivalent

// Provided by VK_EXT_descriptor_indexing
typedef VkDescriptorSetVariableDescriptorCountLayoutSupport
VkDescriptorSetVariableDescriptorCountLayoutSupportEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxVariableDescriptorCount indicates the maximum number of descriptors supported in the
highest numbered binding of the layout, if that binding is variable-sized. If the highest
numbered binding of the layout has a descriptor type of

1247

VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then maxVariableDescriptorCount indicates the
maximum byte size supported for the binding, if that binding is variable-sized.

If the VkDescriptorSetLayoutCreateInfo structure specified in vkGetDescriptorSetLayoutSupport
::pCreateInfo includes a variable-sized descriptor, then supported is determined assuming the
requested size of the variable-sized descriptor, and maxVariableDescriptorCount is set to the
maximum size of that descriptor that can be successfully created (which is greater than or equal to
the requested size passed in). If the VkDescriptorSetLayoutCreateInfo structure does not include a
variable-sized descriptor, or if the VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingVariableDescriptorCount feature is not enabled, then maxVariableDescriptorCount
is set to zero. For the purposes of this command, a variable-sized descriptor binding with a
descriptorCount of zero is treated as having a descriptorCount of four if descriptorType is
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, or one otherwise, and thus the binding is not ignored and
the maximum descriptor count will be returned. If the layout is not supported, then the value
written to maxVariableDescriptorCount is undefined.

Valid Usage (Implicit)

• VUID-VkDescriptorSetVariableDescriptorCountLayoutSupport-sType-sType
sType must be
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT

The following examples show a shader snippet using two descriptor sets, and application code that
creates corresponding descriptor set layouts.

GLSL example

//
// binding to a single sampled image descriptor in set 0
//
layout (set=0, binding=0) uniform texture2D mySampledImage;

//
// binding to an array of sampled image descriptors in set 0
//
layout (set=0, binding=1) uniform texture2D myArrayOfSampledImages[12];

//
// binding to a single uniform buffer descriptor in set 1
//
layout (set=1, binding=0) uniform myUniformBuffer
{
 vec4 myElement[32];
};

SPIR-V example

 ...

1248

 %1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "mySampledImage"
 OpName %14 "myArrayOfSampledImages"
 OpName %18 "myUniformBuffer"
 OpMemberName %18 0 "myElement"
 OpName %20 ""
 OpDecorate %9 DescriptorSet 0
 OpDecorate %9 Binding 0
 OpDecorate %14 DescriptorSet 0
 OpDecorate %14 Binding 1
 OpDecorate %17 ArrayStride 16
 OpMemberDecorate %18 0 Offset 0
 OpDecorate %18 Block
 OpDecorate %20 DescriptorSet 1
 OpDecorate %20 Binding 0
 %2 = OpTypeVoid
 %3 = OpTypeFunction %2
 %6 = OpTypeFloat 32
 %7 = OpTypeImage %6 2D 0 0 0 1 Unknown
 %8 = OpTypePointer UniformConstant %7
 %9 = OpVariable %8 UniformConstant
 %10 = OpTypeInt 32 0
 %11 = OpConstant %10 12
 %12 = OpTypeArray %7 %11
 %13 = OpTypePointer UniformConstant %12
 %14 = OpVariable %13 UniformConstant
 %15 = OpTypeVector %6 4
 %16 = OpConstant %10 32
 %17 = OpTypeArray %15 %16
 %18 = OpTypeStruct %17
 %19 = OpTypePointer Uniform %18
 %20 = OpVariable %19 Uniform
 ...

API example

VkResult myResult;

const VkDescriptorSetLayoutBinding myDescriptorSetLayoutBinding[] =
{
 // binding to a single image descriptor
 {
 .binding = 0,
 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
 .descriptorCount = 1,
 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
 .pImmutableSamplers = NULL
 },

1249

 // binding to an array of image descriptors
 {
 .binding = 1,
 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
 .descriptorCount = 12,
 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
 .pImmutableSamplers = NULL
 },

 // binding to a single uniform buffer descriptor
 {
 .binding = 0,
 .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
 .descriptorCount = 1,
 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
 .pImmutableSamplers = NULL
 }
};

const VkDescriptorSetLayoutCreateInfo myDescriptorSetLayoutCreateInfo[] =
{
 // Information for first descriptor set with two descriptor bindings
 {
 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
 .pNext = NULL,
 .flags = 0,
 .bindingCount = 2,
 .pBindings = &myDescriptorSetLayoutBinding[0]
 },

 // Information for second descriptor set with one descriptor binding
 {
 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
 .pNext = NULL,
 .flags = 0,
 .bindingCount = 1,
 .pBindings = &myDescriptorSetLayoutBinding[2]
 }
};

VkDescriptorSetLayout myDescriptorSetLayout[2];

//
// Create first descriptor set layout
//
myResult = vkCreateDescriptorSetLayout(
 myDevice,
 &myDescriptorSetLayoutCreateInfo[0],
 NULL,
 &myDescriptorSetLayout[0]);

1250

//
// Create second descriptor set layout
//
myResult = vkCreateDescriptorSetLayout(
 myDevice,
 &myDescriptorSetLayoutCreateInfo[1],
 NULL,
 &myDescriptorSetLayout[1]);

To destroy a descriptor set layout, call:

// Provided by VK_VERSION_1_0
void vkDestroyDescriptorSetLayout(
 VkDevice device,
 VkDescriptorSetLayout descriptorSetLayout,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the descriptor set layout.

• descriptorSetLayout is the descriptor set layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-00284
If VkAllocationCallbacks were provided when descriptorSetLayout was created, a
compatible set of callbacks must be provided here

• VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-00285
If no VkAllocationCallbacks were provided when descriptorSetLayout was created,
pAllocator must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyDescriptorSetLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-parameter
If descriptorSetLayout is not VK_NULL_HANDLE, descriptorSetLayout must be a valid
VkDescriptorSetLayout handle

• VUID-vkDestroyDescriptorSetLayout-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-parent
If descriptorSetLayout is a valid handle, it must have been created, allocated, or retrieved
from device

1251

Host Synchronization

• Host access to descriptorSetLayout must be externally synchronized

14.2.2. Pipeline Layouts

Access to descriptor sets from a pipeline is accomplished through a pipeline layout. Zero or more
descriptor set layouts and zero or more push constant ranges are combined to form a pipeline
layout object describing the complete set of resources that can be accessed by a pipeline. The
pipeline layout represents a sequence of descriptor sets with each having a specific layout. This
sequence of layouts is used to determine the interface between shader stages and shader resources.
Each pipeline is created using a pipeline layout.

Pipeline layout objects are represented by VkPipelineLayout handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineLayout)

To create a pipeline layout, call:

// Provided by VK_VERSION_1_0
VkResult vkCreatePipelineLayout(
 VkDevice device,
 const VkPipelineLayoutCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPipelineLayout* pPipelineLayout);

• device is the logical device that creates the pipeline layout.

• pCreateInfo is a pointer to a VkPipelineLayoutCreateInfo structure specifying the state of the
pipeline layout object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelineLayout is a pointer to a VkPipelineLayout handle in which the resulting pipeline layout
object is returned.

Valid Usage (Implicit)

• VUID-vkCreatePipelineLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreatePipelineLayout-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkPipelineLayoutCreateInfo structure

• VUID-vkCreatePipelineLayout-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

1252

• VUID-vkCreatePipelineLayout-pPipelineLayout-parameter
pPipelineLayout must be a valid pointer to a VkPipelineLayout handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineLayoutCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineLayoutCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineLayoutCreateFlags flags;
 uint32_t setLayoutCount;
 const VkDescriptorSetLayout* pSetLayouts;
 uint32_t pushConstantRangeCount;
 const VkPushConstantRange* pPushConstantRanges;
} VkPipelineLayoutCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineLayoutCreateFlagBits specifying options for pipeline layout
creation.

• setLayoutCount is the number of descriptor sets included in the pipeline layout.

• pSetLayouts is a pointer to an array of VkDescriptorSetLayout objects.

• pushConstantRangeCount is the number of push constant ranges included in the pipeline layout.

• pPushConstantRanges is a pointer to an array of VkPushConstantRange structures defining a set of
push constant ranges for use in a single pipeline layout. In addition to descriptor set layouts, a
pipeline layout also describes how many push constants can be accessed by each stage of the
pipeline.

Note

Push constants represent a high speed path to modify constant data in
pipelines that is expected to outperform memory-backed resource updates.

1253

Valid Usage

• VUID-VkPipelineLayoutCreateInfo-setLayoutCount-00286
setLayoutCount must be less than or equal to VkPhysicalDeviceLimits
::maxBoundDescriptorSets

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03016
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible
to any given shader stage across all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceLimits::maxPerStageDescriptorSamplers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03017
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceLimits::maxPerStageDescriptorUniformBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03018
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceLimits::maxPerStageDescriptorStorageBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-06939
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM,
and VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, accessible to any given shader stage across
all elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxPerStageDescriptorSampledImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03020
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceLimits::maxPerStageDescriptorStorageImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03021
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxPerStageDescriptorInputAttachments

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02214

1254

The total number of bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set and with a
descriptorType of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible to any given shader
stage across all elements of pSetLayouts, must be less than or equal to
VkPhysicalDeviceInlineUniformBlockProperties::maxPerStageDescriptorInlineUniformBlocks

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03022
The total number of descriptors with a descriptorType of VK_DESCRIPTOR_TYPE_SAMPLER and
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxPerStageDescriptorUpdateAfterBindSamp
lers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03023
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxPerStageDescriptorUpdateAfterBindUniformBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03024
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxPerStageDescriptorUpdateAfterBindStorageBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03025
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxPerStageDescriptorUpdateAfterBindSamp
ledImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03026
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxPerStageDescriptorUpdateAfterBindStorageImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03027
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxPerStageDescriptorUpdateAfterBindInpu
tAttachments

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02215
The total number of bindings with a descriptorType of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible to any given shader stage across all

1255

elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceInlineUniformBlockProperties::maxPerStageDescriptorUpdateAfterBindInli
neUniformBlocks

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03028
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible
across all shader stages and across all elements of pSetLayouts must be less than or equal
to VkPhysicalDeviceLimits::maxDescriptorSetSamplers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03029
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetUniformBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03030
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible across all shader stages and
across all elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetUniformBuffersDynamic

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03031
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetStorageBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03032
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible across all shader stages and
across all elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetStorageBuffersDynamic

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03033
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetSampledImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03034
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
accessible across all shader stages and across all elements of pSetLayouts must be less

1256

than or equal to VkPhysicalDeviceLimits::maxDescriptorSetStorageImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03035
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetInputAttachments

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02216
The total number of bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible across all shader stages and across
all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceInlineUniformBlockProperties::maxDescriptorSetInlineUniformBlocks

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03036
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_SAMPLER and
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible across all shader stages and across
all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxDescriptorSetUpdateAfterBindSamplers

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03037
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER accessible
across all shader stages and across all elements of pSetLayouts must be less than or equal
to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindUniformBuffers

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03038
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindUniformBuffersDynamic

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03039
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER accessible
across all shader stages and across all elements of pSetLayouts must be less than or equal
to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindStorageBuffers

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03040
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindStorageBuffersDynamic

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03041
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindSampledImages

1257

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03042
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxDescriptorSetUpdateAfterBindStorageIm
ages

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03043
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindInputAttachments

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02217
The total number of bindings with a descriptorType of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceInlineUniformBlockProperties::maxDescriptorSetUpdateAfterBindInlineUni
formBlocks

• VUID-VkPipelineLayoutCreateInfo-descriptorType-06531
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceVulkan13Properties::maxInlineUniformTotalSize

• VUID-VkPipelineLayoutCreateInfo-pPushConstantRanges-00292
Any two elements of pPushConstantRanges must not include the same stage in stageFlags

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-00293
pSetLayouts must not contain more than one descriptor set layout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR set

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03571
The total number of bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR accessible to any given shader stage
across all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceAccelerationStructurePropertiesKHR::maxPerStageDescriptorAcceleratio
nStructures

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03572
The total number of bindings with a descriptorType of
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR accessible to any given shader stage
across all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceAccelerationStructurePropertiesKHR::maxPerStageDescriptorUpdateAfter
BindAccelerationStructures

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03573
The total number of bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR accessible across all shader stages and
across all elements of pSetLayouts must be less than or equal to

1258

VkPhysicalDeviceAccelerationStructurePropertiesKHR::maxDescriptorSetAccelerationStru
ctures

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03574
The total number of bindings with a descriptorType of
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR accessible across all shader stages and
across all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceAccelerationStructurePropertiesKHR::maxDescriptorSetUpdateAfterBindA
ccelerationStructures

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02381
The total number of bindings with a descriptorType of
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV accessible across all shader stages and
across all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceRayTracingPropertiesNV::maxDescriptorSetAccelerationStructures

• VUID-VkPipelineLayoutCreateInfo-pImmutableSamplers-03566
The total number of pImmutableSamplers created with flags containing
VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT or
VK_SAMPLER_CREATE_SUBSAMPLED_COARSE_RECONSTRUCTION_BIT_EXT across all shader stages and
across all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceFragmentDensityMap2PropertiesEXT::maxDescriptorSetSubsampledSamplers

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-04606
Any element of pSetLayouts must not have been created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT bit set

• VUID-VkPipelineLayoutCreateInfo-graphicsPipelineLibrary-06753
If graphicsPipelineLibrary is not enabled, elements of pSetLayouts must be valid
VkDescriptorSetLayout objects

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-08008
If any element of pSetLayouts was created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT bit set, all elements of
pSetLayouts must have been created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT bit set

Valid Usage (Implicit)

• VUID-VkPipelineLayoutCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO

• VUID-VkPipelineLayoutCreateInfo-flags-parameter
flags must be a valid combination of VkPipelineLayoutCreateFlagBits values

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-parameter
If setLayoutCount is not 0, pSetLayouts must be a valid pointer to an array of
setLayoutCount valid or VK_NULL_HANDLE VkDescriptorSetLayout handles

• VUID-VkPipelineLayoutCreateInfo-pPushConstantRanges-parameter
If pushConstantRangeCount is not 0, pPushConstantRanges must be a valid pointer to an array
of pushConstantRangeCount valid VkPushConstantRange structures

1259

// Provided by VK_EXT_graphics_pipeline_library
typedef enum VkPipelineLayoutCreateFlagBits {
 // Provided by VK_EXT_graphics_pipeline_library
 VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT = 0x00000002,
} VkPipelineLayoutCreateFlagBits;

• VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT specifies that implementations must
ensure that the properties and/or absence of a particular descriptor set do not influence any
other properties of the pipeline layout. This allows pipelines libraries linked without
VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT to be created with a subset of the total
descriptor sets.

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineLayoutCreateFlags;

VkPipelineLayoutCreateFlags is a bitmask type for setting a mask of VkPipelineLayoutCreateFlagBits.

The VkPushConstantRange structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPushConstantRange {
 VkShaderStageFlags stageFlags;
 uint32_t offset;
 uint32_t size;
} VkPushConstantRange;

• stageFlags is a set of stage flags describing the shader stages that will access a range of push
constants. If a particular stage is not included in the range, then accessing members of that
range of push constants from the corresponding shader stage will return undefined values.

• offset and size are the start offset and size, respectively, consumed by the range. Both offset
and size are in units of bytes and must be a multiple of 4. The layout of the push constant
variables is specified in the shader.

Valid Usage

• VUID-VkPushConstantRange-offset-00294
offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• VUID-VkPushConstantRange-offset-00295
offset must be a multiple of 4

• VUID-VkPushConstantRange-size-00296
size must be greater than 0

• VUID-VkPushConstantRange-size-00297
size must be a multiple of 4

1260

• VUID-VkPushConstantRange-size-00298
size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus
offset

Valid Usage (Implicit)

• VUID-VkPushConstantRange-stageFlags-parameter
stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-VkPushConstantRange-stageFlags-requiredbitmask
stageFlags must not be 0

Once created, pipeline layouts are used as part of pipeline creation (see Pipelines), as part of
binding descriptor sets (see Descriptor Set Binding), and as part of setting push constants (see Push
Constant Updates). Pipeline creation accepts a pipeline layout as input, and the layout may be used
to map (set, binding, arrayElement) tuples to implementation resources or memory locations within
a descriptor set. The assignment of implementation resources depends only on the bindings defined
in the descriptor sets that comprise the pipeline layout, and not on any shader source.

All resource variables statically used in all shaders in a pipeline must be declared with a (set,
binding, arrayElement) that exists in the corresponding descriptor set layout and is of an
appropriate descriptor type and includes the set of shader stages it is used by in stageFlags. The
pipeline layout can include entries that are not used by a particular pipeline. The pipeline layout
allows the application to provide a consistent set of bindings across multiple pipeline compiles,
which enables those pipelines to be compiled in a way that the implementation may cheaply switch
pipelines without reprogramming the bindings.

Similarly, the push constant block declared in each shader (if present) must only place variables at
offsets that are each included in a push constant range with stageFlags including the bit
corresponding to the shader stage that uses it. The pipeline layout can include ranges or portions of
ranges that are not used by a particular pipeline.

There is a limit on the total number of resources of each type that can be included in bindings in all
descriptor set layouts in a pipeline layout as shown in Pipeline Layout Resource Limits. The “Total
Resources Available” column gives the limit on the number of each type of resource that can be
included in bindings in all descriptor sets in the pipeline layout. Some resource types count against
multiple limits. Additionally, there are limits on the total number of each type of resource that can
be used in any pipeline stage as described in Shader Resource Limits.

Table 18. Pipeline Layout Resource Limits

Total Resources Available Resource Types

maxDescriptorSetSamplers or
maxDescriptorSetUpdateAfterBindSamplers

sampler

combined image sampler

1261

Total Resources Available Resource Types

maxDescriptorSetSampledImages or
maxDescriptorSetUpdateAfterBindSampledImages

sampled image

combined image sampler

uniform texel buffer

maxDescriptorSetStorageImages or
maxDescriptorSetUpdateAfterBindStorageImages

storage image

storage texel buffer

maxDescriptorSetUniformBuffers or
maxDescriptorSetUpdateAfterBindUniformBuffers

uniform buffer

uniform buffer dynamic

maxDescriptorSetUniformBuffersDynamic or
maxDescriptorSetUpdateAfterBindUniformBuffersD
ynamic

uniform buffer dynamic

maxDescriptorSetStorageBuffers or
maxDescriptorSetUpdateAfterBindStorageBuffers

storage buffer

storage buffer dynamic

maxDescriptorSetStorageBuffersDynamic or
maxDescriptorSetUpdateAfterBindStorageBuffersD
ynamic

storage buffer dynamic

maxDescriptorSetInputAttachments or
maxDescriptorSetUpdateAfterBindInputAttachment
s

input attachment

maxDescriptorSetInlineUniformBlocks or
maxDescriptorSetUpdateAfterBindInlineUniformBl
ocks

inline uniform block

maxDescriptorSetAccelerationStructures or
maxDescriptorSetUpdateAfterBindAccelerationStr
uctures

acceleration structure

To destroy a pipeline layout, call:

// Provided by VK_VERSION_1_0
void vkDestroyPipelineLayout(
 VkDevice device,
 VkPipelineLayout pipelineLayout,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline layout.

• pipelineLayout is the pipeline layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyPipelineLayout-pipelineLayout-00299
If VkAllocationCallbacks were provided when pipelineLayout was created, a compatible

1262

set of callbacks must be provided here

• VUID-vkDestroyPipelineLayout-pipelineLayout-00300
If no VkAllocationCallbacks were provided when pipelineLayout was created, pAllocator
must be NULL

• VUID-vkDestroyPipelineLayout-pipelineLayout-02004
pipelineLayout must not have been passed to any vkCmd* command for any command
buffers that are still in the recording state when vkDestroyPipelineLayout is called

Valid Usage (Implicit)

• VUID-vkDestroyPipelineLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyPipelineLayout-pipelineLayout-parameter
If pipelineLayout is not VK_NULL_HANDLE, pipelineLayout must be a valid
VkPipelineLayout handle

• VUID-vkDestroyPipelineLayout-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyPipelineLayout-pipelineLayout-parent
If pipelineLayout is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to pipelineLayout must be externally synchronized

Pipeline Layout Compatibility

Two pipeline layouts are defined to be “compatible for push constants” if they were created with
identical push constant ranges. Two pipeline layouts are defined to be “compatible for set N” if they
were created with identically defined descriptor set layouts for sets zero through N, if both of them
either were or were not created with VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT, and if
they were created with identical push constant ranges.

When binding a descriptor set (see Descriptor Set Binding) to set number N, a previously bound
descriptor set bound with lower index M than N is disturbed if the pipeline layouts for set M and N
are not compatible for set M. Otherwise, the bound descriptor set in M is not disturbed.

If, additionally, the previously bound descriptor set for set N was bound using a pipeline layout not
compatible for set N, then all bindings in sets numbered greater than N are disturbed.

When binding a pipeline, the pipeline can correctly access any previously bound descriptor set N if
it was bound with compatible pipeline layout for set N, and it was not disturbed.

1263

Layout compatibility means that descriptor sets can be bound to a command buffer for use by any
pipeline created with a compatible pipeline layout, and without having bound a particular pipeline
first. It also means that descriptor sets can remain valid across a pipeline change, and the same
resources will be accessible to the newly bound pipeline.

When a descriptor set is disturbed by binding descriptor sets, the disturbed set is considered to
contain undefined descriptors bound with the same pipeline layout as the disturbing descriptor set.

Implementor’s Note

A consequence of layout compatibility is that when the implementation compiles a pipeline
layout and maps pipeline resources to implementation resources, the mechanism for set N
should only be a function of sets [0..N].

Note

Place the least frequently changing descriptor sets near the start of the pipeline
layout, and place the descriptor sets representing the most frequently changing
resources near the end. When pipelines are switched, only the descriptor set
bindings that have been invalidated will need to be updated and the remainder of
the descriptor set bindings will remain in place.

The maximum number of descriptor sets that can be bound to a pipeline layout is queried from
physical device properties (see maxBoundDescriptorSets in Limits).

API example

const VkDescriptorSetLayout layouts[] = { layout1, layout2 };

const VkPushConstantRange ranges[] =
{
 {
 .stageFlags = VK_SHADER_STAGE_VERTEX_BIT,
 .offset = 0,
 .size = 4
 },
 {
 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
 .offset = 4,
 .size = 4
 },
};

const VkPipelineLayoutCreateInfo createInfo =
{
 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
 .pNext = NULL,
 .flags = 0,
 .setLayoutCount = 2,

1264

 .pSetLayouts = layouts,
 .pushConstantRangeCount = 2,
 .pPushConstantRanges = ranges
};

VkPipelineLayout myPipelineLayout;
myResult = vkCreatePipelineLayout(
 myDevice,
 &createInfo,
 NULL,
 &myPipelineLayout);

14.2.3. Allocation of Descriptor Sets

A descriptor pool maintains a pool of descriptors, from which descriptor sets are allocated.
Descriptor pools are externally synchronized, meaning that the application must not allocate
and/or free descriptor sets from the same pool in multiple threads simultaneously.

Descriptor pools are represented by VkDescriptorPool handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorPool)

To create a descriptor pool object, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateDescriptorPool(
 VkDevice device,
 const VkDescriptorPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorPool* pDescriptorPool);

• device is the logical device that creates the descriptor pool.

• pCreateInfo is a pointer to a VkDescriptorPoolCreateInfo structure specifying the state of the
descriptor pool object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDescriptorPool is a pointer to a VkDescriptorPool handle in which the resulting descriptor pool
object is returned.

The created descriptor pool is returned in pDescriptorPool.

Valid Usage (Implicit)

• VUID-vkCreateDescriptorPool-device-parameter
device must be a valid VkDevice handle

1265

• VUID-vkCreateDescriptorPool-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDescriptorPoolCreateInfo structure

• VUID-vkCreateDescriptorPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDescriptorPool-pDescriptorPool-parameter
pDescriptorPool must be a valid pointer to a VkDescriptorPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FRAGMENTATION_EXT

Additional information about the pool is passed in a VkDescriptorPoolCreateInfo structure:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorPoolCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorPoolCreateFlags flags;
 uint32_t maxSets;
 uint32_t poolSizeCount;
 const VkDescriptorPoolSize* pPoolSizes;
} VkDescriptorPoolCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkDescriptorPoolCreateFlagBits specifying certain supported operations on
the pool.

• maxSets is the maximum number of descriptor sets that can be allocated from the pool.

• poolSizeCount is the number of elements in pPoolSizes.

• pPoolSizes is a pointer to an array of VkDescriptorPoolSize structures, each containing a
descriptor type and number of descriptors of that type to be allocated in the pool.

If multiple VkDescriptorPoolSize structures containing the same descriptor type appear in the
pPoolSizes array then the pool will be created with enough storage for the total number of
descriptors of each type.

1266

Fragmentation of a descriptor pool is possible and may lead to descriptor set allocation failures. A
failure due to fragmentation is defined as failing a descriptor set allocation despite the sum of all
outstanding descriptor set allocations from the pool plus the requested allocation requiring no
more than the total number of descriptors requested at pool creation. Implementations provide
certain guarantees of when fragmentation must not cause allocation failure, as described below.

If a descriptor pool has not had any descriptor sets freed since it was created or most recently reset
then fragmentation must not cause an allocation failure (note that this is always the case for a pool
created without the VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT bit set). Additionally, if all
sets allocated from the pool since it was created or most recently reset use the same number of
descriptors (of each type) and the requested allocation also uses that same number of descriptors
(of each type), then fragmentation must not cause an allocation failure.

If an allocation failure occurs due to fragmentation, an application can create an additional
descriptor pool to perform further descriptor set allocations.

If flags has the VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit set, descriptor pool creation
may fail with the error VK_ERROR_FRAGMENTATION if the total number of descriptors across all pools
(including this one) created with this bit set exceeds maxUpdateAfterBindDescriptorsInAllPools, or if
fragmentation of the underlying hardware resources occurs.

If a pPoolSizes[i]::type is VK_DESCRIPTOR_TYPE_MUTABLE_EXT, a VkMutableDescriptorTypeCreateInfoEXT
struct in the pNext chain can be used to specify which mutable descriptor types can be allocated
from the pool. If included in the pNext chain, VkMutableDescriptorTypeCreateInfoEXT
::pMutableDescriptorTypeLists[i] specifies which kind of VK_DESCRIPTOR_TYPE_MUTABLE_EXT descriptors
can be allocated from this pool entry. If VkMutableDescriptorTypeCreateInfoEXT does not exist in
the pNext chain, or VkMutableDescriptorTypeCreateInfoEXT::pMutableDescriptorTypeLists[i] is out
of range, the descriptor pool allocates enough memory to be able to allocate a
VK_DESCRIPTOR_TYPE_MUTABLE_EXT descriptor with any supported VkDescriptorType as a mutable
descriptor. A mutable descriptor can be allocated from a pool entry if the type list in
VkDescriptorSetLayoutCreateInfo is a subset of the type list declared in the descriptor pool, or if the
pool entry is created without a descriptor type list. Multiple pPoolSizes entries with
VK_DESCRIPTOR_TYPE_MUTABLE_EXT can be declared. When multiple such pool entries are present in
pPoolSizes, they specify sets of supported descriptor types which either fully overlap, partially
overlap, or are disjoint. Two sets fully overlap if the sets of supported descriptor types are equal. If
the sets are not disjoint they partially overlap. A pool entry without a
VkMutableDescriptorTypeListEXT assigned to it is considered to partially overlap any other pool entry
which has a VkMutableDescriptorTypeListEXT assigned to it. The application must ensure that partial
overlap does not exist in pPoolSizes.

Note

The requirement of no partial overlap is intended to resolve ambiguity for
validation as there is no confusion which pPoolSizes entries will be allocated from.
An implementation is not expected to depend on this requirement.

Valid Usage

• VUID-VkDescriptorPoolCreateInfo-descriptorPoolOverallocation-09227

1267

If the descriptorPoolOverallocation feature is not enabled, or flags does not have
VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_SETS_BIT_NV set, maxSets must be greater
than 0

• VUID-VkDescriptorPoolCreateInfo-flags-09228
If flags has the VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_SETS_BIT_NV or
VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_POOLS_BIT_NV bits set, then
descriptorPoolOverallocation must be enabled

• VUID-VkDescriptorPoolCreateInfo-flags-04607
If flags has the VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT bit set, then the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit must not be set

• VUID-VkDescriptorPoolCreateInfo-mutableDescriptorType-04608
If VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT::mutableDescriptorType is not
enabled, pPoolSizes must not contain a descriptorType of VK_DESCRIPTOR_TYPE_MUTABLE_EXT

• VUID-VkDescriptorPoolCreateInfo-flags-04609
If flags has the VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT bit set,
VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT::mutableDescriptorType must be
enabled

• VUID-VkDescriptorPoolCreateInfo-pPoolSizes-04787
If pPoolSizes contains a descriptorType of VK_DESCRIPTOR_TYPE_MUTABLE_EXT, any other
VK_DESCRIPTOR_TYPE_MUTABLE_EXT element in pPoolSizes must not have sets of supported
descriptor types which partially overlap

• VUID-VkDescriptorPoolCreateInfo-pPoolSizes-09424
If pPoolSizes contains a descriptorType of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, the
pNext chain must include a VkDescriptorPoolInlineUniformBlockCreateInfo structure
whose maxInlineUniformBlockBindings member is not zero

Valid Usage (Implicit)

• VUID-VkDescriptorPoolCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO

• VUID-VkDescriptorPoolCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDescriptorPoolInlineUniformBlockCreateInfo or
VkMutableDescriptorTypeCreateInfoEXT

• VUID-VkDescriptorPoolCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkDescriptorPoolCreateInfo-flags-parameter
flags must be a valid combination of VkDescriptorPoolCreateFlagBits values

• VUID-VkDescriptorPoolCreateInfo-pPoolSizes-parameter
If poolSizeCount is not 0, pPoolSizes must be a valid pointer to an array of poolSizeCount
valid VkDescriptorPoolSize structures

1268

In order to be able to allocate descriptor sets having inline uniform block bindings the descriptor
pool must be created with specifying the inline uniform block binding capacity of the descriptor
pool, in addition to the total inline uniform data capacity in bytes which is specified through a
VkDescriptorPoolSize structure with a descriptorType value of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK. This can be done by adding a
VkDescriptorPoolInlineUniformBlockCreateInfo structure to the pNext chain of
VkDescriptorPoolCreateInfo.

The VkDescriptorPoolInlineUniformBlockCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkDescriptorPoolInlineUniformBlockCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t maxInlineUniformBlockBindings;
} VkDescriptorPoolInlineUniformBlockCreateInfo;

or the equivalent

// Provided by VK_EXT_inline_uniform_block
typedef VkDescriptorPoolInlineUniformBlockCreateInfo
VkDescriptorPoolInlineUniformBlockCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxInlineUniformBlockBindings is the number of inline uniform block bindings to allocate.

Valid Usage (Implicit)

• VUID-VkDescriptorPoolInlineUniformBlockCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO

Bits which can be set in VkDescriptorPoolCreateInfo::flags, enabling operations on a descriptor
pool, are:

// Provided by VK_VERSION_1_0
typedef enum VkDescriptorPoolCreateFlagBits {
 VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT = 0x00000001,
 // Provided by VK_VERSION_1_2
 VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT = 0x00000002,
 // Provided by VK_EXT_mutable_descriptor_type
 VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT = 0x00000004,
 // Provided by VK_NV_descriptor_pool_overallocation
 VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_SETS_BIT_NV = 0x00000008,
 // Provided by VK_NV_descriptor_pool_overallocation

1269

 VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_POOLS_BIT_NV = 0x00000010,
 // Provided by VK_EXT_descriptor_indexing
 VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT =
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT,
 // Provided by VK_VALVE_mutable_descriptor_type
 VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_VALVE =
VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT,
} VkDescriptorPoolCreateFlagBits;

• VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT specifies that descriptor sets can return
their individual allocations to the pool, i.e. all of vkAllocateDescriptorSets,
vkFreeDescriptorSets, and vkResetDescriptorPool are allowed. Otherwise, descriptor sets
allocated from the pool must not be individually freed back to the pool, i.e. only
vkAllocateDescriptorSets and vkResetDescriptorPool are allowed.

• VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT specifies that descriptor sets allocated from
this pool can include bindings with the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit set. It is
valid to allocate descriptor sets that have bindings that do not set the
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit from a pool that has
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT set.

• VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT specifies that this descriptor pool and the
descriptor sets allocated from it reside entirely in host memory and cannot be bound. Similar to
descriptor sets allocated without this flag, applications can copy-from and copy-to descriptors
sets allocated from this descriptor pool. Descriptor sets allocated from this pool are partially
exempt from the external synchronization requirement in
vkUpdateDescriptorSetWithTemplateKHR and vkUpdateDescriptorSets. Descriptor sets and
their descriptors can be updated concurrently in different threads, though the same descriptor
must not be updated concurrently by two threads.

• VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_SETS_BIT_NV specifies that the implementation
should allow the application to allocate more than VkDescriptorPoolCreateInfo::maxSets
descriptor set objects from the descriptor pool as available resources allow. The implementation
may use the maxSets value to allocate the initial available sets, but using zero is permitted.

• VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_POOLS_BIT_NV specifies that the implementation
should allow the application to allocate more descriptors from the pool than was specified by
the VkDescriptorPoolSize::descriptorCount for any descriptor type as specified by
VkDescriptorPoolCreateInfo::poolSizeCount and VkDescriptorPoolCreateInfo::pPoolSizes, as
available resources allow. The implementation may use the descriptorCount for each descriptor
type to allocate the initial pool, but the application is allowed to set the poolSizeCount to zero, or
any of the descriptorCount values in the pPoolSizes array to zero.

// Provided by VK_VERSION_1_0
typedef VkFlags VkDescriptorPoolCreateFlags;

VkDescriptorPoolCreateFlags is a bitmask type for setting a mask of zero or more
VkDescriptorPoolCreateFlagBits.

The VkDescriptorPoolSize structure is defined as:

1270

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorPoolSize {
 VkDescriptorType type;
 uint32_t descriptorCount;
} VkDescriptorPoolSize;

• type is the type of descriptor.

• descriptorCount is the number of descriptors of that type to allocate. If type is
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount is the number of bytes to allocate
for descriptors of this type.

Note

When creating a descriptor pool that will contain descriptors for combined image
samplers of multi-planar formats, an application needs to account for non-trivial
descriptor consumption when choosing the descriptorCount value, as indicated by
VkSamplerYcbcrConversionImageFormatProperties::combinedImageSamplerDescript
orCount.

For simplicity the application can use the
VkPhysicalDeviceMaintenance6PropertiesKHR::maxCombinedImageSamplerDescriptor
Count property, which is sized to accommodate any and all formats that require a
sampler Y′CBCR conversion supported by the implementation.

Valid Usage

• VUID-VkDescriptorPoolSize-descriptorCount-00302
descriptorCount must be greater than 0

• VUID-VkDescriptorPoolSize-type-02218
If type is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount must be a
multiple of 4

Valid Usage (Implicit)

• VUID-VkDescriptorPoolSize-type-parameter
type must be a valid VkDescriptorType value

To destroy a descriptor pool, call:

// Provided by VK_VERSION_1_0
void vkDestroyDescriptorPool(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 const VkAllocationCallbacks* pAllocator);

1271

• device is the logical device that destroys the descriptor pool.

• descriptorPool is the descriptor pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

When a pool is destroyed, all descriptor sets allocated from the pool are implicitly freed and
become invalid. Descriptor sets allocated from a given pool do not need to be freed before
destroying that descriptor pool.

Valid Usage

• VUID-vkDestroyDescriptorPool-descriptorPool-00303
All submitted commands that refer to descriptorPool (via any allocated descriptor sets)
must have completed execution

• VUID-vkDestroyDescriptorPool-descriptorPool-00304
If VkAllocationCallbacks were provided when descriptorPool was created, a compatible
set of callbacks must be provided here

• VUID-vkDestroyDescriptorPool-descriptorPool-00305
If no VkAllocationCallbacks were provided when descriptorPool was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyDescriptorPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyDescriptorPool-descriptorPool-parameter
If descriptorPool is not VK_NULL_HANDLE, descriptorPool must be a valid
VkDescriptorPool handle

• VUID-vkDestroyDescriptorPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDescriptorPool-descriptorPool-parent
If descriptorPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to descriptorPool must be externally synchronized

Descriptor sets are allocated from descriptor pool objects, and are represented by VkDescriptorSet
handles:

// Provided by VK_VERSION_1_0

1272

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorSet)

To allocate descriptor sets from a descriptor pool, call:

// Provided by VK_VERSION_1_0
VkResult vkAllocateDescriptorSets(
 VkDevice device,
 const VkDescriptorSetAllocateInfo* pAllocateInfo,
 VkDescriptorSet* pDescriptorSets);

• device is the logical device that owns the descriptor pool.

• pAllocateInfo is a pointer to a VkDescriptorSetAllocateInfo structure describing parameters of
the allocation.

• pDescriptorSets is a pointer to an array of VkDescriptorSet handles in which the resulting
descriptor set objects are returned.

The allocated descriptor sets are returned in pDescriptorSets.

When a descriptor set is allocated, the initial state is largely uninitialized and all descriptors are
undefined, with the exception that samplers with a non-null pImmutableSamplers are initialized on
allocation. Descriptors also become undefined if the underlying resource or view object is
destroyed. Descriptor sets containing undefined descriptors can still be bound and used, subject to
the following conditions:

• For descriptor set bindings created with the VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT bit set,
all descriptors in that binding that are dynamically used must have been populated before the
descriptor set is consumed.

• For descriptor set bindings created without the VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT bit
set, all descriptors in that binding that are statically used must have been populated before the
descriptor set is consumed.

• Descriptor bindings with descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK can be
undefined when the descriptor set is consumed; though values in that block will be undefined.

• Entries that are not used by a pipeline can have undefined descriptors.

If a call to vkAllocateDescriptorSets would cause the total number of descriptor sets allocated from
the pool to exceed the value of VkDescriptorPoolCreateInfo::maxSets used to create pAllocateInfo-
>descriptorPool, then the allocation may fail due to lack of space in the descriptor pool. Similarly,
the allocation may fail due to lack of space if the call to vkAllocateDescriptorSets would cause the
number of any given descriptor type to exceed the sum of all the descriptorCount members of each
element of VkDescriptorPoolCreateInfo::pPoolSizes with a type equal to that type.

Additionally, the allocation may also fail if a call to vkAllocateDescriptorSets would cause the total
number of inline uniform block bindings allocated from the pool to exceed the value of
VkDescriptorPoolInlineUniformBlockCreateInfo::maxInlineUniformBlockBindings used to create the
descriptor pool.

1273

If the allocation fails due to no more space in the descriptor pool, and not because of system or
device memory exhaustion, then VK_ERROR_OUT_OF_POOL_MEMORY must be returned.

vkAllocateDescriptorSets can be used to create multiple descriptor sets. If the creation of any of
those descriptor sets fails, then the implementation must destroy all successfully created descriptor
set objects from this command, set all entries of the pDescriptorSets array to VK_NULL_HANDLE
and return the error.

Valid Usage (Implicit)

• VUID-vkAllocateDescriptorSets-device-parameter
device must be a valid VkDevice handle

• VUID-vkAllocateDescriptorSets-pAllocateInfo-parameter
pAllocateInfo must be a valid pointer to a valid VkDescriptorSetAllocateInfo structure

• VUID-vkAllocateDescriptorSets-pDescriptorSets-parameter
pDescriptorSets must be a valid pointer to an array of pAllocateInfo->descriptorSetCount
VkDescriptorSet handles

• VUID-vkAllocateDescriptorSets-pAllocateInfo::descriptorSetCount-arraylength
pAllocateInfo->descriptorSetCount must be greater than 0

Host Synchronization

• Host access to pAllocateInfo->descriptorPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FRAGMENTED_POOL

• VK_ERROR_OUT_OF_POOL_MEMORY

The VkDescriptorSetAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorSetAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorPool descriptorPool;
 uint32_t descriptorSetCount;

1274

 const VkDescriptorSetLayout* pSetLayouts;
} VkDescriptorSetAllocateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• descriptorPool is the pool which the sets will be allocated from.

• descriptorSetCount determines the number of descriptor sets to be allocated from the pool.

• pSetLayouts is a pointer to an array of descriptor set layouts, with each member specifying how
the corresponding descriptor set is allocated.

Valid Usage

• VUID-VkDescriptorSetAllocateInfo-apiVersion-07895
If the VK_KHR_maintenance1 extension is not enabled and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, descriptorSetCount must not be greater than the
number of sets that are currently available for allocation in descriptorPool

• VUID-VkDescriptorSetAllocateInfo-apiVersion-07896
If the VK_KHR_maintenance1 extension is not enabled and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, descriptorPool must have enough free descriptor
capacity remaining to allocate the descriptor sets of the specified layouts

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-00308
Each element of pSetLayouts must not have been created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR set

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-03044
If any element of pSetLayouts was created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set, descriptorPool must
have been created with the VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-09380
If pSetLayouts[i] was created with an element of pBindingFlags that includes
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT, and
VkDescriptorSetVariableDescriptorCountAllocateInfo is included in the pNext chain, and
VkDescriptorSetVariableDescriptorCountAllocateInfo::descriptorSetCount is not zero, then
VkDescriptorSetVariableDescriptorCountAllocateInfo::pDescriptorCounts[i] must be less
than or equal to VkDescriptorSetLayoutBinding::descriptorCount for the corresponding
binding used to create pSetLayouts[i]

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-04610
If any element of pSetLayouts was created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT bit set, descriptorPool must
have been created with the VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT flag set

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-08009
Each element of pSetLayouts must not have been created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT bit set

1275

Valid Usage (Implicit)

• VUID-VkDescriptorSetAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO

• VUID-VkDescriptorSetAllocateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDescriptorSetVariableDescriptorCountAllocateInfo

• VUID-VkDescriptorSetAllocateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkDescriptorSetAllocateInfo-descriptorPool-parameter
descriptorPool must be a valid VkDescriptorPool handle

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-parameter
pSetLayouts must be a valid pointer to an array of descriptorSetCount valid
VkDescriptorSetLayout handles

• VUID-VkDescriptorSetAllocateInfo-descriptorSetCount-arraylength
descriptorSetCount must be greater than 0

• VUID-VkDescriptorSetAllocateInfo-commonparent
Both of descriptorPool, and the elements of pSetLayouts must have been created,
allocated, or retrieved from the same VkDevice

If the pNext chain of a VkDescriptorSetAllocateInfo structure includes a
VkDescriptorSetVariableDescriptorCountAllocateInfo structure, then that structure includes an
array of descriptor counts for variable-sized descriptor bindings, one for each descriptor set being
allocated.

The VkDescriptorSetVariableDescriptorCountAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkDescriptorSetVariableDescriptorCountAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t descriptorSetCount;
 const uint32_t* pDescriptorCounts;
} VkDescriptorSetVariableDescriptorCountAllocateInfo;

or the equivalent

// Provided by VK_EXT_descriptor_indexing
typedef VkDescriptorSetVariableDescriptorCountAllocateInfo
VkDescriptorSetVariableDescriptorCountAllocateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

1276

• descriptorSetCount is zero or the number of elements in pDescriptorCounts.

• pDescriptorCounts is a pointer to an array of descriptor counts, with each member specifying the
number of descriptors in a variable-sized descriptor binding in the corresponding descriptor set
being allocated.

If descriptorSetCount is zero or this structure is not included in the pNext chain, then the variable
lengths are considered to be zero. Otherwise, pDescriptorCounts[i] is the number of descriptors in
the variable-sized descriptor binding in the corresponding descriptor set layout. If the variable-
sized descriptor binding in the corresponding descriptor set layout has a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then pDescriptorCounts[i] specifies the binding’s capacity
in bytes. If VkDescriptorSetAllocateInfo::pSetLayouts[i] does not include a variable-sized descriptor
binding, then pDescriptorCounts[i] is ignored.

Valid Usage

• VUID-VkDescriptorSetVariableDescriptorCountAllocateInfo-descriptorSetCount-03045
If descriptorSetCount is not zero, descriptorSetCount must equal
VkDescriptorSetAllocateInfo::descriptorSetCount

Valid Usage (Implicit)

• VUID-VkDescriptorSetVariableDescriptorCountAllocateInfo-sType-sType
sType must be
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO

• VUID-VkDescriptorSetVariableDescriptorCountAllocateInfo-pDescriptorCounts-parameter
If descriptorSetCount is not 0, pDescriptorCounts must be a valid pointer to an array of
descriptorSetCount uint32_t values

To free allocated descriptor sets, call:

// Provided by VK_VERSION_1_0
VkResult vkFreeDescriptorSets(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 uint32_t descriptorSetCount,
 const VkDescriptorSet* pDescriptorSets);

• device is the logical device that owns the descriptor pool.

• descriptorPool is the descriptor pool from which the descriptor sets were allocated.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

• pDescriptorSets is a pointer to an array of handles to VkDescriptorSet objects.

After calling vkFreeDescriptorSets, all descriptor sets in pDescriptorSets are invalid.

1277

Valid Usage

• VUID-vkFreeDescriptorSets-pDescriptorSets-00309
All submitted commands that refer to any element of pDescriptorSets must have
completed execution

• VUID-vkFreeDescriptorSets-pDescriptorSets-00310
pDescriptorSets must be a valid pointer to an array of descriptorSetCount VkDescriptorSet
handles, each element of which must either be a valid handle or VK_NULL_HANDLE

• VUID-vkFreeDescriptorSets-descriptorPool-00312
descriptorPool must have been created with the
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT flag

Valid Usage (Implicit)

• VUID-vkFreeDescriptorSets-device-parameter
device must be a valid VkDevice handle

• VUID-vkFreeDescriptorSets-descriptorPool-parameter
descriptorPool must be a valid VkDescriptorPool handle

• VUID-vkFreeDescriptorSets-descriptorSetCount-arraylength
descriptorSetCount must be greater than 0

• VUID-vkFreeDescriptorSets-descriptorPool-parent
descriptorPool must have been created, allocated, or retrieved from device

• VUID-vkFreeDescriptorSets-pDescriptorSets-parent
Each element of pDescriptorSets that is a valid handle must have been created, allocated,
or retrieved from descriptorPool

Host Synchronization

• Host access to descriptorPool must be externally synchronized

• Host access to each member of pDescriptorSets must be externally synchronized

Return Codes

Success

• VK_SUCCESS

To return all descriptor sets allocated from a given pool to the pool, rather than freeing individual
descriptor sets, call:

// Provided by VK_VERSION_1_0

1278

VkResult vkResetDescriptorPool(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 VkDescriptorPoolResetFlags flags);

• device is the logical device that owns the descriptor pool.

• descriptorPool is the descriptor pool to be reset.

• flags is reserved for future use.

Resetting a descriptor pool recycles all of the resources from all of the descriptor sets allocated
from the descriptor pool back to the descriptor pool, and the descriptor sets are implicitly freed.

Valid Usage

• VUID-vkResetDescriptorPool-descriptorPool-00313
All uses of descriptorPool (via any allocated descriptor sets) must have completed
execution

Valid Usage (Implicit)

• VUID-vkResetDescriptorPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetDescriptorPool-descriptorPool-parameter
descriptorPool must be a valid VkDescriptorPool handle

• VUID-vkResetDescriptorPool-flags-zerobitmask
flags must be 0

• VUID-vkResetDescriptorPool-descriptorPool-parent
descriptorPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to descriptorPool must be externally synchronized

• Host access to any VkDescriptorSet objects allocated from descriptorPool must be
externally synchronized

Return Codes

Success

• VK_SUCCESS

1279

// Provided by VK_VERSION_1_0
typedef VkFlags VkDescriptorPoolResetFlags;

VkDescriptorPoolResetFlags is a bitmask type for setting a mask, but is currently reserved for future
use.

14.2.4. Descriptor Set Updates

Once allocated, descriptor sets can be updated with a combination of write and copy operations. To
update descriptor sets, call:

// Provided by VK_VERSION_1_0
void vkUpdateDescriptorSets(
 VkDevice device,
 uint32_t descriptorWriteCount,
 const VkWriteDescriptorSet* pDescriptorWrites,
 uint32_t descriptorCopyCount,
 const VkCopyDescriptorSet* pDescriptorCopies);

• device is the logical device that updates the descriptor sets.

• descriptorWriteCount is the number of elements in the pDescriptorWrites array.

• pDescriptorWrites is a pointer to an array of VkWriteDescriptorSet structures describing the
descriptor sets to write to.

• descriptorCopyCount is the number of elements in the pDescriptorCopies array.

• pDescriptorCopies is a pointer to an array of VkCopyDescriptorSet structures describing the
descriptor sets to copy between.

The operations described by pDescriptorWrites are performed first, followed by the operations
described by pDescriptorCopies. Within each array, the operations are performed in the order they
appear in the array.

Each element in the pDescriptorWrites array describes an operation updating the descriptor set
using descriptors for resources specified in the structure.

Each element in the pDescriptorCopies array is a VkCopyDescriptorSet structure describing an
operation copying descriptors between sets.

If the dstSet member of any element of pDescriptorWrites or pDescriptorCopies is bound, accessed,
or modified by any command that was recorded to a command buffer which is currently in the
recording or executable state, and any of the descriptor bindings that are updated were not created
with the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT or
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT bits set, that command buffer becomes
invalid.

1280

Valid Usage

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06236
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
elements of the pTexelBufferView member of pDescriptorWrites[i] must have been created
on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06237
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the buffer member of any element of the
pBufferInfo member of pDescriptorWrites[i] must have been created on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06238
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and dstSet was
not allocated with a layout that included immutable samplers for dstBinding with
descriptorType, the sampler member of any element of the pImageInfo member of
pDescriptorWrites[i] must have been created on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06239
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER the
imageView member of any element of pDescriptorWrites[i] must have been created on
device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06240
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, elements of the pAccelerationStructures
member of a VkWriteDescriptorSetAccelerationStructureKHR structure in the pNext chain
of pDescriptorWrites[i] must have been created on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06241
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV, elements of the pAccelerationStructures
member of a VkWriteDescriptorSetAccelerationStructureNV structure in the pNext chain
of pDescriptorWrites[i] must have been created on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06940
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM or
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, the imageView member of any element of
pDescriptorWrites[i] must have been created on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06493
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or

1281

VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, pDescriptorWrites[i].pImageInfo must be a valid
pointer to an array of pDescriptorWrites[i].descriptorCount valid VkDescriptorImageInfo
structures

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06941
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM or
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, pDescriptorWrites[i].pImageInfo must be a
valid pointer to an array of pDescriptorWrites[i].descriptorCount valid
VkDescriptorImageInfo structures

• VUID-vkUpdateDescriptorSets-None-03047
The dstSet member of each element of pDescriptorWrites or pDescriptorCopies for
bindings which were created without the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT or
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT bits set must not be used by any
command that was recorded to a command buffer which is in the pending state

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06993
Host access to pDescriptorWrites[i].dstSet and pDescriptorCopies[i].dstSet must be
externally synchronized unless explicitly denoted otherwise for specific flags

Valid Usage (Implicit)

• VUID-vkUpdateDescriptorSets-device-parameter
device must be a valid VkDevice handle

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-parameter
If descriptorWriteCount is not 0, pDescriptorWrites must be a valid pointer to an array of
descriptorWriteCount valid VkWriteDescriptorSet structures

• VUID-vkUpdateDescriptorSets-pDescriptorCopies-parameter
If descriptorCopyCount is not 0, pDescriptorCopies must be a valid pointer to an array of
descriptorCopyCount valid VkCopyDescriptorSet structures

The VkWriteDescriptorSet structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkWriteDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
 VkDescriptorType descriptorType;
 const VkDescriptorImageInfo* pImageInfo;
 const VkDescriptorBufferInfo* pBufferInfo;
 const VkBufferView* pTexelBufferView;
} VkWriteDescriptorSet;

1282

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dstSet is the destination descriptor set to update.

• dstBinding is the descriptor binding within that set.

• dstArrayElement is the starting element in that array. If the descriptor binding identified by
dstSet and dstBinding has a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then
dstArrayElement specifies the starting byte offset within the binding.

• descriptorCount is the number of descriptors to update. If the descriptor binding identified by
dstSet and dstBinding has a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, then
descriptorCount specifies the number of bytes to update. Otherwise, descriptorCount is one of

◦ the number of elements in pImageInfo

◦ the number of elements in pBufferInfo

◦ the number of elements in pTexelBufferView

◦ a value matching the dataSize member of a VkWriteDescriptorSetInlineUniformBlock
structure in the pNext chain

◦ a value matching the accelerationStructureCount of a
VkWriteDescriptorSetAccelerationStructureKHR structure in the pNext chain

• descriptorType is a VkDescriptorType specifying the type of each descriptor in pImageInfo,
pBufferInfo, or pTexelBufferView, as described below. If VkDescriptorSetLayoutBinding for dstSet
at dstBinding is not equal to VK_DESCRIPTOR_TYPE_MUTABLE_EXT, descriptorType must be the same
type as the descriptorType specified in VkDescriptorSetLayoutBinding for dstSet at dstBinding.
The type of the descriptor also controls which array the descriptors are taken from.

• pImageInfo is a pointer to an array of VkDescriptorImageInfo structures or is ignored, as
described below.

• pBufferInfo is a pointer to an array of VkDescriptorBufferInfo structures or is ignored, as
described below.

• pTexelBufferView is a pointer to an array of VkBufferView handles as described in the Buffer
Views section or is ignored, as described below.

Only one of pImageInfo, pBufferInfo, or pTexelBufferView members is used according to the
descriptor type specified in the descriptorType member of the containing VkWriteDescriptorSet
structure, or none of them in case descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, in
which case the source data for the descriptor writes is taken from the
VkWriteDescriptorSetInlineUniformBlock structure included in the pNext chain of
VkWriteDescriptorSet, or if descriptorType is VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, in
which case the source data for the descriptor writes is taken from the
VkWriteDescriptorSetAccelerationStructureKHR structure in the pNext chain of
VkWriteDescriptorSet, or if descriptorType is VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV, in
which case the source data for the descriptor writes is taken from the
VkWriteDescriptorSetAccelerationStructureNV structure in the pNext chain of VkWriteDescriptorSet,
as specified below.

If the nullDescriptor feature is enabled, the buffer, acceleration structure, imageView, or

1283

bufferView can be VK_NULL_HANDLE. Loads from a null descriptor return zero values and stores
and atomics to a null descriptor are discarded. A null acceleration structure descriptor results in
the miss shader being invoked.

If the destination descriptor is a mutable descriptor, the active descriptor type for the destination
descriptor becomes descriptorType.

If the dstBinding has fewer than descriptorCount array elements remaining starting from
dstArrayElement, then the remainder will be used to update the subsequent binding - dstBinding+1
starting at array element zero. If a binding has a descriptorCount of zero, it is skipped. This
behavior applies recursively, with the update affecting consecutive bindings as needed to update all
descriptorCount descriptors. Consecutive bindings must have identical VkDescriptorType,
VkShaderStageFlags, VkDescriptorBindingFlagBits, and immutable samplers references. In
addition, if the VkDescriptorType is VK_DESCRIPTOR_TYPE_MUTABLE_EXT, the supported descriptor types
in VkMutableDescriptorTypeCreateInfoEXT must be equally defined.

Note

The same behavior applies to bindings with a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK where descriptorCount specifies the
number of bytes to update while dstArrayElement specifies the starting byte offset,
thus in this case if the dstBinding has a smaller byte size than the sum of
dstArrayElement and descriptorCount, then the remainder will be used to update
the subsequent binding - dstBinding+1 starting at offset zero. This falls out as a
special case of the above rule.

Valid Usage

• VUID-VkWriteDescriptorSet-dstBinding-00315
dstBinding must be less than or equal to the maximum value of binding of all
VkDescriptorSetLayoutBinding structures specified when dstSet’s descriptor set layout
was created

• VUID-VkWriteDescriptorSet-dstBinding-00316
dstBinding must be a binding with a non-zero descriptorCount

• VUID-VkWriteDescriptorSet-descriptorCount-00317
All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those
with a descriptorCount of zero, must have identical descriptorType and stageFlags

• VUID-VkWriteDescriptorSet-descriptorCount-00318
All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those
with a descriptorCount of zero, must all either use immutable samplers or must all not
use immutable samplers

• VUID-VkWriteDescriptorSet-descriptorType-00319
descriptorType must match the type of dstBinding within dstSet

• VUID-VkWriteDescriptorSet-dstSet-00320
dstSet must be a valid VkDescriptorSet handle

• VUID-VkWriteDescriptorSet-dstArrayElement-00321

1284

The sum of dstArrayElement and descriptorCount must be less than or equal to the number
of array elements in the descriptor set binding specified by dstBinding, and all applicable
consecutive bindings, as described by consecutive binding updates

• VUID-VkWriteDescriptorSet-descriptorType-02219
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, dstArrayElement must be an
integer multiple of 4

• VUID-VkWriteDescriptorSet-descriptorType-02220
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, descriptorCount must be an
integer multiple of 4

• VUID-VkWriteDescriptorSet-descriptorType-02994
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, each element of pTexelBufferView must be
either a valid VkBufferView handle or VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-02995
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER and the nullDescriptor feature is not enabled,
each element of pTexelBufferView must not be VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-00324
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, pBufferInfo must be a valid pointer to an
array of descriptorCount valid VkDescriptorBufferInfo structures

• VUID-VkWriteDescriptorSet-descriptorType-00325
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and dstSet was not allocated with a layout
that included immutable samplers for dstBinding with descriptorType, the sampler
member of each element of pImageInfo must be a valid VkSampler object

• VUID-VkWriteDescriptorSet-descriptorType-02996
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, the imageView
member of each element of pImageInfo must be either a valid VkImageView handle or
VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-02997
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and the
nullDescriptor feature is not enabled, the imageView member of each element of
pImageInfo must not be VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-07683
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of each
element of pImageInfo must not be VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-02221
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, the pNext chain must
include a VkWriteDescriptorSetInlineUniformBlock structure whose dataSize member
equals descriptorCount

1285

• VUID-VkWriteDescriptorSet-descriptorType-02382
If descriptorType is VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, the pNext chain must
include a VkWriteDescriptorSetAccelerationStructureKHR structure whose
accelerationStructureCount member equals descriptorCount

• VUID-VkWriteDescriptorSet-descriptorType-03817
If descriptorType is VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV, the pNext chain must
include a VkWriteDescriptorSetAccelerationStructureNV structure whose
accelerationStructureCount member equals descriptorCount

• VUID-VkWriteDescriptorSet-descriptorType-01946
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, then the imageView member of each
pImageInfo element must have been created without a VkSamplerYcbcrConversionInfo
structure in its pNext chain

• VUID-VkWriteDescriptorSet-descriptorType-02738
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and if any element of
pImageInfo has an imageView member that was created with a
VkSamplerYcbcrConversionInfo structure in its pNext chain, then dstSet must have been
allocated with a layout that included immutable samplers for dstBinding, and the
corresponding immutable sampler must have been created with an identically defined
VkSamplerYcbcrConversionInfo object

• VUID-VkWriteDescriptorSet-descriptorType-01948
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and dstSet was allocated
with a layout that included immutable samplers for dstBinding, then the imageView
member of each element of pImageInfo which corresponds to an immutable sampler that
enables sampler Y′CBCR conversion must have been created with a
VkSamplerYcbcrConversionInfo structure in its pNext chain with an identically defined
VkSamplerYcbcrConversionInfo to the corresponding immutable sampler

• VUID-VkWriteDescriptorSet-descriptorType-09506
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, dstSet was allocated with
a layout that included immutable samplers for dstBinding, and those samplers enable
sampler Y′CBCR conversion, then imageView must not be VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-00327
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the offset member of each element of
pBufferInfo must be a multiple of VkPhysicalDeviceLimits
::minUniformBufferOffsetAlignment

• VUID-VkWriteDescriptorSet-descriptorType-00328
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the offset member of each element of
pBufferInfo must be a multiple of VkPhysicalDeviceLimits
::minStorageBufferOffsetAlignment

• VUID-VkWriteDescriptorSet-descriptorType-00329
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, and the buffer member of any element of
pBufferInfo is the handle of a non-sparse buffer, then that buffer must be bound

1286

completely and contiguously to a single VkDeviceMemory object

• VUID-VkWriteDescriptorSet-descriptorType-00330
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the buffer member of each element of
pBufferInfo must have been created with VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT set

• VUID-VkWriteDescriptorSet-descriptorType-00331
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the buffer member of each element of
pBufferInfo must have been created with VK_BUFFER_USAGE_STORAGE_BUFFER_BIT set

• VUID-VkWriteDescriptorSet-descriptorType-00332
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the range member of each element of
pBufferInfo, or the effective range if range is VK_WHOLE_SIZE, must be less than or equal to
VkPhysicalDeviceLimits::maxUniformBufferRange

• VUID-VkWriteDescriptorSet-descriptorType-00333
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the range member of each element of
pBufferInfo, or the effective range if range is VK_WHOLE_SIZE, must be less than or equal to
VkPhysicalDeviceLimits::maxStorageBufferRange

• VUID-VkWriteDescriptorSet-descriptorType-08765
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, the pTexelBufferView buffer
view usage must include VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT

• VUID-VkWriteDescriptorSet-descriptorType-08766
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, the pTexelBufferView buffer
view usage must include VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

• VUID-VkWriteDescriptorSet-descriptorType-00336
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE or
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of each element of pImageInfo
must have been created with the identity swizzle

• VUID-VkWriteDescriptorSet-descriptorType-00337
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the imageView member of each element of
pImageInfo must have been created with VK_IMAGE_USAGE_SAMPLED_BIT set

• VUID-VkWriteDescriptorSet-descriptorType-04149
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE the imageLayout member of each
element of pImageInfo must be a member of the list given in Sampled Image

• VUID-VkWriteDescriptorSet-descriptorType-04150
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER the imageLayout member of
each element of pImageInfo must be a member of the list given in Combined Image
Sampler

• VUID-VkWriteDescriptorSet-descriptorType-04151
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT the imageLayout member of each
element of pImageInfo must be a member of the list given in Input Attachment

1287

• VUID-VkWriteDescriptorSet-descriptorType-04152
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE the imageLayout member of each
element of pImageInfo must be a member of the list given in Storage Image

• VUID-VkWriteDescriptorSet-descriptorType-00338
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of each
element of pImageInfo must have been created with VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT
set

• VUID-VkWriteDescriptorSet-descriptorType-00339
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, the imageView member of each
element of pImageInfo must have been created with VK_IMAGE_USAGE_STORAGE_BIT set

• VUID-VkWriteDescriptorSet-descriptorType-02752
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER, then dstSet must not have been allocated
with a layout that included immutable samplers for dstBinding

• VUID-VkWriteDescriptorSet-dstSet-04611
If the VkDescriptorSetLayoutBinding for dstSet at dstBinding is
VK_DESCRIPTOR_TYPE_MUTABLE_EXT, the new active descriptor type descriptorType must exist
in the corresponding pMutableDescriptorTypeLists list for dstBinding

• VUID-VkWriteDescriptorSet-descriptorType-06450
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of each
element of pImageInfo must have either been created without a
VkImageViewMinLodCreateInfoEXT included in the pNext chain or with a
VkImageViewMinLodCreateInfoEXT::minLod of 0.0

• VUID-VkWriteDescriptorSet-descriptorType-06942
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM, the imageView member
of each element of pImageInfo must have been created with a view created with an image
created with VK_IMAGE_USAGE_SAMPLE_WEIGHT_BIT_QCOM

• VUID-VkWriteDescriptorSet-descriptorType-06943
If descriptorType is VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, the imageView member of
each element of pImageInfo must have been created with a view created with an image
created with VK_IMAGE_USAGE_SAMPLE_BLOCK_MATCH_BIT_QCOM

Valid Usage (Implicit)

• VUID-VkWriteDescriptorSet-sType-sType
sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET

• VUID-VkWriteDescriptorSet-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkWriteDescriptorSetAccelerationStructureKHR,
VkWriteDescriptorSetAccelerationStructureNV, or
VkWriteDescriptorSetInlineUniformBlock

• VUID-VkWriteDescriptorSet-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkWriteDescriptorSet-descriptorType-parameter

1288

descriptorType must be a valid VkDescriptorType value

• VUID-VkWriteDescriptorSet-descriptorCount-arraylength
descriptorCount must be greater than 0

• VUID-VkWriteDescriptorSet-commonparent
Both of dstSet, and the elements of pTexelBufferView that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

The type of descriptors in a descriptor set is specified by VkWriteDescriptorSet::descriptorType,
which must be one of the values:

// Provided by VK_VERSION_1_0
typedef enum VkDescriptorType {
 VK_DESCRIPTOR_TYPE_SAMPLER = 0,
 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER = 1,
 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE = 2,
 VK_DESCRIPTOR_TYPE_STORAGE_IMAGE = 3,
 VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER = 4,
 VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER = 5,
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER = 6,
 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER = 7,
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC = 8,
 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC = 9,
 VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT = 10,
 // Provided by VK_VERSION_1_3
 VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK = 1000138000,
 // Provided by VK_KHR_acceleration_structure
 VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR = 1000150000,
 // Provided by VK_NV_ray_tracing
 VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV = 1000165000,
 // Provided by VK_QCOM_image_processing
 VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM = 1000440000,
 // Provided by VK_QCOM_image_processing
 VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM = 1000440001,
 // Provided by VK_EXT_mutable_descriptor_type
 VK_DESCRIPTOR_TYPE_MUTABLE_EXT = 1000351000,
 // Provided by VK_EXT_inline_uniform_block
 VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT =
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK,
 // Provided by VK_VALVE_mutable_descriptor_type
 VK_DESCRIPTOR_TYPE_MUTABLE_VALVE = VK_DESCRIPTOR_TYPE_MUTABLE_EXT,
} VkDescriptorType;

• VK_DESCRIPTOR_TYPE_SAMPLER specifies a sampler descriptor.

• VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER specifies a combined image sampler descriptor.

• VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE specifies a sampled image descriptor.

• VK_DESCRIPTOR_TYPE_STORAGE_IMAGE specifies a storage image descriptor.

1289

• VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER specifies a uniform texel buffer descriptor.

• VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER specifies a storage texel buffer descriptor.

• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER specifies a uniform buffer descriptor.

• VK_DESCRIPTOR_TYPE_STORAGE_BUFFER specifies a storage buffer descriptor.

• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC specifies a dynamic uniform buffer descriptor.

• VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC specifies a dynamic storage buffer descriptor.

• VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT specifies an input attachment descriptor.

• VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK specifies an inline uniform block.

• VK_DESCRIPTOR_TYPE_MUTABLE_EXT specifies a descriptor of mutable type.

• VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM specifies a sampled weight image descriptor.

• VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM specifies a block matching image descriptor.

When a descriptor set is updated via elements of VkWriteDescriptorSet, members of pImageInfo,
pBufferInfo and pTexelBufferView are only accessed by the implementation when they correspond
to descriptor type being defined - otherwise they are ignored. The members accessed are as follows
for each descriptor type:

• For VK_DESCRIPTOR_TYPE_SAMPLER, only the sampler member of each element of
VkWriteDescriptorSet::pImageInfo is accessed.

• For VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, only the imageView and imageLayout members of each
element of VkWriteDescriptorSet::pImageInfo are accessed.

• For VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, all members of each element of
VkWriteDescriptorSet::pImageInfo are accessed.

• For VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, all
members of each element of VkWriteDescriptorSet::pBufferInfo are accessed.

• For VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, each
element of VkWriteDescriptorSet::pTexelBufferView is accessed.

When updating descriptors with a descriptorType of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, none
of the pImageInfo, pBufferInfo, or pTexelBufferView members are accessed, instead the source data
of the descriptor update operation is taken from the VkWriteDescriptorSetInlineUniformBlock
structure in the pNext chain of VkWriteDescriptorSet. When updating descriptors with a
descriptorType of VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, none of the pImageInfo,
pBufferInfo, or pTexelBufferView members are accessed, instead the source data of the descriptor
update operation is taken from the VkWriteDescriptorSetAccelerationStructureKHR structure in the
pNext chain of VkWriteDescriptorSet. When updating descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV, none of the pImageInfo, pBufferInfo, or
pTexelBufferView members are accessed, instead the source data of the descriptor update operation
is taken from the VkWriteDescriptorSetAccelerationStructureNV structure in the pNext chain of
VkWriteDescriptorSet.

1290

The VkDescriptorBufferInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorBufferInfo {
 VkBuffer buffer;
 VkDeviceSize offset;
 VkDeviceSize range;
} VkDescriptorBufferInfo;

• buffer is VK_NULL_HANDLE or the buffer resource.

• offset is the offset in bytes from the start of buffer. Access to buffer memory via this descriptor
uses addressing that is relative to this starting offset.

• range is the size in bytes that is used for this descriptor update, or VK_WHOLE_SIZE to use the range
from offset to the end of the buffer.

Note

When setting range to VK_WHOLE_SIZE, the effective range must not be larger
than the maximum range for the descriptor type (maxUniformBufferRange or
maxStorageBufferRange). This means that VK_WHOLE_SIZE is not typically useful in
the common case where uniform buffer descriptors are suballocated from a
buffer that is much larger than maxUniformBufferRange.

For VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
descriptor types, offset is the base offset from which the dynamic offset is applied and range is the
static size used for all dynamic offsets.

When range is VK_WHOLE_SIZE the effective range is calculated at vkUpdateDescriptorSets is by taking
the size of buffer minus the offset.

Valid Usage

• VUID-VkDescriptorBufferInfo-offset-00340
offset must be less than the size of buffer

• VUID-VkDescriptorBufferInfo-range-00341
If range is not equal to VK_WHOLE_SIZE, range must be greater than 0

• VUID-VkDescriptorBufferInfo-range-00342
If range is not equal to VK_WHOLE_SIZE, range must be less than or equal to the size of buffer
minus offset

• VUID-VkDescriptorBufferInfo-buffer-02998
If the nullDescriptor feature is not enabled, buffer must not be VK_NULL_HANDLE

• VUID-VkDescriptorBufferInfo-buffer-02999
If buffer is VK_NULL_HANDLE, offset must be zero and range must be VK_WHOLE_SIZE

1291

Valid Usage (Implicit)

• VUID-VkDescriptorBufferInfo-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

The VkDescriptorImageInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorImageInfo {
 VkSampler sampler;
 VkImageView imageView;
 VkImageLayout imageLayout;
} VkDescriptorImageInfo;

• sampler is a sampler handle, and is used in descriptor updates for types
VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER if the binding being
updated does not use immutable samplers.

• imageView is VK_NULL_HANDLE or an image view handle, and is used in descriptor updates for
types VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

• imageLayout is the layout that the image subresources accessible from imageView will be in at the
time this descriptor is accessed. imageLayout is used in descriptor updates for types
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

Members of VkDescriptorImageInfo that are not used in an update (as described above) are ignored.

Valid Usage

• VUID-VkDescriptorImageInfo-imageView-06712
imageView must not be a 2D array image view created from a 3D image

• VUID-VkDescriptorImageInfo-imageView-07795
If imageView is a 2D view created from a 3D image, then descriptorType must be
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

• VUID-VkDescriptorImageInfo-imageView-07796
If imageView is a 2D view created from a 3D image, then the image must have been created
with VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT set

• VUID-VkDescriptorImageInfo-descriptorType-06713
If the image2DViewOf3D feature is not enabled or descriptorType is not
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE then imageView must not be a 2D view created from a
3D image

• VUID-VkDescriptorImageInfo-descriptorType-06714
If the sampler2DViewOf3D feature is not enabled or descriptorType is not

1292

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER then
imageView must not be a 2D view created from a 3D image

• VUID-VkDescriptorImageInfo-imageView-01976
If imageView is created from a depth/stencil image, the aspectMask used to create the
imageView must include either VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT
but not both

• VUID-VkDescriptorImageInfo-imageLayout-09425
If imageLayout is VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, then the aspectMask used to
create imageView must not include either VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkDescriptorImageInfo-imageLayout-09426
If imageLayout is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, then the aspectMask used to create
imageView must not include VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkDescriptorImageInfo-imageLayout-00344
imageLayout must match the actual VkImageLayout of each subresource accessible from
imageView at the time this descriptor is accessed as defined by the image layout matching
rules

• VUID-VkDescriptorImageInfo-sampler-01564
If sampler is used and the VkFormat of the image is a multi-planar format, the image must
have been created with VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, and the aspectMask of the
imageView must be a valid multi-planar aspect mask bit

• VUID-VkDescriptorImageInfo-mutableComparisonSamplers-04450
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::mutableComparisonSamplers is VK_FALSE,
then sampler must have been created with VkSamplerCreateInfo::compareEnable set to
VK_FALSE

Valid Usage (Implicit)

• VUID-VkDescriptorImageInfo-commonparent
Both of imageView, and sampler that are valid handles of non-ignored parameters must
have been created, allocated, or retrieved from the same VkDevice

If the descriptorType member of VkWriteDescriptorSet is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK
then the data to write to the descriptor set is specified through a
VkWriteDescriptorSetInlineUniformBlock structure included in the pNext chain of
VkWriteDescriptorSet.

The VkWriteDescriptorSetInlineUniformBlock structure is defined as:

1293

// Provided by VK_VERSION_1_3
typedef struct VkWriteDescriptorSetInlineUniformBlock {
 VkStructureType sType;
 const void* pNext;
 uint32_t dataSize;
 const void* pData;
} VkWriteDescriptorSetInlineUniformBlock;

or the equivalent

// Provided by VK_EXT_inline_uniform_block
typedef VkWriteDescriptorSetInlineUniformBlock
VkWriteDescriptorSetInlineUniformBlockEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dataSize is the number of bytes of inline uniform block data pointed to by pData.

• pData is a pointer to dataSize number of bytes of data to write to the inline uniform block.

Valid Usage

• VUID-VkWriteDescriptorSetInlineUniformBlock-dataSize-02222
dataSize must be an integer multiple of 4

Valid Usage (Implicit)

• VUID-VkWriteDescriptorSetInlineUniformBlock-sType-sType
sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK

• VUID-VkWriteDescriptorSetInlineUniformBlock-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-VkWriteDescriptorSetInlineUniformBlock-dataSize-arraylength
dataSize must be greater than 0

The VkWriteDescriptorSetAccelerationStructureKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkWriteDescriptorSetAccelerationStructureKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t accelerationStructureCount;
 const VkAccelerationStructureKHR* pAccelerationStructures;
} VkWriteDescriptorSetAccelerationStructureKHR;

1294

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• accelerationStructureCount is the number of elements in pAccelerationStructures.

• pAccelerationStructures is a pointer to an array of VkAccelerationStructureKHR structures
specifying the acceleration structures to update.

Valid Usage

• VUID-VkWriteDescriptorSetAccelerationStructureKHR-accelerationStructureCount-02236
accelerationStructureCount must be equal to descriptorCount in the extended structure

• VUID-VkWriteDescriptorSetAccelerationStructureKHR-pAccelerationStructures-03579
Each acceleration structure in pAccelerationStructures must have been created with a
type of VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR or
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-VkWriteDescriptorSetAccelerationStructureKHR-pAccelerationStructures-03580
If the nullDescriptor feature is not enabled, each element of pAccelerationStructures
must not be VK_NULL_HANDLE

Valid Usage (Implicit)

• VUID-VkWriteDescriptorSetAccelerationStructureKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR

• VUID-VkWriteDescriptorSetAccelerationStructureKHR-pAccelerationStructures-
parameter
pAccelerationStructures must be a valid pointer to an array of accelerationStructureCount
valid or VK_NULL_HANDLE VkAccelerationStructureKHR handles

• VUID-VkWriteDescriptorSetAccelerationStructureKHR-accelerationStructureCount-
arraylength
accelerationStructureCount must be greater than 0

The VkWriteDescriptorSetAccelerationStructureNV structure is defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkWriteDescriptorSetAccelerationStructureNV {
 VkStructureType sType;
 const void* pNext;
 uint32_t accelerationStructureCount;
 const VkAccelerationStructureNV* pAccelerationStructures;
} VkWriteDescriptorSetAccelerationStructureNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

1295

• accelerationStructureCount is the number of elements in pAccelerationStructures.

• pAccelerationStructures is a pointer to an array of VkAccelerationStructureNV structures
specifying the acceleration structures to update.

Valid Usage

• VUID-VkWriteDescriptorSetAccelerationStructureNV-accelerationStructureCount-03747
accelerationStructureCount must be equal to descriptorCount in the extended structure

• VUID-VkWriteDescriptorSetAccelerationStructureNV-pAccelerationStructures-03748
Each acceleration structure in pAccelerationStructures must have been created with
VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR

• VUID-VkWriteDescriptorSetAccelerationStructureNV-pAccelerationStructures-03749
If the nullDescriptor feature is not enabled, each member of pAccelerationStructures
must not be VK_NULL_HANDLE

Valid Usage (Implicit)

• VUID-VkWriteDescriptorSetAccelerationStructureNV-sType-sType
sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_NV

• VUID-VkWriteDescriptorSetAccelerationStructureNV-pAccelerationStructures-parameter
pAccelerationStructures must be a valid pointer to an array of accelerationStructureCount
valid or VK_NULL_HANDLE VkAccelerationStructureNV handles

• VUID-VkWriteDescriptorSetAccelerationStructureNV-accelerationStructureCount-
arraylength
accelerationStructureCount must be greater than 0

The VkCopyDescriptorSet structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkCopyDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet srcSet;
 uint32_t srcBinding;
 uint32_t srcArrayElement;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
} VkCopyDescriptorSet;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

1296

• srcSet, srcBinding, and srcArrayElement are the source set, binding, and array element,
respectively. If the descriptor binding identified by srcSet and srcBinding has a descriptor type
of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then srcArrayElement specifies the starting byte
offset within the binding to copy from.

• dstSet, dstBinding, and dstArrayElement are the destination set, binding, and array element,
respectively. If the descriptor binding identified by dstSet and dstBinding has a descriptor type
of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then dstArrayElement specifies the starting byte
offset within the binding to copy to.

• descriptorCount is the number of descriptors to copy from the source to destination. If
descriptorCount is greater than the number of remaining array elements in the source or
destination binding, those affect consecutive bindings in a manner similar to
VkWriteDescriptorSet above. If the descriptor binding identified by srcSet and srcBinding has a
descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount specifies the
number of bytes to copy and the remaining array elements in the source or destination binding
refer to the remaining number of bytes in those.

If the VkDescriptorSetLayoutBinding for dstBinding is VK_DESCRIPTOR_TYPE_MUTABLE_EXT and srcBinding
is not VK_DESCRIPTOR_TYPE_MUTABLE_EXT, the new active descriptor type becomes the descriptor type
of srcBinding. If both VkDescriptorSetLayoutBinding for srcBinding and dstBinding are
VK_DESCRIPTOR_TYPE_MUTABLE_EXT, the active descriptor type in each source descriptor is copied into
the corresponding destination descriptor. The active descriptor type can be different for each
source descriptor.

Note

The intention is that copies to and from mutable descriptors is a simple memcpy.
Copies between non-mutable and mutable descriptors are expected to require one
memcpy per descriptor to handle the difference in size, but this use case with
more than one descriptorCount is considered rare.

Valid Usage

• VUID-VkCopyDescriptorSet-srcBinding-00345
srcBinding must be a valid binding within srcSet

• VUID-VkCopyDescriptorSet-srcArrayElement-00346
The sum of srcArrayElement and descriptorCount must be less than or equal to the number
of array elements in the descriptor set binding specified by srcBinding, and all applicable
consecutive bindings, as described by consecutive binding updates

• VUID-VkCopyDescriptorSet-dstBinding-00347
dstBinding must be a valid binding within dstSet

• VUID-VkCopyDescriptorSet-dstArrayElement-00348
The sum of dstArrayElement and descriptorCount must be less than or equal to the number
of array elements in the descriptor set binding specified by dstBinding, and all applicable
consecutive bindings, as described by consecutive binding updates

• VUID-VkCopyDescriptorSet-dstBinding-02632
The type of dstBinding within dstSet must be equal to the type of srcBinding within srcSet

1297

• VUID-VkCopyDescriptorSet-srcSet-00349
If srcSet is equal to dstSet, then the source and destination ranges of descriptors must not
overlap, where the ranges may include array elements from consecutive bindings as
described by consecutive binding updates

• VUID-VkCopyDescriptorSet-srcBinding-02223
If the descriptor type of the descriptor set binding specified by srcBinding is
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, srcArrayElement must be an integer multiple of
4

• VUID-VkCopyDescriptorSet-dstBinding-02224
If the descriptor type of the descriptor set binding specified by dstBinding is
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, dstArrayElement must be an integer multiple of
4

• VUID-VkCopyDescriptorSet-srcBinding-02225
If the descriptor type of the descriptor set binding specified by either srcBinding or
dstBinding is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, descriptorCount must be an
integer multiple of 4

• VUID-VkCopyDescriptorSet-srcSet-01918
If srcSet’s layout was created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT flag set, then dstSet’s layout
must also have been created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT flag set

• VUID-VkCopyDescriptorSet-srcSet-04885
If srcSet’s layout was created without either the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT flag or the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT flag set, then dstSet’s layout
must have been created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT flag set

• VUID-VkCopyDescriptorSet-srcSet-01920
If the descriptor pool from which srcSet was allocated was created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set, then the descriptor pool from
which dstSet was allocated must also have been created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set

• VUID-VkCopyDescriptorSet-srcSet-04887
If the descriptor pool from which srcSet was allocated was created without either the
VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT flag or the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set, then the descriptor pool from
which dstSet was allocated must have been created without the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set

• VUID-VkCopyDescriptorSet-dstBinding-02753
If the descriptor type of the descriptor set binding specified by dstBinding is
VK_DESCRIPTOR_TYPE_SAMPLER, then dstSet must not have been allocated with a layout that
included immutable samplers for dstBinding

• VUID-VkCopyDescriptorSet-dstSet-04612
If VkDescriptorSetLayoutBinding for dstSet at dstBinding is VK_DESCRIPTOR_TYPE_MUTABLE_EXT,

1298

the new active descriptor type must exist in the corresponding
pMutableDescriptorTypeLists list for dstBinding if the new active descriptor type is not
VK_DESCRIPTOR_TYPE_MUTABLE_EXT

• VUID-VkCopyDescriptorSet-srcSet-04613
If VkDescriptorSetLayoutBinding for srcSet at srcBinding is VK_DESCRIPTOR_TYPE_MUTABLE_EXT
and the VkDescriptorSetLayoutBinding for dstSet at dstBinding is not
VK_DESCRIPTOR_TYPE_MUTABLE_EXT, the active descriptor type for the source descriptor must
match the descriptor type of dstBinding

• VUID-VkCopyDescriptorSet-dstSet-04614
If VkDescriptorSetLayoutBinding for dstSet at dstBinding is VK_DESCRIPTOR_TYPE_MUTABLE_EXT,
and the new active descriptor type is VK_DESCRIPTOR_TYPE_MUTABLE_EXT, the
pMutableDescriptorTypeLists for srcBinding and dstBinding must match exactly

Valid Usage (Implicit)

• VUID-VkCopyDescriptorSet-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET

• VUID-VkCopyDescriptorSet-pNext-pNext
pNext must be NULL

• VUID-VkCopyDescriptorSet-srcSet-parameter
srcSet must be a valid VkDescriptorSet handle

• VUID-VkCopyDescriptorSet-dstSet-parameter
dstSet must be a valid VkDescriptorSet handle

• VUID-VkCopyDescriptorSet-commonparent
Both of dstSet, and srcSet must have been created, allocated, or retrieved from the same
VkDevice

14.2.5. Descriptor Update Templates

A descriptor update template specifies a mapping from descriptor update information in host
memory to descriptors in a descriptor set. It is designed to avoid passing redundant information to
the driver when frequently updating the same set of descriptors in descriptor sets.

Descriptor update template objects are represented by VkDescriptorUpdateTemplate handles:

// Provided by VK_VERSION_1_1
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorUpdateTemplate)

or the equivalent

// Provided by VK_KHR_descriptor_update_template
typedef VkDescriptorUpdateTemplate VkDescriptorUpdateTemplateKHR;

1299

14.2.6. Descriptor Set Updates With Templates

Updating a large VkDescriptorSet array can be an expensive operation since an application must
specify one VkWriteDescriptorSet structure for each descriptor or descriptor array to update, each
of which re-specifies the same state when updating the same descriptor in multiple descriptor sets.
For cases when an application wishes to update the same set of descriptors in multiple descriptor
sets allocated using the same VkDescriptorSetLayout, vkUpdateDescriptorSetWithTemplate can be
used as a replacement for vkUpdateDescriptorSets.

VkDescriptorUpdateTemplate allows implementations to convert a set of descriptor update operations
on a single descriptor set to an internal format that, in conjunction with
vkUpdateDescriptorSetWithTemplate or vkCmdPushDescriptorSetWithTemplateKHR , can be more
efficient compared to calling vkUpdateDescriptorSets or vkCmdPushDescriptorSetKHR . The
descriptors themselves are not specified in the VkDescriptorUpdateTemplate, rather, offsets into an
application provided pointer to host memory are specified, which are combined with a pointer
passed to vkUpdateDescriptorSetWithTemplate or vkCmdPushDescriptorSetWithTemplateKHR .
This allows large batches of updates to be executed without having to convert application data
structures into a strictly-defined Vulkan data structure.

To create a descriptor update template, call:

// Provided by VK_VERSION_1_1
VkResult vkCreateDescriptorUpdateTemplate(
 VkDevice device,
 const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate);

or the equivalent command

// Provided by VK_KHR_descriptor_update_template
VkResult vkCreateDescriptorUpdateTemplateKHR(
 VkDevice device,
 const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate);

• device is the logical device that creates the descriptor update template.

• pCreateInfo is a pointer to a VkDescriptorUpdateTemplateCreateInfo structure specifying the set
of descriptors to update with a single call to vkCmdPushDescriptorSetWithTemplateKHR or
vkUpdateDescriptorSetWithTemplate.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDescriptorUpdateTemplate is a pointer to a VkDescriptorUpdateTemplate handle in which the
resulting descriptor update template object is returned.

1300

Valid Usage (Implicit)

• VUID-vkCreateDescriptorUpdateTemplate-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateDescriptorUpdateTemplate-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDescriptorUpdateTemplateCreateInfo
structure

• VUID-vkCreateDescriptorUpdateTemplate-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDescriptorUpdateTemplate-pDescriptorUpdateTemplate-parameter
pDescriptorUpdateTemplate must be a valid pointer to a VkDescriptorUpdateTemplate
handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDescriptorUpdateTemplateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDescriptorUpdateTemplateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorUpdateTemplateCreateFlags flags;
 uint32_t descriptorUpdateEntryCount;
 const VkDescriptorUpdateTemplateEntry* pDescriptorUpdateEntries;
 VkDescriptorUpdateTemplateType templateType;
 VkDescriptorSetLayout descriptorSetLayout;
 VkPipelineBindPoint pipelineBindPoint;
 VkPipelineLayout pipelineLayout;
 uint32_t set;
} VkDescriptorUpdateTemplateCreateInfo;

or the equivalent

// Provided by VK_KHR_descriptor_update_template
typedef VkDescriptorUpdateTemplateCreateInfo VkDescriptorUpdateTemplateCreateInfoKHR;

1301

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• descriptorUpdateEntryCount is the number of elements in the pDescriptorUpdateEntries array.

• pDescriptorUpdateEntries is a pointer to an array of VkDescriptorUpdateTemplateEntry
structures describing the descriptors to be updated by the descriptor update template.

• templateType Specifies the type of the descriptor update template. If set to
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET it can only be used to update descriptor sets
with a fixed descriptorSetLayout. If set to
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR it can only be used to push descriptor
sets using the provided pipelineBindPoint, pipelineLayout, and set number.

• descriptorSetLayout is the descriptor set layout used to build the descriptor update template. All
descriptor sets which are going to be updated through the newly created descriptor update
template must be created with a layout that matches (is the same as, or defined identically to)
this layout. This parameter is ignored if templateType is not
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.

• pipelineBindPoint is a VkPipelineBindPoint indicating the type of the pipeline that will use the
descriptors. This parameter is ignored if templateType is not
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR

• pipelineLayout is a VkPipelineLayout object used to program the bindings. This parameter is
ignored if templateType is not VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR

• set is the set number of the descriptor set in the pipeline layout that will be updated. This
parameter is ignored if templateType is not
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR

Valid Usage

• VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00350
If templateType is VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET, descriptorSetLayout
must be a valid VkDescriptorSetLayout handle

• VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00351
If templateType is VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR,
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00352
If templateType is VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR,
pipelineLayout must be a valid VkPipelineLayout handle

• VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00353
If templateType is VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR, set must be
the unique set number in the pipeline layout that uses a descriptor set layout that was
created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR

• VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-04615
If templateType is VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET, descriptorSetLayout

1302

must not contain a binding with type VK_DESCRIPTOR_TYPE_MUTABLE_EXT

Valid Usage (Implicit)

• VUID-VkDescriptorUpdateTemplateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO

• VUID-VkDescriptorUpdateTemplateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkDescriptorUpdateTemplateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkDescriptorUpdateTemplateCreateInfo-pDescriptorUpdateEntries-parameter
pDescriptorUpdateEntries must be a valid pointer to an array of
descriptorUpdateEntryCount valid VkDescriptorUpdateTemplateEntry structures

• VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-parameter
templateType must be a valid VkDescriptorUpdateTemplateType value

• VUID-VkDescriptorUpdateTemplateCreateInfo-descriptorUpdateEntryCount-arraylength
descriptorUpdateEntryCount must be greater than 0

• VUID-VkDescriptorUpdateTemplateCreateInfo-commonparent
Both of descriptorSetLayout, and pipelineLayout that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

// Provided by VK_VERSION_1_1
typedef VkFlags VkDescriptorUpdateTemplateCreateFlags;

or the equivalent

// Provided by VK_KHR_descriptor_update_template
typedef VkDescriptorUpdateTemplateCreateFlags
VkDescriptorUpdateTemplateCreateFlagsKHR;

VkDescriptorUpdateTemplateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

The descriptor update template type is determined by the VkDescriptorUpdateTemplateCreateInfo
::templateType property, which takes the following values:

// Provided by VK_VERSION_1_1
typedef enum VkDescriptorUpdateTemplateType {
 VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET = 0,
 // Provided by VK_VERSION_1_1 with VK_KHR_push_descriptor,
VK_KHR_descriptor_update_template with VK_KHR_push_descriptor
 VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR = 1,

1303

 // Provided by VK_KHR_descriptor_update_template
 VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR =
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET,
} VkDescriptorUpdateTemplateType;

or the equivalent

// Provided by VK_KHR_descriptor_update_template
typedef VkDescriptorUpdateTemplateType VkDescriptorUpdateTemplateTypeKHR;

• VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET specifies that the descriptor update
template will be used for descriptor set updates only.

• VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR specifies that the descriptor update
template will be used for push descriptor updates only.

The VkDescriptorUpdateTemplateEntry structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDescriptorUpdateTemplateEntry {
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
 VkDescriptorType descriptorType;
 size_t offset;
 size_t stride;
} VkDescriptorUpdateTemplateEntry;

or the equivalent

// Provided by VK_KHR_descriptor_update_template
typedef VkDescriptorUpdateTemplateEntry VkDescriptorUpdateTemplateEntryKHR;

• dstBinding is the descriptor binding to update when using this descriptor update template.

• dstArrayElement is the starting element in the array belonging to dstBinding. If the descriptor
binding identified by dstBinding has a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then dstArrayElement specifies the starting byte offset
to update.

• descriptorCount is the number of descriptors to update. If descriptorCount is greater than the
number of remaining array elements in the destination binding, those affect consecutive
bindings in a manner similar to VkWriteDescriptorSet above. If the descriptor binding
identified by dstBinding has a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then
descriptorCount specifies the number of bytes to update and the remaining array elements in
the destination binding refer to the remaining number of bytes in it.

• descriptorType is a VkDescriptorType specifying the type of the descriptor.

1304

• offset is the offset in bytes of the first binding in the raw data structure.

• stride is the stride in bytes between two consecutive array elements of the descriptor update
information in the raw data structure. The actual pointer ptr for each array element j of update
entry i is computed using the following formula:

 const char *ptr = (const char *)pData + pDescriptorUpdateEntries[i].offset + j
* pDescriptorUpdateEntries[i].stride

The stride is useful in case the bindings are stored in structs along with other data. If
descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then the value of stride is ignored
and the stride is assumed to be 1, i.e. the descriptor update information for them is always
specified as a contiguous range.

Valid Usage

• VUID-VkDescriptorUpdateTemplateEntry-dstBinding-00354
dstBinding must be a valid binding in the descriptor set layout implicitly specified when
using a descriptor update template to update descriptors

• VUID-VkDescriptorUpdateTemplateEntry-dstArrayElement-00355
dstArrayElement and descriptorCount must be less than or equal to the number of array
elements in the descriptor set binding implicitly specified when using a descriptor update
template to update descriptors, and all applicable consecutive bindings, as described by
consecutive binding updates

• VUID-VkDescriptorUpdateTemplateEntry-descriptor-02226
If descriptor type is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, dstArrayElement must be an
integer multiple of 4

• VUID-VkDescriptorUpdateTemplateEntry-descriptor-02227
If descriptor type is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, descriptorCount must be an
integer multiple of 4

Valid Usage (Implicit)

• VUID-VkDescriptorUpdateTemplateEntry-descriptorType-parameter
descriptorType must be a valid VkDescriptorType value

To destroy a descriptor update template, call:

// Provided by VK_VERSION_1_1
void vkDestroyDescriptorUpdateTemplate(
 VkDevice device,
 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
 const VkAllocationCallbacks* pAllocator);

1305

or the equivalent command

// Provided by VK_KHR_descriptor_update_template
void vkDestroyDescriptorUpdateTemplateKHR(
 VkDevice device,
 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that has been used to create the descriptor update template

• descriptorUpdateTemplate is the descriptor update template to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyDescriptorUpdateTemplate-descriptorSetLayout-00356
If VkAllocationCallbacks were provided when descriptorUpdateTemplate was created, a
compatible set of callbacks must be provided here

• VUID-vkDestroyDescriptorUpdateTemplate-descriptorSetLayout-00357
If no VkAllocationCallbacks were provided when descriptorUpdateTemplate was created,
pAllocator must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyDescriptorUpdateTemplate-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyDescriptorUpdateTemplate-descriptorUpdateTemplate-parameter
If descriptorUpdateTemplate is not VK_NULL_HANDLE, descriptorUpdateTemplate must be a
valid VkDescriptorUpdateTemplate handle

• VUID-vkDestroyDescriptorUpdateTemplate-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDescriptorUpdateTemplate-descriptorUpdateTemplate-parent
If descriptorUpdateTemplate is a valid handle, it must have been created, allocated, or
retrieved from device

Host Synchronization

• Host access to descriptorUpdateTemplate must be externally synchronized

Once a VkDescriptorUpdateTemplate has been created, descriptor sets can be updated by calling:

1306

// Provided by VK_VERSION_1_1
void vkUpdateDescriptorSetWithTemplate(
 VkDevice device,
 VkDescriptorSet descriptorSet,
 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
 const void* pData);

or the equivalent command

// Provided by VK_KHR_descriptor_update_template
void vkUpdateDescriptorSetWithTemplateKHR(
 VkDevice device,
 VkDescriptorSet descriptorSet,
 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
 const void* pData);

• device is the logical device that updates the descriptor set.

• descriptorSet is the descriptor set to update

• descriptorUpdateTemplate is a VkDescriptorUpdateTemplate object specifying the update
mapping between pData and the descriptor set to update.

• pData is a pointer to memory containing one or more VkDescriptorImageInfo,
VkDescriptorBufferInfo, or VkBufferView structures or VkAccelerationStructureKHR or
VkAccelerationStructureNV handles used to write the descriptors.

Valid Usage

• VUID-vkUpdateDescriptorSetWithTemplate-pData-01685
pData must be a valid pointer to a memory containing one or more valid instances of
VkDescriptorImageInfo, VkDescriptorBufferInfo, or VkBufferView in a layout defined by
descriptorUpdateTemplate when it was created with vkCreateDescriptorUpdateTemplate

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorSet-06995
Host access to descriptorSet must be externally synchronized unless explicitly denoted
otherwise for specific flags

Valid Usage (Implicit)

• VUID-vkUpdateDescriptorSetWithTemplate-device-parameter
device must be a valid VkDevice handle

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorSet-parameter
descriptorSet must be a valid VkDescriptorSet handle

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorUpdateTemplate-parameter
descriptorUpdateTemplate must be a valid VkDescriptorUpdateTemplate handle

1307

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorSet-parent
descriptorSet must have been created, allocated, or retrieved from device

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorUpdateTemplate-parent
descriptorUpdateTemplate must have been created, allocated, or retrieved from device

API example

struct AppBufferView {
 VkBufferView bufferView;
 uint32_t applicationRelatedInformation;
};

struct AppDataStructure
{
 VkDescriptorImageInfo imageInfo; // a single image info
 VkDescriptorBufferInfo bufferInfoArray[3]; // 3 buffer infos in an array
 AppBufferView bufferView[2]; // An application defined structure
containing a bufferView
 // ... some more application related data
};

const VkDescriptorUpdateTemplateEntry descriptorUpdateTemplateEntries[] =
{
 // binding to a single image descriptor
 {
 .binding = 0,
 .dstArrayElement = 0,
 .descriptorCount = 1,
 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
 .offset = offsetof(AppDataStructure, imageInfo),
 .stride = 0 // stride not required if descriptorCount is 1
 },

 // binding to an array of buffer descriptors
 {
 .binding = 1,
 .dstArrayElement = 0,
 .descriptorCount = 3,
 .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
 .offset = offsetof(AppDataStructure, bufferInfoArray),
 .stride = sizeof(VkDescriptorBufferInfo) // descriptor buffer infos are
compact
 },

 // binding to an array of buffer views
 {
 .binding = 2,
 .dstArrayElement = 0,
 .descriptorCount = 2,
 .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,

1308

 .offset = offsetof(AppDataStructure, bufferView) +
 offsetof(AppBufferView, bufferView),
 .stride = sizeof(AppBufferView) // bufferViews do not have to be
compact
 },
};

// create a descriptor update template for descriptor set updates
const VkDescriptorUpdateTemplateCreateInfo createInfo =
{
 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO,
 .pNext = NULL,
 .flags = 0,
 .descriptorUpdateEntryCount = 3,
 .pDescriptorUpdateEntries = descriptorUpdateTemplateEntries,
 .templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET,
 .descriptorSetLayout = myLayout,
 .pipelineBindPoint = 0, // ignored by given templateType
 .pipelineLayout = 0, // ignored by given templateType
 .set = 0, // ignored by given templateType
};

VkDescriptorUpdateTemplate myDescriptorUpdateTemplate;
myResult = vkCreateDescriptorUpdateTemplate(
 myDevice,
 &createInfo,
 NULL,
 &myDescriptorUpdateTemplate);

AppDataStructure appData;

// fill appData here or cache it in your engine
vkUpdateDescriptorSetWithTemplate(myDevice, myDescriptorSet,
myDescriptorUpdateTemplate, &appData);

14.2.7. Descriptor Set Binding

To bind one or more descriptor sets to a command buffer, call:

// Provided by VK_VERSION_1_0
void vkCmdBindDescriptorSets(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipelineLayout layout,
 uint32_t firstSet,
 uint32_t descriptorSetCount,
 const VkDescriptorSet* pDescriptorSets,
 uint32_t dynamicOffsetCount,
 const uint32_t* pDynamicOffsets);

1309

• commandBuffer is the command buffer that the descriptor sets will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint indicating the type of the pipeline that will use the
descriptors. There is a separate set of bind points for each pipeline type, so binding one does not
disturb the others.

• layout is a VkPipelineLayout object used to program the bindings.

• firstSet is the set number of the first descriptor set to be bound.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

• pDescriptorSets is a pointer to an array of handles to VkDescriptorSet objects describing the
descriptor sets to bind to.

• dynamicOffsetCount is the number of dynamic offsets in the pDynamicOffsets array.

• pDynamicOffsets is a pointer to an array of uint32_t values specifying dynamic offsets.

vkCmdBindDescriptorSets binds descriptor sets pDescriptorSets[0..descriptorSetCount-1] to set
numbers [firstSet..firstSet+descriptorSetCount-1] for subsequent bound pipeline commands set
by pipelineBindPoint. Any bindings that were previously applied via these sets , or calls to
vkCmdSetDescriptorBufferOffsetsEXT or vkCmdBindDescriptorBufferEmbeddedSamplersEXT, are
no longer valid.

Once bound, a descriptor set affects rendering of subsequent commands that interact with the
given pipeline type in the command buffer until either a different set is bound to the same set
number, or the set is disturbed as described in Pipeline Layout Compatibility.

A compatible descriptor set must be bound for all set numbers that any shaders in a pipeline
access, at the time that a drawing or dispatching command is recorded to execute using that
pipeline. However, if none of the shaders in a pipeline statically use any bindings with a particular
set number, then no descriptor set need be bound for that set number, even if the pipeline layout
includes a non-trivial descriptor set layout for that set number.

When consuming a descriptor, a descriptor is considered valid if the descriptor is not undefined as
described by descriptor set allocation. If the nullDescriptor feature is enabled, a null descriptor is
also considered valid. A descriptor that was disturbed by Pipeline Layout Compatibility, or was
never bound by vkCmdBindDescriptorSets is not considered valid. If a pipeline accesses a descriptor
either statically or dynamically depending on the VkDescriptorBindingFlagBits, the consuming
descriptor type in the pipeline must match the VkDescriptorType in
VkDescriptorSetLayoutCreateInfo for the descriptor to be considered valid. If a descriptor is a
mutable descriptor, the consuming descriptor type in the pipeline must match the active descriptor
type for the descriptor to be considered valid.

Note

Further validation may be carried out beyond validation for descriptor types, e.g.
Texel Input Validation.

If any of the sets being bound include dynamic uniform or storage buffers, then pDynamicOffsets
includes one element for each array element in each dynamic descriptor type binding in each set.
Values are taken from pDynamicOffsets in an order such that all entries for set N come before set
N+1; within a set, entries are ordered by the binding numbers in the descriptor set layouts; and

1310

within a binding array, elements are in order. dynamicOffsetCount must equal the total number of
dynamic descriptors in the sets being bound.

The effective offset used for dynamic uniform and storage buffer bindings is the sum of the relative
offset taken from pDynamicOffsets, and the base address of the buffer plus base offset in the
descriptor set. The range of the dynamic uniform and storage buffer bindings is the buffer range as
specified in the descriptor set.

Each of the pDescriptorSets must be compatible with the pipeline layout specified by layout. The
layout used to program the bindings must also be compatible with the pipeline used in subsequent
bound pipeline commands with that pipeline type, as defined in the Pipeline Layout Compatibility
section.

The descriptor set contents bound by a call to vkCmdBindDescriptorSets may be consumed at the
following times:

• For descriptor bindings created with the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit set,
the contents may be consumed when the command buffer is submitted to a queue, or during
shader execution of the resulting draws and dispatches, or any time in between. Otherwise,

• during host execution of the command, or during shader execution of the resulting draws and
dispatches, or any time in between.

Thus, the contents of a descriptor set binding must not be altered (overwritten by an update
command, or freed) between the first point in time that it may be consumed, and when the
command completes executing on the queue.

The contents of pDynamicOffsets are consumed immediately during execution of
vkCmdBindDescriptorSets. Once all pending uses have completed, it is legal to update and reuse a
descriptor set.

Valid Usage

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-00358
Each element of pDescriptorSets must have been allocated with a VkDescriptorSetLayout
that matches (is the same as, or identically defined as) the VkDescriptorSetLayout at set n
in layout, where n is the sum of firstSet and the index into pDescriptorSets

• VUID-vkCmdBindDescriptorSets-dynamicOffsetCount-00359
dynamicOffsetCount must be equal to the total number of dynamic descriptors in
pDescriptorSets

• VUID-vkCmdBindDescriptorSets-firstSet-00360
The sum of firstSet and descriptorSetCount must be less than or equal to
VkPipelineLayoutCreateInfo::setLayoutCount provided when layout was created

• VUID-vkCmdBindDescriptorSets-pDynamicOffsets-01971
Each element of pDynamicOffsets which corresponds to a descriptor binding with type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must be a multiple of VkPhysicalDeviceLimits
::minUniformBufferOffsetAlignment

• VUID-vkCmdBindDescriptorSets-pDynamicOffsets-01972

1311

Each element of pDynamicOffsets which corresponds to a descriptor binding with type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must be a multiple of VkPhysicalDeviceLimits
::minStorageBufferOffsetAlignment

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-01979
For each dynamic uniform or storage buffer binding in pDescriptorSets, the sum of the
effective offset and the range of the binding must be less than or equal to the size of the
buffer

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-06715
For each dynamic uniform or storage buffer binding in pDescriptorSets, if the range was
set with VK_WHOLE_SIZE then pDynamicOffsets which corresponds to the descriptor binding
must be 0

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-04616
Each element of pDescriptorSets must not have been allocated from a VkDescriptorPool
with the VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT flag set

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-06563
If graphicsPipelineLibrary is not enabled, each element of pDescriptorSets must be a valid
VkDescriptorSet

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-08010
Each element of pDescriptorSets must have been allocated with a VkDescriptorSetLayout
which was not created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdBindDescriptorSets-pipelineBindPoint-00361
pipelineBindPoint must be supported by the commandBuffer’s parent VkCommandPool’s queue
family

Valid Usage (Implicit)

• VUID-vkCmdBindDescriptorSets-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindDescriptorSets-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdBindDescriptorSets-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-parameter
pDescriptorSets must be a valid pointer to an array of descriptorSetCount valid or
VK_NULL_HANDLE VkDescriptorSet handles

• VUID-vkCmdBindDescriptorSets-pDynamicOffsets-parameter
If dynamicOffsetCount is not 0, pDynamicOffsets must be a valid pointer to an array of
dynamicOffsetCount uint32_t values

• VUID-vkCmdBindDescriptorSets-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindDescriptorSets-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or

1312

compute operations

• VUID-vkCmdBindDescriptorSets-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindDescriptorSets-descriptorSetCount-arraylength
descriptorSetCount must be greater than 0

• VUID-vkCmdBindDescriptorSets-commonparent
Each of commandBuffer, layout, and the elements of pDescriptorSets that are valid handles
of non-ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

Alternatively, to bind one or more descriptor sets to a command buffer, call:

// Provided by VK_KHR_maintenance6
void vkCmdBindDescriptorSets2KHR(
 VkCommandBuffer commandBuffer,
 const VkBindDescriptorSetsInfoKHR* pBindDescriptorSetsInfo);

• commandBuffer is the command buffer that the descriptor sets will be bound to.

• pBindDescriptorSetsInfo is a pointer to a VkBindDescriptorSetsInfoKHR structure.

Valid Usage

• VUID-vkCmdBindDescriptorSets2KHR-pBindDescriptorSetsInfo-09467
Each bit in pBindDescriptorSetsInfo->stageFlags must be a stage supported by the
commandBuffer’s parent VkCommandPool’s queue family

1313

Valid Usage (Implicit)

• VUID-vkCmdBindDescriptorSets2KHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindDescriptorSets2KHR-pBindDescriptorSetsInfo-parameter
pBindDescriptorSetsInfo must be a valid pointer to a valid VkBindDescriptorSetsInfoKHR
structure

• VUID-vkCmdBindDescriptorSets2KHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindDescriptorSets2KHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBindDescriptorSets2KHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

The VkBindDescriptorSetsInfoKHR structure is defined as:

// Provided by VK_KHR_maintenance6
typedef struct VkBindDescriptorSetsInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkShaderStageFlags stageFlags;
 VkPipelineLayout layout;
 uint32_t firstSet;
 uint32_t descriptorSetCount;
 const VkDescriptorSet* pDescriptorSets;
 uint32_t dynamicOffsetCount;
 const uint32_t* pDynamicOffsets;

1314

} VkBindDescriptorSetsInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages the descriptor
sets will be bound to.

• layout is a VkPipelineLayout object used to program the bindings. If the dynamicPipelineLayout
feature is enabled, layout can be VK_NULL_HANDLE and the layout must be specified by
chaining the VkPipelineLayoutCreateInfo structure off the pNext

• firstSet is the set number of the first descriptor set to be bound.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

• pDescriptorSets is a pointer to an array of handles to VkDescriptorSet objects describing the
descriptor sets to bind to.

• dynamicOffsetCount is the number of dynamic offsets in the pDynamicOffsets array.

• pDynamicOffsets is a pointer to an array of uint32_t values specifying dynamic offsets.

If stageFlags specifies a subset of all stages corresponding to one or more pipeline bind points, the
binding operation still affects all stages corresponding to the given pipeline bind point(s) as if the
equivalent original version of this command had been called with the same parameters. For
example, specifying a stageFlags value of VK_SHADER_STAGE_VERTEX_BIT |
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_COMPUTE_BIT is equivalent to calling the original
version of this command once with VK_PIPELINE_BIND_POINT_GRAPHICS and once with
VK_PIPELINE_BIND_POINT_COMPUTE.

Valid Usage

• VUID-VkBindDescriptorSetsInfoKHR-pDescriptorSets-00358
Each element of pDescriptorSets must have been allocated with a VkDescriptorSetLayout
that matches (is the same as, or identically defined as) the VkDescriptorSetLayout at set n
in layout, where n is the sum of firstSet and the index into pDescriptorSets

• VUID-VkBindDescriptorSetsInfoKHR-dynamicOffsetCount-00359
dynamicOffsetCount must be equal to the total number of dynamic descriptors in
pDescriptorSets

• VUID-VkBindDescriptorSetsInfoKHR-firstSet-00360
The sum of firstSet and descriptorSetCount must be less than or equal to
VkPipelineLayoutCreateInfo::setLayoutCount provided when layout was created

• VUID-VkBindDescriptorSetsInfoKHR-pDynamicOffsets-01971
Each element of pDynamicOffsets which corresponds to a descriptor binding with type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must be a multiple of VkPhysicalDeviceLimits
::minUniformBufferOffsetAlignment

• VUID-VkBindDescriptorSetsInfoKHR-pDynamicOffsets-01972
Each element of pDynamicOffsets which corresponds to a descriptor binding with type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must be a multiple of VkPhysicalDeviceLimits

1315

::minStorageBufferOffsetAlignment

• VUID-VkBindDescriptorSetsInfoKHR-pDescriptorSets-01979
For each dynamic uniform or storage buffer binding in pDescriptorSets, the sum of the
effective offset and the range of the binding must be less than or equal to the size of the
buffer

• VUID-VkBindDescriptorSetsInfoKHR-pDescriptorSets-06715
For each dynamic uniform or storage buffer binding in pDescriptorSets, if the range was
set with VK_WHOLE_SIZE then pDynamicOffsets which corresponds to the descriptor binding
must be 0

• VUID-VkBindDescriptorSetsInfoKHR-pDescriptorSets-04616
Each element of pDescriptorSets must not have been allocated from a VkDescriptorPool
with the VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT flag set

• VUID-VkBindDescriptorSetsInfoKHR-pDescriptorSets-06563
If graphicsPipelineLibrary is not enabled, each element of pDescriptorSets must be a valid
VkDescriptorSet

• VUID-VkBindDescriptorSetsInfoKHR-pDescriptorSets-08010
Each element of pDescriptorSets must have been allocated with a VkDescriptorSetLayout
which was not created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-VkBindDescriptorSetsInfoKHR-None-09495
If the dynamicPipelineLayout feature is not enabled, layout must be a valid
VkPipelineLayout handle

• VUID-VkBindDescriptorSetsInfoKHR-layout-09496
If layout is VK_NULL_HANDLE, the pNext chain must include a valid
VkPipelineLayoutCreateInfo structure

Valid Usage (Implicit)

• VUID-VkBindDescriptorSetsInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_DESCRIPTOR_SETS_INFO_KHR

• VUID-VkBindDescriptorSetsInfoKHR-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkPipelineLayoutCreateInfo

• VUID-VkBindDescriptorSetsInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBindDescriptorSetsInfoKHR-stageFlags-parameter
stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-VkBindDescriptorSetsInfoKHR-stageFlags-requiredbitmask
stageFlags must not be 0

• VUID-VkBindDescriptorSetsInfoKHR-layout-parameter
If layout is not VK_NULL_HANDLE, layout must be a valid VkPipelineLayout handle

• VUID-VkBindDescriptorSetsInfoKHR-pDescriptorSets-parameter
pDescriptorSets must be a valid pointer to an array of descriptorSetCount valid

1316

VkDescriptorSet handles

• VUID-VkBindDescriptorSetsInfoKHR-pDynamicOffsets-parameter
If dynamicOffsetCount is not 0, and pDynamicOffsets is not NULL, pDynamicOffsets must be a
valid pointer to an array of dynamicOffsetCount or VK_NULL_HANDLE uint32_t values

• VUID-VkBindDescriptorSetsInfoKHR-descriptorSetCount-arraylength
descriptorSetCount must be greater than 0

• VUID-VkBindDescriptorSetsInfoKHR-commonparent
Both of layout, and the elements of pDescriptorSets that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

14.2.8. Push Descriptor Updates

In addition to allocating descriptor sets and binding them to a command buffer, an application can
record descriptor updates into the command buffer.

To push descriptor updates into a command buffer, call:

// Provided by VK_KHR_push_descriptor
void vkCmdPushDescriptorSetKHR(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipelineLayout layout,
 uint32_t set,
 uint32_t descriptorWriteCount,
 const VkWriteDescriptorSet* pDescriptorWrites);

• commandBuffer is the command buffer that the descriptors will be recorded in.

• pipelineBindPoint is a VkPipelineBindPoint indicating the type of the pipeline that will use the
descriptors. There is a separate set of push descriptor bindings for each pipeline type, so
binding one does not disturb the others.

• layout is a VkPipelineLayout object used to program the bindings.

• set is the set number of the descriptor set in the pipeline layout that will be updated.

• descriptorWriteCount is the number of elements in the pDescriptorWrites array.

• pDescriptorWrites is a pointer to an array of VkWriteDescriptorSet structures describing the
descriptors to be updated.

Push descriptors are a small bank of descriptors whose storage is internally managed by the
command buffer rather than being written into a descriptor set and later bound to a command
buffer. Push descriptors allow for incremental updates of descriptors without managing the
lifetime of descriptor sets.

When a command buffer begins recording, all push descriptors are undefined. Push descriptors
can be updated incrementally and cause shaders to use the updated descriptors for subsequent
bound pipeline commands with the pipeline type set by pipelineBindPoint until the descriptor is

1317

overwritten, or else until the set is disturbed as described in Pipeline Layout Compatibility. When
the set is disturbed or push descriptors with a different descriptor set layout are set, all push
descriptors are undefined.

Push descriptors that are statically used by a pipeline must not be undefined at the time that a
drawing or dispatching command is recorded to execute using that pipeline. This includes
immutable sampler descriptors, which must be pushed before they are accessed by a pipeline (the
immutable samplers are pushed, rather than the samplers in pDescriptorWrites). Push descriptors
that are not statically used can remain undefined.

Push descriptors do not use dynamic offsets. Instead, the corresponding non-dynamic descriptor
types can be used and the offset member of VkDescriptorBufferInfo can be changed each time the
descriptor is written.

Each element of pDescriptorWrites is interpreted as in VkWriteDescriptorSet, except the dstSet
member is ignored.

To push an immutable sampler, use a VkWriteDescriptorSet with dstBinding and dstArrayElement
selecting the immutable sampler’s binding. If the descriptor type is VK_DESCRIPTOR_TYPE_SAMPLER, the
pImageInfo parameter is ignored and the immutable sampler is taken from the push descriptor set
layout in the pipeline layout. If the descriptor type is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
the sampler member of the pImageInfo parameter is ignored and the immutable sampler is taken
from the push descriptor set layout in the pipeline layout.

Valid Usage

• VUID-vkCmdPushDescriptorSetKHR-set-00364
set must be less than VkPipelineLayoutCreateInfo::setLayoutCount provided when layout
was created

• VUID-vkCmdPushDescriptorSetKHR-set-00365
set must be the unique set number in the pipeline layout that uses a descriptor set layout
that was created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR

• VUID-vkCmdPushDescriptorSetKHR-pDescriptorWrites-06494
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, pDescriptorWrites[i].pImageInfo must be a valid
pointer to an array of pDescriptorWrites[i].descriptorCount valid VkDescriptorImageInfo
structures

• VUID-vkCmdPushDescriptorSetKHR-pipelineBindPoint-00363
pipelineBindPoint must be supported by the commandBuffer’s parent VkCommandPool’s queue
family

Valid Usage (Implicit)

• VUID-vkCmdPushDescriptorSetKHR-commandBuffer-parameter

1318

commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPushDescriptorSetKHR-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdPushDescriptorSetKHR-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-vkCmdPushDescriptorSetKHR-pDescriptorWrites-parameter
pDescriptorWrites must be a valid pointer to an array of descriptorWriteCount valid
VkWriteDescriptorSet structures

• VUID-vkCmdPushDescriptorSetKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdPushDescriptorSetKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdPushDescriptorSetKHR-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdPushDescriptorSetKHR-descriptorWriteCount-arraylength
descriptorWriteCount must be greater than 0

• VUID-vkCmdPushDescriptorSetKHR-commonparent
Both of commandBuffer, and layout must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

Alternatively, to push descriptor updates into a command buffer, call:

// Provided by VK_KHR_maintenance6 with VK_KHR_push_descriptor
void vkCmdPushDescriptorSet2KHR(
 VkCommandBuffer commandBuffer,
 const VkPushDescriptorSetInfoKHR* pPushDescriptorSetInfo);

1319

• commandBuffer is the command buffer that the descriptors will be recorded in.

• pPushDescriptorSetInfo is a pointer to a VkPushDescriptorSetInfoKHR structure.

Valid Usage

• VUID-vkCmdPushDescriptorSet2KHR-pPushDescriptorSetInfo-09468
Each bit in pPushDescriptorSetInfo->stageFlags must be a stage supported by the
commandBuffer’s parent VkCommandPool’s queue family

Valid Usage (Implicit)

• VUID-vkCmdPushDescriptorSet2KHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPushDescriptorSet2KHR-pPushDescriptorSetInfo-parameter
pPushDescriptorSetInfo must be a valid pointer to a valid VkPushDescriptorSetInfoKHR
structure

• VUID-vkCmdPushDescriptorSet2KHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdPushDescriptorSet2KHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdPushDescriptorSet2KHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

The VkPushDescriptorSetInfoKHR structure is defined as:

// Provided by VK_KHR_maintenance6 with VK_KHR_push_descriptor

1320

typedef struct VkPushDescriptorSetInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkShaderStageFlags stageFlags;
 VkPipelineLayout layout;
 uint32_t set;
 uint32_t descriptorWriteCount;
 const VkWriteDescriptorSet* pDescriptorWrites;
} VkPushDescriptorSetInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages that will use the
descriptors.

• layout is a VkPipelineLayout object used to program the bindings. If the dynamicPipelineLayout
feature is enabled, layout can be VK_NULL_HANDLE and the layout must be specified by
chaining VkPipelineLayoutCreateInfo structure off the pNext

• set is the set number of the descriptor set in the pipeline layout that will be updated.

• descriptorWriteCount is the number of elements in the pDescriptorWrites array.

• pDescriptorWrites is a pointer to an array of VkWriteDescriptorSet structures describing the
descriptors to be updated.

If stageFlags specifies a subset of all stages corresponding to one or more pipeline bind points, the
binding operation still affects all stages corresponding to the given pipeline bind point(s) as if the
equivalent original version of this command had been called with the same parameters. For
example, specifying a stageFlags value of VK_SHADER_STAGE_VERTEX_BIT |
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_COMPUTE_BIT is equivalent to calling the original
version of this command once with VK_PIPELINE_BIND_POINT_GRAPHICS and once with
VK_PIPELINE_BIND_POINT_COMPUTE.

Valid Usage

• VUID-VkPushDescriptorSetInfoKHR-set-00364
set must be less than VkPipelineLayoutCreateInfo::setLayoutCount provided when layout
was created

• VUID-VkPushDescriptorSetInfoKHR-set-00365
set must be the unique set number in the pipeline layout that uses a descriptor set layout
that was created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR

• VUID-VkPushDescriptorSetInfoKHR-pDescriptorWrites-06494
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, pDescriptorWrites[i].pImageInfo must be a valid
pointer to an array of pDescriptorWrites[i].descriptorCount valid VkDescriptorImageInfo
structures

1321

• VUID-VkPushDescriptorSetInfoKHR-None-09495
If the dynamicPipelineLayout feature is not enabled, layout must be a valid
VkPipelineLayout handle

• VUID-VkPushDescriptorSetInfoKHR-layout-09496
If layout is VK_NULL_HANDLE, the pNext chain must include a valid
VkPipelineLayoutCreateInfo structure

Valid Usage (Implicit)

• VUID-VkPushDescriptorSetInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PUSH_DESCRIPTOR_SET_INFO_KHR

• VUID-VkPushDescriptorSetInfoKHR-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkPipelineLayoutCreateInfo

• VUID-VkPushDescriptorSetInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPushDescriptorSetInfoKHR-stageFlags-parameter
stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-VkPushDescriptorSetInfoKHR-stageFlags-requiredbitmask
stageFlags must not be 0

• VUID-VkPushDescriptorSetInfoKHR-layout-parameter
If layout is not VK_NULL_HANDLE, layout must be a valid VkPipelineLayout handle

• VUID-VkPushDescriptorSetInfoKHR-pDescriptorWrites-parameter
pDescriptorWrites must be a valid pointer to an array of descriptorWriteCount valid
VkWriteDescriptorSet structures

• VUID-VkPushDescriptorSetInfoKHR-descriptorWriteCount-arraylength
descriptorWriteCount must be greater than 0

14.2.9. Push Descriptor Updates With Descriptor Update Templates

It is also possible to use a descriptor update template to specify the push descriptors to update. To
do so, call:

// Provided by VK_VERSION_1_1 with VK_KHR_push_descriptor,
VK_KHR_descriptor_update_template with VK_KHR_push_descriptor
void vkCmdPushDescriptorSetWithTemplateKHR(
 VkCommandBuffer commandBuffer,
 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
 VkPipelineLayout layout,
 uint32_t set,
 const void* pData);

• commandBuffer is the command buffer that the descriptors will be recorded in.

1322

• descriptorUpdateTemplate is a descriptor update template defining how to interpret the
descriptor information in pData.

• layout is a VkPipelineLayout object used to program the bindings. It must be compatible with
the layout used to create the descriptorUpdateTemplate handle.

• set is the set number of the descriptor set in the pipeline layout that will be updated. This must
be the same number used to create the descriptorUpdateTemplate handle.

• pData is a pointer to memory containing descriptors for the templated update.

Valid Usage

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-commandBuffer-00366
The pipelineBindPoint specified during the creation of the descriptor update template
must be supported by the commandBuffer’s parent VkCommandPool’s queue family

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-pData-01686
pData must be a valid pointer to a memory containing one or more valid instances of
VkDescriptorImageInfo, VkDescriptorBufferInfo, or VkBufferView in a layout defined by
descriptorUpdateTemplate when it was created with vkCreateDescriptorUpdateTemplate

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-layout-07993
layout must be compatible with the layout used to create descriptorUpdateTemplate

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-descriptorUpdateTemplate-07994
descriptorUpdateTemplate must have been created with a templateType of
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-set-07995
set must be the same value used to create descriptorUpdateTemplate

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-set-07304
set must be less than VkPipelineLayoutCreateInfo::setLayoutCount provided when layout
was created

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-set-07305
set must be the unique set number in the pipeline layout that uses a descriptor set layout
that was created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR

Valid Usage (Implicit)

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-descriptorUpdateTemplate-parameter
descriptorUpdateTemplate must be a valid VkDescriptorUpdateTemplate handle

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-commandBuffer-recording
commandBuffer must be in the recording state

1323

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdPushDescriptorSetWithTemplateKHR-commonparent
Each of commandBuffer, descriptorUpdateTemplate, and layout must have been created,
allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

API example

struct AppDataStructure
{
 VkDescriptorImageInfo imageInfo; // a single image info
 // ... some more application related data
};

const VkDescriptorUpdateTemplateEntry descriptorUpdateTemplateEntries[] =
{
 // binding to a single image descriptor
 {
 .binding = 0,
 .dstArrayElement = 0,
 .descriptorCount = 1,
 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
 .offset = offsetof(AppDataStructure, imageInfo),
 .stride = 0 // not required if descriptorCount is 1
 }
};

// create a descriptor update template for push descriptor set updates

1324

const VkDescriptorUpdateTemplateCreateInfo createInfo =
{
 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO,
 .pNext = NULL,
 .flags = 0,
 .descriptorUpdateEntryCount = 1,
 .pDescriptorUpdateEntries = descriptorUpdateTemplateEntries,
 .templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR,
 .descriptorSetLayout = 0, // ignored by given templateType
 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
 .pipelineLayout = myPipelineLayout,
 .set = 0,
};

VkDescriptorUpdateTemplate myDescriptorUpdateTemplate;
myResult = vkCreateDescriptorUpdateTemplate(
 myDevice,
 &createInfo,
 NULL,
 &myDescriptorUpdateTemplate);

AppDataStructure appData;
// fill appData here or cache it in your engine
vkCmdPushDescriptorSetWithTemplateKHR(myCmdBuffer, myDescriptorUpdateTemplate,
myPipelineLayout, 0,&appData);

Alternatively, to use a descriptor update template to specify the push descriptors to update, call:

// Provided by VK_KHR_maintenance6 with VK_KHR_push_descriptor
void vkCmdPushDescriptorSetWithTemplate2KHR(
 VkCommandBuffer commandBuffer,
 const VkPushDescriptorSetWithTemplateInfoKHR* pPushDescriptorSetWithTemplateInfo);

• commandBuffer is the command buffer that the descriptors will be recorded in.

• pPushDescriptorSetWithTemplateInfo is a pointer to a VkPushDescriptorSetWithTemplateInfoKHR
structure.

Valid Usage (Implicit)

• VUID-vkCmdPushDescriptorSetWithTemplate2KHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPushDescriptorSetWithTemplate2KHR-
pPushDescriptorSetWithTemplateInfo-parameter
pPushDescriptorSetWithTemplateInfo must be a valid pointer to a valid
VkPushDescriptorSetWithTemplateInfoKHR structure

• VUID-vkCmdPushDescriptorSetWithTemplate2KHR-commandBuffer-recording
commandBuffer must be in the recording state

1325

• VUID-vkCmdPushDescriptorSetWithTemplate2KHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdPushDescriptorSetWithTemplate2KHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

The VkPushDescriptorSetWithTemplateInfoKHR structure is defined as:

// Provided by VK_KHR_maintenance6 with VK_KHR_push_descriptor
typedef struct VkPushDescriptorSetWithTemplateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorUpdateTemplate descriptorUpdateTemplate;
 VkPipelineLayout layout;
 uint32_t set;
 const void* pData;
} VkPushDescriptorSetWithTemplateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• descriptorUpdateTemplate is a descriptor update template defining how to interpret the
descriptor information in pData.

• layout is a VkPipelineLayout object used to program the bindings. It must be compatible with
the layout used to create the descriptorUpdateTemplate handle. If the dynamicPipelineLayout
feature is enabled, layout can be VK_NULL_HANDLE and the layout must be specified by
chaining VkPipelineLayoutCreateInfo structure off the pNext

• set is the set number of the descriptor set in the pipeline layout that will be updated. This must
be the same number used to create the descriptorUpdateTemplate handle.

1326

• pData is a pointer to memory containing descriptors for the templated update.

Valid Usage

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-commandBuffer-00366
The pipelineBindPoint specified during the creation of the descriptor update template
must be supported by the commandBuffer’s parent VkCommandPool’s queue family

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-pData-01686
pData must be a valid pointer to a memory containing one or more valid instances of
VkDescriptorImageInfo, VkDescriptorBufferInfo, or VkBufferView in a layout defined by
descriptorUpdateTemplate when it was created with vkCreateDescriptorUpdateTemplate

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-layout-07993
layout must be compatible with the layout used to create descriptorUpdateTemplate

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-descriptorUpdateTemplate-07994
descriptorUpdateTemplate must have been created with a templateType of
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-set-07995
set must be the same value used to create descriptorUpdateTemplate

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-set-07304
set must be less than VkPipelineLayoutCreateInfo::setLayoutCount provided when layout
was created

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-set-07305
set must be the unique set number in the pipeline layout that uses a descriptor set layout
that was created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-None-09495
If the dynamicPipelineLayout feature is not enabled, layout must be a valid
VkPipelineLayout handle

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-layout-09496
If layout is VK_NULL_HANDLE, the pNext chain must include a valid
VkPipelineLayoutCreateInfo structure

Valid Usage (Implicit)

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PUSH_DESCRIPTOR_SET_WITH_TEMPLATE_INFO_KHR

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkPipelineLayoutCreateInfo

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-descriptorUpdateTemplate-parameter
descriptorUpdateTemplate must be a valid VkDescriptorUpdateTemplate handle

1327

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-layout-parameter
If layout is not VK_NULL_HANDLE, layout must be a valid VkPipelineLayout handle

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-pData-parameter
pData must be a pointer value

• VUID-VkPushDescriptorSetWithTemplateInfoKHR-commonparent
Both of descriptorUpdateTemplate, and layout that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

14.2.10. Push Constant Updates

As described above in section Pipeline Layouts, the pipeline layout defines shader push constants
which are updated via Vulkan commands rather than via writes to memory or copy commands.

Note

Push constants represent a high speed path to modify constant data in pipelines
that is expected to outperform memory-backed resource updates.

To update push constants, call:

// Provided by VK_VERSION_1_0
void vkCmdPushConstants(
 VkCommandBuffer commandBuffer,
 VkPipelineLayout layout,
 VkShaderStageFlags stageFlags,
 uint32_t offset,
 uint32_t size,
 const void* pValues);

• commandBuffer is the command buffer in which the push constant update will be recorded.

• layout is the pipeline layout used to program the push constant updates.

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages that will use the
push constants in the updated range.

• offset is the start offset of the push constant range to update, in units of bytes.

• size is the size of the push constant range to update, in units of bytes.

• pValues is a pointer to an array of size bytes containing the new push constant values.

When a command buffer begins recording, all push constant values are undefined. Reads of
undefined push constant values by the executing shader return undefined values.

Push constant values can be updated incrementally, causing shader stages in stageFlags to read the
new data from pValues for push constants modified by this command, while still reading the
previous data for push constants not modified by this command. When a bound pipeline command
is issued, the bound pipeline’s layout must be compatible with the layouts used to set the values of
all push constants in the pipeline layout’s push constant ranges, as described in Pipeline Layout

1328

Compatibility. Binding a pipeline with a layout that is not compatible with the push constant layout
does not disturb the push constant values.

Note

As stageFlags needs to include all flags the relevant push constant ranges were
created with, any flags that are not supported by the queue family that the
VkCommandPool used to allocate commandBuffer was created on are ignored.

Valid Usage

• VUID-vkCmdPushConstants-offset-01795
For each byte in the range specified by offset and size and for each shader stage in
stageFlags, there must be a push constant range in layout that includes that byte and that
stage

• VUID-vkCmdPushConstants-offset-01796
For each byte in the range specified by offset and size and for each push constant range
that overlaps that byte, stageFlags must include all stages in that push constant range’s
VkPushConstantRange::stageFlags

• VUID-vkCmdPushConstants-offset-00368
offset must be a multiple of 4

• VUID-vkCmdPushConstants-size-00369
size must be a multiple of 4

• VUID-vkCmdPushConstants-offset-00370
offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• VUID-vkCmdPushConstants-size-00371
size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus
offset

Valid Usage (Implicit)

• VUID-vkCmdPushConstants-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPushConstants-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-vkCmdPushConstants-stageFlags-parameter
stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-vkCmdPushConstants-stageFlags-requiredbitmask
stageFlags must not be 0

• VUID-vkCmdPushConstants-pValues-parameter
pValues must be a valid pointer to an array of size bytes

• VUID-vkCmdPushConstants-commandBuffer-recording
commandBuffer must be in the recording state

1329

• VUID-vkCmdPushConstants-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdPushConstants-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdPushConstants-size-arraylength
size must be greater than 0

• VUID-vkCmdPushConstants-commonparent
Both of commandBuffer, and layout must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

Alternatively, to update push constants, call:

// Provided by VK_KHR_maintenance6
void vkCmdPushConstants2KHR(
 VkCommandBuffer commandBuffer,
 const VkPushConstantsInfoKHR* pPushConstantsInfo);

• commandBuffer is the command buffer in which the push constant update will be recorded.

• pPushConstantsInfo is a pointer to a VkPushConstantsInfoKHR structure.

Valid Usage (Implicit)

• VUID-vkCmdPushConstants2KHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPushConstants2KHR-pPushConstantsInfo-parameter
pPushConstantsInfo must be a valid pointer to a valid VkPushConstantsInfoKHR structure

1330

• VUID-vkCmdPushConstants2KHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdPushConstants2KHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdPushConstants2KHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

The VkPushConstantsInfoKHR structure is defined as:

// Provided by VK_KHR_maintenance6
typedef struct VkPushConstantsInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkPipelineLayout layout;
 VkShaderStageFlags stageFlags;
 uint32_t offset;
 uint32_t size;
 const void* pValues;
} VkPushConstantsInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• layout is the pipeline layout used to program the push constant updates. If the
dynamicPipelineLayout feature is enabled, layout can be VK_NULL_HANDLE and the layout must
be specified by chaining VkPipelineLayoutCreateInfo structure off the pNext

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages that will use the
push constants in the updated range.

1331

• offset is the start offset of the push constant range to update, in units of bytes.

• size is the size of the push constant range to update, in units of bytes.

• pValues is a pointer to an array of size bytes containing the new push constant values.

Valid Usage

• VUID-VkPushConstantsInfoKHR-offset-01795
For each byte in the range specified by offset and size and for each shader stage in
stageFlags, there must be a push constant range in layout that includes that byte and that
stage

• VUID-VkPushConstantsInfoKHR-offset-01796
For each byte in the range specified by offset and size and for each push constant range
that overlaps that byte, stageFlags must include all stages in that push constant range’s
VkPushConstantRange::stageFlags

• VUID-VkPushConstantsInfoKHR-offset-00368
offset must be a multiple of 4

• VUID-VkPushConstantsInfoKHR-size-00369
size must be a multiple of 4

• VUID-VkPushConstantsInfoKHR-offset-00370
offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• VUID-VkPushConstantsInfoKHR-size-00371
size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus
offset

• VUID-VkPushConstantsInfoKHR-None-09495
If the dynamicPipelineLayout feature is not enabled, layout must be a valid
VkPipelineLayout handle

• VUID-VkPushConstantsInfoKHR-layout-09496
If layout is VK_NULL_HANDLE, the pNext chain must include a valid
VkPipelineLayoutCreateInfo structure

Valid Usage (Implicit)

• VUID-VkPushConstantsInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PUSH_CONSTANTS_INFO_KHR

• VUID-VkPushConstantsInfoKHR-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkPipelineLayoutCreateInfo

• VUID-VkPushConstantsInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPushConstantsInfoKHR-layout-parameter
If layout is not VK_NULL_HANDLE, layout must be a valid VkPipelineLayout handle

• VUID-VkPushConstantsInfoKHR-stageFlags-parameter

1332

stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-VkPushConstantsInfoKHR-stageFlags-requiredbitmask
stageFlags must not be 0

• VUID-VkPushConstantsInfoKHR-pValues-parameter
pValues must be a valid pointer to an array of size bytes

• VUID-VkPushConstantsInfoKHR-size-arraylength
size must be greater than 0

14.3. Physical Storage Buffer Access
To query a 64-bit buffer device address value through which buffer memory can be accessed in a
shader, call:

// Provided by VK_VERSION_1_2
VkDeviceAddress vkGetBufferDeviceAddress(
 VkDevice device,
 const VkBufferDeviceAddressInfo* pInfo);

or the equivalent command

// Provided by VK_KHR_buffer_device_address
VkDeviceAddress vkGetBufferDeviceAddressKHR(
 VkDevice device,
 const VkBufferDeviceAddressInfo* pInfo);

or the equivalent command

// Provided by VK_EXT_buffer_device_address
VkDeviceAddress vkGetBufferDeviceAddressEXT(
 VkDevice device,
 const VkBufferDeviceAddressInfo* pInfo);

• device is the logical device that the buffer was created on.

• pInfo is a pointer to a VkBufferDeviceAddressInfo structure specifying the buffer to retrieve an
address for.

The 64-bit return value is an address of the start of pInfo->buffer. The address range starting at this
value and whose size is the size of the buffer can be used in a shader to access the memory bound
to that buffer, using the SPV_KHR_physical_storage_buffer extension or the equivalent
SPV_EXT_physical_storage_buffer extension and the PhysicalStorageBuffer storage class. For
example, this value can be stored in a uniform buffer, and the shader can read the value from the
uniform buffer and use it to do a dependent read/write to this buffer. A value of zero is reserved as
a “null” pointer and must not be returned as a valid buffer device address. All loads, stores, and

1333

atomics in a shader through PhysicalStorageBuffer pointers must access addresses in the address
range of some buffer.

If the buffer was created with a non-zero value of VkBufferOpaqueCaptureAddressCreateInfo
::opaqueCaptureAddress or VkBufferDeviceAddressCreateInfoEXT::deviceAddress, the return value
will be the same address that was returned at capture time.

The returned address must satisfy the alignment requirement specified by
VkMemoryRequirements::alignment for the buffer in VkBufferDeviceAddressInfo::buffer.

If multiple VkBuffer objects are bound to overlapping ranges of VkDeviceMemory,
implementations may return address ranges which overlap. In this case, it is ambiguous which
VkBuffer is associated with any given device address. For purposes of valid usage, if multiple
VkBuffer objects can be attributed to a device address, a VkBuffer is selected such that valid usage
passes, if it exists.

Valid Usage

• VUID-vkGetBufferDeviceAddress-bufferDeviceAddress-03324
The bufferDeviceAddress or VkPhysicalDeviceBufferDeviceAddressFeaturesEXT
::bufferDeviceAddress feature must be enabled

• VUID-vkGetBufferDeviceAddress-device-03325
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice or VkPhysicalDeviceBufferDeviceAddressFeaturesEXT
::bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetBufferDeviceAddress-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferDeviceAddress-pInfo-parameter
pInfo must be a valid pointer to a valid VkBufferDeviceAddressInfo structure

The VkBufferDeviceAddressInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkBufferDeviceAddressInfo {
 VkStructureType sType;
 const void* pNext;
 VkBuffer buffer;
} VkBufferDeviceAddressInfo;

or the equivalent

// Provided by VK_KHR_buffer_device_address

1334

typedef VkBufferDeviceAddressInfo VkBufferDeviceAddressInfoKHR;

or the equivalent

// Provided by VK_EXT_buffer_device_address
typedef VkBufferDeviceAddressInfo VkBufferDeviceAddressInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer specifies the buffer whose address is being queried.

Valid Usage

• VUID-VkBufferDeviceAddressInfo-buffer-02600
If buffer is non-sparse and was not created with the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT flag, then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkBufferDeviceAddressInfo-buffer-02601
buffer must have been created with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT

Valid Usage (Implicit)

• VUID-VkBufferDeviceAddressInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO

• VUID-VkBufferDeviceAddressInfo-pNext-pNext
pNext must be NULL

• VUID-VkBufferDeviceAddressInfo-buffer-parameter
buffer must be a valid VkBuffer handle

To query a 64-bit buffer opaque capture address, call:

// Provided by VK_VERSION_1_2
uint64_t vkGetBufferOpaqueCaptureAddress(
 VkDevice device,
 const VkBufferDeviceAddressInfo* pInfo);

or the equivalent command

// Provided by VK_KHR_buffer_device_address
uint64_t vkGetBufferOpaqueCaptureAddressKHR(
 VkDevice device,

1335

 const VkBufferDeviceAddressInfo* pInfo);

• device is the logical device that the buffer was created on.

• pInfo is a pointer to a VkBufferDeviceAddressInfo structure specifying the buffer to retrieve an
address for.

The 64-bit return value is an opaque capture address of the start of pInfo->buffer.

If the buffer was created with a non-zero value of VkBufferOpaqueCaptureAddressCreateInfo
::opaqueCaptureAddress the return value must be the same address.

Valid Usage

• VUID-vkGetBufferOpaqueCaptureAddress-None-03326
The bufferDeviceAddress feature must be enabled

• VUID-vkGetBufferOpaqueCaptureAddress-device-03327
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetBufferOpaqueCaptureAddress-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferOpaqueCaptureAddress-pInfo-parameter
pInfo must be a valid pointer to a valid VkBufferDeviceAddressInfo structure

14.4. Descriptor Buffers
If the descriptorBuffer feature is enabled, an alternative way to specify descriptor sets is via
buffers, rather than descriptor set objects.

14.4.1. Putting Descriptors in Memory

Commands are provided to retrieve descriptor data, and also to locate where in memory that data
must be written to match the given descriptor set layout.

To determine the amount of memory needed to store all descriptors with a given layout, call:

// Provided by VK_EXT_descriptor_buffer
void vkGetDescriptorSetLayoutSizeEXT(
 VkDevice device,
 VkDescriptorSetLayout layout,
 VkDeviceSize* pLayoutSizeInBytes);

1336

• device is the logical device that gets the size.

• layout is the descriptor set layout being queried.

• pLayoutSizeInBytes is a pointer to VkDeviceSize where the size in bytes will be written.

The size of a descriptor set layout will be at least as large as the sum total of the size of all
descriptors in the layout, and may be larger. This size represents the amount of memory that will
be required to store all of the descriptors for this layout in memory, when placed according to the
layout’s offsets as obtained by vkGetDescriptorSetLayoutBindingOffsetEXT.

If any binding in layout is VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT, the returned size
includes space for the maximum descriptorCount descriptors as declared for that binding. To
compute the required size of a descriptor set with a
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT:

size = offset + descriptorSize × variableDescriptorCount

where offset is obtained by vkGetDescriptorSetLayoutBindingOffsetEXT and descriptorSize is the
size of the relevant descriptor as obtained from VkPhysicalDeviceDescriptorBufferPropertiesEXT,
and variableDescriptorCount is the equivalent of
VkDescriptorSetVariableDescriptorCountAllocateInfo::pDescriptorCounts. For
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, variableDescriptorCount is the size in bytes for the inline
uniform block, and descriptorSize is 1.

If VkPhysicalDeviceDescriptorBufferPropertiesEXT::combinedImageSamplerDescriptorSingleArray is
VK_FALSE and the variable descriptor type is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
variableDescriptorCount is always considered to be the upper bound.

Valid Usage

• VUID-vkGetDescriptorSetLayoutSizeEXT-None-08011
The descriptorBuffer feature must be enabled

• VUID-vkGetDescriptorSetLayoutSizeEXT-layout-08012
layout must have been created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT flag set

Valid Usage (Implicit)

• VUID-vkGetDescriptorSetLayoutSizeEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDescriptorSetLayoutSizeEXT-layout-parameter
layout must be a valid VkDescriptorSetLayout handle

• VUID-vkGetDescriptorSetLayoutSizeEXT-pLayoutSizeInBytes-parameter
pLayoutSizeInBytes must be a valid pointer to a VkDeviceSize value

• VUID-vkGetDescriptorSetLayoutSizeEXT-layout-parent

1337

layout must have been created, allocated, or retrieved from device

To get the offset of a binding within a descriptor set layout in memory, call:

// Provided by VK_EXT_descriptor_buffer
void vkGetDescriptorSetLayoutBindingOffsetEXT(
 VkDevice device,
 VkDescriptorSetLayout layout,
 uint32_t binding,
 VkDeviceSize* pOffset);

• device is the logical device that gets the offset.

• layout is the descriptor set layout being queried.

• binding is the binding number being queried.

• pOffset is a pointer to VkDeviceSize where the byte offset of the binding will be written.

Each binding in a descriptor set layout is assigned an offset in memory by the implementation.
When a shader accesses a resource with that binding, it will access the bound descriptor buffer
from that offset to look for its descriptor. This command provides an application with that offset, so
that descriptors can be placed in the correct locations. The precise location accessed by a shader for
a given descriptor is as follows:

location = bufferAddress + setOffset + descriptorOffset + (arrayElement × descriptorSize)

where bufferAddress and setOffset are the base address and offset for the identified descriptor set
as specified by vkCmdBindDescriptorBuffersEXT and vkCmdSetDescriptorBufferOffsetsEXT,
descriptorOffset is the offset for the binding returned by this command, arrayElement is the index
into the array specified in the shader, and descriptorSize is the size of the relevant descriptor as
obtained from VkPhysicalDeviceDescriptorBufferPropertiesEXT. Applications are responsible for
placing valid descriptors at the expected location in order for a shader to access it. The overall
offset added to bufferAddress to calculate location must be less than
VkPhysicalDeviceDescriptorBufferPropertiesEXT::maxSamplerDescriptorBufferRange for samplers
and VkPhysicalDeviceDescriptorBufferPropertiesEXT::maxResourceDescriptorBufferRange for
resources.

If any binding in layout is VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT, that binding must
have the largest offset of any binding.

A descriptor binding with type VK_DESCRIPTOR_TYPE_MUTABLE_VALVE can be used. Any potential types in
VkMutableDescriptorTypeCreateInfoVALVE::pDescriptorTypes for binding share the same offset. If
the size of the mutable descriptor is larger than the size of a concrete descriptor type being
accessed, the padding area is ignored by the implementation.

1338

Valid Usage

• VUID-vkGetDescriptorSetLayoutBindingOffsetEXT-None-08013
The descriptorBuffer feature must be enabled

• VUID-vkGetDescriptorSetLayoutBindingOffsetEXT-layout-08014
layout must have been created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT flag set

Valid Usage (Implicit)

• VUID-vkGetDescriptorSetLayoutBindingOffsetEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDescriptorSetLayoutBindingOffsetEXT-layout-parameter
layout must be a valid VkDescriptorSetLayout handle

• VUID-vkGetDescriptorSetLayoutBindingOffsetEXT-pOffset-parameter
pOffset must be a valid pointer to a VkDeviceSize value

• VUID-vkGetDescriptorSetLayoutBindingOffsetEXT-layout-parent
layout must have been created, allocated, or retrieved from device

To get descriptor data to place in a buffer, call:

// Provided by VK_EXT_descriptor_buffer
void vkGetDescriptorEXT(
 VkDevice device,
 const VkDescriptorGetInfoEXT* pDescriptorInfo,
 size_t dataSize,
 void* pDescriptor);

• device is the logical device that gets the descriptor.

• pDescriptorInfo is a pointer to a VkDescriptorGetInfoEXT structure specifying the parameters of
the descriptor to get.

• dataSize is the amount of the descriptor data to get in bytes.

• pDescriptor is a pointer to a user-allocated buffer where the descriptor will be written.

The size of the data for each descriptor type is determined by the value in
VkPhysicalDeviceDescriptorBufferPropertiesEXT. This value also defines the stride in bytes for
arrays of that descriptor type.

If the VkPhysicalDeviceDescriptorBufferPropertiesEXT::combinedImageSamplerDescriptorSingleArray
property is VK_FALSE the implementation requires an array of
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptors to be written into a descriptor buffer as an
array of image descriptors, immediately followed by an array of sampler descriptors. Applications
must write the first VkPhysicalDeviceDescriptorBufferPropertiesEXT::sampledImageDescriptorSize

1339

bytes of the data returned through pDescriptor to the first array, and the remaining
VkPhysicalDeviceDescriptorBufferPropertiesEXT::samplerDescriptorSize bytes of the data to the
second array. For variable-sized descriptor bindings of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER
descriptors, the two arrays each have a size equal to the upper bound descriptorCount of that
binding.

A descriptor obtained by this command references the underlying VkImageView or VkSampler, and
these objects must not be destroyed before the last time a descriptor is dynamically accessed. For
descriptor types which consume an address instead of an object, the underlying VkBuffer is
referenced instead.

Valid Usage

• VUID-vkGetDescriptorEXT-None-08015
The descriptorBuffer feature must be enabled

• VUID-vkGetDescriptorEXT-dataSize-08125
If pDescriptorInfo->type is not VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER or
pDescriptorInfo->data.pCombinedImageSampler has an imageView member that was not
created with a VkSamplerYcbcrConversionInfo structure in its pNext chain, dataSize must
equal the size of a descriptor of type VkDescriptorGetInfoEXT::type determined by the
value in VkPhysicalDeviceDescriptorBufferPropertiesEXT , or determined by
VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT::combinedImageSamplerDensit
yMapDescriptorSize if pDescriptorInfo specifies a
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER whose VkSampler was created with
VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT set

• VUID-vkGetDescriptorEXT-descriptorType-09469
If pDescriptorInfo->type is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER and
pDescriptorInfo->data.pCombinedImageSampler has an imageView member that was created
with a VkSamplerYcbcrConversionInfo structure in its pNext chain, dataSize must equal the
size of VkPhysicalDeviceDescriptorBufferPropertiesEXT
::combinedImageSamplerDescriptorSize times
VkSamplerYcbcrConversionImageFormatProperties::combinedImageSamplerDescriptorCount

• VUID-vkGetDescriptorEXT-pDescriptorInfo-09507
If pDescriptorInfo->type is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER and it has a
imageView that is VK_NULL_HANDLE then dataSize must be equal to the size of
VkPhysicalDeviceDescriptorBufferPropertiesEXT::combinedImageSamplerDescriptorSize

Valid Usage (Implicit)

• VUID-vkGetDescriptorEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDescriptorEXT-pDescriptorInfo-parameter
pDescriptorInfo must be a valid pointer to a valid VkDescriptorGetInfoEXT structure

• VUID-vkGetDescriptorEXT-pDescriptor-parameter

1340

pDescriptor must be a valid pointer to an array of dataSize bytes

• VUID-vkGetDescriptorEXT-dataSize-arraylength
dataSize must be greater than 0

Information about the descriptor to get is passed in a VkDescriptorGetInfoEXT structure:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkDescriptorGetInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorType type;
 VkDescriptorDataEXT data;
} VkDescriptorGetInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• type is the type of descriptor to get.

• data is a structure containing the information needed to get the descriptor.

Valid Usage

• VUID-VkDescriptorGetInfoEXT-type-08018
type must not be VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC or VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

• VUID-VkDescriptorGetInfoEXT-type-08019
If type is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the pCombinedImageSampler->sampler
member of data must be a VkSampler created on device

• VUID-VkDescriptorGetInfoEXT-type-08020
If type is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the pCombinedImageSampler-
>imageView member of data must be a VkImageView created on device, or
VK_NULL_HANDLE

• VUID-VkDescriptorGetInfoEXT-type-08021
If type is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the pInputAttachmentImage->imageView
member of data must be a VkImageView created on device

• VUID-VkDescriptorGetInfoEXT-type-08022
If type is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and if pSampledImage is not NULL, the
pSampledImage->imageView member of data must be a VkImageView created on device, or
VK_NULL_HANDLE

• VUID-VkDescriptorGetInfoEXT-type-08023
If type is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and if pStorageImage is not NULL, the
pStorageImage->imageView member of data must be a VkImageView created on device, or
VK_NULL_HANDLE

1341

• VUID-VkDescriptorGetInfoEXT-type-08024
If type is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, pUniformTexelBuffer is not NULL and
pUniformTexelBuffer->address is not zero, pUniformTexelBuffer->address must be an
address within a VkBuffer created on device

• VUID-VkDescriptorGetInfoEXT-type-08025
If type is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, pStorageTexelBuffer is not NULL and
pStorageTexelBuffer->address is not zero, pStorageTexelBuffer->address must be an
address within a VkBuffer created on device

• VUID-VkDescriptorGetInfoEXT-type-08026
If type is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, pUniformBuffer is not NULL and
pUniformBuffer->address is not zero, pUniformBuffer->address must be an address within a
VkBuffer created on device

• VUID-VkDescriptorGetInfoEXT-type-08027
If type is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, pStorageBuffer is not NULL and
pStorageBuffer->address is not zero, pStorageBuffer->address must be an address within a
VkBuffer created on device

• VUID-VkDescriptorGetInfoEXT-type-09427
If type is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, pUniformBuffer is not NULL , the number
of texel buffer elements given by (⌊pUniformBuffer->range / (texel block size)⌋ × (texels per
block)) where texel block size and texels per block are as defined in the Compatible
Formats table for pUniformBuffer->format, must be less than or equal to
VkPhysicalDeviceLimits::maxTexelBufferElements

• VUID-VkDescriptorGetInfoEXT-type-09428
If type is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, pStorageBuffer is not NULL , the number
of texel buffer elements given by (⌊pStorageBuffer->range / (texel block size)⌋ × (texels per
block)) where texel block size and texels per block are as defined in the Compatible
Formats table for pStorageBuffer->format, must be less than or equal to
VkPhysicalDeviceLimits::maxTexelBufferElements

• VUID-VkDescriptorGetInfoEXT-type-08028
If type is VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR and accelerationStructure is not
0, accelerationStructure must contain the address of a VkAccelerationStructureKHR
created on device

• VUID-VkDescriptorGetInfoEXT-type-08029
If type is VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV and accelerationStructure is not
0, accelerationStructure must contain the handle of a VkAccelerationStructureNV created
on device, returned by vkGetAccelerationStructureHandleNV

Valid Usage (Implicit)

• VUID-VkDescriptorGetInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_GET_INFO_EXT

• VUID-VkDescriptorGetInfoEXT-pNext-pNext
pNext must be NULL

1342

• VUID-VkDescriptorGetInfoEXT-type-parameter
type must be a valid VkDescriptorType value

• VUID-VkDescriptorGetInfoEXT-pSampler-parameter
If type is VK_DESCRIPTOR_TYPE_SAMPLER, the pSampler member of data must be a valid pointer
to a valid VkSampler handle

• VUID-VkDescriptorGetInfoEXT-pCombinedImageSampler-parameter
If type is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the pCombinedImageSampler member
of data must be a valid pointer to a valid VkDescriptorImageInfo structure

• VUID-VkDescriptorGetInfoEXT-pInputAttachmentImage-parameter
If type is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the pInputAttachmentImage member of data
must be a valid pointer to a valid VkDescriptorImageInfo structure

• VUID-VkDescriptorGetInfoEXT-pSampledImage-parameter
If type is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and if pSampledImage is not NULL, the
pSampledImage member of data must be a valid pointer to a valid VkDescriptorImageInfo
structure

• VUID-VkDescriptorGetInfoEXT-pStorageImage-parameter
If type is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and if pStorageImage is not NULL, the
pStorageImage member of data must be a valid pointer to a valid VkDescriptorImageInfo
structure

• VUID-VkDescriptorGetInfoEXT-pUniformTexelBuffer-parameter
If type is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, and if pUniformTexelBuffer is not NULL,
the pUniformTexelBuffer member of data must be a valid pointer to a valid
VkDescriptorAddressInfoEXT structure

• VUID-VkDescriptorGetInfoEXT-pStorageTexelBuffer-parameter
If type is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, and if pStorageTexelBuffer is not NULL,
the pStorageTexelBuffer member of data must be a valid pointer to a valid
VkDescriptorAddressInfoEXT structure

• VUID-VkDescriptorGetInfoEXT-pUniformBuffer-parameter
If type is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, and if pUniformBuffer is not NULL, the
pUniformBuffer member of data must be a valid pointer to a valid
VkDescriptorAddressInfoEXT structure

• VUID-VkDescriptorGetInfoEXT-pStorageBuffer-parameter
If type is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, and if pStorageBuffer is not NULL, the
pStorageBuffer member of data must be a valid pointer to a valid
VkDescriptorAddressInfoEXT structure

Data describing the descriptor is passed in a VkDescriptorDataEXT structure:

// Provided by VK_EXT_descriptor_buffer
typedef union VkDescriptorDataEXT {
 const VkSampler* pSampler;
 const VkDescriptorImageInfo* pCombinedImageSampler;
 const VkDescriptorImageInfo* pInputAttachmentImage;
 const VkDescriptorImageInfo* pSampledImage;

1343

 const VkDescriptorImageInfo* pStorageImage;
 const VkDescriptorAddressInfoEXT* pUniformTexelBuffer;
 const VkDescriptorAddressInfoEXT* pStorageTexelBuffer;
 const VkDescriptorAddressInfoEXT* pUniformBuffer;
 const VkDescriptorAddressInfoEXT* pStorageBuffer;
 VkDeviceAddress accelerationStructure;
} VkDescriptorDataEXT;

• pSampler is a pointer to a VkSampler handle specifying the parameters of a
VK_DESCRIPTOR_TYPE_SAMPLER descriptor.

• pCombinedImageSampler is a pointer to a VkDescriptorImageInfo structure specifying the
parameters of a VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor.

• pInputAttachmentImage is a pointer to a VkDescriptorImageInfo structure specifying the
parameters of a VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT descriptor.

• pSampledImage is a pointer to a VkDescriptorImageInfo structure specifying the parameters of a
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE descriptor.

• pStorageImage is a pointer to a VkDescriptorImageInfo structure specifying the parameters of a
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE descriptor.

• pUniformTexelBuffer is a pointer to a VkDescriptorAddressInfoEXT structure specifying the
parameters of a VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER descriptor.

• pStorageTexelBuffer is a pointer to a VkDescriptorAddressInfoEXT structure specifying the
parameters of a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor.

• pUniformBuffer is a pointer to a VkDescriptorAddressInfoEXT structure specifying the
parameters of a VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER descriptor.

• pStorageBuffer is a pointer to a VkDescriptorAddressInfoEXT structure specifying the
parameters of a VK_DESCRIPTOR_TYPE_STORAGE_BUFFER descriptor.

• accelerationStructure is the address of a VkAccelerationStructureKHR specifying the
parameters of a VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR descriptor , or a
VkAccelerationStructureNV handle specifying the parameters of a
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV descriptor.

If the nullDescriptor feature is enabled, pSampledImage, pStorageImage, pUniformTexelBuffer,
pStorageTexelBuffer, pUniformBuffer, and pStorageBuffer can each be NULL. Loads from a null
descriptor return zero values and stores and atomics to a null descriptor are discarded.

If the nullDescriptor feature is enabled, accelerationStructure can be 0. A null acceleration
structure descriptor results in the miss shader being invoked.

Valid Usage

• VUID-VkDescriptorDataEXT-type-08030
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, and pUniformBuffer-
>address is the address of a non-sparse buffer, then that buffer must be bound completely
and contiguously to a single VkDeviceMemory object

1344

• VUID-VkDescriptorDataEXT-type-08031
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, and pStorageBuffer-
>address is the address of a non-sparse buffer, then that buffer must be bound completely
and contiguously to a single VkDeviceMemory object

• VUID-VkDescriptorDataEXT-type-08032
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, and
pUniformTexelBuffer->address is the address of a non-sparse buffer, then that buffer must
be bound completely and contiguously to a single VkDeviceMemory object

• VUID-VkDescriptorDataEXT-type-08033
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, and
pStorageTexelBuffer->address is the address of a non-sparse buffer, then that buffer must
be bound completely and contiguously to a single VkDeviceMemory object

• VUID-VkDescriptorDataEXT-type-08034
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and the
nullDescriptor feature is not enabled, pCombinedImageSampler->imageView must not be
VK_NULL_HANDLE

• VUID-VkDescriptorDataEXT-type-08035
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and the
nullDescriptor feature is not enabled, pSampledImage must not be NULL and pSampledImage-
>imageView must not be VK_NULL_HANDLE

• VUID-VkDescriptorDataEXT-type-08036
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and the
nullDescriptor feature is not enabled, pStorageImage must not be NULL and pStorageImage-
>imageView must not be VK_NULL_HANDLE

• VUID-VkDescriptorDataEXT-type-08037
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, and the
nullDescriptor feature is not enabled, pUniformTexelBuffer must not be NULL

• VUID-VkDescriptorDataEXT-type-08038
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, and the
nullDescriptor feature is not enabled, pStorageTexelBuffer must not be NULL

• VUID-VkDescriptorDataEXT-type-08039
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, and the
nullDescriptor feature is not enabled, pUniformBuffer must not be NULL

• VUID-VkDescriptorDataEXT-type-08040
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, and the
nullDescriptor feature is not enabled, pStorageBuffer must not be NULL

• VUID-VkDescriptorDataEXT-type-08041
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, and the
nullDescriptor feature is not enabled, accelerationStructure must not be 0

• VUID-VkDescriptorDataEXT-type-08042
If VkDescriptorGetInfoEXT:type is VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV, and the
nullDescriptor feature is not enabled, accelerationStructure must not be 0

1345

Data describing a VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is
passed in a VkDescriptorAddressInfoEXT structure:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkDescriptorAddressInfoEXT {
 VkStructureType sType;
 void* pNext;
 VkDeviceAddress address;
 VkDeviceSize range;
 VkFormat format;
} VkDescriptorAddressInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• address is either 0 or a device address at an offset in a buffer, where the base address can be
queried from vkGetBufferDeviceAddress.

• range is the size in bytes of the buffer or buffer view used by the descriptor.

• format is the format of the data elements in the buffer view and is ignored for buffers.

Valid Usage

• VUID-VkDescriptorAddressInfoEXT-None-09508
If address is not zero, and the descriptor is of type
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
then format must not be VK_FORMAT_UNDEFINED

• VUID-VkDescriptorAddressInfoEXT-address-08043
If the nullDescriptor feature is not enabled, address must not be zero

• VUID-VkDescriptorAddressInfoEXT-nullDescriptor-08938
If address is zero, range must be VK_WHOLE_SIZE

• VUID-VkDescriptorAddressInfoEXT-nullDescriptor-08939
If address is not zero, range must not be VK_WHOLE_SIZE

• VUID-VkDescriptorAddressInfoEXT-None-08044
If address is not zero, address must be a valid device address at an offset within a
VkBuffer

• VUID-VkDescriptorAddressInfoEXT-range-08045
range must be less than or equal to the size of the buffer containing address minus the
offset of address from the base address of the buffer

• VUID-VkDescriptorAddressInfoEXT-range-08940
range must not be zero

1346

Valid Usage (Implicit)

• VUID-VkDescriptorAddressInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_ADDRESS_INFO_EXT

• VUID-VkDescriptorAddressInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDescriptorAddressInfoEXT-format-parameter
format must be a valid VkFormat value

If the nullDescriptor feature is enabled, address can be zero. Loads from a null descriptor return
zero values and stores and atomics to a null descriptor are discarded.

Immutable samplers specified in a descriptor set layout through pImmutableSamplers must be
provided by applications when obtaining descriptor data. Immutable samplers written in a
descriptor buffer must have identical parameters to the immutable samplers in the descriptor set
layout that consumes the sampler.

Note

If the descriptor set layout was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT, there is no
buffer backing for the immutable sampler, so this requirement does not exist. The
implementation handles allocation of these descriptors internally.

Note

As descriptors are now in regular memory, drivers cannot hide copies of
immutable samplers that end up in descriptor sets from the application. As such,
applications are required to provide these samplers as if they were not provided
immutably.

14.4.2. Binding Descriptor Buffers

Descriptor buffers have their own separate binding point on the command buffer, with buffers
bound using vkCmdBindDescriptorBuffersEXT. vkCmdSetDescriptorBufferOffsetsEXT assigns pairs
of buffer binding indices and buffer offsets to the same binding point on the command buffer as
vkCmdBindDescriptorSets, allowing subsequent bound pipeline commands to use the specified
descriptor buffers. Bindings applied via vkCmdBindDescriptorSets cannot exist simultaneously
with those applied via calls to vkCmdSetDescriptorBufferOffsetsEXT or
vkCmdBindDescriptorBufferEmbeddedSamplersEXT, as calls to
vkCmdSetDescriptorBufferOffsetsEXT or vkCmdBindDescriptorBufferEmbeddedSamplersEXT
invalidate any bindings by previous calls to vkCmdBindDescriptorSets and vice-versa.

To bind descriptor buffers to a command buffer, call:

// Provided by VK_EXT_descriptor_buffer
void vkCmdBindDescriptorBuffersEXT(

1347

 VkCommandBuffer commandBuffer,
 uint32_t bufferCount,
 const VkDescriptorBufferBindingInfoEXT* pBindingInfos);

• commandBuffer is the command buffer that the descriptor buffers will be bound to.

• bufferCount is the number of elements in the pBindingInfos array.

• pBindingInfos is a pointer to an array of VkDescriptorBufferBindingInfoEXT structures.

vkCmdBindDescriptorBuffersEXT causes any offsets previously set by
vkCmdSetDescriptorBufferOffsetsEXT that use the bindings numbered [0.. bufferCount-1] to be no
longer valid for subsequent bound pipeline commands. Any previously bound buffers at binding
points greater than or equal to bufferCount are unbound.

Valid Usage

• VUID-vkCmdBindDescriptorBuffersEXT-None-08047
The descriptorBuffer feature must be enabled

• VUID-vkCmdBindDescriptorBuffersEXT-maxSamplerDescriptorBufferBindings-08048
There must be no more than VkPhysicalDeviceDescriptorBufferPropertiesEXT
::maxSamplerDescriptorBufferBindings descriptor buffers containing sampler descriptor
data bound

• VUID-vkCmdBindDescriptorBuffersEXT-maxResourceDescriptorBufferBindings-08049
There must be no more than VkPhysicalDeviceDescriptorBufferPropertiesEXT
::maxResourceDescriptorBufferBindings descriptor buffers containing resource descriptor
data bound

• VUID-vkCmdBindDescriptorBuffersEXT-None-08050
There must be no more than 1 descriptor buffer bound that was created with the
VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT bit set

• VUID-vkCmdBindDescriptorBuffersEXT-bufferCount-08051
bufferCount must be less than or equal to
VkPhysicalDeviceDescriptorBufferPropertiesEXT::maxDescriptorBufferBindings

• VUID-vkCmdBindDescriptorBuffersEXT-pBindingInfos-08052
For any element of pBindingInfos, if the buffer from which address was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdBindDescriptorBuffersEXT-pBindingInfos-08053
For any element of pBindingInfos, the buffer from which address was queried must have
been created with the VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT bit set if it
contains sampler descriptor data

• VUID-vkCmdBindDescriptorBuffersEXT-pBindingInfos-08054
For any element of pBindingInfos, the buffer from which address was queried must have
been created with the VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT bit set if it
contains resource descriptor data

1348

• VUID-vkCmdBindDescriptorBuffersEXT-pBindingInfos-08055
For any element of pBindingInfos, usage must match the buffer from which address was
queried

Valid Usage (Implicit)

• VUID-vkCmdBindDescriptorBuffersEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindDescriptorBuffersEXT-pBindingInfos-parameter
pBindingInfos must be a valid pointer to an array of bufferCount valid
VkDescriptorBufferBindingInfoEXT structures

• VUID-vkCmdBindDescriptorBuffersEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindDescriptorBuffersEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBindDescriptorBuffersEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindDescriptorBuffersEXT-bufferCount-arraylength
bufferCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

Data describing a descriptor buffer binding is passed in a VkDescriptorBufferBindingInfoEXT
structure:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkDescriptorBufferBindingInfoEXT {
 VkStructureType sType;
 void* pNext;

1349

 VkDeviceAddress address;
 VkBufferUsageFlags usage;
} VkDescriptorBufferBindingInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• address is a VkDeviceAddress specifying the device address defining the descriptor buffer to be
bound.

• usage is a bitmask of VkBufferUsageFlagBits specifying the VkBufferCreateInfo::usage for the
buffer from which address was queried.

If a VkBufferUsageFlags2CreateInfoKHR structure is present in the pNext chain,
VkBufferUsageFlags2CreateInfoKHR::usage from that structure is used instead of usage from this
structure.

Valid Usage

• VUID-VkDescriptorBufferBindingInfoEXT-None-09499
If the pNext chain does not include a VkBufferUsageFlags2CreateInfoKHR structure, usage
must be a valid combination of VkBufferUsageFlagBits values

• VUID-VkDescriptorBufferBindingInfoEXT-None-09500
If the pNext chain does not include a VkBufferUsageFlags2CreateInfoKHR structure, usage
must not be 0

• VUID-VkDescriptorBufferBindingInfoEXT-bufferlessPushDescriptors-08056
If VkPhysicalDeviceDescriptorBufferPropertiesEXT::bufferlessPushDescriptors is VK_FALSE,
and usage contains VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT, then the
pNext chain must include a VkDescriptorBufferBindingPushDescriptorBufferHandleEXT
structure

• VUID-VkDescriptorBufferBindingInfoEXT-address-08057
address must be aligned to VkPhysicalDeviceDescriptorBufferPropertiesEXT
::descriptorBufferOffsetAlignment

• VUID-VkDescriptorBufferBindingInfoEXT-usage-08122
If usage includes VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT, address must be an
address within a valid buffer that was created with
VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-VkDescriptorBufferBindingInfoEXT-usage-08123
If usage includes VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT, address must be an
address within a valid buffer that was created with
VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-VkDescriptorBufferBindingInfoEXT-usage-08124
If usage includes VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT, address
must be an address within a valid buffer that was created with
VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT

1350

Valid Usage (Implicit)

• VUID-VkDescriptorBufferBindingInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_BUFFER_BINDING_INFO_EXT

• VUID-VkDescriptorBufferBindingInfoEXT-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkBufferUsageFlags2CreateInfoKHR or
VkDescriptorBufferBindingPushDescriptorBufferHandleEXT

• VUID-VkDescriptorBufferBindingInfoEXT-sType-unique
The sType value of each struct in the pNext chain must be unique

When the VkPhysicalDeviceDescriptorBufferPropertiesEXT::bufferlessPushDescriptors property is
VK_FALSE, the VkBuffer handle of the buffer for push descriptors is passed in a
VkDescriptorBufferBindingPushDescriptorBufferHandleEXT structure:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkDescriptorBufferBindingPushDescriptorBufferHandleEXT {
 VkStructureType sType;
 void* pNext;
 VkBuffer buffer;
} VkDescriptorBufferBindingPushDescriptorBufferHandleEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is the VkBuffer handle of the buffer for push descriptors.

Valid Usage

• VUID-VkDescriptorBufferBindingPushDescriptorBufferHandleEXT-
bufferlessPushDescriptors-08059
VkPhysicalDeviceDescriptorBufferPropertiesEXT::bufferlessPushDescriptors must be
VK_FALSE

Valid Usage (Implicit)

• VUID-VkDescriptorBufferBindingPushDescriptorBufferHandleEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_DESCRIPTOR_BUFFER_BINDING_PUSH_DESCRIPTOR_BUFFER_HANDLE_EXT

• VUID-VkDescriptorBufferBindingPushDescriptorBufferHandleEXT-buffer-parameter
buffer must be a valid VkBuffer handle

To set descriptor buffer offsets in a command buffer, call:

1351

// Provided by VK_EXT_descriptor_buffer
void vkCmdSetDescriptorBufferOffsetsEXT(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipelineLayout layout,
 uint32_t firstSet,
 uint32_t setCount,
 const uint32_t* pBufferIndices,
 const VkDeviceSize* pOffsets);

• commandBuffer is the command buffer in which the descriptor buffer offsets will be set.

• pipelineBindPoint is a VkPipelineBindPoint indicating the type of the pipeline that will use the
descriptors.

• layout is a VkPipelineLayout object used to program the bindings.

• firstSet is the number of the first set to be bound.

• setCount is the number of elements in the pBufferIndices and pOffsets arrays.

• pBufferIndices is a pointer to an array of indices into the descriptor buffer binding points set by
vkCmdBindDescriptorBuffersEXT.

• pOffsets is a pointer to an array of VkDeviceSize offsets to apply to the bound descriptor
buffers.

vkCmdSetDescriptorBufferOffsetsEXT binds setCount pairs of descriptor buffers, specified by indices
into the binding points bound using vkCmdBindDescriptorBuffersEXT, and buffer offsets to set
numbers [firstSet..firstSet+descriptorSetCount-1] for subsequent bound pipeline commands set
by pipelineBindPoint. Set [firstSet + i] is bound to the descriptor buffer at binding pBufferIndices[i]
at an offset of pOffsets[i]. Any bindings that were previously applied via these sets, or calls to
vkCmdBindDescriptorSets, are no longer valid. Other sets will also be invalidated upon calling this
command if layout differs from the pipeline layout used to bind those other sets, as described in
Pipeline Layout Compatibility.

After binding descriptors, applications can modify descriptor memory either by performing writes
on the host or with device commands. When descriptor memory is updated with device commands,
visibility for the shader stage accessing a descriptor is ensured with the
VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT access flag. Implementations must not access
resources referenced by these descriptors unless they are dynamically accessed by shaders.
Descriptors bound with this call can be undefined if they are not dynamically accessed by shaders.

Implementations may read descriptor data for any statically accessed descriptor if the binding in
layout is not declared with the VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT flag. If the
binding in layout is declared with VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT,
implementations must not read descriptor data that is not dynamically accessed.

Applications must ensure that any descriptor which the implementation may read must be in-
bounds of the underlying descriptor buffer binding.

 Note

1352

Applications can freely decide how large a variable descriptor buffer binding is, so
it may not be safe to read such descriptor payloads statically. The intention of these
rules is to allow implementations to speculatively prefetch descriptor payloads
where feasible.

Dynamically accessing a resource through descriptor data from an unbound region of a sparse
partially-resident buffer will result in invalid descriptor data being read, and therefore undefined
behavior.

Note

For descriptors written by the host, visibility is implied through the automatic
visibility operation on queue submit, and there is no need to consider
VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT. Explicit synchronization for descriptors is
only required when descriptors are updated on the device.

Note

The requirements above imply that all descriptor bindings have been defined with
the equivalent of VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT,
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT and
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT, but enabling those features is not
required to get this behavior.

Valid Usage

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pOffsets-08061
The offsets in pOffsets must be aligned to
VkPhysicalDeviceDescriptorBufferPropertiesEXT::descriptorBufferOffsetAlignment

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pOffsets-08063
The offsets in pOffsets must be small enough such that any descriptor binding referenced
by layout without the VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT flag computes
a valid address inside the underlying VkBuffer

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pOffsets-08126
The offsets in pOffsets must be small enough such that any location accessed by a shader
as a sampler descriptor must be within VkPhysicalDeviceDescriptorBufferPropertiesEXT
::maxSamplerDescriptorBufferRange of the sampler descriptor buffer binding

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pOffsets-08127
The offsets in pOffsets must be small enough such that any location accessed by a shader
as a resource descriptor must be within
VkPhysicalDeviceDescriptorBufferPropertiesEXT::maxResourceDescriptorBufferRange of the
resource descriptor buffer binding

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pBufferIndices-08064
Each element of pBufferIndices must be less than
VkPhysicalDeviceDescriptorBufferPropertiesEXT::maxDescriptorBufferBindings

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pBufferIndices-08065

1353

Each element of pBufferIndices must reference a valid descriptor buffer binding set by a
previous call to vkCmdBindDescriptorBuffersEXT in commandBuffer

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-firstSet-08066
The sum of firstSet and setCount must be less than or equal to
VkPipelineLayoutCreateInfo::setLayoutCount provided when layout was created

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-firstSet-09006
The VkDescriptorSetLayout for each set from firstSet to firstSet + setCount when layout
was created must have been created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT bit set

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-None-08060
The descriptorBuffer feature must be enabled

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pipelineBindPoint-08067
pipelineBindPoint must be supported by the commandBuffer’s parent VkCommandPool’s queue
family

Valid Usage (Implicit)

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pBufferIndices-parameter
pBufferIndices must be a valid pointer to an array of setCount uint32_t values

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-pOffsets-parameter
pOffsets must be a valid pointer to an array of setCount VkDeviceSize values

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-setCount-arraylength
setCount must be greater than 0

• VUID-vkCmdSetDescriptorBufferOffsetsEXT-commonparent
Both of commandBuffer, and layout must have been created, allocated, or retrieved from
the same VkDevice

1354

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

Alternatively, to set descriptor buffer offsets in a command buffer, call:

// Provided by VK_KHR_maintenance6 with VK_EXT_descriptor_buffer
void vkCmdSetDescriptorBufferOffsets2EXT(
 VkCommandBuffer commandBuffer,
 const VkSetDescriptorBufferOffsetsInfoEXT* pSetDescriptorBufferOffsetsInfo);

• commandBuffer is the command buffer in which the descriptor buffer offsets will be set.

• pSetDescriptorBufferOffsetsInfo is a pointer to a VkSetDescriptorBufferOffsetsInfoEXT structure.

Valid Usage

• VUID-vkCmdSetDescriptorBufferOffsets2EXT-descriptorBuffer-09470
The descriptorBuffer feature must be enabled

• VUID-vkCmdSetDescriptorBufferOffsets2EXT-pSetDescriptorBufferOffsetsInfo-09471
Each bit in pSetDescriptorBufferOffsetsInfo->stageFlags must be a stage supported by the
commandBuffer’s parent VkCommandPool’s queue family

Valid Usage (Implicit)

• VUID-vkCmdSetDescriptorBufferOffsets2EXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDescriptorBufferOffsets2EXT-pSetDescriptorBufferOffsetsInfo-parameter
pSetDescriptorBufferOffsetsInfo must be a valid pointer to a valid
VkSetDescriptorBufferOffsetsInfoEXT structure

• VUID-vkCmdSetDescriptorBufferOffsets2EXT-commandBuffer-recording
commandBuffer must be in the recording state

1355

• VUID-vkCmdSetDescriptorBufferOffsets2EXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdSetDescriptorBufferOffsets2EXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

The VkSetDescriptorBufferOffsetsInfoEXT structure is defined as:

// Provided by VK_KHR_maintenance6 with VK_EXT_descriptor_buffer
typedef struct VkSetDescriptorBufferOffsetsInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkShaderStageFlags stageFlags;
 VkPipelineLayout layout;
 uint32_t firstSet;
 uint32_t setCount;
 const uint32_t* pBufferIndices;
 const VkDeviceSize* pOffsets;
} VkSetDescriptorBufferOffsetsInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages the descriptor
sets will be bound to

• layout is a VkPipelineLayout object used to program the bindings. If the dynamicPipelineLayout
feature is enabled, layout can be VK_NULL_HANDLE and the layout must be specified by
chaining VkPipelineLayoutCreateInfo structure off the pNext

• firstSet is the number of the first set to be bound.

1356

• setCount is the number of elements in the pBufferIndices and pOffsets arrays.

• pBufferIndices is a pointer to an array of indices into the descriptor buffer binding points set by
vkCmdBindDescriptorBuffersEXT.

• pOffsets is a pointer to an array of VkDeviceSize offsets to apply to the bound descriptor
buffers.

If stageFlags specifies a subset of all stages corresponding to one or more pipeline bind points, the
binding operation still affects all stages corresponding to the given pipeline bind point(s) as if the
equivalent original version of this command had been called with the same parameters. For
example, specifying a stageFlags value of VK_SHADER_STAGE_VERTEX_BIT |
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_COMPUTE_BIT is equivalent to calling the original
version of this command once with VK_PIPELINE_BIND_POINT_GRAPHICS and once with
VK_PIPELINE_BIND_POINT_COMPUTE.

Valid Usage

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pOffsets-08061
The offsets in pOffsets must be aligned to
VkPhysicalDeviceDescriptorBufferPropertiesEXT::descriptorBufferOffsetAlignment

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pOffsets-08063
The offsets in pOffsets must be small enough such that any descriptor binding referenced
by layout without the VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT flag computes
a valid address inside the underlying VkBuffer

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pOffsets-08126
The offsets in pOffsets must be small enough such that any location accessed by a shader
as a sampler descriptor must be within VkPhysicalDeviceDescriptorBufferPropertiesEXT
::maxSamplerDescriptorBufferRange of the sampler descriptor buffer binding

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pOffsets-08127
The offsets in pOffsets must be small enough such that any location accessed by a shader
as a resource descriptor must be within
VkPhysicalDeviceDescriptorBufferPropertiesEXT::maxResourceDescriptorBufferRange of the
resource descriptor buffer binding

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pBufferIndices-08064
Each element of pBufferIndices must be less than
VkPhysicalDeviceDescriptorBufferPropertiesEXT::maxDescriptorBufferBindings

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pBufferIndices-08065
Each element of pBufferIndices must reference a valid descriptor buffer binding set by a
previous call to vkCmdBindDescriptorBuffersEXT in commandBuffer

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-firstSet-08066
The sum of firstSet and setCount must be less than or equal to
VkPipelineLayoutCreateInfo::setLayoutCount provided when layout was created

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-firstSet-09006
The VkDescriptorSetLayout for each set from firstSet to firstSet + setCount when layout
was created must have been created with the

1357

VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT bit set

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-None-09495
If the dynamicPipelineLayout feature is not enabled, layout must be a valid
VkPipelineLayout handle

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-layout-09496
If layout is VK_NULL_HANDLE, the pNext chain must include a valid
VkPipelineLayoutCreateInfo structure

Valid Usage (Implicit)

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SET_DESCRIPTOR_BUFFER_OFFSETS_INFO_EXT

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkPipelineLayoutCreateInfo

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-stageFlags-parameter
stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-stageFlags-requiredbitmask
stageFlags must not be 0

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-layout-parameter
If layout is not VK_NULL_HANDLE, layout must be a valid VkPipelineLayout handle

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pBufferIndices-parameter
pBufferIndices must be a valid pointer to an array of setCount uint32_t values

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-pOffsets-parameter
pOffsets must be a valid pointer to an array of setCount VkDeviceSize values

• VUID-VkSetDescriptorBufferOffsetsInfoEXT-setCount-arraylength
setCount must be greater than 0

To bind an embedded immutable sampler set to a command buffer, call:

// Provided by VK_EXT_descriptor_buffer
void vkCmdBindDescriptorBufferEmbeddedSamplersEXT(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipelineLayout layout,
 uint32_t set);

• commandBuffer is the command buffer that the embedded immutable samplers will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint indicating the type of the pipeline that will use the
embedded immutable samplers.

1358

• layout is a VkPipelineLayout object used to program the bindings.

• set is the number of the set to be bound.

vkCmdBindDescriptorBufferEmbeddedSamplersEXT binds the embedded immutable samplers in set of
layout to set for the command buffer for subsequent bound pipeline commands set by
pipelineBindPoint. Any previous binding to this set by vkCmdSetDescriptorBufferOffsetsEXT or this
command is overwritten. Any sets that were last bound by a call to vkCmdBindDescriptorSets are
invalidated upon calling this command. Other sets will also be invalidated upon calling this
command if layout differs from the pipeline layout used to bind those other sets, as described in
Pipeline Layout Compatibility.

Valid Usage

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-set-08070
The VkDescriptorSetLayout at index set when layout was created must have been created
with the VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT bit set

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-set-08071
set must be less than or equal to VkPipelineLayoutCreateInfo::setLayoutCount provided
when layout was created

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-None-08068
The descriptorBuffer feature must be enabled

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-pipelineBindPoint-08069
pipelineBindPoint must be supported by the commandBuffer’s parent VkCommandPool’s queue
family

Valid Usage (Implicit)

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplersEXT-commonparent
Both of commandBuffer, and layout must have been created, allocated, or retrieved from
the same VkDevice

1359

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

Alternatively, to bind an embedded immutable sampler set to a command buffer, call:

// Provided by VK_KHR_maintenance6 with VK_EXT_descriptor_buffer
void vkCmdBindDescriptorBufferEmbeddedSamplers2EXT(
 VkCommandBuffer commandBuffer,
 const VkBindDescriptorBufferEmbeddedSamplersInfoEXT*
pBindDescriptorBufferEmbeddedSamplersInfo);

• commandBuffer is the command buffer that the embedded immutable samplers will be bound to.

• pBindDescriptorBufferEmbeddedSamplersInfo is a pointer to a
VkBindDescriptorBufferEmbeddedSamplersInfoEXT structure.

Valid Usage

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplers2EXT-descriptorBuffer-09472
The descriptorBuffer feature must be enabled

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplers2EXT-
pBindDescriptorBufferEmbeddedSamplersInfo-09473
Each bit in pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags must be a stage
supported by the commandBuffer’s parent VkCommandPool’s queue family

Valid Usage (Implicit)

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplers2EXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplers2EXT-
pBindDescriptorBufferEmbeddedSamplersInfo-parameter
pBindDescriptorBufferEmbeddedSamplersInfo must be a valid pointer to a valid

1360

VkBindDescriptorBufferEmbeddedSamplersInfoEXT structure

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplers2EXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplers2EXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBindDescriptorBufferEmbeddedSamplers2EXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

State

The VkBindDescriptorBufferEmbeddedSamplersInfoEXT structure is defined as:

// Provided by VK_KHR_maintenance6 with VK_EXT_descriptor_buffer
typedef struct VkBindDescriptorBufferEmbeddedSamplersInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkShaderStageFlags stageFlags;
 VkPipelineLayout layout;
 uint32_t set;
} VkBindDescriptorBufferEmbeddedSamplersInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages that will use the
embedded immutable samplers.

• layout is a VkPipelineLayout object used to program the bindings. If the dynamicPipelineLayout
feature is enabled, layout can be VK_NULL_HANDLE and the layout must be specified by
chaining VkPipelineLayoutCreateInfo structure off the pNext

• set is the number of the set to be bound.

1361

If stageFlags specifies a subset of all stages corresponding to one or more pipeline bind points, the
binding operation still affects all stages corresponding to the given pipeline bind point(s) as if the
equivalent original version of this command had been called with the same parameters. For
example, specifying a stageFlags value of VK_SHADER_STAGE_VERTEX_BIT |
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_COMPUTE_BIT is equivalent to calling the original
version of this command once with VK_PIPELINE_BIND_POINT_GRAPHICS and once with
VK_PIPELINE_BIND_POINT_COMPUTE.

Valid Usage

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-set-08070
The VkDescriptorSetLayout at index set when layout was created must have been created
with the VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT bit set

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-set-08071
set must be less than or equal to VkPipelineLayoutCreateInfo::setLayoutCount provided
when layout was created

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-None-09495
If the dynamicPipelineLayout feature is not enabled, layout must be a valid
VkPipelineLayout handle

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-layout-09496
If layout is VK_NULL_HANDLE, the pNext chain must include a valid
VkPipelineLayoutCreateInfo structure

Valid Usage (Implicit)

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_DESCRIPTOR_BUFFER_EMBEDDED_SAMPLERS_INFO_EXT

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkPipelineLayoutCreateInfo

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-stageFlags-parameter
stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-stageFlags-requiredbitmask
stageFlags must not be 0

• VUID-VkBindDescriptorBufferEmbeddedSamplersInfoEXT-layout-parameter
If layout is not VK_NULL_HANDLE, layout must be a valid VkPipelineLayout handle

14.4.3. Updating Descriptor Buffers

Updates to descriptor data in buffers can be performed by any operation on either the host or
device that can access memory.

1362

Descriptor buffer reads can be synchronized using VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT in
the relevant shader stage.

14.4.4. Push Descriptors With Descriptor Buffers

If the descriptorBufferPushDescriptors feature is enabled, push descriptors can be used with
descriptor buffers in the same way as with descriptor sets.

The VkPhysicalDeviceDescriptorBufferPropertiesEXT::bufferlessPushDescriptors property indicates
whether the implementation requires a buffer to back push descriptors. If the property is VK_FALSE
then before recording any push descriptors the application must bind exactly 1 descriptor buffer
that was created with the VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT bit set.
When this buffer is bound any previously recorded push descriptors that are required for a
subsequent command must be recorded again.

14.4.5. Capture and Replay

In a similar way to bufferDeviceAddressCaptureReplay, the descriptorBufferCaptureReplay feature
allows the creation of opaque handles for objects at capture time that can be passed into object
creation calls in a future replay, causing descriptors to be created with the same data. The opaque
memory address for any memory used by these resources must have been captured using
vkGetDeviceMemoryOpaqueCaptureAddress and be replayed using
VkMemoryOpaqueCaptureAddressAllocateInfo.

To get the opaque descriptor data for a buffer, call:

// Provided by VK_EXT_descriptor_buffer
VkResult vkGetBufferOpaqueCaptureDescriptorDataEXT(
 VkDevice device,
 const VkBufferCaptureDescriptorDataInfoEXT* pInfo,
 void* pData);

• device is the logical device that gets the data.

• pInfo is a pointer to a VkBufferCaptureDescriptorDataInfoEXT structure specifying the buffer.

• pData is a pointer to a user-allocated buffer where the data will be written.

Valid Usage

• VUID-vkGetBufferOpaqueCaptureDescriptorDataEXT-None-08072
The descriptorBufferCaptureReplay feature must be enabled

• VUID-vkGetBufferOpaqueCaptureDescriptorDataEXT-pData-08073
pData must point to a buffer that is at least
VkPhysicalDeviceDescriptorBufferPropertiesEXT::bufferCaptureReplayDescriptorDataSize
bytes in size

• VUID-vkGetBufferOpaqueCaptureDescriptorDataEXT-device-08074
If device was created with multiple physical devices, then the

1363

bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetBufferOpaqueCaptureDescriptorDataEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferOpaqueCaptureDescriptorDataEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkBufferCaptureDescriptorDataInfoEXT structure

• VUID-vkGetBufferOpaqueCaptureDescriptorDataEXT-pData-parameter
pData must be a pointer value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the buffer to get descriptor buffer capture data for is passed in a
VkBufferCaptureDescriptorDataInfoEXT structure:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkBufferCaptureDescriptorDataInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkBuffer buffer;
} VkBufferCaptureDescriptorDataInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is the VkBuffer handle of the buffer to get opaque capture data for.

Valid Usage

• VUID-VkBufferCaptureDescriptorDataInfoEXT-buffer-08075
buffer must have been created with
VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT set in VkBufferCreateInfo
::flags

1364

Valid Usage (Implicit)

• VUID-VkBufferCaptureDescriptorDataInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

• VUID-VkBufferCaptureDescriptorDataInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkBufferCaptureDescriptorDataInfoEXT-buffer-parameter
buffer must be a valid VkBuffer handle

To get the opaque capture descriptor data for an image, call:

// Provided by VK_EXT_descriptor_buffer
VkResult vkGetImageOpaqueCaptureDescriptorDataEXT(
 VkDevice device,
 const VkImageCaptureDescriptorDataInfoEXT* pInfo,
 void* pData);

• device is the logical device that gets the data.

• pInfo is a pointer to a VkImageCaptureDescriptorDataInfoEXT structure specifying the image.

• pData is a pointer to a user-allocated buffer where the data will be written.

Valid Usage

• VUID-vkGetImageOpaqueCaptureDescriptorDataEXT-None-08076
The descriptorBufferCaptureReplay feature must be enabled

• VUID-vkGetImageOpaqueCaptureDescriptorDataEXT-pData-08077
pData must point to a buffer that is at least
VkPhysicalDeviceDescriptorBufferPropertiesEXT::imageCaptureReplayDescriptorDataSize
bytes in size

• VUID-vkGetImageOpaqueCaptureDescriptorDataEXT-device-08078
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetImageOpaqueCaptureDescriptorDataEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageOpaqueCaptureDescriptorDataEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkImageCaptureDescriptorDataInfoEXT structure

• VUID-vkGetImageOpaqueCaptureDescriptorDataEXT-pData-parameter
pData must be a pointer value

1365

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the image to get descriptor buffer capture data for is passed in a
VkImageCaptureDescriptorDataInfoEXT structure:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkImageCaptureDescriptorDataInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
} VkImageCaptureDescriptorDataInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is the VkImage handle of the image to get opaque capture data for.

Valid Usage

• VUID-VkImageCaptureDescriptorDataInfoEXT-image-08079
image must have been created with
VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT set in VkImageCreateInfo
::flags

Valid Usage (Implicit)

• VUID-VkImageCaptureDescriptorDataInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

• VUID-VkImageCaptureDescriptorDataInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkImageCaptureDescriptorDataInfoEXT-image-parameter
image must be a valid VkImage handle

To get the opaque capture descriptor data for an image view, call:

// Provided by VK_EXT_descriptor_buffer

1366

VkResult vkGetImageViewOpaqueCaptureDescriptorDataEXT(
 VkDevice device,
 const VkImageViewCaptureDescriptorDataInfoEXT* pInfo,
 void* pData);

• device is the logical device that gets the data.

• pInfo is a pointer to a VkImageViewCaptureDescriptorDataInfoEXT structure specifying the
image view.

• pData is a pointer to a user-allocated buffer where the data will be written.

Valid Usage

• VUID-vkGetImageViewOpaqueCaptureDescriptorDataEXT-None-08080
The descriptorBufferCaptureReplay feature must be enabled

• VUID-vkGetImageViewOpaqueCaptureDescriptorDataEXT-pData-08081
pData must point to a buffer that is at least
VkPhysicalDeviceDescriptorBufferPropertiesEXT::imageViewCaptureReplayDescriptorDataSi
ze bytes in size

• VUID-vkGetImageViewOpaqueCaptureDescriptorDataEXT-device-08082
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetImageViewOpaqueCaptureDescriptorDataEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageViewOpaqueCaptureDescriptorDataEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkImageViewCaptureDescriptorDataInfoEXT
structure

• VUID-vkGetImageViewOpaqueCaptureDescriptorDataEXT-pData-parameter
pData must be a pointer value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the image view to get descriptor buffer capture data for is passed in a

1367

VkImageViewCaptureDescriptorDataInfoEXT structure:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkImageViewCaptureDescriptorDataInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkImageView imageView;
} VkImageViewCaptureDescriptorDataInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageView is the VkImageView handle of the image view to get opaque capture data for.

Valid Usage

• VUID-VkImageViewCaptureDescriptorDataInfoEXT-imageView-08083
imageView must have been created with
VK_IMAGE_VIEW_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT set in
VkImageViewCreateInfo::flags

Valid Usage (Implicit)

• VUID-VkImageViewCaptureDescriptorDataInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

• VUID-VkImageViewCaptureDescriptorDataInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkImageViewCaptureDescriptorDataInfoEXT-imageView-parameter
imageView must be a valid VkImageView handle

To get the opaque capture descriptor data for a sampler, call:

// Provided by VK_EXT_descriptor_buffer
VkResult vkGetSamplerOpaqueCaptureDescriptorDataEXT(
 VkDevice device,
 const VkSamplerCaptureDescriptorDataInfoEXT* pInfo,
 void* pData);

• device is the logical device that gets the data.

• pInfo is a pointer to a VkSamplerCaptureDescriptorDataInfoEXT structure specifying the
sampler.

• pData is a pointer to a user-allocated buffer where the data will be written.

1368

Valid Usage

• VUID-vkGetSamplerOpaqueCaptureDescriptorDataEXT-None-08084
The descriptorBufferCaptureReplay feature must be enabled

• VUID-vkGetSamplerOpaqueCaptureDescriptorDataEXT-pData-08085
pData must point to a buffer that is at least
VkPhysicalDeviceDescriptorBufferPropertiesEXT::samplerCaptureReplayDescriptorDataSize
bytes in size

• VUID-vkGetSamplerOpaqueCaptureDescriptorDataEXT-device-08086
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetSamplerOpaqueCaptureDescriptorDataEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSamplerOpaqueCaptureDescriptorDataEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkSamplerCaptureDescriptorDataInfoEXT
structure

• VUID-vkGetSamplerOpaqueCaptureDescriptorDataEXT-pData-parameter
pData must be a pointer value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the sampler to get descriptor buffer capture data for is passed in a
VkSamplerCaptureDescriptorDataInfoEXT structure:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkSamplerCaptureDescriptorDataInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkSampler sampler;
} VkSamplerCaptureDescriptorDataInfoEXT;

• sType is a VkStructureType value identifying this structure.

1369

• pNext is NULL or a pointer to a structure extending this structure.

• sampler is the VkSampler handle of the sampler to get opaque capture data for.

Valid Usage

• VUID-VkSamplerCaptureDescriptorDataInfoEXT-sampler-08087
sampler must have been created with
VK_SAMPLER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT set in VkSamplerCreateInfo
::flags

Valid Usage (Implicit)

• VUID-VkSamplerCaptureDescriptorDataInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

• VUID-VkSamplerCaptureDescriptorDataInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkSamplerCaptureDescriptorDataInfoEXT-sampler-parameter
sampler must be a valid VkSampler handle

To get the opaque capture descriptor data for an acceleration structure, call:

// Provided by VK_EXT_descriptor_buffer with VK_KHR_acceleration_structure or
VK_NV_ray_tracing
VkResult vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT(
 VkDevice device,
 const VkAccelerationStructureCaptureDescriptorDataInfoEXT* pInfo,
 void* pData);

• device is the logical device that gets the data.

• pInfo is a pointer to a VkAccelerationStructureCaptureDescriptorDataInfoEXT structure
specifying the acceleration structure.

• pData is a pointer to a user-allocated buffer where the data will be written.

Valid Usage

• VUID-vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT-None-08088
The descriptorBufferCaptureReplay feature must be enabled

• VUID-vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT-pData-08089
pData must point to a buffer that is at least
VkPhysicalDeviceDescriptorBufferPropertiesEXT::accelerationStructureCaptureReplayDesc
riptorDataSize bytes in size

• VUID-vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT-device-08090

1370

If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT-pInfo-parameter
pInfo must be a valid pointer to a valid
VkAccelerationStructureCaptureDescriptorDataInfoEXT structure

• VUID-vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT-pData-parameter
pData must be a pointer value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the acceleration structure to get descriptor buffer capture data for is passed in a
VkAccelerationStructureCaptureDescriptorDataInfoEXT structure:

// Provided by VK_EXT_descriptor_buffer with VK_KHR_acceleration_structure or
VK_NV_ray_tracing
typedef struct VkAccelerationStructureCaptureDescriptorDataInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkAccelerationStructureKHR accelerationStructure;
 VkAccelerationStructureNV accelerationStructureNV;
} VkAccelerationStructureCaptureDescriptorDataInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• accelerationStructure is the VkAccelerationStructureKHR handle of the acceleration structure to
get opaque capture data for.

• accelerationStructureNV is the VkAccelerationStructureNV handle of the acceleration structure to
get opaque capture data for.

1371

Valid Usage

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-accelerationStructure-
08091
If accelerationStructure is not VK_NULL_HANDLE then accelerationStructure must have
been created with
VK_ACCELERATION_STRUCTURE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT set in
VkAccelerationStructureCreateInfoKHR::createFlags

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-accelerationStructureNV-
08092
If accelerationStructureNV is not VK_NULL_HANDLE then accelerationStructureNV must
have been created with
VK_ACCELERATION_STRUCTURE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT set in
VkAccelerationStructureCreateInfoNV::info.flags

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-accelerationStructure-
08093
If accelerationStructure is not VK_NULL_HANDLE then accelerationStructureNV must be
VK_NULL_HANDLE

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-accelerationStructureNV-
08094
If accelerationStructureNV is not VK_NULL_HANDLE then accelerationStructure must be
VK_NULL_HANDLE

Valid Usage (Implicit)

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-accelerationStructure-
parameter
If accelerationStructure is not VK_NULL_HANDLE, accelerationStructure must be a valid
VkAccelerationStructureKHR handle

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-accelerationStructureNV-
parameter
If accelerationStructureNV is not VK_NULL_HANDLE, accelerationStructureNV must be a
valid VkAccelerationStructureNV handle

• VUID-VkAccelerationStructureCaptureDescriptorDataInfoEXT-commonparent
Both of accelerationStructure, and accelerationStructureNV that are valid handles of non-
ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

1372

The VkOpaqueCaptureDescriptorDataCreateInfoEXT structure is defined as:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkOpaqueCaptureDescriptorDataCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 const void* opaqueCaptureDescriptorData;
} VkOpaqueCaptureDescriptorDataCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• opaqueCaptureDescriptorData is a pointer to a user-allocated buffer containing opaque capture
data retrieved using vkGetBufferOpaqueCaptureDescriptorDataEXT,
vkGetImageOpaqueCaptureDescriptorDataEXT,
vkGetImageViewOpaqueCaptureDescriptorDataEXT,
vkGetSamplerOpaqueCaptureDescriptorDataEXT, or
vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT.

During replay, opaque descriptor capture data can be specified by adding a
VkOpaqueCaptureDescriptorDataCreateInfoEXT structure to the relevant pNext chain of a
VkBufferCreateInfo, VkImageCreateInfo, VkImageViewCreateInfo, VkSamplerCreateInfo,
VkAccelerationStructureCreateInfoNV or VkAccelerationStructureCreateInfoKHR structure.

Valid Usage (Implicit)

• VUID-VkOpaqueCaptureDescriptorDataCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_OPAQUE_CAPTURE_DESCRIPTOR_DATA_CREATE_INFO_EXT

• VUID-VkOpaqueCaptureDescriptorDataCreateInfoEXT-opaqueCaptureDescriptorData-
parameter
opaqueCaptureDescriptorData must be a pointer value

1373

Chapter 15. Shader Interfaces
When a pipeline is created, the set of shaders specified in the corresponding VkPipelineCreateInfo
structure are implicitly linked at a number of different interfaces.

• Shader Input and Output Interface

• Vertex Input Interface

• Fragment Output Interface

• Fragment Tile Image Interface

• Fragment Input Attachment Interface

• Ray Tracing Pipeline Interface

• Shader Resource Interface

• Geometry Shader Passthrough

This chapter describes valid uses for a set of SPIR-V decorations. Any other use of one of these
decorations is invalid, with the exception that, when using SPIR-V versions 1.4 and earlier: Block,
BufferBlock, Offset, ArrayStride, and MatrixStride can also decorate types and type members used
by variables in the Private and Function storage classes.

Note

In this chapter, there are references to SPIR-V terms such as the MeshNV execution
model. These terms will appear even in a build of the specification which does not
support any extensions. This is as intended, since these terms appear in the unified
SPIR-V specification without such qualifiers.

15.1. Shader Input and Output Interfaces
When multiple stages are present in a pipeline, the outputs of one stage form an interface with the
inputs of the next stage. When such an interface involves a shader, shader outputs are matched
against the inputs of the next stage, and shader inputs are matched against the outputs of the
previous stage.

All the variables forming the shader input and output interfaces are listed as operands to the
OpEntryPoint instruction and are declared with the Input or Output storage classes, respectively, in
the SPIR-V module. These generally form the interfaces between consecutive shader stages,
regardless of any non-shader stages between the consecutive shader stages.

There are two classes of variables that can be matched between shader stages, built-in variables
and user-defined variables. Each class has a different set of matching criteria.

Output variables of a shader stage have undefined values until the shader writes to them or uses the
Initializer operand when declaring the variable.

1374

15.1.1. Built-in Interface Block

Shader built-in variables meeting the following requirements define the built-in interface block.
They must

• be explicitly declared (there are no implicit built-ins),

• be identified with a BuiltIn decoration,

• form object types as described in the Built-in Variables section, and

• be declared in a block whose top-level members are the built-ins.

There must be no more than one built-in interface block per shader per interface , except for the
mesh output interface where there must be at most one built-in interface block decorated with the
PerPrimitiveEXT decoration and at most one built-in interface block without this decoration .

Built-ins must not have any Location or Component decorations.

15.1.2. User-defined Variable Interface

The non-built-in variables listed by OpEntryPoint with the Input or Output storage class form the
user-defined variable interface. These must have numeric type or, recursively, composite types of
such types. If an implementation supports storageInputOutput16, components can have a width of
16 bits. These variables must be identified with a Location decoration and can also be identified
with a Component decoration.

15.1.3. Interface Matching

An output variable, block, or structure member in a given shader stage has an interface match with
an input variable, block, or structure member in a subsequent shader stage if they both adhere to
the following conditions:

• They have equivalent decorations, other than:

◦ XfbBuffer, XfbStride, Offset, and Stream

◦ one is not decorated with Component and the other is declared with a Component of 0

◦ Interpolation decorations

◦ RelaxedPrecision if one is an input variable and the other an output variable

• Their types match as follows:

◦ if the input is declared in a tessellation control or geometry shader as an OpTypeArray with
an Element Type equivalent to the OpType* declaration of the output, and neither is a structure
member; or

◦ if the maintenance4 feature is enabled, they are declared as OpTypeVector variables, and the
output has a Component Count value higher than that of the input but the same Component Type;
or

◦ if the output is declared in a mesh shader as an OpTypeArray with an Element Type equivalent
to the OpType* declaration of the input, and neither is a structure member; or

1375

◦ if the input is decorated with PerVertexKHR, and is declared in a fragment shader as an
OpTypeArray with an Element Type equivalent to the OpType* declaration of the output, and
neither the input nor the output is a structure member; or

◦ if in any other case they are declared with an equivalent OpType* declaration.

• If both are structures and every member has an interface match.

Note

The word “structure” above refers to both variables that have an OpTypeStruct type
and interface blocks (which are also declared as OpTypeStruct).

If the pipeline is compiled as separate graphics pipeline libraries and the
graphicsPipelineLibraryIndependentInterpolationDecoration limit is not supported, matches are not
found if the interpolation decorations differ between the last pre-rasterization shader stage and the
fragment shader stage.

All input variables and blocks must have an interface match in the preceding shader stage, except
for built-in variables in fragment shaders. Shaders can declare and write to output variables that
are not declared or read by the subsequent stage.

Matching rules for passthrough geometry shaders are slightly different and are described in the
Passthrough Interface Matching section.

The value of an input variable is undefined if the preceding stage does not write to a matching
output variable, as described above.

15.1.4. Location Assignment

This section describes Location assignments for user-defined variables and how many Location slots
are consumed by a given user-variable type. As mentioned above, some inputs and outputs have an
additional level of arrayness relative to other shader inputs and outputs. This outer array level is
removed from the type before considering how many Location slots the type consumes.

The Location value specifies an interface slot comprised of a 32-bit four-component vector
conveyed between stages. The Component specifies word components within these vector Location
slots. Only types with widths of 16, 32 or 64 are supported in shader interfaces.

Inputs and outputs of the following types consume a single interface Location:

• 16-bit scalar and vector types, and

• 32-bit scalar and vector types, and

• 64-bit scalar and 2-component vector types.

64-bit three- and four-component vectors consume two consecutive Location slots.

If a declared input or output is an array of size n and each element takes m Location slots, it will be
assigned m × n consecutive Location slots starting with the specified Location.

If the declared input or output is an n × m 16-, 32- or 64-bit matrix, it will be assigned multiple

1376

Location slots starting with the specified Location. The number of Location slots assigned for each
matrix will be the same as for an n-element array of m-component vectors.

An OpVariable with a structure type that is not a block must be decorated with a Location.

When an OpVariable with a structure type (either block or non-block) is decorated with a Location,
the members in the structure type must not be decorated with a Location. The OpVariable’s
members are assigned consecutive Location slots in declaration order, starting from the first
member, which is assigned the Location decoration from the OpVariable.

When a block-type OpVariable is declared without a Location decoration, each member in its
structure type must be decorated with a Location. Types nested deeper than the top-level members
must not have Location decorations.

The Location slots consumed by block and structure members are determined by applying the rules
above in a depth-first traversal of the instantiated members as though the structure or block
member were declared as an input or output variable of the same type.

Any two inputs listed as operands on the same OpEntryPoint must not be assigned the same
Location slot and Component word, either explicitly or implicitly. Any two outputs listed as operands
on the same OpEntryPoint must not be assigned the same Location slot and Component word, either
explicitly or implicitly.

The number of input and output Location slots available for a shader input or output interface is
limited, and dependent on the shader stage as described in Shader Input and Output Locations. All
variables in both the built-in interface block and the user-defined variable interface count against
these limits. Each effective Location must have a value less than the number of Location slots
available for the given interface, as specified in the “Locations Available” column in Shader Input
and Output Locations.

Table 19. Shader Input and Output Locations

Shader Interface Locations Available

vertex input maxVertexInputAttributes

vertex output maxVertexOutputComponents / 4

tessellation control input maxTessellationControlPerVertexInputComponents / 4

tessellation control output maxTessellationControlPerVertexOutputComponents / 4

tessellation evaluation
input

maxTessellationEvaluationInputComponents / 4

tessellation evaluation
output

maxTessellationEvaluationOutputComponents / 4

geometry input maxGeometryInputComponents / 4

geometry output maxGeometryOutputComponents / 4

fragment input maxFragmentInputComponents / 4

fragment output maxFragmentOutputAttachments

1377

Shader Interface Locations Available

mesh output maxMeshOutputComponents / 4

cluster culling output maxOutputClusterCount

15.1.5. Component Assignment

The Component decoration allows the Location to be more finely specified for scalars and vectors,
down to the individual Component word within a Location slot that are consumed. The Component
word within a Location are 0, 1, 2, and 3. A variable or block member starting at Component N will
consume Component words N, N+1, N+2, … up through its size. For 16-, and 32-bit types, it is invalid if
this sequence of Component words gets larger than 3. A scalar 64-bit type will consume two of these
Component words in sequence, and a two-component 64-bit vector type will consume all four
Component words available within a Location. A three- or four-component 64-bit vector type must
not specify a non-zero Component decoration. A three-component 64-bit vector type will consume all
four Component words of the first Location and Component 0 and 1 of the second Location. This leaves
Component 2 and 3 available for other component-qualified declarations.

A scalar or two-component 64-bit data type must not specify a Component decoration of 1 or 3. A
Component decoration must not be specified for any type that is not a scalar or vector.

A four-component 64-bit data type will consume all four Component words of the first Location and
all four Component words of the second Location.

15.2. Vertex Input Interface
When the vertex stage is present in a pipeline, the vertex shader input variables form an interface
with the vertex input attributes. The vertex shader input variables are matched by the Location and
Component decorations to the vertex input attributes specified in the pVertexInputState member of
the VkGraphicsPipelineCreateInfo structure.

The vertex shader input variables listed by OpEntryPoint with the Input storage class form the vertex
input interface. These variables must be identified with a Location decoration and can also be
identified with a Component decoration.

For the purposes of interface matching: variables declared without a Component decoration are
considered to have a Component decoration of zero. The number of available vertex input Location
slots is given by the maxVertexInputAttributes member of the VkPhysicalDeviceLimits structure.

See Attribute Location and Component Assignment for details.

All vertex shader inputs declared as above must have a corresponding attribute and binding in the
pipeline.

15.3. Fragment Output Interface
When the fragment stage is present in a pipeline, the fragment shader outputs form an interface
with the output attachments defined by a render pass instance. The fragment shader output

1378

variables are matched by the Location and Component decorations to specified color attachments.

The fragment shader output variables listed by OpEntryPoint with the Output storage class form the
fragment output interface. These variables must be identified with a Location decoration. They can
also be identified with a Component decoration and/or an Index decoration. For the purposes of
interface matching: variables declared without a Component decoration are considered to have a
Component decoration of zero, and variables declared without an Index decoration are considered to
have an Index decoration of zero.

A fragment shader output variable identified with a Location decoration of i is associated with the
color attachment indicated by VkRenderingInfo::pColorAttachments[i]. When using render pass
objects, it is associated with the color attachment indicated by VkSubpassDescription
::pColorAttachments[i]. Values are written to those attachments after passing through the blending
unit as described in Blending, if enabled. Locations are consumed as described in Location
Assignment. The number of available fragment output Location slots is given by the
maxFragmentOutputAttachments member of the VkPhysicalDeviceLimits structure.

If the dynamicRenderingLocalRead feature is supported, fragment output locations can be remapped
when using dynamic rendering.

To set the fragment output location mappings during rendering, call:

// Provided by VK_KHR_dynamic_rendering_local_read
void vkCmdSetRenderingAttachmentLocationsKHR(
 VkCommandBuffer commandBuffer,
 const VkRenderingAttachmentLocationInfoKHR* pLocationInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pLocationInfo is a VkRenderingAttachmentLocationInfoKHR structure indicating the new
mappings.

This command sets the attachment location mappings for subsequent drawing commands, and
must match the mappings provided to the currently bound pipeline, if one is bound, which can be
set by chaining VkRenderingAttachmentLocationInfoKHR to VkGraphicsPipelineCreateInfo.

Until this command is called, mappings in the command buffer state are treated as each color
attachment specified in vkCmdBeginRendering having a location equal to its index in
VkRenderingInfo::pColorAttachments. This state is reset whenever vkCmdBeginRendering is called.

Valid Usage

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-dynamicRenderingLocalRead-09509
dynamicRenderingLocalRead must be enabled

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-pLocationInfo-09510
pLocationInfo->colorAttachmentCount must be equal to the value of VkRenderingInfo
::colorAttachmentCount used to begin the current render pass instance

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-commandBuffer-09511

1379

The current render pass instance must have been started or resumed by
vkCmdBeginRendering in this commandBuffer

Valid Usage (Implicit)

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-pLocationInfo-parameter
pLocationInfo must be a valid pointer to a valid VkRenderingAttachmentLocationInfoKHR
structure

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdSetRenderingAttachmentLocationsKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics State

The VkRenderingAttachmentLocationInfoKHR structure is defined as:

// Provided by VK_KHR_dynamic_rendering_local_read
typedef struct VkRenderingAttachmentLocationInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t colorAttachmentCount;
 const uint32_t* pColorAttachmentLocations;

1380

} VkRenderingAttachmentLocationInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• colorAttachmentCount is the number of elements in pColorAttachmentLocations.

• pColorAttachmentLocations is a pointer to an array of colorAttachmentCount uint32_t values
defining remapped locations for color attachments.

This structure allows applications to remap the locations of color attachments to different fragment
shader output locations.

Each element of pColorAttachmentLocations set to VK_ATTACHMENT_UNUSED will be inaccessible to this
pipeline as a color attachment; no location will map to it. Each element of
pColorAttachmentLocations set to any other value will map the specified location value to the color
attachment specified in the render pass at the corresponding index in the
pColorAttachmentLocations array. Any writes to a fragment output location that is not mapped to an
attachment must be discarded.

If pColorAttachmentLocations is NULL, it is equivalent to setting each element to its index within the
array.

This structure can be included in the pNext chain of a VkGraphicsPipelineCreateInfo structure to set
this state for a pipeline. If this structure is not included in the pNext chain of
VkGraphicsPipelineCreateInfo, it is equivalent to specifying this structure with the following
properties:

• colorAttachmentCount set to VkPipelineRenderingCreateInfo::colorAttachmentCount.

• pColorAttachmentLocations set to NULL.

This structure can be included in the pNext chain of a VkCommandBufferInheritanceInfo structure
to specify inherited state from the primary command buffer. If
VkCommandBufferInheritanceInfo::renderPass is not VK_NULL_HANDLE, or
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT is not specified in
VkCommandBufferBeginInfo::flags, members of this structure are ignored. If this structure is not
included in the pNext chain of VkCommandBufferInheritanceInfo, it is equivalent to specifying this
structure with the following properties:

• colorAttachmentCount set to VkCommandBufferInheritanceRenderingInfo::colorAttachmentCount.

• pColorAttachmentLocations set to NULL.

Valid Usage

• VUID-VkRenderingAttachmentLocationInfoKHR-dynamicRenderingLocalRead-09512
If the dynamicRenderingLocalRead feature is not enabled, and pColorAttachmentLocations is
not NULL, each element must be set to the value of its index within the array

• VUID-VkRenderingAttachmentLocationInfoKHR-pColorAttachmentLocations-09513

1381

Elements of pColorAttachmentLocations that are not VK_ATTACHMENT_UNUSED must each be
unique

• VUID-VkRenderingAttachmentLocationInfoKHR-colorAttachmentCount-09514
colorAttachmentCount must be less than or equal to maxColorAttachments

• VUID-VkRenderingAttachmentLocationInfoKHR-pColorAttachmentLocations-09515
Each element of pColorAttachmentLocations must be less than maxColorAttachments

Valid Usage (Implicit)

• VUID-VkRenderingAttachmentLocationInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_LOCATION_INFO_KHR

When an active fragment shader invocation finishes, the values of all fragment shader outputs are
copied out and used as blend inputs or color attachments writes. If the invocation does not set a
value for them, the input values to those blending or color attachment writes are undefined.

Components of the output variables are assigned as described in Component Assignment. Output
Component words identified as 0, 1, 2, and 3 will be directed to the R, G, B, and A inputs to the
blending unit, respectively, or to the output attachment if blending is disabled. If two variables are
placed within the same Location, they must have the same underlying type (floating-point or
integer). Component words which do not correspond to any fragment shader output will also result in
undefined values for blending or color attachment writes.

Fragment outputs identified with an Index of zero are directed to the first input of the blending unit
associated with the corresponding Location. Outputs identified with an Index of one are directed to
the second input of the corresponding blending unit.

There must be no output variable which has the same Location, Component, and Index as any other,
either explicitly declared or implied.

Output values written by a fragment shader must be declared with either OpTypeFloat or OpTypeInt,
and a Width of 32. If storageInputOutput16 is supported, output values written by a fragment shader
can be also declared with either OpTypeFloat or OpTypeInt and a Width of 16. Composites of these
types are also permitted. If the color attachment has a signed or unsigned normalized fixed-point
format, color values are assumed to be floating-point and are converted to fixed-point as described
in Conversion From Floating-Point to Normalized Fixed-Point; If the color attachment has an
integer format, color values are assumed to be integers and converted to the bit-depth of the target.
Any value that cannot be represented in the attachment’s format is undefined. For any other
attachment format no conversion is performed. If the type of the values written by the fragment
shader do not match the format of the corresponding color attachment, the resulting values are
undefined for those components.

15.4. Legacy Dithering
The application can enable dithering to be applied to the color output of a subpass, by using the
VK_SUBPASS_DESCRIPTION_ENABLE_LEGACY_DITHERING_BIT_EXT or the

1382

VK_RENDERING_ENABLE_LEGACY_DITHERING_BIT_EXT flags.

When dithering is enabled, the implementation may modify the output color value c by one ULP.
This modification must only depend on the framebuffer coordinates (xf,yf) of the sample, as well as
on the value of c.

The exact details of the dithering algorithm are unspecified, including the algorithm itself, the
formats dithering is applied to, and the stage in which it is applied.

Note

This extension is intended only for use by OpenGL emulation layers, and as such
the dithering algorithm applied to the subpass should be equivalent to the
vendor’s OpenGL implementation, if any.

15.5. Fragment Tile Image Interface
When a fragment stage is present in a pipeline, the fragment shader tile image variables decorated
with Location form an interface with the color attachments defined by the render pass instance.
The fragment shader tile image variables are matched by Location decorations to the color
attachments specified in the pColorAttachments array of the VkRenderingInfoKHR structure
describing the render pass instance the fragment shader is executed in.

The fragment shader variables listed by OpEntryPoint with the TileImageEXT storage class and a
decoration of Location form the fragment tile image interface. These variables must be declared
with a type of OpTypeImage, and a Dim operand of TileImageDataEXT. The Component decoration is not
supported for these variables.

Reading from a tile image variable with a Location decoration of i reads from the color attachment
identified by the element of VkRenderingInfoKHR::pColorAttachments with a location equal to i. If
the tile image variable is declared as an array of size N, it consumes N consecutive tile image
locations, starting with the index specified. There must not be more than one tile image variable
with the same Location whether explicitly declared or implied by an array declaration. The number
of available tile image locations is the same as the number of available fragment output locations as
given by the maxFragmentOutputAttachments member of the VkPhysicalDeviceLimits structure.

The basic data type (floating-point, integer, unsigned integer) of the tile image variable must match
the basic format of the corresponding color attachment, or the values read from the tile image
variables are undefined.

15.6. Fragment Input Attachment Interface
When a fragment stage is present in a pipeline, the fragment shader subpass inputs form an
interface with the input attachments of the current subpass. The fragment shader subpass input
variables are matched by InputAttachmentIndex decorations to the input attachments specified in
the pInputAttachments array of the VkSubpassDescription structure describing the subpass that the
fragment shader is executed in.

The fragment shader subpass input variables with the UniformConstant storage class and a

1383

decoration of InputAttachmentIndex that are statically used by OpEntryPoint form the fragment input
attachment interface. These variables must be declared with a type of OpTypeImage, a Dim operand of
SubpassData, an Arrayed operand of 0, and a Sampled operand of 2. The MS operand of the OpTypeImage
must be 0 if the samples field of the corresponding VkAttachmentDescription is
VK_SAMPLE_COUNT_1_BIT and multisampled-render-to-single-sampled is not enabled, and 1 otherwise.

A subpass input variable identified with an InputAttachmentIndex decoration of i reads from the
input attachment indicated by pInputAttachments[i] member of VkSubpassDescription. If the subpass
input variable is declared as an array of size N, it consumes N consecutive input attachments,
starting with the index specified. There must not be more than one input variable with the same
InputAttachmentIndex whether explicitly declared or implied by an array declaration per image
aspect. A multi-aspect image (e.g. a depth/stencil format) can use the same input variable. The
number of available input attachment indices is given by the
maxPerStageDescriptorInputAttachments member of the VkPhysicalDeviceLimits structure.

When using dynamic rendering with the dynamicRenderingLocalRead feature enabled, a subpass
input variable with a InputAttachmentIndex decoration of i can be mapped to a color, depth, or
stencil attachment.

To set the input attachment index mappings during dynamic rendering, call:

// Provided by VK_KHR_dynamic_rendering_local_read
void vkCmdSetRenderingInputAttachmentIndicesKHR(
 VkCommandBuffer commandBuffer,
 const VkRenderingInputAttachmentIndexInfoKHR* pLocationInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pInputAttachmentIndexInfo is a VkRenderingInputAttachmentIndexInfoKHR structure indicating
the new mappings.

This command sets the input attachment index mappings for subsequent drawing commands, and
must match the mappings provided to the currently bound pipeline, if one is bound, which can be
set by chaining VkRenderingInputAttachmentIndexInfoKHR to VkGraphicsPipelineCreateInfo.

Until this command is called, mappings in the command buffer state are treated as each color
attachment specified in vkCmdBeginRendering mapping to subpass inputs with a
InputAttachmentIndex equal to its index in VkRenderingInfo::pColorAttachments, and depth/stencil
attachments mapping to input attachments without these decorations. This state is reset whenever
vkCmdBeginRendering is called.

Valid Usage

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-dynamicRenderingLocalRead-
09516
dynamicRenderingLocalRead must be enabled

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-pInputAttachmentIndexInfo-
09517

1384

pInputAttachmentIndexInfo->colorAttachmentCount must be equal to the value of
VkRenderingInfo::colorAttachmentCount used to begin the current render pass instance

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-commandBuffer-09518
The current render pass instance must have been started or resumed by
vkCmdBeginRendering in this commandBuffer

Valid Usage (Implicit)

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-pLocationInfo-parameter
pLocationInfo must be a valid pointer to a valid
VkRenderingInputAttachmentIndexInfoKHR structure

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdSetRenderingInputAttachmentIndicesKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics State

The VkRenderingInputAttachmentIndexInfoKHR structure is defined as:

// Provided by VK_KHR_dynamic_rendering_local_read
typedef struct VkRenderingInputAttachmentIndexInfoKHR {

1385

 VkStructureType sType;
 const void* pNext;
 uint32_t colorAttachmentCount;
 const uint32_t* pColorAttachmentInputIndices;
 const uint32_t* pDepthInputAttachmentIndex;
 const uint32_t* pStencilInputAttachmentIndex;
} VkRenderingInputAttachmentIndexInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• colorAttachmentCount is the number of elements in pColorAttachmentInputIndices.

• pColorAttachmentInputIndices is a pointer to an array of colorAttachmentCount uint32_t values
defining indices for color attachments to be used as input attachments.

• pDepthInputAttachmentIndex is either NULL, or a pointer to a uint32_t value defining the index for
the depth attachment to be used an an input attachment.

• pStencilInputAttachmentIndex is either NULL, or a pointer to a uint32_t value defining the index
for the stencil attachment to be used an an input attachment.

This structure allows applications to remap attachments to different input attachment indices.

Each element of pColorAttachmentInputIndices set to a value of VK_ATTACHMENT_UNUSED indicates that
the corresponding attachment will not be used as an input attachment in this pipeline. Any other
value in each of those elements will map the corresponding attachment to a InputAttachmentIndex
value defined in shader code.

If pColorAttachmentInputIndices is NULL, it is equivalent to setting each element to its index within
the array.

If pDepthInputAttachmentIndex or pStencilInputAttachmentIndex are set to NULL, they map to input
attachments without a InputAttachmentIndex decoration. If they point to a value of
VK_ATTACHMENT_UNUSED, it indicates that the corresponding attachment will not be used as an input
attachment in this pipeline. If they point to any other value it maps the corresponding attachment
to a InputAttachmentIndex value defined in shader code.

This structure can be included in the pNext chain of a VkGraphicsPipelineCreateInfo structure to set
this state for a pipeline. If this structure is not included in the pNext chain of
VkGraphicsPipelineCreateInfo, it is equivalent to specifying this structure with the following
properties:

• colorAttachmentCount set to VkPipelineRenderingCreateInfo::colorAttachmentCount.

• pColorAttachmentInputIndices set to NULL.

• pDepthInputAttachmentIndex set to NULL.

• pStencilInputAttachmentIndex set to NULL.

This structure can be included in the pNext chain of a VkCommandBufferInheritanceInfo structure
to specify inherited state from the primary command buffer. If this structure is not included in the

1386

pNext chain of VkCommandBufferInheritanceInfo, it is equivalent to specifying this structure with
the following properties:

• colorAttachmentCount set to VkCommandBufferInheritanceRenderingInfo::colorAttachmentCount.

• pColorAttachmentInputIndices set to NULL.

• pDepthInputAttachmentIndex set to NULL.

• pStencilInputAttachmentIndex set to NULL.

Valid Usage

• VUID-VkRenderingInputAttachmentIndexInfoKHR-dynamicRenderingLocalRead-09519
If the dynamicRenderingLocalRead feature is not enabled, and pColorAttachmentInputIndices
is not NULL, each element must be set to VK_ATTACHMENT_UNUSED

• VUID-VkRenderingInputAttachmentIndexInfoKHR-dynamicRenderingLocalRead-09520
If the dynamicRenderingLocalRead feature is not enabled, pDepthInputAttachmentIndex must
be a valid pointer to a value of VK_ATTACHMENT_UNUSED

• VUID-VkRenderingInputAttachmentIndexInfoKHR-dynamicRenderingLocalRead-09521
If the dynamicRenderingLocalRead feature is not enabled, pStencilInputAttachmentIndex
must be a valid pointer to a value of VK_ATTACHMENT_UNUSED

• VUID-VkRenderingInputAttachmentIndexInfoKHR-pColorAttachmentInputIndices-09522
Elements of pColorAttachmentInputIndices that are not VK_ATTACHMENT_UNUSED must each be
unique

• VUID-VkRenderingInputAttachmentIndexInfoKHR-pColorAttachmentInputIndices-09523
Elements of pColorAttachmentInputIndices that are not VK_ATTACHMENT_UNUSED must not take
the same value as the content of pDepthInputAttachmentIndex

• VUID-VkRenderingInputAttachmentIndexInfoKHR-pColorAttachmentInputIndices-09524
Elements of pColorAttachmentInputIndices that are not VK_ATTACHMENT_UNUSED must not take
the same value as the content of pStencilInputAttachmentIndex

• VUID-VkRenderingInputAttachmentIndexInfoKHR-colorAttachmentCount-09525
colorAttachmentCount must be less than or equal to maxColorAttachments

Valid Usage (Implicit)

• VUID-VkRenderingInputAttachmentIndexInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_INPUT_ATTACHMENT_INDEX_INFO_KHR

• VUID-VkRenderingInputAttachmentIndexInfoKHR-pColorAttachmentInputIndices-
parameter
If colorAttachmentCount is not 0, and pColorAttachmentInputIndices is not NULL,
pColorAttachmentInputIndices must be a valid pointer to an array of colorAttachmentCount
uint32_t values

• VUID-VkRenderingInputAttachmentIndexInfoKHR-pDepthInputAttachmentIndex-
parameter

1387

If pDepthInputAttachmentIndex is not NULL, pDepthInputAttachmentIndex must be a valid
pointer to a valid uint32_t value

• VUID-VkRenderingInputAttachmentIndexInfoKHR-pStencilInputAttachmentIndex-
parameter
If pStencilInputAttachmentIndex is not NULL, pStencilInputAttachmentIndex must be a valid
pointer to a valid uint32_t value

Variables identified with the InputAttachmentIndex must only be used by a fragment stage. The
numeric format of the subpass input must match the format of the corresponding input
attachment, or the values of subpass loads from these variables are undefined. If the framebuffer
attachment contains both depth and stencil aspects, the numeric format of the subpass input
determines if depth or stencil aspect is accessed by the shader.

See Input Attachment for more details.

15.6.1. Fragment Input Attachment Compatibility

An input attachment that is statically accessed by a fragment shader must be backed by a
descriptor that is equivalent to the VkImageView in the VkFramebuffer, except for
subresourceRange.aspectMask. The aspectMask must be equal to the aspect accessed by the shader.

15.7. Ray Tracing Pipeline Interface
Ray tracing pipelines may have more stages than other pipelines with multiple instances of each
stage and more dynamic interactions between the stages, but still have interface structures that
obey the same general rules as interfaces between shader stages in other pipelines. The three types
of inter-stage interface variables for ray tracing pipelines are:

• Ray payloads containing data tracked for the entire lifetime of the ray.

• Hit attributes containing data about a specific hit for the duration of its processing.

• Callable data for passing data into and out of a callable shader.

Ray payloads and callable data are used in explicit shader call instructions, so they have an
incoming variant to distinguish the parameter passed to the invocation from any other payloads or
data being used by subsequent shader call instructions.

An interface structure used between stages must match between the stages using it. Specifically:

• The hit attribute structure read in an any-hit or closest hit shader must be the same structure as
the hit attribute structure written in the corresponding intersection shader in the same hit
group.

• The incoming callable data for a callable shader must be the same structure as the callable data
referenced by the execute callable instruction in the calling shader.

• The ray payload for a shader invoked by a ray tracing command must be the same structure for
all shader stages using the payload for that ray.

1388

Any shader with an incoming ray payload, incoming callable data, or hit attribute must only
declare one variable of that type.

Table 20. Ray Pipeline Shader Interface

Shader Stage Ray Payload Incoming
Ray Payload

Hit Attribute Callable
Data

Incoming
Callable
Data

Ray
Generation

r/w r/w

Intersection r/w

Any-Hit r/w r

Closest Hit r/w r/w r r/w

Miss r/w r/w r/w

Callable r/w r/w

15.8. Shader Resource Interface
When a shader stage accesses buffer or image resources, as described in the Resource Descriptors
section, the shader resource variables must be matched with the pipeline layout that is provided at
pipeline creation time.

The set of shader variables that form the shader resource interface for a stage are the variables
statically used by that stage’s OpEntryPoint with a storage class of Uniform, UniformConstant,
StorageBuffer, or PushConstant. For the fragment shader, this includes the fragment input
attachment interface.

The shader resource interface consists of two sub-interfaces: the push constant interface and the
descriptor set interface.

15.8.1. Push Constant Interface

The shader variables defined with a storage class of PushConstant that are statically used by the
shader entry points for the pipeline define the push constant interface. They must be:

• typed as OpTypeStruct,

• identified with a Block decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in
Offset and Stride Assignment.

There must be no more than one push constant block statically used per shader entry point.

Each statically used member of a push constant block must be placed at an Offset such that the
entire member is entirely contained within the VkPushConstantRange for each OpEntryPoint that
uses it, and the stageFlags for that range must specify the appropriate VkShaderStageFlagBits for
that stage. The Offset decoration for any member of a push constant block must not cause the

1389

space required for that member to extend outside the range [0, maxPushConstantsSize).

Any member of a push constant block that is declared as an array must only be accessed with
dynamically uniform indices.

15.8.2. Descriptor Set Interface

The descriptor set interface is comprised of the shader variables with the storage class of
StorageBuffer, Uniform or UniformConstant (including the variables in the fragment input attachment
interface) that are statically used by the shader entry points for the pipeline.

These variables must have DescriptorSet and Binding decorations specified, which are assigned and
matched with the VkDescriptorSetLayout objects in the pipeline layout as described in DescriptorSet
and Binding Assignment.

The Image Format of an OpTypeImage declaration must not be Unknown, for variables which are used
for OpImageRead, OpImageSparseRead, or OpImageWrite operations, except under the following
conditions:

• For OpImageWrite, if the image format is listed in the storage without format list and if the
shaderStorageImageWriteWithoutFormat feature is enabled and the shader module declares the
StorageImageWriteWithoutFormat capability.

• For OpImageWrite, if the image format supports
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT and the shader module declares the
StorageImageWriteWithoutFormat capability.

• For OpImageRead or OpImageSparseRead, if the image format is listed in the storage without format
list and if the shaderStorageImageReadWithoutFormat feature is enabled and the shader module
declares the StorageImageReadWithoutFormat capability.

• For OpImageRead or OpImageSparseRead, if the image format supports
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT and the shader module declares the
StorageImageReadWithoutFormat capability.

• For OpImageRead, if Dim is SubpassData (indicating a read from an input attachment).

The Image Format of an OpTypeImage declaration must not be Unknown, for variables which are used
for OpAtomic* operations.

Variables identified with the Uniform storage class are used to access transparent buffer backed
resources. Such variables must be:

• typed as OpTypeStruct, or an array of this type,

• identified with a Block or BufferBlock decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in
Offset and Stride Assignment.

Variables identified with the StorageBuffer storage class are used to access transparent buffer
backed resources. Such variables must be:

• typed as OpTypeStruct, or an array of this type,

1390

• identified with a Block decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in
Offset and Stride Assignment.

The Offset decoration for any member of a Block-decorated variable in the Uniform storage class
must not cause the space required for that variable to extend outside the range [0,
maxUniformBufferRange). The Offset decoration for any member of a Block-decorated variable in the
StorageBuffer storage class must not cause the space required for that variable to extend outside
the range [0, maxStorageBufferRange).

Variables identified with the Uniform storage class can also be used to access transparent descriptor
set backed resources when the variable is assigned to a descriptor set layout binding with a
descriptorType of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK. In this case the variable must be typed
as OpTypeStruct and cannot be aggregated into arrays of that type. Further, the Offset decoration
for any member of such a variable must not cause the space required for that variable to extend
outside the range [0,maxInlineUniformBlockSize).

Variables identified with a storage class of UniformConstant and a decoration of
InputAttachmentIndex must be declared as described in Fragment Input Attachment Interface.

SPIR-V variables decorated with a descriptor set and binding that identify a combined image
sampler descriptor can have a type of OpTypeImage, OpTypeSampler (Sampled=1), or OpTypeSampledImage.

Arrays of any of these types can be indexed with constant integral expressions. The following
features must be enabled and capabilities must be declared in order to index such arrays with
dynamically uniform or non-uniform indices:

• Storage images (except storage texel buffers and input attachments):

◦ Dynamically uniform: shaderStorageImageArrayDynamicIndexing and
StorageImageArrayDynamicIndexing

◦ Non-uniform: shaderStorageImageArrayNonUniformIndexing and
StorageImageArrayNonUniformIndexing

• Storage texel buffers:

◦ Dynamically uniform: shaderStorageTexelBufferArrayDynamicIndexing and
StorageTexelBufferArrayDynamicIndexing

◦ Non-uniform: shaderStorageTexelBufferArrayNonUniformIndexing and
StorageTexelBufferArrayNonUniformIndexing

• Input attachments:

◦ Dynamically uniform: shaderInputAttachmentArrayDynamicIndexing and
InputAttachmentArrayDynamicIndexing

◦ Non-uniform: shaderInputAttachmentArrayNonUniformIndexing and
InputAttachmentArrayNonUniformIndexing

• Sampled images (except uniform texel buffers), samplers and combined image samplers:

◦ Dynamically uniform: shaderSampledImageArrayDynamicIndexing and
SampledImageArrayDynamicIndexing

1391

◦ Non-uniform: shaderSampledImageArrayNonUniformIndexing and
SampledImageArrayNonUniformIndexing

• Uniform texel buffers:

◦ Dynamically uniform: shaderUniformTexelBufferArrayDynamicIndexing and
UniformTexelBufferArrayDynamicIndexing

◦ Non-uniform: shaderUniformTexelBufferArrayNonUniformIndexing and
UniformTexelBufferArrayNonUniformIndexing

• Uniform buffers:

◦ Dynamically uniform: shaderUniformBufferArrayDynamicIndexing and
UniformBufferArrayDynamicIndexing

◦ Non-uniform: shaderUniformBufferArrayNonUniformIndexing and
UniformBufferArrayNonUniformIndexing

• Storage buffers:

◦ Dynamically uniform: shaderStorageBufferArrayDynamicIndexing and
StorageBufferArrayDynamicIndexing

◦ Non-uniform: shaderStorageBufferArrayNonUniformIndexing and
StorageBufferArrayNonUniformIndexing

• Acceleration structures:

◦ Dynamically uniform: Always supported.

◦ Non-uniform: Always supported.

• weight image:

◦ Dynamically uniform: Always supported.

◦ Non-uniform: Never supported.

• Block matching image:

◦ Dynamically uniform: Always supported.

◦ Non-uniform: Never supported.

If an instruction loads from or stores to a resource (including atomics and image instructions) and
the resource descriptor being accessed is not dynamically uniform, then the corresponding non-
uniform indexing feature must be enabled and the capability must be declared. If an instruction
loads from or stores to a resource (including atomics and image instructions) and the resource
descriptor being accessed is loaded from an array element with a non-constant index, then the
corresponding dynamic or non-uniform indexing feature must be enabled and the capability must
be declared.

If the combined image sampler enables sampler Y′CBCR conversion or samples a subsampled image,
it must be indexed only by constant integral expressions when aggregated into arrays in shader
code, irrespective of the shaderSampledImageArrayDynamicIndexing feature.

Table 21. Shader Resource and Descriptor Type Correspondence

1392

Resource type Descriptor Type

sampler VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

sampled image VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

storage image VK_DESCRIPTOR_TYPE_STORAGE_IMAGE

combined image sampler VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

uniform texel buffer VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER

storage texel buffer VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER

uniform buffer VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC

storage buffer VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

input attachment VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT

inline uniform block VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

acceleration structure VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR or
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV

weight image VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM

block matching image VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM

Table 22. Shader Resource and Storage Class Correspondence

Resource type Storage Class Type1 Decoration(s)2

sampler UniformConstant OpTypeSampler

sampled image UniformConstant OpTypeImage (Sampled=1)

storage image UniformConstant OpTypeImage (Sampled=2)

combined image
sampler

UniformConstant OpTypeSampledImage
OpTypeImage (Sampled=1)
OpTypeSampler

uniform texel
buffer

UniformConstant OpTypeImage (Dim=Buffer,
Sampled=1)

storage texel buffer UniformConstant OpTypeImage (Dim=Buffer,
Sampled=2)

uniform buffer Uniform OpTypeStruct Block, Offset, (ArrayStride),
(MatrixStride)

storage buffer

Uniform

OpTypeStruct

BufferBlock, Offset,
(ArrayStride), (MatrixStride)

StorageBuffer Block, Offset, (ArrayStride),
(MatrixStride)

1393

Resource type Storage Class Type1 Decoration(s)2

input attachment UniformConstant OpTypeImage (Dim
=SubpassData, Sampled=2)

InputAttachmentIndex

inline uniform
block

Uniform OpTypeStruct Block, Offset, (ArrayStride),
(MatrixStride)

acceleration
structure

UniformConstant OpTypeAccelerationStruct
ureKHR

sample weight
image

UniformConstant OpTypeImage (Depth=0, Dim
=2D,
Arrayed=1, MS=0,
Sampled=1)

WeightTextureQCOM

block matching
image

UniformConstant OpTypeImage (Depth=0, Dim
=2D,
Arrayed=0, MS=0,
Sampled=1)

BlockMatchTextureQCOM

1

Where OpTypeImage is referenced, the Dim values Buffer and Subpassdata are only accepted where
they are specifically referenced. They do not correspond to resource types where a generic
OpTypeImage is specified.

2

In addition to DescriptorSet and Binding.

15.8.3. DescriptorSet and Binding Assignment

A variable decorated with a DescriptorSet decoration of s and a Binding decoration of b indicates
that this variable is associated with the VkDescriptorSetLayoutBinding that has a binding equal to b
in pSetLayouts[s] that was specified in VkPipelineLayoutCreateInfo.

DescriptorSet decoration values must be between zero and maxBoundDescriptorSets minus one,
inclusive. Binding decoration values can be any 32-bit unsigned integer value, as described in
Descriptor Set Layout. Each descriptor set has its own binding name space.

If the Binding decoration is used with an array, the entire array is assigned that binding value. The
array must be a single-dimensional array and size of the array must be no larger than the number
of descriptors in the binding. If the array is runtime-sized, then array elements greater than or
equal to the size of that binding in the bound descriptor set must not be used. If the array is
runtime-sized, the runtimeDescriptorArray feature must be enabled and the RuntimeDescriptorArray
capability must be declared. The index of each element of the array is referred to as the
arrayElement. For the purposes of interface matching and descriptor set operations, if a resource
variable is not an array, it is treated as if it has an arrayElement of zero.

There is a limit on the number of resources of each type that can be accessed by a pipeline stage as
shown in Shader Resource Limits. The “Resources Per Stage” column gives the limit on the number
each type of resource that can be statically used for an entry point in any given stage in a pipeline.

1394

The “Resource Types” column lists which resource types are counted against the limit. Some
resource types count against multiple limits. The VK_DESCRIPTOR_TYPE_MUTABLE_EXT descriptor type
counts as one individual resource and one for every unique resource limit per descriptor set type
that is present in the associated binding’s VkMutableDescriptorTypeListEXT. If multiple descriptor
types in VkMutableDescriptorTypeListEXT map to the same resource limit, only one descriptor is
consumed for purposes of computing resource limits.

The pipeline layout may include descriptor sets and bindings which are not referenced by any
variables statically used by the entry points for the shader stages in the binding’s stageFlags.

However, if a variable assigned to a given DescriptorSet and Binding is statically used by the entry
point for a shader stage, the pipeline layout must contain a descriptor set layout binding in that
descriptor set layout and for that binding number, and that binding’s stageFlags must include the
appropriate VkShaderStageFlagBits for that stage. The variable must be of a valid resource type
determined by its SPIR-V type and storage class, as defined in Shader Resource and Storage Class
Correspondence. The descriptor set layout binding must be of a corresponding descriptor type, as
defined in Shader Resource and Descriptor Type Correspondence.

Note

There are no limits on the number of shader variables that can have overlapping
set and binding values in a shader; but which resources are statically used has an
impact. If any shader variable identifying a resource is statically used in a shader,
then the underlying descriptor bound at the declared set and binding must
support the declared type in the shader when the shader executes.

If multiple shader variables are declared with the same set and binding values,
and with the same underlying descriptor type, they can all be statically used
within the same shader. However, accesses are not automatically synchronized,
and Aliased decorations should be used to avoid data hazards (see section 2.18.2
Aliasing in the SPIR-V specification).

If multiple shader variables with the same set and binding values are declared in a
single shader, but with different declared types, where any of those are not
supported by the relevant bound descriptor, that shader can only be executed if
the variables with the unsupported type are not statically used.

A noteworthy example of using multiple statically-used shader variables sharing
the same descriptor set and binding values is a descriptor of type
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER that has multiple corresponding
shader variables in the UniformConstant storage class, where some could be
OpTypeImage (Sampled=1), some could be OpTypeSampler, and some could be
OpTypeSampledImage.

Table 23. Shader Resource Limits

Resources per Stage Resource Types

maxPerStageDescriptorSamplers or
maxPerStageDescriptorUpdateAfterBindSamplers

sampler

combined image sampler

1395

https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#_a_id_aliasingsection_a_aliasing
https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#_a_id_aliasingsection_a_aliasing

Resources per Stage Resource Types

maxPerStageDescriptorSampledImages or
maxPerStageDescriptorUpdateAfterBindSampledI
mages

sampled image

combined image sampler

uniform texel buffer

sample weight image

block matching image

maxPerStageDescriptorStorageImages or
maxPerStageDescriptorUpdateAfterBindStorageI
mages

storage image

storage texel buffer

maxPerStageDescriptorUniformBuffers or
maxPerStageDescriptorUpdateAfterBindUniformB
uffers

uniform buffer

uniform buffer dynamic

maxPerStageDescriptorStorageBuffers or
maxPerStageDescriptorUpdateAfterBindStorageB
uffers

storage buffer

storage buffer dynamic

maxPerStageDescriptorInputAttachments or
maxPerStageDescriptorUpdateAfterBindInputAtt
achments

input attachment1

maxPerStageDescriptorInlineUniformBlocks or
maxPerStageDescriptorUpdateAfterBindInlineUn
iformBlocks

inline uniform block

VkPhysicalDeviceRayTracingPropertiesNV::maxDe
scriptorSetAccelerationStructures or
maxPerStageDescriptorAccelerationStructures
or
maxPerStageDescriptorUpdateAfterBindAccelera
tionStructures

acceleration structure

1

Input attachments can only be used in the fragment shader stage

15.8.4. Offset and Stride Assignment

Certain objects must be explicitly laid out using the Offset, ArrayStride, and MatrixStride, as
described in SPIR-V explicit layout validation rules. All such layouts also must conform to the
following requirements.

Note

The numeric order of Offset decorations does not need to follow member
declaration order.

Alignment Requirements

There are different alignment requirements depending on the specific resources and on the
features enabled on the device.

1396

https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#ShaderValidation

Matrix types are defined in terms of arrays as follows:

• A column-major matrix with C columns and R rows is equivalent to a C element array of vectors
with R components.

• A row-major matrix with C columns and R rows is equivalent to an R element array of vectors
with C components.

The scalar alignment of the type of an OpTypeStruct member is defined recursively as follows:

• A scalar of size N has a scalar alignment of N.

• A vector type has a scalar alignment equal to that of its component type.

• An array type has a scalar alignment equal to that of its element type.

• A structure has a scalar alignment equal to the largest scalar alignment of any of its members.

• A matrix type inherits scalar alignment from the equivalent array declaration.

The base alignment of the type of an OpTypeStruct member is defined recursively as follows:

• A scalar has a base alignment equal to its scalar alignment.

• A two-component vector has a base alignment equal to twice its scalar alignment.

• A three- or four-component vector has a base alignment equal to four times its scalar alignment.

• An array has a base alignment equal to the base alignment of its element type.

• A structure has a base alignment equal to the largest base alignment of any of its members. An
empty structure has a base alignment equal to the size of the smallest scalar type permitted by
the capabilities declared in the SPIR-V module. (e.g., for a 1 byte aligned empty struct in the
StorageBuffer storage class, StorageBuffer8BitAccess or UniformAndStorageBuffer8BitAccess must
be declared in the SPIR-V module.)

• A matrix type inherits base alignment from the equivalent array declaration.

The extended alignment of the type of an OpTypeStruct member is similarly defined as follows:

• A scalar or vector type has an extended alignment equal to its base alignment.

• An array or structure type has an extended alignment equal to the largest extended alignment
of any of its members, rounded up to a multiple of 16.

• A matrix type inherits extended alignment from the equivalent array declaration.

A member is defined to improperly straddle if either of the following are true:

• It is a vector with total size less than or equal to 16 bytes, and has Offset decorations placing its
first byte at F and its last byte at L, where floor(F / 16) != floor(L / 16).

• It is a vector with total size greater than 16 bytes and has its Offset decorations placing its first
byte at a non-integer multiple of 16.

Standard Buffer Layout

Every member of an OpTypeStruct that is required to be explicitly laid out must be aligned

1397

according to the first matching rule as follows. If the struct is contained in pointer types of multiple
storage classes, it must satisfy the requirements for every storage class used to reference it.

1. If the scalarBlockLayout feature is enabled on the device and the storage class is Uniform,
StorageBuffer, PhysicalStorageBuffer, ShaderRecordBufferKHR, or PushConstant then every
member must be aligned according to its scalar alignment.

2. If the workgroupMemoryExplicitLayoutScalarBlockLayout feature is enabled on the device and the
storage class is Workgroup then every member must be aligned according to its scalar alignment.

3. All vectors must be aligned according to their scalar alignment.

4. If the uniformBufferStandardLayout feature is not enabled on the device, then any member of an
OpTypeStruct with a storage class of Uniform and a decoration of Block must be aligned according
to its extended alignment.

5. Every other member must be aligned according to its base alignment.

Note

Even if scalar alignment is supported, it is generally more performant to use the
base alignment.

The memory layout must obey the following rules:

• The Offset decoration of any member must be a multiple of its alignment.

• Any ArrayStride or MatrixStride decoration must be a multiple of the alignment of the array or
matrix as defined above.

If one of the conditions below applies

• The storage class is Uniform, StorageBuffer, PhysicalStorageBuffer, ShaderRecordBufferKHR, or
PushConstant, and the scalarBlockLayout feature is not enabled on the device.

• The storage class is Workgroup, and either the struct member is not part of a Block or the
workgroupMemoryExplicitLayoutScalarBlockLayout feature is not enabled on the device.

• The storage class is any other storage class.

the memory layout must also obey the following rules:

• Vectors must not improperly straddle, as defined above.

• The Offset decoration of a member must not place it between the end of a structure, an array
or a matrix and the next multiple of the alignment of that structure, array or matrix.

Note

The std430 layout in GLSL satisfies these rules for types using the base alignment.
The std140 layout satisfies the rules for types using the extended alignment.

15.9. Built-In Variables
Built-in variables are accessed in shaders by declaring a variable decorated with a BuiltIn SPIR-V

1398

decoration. The meaning of each BuiltIn decoration is as follows. In the remainder of this section,
the name of a built-in is used interchangeably with a term equivalent to a variable decorated with
that particular built-in. Built-ins that represent integer values can be declared as either signed or
unsigned 32-bit integers.

As mentioned above, some inputs and outputs have an additional level of arrayness relative to
other shader inputs and outputs. This level of arrayness is not included in the type descriptions
below, but must be included when declaring the built-in.

BaryCoordKHR

The BaryCoordKHR decoration can be used to decorate a fragment shader input variable. This
variable will contain a three-component floating-point vector with barycentric weights that
indicate the location of the fragment relative to the screen-space locations of vertices of its
primitive, obtained using perspective interpolation.

Valid Usage

• VUID-BaryCoordKHR-BaryCoordKHR-04154
The BaryCoordKHR decoration must be used only within the Fragment Execution Model

• VUID-BaryCoordKHR-BaryCoordKHR-04155
The variable decorated with BaryCoordKHR must be declared using the Input Storage Class

• VUID-BaryCoordKHR-BaryCoordKHR-04156
The variable decorated with BaryCoordKHR must be declared as a three-component vector
of 32-bit floating-point values

BaryCoordNoPerspAMD

The BaryCoordNoPerspAMD decoration can be used to decorate a fragment shader input variable.
This variable will contain the (I,J) pair of the barycentric coordinates corresponding to the
fragment evaluated using linear interpolation at the fragment’s center. The K coordinate of the
barycentric coordinates can be derived given the identity I + J + K = 1.0.

Valid Usage

• VUID-BaryCoordNoPerspAMD-BaryCoordNoPerspAMD-04157
The BaryCoordNoPerspAMD decoration must be used only within the Fragment Execution Model

• VUID-BaryCoordNoPerspAMD-BaryCoordNoPerspAMD-04158
The variable decorated with BaryCoordNoPerspAMD must be declared using the Input Storage
Class

• VUID-BaryCoordNoPerspAMD-BaryCoordNoPerspAMD-04159
The variable decorated with BaryCoordNoPerspAMD must be declared as a two-component
vector of 32-bit floating-point values

BaryCoordNoPerspKHR

The BaryCoordNoPerspKHR decoration can be used to decorate a fragment shader input variable.

1399

This variable will contain a three-component floating-point vector with barycentric weights that
indicate the location of the fragment relative to the screen-space locations of vertices of its
primitive, obtained using linear interpolation.

Valid Usage

• VUID-BaryCoordNoPerspKHR-BaryCoordNoPerspKHR-04160
The BaryCoordNoPerspKHR decoration must be used only within the Fragment Execution Model

• VUID-BaryCoordNoPerspKHR-BaryCoordNoPerspKHR-04161
The variable decorated with BaryCoordNoPerspKHR must be declared using the Input Storage
Class

• VUID-BaryCoordNoPerspKHR-BaryCoordNoPerspKHR-04162
The variable decorated with BaryCoordNoPerspKHR must be declared as a three-component
vector of 32-bit floating-point values

BaryCoordNoPerspCentroidAMD

The BaryCoordNoPerspCentroidAMD decoration can be used to decorate a fragment shader input
variable. This variable will contain the (I,J) pair of the barycentric coordinates corresponding to
the fragment evaluated using linear interpolation at the centroid. The K coordinate of the
barycentric coordinates can be derived given the identity I + J + K = 1.0.

Valid Usage

• VUID-BaryCoordNoPerspCentroidAMD-BaryCoordNoPerspCentroidAMD-04163
The BaryCoordNoPerspCentroidAMD decoration must be used only within the Fragment
Execution Model

• VUID-BaryCoordNoPerspCentroidAMD-BaryCoordNoPerspCentroidAMD-04164
The variable decorated with BaryCoordNoPerspCentroidAMD must be declared using the
Input Storage Class

• VUID-BaryCoordNoPerspCentroidAMD-BaryCoordNoPerspCentroidAMD-04165
The variable decorated with BaryCoordNoPerspCentroidAMD must be declared as a three-
component vector of 32-bit floating-point values

BaryCoordNoPerspSampleAMD

The BaryCoordNoPerspSampleAMD decoration can be used to decorate a fragment shader input
variable. This variable will contain the (I,J) pair of the barycentric coordinates corresponding to
the fragment evaluated using linear interpolation at each covered sample. The K coordinate of
the barycentric coordinates can be derived given the identity I + J + K = 1.0.

Valid Usage

• VUID-BaryCoordNoPerspSampleAMD-BaryCoordNoPerspSampleAMD-04166
The BaryCoordNoPerspSampleAMD decoration must be used only within the Fragment
Execution Model

1400

• VUID-BaryCoordNoPerspSampleAMD-BaryCoordNoPerspSampleAMD-04167
The variable decorated with BaryCoordNoPerspSampleAMD must be declared using the Input
Storage Class

• VUID-BaryCoordNoPerspSampleAMD-BaryCoordNoPerspSampleAMD-04168
The variable decorated with BaryCoordNoPerspSampleAMD must be declared as a two-
component vector of 32-bit floating-point values

BaryCoordPullModelAMD

The BaryCoordPullModelAMD decoration can be used to decorate a fragment shader input variable.
This variable will contain (1/W, 1/I, 1/J) evaluated at the fragment center and can be used to
calculate gradients and then interpolate I, J, and W at any desired sample location.

Valid Usage

• VUID-BaryCoordPullModelAMD-BaryCoordPullModelAMD-04169
The BaryCoordPullModelAMD decoration must be used only within the Fragment Execution
Model

• VUID-BaryCoordPullModelAMD-BaryCoordPullModelAMD-04170
The variable decorated with BaryCoordPullModelAMD must be declared using the Input
Storage Class

• VUID-BaryCoordPullModelAMD-BaryCoordPullModelAMD-04171
The variable decorated with BaryCoordPullModelAMD must be declared as a three-
component vector of 32-bit floating-point values

BaryCoordSmoothAMD

The BaryCoordSmoothAMD decoration can be used to decorate a fragment shader input variable.
This variable will contain the (I,J) pair of the barycentric coordinates corresponding to the
fragment evaluated using perspective interpolation at the fragment’s center. The K coordinate of
the barycentric coordinates can be derived given the identity I + J + K = 1.0.

Valid Usage

• VUID-BaryCoordSmoothAMD-BaryCoordSmoothAMD-04172
The BaryCoordSmoothAMD decoration must be used only within the Fragment Execution Model

• VUID-BaryCoordSmoothAMD-BaryCoordSmoothAMD-04173
The variable decorated with BaryCoordSmoothAMD must be declared using the Input Storage
Class

• VUID-BaryCoordSmoothAMD-BaryCoordSmoothAMD-04174
The variable decorated with BaryCoordSmoothAMD must be declared as a two-component
vector of 32-bit floating-point values

BaryCoordSmoothCentroidAMD

The BaryCoordSmoothCentroidAMD decoration can be used to decorate a fragment shader input

1401

variable. This variable will contain the (I,J) pair of the barycentric coordinates corresponding to
the fragment evaluated using perspective interpolation at the centroid. The K coordinate of the
barycentric coordinates can be derived given the identity I + J + K = 1.0.

Valid Usage

• VUID-BaryCoordSmoothCentroidAMD-BaryCoordSmoothCentroidAMD-04175
The BaryCoordSmoothCentroidAMD decoration must be used only within the Fragment
Execution Model

• VUID-BaryCoordSmoothCentroidAMD-BaryCoordSmoothCentroidAMD-04176
The variable decorated with BaryCoordSmoothCentroidAMD must be declared using the Input
Storage Class

• VUID-BaryCoordSmoothCentroidAMD-BaryCoordSmoothCentroidAMD-04177
The variable decorated with BaryCoordSmoothCentroidAMD must be declared as a two-
component vector of 32-bit floating-point values

BaryCoordSmoothSampleAMD

The BaryCoordSmoothSampleAMD decoration can be used to decorate a fragment shader input
variable. This variable will contain the (I,J) pair of the barycentric coordinates corresponding to
the fragment evaluated using perspective interpolation at each covered sample. The K
coordinate of the barycentric coordinates can be derived given the identity I + J + K = 1.0.

Valid Usage

• VUID-BaryCoordSmoothSampleAMD-BaryCoordSmoothSampleAMD-04178
The BaryCoordSmoothSampleAMD decoration must be used only within the Fragment Execution
Model

• VUID-BaryCoordSmoothSampleAMD-BaryCoordSmoothSampleAMD-04179
The variable decorated with BaryCoordSmoothSampleAMD must be declared using the Input
Storage Class

• VUID-BaryCoordSmoothSampleAMD-BaryCoordSmoothSampleAMD-04180
The variable decorated with BaryCoordSmoothSampleAMD must be declared as a two-
component vector of 32-bit floating-point values

BaseInstance

Decorating a variable with the BaseInstance built-in will make that variable contain the integer
value corresponding to the first instance that was passed to the command that invoked the
current vertex shader invocation. BaseInstance is the firstInstance parameter to a direct
drawing command or the firstInstance member of a structure consumed by an indirect drawing
command.

Valid Usage

• VUID-BaseInstance-BaseInstance-04181

1402

The BaseInstance decoration must be used only within the Vertex Execution Model

• VUID-BaseInstance-BaseInstance-04182
The variable decorated with BaseInstance must be declared using the Input Storage Class

• VUID-BaseInstance-BaseInstance-04183
The variable decorated with BaseInstance must be declared as a scalar 32-bit integer
value

BaseVertex

Decorating a variable with the BaseVertex built-in will make that variable contain the integer
value corresponding to the first vertex or vertex offset that was passed to the command that
invoked the current vertex shader invocation. For non-indexed drawing commands, this variable
is the firstVertex parameter to a direct drawing command or the firstVertex member of the
structure consumed by an indirect drawing command. For indexed drawing commands, this
variable is the vertexOffset parameter to a direct drawing command or the vertexOffset member
of the structure consumed by an indirect drawing command.

Valid Usage

• VUID-BaseVertex-BaseVertex-04184
The BaseVertex decoration must be used only within the Vertex Execution Model

• VUID-BaseVertex-BaseVertex-04185
The variable decorated with BaseVertex must be declared using the Input Storage Class

• VUID-BaseVertex-BaseVertex-04186
The variable decorated with BaseVertex must be declared as a scalar 32-bit integer value

ClipDistance

Decorating a variable with the ClipDistance built-in decoration will make that variable contain
the mechanism for controlling user clipping. ClipDistance is an array such that the ith element of
the array specifies the clip distance for plane i. A clip distance of 0 means the vertex is on the
plane, a positive distance means the vertex is inside the clip half-space, and a negative distance
means the vertex is outside the clip half-space.

Note

The array variable decorated with ClipDistance is explicitly sized by the shader.

Note

In the last pre-rasterization shader stage, these values will be linearly interpolated
across the primitive and the portion of the primitive with interpolated distances
less than 0 will be considered outside the clip volume. If ClipDistance is then used
by a fragment shader, ClipDistance contains these linearly interpolated values.

1403

Valid Usage

• VUID-ClipDistance-ClipDistance-04187
The ClipDistance decoration must be used only within the MeshEXT, MeshNV, Vertex,
Fragment, TessellationControl, TessellationEvaluation, or Geometry Execution Model

• VUID-ClipDistance-ClipDistance-04188
The variable decorated with ClipDistance within the MeshEXT, MeshNV, or Vertex Execution
Model must be declared using the Output Storage Class

• VUID-ClipDistance-ClipDistance-04189
The variable decorated with ClipDistance within the Fragment Execution Model must be
declared using the Input Storage Class

• VUID-ClipDistance-ClipDistance-04190
The variable decorated with ClipDistance within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared in a Storage
Class other than Input or Output

• VUID-ClipDistance-ClipDistance-04191
The variable decorated with ClipDistance must be declared as an array of 32-bit floating-
point values

ClipDistancePerViewNV

Decorating a variable with the ClipDistancePerViewNV built-in decoration will make that variable
contain the per-view clip distances. The per-view clip distances have the same semantics as
ClipDistance.

Valid Usage

• VUID-ClipDistancePerViewNV-ClipDistancePerViewNV-04192
The ClipDistancePerViewNV decoration must be used only within the MeshNV Execution Model

• VUID-ClipDistancePerViewNV-ClipDistancePerViewNV-04193
The variable decorated with ClipDistancePerViewNV must be declared using the Output
Storage Class

• VUID-ClipDistancePerViewNV-ClipDistancePerViewNV-04194
The variable decorated with ClipDistancePerViewNV must also be decorated with the
PerViewNV decoration

• VUID-ClipDistancePerViewNV-ClipDistancePerViewNV-04195
The variable decorated with ClipDistancePerViewNV must be declared as a two-
dimensional array of 32-bit floating-point values

ClusterIDHUAWEI

The ClusterIDHUAWEI decoration can be used to decorate a cluster culling shader output
variable,this variable will contain an integer value that specifies the id of cluster being rendered
by this drawing command. When Cluster Culling Shader enable, ClusterIDHUAWEI will replace
gl_DrawID pass to vertex shader for cluster-related information fetching.

1404

Valid Usage

• VUID-ClusterIDHUAWEI-ClusterIDHUAWEI-07797
The ClusterIDHUAWEI decoration must be used only within the ClusterCullingHUAWEI
Execution Model

• VUID-ClusterIDHUAWEI-ClusterIDHUAWEI-07798
The variable decorated with ClusterIDHUAWEI must be declared as a scalar 32-bit integer
value

ClusterShadingRateHUAWEI

The ClusterShadingRateHUAWEI decoration can be used to decorate a cluster culling shader output
variable. This variable will contain an integer value specifying the shading rate of a rendering
cluster.

Valid Usage

• VUID-ClusterShadingRateHUAWEI-ClusterShadingRateHUAWEI-09448
The ClusterShadingRateHUAWEI decoration must be used only within the
ClusterCullingHUAWEI Execution Model

• VUID-ClusterShadingRateHUAWEI-ClusterShadingRateHUAWEI-09449
The variable decorated with ClusterShadingRateHUAWEI must be declared as a scalar 32-bit
integer value

CullDistance

Decorating a variable with the CullDistance built-in decoration will make that variable contain
the mechanism for controlling user culling. If any member of this array is assigned a negative
value for all vertices belonging to a primitive, then the primitive is discarded before
rasterization.

Note

In fragment shaders, the values of the CullDistance array are linearly interpolated
across each primitive.

Note

If CullDistance decorates an input variable, that variable will contain the
corresponding value from the CullDistance decorated output variable from the
previous shader stage.

Valid Usage

• VUID-CullDistance-CullDistance-04196
The CullDistance decoration must be used only within the MeshEXT, MeshNV, Vertex,
Fragment, TessellationControl, TessellationEvaluation, or Geometry Execution Model

1405

• VUID-CullDistance-CullDistance-04197
The variable decorated with CullDistance within the MeshEXT, MeshNV or Vertex Execution
Model must be declared using the Output Storage Class

• VUID-CullDistance-CullDistance-04198
The variable decorated with CullDistance within the Fragment Execution Model must be
declared using the Input Storage Class

• VUID-CullDistance-CullDistance-04199
The variable decorated with CullDistance within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared using a Storage
Class other than Input or Output

• VUID-CullDistance-CullDistance-04200
The variable decorated with CullDistance must be declared as an array of 32-bit floating-
point values

CullDistancePerViewNV

Decorating a variable with the CullDistancePerViewNV built-in decoration will make that variable
contain the per-view cull distances. The per-view cull distances have the same semantics as
CullDistance.

Valid Usage

• VUID-CullDistancePerViewNV-CullDistancePerViewNV-04201
The CullDistancePerViewNV decoration must be used only within the MeshNV Execution Model

• VUID-CullDistancePerViewNV-CullDistancePerViewNV-04202
The variable decorated with CullDistancePerViewNV must be declared using the Output
Storage Class

• VUID-CullDistancePerViewNV-CullDistancePerViewNV-04203
The variable decorated with CullDistancePerViewNV must also be decorated with the
PerViewNV decoration

• VUID-CullDistancePerViewNV-CullDistancePerViewNV-04204
The variable decorated with CullDistancePerViewNV must be declared as a two-
dimensional array of 32-bit floating-point values

CullPrimitiveEXT

Decorating a variable with the CullPrimitiveEXT built-in decoration will make that variable
contain the culling state of output primitives. If the per-primitive boolean value is true, the
primitive will be culled, if it is false it will not be culled.

Valid Usage

• VUID-CullPrimitiveEXT-CullPrimitiveEXT-07034
The CullPrimitiveEXT decoration must be used only within the MeshEXT Execution Model

• VUID-CullPrimitiveEXT-CullPrimitiveEXT-07035

1406

The variable decorated with CullPrimitiveEXT must be declared using the Output Storage
Class

• VUID-CullPrimitiveEXT-CullPrimitiveEXT-07036
The variable decorated with CullPrimitiveEXT must be declared as an array of boolean
values

• VUID-CullPrimitiveEXT-CullPrimitiveEXT-07037
The size of the array decorated with CullPrimitiveEXT must match the value specified by
OutputPrimitivesEXT

• VUID-CullPrimitiveEXT-CullPrimitiveEXT-07038
The variable decorated with CullPrimitiveEXT within the MeshEXT Execution Model must
also be decorated with the PerPrimitiveEXT decoration

CullMaskKHR

A variable decorated with the CullMaskKHR decoration will specify the cull mask of the ray being
processed. The value is given by the Cull Mask parameter passed into one of the OpTrace*
instructions.

Valid Usage

• VUID-CullMaskKHR-CullMaskKHR-06735
The CullMaskKHR decoration must be used only within the IntersectionKHR, AnyHitKHR,
ClosestHitKHR, or MissKHR Execution Model

• VUID-CullMaskKHR-CullMaskKHR-06736
The variable decorated with CullMaskKHR must be declared using the Input Storage Class

• VUID-CullMaskKHR-CullMaskKHR-06737
The variable decorated with CullMaskKHR must be declared as a scalar 32-bit integer value

CurrentRayTimeNV

A variable decorated with the CurrentRayTimeNV decoration contains the time value passed in to
OpTraceRayMotionNV which called this shader.

Valid Usage

• VUID-CurrentRayTimeNV-CurrentRayTimeNV-04942
The CurrentRayTimeNV decoration must be used only within the IntersectionKHR, AnyHitKHR,
ClosestHitKHR, or MissKHR Execution Model

• VUID-CurrentRayTimeNV-CurrentRayTimeNV-04943
The variable decorated with CurrentRayTimeNV must be declared using the Input Storage
Class

• VUID-CurrentRayTimeNV-CurrentRayTimeNV-04944
The variable decorated with CurrentRayTimeNV must be declared as a scalar 32-bit floating-
point value

1407

DeviceIndex

The DeviceIndex decoration can be applied to a shader input which will be filled with the device
index of the physical device that is executing the current shader invocation. This value will be in
the range , where physicalDeviceCount is the physicalDeviceCount
member of VkDeviceGroupDeviceCreateInfo.

Valid Usage

• VUID-DeviceIndex-DeviceIndex-04205
The variable decorated with DeviceIndex must be declared using the Input Storage Class

• VUID-DeviceIndex-DeviceIndex-04206
The variable decorated with DeviceIndex must be declared as a scalar 32-bit integer value

DrawIndex

Decorating a variable with the DrawIndex built-in will make that variable contain the integer
value corresponding to the zero-based index of the draw that invoked the current task, mesh, or
vertex shader invocation. For indirect drawing commands, DrawIndex begins at zero and
increments by one for each draw executed. The number of draws is given by the drawCount
parameter. For direct drawing commands, if vkCmdDrawMultiEXT or
vkCmdDrawMultiIndexedEXT is used, this variable contains the integer value corresponding to
the zero-based index of the draw. Otherwise DrawIndex is always zero. DrawIndex is dynamically
uniform.

When task or mesh shaders are used, only the first active stage will have proper access to the
variable. The value read by other stages is undefined.

Valid Usage

• VUID-DrawIndex-DrawIndex-04207
The DrawIndex decoration must be used only within the Vertex, MeshEXT, TaskEXT, MeshNV, or
TaskNV Execution Model

• VUID-DrawIndex-DrawIndex-04208
The variable decorated with DrawIndex must be declared using the Input Storage Class

• VUID-DrawIndex-DrawIndex-04209
The variable decorated with DrawIndex must be declared as a scalar 32-bit integer value

FirstIndexHUAWEI

The FirstIndexHUAWEI decoration can be used to decorate a cluster culling shader output
variable,this indexed mode specific variable will contain an integer value that specifies the base
index within the index buffer corresponding to a cluster.

Valid Usage

• VUID-FirstIndexHUAWEI-FirstIndexHUAWEI-07799

1408

The FirstIndexHUAWEI decoration must be used only within the ClusterCullingHUAWEI
Execution Model

• VUID-FirstIndexHUAWEI-FirstIndexHUAWEI-07800
The variable decorated with FirstIndexHUAWEI must be declared as a scalar 32-bit integer
value

FragCoord

Decorating a variable with the FragCoord built-in decoration will make that variable contain the
framebuffer coordinate of the fragment being processed. The (x,y) coordinate (0,0) is
the upper left corner of the upper left pixel in the framebuffer.

When Sample Shading is enabled, the x and y components of FragCoord reflect the location of
one of the samples corresponding to the shader invocation.

Otherwise, the x and y components of FragCoord reflect the location of the center of the
fragment.

The z component of FragCoord is the interpolated depth value of the primitive.

The w component is the interpolated .

The Centroid interpolation decoration is ignored, but allowed, on FragCoord.

Valid Usage

• VUID-FragCoord-FragCoord-04210
The FragCoord decoration must be used only within the Fragment Execution Model

• VUID-FragCoord-FragCoord-04211
The variable decorated with FragCoord must be declared using the Input Storage Class

• VUID-FragCoord-FragCoord-04212
The variable decorated with FragCoord must be declared as a four-component vector of
32-bit floating-point values

FragDepth

To have a shader supply a fragment-depth value, the shader must declare the DepthReplacing
execution mode. Such a shader’s fragment-depth value will come from the variable decorated
with the FragDepth built-in decoration.

This value will be used for any subsequent depth testing performed by the implementation or
writes to the depth attachment. See fragment shader depth replacement for details.

Valid Usage

• VUID-FragDepth-FragDepth-04213
The FragDepth decoration must be used only within the Fragment Execution Model

1409

• VUID-FragDepth-FragDepth-04214
The variable decorated with FragDepth must be declared using the Output Storage Class

• VUID-FragDepth-FragDepth-04215
The variable decorated with FragDepth must be declared as a scalar 32-bit floating-point
value

• VUID-FragDepth-FragDepth-04216
If the shader dynamically writes to the variable decorated with FragDepth, the
DepthReplacing Execution Mode must be declared

FirstInstanceHUAWEI

The FirstInstanceHUAWEI decoration can be used to decorate a cluster culling shader output
variable,this variable will contain an integer value that specifies the instance ID of the first
instance to draw.

Valid Usage

• VUID-FirstInstanceHUAWEI-FirstInstanceHUAWEI-07801
The FirstInstanceHUAWEI decoration must be used only within the ClusterCullingHUAWEI
Execution Model

• VUID-FirstInstanceHUAWEI-FirstInstanceHUAWEI-07802
The variable decorated with FirstInstanceHUAWEI must be declared as a scalar 32-bit
integer value

FirstVertexHUAWEI

The FirstVertexHUAWEI decoration can be used to decorate a cluster culling shader output
variable,this non-indexed mode specific variable will contain an integer value that specifies the
index of the first vertex in a cluster to draw.

Valid Usage

• VUID-FirstVertexHUAWEI-FirstVertexHUAWEI-07803
The FirstVertexHUAWEI decoration must be used only within the FirstVertexHUAWEI
Execution Model

• VUID-FirstVertexHUAWEI-FirstVertexHUAWEI-07804
The variable decorated with FirstVertexHUAWEI must be declared as a scalar 32-bit integer
value

FragInvocationCountEXT

Decorating a variable with the FragInvocationCountEXT built-in decoration will make that
variable contain the maximum number of fragment shader invocations for the fragment, as
determined by minSampleShading.

If Sample Shading is not enabled, FragInvocationCountEXT will be filled with a value of 1.

1410

Valid Usage

• VUID-FragInvocationCountEXT-FragInvocationCountEXT-04217
The FragInvocationCountEXT decoration must be used only within the Fragment Execution
Model

• VUID-FragInvocationCountEXT-FragInvocationCountEXT-04218
The variable decorated with FragInvocationCountEXT must be declared using the Input
Storage Class

• VUID-FragInvocationCountEXT-FragInvocationCountEXT-04219
The variable decorated with FragInvocationCountEXT must be declared as a scalar 32-bit
integer value

FragSizeEXT

Decorating a variable with the FragSizeEXT built-in decoration will make that variable contain
the dimensions in pixels of the area that the fragment covers for that invocation.

If fragment density map is not enabled, FragSizeEXT will be filled with a value of (1,1).

Valid Usage

• VUID-FragSizeEXT-FragSizeEXT-04220
The FragSizeEXT decoration must be used only within the Fragment Execution Model

• VUID-FragSizeEXT-FragSizeEXT-04221
The variable decorated with FragSizeEXT must be declared using the Input Storage Class

• VUID-FragSizeEXT-FragSizeEXT-04222
The variable decorated with FragSizeEXT must be declared as a two-component vector of
32-bit integer values

FragStencilRefEXT

Decorating a variable with the FragStencilRefEXT built-in decoration will make that variable
contain the new stencil reference value for all samples covered by the fragment. This value will
be used as the stencil reference value used in stencil testing.

To write to FragStencilRefEXT, a shader must declare the StencilRefReplacingEXT execution
mode. If a shader declares the StencilRefReplacingEXT execution mode and there is an execution
path through the shader that does not set FragStencilRefEXT, then the fragment’s stencil
reference value is undefined for executions of the shader that take that path.

Only the least significant s bits of the integer value of the variable decorated with
FragStencilRefEXT are considered for stencil testing, where s is the number of bits in the stencil
framebuffer attachment, and higher order bits are discarded.

See fragment shader stencil reference replacement for more details.

1411

Valid Usage

• VUID-FragStencilRefEXT-FragStencilRefEXT-04223
The FragStencilRefEXT decoration must be used only within the Fragment Execution Model

• VUID-FragStencilRefEXT-FragStencilRefEXT-04224
The variable decorated with FragStencilRefEXT must be declared using the Output Storage
Class

• VUID-FragStencilRefEXT-FragStencilRefEXT-04225
The variable decorated with FragStencilRefEXT must be declared as a scalar integer value

FragmentSizeNV

Decorating a variable with the FragmentSizeNV built-in decoration will make that variable contain
the width and height of the fragment.

Valid Usage

• VUID-FragmentSizeNV-FragmentSizeNV-04226
The FragmentSizeNV decoration must be used only within the Fragment Execution Model

• VUID-FragmentSizeNV-FragmentSizeNV-04227
The variable decorated with FragmentSizeNV must be declared using the Input Storage
Class

• VUID-FragmentSizeNV-FragmentSizeNV-04228
The variable decorated with FragmentSizeNV must be declared as a two-component vector
of 32-bit integer values

FrontFacing

Decorating a variable with the FrontFacing built-in decoration will make that variable contain
whether the fragment is front or back facing. This variable is non-zero if the current fragment is
considered to be part of a front-facing polygon primitive or of a non-polygon primitive and is
zero if the fragment is considered to be part of a back-facing polygon primitive.

Valid Usage

• VUID-FrontFacing-FrontFacing-04229
The FrontFacing decoration must be used only within the Fragment Execution Model

• VUID-FrontFacing-FrontFacing-04230
The variable decorated with FrontFacing must be declared using the Input Storage Class

• VUID-FrontFacing-FrontFacing-04231
The variable decorated with FrontFacing must be declared as a boolean value

FullyCoveredEXT

Decorating a variable with the FullyCoveredEXT built-in decoration will make that variable

1412

indicate whether the fragment area is fully covered by the generating primitive. This variable is
non-zero if conservative rasterization is enabled and the current fragment area is fully covered
by the generating primitive, and is zero if the fragment is not covered or partially covered, or
conservative rasterization is disabled.

Valid Usage

• VUID-FullyCoveredEXT-FullyCoveredEXT-04232
The FullyCoveredEXT decoration must be used only within the Fragment Execution Model

• VUID-FullyCoveredEXT-FullyCoveredEXT-04233
The variable decorated with FullyCoveredEXT must be declared using the Input Storage
Class

• VUID-FullyCoveredEXT-FullyCoveredEXT-04234
The variable decorated with FullyCoveredEXT must be declared as a boolean value

• VUID-FullyCoveredEXT-conservativeRasterizationPostDepthCoverage-04235
If VkPhysicalDeviceConservativeRasterizationPropertiesEXT
::conservativeRasterizationPostDepthCoverage is not supported the PostDepthCoverage
Execution Mode must not be declared, when a variable with the FullyCoveredEXT decoration
is declared

GlobalInvocationId

Decorating a variable with the GlobalInvocationId built-in decoration will make that variable
contain the location of the current invocation within the global workgroup. Each component is
equal to the index of the local workgroup multiplied by the size of the local workgroup plus
LocalInvocationId.

Valid Usage

• VUID-GlobalInvocationId-GlobalInvocationId-04236
The GlobalInvocationId decoration must be used only within the GLCompute, MeshEXT,
TaskEXT, MeshNV, or TaskNV Execution Model

• VUID-GlobalInvocationId-GlobalInvocationId-04237
The variable decorated with GlobalInvocationId must be declared using the Input Storage
Class

• VUID-GlobalInvocationId-GlobalInvocationId-04238
The variable decorated with GlobalInvocationId must be declared as a three-component
vector of 32-bit integer values

HelperInvocation

Decorating a variable with the HelperInvocation built-in decoration will make that variable
contain whether the current invocation is a helper invocation. This variable is non-zero if the
current fragment being shaded is a helper invocation and zero otherwise. A helper invocation is
an invocation of the shader that is produced to satisfy internal requirements such as the
generation of derivatives.

1413

Note

It is very likely that a helper invocation will have a value of SampleMask fragment
shader input value that is zero.

Valid Usage

• VUID-HelperInvocation-HelperInvocation-04239
The HelperInvocation decoration must be used only within the Fragment Execution Model

• VUID-HelperInvocation-HelperInvocation-04240
The variable decorated with HelperInvocation must be declared using the Input Storage
Class

• VUID-HelperInvocation-HelperInvocation-04241
The variable decorated with HelperInvocation must be declared as a boolean value

HitKindKHR

A variable decorated with the HitKindKHR decoration will describe the intersection that triggered
the execution of the current shader. The values are determined by the intersection shader. For
user-defined intersection shaders this is the value that was passed to the “Hit Kind” operand of
OpReportIntersectionKHR. For triangle intersection candidates, this will be one of
HitKindFrontFacingTriangleKHR or HitKindBackFacingTriangleKHR.

Valid Usage

• VUID-HitKindKHR-HitKindKHR-04242
The HitKindKHR decoration must be used only within the AnyHitKHR or ClosestHitKHR
Execution Model

• VUID-HitKindKHR-HitKindKHR-04243
The variable decorated with HitKindKHR must be declared using the Input Storage Class

• VUID-HitKindKHR-HitKindKHR-04244
The variable decorated with HitKindKHR must be declared as a scalar 32-bit integer value

HitTNV

A variable decorated with the HitTNV decoration is equivalent to a variable decorated with the
RayTmaxKHR decoration.

Valid Usage

• VUID-HitTNV-HitTNV-04245
The HitTNV decoration must be used only within the AnyHitNV or ClosestHitNV Execution
Model

• VUID-HitTNV-HitTNV-04246
The variable decorated with HitTNV must be declared using the Input Storage Class

1414

• VUID-HitTNV-HitTNV-04247
The variable decorated with HitTNV must be declared as a scalar 32-bit floating-point
value

HitTriangleVertexPositionsKHR

A variable decorated with the HitTriangleVertexPositionsKHR decoration will specify the object
space vertices of the triangle at the current intersection in application-provided order. The
positions returned are transformed by the geometry transform, which is performed at standard
floating point precision, but without a specifically defined order of floating point operations to
perform the matrix multiplication.

Valid Usage

• VUID-HitTriangleVertexPositionsKHR-HitTriangleVertexPositionsKHR-08747
The HitTriangleVertexPositionsKHR decoration must be used only within the AnyHitKHR or
ClosestHitKHR Execution Model

• VUID-HitTriangleVertexPositionsKHR-HitTriangleVertexPositionsKHR-08748
The variable decorated with HitTriangleVertexPositionsKHR must be declared using the
Input Storage Class

• VUID-HitTriangleVertexPositionsKHR-HitTriangleVertexPositionsKHR-08749
The variable decorated with HitTriangleVertexPositionsKHR must be declared as an array
of three vectors of three 32-bit float values

• VUID-HitTriangleVertexPositionsKHR-HitTriangleVertexPositionsKHR-08750
The variable decorated with HitTriangleVertexPositionsKHR must be used only if the value
of HitKindKHR is HitKindFrontFacingTriangleKHR or HitKindBackFacingTriangleKHR

• VUID-HitTriangleVertexPositionsKHR-None-08751
The acceleration structure corresponding to the current intersection must have been
built with VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DATA_ACCESS_KHR

IncomingRayFlagsKHR

A variable with the IncomingRayFlagsKHR decoration will contain the ray flags passed in to the
trace call that invoked this particular shader. Setting pipeline flags on the ray tracing pipeline
must not cause any corresponding flags to be set in variables with this decoration.

Valid Usage

• VUID-IncomingRayFlagsKHR-IncomingRayFlagsKHR-04248
The IncomingRayFlagsKHR decoration must be used only within the IntersectionKHR,
AnyHitKHR, ClosestHitKHR, or MissKHR Execution Model

• VUID-IncomingRayFlagsKHR-IncomingRayFlagsKHR-04249
The variable decorated with IncomingRayFlagsKHR must be declared using the Input Storage
Class

• VUID-IncomingRayFlagsKHR-IncomingRayFlagsKHR-04250

1415

The variable decorated with IncomingRayFlagsKHR must be declared as a scalar 32-bit
integer value

IndexCountHUAWEI

The IndexCountHUAWEI decoration can be used to decorate a cluster culling shader output
variable,this indexed mode specific variable will contain an integer value that specifies the
number of indexed vertices in a cluster to draw.

Valid Usage

• VUID-IndexCountHUAWEI-IndexCountHUAWEI-07805
The IndexCountHUAWEI decoration must be used only within the ClusterCullingHUAWEI
Execution Model

• VUID-IndexCountHUAWEI-IndexCountHUAWEI-07806
The variable decorated with IndexCountHUAWEI must be declared as a scalar 32-bit integer
value

InstanceCountHUAWEI

The InstanceCountHUAWEI decoration can be used to decorate a cluster culling shader output
variable,this variable will contain an integer value that specifies the number of instance to draw
in a cluster.

Valid Usage

• VUID-InstanceCountHUAWEI-InstanceCountHUAWEI-07807
The InstanceCountHUAWEI decoration must be used only within the ClusterCullingHUAWEI
Execution Model

• VUID-InstanceCountHUAWEI-InstanceCountHUAWEI-07808
The variable decorated with InstanceCountHUAWEI must be declared as a scalar 32-bit
integer value

InstanceCustomIndexKHR

A variable decorated with the InstanceCustomIndexKHR decoration will contain the application-
defined value of the instance that intersects the current ray. This variable contains the value that
was specified in VkAccelerationStructureInstanceKHR::instanceCustomIndex for the current
acceleration structure instance in the lower 24 bits and the upper 8 bits will be zero.

Valid Usage

• VUID-InstanceCustomIndexKHR-InstanceCustomIndexKHR-04251
The InstanceCustomIndexKHR decoration must be used only within the IntersectionKHR,
AnyHitKHR, or ClosestHitKHR Execution Model

• VUID-InstanceCustomIndexKHR-InstanceCustomIndexKHR-04252

1416

The variable decorated with InstanceCustomIndexKHR must be declared using the Input
Storage Class

• VUID-InstanceCustomIndexKHR-InstanceCustomIndexKHR-04253
The variable decorated with InstanceCustomIndexKHR must be declared as a scalar 32-bit
integer value

InstanceId

Decorating a variable in an intersection, any-hit, or closest hit shader with the InstanceId
decoration will make that variable contain the index of the instance that intersects the current
ray.

Valid Usage

• VUID-InstanceId-InstanceId-04254
The InstanceId decoration must be used only within the IntersectionKHR, AnyHitKHR, or
ClosestHitKHR Execution Model

• VUID-InstanceId-InstanceId-04255
The variable decorated with InstanceId must be declared using the Input Storage Class

• VUID-InstanceId-InstanceId-04256
The variable decorated with InstanceId must be declared as a scalar 32-bit integer value

InvocationId

Decorating a variable with the InvocationId built-in decoration will make that variable contain
the index of the current shader invocation in a geometry shader, or the index of the output
patch vertex in a tessellation control shader.

In a geometry shader, the index of the current shader invocation ranges from zero to the
number of instances declared in the shader minus one. If the instance count of the geometry
shader is one or is not specified, then InvocationId will be zero.

Valid Usage

• VUID-InvocationId-InvocationId-04257
The InvocationId decoration must be used only within the TessellationControl or
Geometry Execution Model

• VUID-InvocationId-InvocationId-04258
The variable decorated with InvocationId must be declared using the Input Storage Class

• VUID-InvocationId-InvocationId-04259
The variable decorated with InvocationId must be declared as a scalar 32-bit integer
value

InvocationsPerPixelNV

Decorating a variable with the InvocationsPerPixelNV built-in decoration will make that variable

1417

contain the maximum number of fragment shader invocations per pixel, as derived from the
effective shading rate for the fragment. If a primitive does not fully cover a pixel, the number of
fragment shader invocations for that pixel may be less than the value of InvocationsPerPixelNV.
If the shading rate indicates a fragment covering multiple pixels, then InvocationsPerPixelNV will
be one.

Valid Usage

• VUID-InvocationsPerPixelNV-InvocationsPerPixelNV-04260
The InvocationsPerPixelNV decoration must be used only within the Fragment Execution
Model

• VUID-InvocationsPerPixelNV-InvocationsPerPixelNV-04261
The variable decorated with InvocationsPerPixelNV must be declared using the Input
Storage Class

• VUID-InvocationsPerPixelNV-InvocationsPerPixelNV-04262
The variable decorated with InvocationsPerPixelNV must be declared as a scalar 32-bit
integer value

InstanceIndex

Decorating a variable in a vertex shader with the InstanceIndex built-in decoration will make
that variable contain the index of the instance that is being processed by the current vertex
shader invocation. InstanceIndex begins at the firstInstance parameter to vkCmdDraw or
vkCmdDrawIndexed or at the firstInstance member of a structure consumed by
vkCmdDrawIndirect or vkCmdDrawIndexedIndirect.

Valid Usage

• VUID-InstanceIndex-InstanceIndex-04263
The InstanceIndex decoration must be used only within the Vertex Execution Model

• VUID-InstanceIndex-InstanceIndex-04264
The variable decorated with InstanceIndex must be declared using the Input Storage Class

• VUID-InstanceIndex-InstanceIndex-04265
The variable decorated with InstanceIndex must be declared as a scalar 32-bit integer
value

LaunchIdKHR

A variable decorated with the LaunchIdKHR decoration will specify the index of the work item
being processed. One work item is generated for each of the width × height × depth items
dispatched by a vkCmdTraceRaysKHR command. All shader invocations inherit the same value
for variables decorated with LaunchIdKHR.

Valid Usage

• VUID-LaunchIdKHR-LaunchIdKHR-04266

1418

The LaunchIdKHR decoration must be used only within the RayGenerationKHR,
IntersectionKHR, AnyHitKHR, ClosestHitKHR, MissKHR, or CallableKHR Execution Model

• VUID-LaunchIdKHR-LaunchIdKHR-04267
The variable decorated with LaunchIdKHR must be declared using the Input Storage Class

• VUID-LaunchIdKHR-LaunchIdKHR-04268
The variable decorated with LaunchIdKHR must be declared as a three-component vector of
32-bit integer values

LaunchSizeKHR

A variable decorated with the LaunchSizeKHR decoration will contain the width, height, and depth
dimensions passed to the vkCmdTraceRaysKHR command that initiated this shader execution.
The width is in the first component, the height is in the second component, and the depth is in the
third component.

Valid Usage

• VUID-LaunchSizeKHR-LaunchSizeKHR-04269
The LaunchSizeKHR decoration must be used only within the RayGenerationKHR,
IntersectionKHR, AnyHitKHR, ClosestHitKHR, MissKHR, or CallableKHR Execution Model

• VUID-LaunchSizeKHR-LaunchSizeKHR-04270
The variable decorated with LaunchSizeKHR must be declared using the Input Storage Class

• VUID-LaunchSizeKHR-LaunchSizeKHR-04271
The variable decorated with LaunchSizeKHR must be declared as a three-component vector
of 32-bit integer values

Layer

Decorating a variable with the Layer built-in decoration will make that variable contain the
select layer of a multi-layer framebuffer attachment.

In a mesh, vertex, tessellation evaluation, or geometry shader, any variable decorated with Layer
can be written with the framebuffer layer index to which the primitive produced by that shader
will be directed.

The last active pre-rasterization shader stage (in pipeline order) controls the Layer that is used.
Outputs in previous shader stages are not used, even if the last stage fails to write the Layer.

If the last active pre-rasterization shader stage shader entry point’s interface does not include a
variable decorated with Layer, then the first layer is used. If a pre-rasterization shader stage
shader entry point’s interface includes a variable decorated with Layer, it must write the same
value to Layer for all output vertices of a given primitive. If the Layer value is less than 0 or
greater than or equal to the number of layers in the framebuffer, then primitives may still be
rasterized, fragment shaders may be executed, and the framebuffer values for all layers are
undefined. In a mesh shader this also applies when the Layer value is greater than or equal to
the maxMeshOutputLayers limit.

1419

If a variable with the Layer decoration is also decorated with ViewportRelativeNV, then the
ViewportIndex is added to the layer that is used for rendering and that is made available in the
fragment shader.

If the shader writes to a variable decorated ViewportMaskNV, then the layer selected has a
different value for each viewport a primitive is rendered to.

In a fragment shader, a variable decorated with Layer contains the layer index of the primitive
that the fragment invocation belongs to.

Valid Usage

• VUID-Layer-Layer-04272
The Layer decoration must be used only within the MeshEXT, MeshNV, Vertex,
TessellationEvaluation, Geometry, or Fragment Execution Model

• VUID-Layer-Layer-04273
If the shaderOutputLayer feature is not enabled then the Layer decoration must be used
only within the Geometry or Fragment Execution Model

• VUID-Layer-Layer-04274
The variable decorated with Layer within the MeshEXT, MeshNV, Vertex,
TessellationEvaluation, or Geometry Execution Model must be declared using the Output
Storage Class

• VUID-Layer-Layer-04275
The variable decorated with Layer within the Fragment Execution Model must be declared
using the Input Storage Class

• VUID-Layer-Layer-04276
The variable decorated with Layer must be declared as a scalar 32-bit integer value

• VUID-Layer-Layer-07039
The variable decorated with Layer within the MeshEXT Execution Model must also be
decorated with the PerPrimitiveEXT decoration

LayerPerViewNV

Decorating a variable with the LayerPerViewNV built-in decoration will make that variable contain
the per-view layer information. The per-view layer has the same semantics as Layer, for each
view.

Valid Usage

• VUID-LayerPerViewNV-LayerPerViewNV-04277
The LayerPerViewNV decoration must be used only within the MeshNV Execution Model

• VUID-LayerPerViewNV-LayerPerViewNV-04278
The variable decorated with LayerPerViewNV must be declared using the Output Storage
Class

• VUID-LayerPerViewNV-LayerPerViewNV-04279

1420

The variable decorated with LayerPerViewNV must also be decorated with the PerViewNV
decoration

• VUID-LayerPerViewNV-LayerPerViewNV-04280
The variable decorated with LayerPerViewNV must be declared as an array of scalar 32-bit
integer values

LocalInvocationId

Decorating a variable with the LocalInvocationId built-in decoration will make that variable
contain the location of the current cluster culling, task, mesh, or compute shader invocation
within the local workgroup. Each component ranges from zero through to the size of the
workgroup in that dimension minus one.

Note

If the size of the workgroup in a particular dimension is one, then the
LocalInvocationId in that dimension will be zero. If the workgroup is effectively
two-dimensional, then LocalInvocationId.z will be zero. If the workgroup is
effectively one-dimensional, then both LocalInvocationId.y and
LocalInvocationId.z will be zero.

Valid Usage

• VUID-LocalInvocationId-LocalInvocationId-04281
The LocalInvocationId decoration must be used only within the GLCompute, MeshEXT,
TaskEXT, MeshNV, or TaskNV Execution Model

• VUID-LocalInvocationId-LocalInvocationId-04282
The variable decorated with LocalInvocationId must be declared using the Input Storage
Class

• VUID-LocalInvocationId-LocalInvocationId-04283
The variable decorated with LocalInvocationId must be declared as a three-component
vector of 32-bit integer values

LocalInvocationIndex

Decorating a variable with the LocalInvocationIndex built-in decoration will make that variable
contain a one-dimensional representation of LocalInvocationId. This is computed as:

LocalInvocationIndex =
 LocalInvocationId.z * WorkgroupSize.x * WorkgroupSize.y +
 LocalInvocationId.y * WorkgroupSize.x +
 LocalInvocationId.x;

Valid Usage

• VUID-LocalInvocationIndex-LocalInvocationIndex-04284

1421

The LocalInvocationIndex decoration must be used only within the GLCompute, MeshEXT,
TaskEXT, MeshNV, or TaskNV Execution Model

• VUID-LocalInvocationIndex-LocalInvocationIndex-04285
The variable decorated with LocalInvocationIndex must be declared using the Input
Storage Class

• VUID-LocalInvocationIndex-LocalInvocationIndex-04286
The variable decorated with LocalInvocationIndex must be declared as a scalar 32-bit
integer value

MeshViewCountNV

Decorating a variable with the MeshViewCountNV built-in decoration will make that variable
contain the number of views processed by the current mesh or task shader invocations.

Valid Usage

• VUID-MeshViewCountNV-MeshViewCountNV-04287
The MeshViewCountNV decoration must be used only within the MeshNV or TaskNV Execution
Model

• VUID-MeshViewCountNV-MeshViewCountNV-04288
The variable decorated with MeshViewCountNV must be declared using the Input Storage
Class

• VUID-MeshViewCountNV-MeshViewCountNV-04289
The variable decorated with MeshViewCountNV must be declared as a scalar 32-bit integer
value

MeshViewIndicesNV

Decorating a variable with the MeshViewIndicesNV built-in decoration will make that variable
contain the mesh view indices. The mesh view indices is an array of values where each element
holds the view number of one of the views being processed by the current mesh or task shader
invocations. The values of array elements with indices greater than or equal to MeshViewCountNV
are undefined. If the value of MeshViewIndicesNV[i] is j, then any outputs decorated with PerViewNV
will take on the value of array element i when processing primitives for view index j.

Valid Usage

• VUID-MeshViewIndicesNV-MeshViewIndicesNV-04290
The MeshViewIndicesNV decoration must be used only within the MeshNV or TaskNV Execution
Model

• VUID-MeshViewIndicesNV-MeshViewIndicesNV-04291
The variable decorated with MeshViewIndicesNV must be declared using the Input Storage
Class

• VUID-MeshViewIndicesNV-MeshViewIndicesNV-04292
The variable decorated with MeshViewIndicesNV must be declared as an array of scalar 32-

1422

bit integer values

NumSubgroups

Decorating a variable with the NumSubgroups built-in decoration will make that variable contain
the number of subgroups in the local workgroup.

Valid Usage

• VUID-NumSubgroups-NumSubgroups-04293
The NumSubgroups decoration must be used only within the GLCompute, MeshEXT, TaskEXT,
MeshNV, or TaskNV Execution Model

• VUID-NumSubgroups-NumSubgroups-04294
The variable decorated with NumSubgroups must be declared using the Input Storage Class

• VUID-NumSubgroups-NumSubgroups-04295
The variable decorated with NumSubgroups must be declared as a scalar 32-bit integer
value

NumWorkgroups

Decorating a variable with the NumWorkgroups built-in decoration will make that variable contain
the number of local workgroups that are part of the dispatch that the invocation belongs to.
Each component is equal to the values of the workgroup count parameters passed into the
dispatching commands.

Valid Usage

• VUID-NumWorkgroups-NumWorkgroups-04296
The NumWorkgroups decoration must be used only within the GLCompute, MeshEXT, or TaskEXT
Execution Model

• VUID-NumWorkgroups-NumWorkgroups-04297
The variable decorated with NumWorkgroups must be declared using the Input Storage Class

• VUID-NumWorkgroups-NumWorkgroups-04298
The variable decorated with NumWorkgroups must be declared as a three-component vector
of 32-bit integer values

ObjectRayDirectionKHR

A variable decorated with the ObjectRayDirectionKHR decoration will specify the direction of the
ray being processed, in object space.

Valid Usage

• VUID-ObjectRayDirectionKHR-ObjectRayDirectionKHR-04299
The ObjectRayDirectionKHR decoration must be used only within the IntersectionKHR,
AnyHitKHR, or ClosestHitKHR Execution Model

1423

• VUID-ObjectRayDirectionKHR-ObjectRayDirectionKHR-04300
The variable decorated with ObjectRayDirectionKHR must be declared using the Input
Storage Class

• VUID-ObjectRayDirectionKHR-ObjectRayDirectionKHR-04301
The variable decorated with ObjectRayDirectionKHR must be declared as a three-
component vector of 32-bit floating-point values

ObjectRayOriginKHR

A variable decorated with the ObjectRayOriginKHR decoration will specify the origin of the ray
being processed, in object space.

Valid Usage

• VUID-ObjectRayOriginKHR-ObjectRayOriginKHR-04302
The ObjectRayOriginKHR decoration must be used only within the IntersectionKHR,
AnyHitKHR, or ClosestHitKHR Execution Model

• VUID-ObjectRayOriginKHR-ObjectRayOriginKHR-04303
The variable decorated with ObjectRayOriginKHR must be declared using the Input Storage
Class

• VUID-ObjectRayOriginKHR-ObjectRayOriginKHR-04304
The variable decorated with ObjectRayOriginKHR must be declared as a three-component
vector of 32-bit floating-point values

ObjectToWorldKHR

A variable decorated with the ObjectToWorldKHR decoration will contain the current object-to-
world transformation matrix, which is determined by the instance of the current intersection.

Valid Usage

• VUID-ObjectToWorldKHR-ObjectToWorldKHR-04305
The ObjectToWorldKHR decoration must be used only within the IntersectionKHR, AnyHitKHR,
or ClosestHitKHR Execution Model

• VUID-ObjectToWorldKHR-ObjectToWorldKHR-04306
The variable decorated with ObjectToWorldKHR must be declared using the Input Storage
Class

• VUID-ObjectToWorldKHR-ObjectToWorldKHR-04307
The variable decorated with ObjectToWorldKHR must be declared as a matrix with four
columns of three-component vectors of 32-bit floating-point values

PatchVertices

Decorating a variable with the PatchVertices built-in decoration will make that variable contain
the number of vertices in the input patch being processed by the shader. In a Tessellation
Control Shader, this is the same as the name:patchControlPoints member of

1424

VkPipelineTessellationStateCreateInfo. In a Tessellation Evaluation Shader, PatchVertices is
equal to the tessellation control output patch size. When the same shader is used in different
pipelines where the patch sizes are configured differently, the value of the PatchVertices
variable will also differ.

Valid Usage

• VUID-PatchVertices-PatchVertices-04308
The PatchVertices decoration must be used only within the TessellationControl or
TessellationEvaluation Execution Model

• VUID-PatchVertices-PatchVertices-04309
The variable decorated with PatchVertices must be declared using the Input Storage Class

• VUID-PatchVertices-PatchVertices-04310
The variable decorated with PatchVertices must be declared as a scalar 32-bit integer
value

PointCoord

Decorating a variable with the PointCoord built-in decoration will make that variable contain the
coordinate of the current fragment within the point being rasterized, normalized to the size of
the point with origin in the upper left corner of the point, as described in Basic Point
Rasterization. If the primitive the fragment shader invocation belongs to is not a point, then the
variable decorated with PointCoord contains an undefined value.

Note

Depending on how the point is rasterized, PointCoord may never reach (0,0) or
(1,1).

Valid Usage

• VUID-PointCoord-PointCoord-04311
The PointCoord decoration must be used only within the Fragment Execution Model

• VUID-PointCoord-PointCoord-04312
The variable decorated with PointCoord must be declared using the Input Storage Class

• VUID-PointCoord-PointCoord-04313
The variable decorated with PointCoord must be declared as a two-component vector of
32-bit floating-point values

PointSize

Decorating a variable with the PointSize built-in decoration will make that variable contain the
size of point primitives or the final rasterization of polygons if polygon mode is
VK_POLYGON_MODE_POINT when VkPhysicalDeviceMaintenance5PropertiesKHR::polygonModePointSize is
set to VK_TRUE . The value written to the variable decorated with PointSize by the last pre-
rasterization shader stage in the pipeline is used as the framebuffer-space size of points

1425

produced by rasterization. If maintenance5 is enabled and a value is not written to a variable
decorated with PointSize, a value of 1.0 is used as the size of points.

Note

When PointSize decorates a variable in the Input Storage Class, it contains the data
written to the output variable decorated with PointSize from the previous shader
stage.

Valid Usage

• VUID-PointSize-PointSize-04314
The PointSize decoration must be used only within the MeshEXT, MeshNV, Vertex,
TessellationControl, TessellationEvaluation, or Geometry Execution Model

• VUID-PointSize-PointSize-04315
The variable decorated with PointSize within the MeshEXT, MeshNV, or Vertex Execution
Model must be declared using the Output Storage Class

• VUID-PointSize-PointSize-04316
The variable decorated with PointSize within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared using a Storage
Class other than Input or Output

• VUID-PointSize-PointSize-04317
The variable decorated with PointSize must be declared as a scalar 32-bit floating-point
value

Position

Decorating a variable with the Position built-in decoration will make that variable contain the
position of the current vertex. In the last pre-rasterization shader stage, the value of the variable
decorated with Position is used in subsequent primitive assembly, clipping, and rasterization
operations.

Note

When Position decorates a variable in the Input Storage Class, it contains the data
written to the output variable decorated with Position from the previous shader
stage.

Valid Usage

• VUID-Position-Position-04318
The Position decoration must be used only within the MeshEXT, MeshNV, Vertex,
TessellationControl, TessellationEvaluation, or Geometry Execution Model

• VUID-Position-Position-04319
The variable decorated with Position within the MeshEXT, MeshNV, or Vertex Execution Model
must be declared using the Output Storage Class

1426

• VUID-Position-Position-04320
The variable decorated with Position within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared using a Storage
Class other than Input or Output

• VUID-Position-Position-04321
The variable decorated with Position must be declared as a four-component vector of 32-
bit floating-point values

PositionPerViewNV

Decorating a variable with the PositionPerViewNV built-in decoration will make that variable
contain the position of the current vertex, for each view.

Elements of the array correspond to views in a multiview subpass, and those elements
corresponding to views in the view mask of the subpass the shader is compiled against will be
used as the position value for those views. For the final pre-rasterization shader stage in the
pipeline, values written to an output variable decorated with PositionPerViewNV are used in
subsequent primitive assembly, clipping, and rasterization operations, as with Position.
PositionPerViewNV output in an earlier pre-rasterization shader stage is available as an input in
the subsequent pre-rasterization shader stage.

If a shader is compiled against a subpass that has the
VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX bit set, then the position values for
each view must not differ in any component other than the X component. If the values do differ,
one will be chosen in an implementation-dependent manner.

Valid Usage

• VUID-PositionPerViewNV-PositionPerViewNV-04322
The PositionPerViewNV decoration must be used only within the MeshNV, Vertex,
TessellationControl, TessellationEvaluation, or Geometry Execution Model

• VUID-PositionPerViewNV-PositionPerViewNV-04323
The variable decorated with PositionPerViewNV within the Vertex, or MeshNV Execution Model
must be declared using the Output Storage Class

• VUID-PositionPerViewNV-PositionPerViewNV-04324
The variable decorated with PositionPerViewNV within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared using a Storage
Class other than Input or Output

• VUID-PositionPerViewNV-PositionPerViewNV-04325
The variable decorated with PositionPerViewNV must be declared as an array of four-
component vector of 32-bit floating-point values with at least as many elements as the
maximum view in the subpass’s view mask plus one

• VUID-PositionPerViewNV-PositionPerViewNV-04326
The array variable decorated with PositionPerViewNV must only be indexed by a constant
or specialization constant

1427

PrimitiveCountNV

Decorating a variable with the PrimitiveCountNV decoration will make that variable contain the
primitive count. The primitive count specifies the number of primitives in the output mesh
produced by the mesh shader that will be processed by subsequent pipeline stages.

Valid Usage

• VUID-PrimitiveCountNV-PrimitiveCountNV-04327
The PrimitiveCountNV decoration must be used only within the MeshNV Execution Model

• VUID-PrimitiveCountNV-PrimitiveCountNV-04328
The variable decorated with PrimitiveCountNV must be declared using the Output Storage
Class

• VUID-PrimitiveCountNV-PrimitiveCountNV-04329
The variable decorated with PrimitiveCountNV must be declared as a scalar 32-bit integer
value

PrimitiveId

Decorating a variable with the PrimitiveId built-in decoration will make that variable contain
the index of the current primitive.

The index of the first primitive generated by a drawing command is zero, and the index is
incremented after every individual point, line, or triangle primitive is processed.

For triangles drawn as points or line segments (see Polygon Mode), the primitive index is
incremented only once, even if multiple points or lines are eventually drawn.

Variables decorated with PrimitiveId are reset to zero between each instance drawn.

Restarting a primitive topology using primitive restart has no effect on the value of variables
decorated with PrimitiveId.

In tessellation control and tessellation evaluation shaders, it will contain the index of the patch
within the current set of rendering primitives that corresponds to the shader invocation.

In a geometry shader, it will contain the number of primitives presented as input to the shader
since the current set of rendering primitives was started.

In a fragment shader, it will contain the primitive index written by the mesh shader if a mesh
shader is present, or the primitive index written by the geometry shader if a geometry shader is
present, or with the value that would have been presented as input to the geometry shader had
it been present.

In an intersection, any-hit, or closest hit shader, it will contain the index within the geometry of
the triangle or bounding box being processed.

Note

When the PrimitiveId decoration is applied to an output variable in the mesh

1428

shader or geometry shader, the resulting value is seen through the PrimitiveId
decorated input variable in the fragment shader.

The fragment shader using PrimitiveId will need to declare either the
MeshShadingNV, MeshShadingEXT, Geometry or Tessellation capability to satisfy the
requirement SPIR-V has to use PrimitiveId.

Valid Usage

• VUID-PrimitiveId-PrimitiveId-04330
The PrimitiveId decoration must be used only within the MeshEXT, MeshNV, IntersectionKHR,
AnyHitKHR, ClosestHitKHR, TessellationControl, TessellationEvaluation, Geometry, or
Fragment Execution Model

• VUID-PrimitiveId-Fragment-04331
If pipeline contains both the Fragment and Geometry Execution Model and a variable
decorated with PrimitiveId is read from Fragment shader, then the Geometry shader must
write to the output variables decorated with PrimitiveId in all execution paths

• VUID-PrimitiveId-Fragment-04332
If pipeline contains both the Fragment and MeshEXT or MeshNV Execution Model and a variable
decorated with PrimitiveId is read from Fragment shader, then the MeshEXT or MeshNV
shader must write to the output variables decorated with PrimitiveId in all execution
paths

• VUID-PrimitiveId-Fragment-04333
If Fragment Execution Model contains a variable decorated with PrimitiveId, then either the
MeshShadingEXT, MeshShadingNV, Geometry or Tessellation capability must also be declared

• VUID-PrimitiveId-PrimitiveId-04334
The variable decorated with PrimitiveId within the TessellationControl,
TessellationEvaluation, Fragment, IntersectionKHR, AnyHitKHR, or ClosestHitKHR Execution
Model must be declared using the Input Storage Class

• VUID-PrimitiveId-PrimitiveId-04335
The variable decorated with PrimitiveId within the Geometry Execution Model must be
declared using the Input or Output Storage Class

• VUID-PrimitiveId-PrimitiveId-04336
The variable decorated with PrimitiveId within the MeshEXT or MeshNV Execution Model
must be declared using the Output Storage Class

• VUID-PrimitiveId-PrimitiveId-04337
The variable decorated with PrimitiveId must be declared as a scalar 32-bit integer value

• VUID-PrimitiveId-PrimitiveId-07040
The variable decorated with PrimitiveId within the MeshEXT Execution Model must also be
decorated with the PerPrimitiveEXT decoration

PrimitiveIndicesNV

Decorating a variable with the PrimitiveIndicesNV decoration will make that variable contain the

1429

output array of vertex index values. Depending on the output primitive type declared using the
execution mode, the indices are split into groups of one (OutputPoints), two (OutputLinesNV), or
three (OutputTrianglesNV) indices and each group generates a primitive.

Valid Usage

• VUID-PrimitiveIndicesNV-PrimitiveIndicesNV-04338
The PrimitiveIndicesNV decoration must be used only within the MeshNV Execution Model

• VUID-PrimitiveIndicesNV-PrimitiveIndicesNV-04339
The variable decorated with PrimitiveIndicesNV must be declared using the Output Storage
Class

• VUID-PrimitiveIndicesNV-PrimitiveIndicesNV-04340
The variable decorated with PrimitiveIndicesNV must be declared as an array of scalar 32-
bit integer values

• VUID-PrimitiveIndicesNV-PrimitiveIndicesNV-04341
All index values of the array decorated with PrimitiveIndicesNV must be in the range [0,
N-1], where N is the value specified by the OutputVertices Execution Mode

• VUID-PrimitiveIndicesNV-OutputPoints-04342
If the Execution Mode is OutputPoints, then the array decorated with PrimitiveIndicesNV
must be the size of the value specified by OutputPrimitivesNV

• VUID-PrimitiveIndicesNV-OutputLinesNV-04343
If the Execution Mode is OutputLinesNV, then the array decorated with PrimitiveIndicesNV
must be the size of two times the value specified by OutputPrimitivesNV

• VUID-PrimitiveIndicesNV-OutputTrianglesNV-04344
If the Execution Mode is OutputTrianglesNV, then the array decorated with
PrimitiveIndicesNV must be the size of three times the value specified by
OutputPrimitivesNV

PrimitivePointIndicesEXT

Decorating a variable with the PrimitivePointIndicesEXT decoration will make that variable
contain the output array of vertex index values for point primitives.

Valid Usage

• VUID-PrimitivePointIndicesEXT-PrimitivePointIndicesEXT-07041
The PrimitivePointIndicesEXT decoration must be used only within the MeshEXT Execution
Model

• VUID-PrimitivePointIndicesEXT-PrimitivePointIndicesEXT-07042
The PrimitivePointIndicesEXT decoration must be used with the OutputPoints Execution
Mode

• VUID-PrimitivePointIndicesEXT-PrimitivePointIndicesEXT-07043
The variable decorated with PrimitivePointIndicesEXT must be declared using the Output
Storage Class

1430

• VUID-PrimitivePointIndicesEXT-PrimitivePointIndicesEXT-07044
The variable decorated with PrimitivePointIndicesEXT must be declared as an array of
scalar 32-bit integer values

• VUID-PrimitivePointIndicesEXT-PrimitivePointIndicesEXT-07045
All index values of the array decorated with PrimitivePointIndicesEXT must be in the
range [0, N-1], where N is the value specified by the OutputVertices Execution Mode

• VUID-PrimitivePointIndicesEXT-PrimitivePointIndicesEXT-07046
The size of the array decorated with PrimitivePointIndicesEXT must match the value
specified by OutputPrimitivesEXT

PrimitiveLineIndicesEXT

Decorating a variable with the PrimitiveLineIndicesEXT decoration will make that variable
contain the output array of vertex index values for line primitives.

Valid Usage

• VUID-PrimitiveLineIndicesEXT-PrimitiveLineIndicesEXT-07047
The PrimitiveLineIndicesEXT decoration must be used only within the MeshEXT Execution
Model

• VUID-PrimitiveLineIndicesEXT-PrimitiveLineIndicesEXT-07048
The PrimitiveLineIndicesEXT decoration must be used with the OutputLinesEXT Execution
Mode

• VUID-PrimitiveLineIndicesEXT-PrimitiveLineIndicesEXT-07049
The variable decorated with PrimitiveLineIndicesEXT must be declared using the Output
Storage Class

• VUID-PrimitiveLineIndicesEXT-PrimitiveLineIndicesEXT-07050
The variable decorated with PrimitiveLineIndicesEXT must be declared as an array of two
component vector 32-bit integer values

• VUID-PrimitiveLineIndicesEXT-PrimitiveLineIndicesEXT-07051
All index values of the array decorated with PrimitiveLineIndicesEXT must be in the range
[0, N-1], where N is the value specified by the OutputVertices Execution Mode

• VUID-PrimitiveLineIndicesEXT-PrimitiveLineIndicesEXT-07052
The size of the array decorated with PrimitiveLineIndicesEXT must match the value
specified by OutputPrimitivesEXT

PrimitiveTriangleIndicesEXT

Decorating a variable with the PrimitiveTriangleIndicesEXT decoration will make that variable
contain the output array of vertex index values for triangle primitives.

Valid Usage

• VUID-PrimitiveTriangleIndicesEXT-PrimitiveTriangleIndicesEXT-07053
The PrimitiveTriangleIndicesEXT decoration must be used only within the MeshEXT

1431

Execution Model

• VUID-PrimitiveTriangleIndicesEXT-PrimitiveTriangleIndicesEXT-07054
The PrimitiveTriangleIndicesEXT decoration must be used with the OutputTrianglesEXT
Execution Mode

• VUID-PrimitiveTriangleIndicesEXT-PrimitiveTriangleIndicesEXT-07055
The variable decorated with PrimitiveTriangleIndicesEXT must be declared using the
Output Storage Class

• VUID-PrimitiveTriangleIndicesEXT-PrimitiveTriangleIndicesEXT-07056
The variable decorated with PrimitiveTriangleIndicesEXT must be declared as an array of
three component vector 32-bit integer values

• VUID-PrimitiveTriangleIndicesEXT-PrimitiveTriangleIndicesEXT-07057
All index values of the array decorated with PrimitiveTriangleIndicesEXT must be in the
range [0, N-1], where N is the value specified by the OutputVertices Execution Mode

• VUID-PrimitiveTriangleIndicesEXT-PrimitiveTriangleIndicesEXT-07058
The size of the array decorated with PrimitiveTriangleIndicesEXT must match the value
specified by OutputPrimitivesEXT

PrimitiveShadingRateKHR

Decorating a variable with the PrimitiveShadingRateKHR built-in decoration will make that
variable contain the primitive fragment shading rate.

The value written to the variable decorated with PrimitiveShadingRateKHR by the last pre-
rasterization shader stage in the pipeline is used as the primitive fragment shading rate. Outputs
in previous shader stages are ignored.

If the last active pre-rasterization shader stage shader entry point’s interface does not include a
variable decorated with PrimitiveShadingRateKHR, then it is as if the shader specified a fragment
shading rate value of 0, indicating a horizontal and vertical rate of 1 pixel.

If a shader has PrimitiveShadingRateKHR in the output interface and there is an execution path
through the shader that does not write to it, its value is undefined for executions of the shader
that take that path.

Valid Usage

• VUID-PrimitiveShadingRateKHR-PrimitiveShadingRateKHR-04484
The PrimitiveShadingRateKHR decoration must be used only within the MeshEXT, MeshNV,
Vertex, or Geometry Execution Model

• VUID-PrimitiveShadingRateKHR-PrimitiveShadingRateKHR-04485
The variable decorated with PrimitiveShadingRateKHR must be declared using the Output
Storage Class

• VUID-PrimitiveShadingRateKHR-PrimitiveShadingRateKHR-04486
The variable decorated with PrimitiveShadingRateKHR must be declared as a scalar 32-bit
integer value

1432

• VUID-PrimitiveShadingRateKHR-PrimitiveShadingRateKHR-04487
The value written to PrimitiveShadingRateKHR must include no more than one of
Vertical2Pixels and Vertical4Pixels

• VUID-PrimitiveShadingRateKHR-PrimitiveShadingRateKHR-04488
The value written to PrimitiveShadingRateKHR must include no more than one of
Horizontal2Pixels and Horizontal4Pixels

• VUID-PrimitiveShadingRateKHR-PrimitiveShadingRateKHR-04489
The value written to PrimitiveShadingRateKHR must not have any bits set other than those
defined by Fragment Shading Rate Flags enumerants in the SPIR-V specification

• VUID-PrimitiveShadingRateKHR-PrimitiveShadingRateKHR-07059
The variable decorated with PrimitiveShadingRateKHR within the MeshEXT Execution Model
must also be decorated with the PerPrimitiveEXT decoration

RayGeometryIndexKHR

A variable decorated with the RayGeometryIndexKHR decoration will contain the geometry index
for the acceleration structure geometry currently being shaded.

Valid Usage

• VUID-RayGeometryIndexKHR-RayGeometryIndexKHR-04345
The RayGeometryIndexKHR decoration must be used only within the IntersectionKHR,
AnyHitKHR, or ClosestHitKHR Execution Model

• VUID-RayGeometryIndexKHR-RayGeometryIndexKHR-04346
The variable decorated with RayGeometryIndexKHR must be declared using the Input Storage
Class

• VUID-RayGeometryIndexKHR-RayGeometryIndexKHR-04347
The variable decorated with RayGeometryIndexKHR must be declared as a scalar 32-bit
integer value

RayTmaxKHR

A variable decorated with the RayTmaxKHR decoration will contain the parametric tmax value of the
ray being processed. The value is independent of the space in which the ray origin and direction
exist. The value is initialized to the parameter passed into the pipeline trace ray instruction.

The tmax value changes throughout the lifetime of the ray that produced the intersection. In the
closest hit shader, the value reflects the closest distance to the intersected primitive. In the any-
hit shader, it reflects the distance to the primitive currently being intersected. In the intersection
shader, it reflects the distance to the closest primitive intersected so far or the initial value. The
value can change in the intersection shader after calling OpReportIntersectionKHR if the
corresponding any-hit shader does not ignore the intersection. In a miss shader, the value is
identical to the parameter passed into the pipeline trace ray instruction.

1433

Valid Usage

• VUID-RayTmaxKHR-RayTmaxKHR-04348
The RayTmaxKHR decoration must be used only within the IntersectionKHR, AnyHitKHR,
ClosestHitKHR, or MissKHR Execution Model

• VUID-RayTmaxKHR-RayTmaxKHR-04349
The variable decorated with RayTmaxKHR must be declared using the Input Storage Class

• VUID-RayTmaxKHR-RayTmaxKHR-04350
The variable decorated with RayTmaxKHR must be declared as a scalar 32-bit floating-point
value

RayTminKHR

A variable decorated with the RayTminKHR decoration will contain the parametric tmin value of the
ray being processed. The value is independent of the space in which the ray origin and direction
exist. The value is the parameter passed into the pipeline trace ray instruction.

The tmin value remains constant for the duration of the ray query.

Valid Usage

• VUID-RayTminKHR-RayTminKHR-04351
The RayTminKHR decoration must be used only within the IntersectionKHR, AnyHitKHR,
ClosestHitKHR, or MissKHR Execution Model

• VUID-RayTminKHR-RayTminKHR-04352
The variable decorated with RayTminKHR must be declared using the Input Storage Class

• VUID-RayTminKHR-RayTminKHR-04353
The variable decorated with RayTminKHR must be declared as a scalar 32-bit floating-point
value

SampleId

Decorating a variable with the SampleId built-in decoration will make that variable contain the
coverage index for the current fragment shader invocation. SampleId ranges from zero to the
number of samples in the framebuffer minus one. If a fragment shader entry point’s interface
includes an input variable decorated with SampleId, Sample Shading is considered enabled with
a minSampleShading value of 1.0.

Valid Usage

• VUID-SampleId-SampleId-04354
The SampleId decoration must be used only within the Fragment Execution Model

• VUID-SampleId-SampleId-04355
The variable decorated with SampleId must be declared using the Input Storage Class

• VUID-SampleId-SampleId-04356

1434

The variable decorated with SampleId must be declared as a scalar 32-bit integer value

SampleMask

Decorating a variable with the SampleMask built-in decoration will make any variable contain the
sample mask for the current fragment shader invocation.

A variable in the Input storage class decorated with SampleMask will contain a bitmask of the set
of samples covered by the primitive generating the fragment during rasterization. It has a
sample bit set if and only if the sample is considered covered for this fragment shader
invocation. SampleMask[] is an array of integers. Bits are mapped to samples in a manner where
bit B of mask M (SampleMask[M]) corresponds to sample 32 × M + B.

A variable in the Output storage class decorated with SampleMask is an array of integers forming a
bit array in a manner similar to an input variable decorated with SampleMask, but where each bit
represents coverage as computed by the shader. This computed SampleMask is combined with the
generated coverage mask in the multisample coverage operation.

Variables decorated with SampleMask must be either an unsized array, or explicitly sized to be no
larger than the implementation-dependent maximum sample-mask (as an array of 32-bit
elements), determined by the maximum number of samples.

If a fragment shader entry point’s interface includes an output variable decorated with
SampleMask, the sample mask will be undefined for any array elements of any fragment shader
invocations that fail to assign a value. If a fragment shader entry point’s interface does not
include an output variable decorated with SampleMask, the sample mask has no effect on the
processing of a fragment.

Valid Usage

• VUID-SampleMask-SampleMask-04357
The SampleMask decoration must be used only within the Fragment Execution Model

• VUID-SampleMask-SampleMask-04358
The variable decorated with SampleMask must be declared using the Input or Output
Storage Class

• VUID-SampleMask-SampleMask-04359
The variable decorated with SampleMask must be declared as an array of 32-bit integer
values

SamplePosition

Decorating a variable with the SamplePosition built-in decoration will make that variable contain
the sub-pixel position of the sample being shaded. The top left of the pixel is considered to be at
coordinate (0,0) and the bottom right of the pixel is considered to be at coordinate (1,1).

If the render pass has a fragment density map attachment, the variable will instead contain the
sub-fragment position of the sample being shaded. The top left of the fragment is considered to
be at coordinate (0,0) and the bottom right of the fragment is considered to be at coordinate (1,1)

1435

for any fragment area.

If a fragment shader entry point’s interface includes an input variable decorated with
SamplePosition, Sample Shading is considered enabled with a minSampleShading value of 1.0.

If the current pipeline uses custom sample locations the value of any variable decorated with the
SamplePosition built-in decoration is undefined.

Valid Usage

• VUID-SamplePosition-SamplePosition-04360
The SamplePosition decoration must be used only within the Fragment Execution Model

• VUID-SamplePosition-SamplePosition-04361
The variable decorated with SamplePosition must be declared using the Input Storage
Class

• VUID-SamplePosition-SamplePosition-04362
The variable decorated with SamplePosition must be declared as a two-component vector
of 32-bit floating-point values

ShadingRateKHR

Decorating a variable with the ShadingRateKHR built-in decoration will make that variable contain
the fragment shading rate for the current fragment invocation.

Valid Usage

• VUID-ShadingRateKHR-ShadingRateKHR-04490
The ShadingRateKHR decoration must be used only within the Fragment Execution Model

• VUID-ShadingRateKHR-ShadingRateKHR-04491
The variable decorated with ShadingRateKHR must be declared using the Input Storage
Class

• VUID-ShadingRateKHR-ShadingRateKHR-04492
The variable decorated with ShadingRateKHR must be declared as a scalar 32-bit integer
value

SMCountNV

Decorating a variable with the SMCountNV built-in decoration will make that variable contain the
number of SMs on the device.

Valid Usage

• VUID-SMCountNV-SMCountNV-04363
The variable decorated with SMCountNV must be declared using the Input Storage Class

• VUID-SMCountNV-SMCountNV-04364
The variable decorated with SMCountNV must be declared as a scalar 32-bit integer value

1436

SMIDNV

Decorating a variable with the SMIDNV built-in decoration will make that variable contain the ID
of the SM on which the current shader invocation is running. This variable is in the range [0,
SMCountNV-1].

Valid Usage

• VUID-SMIDNV-SMIDNV-04365
The variable decorated with SMIDNV must be declared using the Input Storage Class

• VUID-SMIDNV-SMIDNV-04366
The variable decorated with SMIDNV must be declared as a scalar 32-bit integer value

SubgroupId

Decorating a variable with the SubgroupId built-in decoration will make that variable contain the
index of the subgroup within the local workgroup. This variable is in range [0, NumSubgroups-1].

Valid Usage

• VUID-SubgroupId-SubgroupId-04367
The SubgroupId decoration must be used only within the GLCompute, MeshEXT, TaskEXT,
MeshNV, or TaskNV Execution Model

• VUID-SubgroupId-SubgroupId-04368
The variable decorated with SubgroupId must be declared using the Input Storage Class

• VUID-SubgroupId-SubgroupId-04369
The variable decorated with SubgroupId must be declared as a scalar 32-bit integer value

SubgroupEqMask

Decorating a variable with the SubgroupEqMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bit corresponding to the
SubgroupLocalInvocationId is set in the variable decorated with SubgroupEqMask. All other bits are
set to zero.

SubgroupEqMaskKHR is an alias of SubgroupEqMask.

Valid Usage

• VUID-SubgroupEqMask-SubgroupEqMask-04370
The variable decorated with SubgroupEqMask must be declared using the Input Storage
Class

• VUID-SubgroupEqMask-SubgroupEqMask-04371
The variable decorated with SubgroupEqMask must be declared as a four-component vector
of 32-bit integer values

1437

SubgroupGeMask

Decorating a variable with the SubgroupGeMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bits corresponding to the
invocations greater than or equal to SubgroupLocalInvocationId through SubgroupSize-1 are set in
the variable decorated with SubgroupGeMask. All other bits are set to zero.

SubgroupGeMaskKHR is an alias of SubgroupGeMask.

Valid Usage

• VUID-SubgroupGeMask-SubgroupGeMask-04372
The variable decorated with SubgroupGeMask must be declared using the Input Storage
Class

• VUID-SubgroupGeMask-SubgroupGeMask-04373
The variable decorated with SubgroupGeMask must be declared as a four-component vector
of 32-bit integer values

SubgroupGtMask

Decorating a variable with the SubgroupGtMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bits corresponding to the
invocations greater than SubgroupLocalInvocationId through SubgroupSize-1 are set in the
variable decorated with SubgroupGtMask. All other bits are set to zero.

SubgroupGtMaskKHR is an alias of SubgroupGtMask.

Valid Usage

• VUID-SubgroupGtMask-SubgroupGtMask-04374
The variable decorated with SubgroupGtMask must be declared using the Input Storage
Class

• VUID-SubgroupGtMask-SubgroupGtMask-04375
The variable decorated with SubgroupGtMask must be declared as a four-component vector
of 32-bit integer values

SubgroupLeMask

Decorating a variable with the SubgroupLeMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bits corresponding to the
invocations less than or equal to SubgroupLocalInvocationId are set in the variable decorated
with SubgroupLeMask. All other bits are set to zero.

SubgroupLeMaskKHR is an alias of SubgroupLeMask.

Valid Usage

• VUID-SubgroupLeMask-SubgroupLeMask-04376

1438

The variable decorated with SubgroupLeMask must be declared using the Input Storage
Class

• VUID-SubgroupLeMask-SubgroupLeMask-04377
The variable decorated with SubgroupLeMask must be declared as a four-component vector
of 32-bit integer values

SubgroupLtMask

Decorating a variable with the SubgroupLtMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bits corresponding to the
invocations less than SubgroupLocalInvocationId are set in the variable decorated with
SubgroupLtMask. All other bits are set to zero.

SubgroupLtMaskKHR is an alias of SubgroupLtMask.

Valid Usage

• VUID-SubgroupLtMask-SubgroupLtMask-04378
The variable decorated with SubgroupLtMask must be declared using the Input Storage
Class

• VUID-SubgroupLtMask-SubgroupLtMask-04379
The variable decorated with SubgroupLtMask must be declared as a four-component vector
of 32-bit integer values

SubgroupLocalInvocationId

Decorating a variable with the SubgroupLocalInvocationId builtin decoration will make that
variable contain the index of the invocation within the subgroup. This variable is in range
[0,SubgroupSize-1].

If VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT is specified, or if module declares
SPIR-V version 1.6 or higher, and the local workgroup size in the X dimension of the stage is a
multiple of SubgroupSize, full subgroups are enabled for that pipeline stage. When full subgroups
are enabled, subgroups must be launched with all invocations active, i.e., there is an active
invocation with SubgroupLocalInvocationId for each value in range [0,SubgroupSize-1].

Note

There is no direct relationship between SubgroupLocalInvocationId and
LocalInvocationId or LocalInvocationIndex. If the pipeline or shader object was
created with full subgroups applications can compute their own local invocation
index to serve the same purpose:

index = SubgroupLocalInvocationId + SubgroupId × SubgroupSize

If full subgroups are not enabled, some subgroups may be dispatched with inactive
invocations that do not correspond to a local workgroup invocation, making the
value of index unreliable.

1439

Note

VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT and
VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT are effectively deprecated when
compiling SPIR-V 1.6 shaders, as this behavior is the default for Vulkan with SPIR-V
1.6. This is more aligned with developer expectations, and avoids applications
unexpectedly breaking in the future.

Valid Usage

• VUID-SubgroupLocalInvocationId-SubgroupLocalInvocationId-04380
The variable decorated with SubgroupLocalInvocationId must be declared using the Input
Storage Class

• VUID-SubgroupLocalInvocationId-SubgroupLocalInvocationId-04381
The variable decorated with SubgroupLocalInvocationId must be declared as a scalar 32-bit
integer value

SubgroupSize

Decorating a variable with the SubgroupSize builtin decoration will make that variable contain
the implementation-dependent number of invocations in a subgroup. This value must be a
power-of-two integer.

If the pipeline was created with the
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag set, or the shader object
was created with the VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT flag set, or the SPIR-
V module is at least version 1.6, the SubgroupSize decorated variable will contain the subgroup
size for each subgroup that gets dispatched. This value must be between minSubgroupSize and
maxSubgroupSize and must be uniform with subgroup scope. The value may vary across a single
draw call, and for fragment shaders may vary across a single primitive. In compute dispatches,
SubgroupSize must be uniform with command scope.

If the pipeline was created with a chained
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure, or the shader object was
created with a chained VkShaderRequiredSubgroupSizeCreateInfoEXT structure, the
SubgroupSize decorated variable will match requiredSubgroupSize.

If SPIR-V module is less than version 1.6 and the pipeline was not created with the
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag set and no
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure was chained, and the shader
was not created with the VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT flag set and no
VkShaderRequiredSubgroupSizeCreateInfoEXT structure was chained, the variable decorated
with SubgroupSize will match subgroupSize.

The maximum number of invocations that an implementation can support per subgroup is 128.

Note

The old behavior for SubgroupSize is considered deprecated as certain compute

1440

algorithms cannot be easily implemented without the guarantees of
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT and
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT.

Valid Usage

• VUID-SubgroupSize-SubgroupSize-04382
The variable decorated with SubgroupSize must be declared using the Input Storage Class

• VUID-SubgroupSize-SubgroupSize-04383
The variable decorated with SubgroupSize must be declared as a scalar 32-bit integer
value

TaskCountNV

Decorating a variable with the TaskCountNV decoration will make that variable contain the task
count. The task count specifies the number of subsequent mesh shader workgroups that get
generated upon completion of the task shader.

Valid Usage

• VUID-TaskCountNV-TaskCountNV-04384
The TaskCountNV decoration must be used only within the TaskNV Execution Model

• VUID-TaskCountNV-TaskCountNV-04385
The variable decorated with TaskCountNV must be declared using the Output Storage Class

• VUID-TaskCountNV-TaskCountNV-04386
The variable decorated with TaskCountNV must be declared as a scalar 32-bit integer value

TessCoord

Decorating a variable with the TessCoord built-in decoration will make that variable contain the
three-dimensional (u,v,w) barycentric coordinate of the tessellated vertex within the patch. u, v,
and w are in the range [0,1] and vary linearly across the primitive being subdivided. For the
tessellation modes of Quads or IsoLines, the third component is always zero.

Valid Usage

• VUID-TessCoord-TessCoord-04387
The TessCoord decoration must be used only within the TessellationEvaluation Execution
Model

• VUID-TessCoord-TessCoord-04388
The variable decorated with TessCoord must be declared using the Input Storage Class

• VUID-TessCoord-TessCoord-04389
The variable decorated with TessCoord must be declared as a three-component vector of
32-bit floating-point values

1441

TessLevelOuter

Decorating a variable with the TessLevelOuter built-in decoration will make that variable contain
the outer tessellation levels for the current patch.

In tessellation control shaders, the variable decorated with TessLevelOuter can be written to,
controlling the tessellation factors for the resulting patch. These values are used by the
tessellator to control primitive tessellation and can be read by tessellation evaluation shaders.

In tessellation evaluation shaders, the variable decorated with TessLevelOuter can read the
values written by the tessellation control shader.

Valid Usage

• VUID-TessLevelOuter-TessLevelOuter-04390
The TessLevelOuter decoration must be used only within the TessellationControl or
TessellationEvaluation Execution Model

• VUID-TessLevelOuter-TessLevelOuter-04391
The variable decorated with TessLevelOuter within the TessellationControl Execution
Model must be declared using the Output Storage Class

• VUID-TessLevelOuter-TessLevelOuter-04392
The variable decorated with TessLevelOuter within the TessellationEvaluation Execution
Model must be declared using the Input Storage Class

• VUID-TessLevelOuter-TessLevelOuter-04393
The variable decorated with TessLevelOuter must be declared as an array of size four,
containing 32-bit floating-point values

TessLevelInner

Decorating a variable with the TessLevelInner built-in decoration will make that variable contain
the inner tessellation levels for the current patch.

In tessellation control shaders, the variable decorated with TessLevelInner can be written to,
controlling the tessellation factors for the resulting patch. These values are used by the
tessellator to control primitive tessellation and can be read by tessellation evaluation shaders.

In tessellation evaluation shaders, the variable decorated with TessLevelInner can read the
values written by the tessellation control shader.

Valid Usage

• VUID-TessLevelInner-TessLevelInner-04394
The TessLevelInner decoration must be used only within the TessellationControl or
TessellationEvaluation Execution Model

• VUID-TessLevelInner-TessLevelInner-04395
The variable decorated with TessLevelInner within the TessellationControl Execution
Model must be declared using the Output Storage Class

1442

• VUID-TessLevelInner-TessLevelInner-04396
The variable decorated with TessLevelInner within the TessellationEvaluation Execution
Model must be declared using the Input Storage Class

• VUID-TessLevelInner-TessLevelInner-04397
The variable decorated with TessLevelInner must be declared as an array of size two,
containing 32-bit floating-point values

VertexCountHUAWEI

The VertexCountHUAWEI decoration can be used to decorate a cluster culling shader output
variable,this non-indexed mode specific variable will contain an integer value that specifies the
number of vertices in a cluster to draw.

Valid Usage

• VUID-VertexCountHUAWEI-VertexCountHUAWEI-07809
The VertexCountHUAWEI decoration must be used only within the ClusterCullingHUAWEI
Execution Model

• VUID-VertexCountHUAWEI-VertexCountHUAWEI-07810
The variable decorated with VertexCountHUAWEI must be declared as a scalar 32-bit integer
value

VertexIndex

Decorating a variable with the VertexIndex built-in decoration will make that variable contain
the index of the vertex that is being processed by the current vertex shader invocation. For non-
indexed draws, this variable begins at the firstVertex parameter to vkCmdDraw or the
firstVertex member of a structure consumed by vkCmdDrawIndirect and increments by one for
each vertex in the draw. For indexed draws, its value is the content of the index buffer for the
vertex plus the vertexOffset parameter to vkCmdDrawIndexed or the vertexOffset member of
the structure consumed by vkCmdDrawIndexedIndirect.

Note

VertexIndex starts at the same starting value for each instance.

Valid Usage

• VUID-VertexIndex-VertexIndex-04398
The VertexIndex decoration must be used only within the Vertex Execution Model

• VUID-VertexIndex-VertexIndex-04399
The variable decorated with VertexIndex must be declared using the Input Storage Class

• VUID-VertexIndex-VertexIndex-04400
The variable decorated with VertexIndex must be declared as a scalar 32-bit integer value

1443

VertexOffsetHUAWEI

The VertexOffsetHUAWEI decoration can be used to decorate a cluster culling shader output
variable,this indexed mode specific variable will contain an integer value that specifies a offset
value added to the vertex index of a cluster before indexing into the vertex buffer.

Valid Usage

• VUID-VertexOffsetHUAWEI-VertexOffsetHUAWEI-07811
The VertexOffsetHUAWEI decoration must be used only within the ClusterCullingHUAWEI
Execution Model

• VUID-VertexOffsetHUAWEI-VertexOffsetHUAWEI-07812
The variable decorated with VertexOffsetHUAWEI must be declared as a scalar 32-bit
integer value

ViewIndex

The ViewIndex decoration can be applied to a shader input which will be filled with the index of
the view that is being processed by the current shader invocation.

If multiview is enabled in the render pass, this value will be one of the bits set in the view mask
of the subpass the pipeline is compiled against. If multiview is not enabled in the render pass,
this value will be zero.

Valid Usage

• VUID-ViewIndex-ViewIndex-04401
The ViewIndex decoration must be used only within the MeshEXT, Vertex, Geometry,
TessellationControl, TessellationEvaluation or Fragment Execution Model

• VUID-ViewIndex-ViewIndex-04402
The variable decorated with ViewIndex must be declared using the Input Storage Class

• VUID-ViewIndex-ViewIndex-04403
The variable decorated with ViewIndex must be declared as a scalar 32-bit integer value

ViewportIndex

Decorating a variable with the ViewportIndex built-in decoration will make that variable contain
the index of the viewport.

In a mesh, vertex, tessellation evaluation, or geometry shader, the variable decorated with
ViewportIndex can be written to with the viewport index to which the primitive produced by that
shader will be directed.

The selected viewport index is used to select the viewport transform, scissor rectangle, and
exclusive scissor rectangle.

The last active pre-rasterization shader stage (in pipeline order) controls the ViewportIndex that is
used. Outputs in previous shader stages are not used, even if the last stage fails to write the

1444

ViewportIndex.

If the last active pre-rasterization shader stage shader entry point’s interface does not include a
variable decorated with ViewportIndex , and if multiviewPerViewViewports is not enabled, then
the first viewport is used. If a pre-rasterization shader stage shader entry point’s interface
includes a variable decorated with ViewportIndex, it must write the same value to ViewportIndex
for all output vertices of a given primitive.

In a fragment shader, the variable decorated with ViewportIndex contains the viewport index of
the primitive that the fragment invocation belongs to.

If multiviewPerViewViewports is enabled, and if the last active pre-rasterization shader stage
shader entry point’s interface does not include a variable decorated with ViewportIndex, then the
value of ViewIndex is used as an index to select the viewport transform and scissor rectangle, and
the value of ViewportIndex in the fragment shader is undefined:.

Valid Usage

• VUID-ViewportIndex-ViewportIndex-04404
The ViewportIndex decoration must be used only within the MeshEXT, MeshNV, Vertex,
TessellationEvaluation, Geometry, or Fragment Execution Model

• VUID-ViewportIndex-ViewportIndex-04405
If the shaderOutputViewportIndex feature is not enabled then the ViewportIndex decoration
must be used only within the Geometry or Fragment Execution Model

• VUID-ViewportIndex-ViewportIndex-04406
The variable decorated with ViewportIndex within the MeshEXT, MeshNV, Vertex,
TessellationEvaluation, or Geometry Execution Model must be declared using the Output
Storage Class

• VUID-ViewportIndex-ViewportIndex-04407
The variable decorated with ViewportIndex within the Fragment Execution Model must be
declared using the Input Storage Class

• VUID-ViewportIndex-ViewportIndex-04408
The variable decorated with ViewportIndex must be declared as a scalar 32-bit integer
value

• VUID-ViewportIndex-ViewportIndex-07060
The variable decorated with ViewportIndex within the MeshEXT Execution Model must also
be decorated with the PerPrimitiveEXT decoration

ViewportMaskNV

Decorating a variable with the ViewportMaskNV built-in decoration will make that variable contain
the viewport mask.

In a mesh, vertex, tessellation evaluation, or geometry shader, the variable decorated with
ViewportMaskNV can be written to with the mask of which viewports the primitive produced by
that shader will directed.

1445

The ViewportMaskNV variable must be an array that has ⌈(VkPhysicalDeviceLimits::maxViewports /
32)⌉ elements. When a shader writes to this variable, bit B of element M controls whether a
primitive is emitted to viewport 32 × M + B. The viewports indicated by the mask are used to
select the viewport transform, scissor rectangle, and exclusive scissor rectangle that a primitive
will be transformed by.

The last active pre-rasterization shader stage (in pipeline order) controls the ViewportMaskNV that
is used. Outputs in previous shader stages are not used, even if the last stage fails to write the
ViewportMaskNV. When ViewportMaskNV is written by the final pre-rasterization shader stage, any
variable decorated with ViewportIndex in the fragment shader will have the index of the
viewport that was used in generating that fragment.

If a pre-rasterization shader stage shader entry point’s interface includes a variable decorated
with ViewportMaskNV, it must write the same value to ViewportMaskNV for all output vertices of a
given primitive.

Valid Usage

• VUID-ViewportMaskNV-ViewportMaskNV-04409
The ViewportMaskNV decoration must be used only within the Vertex, MeshNV,
TessellationEvaluation, or Geometry Execution Model

• VUID-ViewportMaskNV-ViewportMaskNV-04410
The variable decorated with ViewportMaskNV must be declared using the Output Storage
Class

• VUID-ViewportMaskNV-ViewportMaskNV-04411
The variable decorated with ViewportMaskNV must be declared as an array of 32-bit integer
values

ViewportMaskPerViewNV

Decorating a variable with the ViewportMaskPerViewNV built-in decoration will make that variable
contain the mask of viewports primitives are broadcast to, for each view.

The value written to an element of ViewportMaskPerViewNV in the last pre-rasterization shader
stage is a bitmask indicating which viewports the primitive will be directed to. The primitive will
be broadcast to the viewport corresponding to each non-zero bit of the bitmask, and that
viewport index is used to select the viewport transform, scissor rectangle, and exclusive scissor
rectangle, for each view. The same values must be written to all vertices in a given primitive, or
else the set of viewports used for that primitive is undefined.

Elements of the array correspond to views in a multiview subpass, and those elements
corresponding to views in the view mask of the subpass the shader is compiled against will be
used as the viewport mask value for those views. ViewportMaskPerViewNV output in an earlier pre-
rasterization shader stage is not available as an input in the subsequent pre-rasterization shader
stage.

Although ViewportMaskNV is an array, ViewportMaskPerViewNV is not a two-dimensional array.
Instead, ViewportMaskPerViewNV is limited to 32 viewports.

1446

Valid Usage

• VUID-ViewportMaskPerViewNV-ViewportMaskPerViewNV-04412
The ViewportMaskPerViewNV decoration must be used only within the Vertex, MeshNV,
TessellationControl, TessellationEvaluation, or Geometry Execution Model

• VUID-ViewportMaskPerViewNV-ViewportMaskPerViewNV-04413
The variable decorated with ViewportMaskPerViewNV must be declared using the Output
Storage Class

• VUID-ViewportMaskPerViewNV-ViewportMaskPerViewNV-04414
The variable decorated with ViewportMaskPerViewNV must be declared as an array of 32-bit
integer values

• VUID-ViewportMaskPerViewNV-ViewportMaskPerViewNV-04415
The array decorated with ViewportMaskPerViewNV must be a size less than or equal to 32

• VUID-ViewportMaskPerViewNV-ViewportMaskPerViewNV-04416
The array decorated with ViewportMaskPerViewNV must be a size greater than the
maximum view in the subpass’s view mask

• VUID-ViewportMaskPerViewNV-ViewportMaskPerViewNV-04417
The array variable decorated with ViewportMaskPerViewNV must only be indexed by a
constant or specialization constant

WarpsPerSMNV

Decorating a variable with the WarpsPerSMNV built-in decoration will make that variable contain
the maximum number of warps executing on a SM.

Valid Usage

• VUID-WarpsPerSMNV-WarpsPerSMNV-04418
The variable decorated with WarpsPerSMNV must be declared using the Input Storage Class

• VUID-WarpsPerSMNV-WarpsPerSMNV-04419
The variable decorated with WarpsPerSMNV must be declared as a scalar 32-bit integer
value

WarpIDNV

Decorating a variable with the WarpIDNV built-in decoration will make that variable contain the
ID of the warp on a SM on which the current shader invocation is running. This variable is in the
range [0, WarpsPerSMNV-1].

Valid Usage

• VUID-WarpIDNV-WarpIDNV-04420
The variable decorated with WarpIDNV must be declared using the Input Storage Class

• VUID-WarpIDNV-WarpIDNV-04421

1447

The variable decorated with WarpIDNV must be declared as a scalar 32-bit integer value

WorkgroupId

Decorating a variable with the WorkgroupId built-in decoration will make that variable contain
the global workgroup that the current invocation is a member of. Each component ranges from a
base value to a base + count value, based on the parameters passed into the dispatching
commands.

Valid Usage

• VUID-WorkgroupId-WorkgroupId-04422
The WorkgroupId decoration must be used only within the GLCompute, MeshEXT, TaskEXT,
MeshNV, or TaskNV Execution Model

• VUID-WorkgroupId-WorkgroupId-04423
The variable decorated with WorkgroupId must be declared using the Input Storage Class

• VUID-WorkgroupId-WorkgroupId-04424
The variable decorated with WorkgroupId must be declared as a three-component vector of
32-bit integer values

WorkgroupSize

Note

SPIR-V 1.6 deprecated WorkgroupSize in favor of using the LocalSizeId Execution
Mode instead. Support for LocalSizeId was added with VK_KHR_maintenance4 and
promoted to core in Version 1.3.

Decorating an object with the WorkgroupSize built-in decoration will make that object contain the
dimensions of a local workgroup. If an object is decorated with the WorkgroupSize decoration, this
takes precedence over any LocalSize or LocalSizeId execution mode.

Valid Usage

• VUID-WorkgroupSize-WorkgroupSize-04425
The WorkgroupSize decoration must be used only within the GLCompute, MeshEXT, TaskEXT,
MeshNV, or TaskNV Execution Model

• VUID-WorkgroupSize-WorkgroupSize-04426
The variable decorated with WorkgroupSize must be a specialization constant or a constant

• VUID-WorkgroupSize-WorkgroupSize-04427
The variable decorated with WorkgroupSize must be declared as a three-component vector
of 32-bit integer values

WorldRayDirectionKHR

A variable decorated with the WorldRayDirectionKHR decoration will specify the direction of the

1448

ray being processed, in world space. The value is the parameter passed into the pipeline trace
ray instruction.

Valid Usage

• VUID-WorldRayDirectionKHR-WorldRayDirectionKHR-04428
The WorldRayDirectionKHR decoration must be used only within the IntersectionKHR,
AnyHitKHR, ClosestHitKHR, or MissKHR Execution Model

• VUID-WorldRayDirectionKHR-WorldRayDirectionKHR-04429
The variable decorated with WorldRayDirectionKHR must be declared using the Input
Storage Class

• VUID-WorldRayDirectionKHR-WorldRayDirectionKHR-04430
The variable decorated with WorldRayDirectionKHR must be declared as a three-component
vector of 32-bit floating-point values

WorldRayOriginKHR

A variable decorated with the WorldRayOriginKHR decoration will specify the origin of the ray
being processed, in world space. The value is the parameter passed into the pipeline trace ray
instruction.

Valid Usage

• VUID-WorldRayOriginKHR-WorldRayOriginKHR-04431
The WorldRayOriginKHR decoration must be used only within the IntersectionKHR,
AnyHitKHR, ClosestHitKHR, or MissKHR Execution Model

• VUID-WorldRayOriginKHR-WorldRayOriginKHR-04432
The variable decorated with WorldRayOriginKHR must be declared using the Input Storage
Class

• VUID-WorldRayOriginKHR-WorldRayOriginKHR-04433
The variable decorated with WorldRayOriginKHR must be declared as a three-component
vector of 32-bit floating-point values

WorldToObjectKHR

A variable decorated with the WorldToObjectKHR decoration will contain the current world-to-
object transformation matrix, which is determined by the instance of the current intersection.

Valid Usage

• VUID-WorldToObjectKHR-WorldToObjectKHR-04434
The WorldToObjectKHR decoration must be used only within the IntersectionKHR, AnyHitKHR,
or ClosestHitKHR Execution Model

• VUID-WorldToObjectKHR-WorldToObjectKHR-04435
The variable decorated with WorldToObjectKHR must be declared using the Input Storage

1449

Class

• VUID-WorldToObjectKHR-WorldToObjectKHR-04436
The variable decorated with WorldToObjectKHR must be declared as a matrix with four
columns of three-component vectors of 32-bit floating-point values

CoreCountARM

Decorating a variable with the CoreCountARM built-in decoration will make that variable contain
the number of cores on the device.

Valid Usage

• VUID-CoreCountARM-CoreCountARM-07595
The variable decorated with CoreCountARM must be declared using the Input Storage Class

• VUID-CoreCountARM-CoreCountARM-07596
The variable decorated with CoreCountARM must be declared as a scalar 32-bit integer
value

CoreMaxIDARM

Decorating a variable with the CoreMaxIDARM built-in decoration will make that variable contain
the max ID of any shader core on the device on which the current shader invocation is running.

Valid Usage

• VUID-CoreMaxIDARM-CoreMaxIDARM-07597
The variable decorated with CoreMaxIDARM must be declared using the Input Storage Class

• VUID-CoreMaxIDARM-CoreMaxIDARM-07598
The variable decorated with CoreMaxIDARM must be declared as a scalar 32-bit integer
value

CoreIDARM

Decorating a variable with the CoreIDARM built-in decoration will make that variable contain the
ID of the core on which the current shader invocation is running. This variable is in the range [0,
CoreMaxIDARM].

Valid Usage

• VUID-CoreIDARM-CoreIDARM-07599
The variable decorated with CoreIDARM must be declared using the Input Storage Class

• VUID-CoreIDARM-CoreIDARM-07600
The variable decorated with CoreIDARM must be declared as a scalar 32-bit integer value

1450

WarpMaxIDARM

Decorating a variable with the WarpMaxIDARM built-in decoration will make that variable contain
the maximum warp ID for the core on which the current invocation is running.

Valid Usage

• VUID-WarpMaxIDARM-WarpMaxIDARM-07601
The variable decorated with WarpMaxIDARM must be declared using the Input Storage Class

• VUID-WarpMaxIDARM-WarpMaxIDARM-07602
The variable decorated with WarpMaxIDARM must be declared as a scalar 32-bit integer
value

WarpIDARM

Decorating a variable with the WarpIDARM built-in decoration will make that variable contain the
ID of the warp on a core on which the current shader invocation is running. This variable is in
the range [0, WarpMaxIDARM].

Valid Usage

• VUID-WarpIDARM-WarpIDARM-07603
The variable decorated with WarpIDARM must be declared using the Input Storage Class

• VUID-WarpIDARM-WarpIDARM-07604
The variable decorated with WarpIDARM must be declared as a scalar 32-bit integer value

CoalescedInputCountAMDX

Decorating a variable with the CoalescedInputCountAMDX built-in decoration will make that
variable contain the number of node dispatches that the implementation coalesced into the
input for the current shader. This variable will take a value in the range [1, arraySize), where
arraySize is the maximum size of the input payload array for the shader.

Valid Usage

• VUID-CoalescedInputCountAMDX-CoalescedInputCountAMDX-09172
The variable decorated with CoalescedInputCountAMDX must be declared using the Input
Storage Class

• VUID-CoalescedInputCountAMDX-CoalescedInputCountAMDX-09173
If a variable is decorated with CoalescedInputCountAMDX, the CoalescingAMDX execution
mode must be declared

• VUID-CoalescedInputCountAMDX-CoalescedInputCountAMDX-09174
The variable decorated with CoalescedInputCountAMDX must be declared as a scalar 32-bit
integer value

1451

ShaderIndexAMDX

Decorating a variable with the ShaderIndexAMDX built-in decoration will make that variable
contain the index of the shader specified when it was compiled, either via
VkPipelineShaderStageNodeCreateInfoAMDX::index or by the ShaderIndexAMDX execution mode.

Valid Usage

• VUID-ShaderIndexAMDX-ShaderIndexAMDX-09175
The variable decorated with ShaderIndexAMDX must be declared using the Input Storage
Class

• VUID-ShaderIndexAMDX-ShaderIndexAMDX-09176
The variable decorated with ShaderIndexAMDX must be declared as a scalar 32-bit integer
value

1452

Chapter 16. Image Operations

16.1. Image Operations Overview
Vulkan Image Operations are operations performed by those SPIR-V Image Instructions which take
an OpTypeImage (representing a VkImageView) or OpTypeSampledImage (representing a (VkImageView,
VkSampler) pair). Read, write, and atomic operations also take texel coordinates as operands, and
return a value based on a neighborhood of texture elements (texels) within the image. Query
operations return properties of the bound image or of the lookup itself. The “Depth” operand of
OpTypeImage is ignored.

Note

Texel is a term which is a combination of the words texture and element. Early
interactive computer graphics supported texture operations on textures, a small
subset of the image operations on images described here. The discrete samples
remain essentially equivalent, however, so we retain the historical term texel to
refer to them.

Image Operations include the functionality of the following SPIR-V Image Instructions:

• OpImageSample* and OpImageSparseSample* read one or more neighboring texels of the image, and
filter the texel values based on the state of the sampler.

◦ Instructions with ImplicitLod in the name determine the LOD used in the sampling
operation based on the coordinates used in neighboring fragments.

◦ Instructions with ExplicitLod in the name determine the LOD used in the sampling
operation based on additional coordinates.

◦ Instructions with Proj in the name apply homogeneous projection to the coordinates.

• OpImageFetch and OpImageSparseFetch return a single texel of the image. No sampler is used.

• OpImage*Gather and OpImageSparse*Gather read neighboring texels and return a single
component of each.

• OpImageRead (and OpImageSparseRead) and OpImageWrite read and write, respectively, a texel in the
image. No sampler is used.

• OpImageSampleFootprintNV identifies and returns information about the set of texels in the image
that would be accessed by an equivalent OpImageSample* instruction.

• OpImage*Dref* instructions apply depth comparison on the texel values.

• OpImageSparse* instructions additionally return a sparse residency code.

• OpImageQuerySize, OpImageQuerySizeLod, OpImageQueryLevels, and OpImageQuerySamples return
properties of the image descriptor that would be accessed. The image itself is not accessed.

• OpImageQueryLod returns the LOD parameters that would be used in a sample operation. The
actual operation is not performed.

• OpImageWeightedSampleQCOM reads a 2D neighborhood of texels and computes a weighted average
using weight values from a separate weight texture.

1453

• opImageBlockMatchSADQCOM and opTextureBlockMatchSSD compare 2D neighborhoods of texels from
two textures.

• OpImageBoxFilterQCOM reads a 2D neighborhood of texels and computes a weighted average of
the texels.

• opImageBlockMatchWindowSADQCOM and opImageBlockMatchWindowSSDQCOM compare 2D neighborhoods
of texels from two textures with the comparison repeated across a window region in the target
texture.

• opImageBlockMatchGatherSADQCOM and opImageBlockMatchWindowSSDQCOM compares four 2D
neighborhoods of texels from a target texture with a single 2D neighborhood in the reference
texture. The R component of each comparison is gathered and returned in the output.

16.1.1. Texel Coordinate Systems

Images are addressed by texel coordinates. There are three texel coordinate systems:

• normalized texel coordinates [0.0, 1.0]

• unnormalized texel coordinates [0.0, width / height / depth)

• integer texel coordinates [0, width / height / depth)

SPIR-V OpImageFetch, OpImageSparseFetch, OpImageRead, OpImageSparseRead, opImageBlockMatchSADQCOM,
opImageBlockMatchSSDQCOM, opImageBlockMatchWindowSADQCOM, opImageBlockMatchWindowSSDQCOM, and
OpImageWrite instructions use integer texel coordinates.

Other image instructions can use either normalized or unnormalized texel coordinates (selected by
the unnormalizedCoordinates state of the sampler used in the instruction), but there are limitations
on what operations, image state, and sampler state is supported. Normalized coordinates are
logically converted to unnormalized as part of image operations, and certain steps are only
performed on normalized coordinates. The array layer coordinate is always treated as
unnormalized even when other coordinates are normalized.

Normalized texel coordinates are referred to as (s,t,r,q,a), with the coordinates having the following
meanings:

• s: Coordinate in the first dimension of an image.

• t: Coordinate in the second dimension of an image.

• r: Coordinate in the third dimension of an image.

◦ (s,t,r) are interpreted as a direction vector for Cube images.

• q: Fourth coordinate, for homogeneous (projective) coordinates.

• a: Coordinate for array layer.

The coordinates are extracted from the SPIR-V operand based on the dimensionality of the image
variable and type of instruction. For Proj instructions, the components are in order (s, [t,] [r,] q),
with t and r being conditionally present based on the Dim of the image. For non-Proj instructions,
the coordinates are (s [,t] [,r] [,a]), with t and r being conditionally present based on the Dim of the
image and a being conditionally present based on the Arrayed property of the image. Projective

1454

image instructions are not supported on Arrayed images.

Unnormalized texel coordinates are referred to as (u,v,w,a), with the coordinates having the
following meanings:

• u: Coordinate in the first dimension of an image.

• v: Coordinate in the second dimension of an image.

• w: Coordinate in the third dimension of an image.

• a: Coordinate for array layer.

Only the u and v coordinates are directly extracted from the SPIR-V operand, because only 1D and
2D (non-Arrayed) dimensionalities support unnormalized coordinates. The components are in order
(u [,v]), with v being conditionally present when the dimensionality is 2D. When normalized
coordinates are converted to unnormalized coordinates, all four coordinates are used.

Integer texel coordinates are referred to as (i,j,k,l,n), with the coordinates having the following
meanings:

• i: Coordinate in the first dimension of an image.

• j: Coordinate in the second dimension of an image.

• k: Coordinate in the third dimension of an image.

• l: Coordinate for array layer.

• n: Index of the sample within the texel.

They are extracted from the SPIR-V operand in order (i [,j] [,k] [,l] [,n]), with j and k conditionally
present based on the Dim of the image, and l conditionally present based on the Arrayed property of
the image. n is conditionally present and is taken from the Sample image operand.

If an accessed image was created from a view using VkImageViewSlicedCreateInfoEXT and
accessed through a VK_DESCRIPTOR_TYPE_STORAGE_IMAGE descriptor, then the value of k is incremented
by VkImageViewSlicedCreateInfoEXT::sliceOffset, giving k ← sliceOffset + k. The image’s accessible
range in the third dimension is k < sliceOffset + sliceCount. If VkImageViewSlicedCreateInfoEXT
::sliceCount is VK_REMAINING_3D_SLICES_EXT, the range is inherited from the image’s depth extent as
specified by Image Mip Level Sizing.

For all coordinate types, unused coordinates are assigned a value of zero.

1455

0 1 2 3 4 5 6 7i

0.0 8.0u

0.0 1.0s

3

2

1

0

j

4.0

0.0

v

1.0

0.0

t

 i0j1 i1j1

 i0j0 i1j0

(u-0.5,v-0.5)

(u,v)

 i0j1' i1j1'

 i0j0' i1j0'

Figure 3. Texel Coordinate Systems, Linear Filtering

The Texel Coordinate Systems - For the example shown of an 8×4 texel two dimensional image.

• Normalized texel coordinates:

◦ The s coordinate goes from 0.0 to 1.0.

◦ The t coordinate goes from 0.0 to 1.0.

• Unnormalized texel coordinates:

◦ The u coordinate within the range 0.0 to 8.0 is within the image, otherwise it is outside the
image.

◦ The v coordinate within the range 0.0 to 4.0 is within the image, otherwise it is outside the
image.

• Integer texel coordinates:

◦ The i coordinate within the range 0 to 7 addresses texels within the image, otherwise it is
outside the image.

◦ The j coordinate within the range 0 to 3 addresses texels within the image, otherwise it is
outside the image.

• Also shown for linear filtering:

◦ Given the unnormalized coordinates (u,v), the four texels selected are i0j0, i1j0, i0j1, and i1j1.

◦ The fractions α and β.

◦ Given the offset Δi and Δj, the four texels selected by the offset are i0j'0, i1j'0, i0j'1, and i1j'1.

Note

For formats with reduced-resolution components, Δi and Δj are relative to the
resolution of the highest-resolution component, and therefore may be divided by
two relative to the unnormalized coordinate space of the lower-resolution

1456

components.

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

 ij

 ij'

(u,v)

Figure 4. Texel Coordinate Systems, Nearest Filtering

The Texel Coordinate Systems - For the example shown of an 8×4 texel two dimensional image.

• Texel coordinates as above. Also shown for nearest filtering:

◦ Given the unnormalized coordinates (u,v), the texel selected is ij.

◦ Given the offset Δi and Δj, the texel selected by the offset is ij'.

For corner-sampled images, the texel samples are located at the grid intersections instead of the
texel centers.

1457

0 1 2 3 4 5 6 7i

0.0 7.0u

0.0 1.0s

3

2

1

0

j

 i0j1 i1j1

 i0j0 i1j0

(u,v)

 i0j1' i1j1'

 i0j0' i1j0'

3.0

0.0

v

1.0

0.0

t

Figure 5. Texel Coordinate Systems, Corner Sampling

16.2. Conversion Formulas

16.2.1. RGB to Shared Exponent Conversion

An RGB color (red, green, blue) is transformed to a shared exponent color (redshared, greenshared,
blueshared, expshared) as follows:

First, the components (red, green, blue) are clamped to (redclamped, greenclamped, blueclamped) as:

redclamped = max(0, min(sharedexpmax, red))

greenclamped = max(0, min(sharedexpmax, green))

blueclamped = max(0, min(sharedexpmax, blue))

where:

Note

NaN, if supported, is handled as in

1458

IEEE 754-2008 minNum() and maxNum(). This results in any NaN being mapped to
zero.

The largest clamped component, maxclamped is determined:

maxclamped = max(redclamped, greenclamped, blueclamped)

A preliminary shared exponent exp' is computed:

The shared exponent expshared is computed:

Finally, three integer values in the range 0 to 2N are computed:

16.2.2. Shared Exponent to RGB

A shared exponent color (redshared, greenshared, blueshared, expshared) is transformed to an RGB color (red,
green, blue) as follows:

where:

1459

N = 9 (number of mantissa bits per component)

B = 15 (exponent bias)

16.3. Texel Input Operations
Texel input instructions are SPIR-V image instructions that read from an image. Texel input
operations are a set of steps that are performed on state, coordinates, and texel values while
processing a texel input instruction, and which are common to some or all texel input instructions.
They include the following steps, which are performed in the listed order:

• Validation operations

◦ Instruction/Sampler/Image validation

◦ Coordinate validation

◦ Sparse validation

◦ Layout validation

• Format conversion

• Texel replacement

• Depth comparison

• Conversion to RGBA

• Component swizzle

• Chroma reconstruction

• Y′CBCR conversion

For texel input instructions involving multiple texels (for sampling or gathering), these steps are
applied for each texel that is used in the instruction. Depending on the type of image instruction,
other steps are conditionally performed between these steps or involving multiple coordinate or
texel values.

If Chroma Reconstruction is implicit, Texel Filtering instead takes place during chroma
reconstruction, before sampler Y′CBCR conversion occurs.

The operations described in block matching and weight image sampling are performed before
Conversion to RGBA and Component swizzle.

16.3.1. Texel Input Validation Operations

Texel input validation operations inspect instruction/image/sampler state or coordinates, and in
certain circumstances cause the texel value to be replaced or become undefined. There are a series
of validations that the texel undergoes.

1460

Instruction/Sampler/Image View Validation

There are a number of cases where a SPIR-V instruction can mismatch with the sampler, the image
view, or both, and a number of further cases where the sampler can mismatch with the image view.
In such cases the value of the texel returned is undefined.

These cases include:

• The sampler borderColor is an integer type and the image view format is not one of the
VkFormat integer types or a stencil component of a depth/stencil format.

• The sampler borderColor is a float type and the image view format is not one of the VkFormat
float types or a depth component of a depth/stencil format.

• The sampler borderColor is one of the opaque black colors (VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK
or VK_BORDER_COLOR_INT_OPAQUE_BLACK) and the image view VkComponentSwizzle for any of the
VkComponentMapping components is not the identity swizzle, and
VkPhysicalDeviceBorderColorSwizzleFeaturesEXT::borderColorSwizzleFromImage feature is not
enabled, and VkSamplerBorderColorComponentMappingCreateInfoEXT is not specified.

• VkSamplerBorderColorComponentMappingCreateInfoEXT::components, if specified, has a
component swizzle that does not match the component swizzle of the image view, and either
component swizzle is not a form of identity swizzle.

• VkSamplerBorderColorComponentMappingCreateInfoEXT::srgb, if specified, does not match the
sRGB encoding of the image view.

• The sampler borderColor is a custom color (VK_BORDER_COLOR_FLOAT_CUSTOM_EXT or
VK_BORDER_COLOR_INT_CUSTOM_EXT) and the supplied
VkSamplerCustomBorderColorCreateInfoEXT::customBorderColor is outside the bounds of the
values representable in the image view’s format.

• The sampler borderColor is a custom color (VK_BORDER_COLOR_FLOAT_CUSTOM_EXT or
VK_BORDER_COLOR_INT_CUSTOM_EXT) and the image view VkComponentSwizzle for any of the
VkComponentMapping components is not the identity swizzle, and
VkPhysicalDeviceBorderColorSwizzleFeaturesEXT::borderColorSwizzleFromImage feature is not
enabled, and VkSamplerBorderColorComponentMappingCreateInfoEXT is not specified.

• The VkImageLayout of any subresource in the image view does not match the
VkDescriptorImageInfo::imageLayout used to write the image descriptor.

• The SPIR-V Image Format is not compatible with the image view’s format.

• The sampler unnormalizedCoordinates is VK_TRUE and any of the limitations of unnormalized
coordinates are violated.

• The sampler was created with flags containing VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT and the
image was not created with flags containing VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT.

• The sampler was not created with flags containing VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT and
the image was created with flags containing VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT.

• The sampler was created with flags containing VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT and is
used with a function that is not OpImageSampleImplicitLod or OpImageSampleExplicitLod, or is used
with operands Offset or ConstOffsets.

• The SPIR-V instruction is one of the OpImage*Dref* instructions and the sampler compareEnable is

1461

VK_FALSE

• The SPIR-V instruction is not one of the OpImage*Dref* instructions and the sampler
compareEnable is VK_TRUE

• The SPIR-V instruction is one of the OpImage*Dref* instructions, the image view format is one of
the depth/stencil formats, and the image view aspect is not VK_IMAGE_ASPECT_DEPTH_BIT.

• The SPIR-V instruction’s image variable’s properties are not compatible with the image view:

◦ Rules for viewType:

▪ VK_IMAGE_VIEW_TYPE_1D must have Dim = 1D, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_2D must have Dim = 2D, Arrayed = 0.

▪ VK_IMAGE_VIEW_TYPE_3D must have Dim = 3D, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_CUBE must have Dim = Cube, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_1D_ARRAY must have Dim = 1D, Arrayed = 1, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_2D_ARRAY must have Dim = 2D, Arrayed = 1.

▪ VK_IMAGE_VIEW_TYPE_CUBE_ARRAY must have Dim = Cube, Arrayed = 1, MS = 0.

◦ If the image was created with VkImageCreateInfo::samples equal to VK_SAMPLE_COUNT_1_BIT,
the instruction must have MS = 0.

◦ If the image was created with VkImageCreateInfo::samples not equal to
VK_SAMPLE_COUNT_1_BIT, the instruction must have MS = 1.

◦ If the Sampled Type of the OpTypeImage does not match the SPIR-V Type.

◦ If the signedness of any read or sample operation does not match the signedness of the
image’s format.

• If the image was created with VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV, the sampler addressing modes must only use a
VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

• The SPIR-V instruction is OpImageSampleFootprintNV with Dim = 2D and addressModeU or
addressModeV in the sampler is not VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

• The SPIR-V instruction is OpImageSampleFootprintNV with Dim = 3D and addressModeU, addressModeV,
or addressModeW in the sampler is not VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

• The sampler was created with a specified VkSamplerCustomBorderColorCreateInfoEXT::format
which does not match the VkFormat of the image view(s) it is sampling.

• The sampler is sampling an image view of VK_FORMAT_B4G4R4A4_UNORM_PACK16,
VK_FORMAT_B5G6R5_UNORM_PACK16, or VK_FORMAT_B5G5R5A1_UNORM_PACK16 format without a specified
VkSamplerCustomBorderColorCreateInfoEXT::format.

Only OpImageSample* and OpImageSparseSample* can be used with a sampler or image view that
enables sampler Y′CBCR conversion.

OpImageFetch, OpImageSparseFetch, OpImage*Gather, and OpImageSparse*Gather must not be used with a
sampler or image view that enables sampler Y′CBCR conversion.

The ConstOffset and Offset operands must not be used with a sampler or image view that enables

1462

sampler Y′CBCR conversion.

If the underlying VkImage format has an X component in its format description, undefined values
are read from those bits.

Note

If the VkImage format and VkImageView format are the same, these bits will be
unused by format conversion and this will have no effect. However, if the
VkImageView format is different, then some bits of the result may be undefined. For
example, when a VK_FORMAT_R10X6_UNORM_PACK16 VkImage is sampled via a
VK_FORMAT_R16_UNORM VkImageView, the low 6 bits of the value before format
conversion are undefined and format conversion may return a range of different
values.

Integer Texel Coordinate Validation

Integer texel coordinates are validated against the size of the image level, and the number of layers
and number of samples in the image. For SPIR-V instructions that use integer texel coordinates, this
is performed directly on the integer coordinates. For instructions that use normalized or
unnormalized texel coordinates, this is performed on the coordinates that result after conversion to
integer texel coordinates.

If the integer texel coordinates do not satisfy all of the conditions

0 ≤ i < ws

0 ≤ j < hs

0 ≤ k < ds

0 ≤ l < layers

0 ≤ n < samples

where:

ws = width of the image level

hs = height of the image level

ds = depth of the image level

1463

layers = number of layers in the image

samples = number of samples per texel in the image

then the texel fails integer texel coordinate validation.

There are four cases to consider:

1. Valid Texel Coordinates

◦ If the texel coordinates pass validation (that is, the coordinates lie within the image),

then the texel value comes from the value in image memory.

2. Border Texel

◦ If the texel coordinates fail validation, and

◦ If the read is the result of an image sample instruction or image gather instruction, and

◦ If the image is not a cube image, or if a sampler created with
VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT is used,

then the texel is a border texel and texel replacement is performed.

3. Invalid Texel

◦ If the texel coordinates fail validation, and

◦ If the read is the result of an image fetch instruction, image read instruction, or atomic
instruction,

then the texel is an invalid texel and texel replacement is performed.

4. Cube Map Edge or Corner

Otherwise the texel coordinates lie beyond the edges or corners of the selected cube map face,
and Cube map edge handling is performed.

Cube Map Edge Handling

If the texel coordinates lie beyond the edges or corners of the selected cube map face (as described
in the prior section), the following steps are performed. Note that this does not occur when using
VK_FILTER_NEAREST filtering within a mip level, since VK_FILTER_NEAREST is treated as using
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

• Cube Map Edge Texel

◦ If the texel lies beyond the selected cube map face in either only i or only j, then the
coordinates (i,j) and the array layer l are transformed to select the adjacent texel from the
appropriate neighboring face.

• Cube Map Corner Texel

1464

◦ If the texel lies beyond the selected cube map face in both i and j, then there is no unique
neighboring face from which to read that texel. The texel should be replaced by the average
of the three values of the adjacent texels in each incident face. However, implementations
may replace the cube map corner texel by other methods. The methods are subject to the
constraint that for linear filtering if the three available texels have the same value, the
resulting filtered texel must have that value, and for cubic filtering if the twelve available
samples have the same value, the resulting filtered texel must have that value.

Sparse Validation

If the texel reads from an unbound region of a sparse image, the texel is a sparse unbound texel, and
processing continues with texel replacement.

Layout Validation

If all planes of a disjoint multi-planar image are not in the same image layout, the image must not
be sampled with sampler Y′CBCR conversion enabled.

16.3.2. Format Conversion

Texels undergo a format conversion from the VkFormat of the image view to a vector of either
floating point or signed or unsigned integer components, with the number of components based on
the number of components present in the format.

• Color formats have one, two, three, or four components, according to the format.

• Depth/stencil formats are one component. The depth or stencil component is selected by the
aspectMask of the image view.

Each component is converted based on its type and size (as defined in the Format Definition section
for each VkFormat), using the appropriate equations in 16-Bit Floating-Point Numbers, Unsigned
11-Bit Floating-Point Numbers, Unsigned 10-Bit Floating-Point Numbers, Fixed-Point Data
Conversion, and Shared Exponent to RGB. Signed integer components smaller than 32 bits are sign-
extended.

If the image view format is sRGB, the color components are first converted as if they are UNORM,
and then sRGB to linear conversion is applied to the R, G, and B components as described in the
“sRGB EOTF” section of the Khronos Data Format Specification. The A component, if present, is
unchanged.

If VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM::enableYDegamma is equal to VK_TRUE,
then sRGB to linear conversion is applied to the G component as described in the “sRGB EOTF”
section of the Khronos Data Format Specification. If
VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM::enableCbCrDegamma is equal to VK_TRUE,
then sRGB to linear conversion is applied to the R and B components as described in the “sRGB
EOTF” section of the Khronos Data Format Specification. The A component, if present, is
unchanged.

If the image view format is block-compressed, then the texel value is first decoded, then converted
based on the type and number of components defined by the compressed format.

1465

16.3.3. Texel Replacement

A texel is replaced if it is one (and only one) of:

• a border texel,

• an invalid texel, or

• a sparse unbound texel.

Border texels are replaced with a value based on the image format and the borderColor of the
sampler. The border color is:

Table 24. Border Color B, Custom Border Color VkSamplerCustomBorderColorCreateInfoEXT
::customBorderColor U

Sampler borderColor Corresponding Border Color

VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK [Br, Bg, Bb, Ba] = [0.0, 0.0, 0.0, 0.0]

VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK [Br, Bg, Bb, Ba] = [0.0, 0.0, 0.0, 1.0]

VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE [Br, Bg, Bb, Ba] = [1.0, 1.0, 1.0, 1.0]

VK_BORDER_COLOR_INT_TRANSPARENT_BLACK [Br, Bg, Bb, Ba] = [0, 0, 0, 0]

VK_BORDER_COLOR_INT_OPAQUE_BLACK [Br, Bg, Bb, Ba] = [0, 0, 0, 1]

VK_BORDER_COLOR_INT_OPAQUE_WHITE [Br, Bg, Bb, Ba] = [1, 1, 1, 1]

VK_BORDER_COLOR_FLOAT_CUSTOM_EXT [Br, Bg, Bb, Ba] = [Ur, Ug, Ub, Ua]

VK_BORDER_COLOR_INT_CUSTOM_EXT [Br, Bg, Bb, Ba] = [Ur, Ug, Ub, Ua]

The custom border color (U) may be rounded by implementations prior to texel replacement, but
the error introduced by such a rounding must not exceed one ULP of the image’s format.

Note

The names VK_BORDER_COLOR_*_TRANSPARENT_BLACK, VK_BORDER_COLOR_*_OPAQUE_BLACK,
and VK_BORDER_COLOR_*_OPAQUE_WHITE are meant to describe which components are
zeros and ones in the vocabulary of compositing, and are not meant to imply that
the numerical value of VK_BORDER_COLOR_INT_OPAQUE_WHITE is a saturating value for
integers.

This is substituted for the texel value by replacing the number of components in the image format

Table 25. Border Texel Components After Replacement

Texel Aspect or Format Component Assignment

Depth aspect D = Br

Stencil aspect S = Br†

One component color format Colorr = Br

Two component color format [Colorr,Colorg] = [Br,Bg]

Three component color format [Colorr,Colorg,Colorb] = [Br,Bg,Bb]

1466

Texel Aspect or Format Component Assignment

Four component color format [Colorr,Colorg,Colorb,Colora] = [Br,Bg,Bb,Ba]

Single component alpha format [Colorr,Colorg,Colorb, Colora] = [0,0,0,Ba]

† S = Bg may be substituted as the replacement method by the implementation when
VkSamplerCreateInfo::borderColor is VK_BORDER_COLOR_INT_CUSTOM_EXT and
VkSamplerCustomBorderColorCreateInfoEXT::format is VK_FORMAT_UNDEFINED. Implementations
should use S = Br as the replacement method.

The value returned by a read of an invalid texel is undefined, unless that read operation is from a
buffer resource and the robustBufferAccess feature is enabled. In that case, an invalid texel is
replaced as described by the robustBufferAccess feature. If the access is to an image resource and
the x, y, z, or layer coordinate validation fails and the robustImageAccess feature is enabled, then
zero must be returned for the R, G, and B components, if present. Either zero or one must be
returned for the A component, if present. If If the robustImageAccess2 feature is enabled, zero values
must be returned. If only the sample index was invalid, the values returned are undefined.

Additionally, if the robustImageAccess feature is enabled, but the robustImageAccess2 feature is not,
any invalid texels may be expanded to four components prior to texel replacement. This means
that components not present in the image format may be replaced with 0 or may undergo
conversion to RGBA as normal.

Loads from a null descriptor return a four component color value of all zeros. However, for storage
images and storage texel buffers using an explicit SPIR-V Image Format, loads from a null
descriptor may return an alpha value of 1 (float or integer, depending on format) if the format does
not include alpha.

If the VkPhysicalDeviceSparseProperties::residencyNonResidentStrict property is VK_TRUE, a sparse
unbound texel is replaced with 0 or 0.0 values for integer and floating-point components of the
image format, respectively.

If residencyNonResidentStrict is VK_FALSE, the value of the sparse unbound texel is undefined.

16.3.4. Depth Compare Operation

If the image view has a depth/stencil format, the depth component is selected by the aspectMask, and
the operation is an OpImage*Dref* instruction, a depth comparison is performed. The result is 1.0 if
the comparison evaluates to true, and 0.0 otherwise. This value replaces the depth component D.

The compare operation is selected by the VkCompareOp value set by VkSamplerCreateInfo
::compareOp. The reference value from the SPIR-V operand Dref and the texel depth value Dtex are used
as the reference and test values, respectively, in that operation.

If the image being sampled has an unsigned normalized fixed-point format, then Dref is clamped to
[0,1] before the compare operation.

1467

16.3.5. Conversion to RGBA

The texel is expanded from one, two, or three components to four components based on the image
base color:

Table 26. Texel Color After Conversion To RGBA

Texel Aspect or Format RGBA Color

Depth aspect [Colorr,Colorg,Colorb, Colora] = [D,0,0,one]

Stencil aspect [Colorr,Colorg,Colorb, Colora] = [S,0,0,one]

One component color format [Colorr,Colorg,Colorb, Colora] = [Colorr,0,0,one]

Two component color format [Colorr,Colorg,Colorb, Colora] = [Colorr,Colorg,0,one]

Three component color format [Colorr,Colorg,Colorb, Colora] = [Colorr,Colorg,Colorb,one]

Four component color format [Colorr,Colorg,Colorb, Colora] = [Colorr,Colorg,Colorb,Colora]

One alpha component color format [Colorr,Colorg,Colorb, Colora] = [0,0,0,Colora]

where one = 1.0f for floating-point formats and depth aspects, and one = 1 for integer formats and
stencil aspects.

16.3.6. Component Swizzle

All texel input instructions apply a swizzle based on:

• the VkComponentSwizzle enums in the components member of the VkImageViewCreateInfo
structure for the image being read if sampler Y′CBCR conversion is not enabled, and

• the VkComponentSwizzle enums in the components member of the
VkSamplerYcbcrConversionCreateInfo structure for the sampler Y′CBCR conversion if sampler
Y′CBCR conversion is enabled.

The swizzle can rearrange the components of the texel, or substitute zero or one for any
components. It is defined as follows for each color component:

where:

1468

If the border color is one of the VK_BORDER_COLOR_*_OPAQUE_BLACK enums and the
VkComponentSwizzle is not the identity swizzle for all components, the value of the texel after
swizzle is undefined.

If the image view has a depth/stencil format and the VkComponentSwizzle is
VK_COMPONENT_SWIZZLE_ONE, and VkPhysicalDeviceMaintenance5PropertiesKHR
::depthStencilSwizzleOneSupport is not set to VK_TRUE, the value of the texel after swizzle is
undefined.

16.3.7. Sparse Residency

OpImageSparse* instructions return a structure which includes a residency code indicating whether
any texels accessed by the instruction are sparse unbound texels. This code can be interpreted by
the OpImageSparseTexelsResident instruction which converts the residency code to a boolean value.

16.3.8. Chroma Reconstruction

In some color models, the color representation is defined in terms of monochromatic light intensity
(often called “luma”) and color differences relative to this intensity, often called “chroma”. It is
common for color models other than RGB to represent the chroma components at lower spatial
resolution than the luma component. This approach is used to take advantage of the eye’s lower
spatial sensitivity to color compared with its sensitivity to brightness. Less commonly, the same
approach is used with additive color, since the green component dominates the eye’s sensitivity to
light intensity and the spatial sensitivity to color introduced by red and blue is lower.

Lower-resolution components are “downsampled” by resizing them to a lower spatial resolution
than the component representing luminance. This process is also commonly known as “chroma
subsampling”. There is one luminance sample in each texture texel, but each chrominance sample
may be shared among several texels in one or both texture dimensions.

• “_444” formats do not spatially downsample chroma values compared with luma: there are
unique chroma samples for each texel.

• “_422” formats have downsampling in the x dimension (corresponding to u or s coordinates):
they are sampled at half the resolution of luma in that dimension.

• “_420” formats have downsampling in the x dimension (corresponding to u or s coordinates)
and the y dimension (corresponding to v or t coordinates): they are sampled at half the
resolution of luma in both dimensions.

The process of reconstructing a full color value for texture access involves accessing both chroma

1469

and luma values at the same location. To generate the color accurately, the values of the lower-
resolution components at the location of the luma samples must be reconstructed from the lower-
resolution sample locations, an operation known here as “chroma reconstruction” irrespective of
the actual color model.

The location of the chroma samples relative to the luma coordinates is determined by the
xChromaOffset and yChromaOffset members of the VkSamplerYcbcrConversionCreateInfo structure
used to create the sampler Y′CBCR conversion.

The following diagrams show the relationship between unnormalized (u,v) coordinates and (i,j)
integer texel positions in the luma component (shown in black, with circles showing integer sample
positions) and the texel coordinates of reduced-resolution chroma components, shown as crosses in
red.

Note

If the chroma values are reconstructed at the locations of the luma samples by
means of interpolation, chroma samples from outside the image bounds are
needed; these are determined according to Wrapping Operation. These diagrams
represent this by showing the bounds of the “chroma texel” extending beyond the
image bounds, and including additional chroma sample positions where required
for interpolation. The limits of a sample for NEAREST sampling is shown as a grid.

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

0,3 1,3 2,3 3,3

Figure 6. 422 downsampling, xChromaOffset=COSITED_EVEN

1470

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

0,3 1,3 2,3 3,3

Figure 7. 422 downsampling, xChromaOffset=MIDPOINT

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Figure 8. 420 downsampling, xChromaOffset=COSITED_EVEN, yChromaOffset=COSITED_EVEN

1471

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Figure 9. 420 downsampling, xChromaOffset=MIDPOINT, yChromaOffset=COSITED_EVEN

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Figure 10. 420 downsampling, xChromaOffset=COSITED_EVEN, yChromaOffset=MIDPOINT

1472

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Figure 11. 420 downsampling, xChromaOffset=MIDPOINT, yChromaOffset=MIDPOINT

Reconstruction is implemented in one of two ways:

If the format of the image that is to be sampled sets
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT, or the
VkSamplerYcbcrConversionCreateInfo’s forceExplicitReconstruction is set to VK_TRUE,
reconstruction is performed as an explicit step independent of filtering, described in the Explicit
Reconstruction section.

If the format of the image that is to be sampled does not set
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT and if the
VkSamplerYcbcrConversionCreateInfo’s forceExplicitReconstruction is set to VK_FALSE,
reconstruction is performed as an implicit part of filtering prior to color model conversion, with no
separate post-conversion texel filtering step, as described in the Implicit Reconstruction section.

Explicit Reconstruction

• If the chromaFilter member of the VkSamplerYcbcrConversionCreateInfo structure is
VK_FILTER_NEAREST:

◦ If the format’s R and B components are reduced in resolution in just width by a factor of two
relative to the G component (i.e. this is a “_422” format), the values accessed by
texel filtering are reconstructed as follows:

◦ If the format’s R and B components are reduced in resolution in width and height by a factor
of two relative to the G component (i.e. this is a “_420” format), the values accessed
by texel filtering are reconstructed as follows:

1473

Note

xChromaOffset and yChromaOffset have no effect if chromaFilter is
VK_FILTER_NEAREST for explicit reconstruction.

• If the chromaFilter member of the VkSamplerYcbcrConversionCreateInfo structure is
VK_FILTER_LINEAR:

◦ If the format’s R and B components are reduced in resolution in just width by a factor of two
relative to the G component (i.e. this is a “_422” format):

▪ If xChromaOffset is VK_CHROMA_LOCATION_COSITED_EVEN:

▪ If xChromaOffset is VK_CHROMA_LOCATION_MIDPOINT:

◦ If the format’s R and B components are reduced in resolution in width and height by a factor
of two relative to the G component (i.e. this is a “_420” format), a similar relationship applies.
Due to the number of options, these formulae are expressed more concisely as follows:

Note

In the case where the texture itself is bilinearly interpolated as described in Texel

1474

Filtering, thus requiring four full-color samples for the filtering operation, and
where the reconstruction of these samples uses bilinear interpolation in the
chroma components due to chromaFilter=VK_FILTER_LINEAR, up to nine chroma
samples may be required, depending on the sample location.

Implicit Reconstruction

Implicit reconstruction takes place by the samples being interpolated, as required by the filter
settings of the sampler, except that chromaFilter takes precedence for the chroma samples.

If chromaFilter is VK_FILTER_NEAREST, an implementation may behave as if xChromaOffset and
yChromaOffset were both VK_CHROMA_LOCATION_MIDPOINT, irrespective of the values set.

Note

This will not have any visible effect if the locations of the luma samples coincide
with the location of the samples used for rasterization.

The sample coordinates are adjusted by the downsample factor of the component (such that, for
example, the sample coordinates are divided by two if the component has a downsample factor of
two relative to the luma component):

16.3.9. Sampler Y′CBCR Conversion

Sampler Y′CBCR conversion performs the following operations, which an implementation may
combine into a single mathematical operation:

• Sampler Y′CBCR Range Expansion

• Sampler Y′CBCR Model Conversion

Sampler Y′CBCR Range Expansion

Sampler Y′CBCR range expansion is applied to color component values after all texel input
operations which are not specific to sampler Y′CBCR conversion. For example, the input values to
this stage have been converted using the normal format conversion rules.

The input values to this stage may have been converted using sRGB to linear conversion if
ycbcrDegamma is enabled.

Sampler Y′CBCR range expansion is not applied if ycbcrModel is
VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY. That is, the shader receives the vector C'rgba as
output by the Component Swizzle stage without further modification.

For other values of ycbcrModel, range expansion is applied to the texel component values output by

1475

the Component Swizzle defined by the components member of
VkSamplerYcbcrConversionCreateInfo. Range expansion applies independently to each component
of the image. For the purposes of range expansion and Y′CBCR model conversion, the R and B
components contain color difference (chroma) values and the G component contains luma. The A
component is not modified by sampler Y′CBCR range expansion.

The range expansion to be applied is defined by the ycbcrRange member of the
VkSamplerYcbcrConversionCreateInfo structure:

• If ycbcrRange is VK_SAMPLER_YCBCR_RANGE_ITU_FULL, the following transformations are applied:

Note

These formulae correspond to the “full range” encoding in the “Quantization
schemes” chapter of the Khronos Data Format Specification.

Should any future amendments be made to the ITU specifications from which
these equations are derived, the formulae used by Vulkan may also be updated
to maintain parity.

• If ycbcrRange is VK_SAMPLER_YCBCR_RANGE_ITU_NARROW, the following transformations are applied:

Note

These formulae correspond to the “narrow range” encoding in the
“Quantization schemes” chapter of the Khronos Data Format Specification.

• n is the bit-depth of the components in the format.

The precision of the operations performed during range expansion must be at least that of the
source format.

An implementation may clamp the results of these range expansion operations such that Y′ falls in
the range [0,1], and/or such that CB and CR fall in the range [-0.5,0.5].

1476

Sampler Y′CBCR Model Conversion

The range-expanded values are converted between color models, according to the color model
conversion specified in the ycbcrModel member:

VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY

The color components are not modified by the color model conversion since they are assumed
already to represent the desired color model in which the shader is operating; Y′CBCR range
expansion is also ignored.

VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY

The color components are not modified by the color model conversion and are assumed to be
treated as though in Y′CBCR form both in memory and in the shader; Y′CBCR range expansion is
applied to the components as for other Y′CBCR models, with the vector (CR,Y′,CB,A) provided to the
shader.

VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709

The color components are transformed from a Y′CBCR representation to an R′G′B′ representation
as described in the “BT.709 Y′CBCR conversion” section of the Khronos Data Format Specification.

VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601

The color components are transformed from a Y′CBCR representation to an R′G′B′ representation
as described in the “BT.601 Y′CBCR conversion” section of the Khronos Data Format Specification.

VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020

The color components are transformed from a Y′CBCR representation to an R′G′B′ representation
as described in the “BT.2020 Y′CBCR conversion” section of the Khronos Data Format
Specification.

In this operation, each output component is dependent on each input component.

An implementation may clamp the R′G′B′ results of these conversions to the range [0,1].

The precision of the operations performed during model conversion must be at least that of the
source format.

The alpha component is not modified by these model conversions.

Note

Sampling operations in a non-linear color space can introduce color and intensity
shifts at sharp transition boundaries. To avoid this issue, the technically precise
color correction sequence described in the “Introduction to Color Conversions”
chapter of the Khronos Data Format Specification may be performed as follows:

• Calculate the unnormalized texel coordinates corresponding to the desired
sample position.

• For a minFilter or magFilter of VK_FILTER_NEAREST:

1. Calculate (i,j) for the sample location as described under the “nearest

1477

filtering” formulae in (u,v,w,a) to (i,j,k,l,n) Transformation and Array Layer
Selection

2. Calculate the normalized texel coordinates corresponding to these integer
coordinates.

3. Sample using sampler Y′CBCR conversion at this location.

• For a minFilter or magFilter of VK_FILTER_LINEAR:

1. Calculate (i[0,1],j[0,1]) for the sample location as described under the “linear
filtering” formulae in (u,v,w,a) to (i,j,k,l,n) Transformation and Array Layer
Selection

2. Calculate the normalized texel coordinates corresponding to these integer
coordinates.

3. Sample using sampler Y′CBCR conversion at each of these locations.

4. Convert the non-linear A′R′G′B′ outputs of the Y′CBCR conversions to linear
ARGB values as described in the “Transfer Functions” chapter of the
Khronos Data Format Specification.

5. Interpolate the linear ARGB values using the α and β values described in
the “linear filtering” section of (u,v,w,a) to (i,j,k,l,n) Transformation and
Array Layer Selection and the equations in Texel Filtering.

The additional calculations and, especially, additional number of sampling
operations in the VK_FILTER_LINEAR case can be expected to have a performance
impact compared with using the outputs directly. Since the variations from
“correct” results are subtle for most content, the application author should
determine whether a more costly implementation is strictly necessary.

If chromaFilter, and minFilter or magFilter are both VK_FILTER_NEAREST, these
operations are redundant and sampling using sampler Y′CBCR conversion at the
desired sample coordinates will produce the “correct” results without further
processing.

16.4. Texel Output Operations
Texel output instructions are SPIR-V image instructions that write to an image. Texel output
operations are a set of steps that are performed on state, coordinates, and texel values while
processing a texel output instruction, and which are common to some or all texel output
instructions. They include the following steps, which are performed in the listed order:

• Validation operations

◦ Format validation

◦ Type validation

◦ Coordinate validation

◦ Sparse validation

• Texel output format conversion

1478

16.4.1. Texel Output Validation Operations

Texel output validation operations inspect instruction/image state or coordinates, and in certain
circumstances cause the write to have no effect. There are a series of validations that the texel
undergoes.

Texel Format Validation

If the image format of the OpTypeImage is not compatible with the VkImageView’s format, the write
causes the contents of the image’s memory to become undefined.

Texel Type Validation

If the Sampled Type of the OpTypeImage does not match the SPIR-V Type, the write causes the value of
the texel to become undefined. For integer types, if the signedness of the access does not match the
signedness of the accessed resource, the write causes the value of the texel to become undefined.

16.4.2. Integer Texel Coordinate Validation

The integer texel coordinates are validated according to the same rules as for texel input coordinate
validation.

If the texel fails integer texel coordinate validation, then the write has no effect.

16.4.3. Sparse Texel Operation

If the texel attempts to write to an unbound region of a sparse image, the texel is a sparse unbound
texel. In such a case, if the VkPhysicalDeviceSparseProperties::residencyNonResidentStrict property
is VK_TRUE, the sparse unbound texel write has no effect. If residencyNonResidentStrict is VK_FALSE,
the write may have a side effect that becomes visible to other accesses to unbound texels in any
resource, but will not be visible to any device memory allocated by the application.

16.4.4. Texel Output Format Conversion

If the image format is sRGB, a linear to sRGB conversion is applied to the R, G, and B components as
described in the “sRGB EOTF” section of the Khronos Data Format Specification. The A component,
if present, is unchanged.

Texels then undergo a format conversion from the floating point, signed, or unsigned integer type
of the texel data to the VkFormat of the image view. If the number of components in the texel data
is larger than the number of components in the format, additional components are discarded.

Each component is converted based on its type and size (as defined in the Format Definition section
for each VkFormat). Floating-point outputs are converted as described in Floating-Point Format
Conversions and Fixed-Point Data Conversion. Integer outputs are converted such that their value
is preserved. The converted value of any integer that cannot be represented in the target format is
undefined.

If the VkImageView format has an X component in its format description, undefined values are
written to those bits.

1479

If the underlying VkImage format has an X component in its format description, undefined values
are also written to those bits, even if result format conversion produces a valid value for those bits
because the VkImageView format is different.

16.5. Normalized Texel Coordinate Operations
If the image sampler instruction provides normalized texel coordinates, some of the following
operations are performed.

16.5.1. Projection Operation

For Proj image operations, the normalized texel coordinates (s,t,r,q,a) and (if present) the Dref

coordinate are transformed as follows:

16.5.2. Derivative Image Operations

Derivatives are used for LOD selection. These derivatives are either implicit (in an ImplicitLod
image instruction in a fragment shader) or explicit (provided explicitly by shader to the image
instruction in any shader).

For implicit derivatives image instructions, the derivatives of texel coordinates are calculated in the
same manner as derivative operations. That is:

Partial derivatives not defined above for certain image dimensionalities are set to zero.

For explicit LOD image instructions, if the optional SPIR-V operand Grad is provided, then the
operand values are used for the derivatives. The number of components present in each derivative
for a given image dimensionality matches the number of partial derivatives computed above.

If the optional SPIR-V operand Lod is provided, then derivatives are set to zero, the cube map
derivative transformation is skipped, and the scale factor operation is skipped. Instead, the floating
point scalar coordinate is directly assigned to λbase as described in LOD Operation.

If the image or sampler object used by an implicit derivative image instruction is not uniform
across the quad and quadDivergentImplicitLod is not supported, then the derivative and LOD values

1480

are undefined. Implicit derivatives are well-defined when the image and sampler and control flow
are uniform across the quad, even if they diverge between different quads.

If quadDivergentImplicitLod is supported, then derivatives and implicit LOD values are well-defined
even if the image or sampler object are not uniform within a quad. The derivatives are computed
as specified above, and the implicit LOD calculation proceeds for each shader invocation using its
respective image and sampler object.

16.5.3. Cube Map Face Selection and Transformations

For cube map image instructions, the (s,t,r) coordinates are treated as a direction vector (rx,ry,rz).
The direction vector is used to select a cube map face. The direction vector is transformed to a per-
face texel coordinate system (sface,tface), The direction vector is also used to transform the derivatives
to per-face derivatives.

16.5.4. Cube Map Face Selection

The direction vector selects one of the cube map’s faces based on the largest magnitude coordinate
direction (the major axis direction). Since two or more coordinates can have identical magnitude,
the implementation must have rules to disambiguate this situation.

The rules should have as the first rule that rz wins over ry and rx, and the second rule that ry wins
over rx. An implementation may choose other rules, but the rules must be deterministic and
depend only on (rx,ry,rz).

The layer number (corresponding to a cube map face), the coordinate selections for sc, tc, rc, and the
selection of derivatives, are determined by the major axis direction as specified in the following
two tables.

Table 27. Cube map face and coordinate selection

Major
Axis
Direction

Layer
Number

Cube Map
Face

sc tc rc

+rx 0 Positive X -rz -ry rx

-rx 1 Negative X +rz -ry rx

+ry 2 Positive Y +rx +rz ry

-ry 3 Negative Y +rx -rz ry

+rz 4 Positive Z +rx -ry rz

-rz 5 Negative Z -rx -ry rz

Table 28. Cube map derivative selection

1481

Major
Axis
Directio
n

∂sc / ∂x ∂sc / ∂y ∂tc / ∂x ∂tc / ∂y ∂rc / ∂x ∂rc / ∂y

+rx -∂rz / ∂x -∂rz / ∂y -∂ry / ∂x -∂ry / ∂y +∂rx / ∂x +∂rx / ∂y

-rx +∂rz / ∂x +∂rz / ∂y -∂ry / ∂x -∂ry / ∂y -∂rx / ∂x -∂rx / ∂y

+ry +∂rx / ∂x +∂rx / ∂y +∂rz / ∂x +∂rz / ∂y +∂ry / ∂x +∂ry / ∂y

-ry +∂rx / ∂x +∂rx / ∂y -∂rz / ∂x -∂rz / ∂y -∂ry / ∂x -∂ry / ∂y

+rz +∂rx / ∂x +∂rx / ∂y -∂ry / ∂x -∂ry / ∂y +∂rz / ∂x +∂rz / ∂y

-rz -∂rx / ∂x -∂rx / ∂y -∂ry / ∂x -∂ry / ∂y -∂rz / ∂x -∂rz / ∂y

16.5.5. Cube Map Coordinate Transformation

16.5.6. Cube Map Derivative Transformation

16.5.7. Scale Factor Operation, LOD Operation and Image Level(s) Selection

LOD selection can be either explicit (provided explicitly by the image instruction) or implicit
(determined from a scale factor calculated from the derivatives). The LOD must be computed with
mipmapPrecisionBits of accuracy.

Scale Factor Operation

The magnitude of the derivatives are calculated by:

1482

mux = |∂s/∂x| × wbase

mvx = |∂t/∂x| × hbase

mwx = |∂r/∂x| × dbase

muy = |∂s/∂y| × wbase

mvy = |∂t/∂y| × hbase

mwy = |∂r/∂y| × dbase

where:

∂t/∂x = ∂t/∂y = 0 (for 1D images)

∂r/∂x = ∂r/∂y = 0 (for 1D, 2D or Cube images)

and:

wbase = image.w

hbase = image.h

dbase = image.d

(for the baseMipLevel, from the image descriptor).

For corner-sampled images, the wbase, hbase, and dbase are instead:

wbase = image.w - 1

hbase = image.h - 1

dbase = image.d - 1

1483

A point sampled in screen space has an elliptical footprint in texture space. The minimum and
maximum scale factors (ρmin, ρmax) should be the minor and major axes of this ellipse.

The scale factors ρx and ρy, calculated from the magnitude of the derivatives in x and y, are used to
compute the minimum and maximum scale factors.

ρx and ρy may be approximated with functions fx and fy, subject to the following constraints:

The minimum and maximum scale factors (ρmin,ρmax) are determined by:

ρmax = max(ρx, ρy)

ρmin = min(ρx, ρy)

The ratio of anisotropy is determined by:

η = min(ρmax/ρmin, maxAniso)

where:

sampler.maxAniso = maxAnisotropy (from sampler descriptor)

limits.maxAniso = maxSamplerAnisotropy (from physical device limits)

maxAniso = min(sampler.maxAniso, limits.maxAniso)

If ρmax = ρmin = 0, then all the partial derivatives are zero, the fragment’s footprint in texel space is a
point, and η should be treated as 1. If ρmax ≠ 0 and ρmin = 0 then all partial derivatives along one axis
are zero, the fragment’s footprint in texel space is a line segment, and η should be treated as
maxAniso. However, anytime the footprint is small in texel space the implementation may use a
smaller value of η, even when ρmin is zero or close to zero. If either VkPhysicalDeviceFeatures
::samplerAnisotropy or VkSamplerCreateInfo::anisotropyEnable are VK_FALSE, maxAniso is set to 1.

If η = 1, sampling is isotropic. If η > 1, sampling is anisotropic.

The sampling rate (N) is derived as:

1484

N = ⌈η⌉

An implementation may round N up to the nearest supported sampling rate. An implementation
may use the value of N as an approximation of η.

LOD Operation

The LOD parameter λ is computed as follows:

where:

and maxSamplerLodBias is the value of the VkPhysicalDeviceLimits feature maxSamplerLodBias.

Image Level(s) Selection

The image level(s) d, dhi, and dlo which texels are read from are determined by an image-level
parameter dl, which is computed based on the LOD parameter, as follows:

where:

and:

1485

baseMipLevel and levelCount are taken from the subresourceRange of the image view.

minLodimageView must be less or equal to levelbase + q.

If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_NEAREST, then the level selected is d = dl.

If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_LINEAR, two neighboring levels are selected:

δ is the fractional value, quantized to the number of mipmap precision bits, used for linear filtering
between levels.

16.5.8. (s,t,r,q,a) to (u,v,w,a) Transformation

The normalized texel coordinates are scaled by the image level dimensions and the array layer is
selected.

This transformation is performed once for each level used in filtering (either d, or dhi and dlo).

where:

widthscale = widthlevel

heightscale = heightlevel

depthscale = depthlevel

for conventional images, and:

1486

widthscale = widthlevel - 1

heightscale = heightlevel - 1

depthscale = depthlevel - 1

for corner-sampled images.

and where (Δi, Δj, Δk) are taken from the image instruction if it includes a ConstOffset or Offset
operand, otherwise they are taken to be zero.

Operations then proceed to Unnormalized Texel Coordinate Operations.

16.6. Unnormalized Texel Coordinate Operations

16.6.1. (u,v,w,a) to (i,j,k,l,n) Transformation and Array Layer Selection

The unnormalized texel coordinates are transformed to integer texel coordinates relative to the
selected mipmap level.

The layer index l is computed as:

l = clamp(RNE(a), 0, layerCount - 1) + baseArrayLayer

where layerCount is the number of layers in the image subresource range of the image view,
baseArrayLayer is the first layer from the subresource range, and where:

The sample index n is assigned the value 0.

Nearest filtering (VK_FILTER_NEAREST) computes the integer texel coordinates that the unnormalized
coordinates lie within:

where:

shift = 0.0

for conventional images, and:

1487

shift = 0.5

for corner-sampled images.

Linear filtering (VK_FILTER_LINEAR) computes a set of neighboring coordinates which bound the
unnormalized coordinates. The integer texel coordinates are combinations of i0 or i1, j0 or j1, k0 or k1,
as well as weights α, β, and γ.

where:

shift = 0.5

for conventional images, and:

shift = 0.0

for corner-sampled images, and where:

where the number of fraction bits retained is specified by VkPhysicalDeviceLimits
::subTexelPrecisionBits.

Cubic filtering (VK_FILTER_CUBIC_EXT) computes a set of neighboring coordinates which bound the
unnormalized coordinates. The integer texel coordinates are combinations of i0, i1, i2 or i3, j0, j1, j2 or
j3, k0, k1, k2 or k3, as well as weights α, β, and γ.

1488

where:

where the number of fraction bits retained is specified by VkPhysicalDeviceLimits
::subTexelPrecisionBits.

16.7. Integer Texel Coordinate Operations
Integer texel coordinate operations may supply a LOD which texels are to be read from or written
to using the optional SPIR-V operand Lod. If the Lod is provided then it must be an integer.

The image level selected is:

If d does not lie in the range [baseMipLevel, baseMipLevel + levelCount) or d is less than
minLodIntegerimageView, then any values fetched are zero if the robustImageAccess2 feature is enabled,
otherwise are undefined, and any writes (if supported) are discarded.

16.8. Image Sample Operations

16.8.1. Wrapping Operation

If the used sampler was created without VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT, Cube
images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within
a mip level then VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used
within a mip level then sampling at the edges is performed as described earlier in the Cube map
edge handling section.

The first integer texel coordinate i is transformed based on the addressModeU parameter of the
sampler.

1489

where:

j (for 2D and Cube image) and k (for 3D image) are similarly transformed based on the addressModeV
and addressModeW parameters of the sampler, respectively.

16.8.2. Texel Gathering

SPIR-V instructions with Gather in the name return a vector derived from 4 texels in the base level
of the image view. The rules for the VK_FILTER_LINEAR minification filter are applied to identify the
four selected texels. Each texel is then converted to an RGBA value according to conversion to RGBA
and then swizzled. A four-component vector is then assembled by taking the component indicated
by the Component value in the instruction from the swizzled color value of the four texels. If the
operation does not use the ConstOffsets image operand then the four texels form the 2 × 2 rectangle
used for texture filtering:

If the operation does use the ConstOffsets image operand then the offsets allow a custom filter to be
defined:

where:

1490

OpImage*Gather must not be used on a sampled image with sampler Y′CBCR conversion enabled.

If levelbase < minLodIntegerimageView, then any values fetched are zero if robustImageAccess2 is enabled.
Otherwise values are undefined.

16.8.3. Texel Filtering

Texel filtering is first performed for each level (either d or dhi and dlo).

If λ is less than or equal to zero, the texture is said to be magnified, and the filter mode within a mip
level is selected by the magFilter in the sampler. If λ is greater than zero, the texture is said to be
minified, and the filter mode within a mip level is selected by the minFilter in the sampler.

Texel Nearest Filtering

Within a mip level, VK_FILTER_NEAREST filtering selects a single value using the (i, j, k) texel
coordinates, with all texels taken from layer l.

Texel Linear Filtering

Within a mip level, VK_FILTER_LINEAR filtering combines 8 (for 3D), 4 (for 2D or Cube), or 2 (for 1D)
texel values, together with their linear weights. The linear weights are derived from the fractions
computed earlier:

The values of multiple texels, together with their weights, are combined to produce a filtered value.

The VkSamplerReductionModeCreateInfo::reductionMode can control the process by which multiple
texels, together with their weights, are combined to produce a filtered texture value.

When the reductionMode is set (explicitly or implicitly) to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, a weighted average is computed:

1491

However, if the reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX,
the process operates on the above set of multiple texels, together with their weights, computing a
component-wise minimum or maximum, respectively, of the components of the set of texels with
non-zero weights.

Texel Cubic Filtering

Within a mip level, VK_FILTER_CUBIC_EXT, filtering computes a weighted average of 64 (for 3D), 16
(for 2D), or 4 (for 1D) texel values, together with their Catmull-Rom, Zero Tangent Cardinal, B-
Spline, or Mitchell-Netravali weights as specified by VkSamplerCubicWeightsCreateInfoQCOM.

Catmull-Rom weights specified by VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM are derived from the
fractions computed earlier.

Zero Tangent Cardinal weights specified by VK_CUBIC_FILTER_WEIGHTS_ZERO_TANGENT_CARDINAL_QCOM
are derived from the fractions computed earlier.

1492

B-Spline weights specified by VK_CUBIC_FILTER_WEIGHTS_B_SPLINE_QCOM are derived from the fractions
computed earlier.

Mitchell-Netravali weights specified by VK_CUBIC_FILTER_WEIGHTS_MITCHELL_NETRAVALI_QCOM are
derived from the fractions computed earlier.

The values of multiple texels, together with their weights, are combined to produce a filtered value.

The VkSamplerReductionModeCreateInfo::reductionMode can control the process by which multiple
texels, together with their weights, are combined to produce a filtered texture value.

1493

When the reductionMode is set (explicitly or implicitly) to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE or
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM , a weighted average is computed:

However, if the reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX,
the process operates on the above set of multiple texels, together with their weights, computing a
component-wise minimum or maximum, respectively, of the components of the set of texels with
non-zero weights.

Texel Range Clamp

When the reductionMode is set to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM, the
weighted average is clamped to be within the component-wise minimum and maximum of the set
of texels with non-zero weights.

Texel Mipmap Filtering

VK_SAMPLER_MIPMAP_MODE_NEAREST filtering returns the value of a single mipmap level,

τ = τ[d].

VK_SAMPLER_MIPMAP_MODE_LINEAR filtering combines the values of multiple mipmap levels (τ[hi] and
τ[lo]), together with their linear weights.

The linear weights are derived from the fraction computed earlier:

The values of multiple mipmap levels, together with their weights, are combined to produce a final
filtered value.

The VkSamplerReductionModeCreateInfo::reductionMode can control the process by which multiple
texels, together with their weights, are combined to produce a filtered texture value.

When the reductionMode is set (explicitly or implicitly) to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, a weighted average is computed:

1494

However, if the reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX,
the process operates on the above values, together with their weights, computing a component-wise
minimum or maximum, respectively, of the components of the values with non-zero weights.

Texel Anisotropic Filtering

Anisotropic filtering is enabled by the anisotropyEnable in the sampler. When enabled, the image
filtering scheme accounts for a degree of anisotropy.

The particular scheme for anisotropic texture filtering is implementation-dependent.
Implementations should consider the magFilter, minFilter and mipmapMode of the sampler to control
the specifics of the anisotropic filtering scheme used. In addition, implementations should consider
minLod and maxLod of the sampler.

Note

For historical reasons, vendor implementations of anisotropic filtering interpret
these sampler parameters in different ways, particularly in corner cases such as
magFilter, minFilter of NEAREST or maxAnisotropy equal to 1.0. Applications should
not expect consistent behavior in such cases, and should use anisotropic filtering
only with parameters which are expected to give a quality improvement relative
to LINEAR filtering.

The following describes one particular approach to implementing anisotropic
filtering for the 2D Image case; implementations may choose other methods:

Given a magFilter, minFilter of VK_FILTER_LINEAR and a mipmapMode of
VK_SAMPLER_MIPMAP_MODE_NEAREST:

Instead of a single isotropic sample, N isotropic samples are sampled within the
image footprint of the image level d to approximate an anisotropic filter. The sum
τ2Daniso is defined using the single isotropic τ2D(u,v) at level d.

When VkSamplerReductionModeCreateInfo::reductionMode is set to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, the above summation is used.
However, if the reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX, the process operates on the above values, together
with their weights, computing a component-wise minimum or maximum,
respectively, of the components of the values with non-zero weights.

16.9. Texel Footprint Evaluation
The SPIR-V instruction OpImageSampleFootprintNV evaluates the set of texels from a single mip level
that would be accessed during a texel filtering operation. In addition to the inputs that would be

1495

accepted by an equivalent OpImageSample* instruction, OpImageSampleFootprintNV accepts two
additional inputs. The Granularity input is an integer identifying the size of texel groups used to
evaluate the footprint. Each bit in the returned footprint mask corresponds to an aligned block of
texels whose size is given by the following table:

Table 29. Texel footprint granularity values

Granularity Dim = 2D Dim = 3D

0 unsupported unsupported

1 2x2 2x2x2

2 4x2 unsupported

3 4x4 4x4x2

4 8x4 unsupported

5 8x8 unsupported

6 16x8 unsupported

7 16x16 unsupported

8 unsupported unsupported

9 unsupported unsupported

10 unsupported 16x16x16

11 64x64 32x16x16

12 128x64 32x32x16

13 128x128 32x32x32

14 256x128 64x32x32

15 256x256 unsupported

The Coarse input is used to select between the two mip levels that may be accessed during texel
filtering when using a mipmapMode of VK_SAMPLER_MIPMAP_MODE_LINEAR. When filtering between two
mip levels, a Coarse value of true requests the footprint in the lower-resolution mip level (higher
level number), while false requests the footprint in the higher-resolution mip level. If texel filtering
would access only a single mip level, the footprint in that level would be returned when Coarse is
set to false; an empty footprint would be returned when Coarse is set to true.

The footprint for OpImageSampleFootprintNV is returned in a structure with six members:

• The first member is a boolean value that is true if the texel filtering operation would access only
a single mip level.

• The second member is a two- or three-component integer vector holding the footprint anchor
location. For two-dimensional images, the returned components are in units of eight texel
groups. For three-dimensional images, the returned components are in units of four texel
groups.

• The third member is a two- or three-component integer vector holding a footprint offset relative
to the anchor. All returned components are in units of texel groups.

1496

• The fourth member is a two-component integer vector mask, which holds a bitfield identifying
the set of texel groups in an 8x8 or 4x4x4 neighborhood relative to the anchor and offset.

• The fifth member is an integer identifying the mip level containing the footprint identified by
the anchor, offset, and mask.

• The sixth member is an integer identifying the granularity of the returned footprint.

For footprints in two-dimensional images (Dim2D), the mask returned by OpImageSampleFootprintNV
indicates whether each texel group in a 8x8 local neighborhood of texel groups would have one or
more texels accessed during texel filtering. In the mask, the texel group with local group
coordinates is considered covered if and only if

where:

• and ; and

• is the returned two-component mask.

The local group with coordinates in the mask is considered covered if and only if the texel
filtering operation would access one or more texels in the returned mip level where:

and

• and ;

• is a two-component vector holding the width and height of the texel group identified by the
granularity;

• is the returned two-component anchor vector; and

• is the returned two-component offset vector.

For footprints in three-dimensional images (Dim3D), the mask returned by OpImageSampleFootprintNV
indicates whether each texel group in a 4x4x4 local neighborhood of texel groups would have one
or more texels accessed during texel filtering. In the mask, the texel group with local group
coordinates , is considered covered if and only if:

where:

• , , and ; and

1497

• is the returned two-component mask.

The local group with coordinates in the mask is considered covered if and only if the
texel filtering operation would access one or more texels in the returned mip level where:

and

• , , ;

• is a three-component vector holding the width, height, and depth of the texel group
identified by the granularity;

• is the returned three-component anchor vector; and

• is the returned three-component offset vector.

If the sampler used by OpImageSampleFootprintNV enables anisotropic texel filtering via
anisotropyEnable, it is possible that the set of texel groups accessed in a mip level may be too large
to be expressed using an 8x8 or 4x4x4 mask using the granularity requested in the instruction. In
this case, the implementation uses a texel group larger than the requested granularity. When a
larger texel group size is used, OpImageSampleFootprintNV returns an integer granularity value that
can be interpreted in the same manner as the granularity value provided to the instruction to
determine the texel group size used. If anisotropic texel filtering is disabled in the sampler, or if an
anisotropic footprint can be represented as an 8x8 or 4x4x4 mask with the requested granularity,
OpImageSampleFootprintNV will use the requested granularity as-is and return a granularity value of
zero.

OpImageSampleFootprintNV supports only two- and three-dimensional image accesses (Dim2D and
Dim3D), and the footprint returned is undefined if a sampler uses an addressing mode other than
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

16.10. Weight Image Sampling
The SPIR-V instruction OpImageWeightedSampleQCOM specifies a texture sampling operation involving
two images: the sampled image and the weight image. It is similar to bilinear filtering except more
than 2x2 texels may participate in the filter and the filter weights are user-specified rather than
computed by fixed-function hardware. The weight image view defines a 2D kernel weights used
during sampling.

1498

The OpImageWeightedSampleQCOM support normalized or unnormalized texel coordinates. In addition
to the inputs that would be accepted by an equivalent OpImageSample* instruction,
OpImageWeightedSampleQCOM accepts a weight input that specifies the view of a sample weight image

The input weight must be a view of a 2D or 1D image with miplevels equal to 1, samples equal to
VK_SAMPLE_COUNT_1_BIT, created with an identity swizzle, and created with usage that includes
VK_IMAGE_USAGE_SAMPLE_WEIGHT_BIT_QCOM. The VkImageViewSampleWeightCreateInfoQCOM specifies
additional parameters of the view: filterCenter, filterSize, and numPhases. described in more detail
below.

The weight input must be bound using a sample weight image descriptor type. The weight view
defines a filtering kernel that is a region of view’s subresource range. The kernel spans a region
from integer texel coordinate (0,0) to (filterSize.x-1, filterSize.y-1). It is valid for the view’s
subresource to have dimensions larger than the kernel but the texels with integer coordinates
greater than (filterSize.width-1, filterSize.height-1) are ignored by weight sampling. The value
returned by queries OpImageQuerySize, OpImageQuerySizeLod, OpImageQueryLevels, and
OpImageQuerySamples return for a weight image is undefined.

filterCenter designates an integer texel coordinate within the filter kernel as being the 'center' of
the kernel. The center must be in the range (0,0) to (filterSize.x-1, filterSize.y-1). numPhases
describes the number of filter phases used to provide sub-pixel filtering. Both are described in
more detail below.

16.10.1. Weight Image Layout

The weight image specifies filtering kernel weight values. A 2D image view can be used to specify a
2D matrix of filter weights. For separable filers, a 1D image view can be used to specity the
horizontal and vertical weights.

2D Non-Separable Weight Filters

A 2D image view defined with VkImageViewSampleWeightCreateInfoQCOM describes a 2D matrix
(filterSize.width × filterSize.height) of weight elements with filter’s center point at filterCenter.
Note that filterSize can be smaller than the view’s subresource, but the filter will always be
located starting at integer texel coordinate (0,0).

The following figure illustrates a 2D convolution filter having filterSize of (4,3) and filterCenter at
(1, 1).

1499

(0,0)

(0,2)

(0,1)

(1,0)

(1,2)

origin

(2,0)

(2,2)

(2,1)

(3,0)

(3,2)

(3,1)

2D Convolution Filter

Figure 12. 2D Convolution Filter

For a 2D weight filter, the phases are stored as layers of a 2D array image. The width and height of
the view’s subresource range must be less than or equal to
VkPhysicalDeviceImageProcessingPropertiesQCOM::maxWeightFilterDimension. The layers are stored
in horizontal phase major order. Expressed as a formula, the layer index for a each filter phase is
computed as:

layerIndex(horizPhase,vertPhase,horizPhaseCount) = (vertPhase * horizPhaseCount) +
horizPhase

1D Separable Weight Filters

A separable weight filter is a 2D filter that can be specified by two 1D filters in the x and y
directions such that their product yields the 2D filter. The following example shows a 2D filter and
its associated separable 1D horizontal and vertical filters.

Separable 2D Filter

33 6

84

1 2 3

4

Associated 1D Horizontal
and 1D Vertical Filters

Figure 13. Separable 2D Convolution Filter

1500

A 1D array image view defined with VkImageViewSampleWeightCreateInfoQCOM and with
layerCount equal to '2' describes a separable weight filter. The horizontal weights are specified in
slice '0' and the vertical weights in slice '1'. The filterSize and filterCenter specify the size and
origin of the of the horizontal and vertical filters. For many use cases, 1D separable filters can offer
a performance advantage over 2D filters.

For a 1D separable weight filter, the phases are arranged into a 1D array image with two layers. The
horizontal weights are stored in layer 0 and the vertical weights in layer 1. Within each layer of the
1D array image, the weights are arranged into groups of 4, and then arranged by phase. Expressed
as a formula, the 1D texel offset for each weight within each layer is computed as:

// Let horizontal weights have a weightIndex of [0, filterSize.width - 1]
// Let vertical weights have a weightIndex of [0, filterSize.height - 1]
// Let phaseCount be the number of phases in either the vertical or horizontal
direction.

texelOffset(phaseIndex,weightIndex,phaseCount) = (phaseCount * 4 * (weightIndex / 4))
+ (phaseIndex * 4) + (weightIndex % 4)

16.10.2. Weight Sampling Phases

When using weight image sampling, the texture coordinates may not align with a texel center in the
sampled image. In this case, the filter weights can be adjusted based on the subpixel location. This
is termed “subpixel filtering” to indicate that the origin of the filter lies at a subpixel location other
than the texel center. Conceptually, this means that the weight filter is positioned such that filter
taps do not align with sampled texels exactly. In such a case, modified filter weights may be needed
to adjust for the off-center filter taps. Unlike bilinear filtering where the subpixel weights are
computed by the implementation, subpixel weight image sampling requires that the per-phase
filter weights are pre-computed by the application and stored in an array where each slice of the
array is a “filter phase”. The array is indexed by the implementation based on subpixel positioning.
Rather than a single 2D kernel of filter weights, the application provides an array of kernels, one set
of filter weights per phase.

The number of phases are restricted by following requirements, which apply to both separable and
non-separable filters:

• The number of phases in the vertical direction, phaseCountvert, must be a power of two (i.e., 1, 2,
4, etc.).

• The number of phases in the horizontal direction phaseCounthoriz, must equal phaseCountvert.

• The total number of phases, phaseCountvert × phaseCounthoriz, must be less than or equal to
VkPhysicalDeviceImageProcessingPropertiesQCOM::maxWeightFilterPhases.

16.10.3. Weight Sampler Parameters

Weight sampling requires VkSamplerCreateInfo addressModeU and addressModeV must be set to
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER. If
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER is used, then the border color must be set to transparent

1501

black.

16.10.4. Weight Sampling Operation

The 2D unnormalized texel coordinates are transformed by to specify coordinates
.

where is specified by VkImageViewSampleWeightCreateInfoQCOM::filterCenter.

Two sets of neighboring integer 2D texel coordinates are generated. The first set is used for
selecting texels from the sampled image and the second set used for selecting texels from the
weight image . The first set of neighboring coordinates are combinations of to and
to . The second set of neighboring coordinates are combinations of to and

 to . The first and second sets each contain of pairs of
and coordinates respectively.

where and are specified by VkImageViewSampleWeightCreateInfoQCOM
::filterSize.

Each of the generated integer coordinates is transformed by texture wrapping operation,
followed by integer texel coordinate validation, If any coordinate fails coordinate validation, it is a
Border Texel and texel replacement is performed.

The phase index is computed from the fraction bits of the unnormalized 2D texel coordinates:

where the number of fraction bits retained is specified by
VkImageViewSampleWeightCreateInfoQCOM::numPhases

Each pair of texel coordinates in the first set selects a single texel value from the sampled
image. Each pair of texel coordinates in the second set, combined with phaseIndex , selects a

1502

single weight from the weight image .

If is a 2D array view, then non-separable filtering is specified, and integer coordinates are
used to select texels from layer of . If is a 1D array view, then separable filtering is specified
and integer coordinates are transformed to , and used to select horizontal weight

 and vertical weight texels from layer 0 and layer 1 of respectively.

Where refers to the integer modulo operator.

The values of multiple texels, together with their weights, are combined to produce a filtered value.

When VkSamplerReductionModeCreateInfo::reductionMode is set to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, the above summation is used. However, if the
reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX, the process
operates on the above values, computing a component-wise minimum or maximum of the texels
with non-zero weights. If the reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX, each weight must be equal to 0.0 or 1.0, otherwise the
undefined values are returned.

Finally, the operations described in Conversion to RGBA and Component swizzle are performed and
the final result is returned to the shader.

16.11. Block Matching
The SPIR-V instruction opImageBlockMatchSAD and opImageBlockMatchSSD specify texture block
matching operations where a block or region of texels within a target image is compared with a
same-sized region a reference image. The instructions make use of two image views: the target view
and the reference view. The target view and reference view can be the same view, allowing block
matching of two blocks within a single image.

Similar to an equivalent OpImageFetch instruction, opImageBlockMatchSAD and opImageBlockMatchSAD
specify an image and an integer texel coordinate which which describes the bottom-left texel of the
target block. There are three additional inputs. The reference and refCoodinate specifies bottom-left

1503

texel of the reference block. The blockSize specifies the integer width and height of the target and
reference blocks to be compared, and must not be greater than
VkPhysicalDeviceImageProcessingPropertiesQCOM.maxBlockMatchRegion.

opImageBlockMatchWindowSAD and opImageBlockMatchWindowSAD take the same input parameters as the
corresponding non-window instructions. The block matching comparison is performed for all pixel
values within a 2D window whose dimensions are specified in the sampler.

16.11.1. Block Matching Sampler Parameters

For opImageBlockMatchSAD and opImageBlockMatchSSD, the input sampler must be created with
addressModeU and addressModeV, equal to VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, or
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER with VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK. The input
sampler must be created with unnormalizedCoordinates equal to VK_TRUE. The input sampler must be
created with components equal to VK_COMPONENT_SWIZZLE_IDENTITY.

For opImageBlockMatchWindowSAD and opImageBlockMatchWindowSSD instructions, the target sampler
must have been created with VkSamplerBlockMatchWindowCreateInfoQCOM in the pNext chain.

For opImageBlockMatchWindowSAD, opImageBlockMatchWindowSSD, opImageBlockMatchGatherSAD, or
opImageBlockMatchGatherSSDinstructions, the input sampler must be created with addressModeU and
addressModeV, equal to VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER with
VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK.

Other sampler states are ignored.

16.11.2. Block Matching Operation

Block matching SPIR-V instructions opImageBlockMatchSAD and opImageBlockMatchSSD specify two sets
of 2D integer texel coordinates: target coordinates and reference coordinates .

The coordinates define the bottom-left texel of the target block and the reference block .

For the target block, a set of neighboring integer texel coordinates are generated. The neighboring
coordinates are combinations of to and to . The set is of size

.

where and is specified by the blockSize operand.

1504

If any target integer texel coordinate in the set fails integer texel coordinate validation, then
the texel is an invalid texel and texel replacement is performed.

Similarly for the reference block, a set of neighboring integer texel coordinates are generated.

Each reference texel coordinate in the set must not fail integer texel coordinate validation. To
avoid undefined behavior, application shader should guarantee that the reference block is fully
within the bounds of the reference image.

Each pair of texel coordinates in the set selects a single texel value from the target image .
Each pair of texel coordinates in the set selects a single texel value from the reference image

.

The difference between target and reference texel values is summed to compute a difference
metric. The opTextureBlockMatchSAD computes the sum of absolute differences.

The opImageBlockMatchSSD computes the sum of the squared differences.

When VkSamplerReductionModeCreateInfo::reductionMode is set to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, the above summation is used. However, if the
reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX, the process
operates on the above values, computing a component-wise minimum or maximum of ,
respectively. For , the minimum or maximum difference is computed and for , the square of
the minimum or maximum is computed.

Finally, the operations described in Conversion to RGBA and Component swizzle are performed and
the final result is returned to the shader. The component swizzle is specified by the target image
descriptor; any swizzle specified by the reference image descriptor is ignored.

Block Matching Window Operation

Window block matching SPIR-V instructions opImageBlockMatchWindowSAD and
opImageBlockMatchWindowSSD specify two sets of 2D integer texel coordinates: target coordinates
and reference coordinates . The block matching operation is performed repeatedly, for multiple

1505

sets of target integer coordinates within the specified window. These instructions effectively search
a region or “window” within the target texture and identify the window coordinates where the
minimum or maximum error metric is found. These instructions only support single component
image formats.

The target coordinates are combinations of coordinates from to
 where and are specified by

VkSamplerBlockMatchWindowCreateInfoQCOM::windowExtent. At each each target coordinate, a
block matching operation is performed, resulting in a difference metric. The reference coordinate

 is fixed. The block matching operation is repeated times.

The resulting minimum or maximum error is returned in the R component of the output. The
integer window coordinates are returned in the G and B components of the output. The A
component is 0. The minimum or maximum behavior is selected by
VkSamplerBlockMatchWindowCreateInfoQCOM::windowCompareMode.

The following pseudocode describes the operation opImageBlockMatchWindowSAD. The pseudocode for
opImageBlockMatchWindowSSD follows an identical pattern.

vec4 opImageBlockMatchGatherSAD(sampler2D target,
 uvec2 targetCoord,
 samler2D reference,
 uvec2 refCoord,
 uvec2 blocksize) {
 // Two parameters are sourced from the VkSampler associated with
 // `target`:
 // compareMode (which can be either `MIN` or `MAX`)
 // uvec2 window (which defines the search window)

 minSAD = INF;
 maxSAD = -INF;
 uvec2 minCoord;
 uvec2 maxCoord;

 for (uint x=0, x<window.width; x++) {
 for (uint y=0; y<window.height; y++) {
 float SAD = textureBlockMatchSAD(target,
 targetCoord + uvec2(x, y),
 reference,
 refCoord,
 blocksize).x;
 if (SAD < minSAD) {
 minSAD = SAD;
 minCoord = uvec2(x,y);
 }
 if (SAD > maxSAD) {
 maxSAD = SAD;
 maxCoord = uvec2(x,y);
 }
 }

1506

 }
 if (compareMode==MIN) {
 return vec4(minSAD, minCoord.x, minCoord.y, 0.0);
 } else {
 return vec4(maxSAD, maxCoord.x, maxCoord.y, 0.0);
 }
}

Block Matching Gather Operation

Block matching Gather SPIR-V instructions opImageBlockMatchGatherSAD and
opImageBlockMatchGatherSSD specify two sets of 2D integer texel coordinates: target coordinates
and reference coordinates .

These instructions perform the block matching operation 4 times, using integer target coordinates
, , , and . The R component from each of those 4 operations is gathered

and returned in the R, G, B, and A components of the output respectively. For each block match
operation, the reference coordinate is . For each block match operation, only the R component
of the target and reference images are compared. The following pseudocode describes the
operation opImageBlockMatchGatherSAD. The pseudocode for opImageBlockMatchGatherSSD
follows an identical pattern.

vec4 opImageBlockMatchGatherSAD(sampler2D target,
 uvec2 targetCoord,
 samler2D reference,
 uvec2 refCoord,
 uvec2 blocksize) {
 vec4 out;
 for (uint x=0, x<4; x++) {
 float SAD = textureBlockMatchSAD(target,
 targetCoord + uvec2(x, 0),
 reference,
 refCoord,
 blocksize).x;
 if (x == 0) {
 out.x = SAD;
 }
 if (x == 1) {
 out.y = SAD;
 }
 if (x == 2) {
 out.z = SAD;
 }
 if (x == 3) {
 out.w = SAD;
 }
 }
 return out;
}

1507

16.12. Box Filter Sampling
The SPIR-V instruction OpImageBoxFilterQCOM specifies texture box filtering operation where a
weighted average of a region of texels is computed, with the weights proportional to the coverage of
each of the texels.

In addition to the inputs that would be accepted by an equivalent OpImageSample* instruction,
OpImageBoxFilterQCOM accepts one additional input, boxSize which specifies the width and height in
texels of the region to be averaged.

The figure below shows an example of using OpImageBoxFilterQCOM to sample from a 8 × 4 texel two-
dimensional image, with unnormalized texture coordinates (4.125, 2.625) and boxSize of (2.75, 2.25).
The filter will read 12 texel values and compute a weights based portion of of each texel covered by
the box.

0 1 2 3 4 5 6 7i

0.0 8.0u

0.0 1.0s

3

2

1

0

j

4.0

0.0

v

1.0

0.0

t

 i0j0

 i3j2

 i0j0 i1j0

 startFracU = 0.75

 filterWidth = 4

 endFracU = 0.5

(u,v) = (4.125, 2.625)

 boxWidth=2.75

Figure 14. Box Filter Sampling Example

If boxSize has height and width both equal to 1.0, then this instruction will behave as traditional
bilinear filtering. The boxSize parameter must be greater than or equal to 1.0 and must not be
greater than VkPhysicalDeviceImageProcessingPropertiesQCOM.maxBoxFilterBlockSize.

16.12.1. Box Filter Sampler Parameters

The input sampler must be created with addressModeU and addressModeV, equal to
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER with
VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK.

16.12.2. Box Filter Operation

The 2D unnormalized texel coordinates are transformed by to specify integer texel
coordinates of the bottom left texel for the filter.

1508

where and are specified by the code:(x,y) components of the boxSize operand.

The filter dimensions are computed from the fractional portion of the
 coordinates and the .

where the number of fraction bits retained by is specified by VkPhysicalDeviceLimits
::subTexelPrecisionBits.

A set of neighboring integer texel coordinates are generated. The neighboring coordinates are
combinations of to and to , with being the top-left coordinate of
this set. The set is of size .

Each of the generated integer coordinates is transformed by texture wrapping operation,
followed by integer texel coordinate validation, If any coordinate fails coordinate validation, it is a
Border Texel and texel replacement is performed.

Horizontal weights to and vertical weights to
 are computed. Texels that are fully covered by the box will have a horizontal

and vertical weight of 1. Texels partially covered by the box will have will have a reduced weights
proportional to the coverage.

1509

The values of multiple texels, together with their horizontal and vertical weights, are combined to
produce a box filtered value.

When VkSamplerReductionModeCreateInfo::reductionMode is set to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, the above summation is used. However, if the
reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX, the process
operates on the above values, computing a component-wise minimum or maximum of the texels.

16.13. Image Operation Steps
Each step described in this chapter is performed by a subset of the image instructions:

• Texel Input Validation Operations, Format Conversion, Texel Replacement, Conversion to RGBA,
and Component Swizzle: Performed by all instructions except OpImageWrite.

• Depth Comparison: Performed by OpImage*Dref instructions.

• All Texel output operations: Performed by OpImageWrite.

• Projection: Performed by all OpImage*Proj instructions.

• Derivative Image Operations, Cube Map Operations, Scale Factor Operation, LOD Operation and
Image Level(s) Selection, and Texel Anisotropic Filtering: Performed by all OpImageSample* and
OpImageSparseSample* instructions.

• (s,t,r,q,a) to (u,v,w,a) Transformation, Wrapping, and (u,v,w,a) to (i,j,k,l,n) Transformation And
Array Layer Selection: Performed by all OpImageSample, OpImageSparseSample, and OpImage*Gather
instructions.

• Texel Gathering: Performed by OpImage*Gather instructions.

• Texel Footprint Evaluation: Performed by OpImageSampleFootprint instructions.

• Texel Filtering: Performed by all OpImageSample* and OpImageSparseSample* instructions.

• Sparse Residency: Performed by all OpImageSparse* instructions.

• (s,t,r,q,a) to (u,v,w,a) Transformation, Wrapping, and Weight Image Sampling: Performed by
OpImageWeightedSample* instructions.

• (s,t,r,q,a) to (u,v,w,a) Transformation, Wrapping, and Block Matching: Performed by
opImageBlockMatch* instructions.

• (s,t,r,q,a) to (u,v,w,a) Transformation, Wrapping, and Box Filter Sampling: Performed by
OpImageBoxFilter* instructions.

1510

16.14. Image Query Instructions

16.14.1. Image Property Queries

OpImageQuerySize, OpImageQuerySizeLod, OpImageQueryLevels, and OpImageQuerySamples query
properties of the image descriptor that would be accessed by a shader image operation. They return
0 if the bound descriptor is a null descriptor.

OpImageQuerySizeLod returns the size of the image level identified by the Level of Detail operand. If
that level does not exist in the image, and the descriptor is not null, then the value returned is
undefined.

16.14.2. Lod Query

OpImageQueryLod returns the Lod parameters that would be used in an image operation with the
given image and coordinates. If the descriptor that would be accessed is a null descriptor then (0,0)
is returned. Otherwise, the steps described in this chapter are performed as if for
OpImageSampleImplicitLod, up to Scale Factor Operation, LOD Operation and Image Level(s)
Selection. The return value is the vector (λ', dl). These values may be subject to implementation-
specific maxima and minima for very large, out-of-range values.

1511

Chapter 17. Fragment Density Map
Operations

17.1. Fragment Density Map Operations Overview
When a fragment is generated in a render pass that has a fragment density map attachment, its
area is determined by the properties of the local framebuffer region that the fragment occupies.
The framebuffer is divided into a uniform grid of these local regions, and their fragment area
property is derived from the density map with the following operations:

• Fetch density value

◦ Component swizzle

◦ Component mapping

• Fragment area conversion

◦ Fragment area filter

◦ Fragment area clamp

17.2. Fetch Density Value
Each local framebuffer region at center coordinate (x,y) fetches a texel from the fragment density
map.

First, the local framebuffer region center coordinate (x,y) is offset by the value specified in
VkSubpassFragmentDensityMapOffsetEndInfoQCOM. If no offset is specified, then the default offset
(0,0) is used. The offsetted coordinate (x',y') is computed as follows:

The offsetted coordinate (x',y') fetches a texel from the fragment density map at integer
coordinates:

Where the size of each region in the framebuffer is:

1512

This region is subject to the limits in VkPhysicalDeviceFragmentDensityMapPropertiesEXT and
therefore the final region size is clamped:

When multiview is enabled for the render pass and the fragment density map attachment view was
created with layerCount greater than 1, the layer used for offsets and for fetching from the fragment
density map is:

Otherwise:

The texel fetched from the density map at (i,j,layer) is next converted to density with the following
operations.

17.2.1. Component Swizzle

The components member of VkImageViewCreateInfo is applied to the fetched texel as defined in
Image component swizzle.

17.2.2. Component Mapping

The swizzled texel’s components are mapped to a density value:

17.3. Fragment Area Conversion
Fragment area for the framebuffer region is undefined if the density fetched is not a normalized
floating-point value greater than 0.0. Otherwise, the fetched fragment area for that region is
derived as:

1513

17.3.1. Fragment Area Filter

Optionally, the implementation may fetch additional density map texels in an implementation
defined window around (i,j). The texels follow the standard conversion steps up to and including
fragment area conversion.

A single fetched fragment area for the framebuffer region is chosen by the implementation and
must have an area between the min and max areas of the fetched set.

17.3.2. Fragment Area Clamp

The implementation may clamp the fetched fragment area to one that it supports. The clamped
fragment area must have a size less than or equal to the original fetched value. Implementations
may vary the supported set of fragment areas per framebuffer region. Fragment area (1,1) must
always be in the supported set.

Note

For example, if the fetched fragment area is (1,4) but the implementation only
supports areas of {(1,1),(2,2)}, it could choose to clamp the area to (2,2) since it has
the same size as (1,4). While this would produce fragments that have lower quality
strictly in the x-axis, the overall density is maintained.

The clamped fragment area is assigned to the corresponding framebuffer region.

1514

Chapter 18. Queries
Queries provide a mechanism to return information about the processing of a sequence of Vulkan
commands. Query operations are asynchronous, and as such, their results are not returned
immediately. Instead, their results, and their availability status are stored in a Query Pool. The state
of these queries can be read back on the host, or copied to a buffer object on the device.

The supported query types are Occlusion Queries, Pipeline Statistics Queries, Result Status Queries,
Video Encode Feedback Queries and Timestamp Queries. Performance Queries are supported if the
associated extension is available. Transform Feedback Queries are supported if the associated
extension is available. Intel Performance Queries are supported if the associated extension is
available. Mesh Shader Queries are supported if the associated extension is available.

Several additional queries with specific purposes associated with ray tracing are available if the
corresponding extensions are supported, as described for VkQueryType.

18.1. Query Pools
Queries are managed using query pool objects. Each query pool is a collection of a specific number
of queries of a particular type.

Query pools are represented by VkQueryPool handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkQueryPool)

To create a query pool, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateQueryPool(
 VkDevice device,
 const VkQueryPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkQueryPool* pQueryPool);

• device is the logical device that creates the query pool.

• pCreateInfo is a pointer to a VkQueryPoolCreateInfo structure containing the number and type
of queries to be managed by the pool.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pQueryPool is a pointer to a VkQueryPool handle in which the resulting query pool object is
returned.

Valid Usage (Implicit)

• VUID-vkCreateQueryPool-device-parameter

1515

device must be a valid VkDevice handle

• VUID-vkCreateQueryPool-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkQueryPoolCreateInfo structure

• VUID-vkCreateQueryPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateQueryPool-pQueryPool-parameter
pQueryPool must be a valid pointer to a VkQueryPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkQueryPoolCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkQueryPoolCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkQueryPoolCreateFlags flags;
 VkQueryType queryType;
 uint32_t queryCount;
 VkQueryPipelineStatisticFlags pipelineStatistics;
} VkQueryPoolCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• queryType is a VkQueryType value specifying the type of queries managed by the pool.

• queryCount is the number of queries managed by the pool.

• pipelineStatistics is a bitmask of VkQueryPipelineStatisticFlagBits specifying which counters
will be returned in queries on the new pool, as described below in Pipeline Statistics Queries.

pipelineStatistics is ignored if queryType is not VK_QUERY_TYPE_PIPELINE_STATISTICS.

1516

Valid Usage

• VUID-VkQueryPoolCreateInfo-queryType-00791
If the pipelineStatisticsQuery feature is not enabled, queryType must not be
VK_QUERY_TYPE_PIPELINE_STATISTICS

• VUID-VkQueryPoolCreateInfo-meshShaderQueries-07068
If the meshShaderQueries feature is not enabled, queryType must not be
VK_QUERY_TYPE_MESH_PRIMITIVES_GENERATED_EXT

• VUID-VkQueryPoolCreateInfo-meshShaderQueries-07069
If the meshShaderQueries feature is not enabled, and queryType is
VK_QUERY_TYPE_PIPELINE_STATISTICS, pipelineStatistics must not contain
VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT or
VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT

• VUID-VkQueryPoolCreateInfo-queryType-00792
If queryType is VK_QUERY_TYPE_PIPELINE_STATISTICS, pipelineStatistics must be a valid
combination of VkQueryPipelineStatisticFlagBits values

• VUID-VkQueryPoolCreateInfo-queryType-09534
If queryType is VK_QUERY_TYPE_PIPELINE_STATISTICS, pipelineStatistics must not be zero

• VUID-VkQueryPoolCreateInfo-queryType-03222
If queryType is VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, the pNext chain must include a
VkQueryPoolPerformanceCreateInfoKHR structure

• VUID-VkQueryPoolCreateInfo-queryCount-02763
queryCount must be greater than 0

• VUID-VkQueryPoolCreateInfo-queryType-07133
If queryType is VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR, then the pNext chain must
include a VkVideoProfileInfoKHR structure with videoCodecOperation specifying an
encode operation

• VUID-VkQueryPoolCreateInfo-queryType-07906
If queryType is VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR, then the pNext chain must
include a VkQueryPoolVideoEncodeFeedbackCreateInfoKHR structure

• VUID-VkQueryPoolCreateInfo-queryType-07907
If queryType is VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR, and the pNext chain includes a
VkVideoProfileInfoKHR structure and a
VkQueryPoolVideoEncodeFeedbackCreateInfoKHR structure, then
VkQueryPoolVideoEncodeFeedbackCreateInfoKHR::encodeFeedbackFlags must not contain
any bits that are not set in VkVideoEncodeCapabilitiesKHR::supportedEncodeFeedbackFlags,
as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile described
by VkVideoProfileInfoKHR and its pNext chain

Valid Usage (Implicit)

• VUID-VkQueryPoolCreateInfo-sType-sType

1517

sType must be VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO

• VUID-VkQueryPoolCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkQueryPoolPerformanceCreateInfoKHR,
VkQueryPoolPerformanceQueryCreateInfoINTEL,
VkQueryPoolVideoEncodeFeedbackCreateInfoKHR, VkVideoDecodeAV1ProfileInfoKHR,
VkVideoDecodeH264ProfileInfoKHR, VkVideoDecodeH265ProfileInfoKHR,
VkVideoDecodeUsageInfoKHR, VkVideoEncodeH264ProfileInfoKHR,
VkVideoEncodeH265ProfileInfoKHR, VkVideoEncodeUsageInfoKHR, or
VkVideoProfileInfoKHR

• VUID-VkQueryPoolCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkQueryPoolCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkQueryPoolCreateInfo-queryType-parameter
queryType must be a valid VkQueryType value

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueryPoolCreateFlags;

VkQueryPoolCreateFlags is a bitmask type for setting a mask, but is currently reserved for future use.

The VkQueryPoolPerformanceCreateInfoKHR structure is defined as:

// Provided by VK_KHR_performance_query
typedef struct VkQueryPoolPerformanceCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t queueFamilyIndex;
 uint32_t counterIndexCount;
 const uint32_t* pCounterIndices;
} VkQueryPoolPerformanceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• queueFamilyIndex is the queue family index to create this performance query pool for.

• counterIndexCount is the length of the pCounterIndices array.

• pCounterIndices is a pointer to an array of indices into the
vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR::pCounters to enable
in this performance query pool.

1518

Valid Usage

• VUID-VkQueryPoolPerformanceCreateInfoKHR-queueFamilyIndex-03236
queueFamilyIndex must be a valid queue family index of the device

• VUID-VkQueryPoolPerformanceCreateInfoKHR-performanceCounterQueryPools-03237
The performanceCounterQueryPools feature must be enabled

• VUID-VkQueryPoolPerformanceCreateInfoKHR-pCounterIndices-03321
Each element of pCounterIndices must be in the range of counters reported by
vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR for the queue family
specified in queueFamilyIndex

Valid Usage (Implicit)

• VUID-VkQueryPoolPerformanceCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_QUERY_POOL_PERFORMANCE_CREATE_INFO_KHR

• VUID-VkQueryPoolPerformanceCreateInfoKHR-pCounterIndices-parameter
pCounterIndices must be a valid pointer to an array of counterIndexCount uint32_t values

• VUID-VkQueryPoolPerformanceCreateInfoKHR-counterIndexCount-arraylength
counterIndexCount must be greater than 0

To query the number of passes required to query a performance query pool on a physical device,
call:

// Provided by VK_KHR_performance_query
void vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR(
 VkPhysicalDevice physicalDevice,
 const VkQueryPoolPerformanceCreateInfoKHR* pPerformanceQueryCreateInfo,
 uint32_t* pNumPasses);

• physicalDevice is the handle to the physical device whose queue family performance query
counter properties will be queried.

• pPerformanceQueryCreateInfo is a pointer to a VkQueryPoolPerformanceCreateInfoKHR of the
performance query that is to be created.

• pNumPasses is a pointer to an integer related to the number of passes required to query the
performance query pool, as described below.

The pPerformanceQueryCreateInfo member VkQueryPoolPerformanceCreateInfoKHR::queueFamilyIndex
must be a queue family of physicalDevice. The number of passes required to capture the counters
specified in the pPerformanceQueryCreateInfo member VkQueryPoolPerformanceCreateInfoKHR
::pCounters is returned in pNumPasses.

1519

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR-physicalDevice-
parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR-
pPerformanceQueryCreateInfo-parameter
pPerformanceQueryCreateInfo must be a valid pointer to a valid
VkQueryPoolPerformanceCreateInfoKHR structure

• VUID-vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR-pNumPasses-
parameter
pNumPasses must be a valid pointer to a uint32_t value

To destroy a query pool, call:

// Provided by VK_VERSION_1_0
void vkDestroyQueryPool(
 VkDevice device,
 VkQueryPool queryPool,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the query pool.

• queryPool is the query pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyQueryPool-queryPool-00793
All submitted commands that refer to queryPool must have completed execution

• VUID-vkDestroyQueryPool-queryPool-00794
If VkAllocationCallbacks were provided when queryPool was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyQueryPool-queryPool-00795
If no VkAllocationCallbacks were provided when queryPool was created, pAllocator must
be NULL

Note

Applications can verify that queryPool can be destroyed by checking that
vkGetQueryPoolResults() without the VK_QUERY_RESULT_PARTIAL_BIT flag returns
VK_SUCCESS for all queries that are used in command buffers submitted for
execution.

1520

Valid Usage (Implicit)

• VUID-vkDestroyQueryPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyQueryPool-queryPool-parameter
If queryPool is not VK_NULL_HANDLE, queryPool must be a valid VkQueryPool handle

• VUID-vkDestroyQueryPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyQueryPool-queryPool-parent
If queryPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to queryPool must be externally synchronized

Possible values of VkQueryPoolCreateInfo::queryType, specifying the type of queries managed by the
pool, are:

// Provided by VK_VERSION_1_0
typedef enum VkQueryType {
 VK_QUERY_TYPE_OCCLUSION = 0,
 VK_QUERY_TYPE_PIPELINE_STATISTICS = 1,
 VK_QUERY_TYPE_TIMESTAMP = 2,
 // Provided by VK_KHR_video_queue
 VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR = 1000023000,
 // Provided by VK_EXT_transform_feedback
 VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT = 1000028004,
 // Provided by VK_KHR_performance_query
 VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR = 1000116000,
 // Provided by VK_KHR_acceleration_structure
 VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR = 1000150000,
 // Provided by VK_KHR_acceleration_structure
 VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR = 1000150001,
 // Provided by VK_NV_ray_tracing
 VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_NV = 1000165000,
 // Provided by VK_INTEL_performance_query
 VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL = 1000210000,
 // Provided by VK_KHR_video_encode_queue
 VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR = 1000299000,
 // Provided by VK_EXT_mesh_shader
 VK_QUERY_TYPE_MESH_PRIMITIVES_GENERATED_EXT = 1000328000,
 // Provided by VK_EXT_primitives_generated_query
 VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT = 1000382000,
 // Provided by VK_KHR_ray_tracing_maintenance1

1521

 VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR =
1000386000,
 // Provided by VK_KHR_ray_tracing_maintenance1
 VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR = 1000386001,
 // Provided by VK_EXT_opacity_micromap
 VK_QUERY_TYPE_MICROMAP_SERIALIZATION_SIZE_EXT = 1000396000,
 // Provided by VK_EXT_opacity_micromap
 VK_QUERY_TYPE_MICROMAP_COMPACTED_SIZE_EXT = 1000396001,
} VkQueryType;

• VK_QUERY_TYPE_OCCLUSION specifies an occlusion query.

• VK_QUERY_TYPE_PIPELINE_STATISTICS specifies a pipeline statistics query.

• VK_QUERY_TYPE_TIMESTAMP specifies a timestamp query.

• VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR specifies a performance query.

• VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT specifies a transform feedback query.

• VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT specifies a primitives generated query.

• VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR specifies a acceleration structure size
query for use with vkCmdWriteAccelerationStructuresPropertiesKHR or
vkWriteAccelerationStructuresPropertiesKHR.

• VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR specifies a serialization
acceleration structure size query.

• VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR specifies an acceleration structure size query
for use with vkCmdWriteAccelerationStructuresPropertiesKHR or
vkWriteAccelerationStructuresPropertiesKHR.

• VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR specifies a
serialization acceleration structure pointer count query.

• VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_NV specifies an acceleration structure size
query for use with vkCmdWriteAccelerationStructuresPropertiesNV.

• VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL specifies a Intel performance query.

• VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR specifies a result status query.

• VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR specifies a video encode feedback query.

• VK_QUERY_TYPE_MESH_PRIMITIVES_GENERATED_EXT specifies a generated mesh primitives query.

18.2. Query Operation
The operation of queries is controlled by the commands vkCmdBeginQuery, vkCmdEndQuery,
vkCmdBeginQueryIndexedEXT, vkCmdEndQueryIndexedEXT, vkCmdResetQueryPool,
vkCmdCopyQueryPoolResults, vkCmdWriteTimestamp2, and vkCmdWriteTimestamp.

In order for a VkCommandBuffer to record query management commands, the queue family for which
its VkCommandPool was created must support the appropriate type of operations (graphics, compute)
suitable for the query type of a given query pool.

1522

Each query in a query pool has a status that is either unavailable or available, and also has state to
store the numerical results of a query operation of the type requested when the query pool was
created. Resetting a query via vkCmdResetQueryPool or vkResetQueryPool sets the status to
unavailable and makes the numerical results undefined. A query is made available by the
operation of vkCmdEndQuery, vkCmdEndQueryIndexedEXT, vkCmdWriteTimestamp2, or
vkCmdWriteTimestamp. Both the availability status and numerical results can be retrieved by
calling either vkGetQueryPoolResults or vkCmdCopyQueryPoolResults.

After query pool creation, each query is in an uninitialized state and must be reset before it is used.
Queries must also be reset between uses.

If a logical device includes multiple physical devices, then each command that writes a query must
execute on a single physical device, and any call to vkCmdBeginQuery must execute the
corresponding vkCmdEndQuery command on the same physical device.

To reset a range of queries in a query pool on a queue, call:

// Provided by VK_VERSION_1_0
void vkCmdResetQueryPool(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the handle of the query pool managing the queries being reset.

• firstQuery is the initial query index to reset.

• queryCount is the number of queries to reset.

When executed on a queue, this command sets the status of query indices [firstQuery, firstQuery +
queryCount - 1] to unavailable.

This command defines an execution dependency between other query commands that reference
the same query.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by firstQuery and queryCount that occur earlier in submission order.

The second synchronization scope includes all commands which reference the queries in queryPool
indicated by firstQuery and queryCount that occur later in submission order.

The operation of this command happens after the first scope and happens before the second scope.

If the queryType used to create queryPool was VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, this command
sets the status of query indices [firstQuery, firstQuery + queryCount - 1] to unavailable for each pass
of queryPool, as indicated by a call to
vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR.

1523

Note

Because vkCmdResetQueryPool resets all the passes of the indicated queries,
applications must not record a vkCmdResetQueryPool command for a queryPool
created with VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR in a command buffer that needs
to be submitted multiple times as indicated by a call to
vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR. Otherwise
applications will never be able to complete the recorded queries.

Valid Usage

• VUID-vkCmdResetQueryPool-firstQuery-09436
firstQuery must be less than the number of queries in queryPool

• VUID-vkCmdResetQueryPool-firstQuery-09437
The sum of firstQuery and queryCount must be less than or equal to the number of queries
in queryPool

• VUID-vkCmdResetQueryPool-None-02841
All queries used by the command must not be active

• VUID-vkCmdResetQueryPool-firstQuery-02862
If queryPool was created with VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, this command must
not be recorded in a command buffer that, either directly or through secondary command
buffers, also contains begin commands for a query from the set of queries [firstQuery,
firstQuery + queryCount - 1]

Valid Usage (Implicit)

• VUID-vkCmdResetQueryPool-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResetQueryPool-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdResetQueryPool-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResetQueryPool-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, encode, or optical flow operations

• VUID-vkCmdResetQueryPool-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResetQueryPool-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdResetQueryPool-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

1524

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics
Compute
Decode
Encode
Opticalflow

Action

To reset a range of queries in a query pool on the host, call:

// Provided by VK_VERSION_1_2
void vkResetQueryPool(
 VkDevice device,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount);

or the equivalent command

// Provided by VK_EXT_host_query_reset
void vkResetQueryPoolEXT(
 VkDevice device,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount);

• device is the logical device that owns the query pool.

• queryPool is the handle of the query pool managing the queries being reset.

• firstQuery is the initial query index to reset.

• queryCount is the number of queries to reset.

This command sets the status of query indices [firstQuery, firstQuery + queryCount - 1] to
unavailable.

If queryPool is VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR this command sets the status of query indices

1525

[firstQuery, firstQuery + queryCount - 1] to unavailable for each pass.

Valid Usage

• VUID-vkResetQueryPool-firstQuery-09436
firstQuery must be less than the number of queries in queryPool

• VUID-vkResetQueryPool-firstQuery-09437
The sum of firstQuery and queryCount must be less than or equal to the number of queries
in queryPool

• VUID-vkResetQueryPool-None-02665
The hostQueryReset feature must be enabled

• VUID-vkResetQueryPool-firstQuery-02741
Submitted commands that refer to the range specified by firstQuery and queryCount in
queryPool must have completed execution

• VUID-vkResetQueryPool-firstQuery-02742
The range of queries specified by firstQuery and queryCount in queryPool must not be in
use by calls to vkGetQueryPoolResults or vkResetQueryPool in other threads

Valid Usage (Implicit)

• VUID-vkResetQueryPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetQueryPool-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkResetQueryPool-queryPool-parent
queryPool must have been created, allocated, or retrieved from device

Once queries are reset and ready for use, query commands can be issued to a command buffer.
Occlusion queries and pipeline statistics queries count events - drawn samples and pipeline stage
invocations, respectively - resulting from commands that are recorded between a
vkCmdBeginQuery command and a vkCmdEndQuery command within a specified command
buffer, effectively scoping a set of drawing and/or dispatching commands. Timestamp queries write
timestamps to a query pool. Performance queries record performance counters to a query pool.

A query must begin and end in the same command buffer, although if it is a primary command
buffer, and the inheritedQueries feature is enabled, it can execute secondary command buffers
during the query operation. For a secondary command buffer to be executed while a query is
active, it must set the occlusionQueryEnable, queryFlags, and/or pipelineStatistics members of
VkCommandBufferInheritanceInfo to conservative values, as described in the Command Buffer
Recording section. A query must either begin and end inside the same subpass of a render pass
instance, or must both begin and end outside of a render pass instance (i.e. contain entire render
pass instances).

1526

If queries are used while executing a render pass instance that has multiview enabled, the query
uses N consecutive query indices in the query pool (starting at query) where N is the number of bits
set in the view mask in the subpass the query is used in. How the numerical results of the query are
distributed among the queries is implementation-dependent. For example, some implementations
may write each view’s results to a distinct query, while other implementations may write the total
result to the first query and write zero to the other queries. However, the sum of the results in all
the queries must accurately reflect the total result of the query summed over all views.
Applications can sum the results from all the queries to compute the total result.

Queries used with multiview rendering must not span subpasses, i.e. they must begin and end in
the same subpass.

A query must either begin and end inside the same video coding scope, or must both begin and end
outside of a video coding scope and must not contain entire video coding scopes.

To begin a query, call:

// Provided by VK_VERSION_1_0
void vkCmdBeginQuery(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t query,
 VkQueryControlFlags flags);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that will manage the results of the query.

• query is the query index within the query pool that will contain the results.

• flags is a bitmask of VkQueryControlFlagBits specifying constraints on the types of queries that
can be performed.

If the queryType of the pool is VK_QUERY_TYPE_OCCLUSION and flags contains
VK_QUERY_CONTROL_PRECISE_BIT, an implementation must return a result that matches the actual
number of samples passed. This is described in more detail in Occlusion Queries.

Calling vkCmdBeginQuery is equivalent to calling vkCmdBeginQueryIndexedEXT with the index
parameter set to zero.

After beginning a query, that query is considered active within the command buffer it was called in
until that same query is ended. Queries active in a primary command buffer when secondary
command buffers are executed are considered active for those secondary command buffers.

Furthermore, if the query is started within a video coding scope, the following command buffer
states are initialized for the query type:

• The active_query_index is set to the value specified by query.

• The last activatable query index is also set to the value specified by query.

Each video coding operation stores a result to the query corresponding to the current active query

1527

index, followed by incrementing the active query index. If the active query index gets incremented
past the last activatable query index, issuing any further video coding operations results in
undefined behavior.

Note

In practice, this means that currently no more than a single video coding operation
must be issued between a begin and end query pair.

This command defines an execution dependency between other query commands that reference
the same query.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur earlier in submission order.

The second synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur later in submission order.

The operation of this command happens after the first scope and happens before the second scope.

Valid Usage

• VUID-vkCmdBeginQuery-None-00807
All queries used by the command must be unavailable

• VUID-vkCmdBeginQuery-queryType-02804
The queryType used to create queryPool must not be VK_QUERY_TYPE_TIMESTAMP

• VUID-vkCmdBeginQuery-queryType-04728
The queryType used to create queryPool must not be
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR or
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR

• VUID-vkCmdBeginQuery-queryType-06741
The queryType used to create queryPool must not be
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR or
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR

• VUID-vkCmdBeginQuery-queryType-04729
The queryType used to create queryPool must not be
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_NV

• VUID-vkCmdBeginQuery-queryType-00800
If the occlusionQueryPrecise feature is not enabled, or the queryType used to create
queryPool was not VK_QUERY_TYPE_OCCLUSION, flags must not contain
VK_QUERY_CONTROL_PRECISE_BIT

• VUID-vkCmdBeginQuery-query-00802
query must be less than the number of queries in queryPool

• VUID-vkCmdBeginQuery-queryType-00803
If the queryType used to create queryPool was VK_QUERY_TYPE_OCCLUSION, the VkCommandPool
that commandBuffer was allocated from must support graphics operations

1528

• VUID-vkCmdBeginQuery-queryType-00804
If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any
of the pipelineStatistics indicate graphics operations, the VkCommandPool that
commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBeginQuery-queryType-00805
If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any
of the pipelineStatistics indicate compute operations, the VkCommandPool that
commandBuffer was allocated from must support compute operations

• VUID-vkCmdBeginQuery-commandBuffer-01885
commandBuffer must not be a protected command buffer

• VUID-vkCmdBeginQuery-query-00808
If called within a render pass instance, the sum of query and the number of bits set in the
current subpass’s view mask must be less than or equal to the number of queries in
queryPool

• VUID-vkCmdBeginQuery-queryType-07126
If the queryType used to create queryPool was VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR, then
the VkCommandPool that commandBuffer was allocated from must have been created with a
queue family index that supports result status queries, as indicated by
VkQueueFamilyQueryResultStatusPropertiesKHR::queryResultStatusSupport

• VUID-vkCmdBeginQuery-None-07127
If there is a bound video session, then there must be no active queries

• VUID-vkCmdBeginQuery-None-08370
If there is a bound video session, then it must not have been created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR

• VUID-vkCmdBeginQuery-queryType-07128
If the queryType used to create queryPool was VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR and
there is a bound video session, then queryPool must have been created with a
VkVideoProfileInfoKHR structure included in the pNext chain of VkQueryPoolCreateInfo
identical to the one specified in VkVideoSessionCreateInfoKHR::pVideoProfile the bound
video session was created with

• VUID-vkCmdBeginQuery-queryType-07129
If the queryType used to create queryPool was VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR,
then there must be a bound video session

• VUID-vkCmdBeginQuery-queryType-07130
If the queryType used to create queryPool was VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR and
there is a bound video session, then queryPool must have been created with a
VkVideoProfileInfoKHR structure included in the pNext chain of VkQueryPoolCreateInfo
identical to the one specified in VkVideoSessionCreateInfoKHR::pVideoProfile the bound
video session was created with

• VUID-vkCmdBeginQuery-queryType-07131
If the queryType used to create queryPool was not VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR or
VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR, then there must be no bound video session

• VUID-vkCmdBeginQuery-queryPool-01922

1529

queryPool must have been created with a queryType that differs from that of any queries
that are active within commandBuffer

• VUID-vkCmdBeginQuery-queryType-07070
If the queryType used to create queryPool was VK_QUERY_TYPE_MESH_PRIMITIVES_GENERATED_EXT
the VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginQuery-queryType-02327
If the queryType used to create queryPool was VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT
the VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginQuery-queryType-02328
If the queryType used to create queryPool was VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT
then VkPhysicalDeviceTransformFeedbackPropertiesEXT::transformFeedbackQueries must be
supported

• VUID-vkCmdBeginQuery-queryType-06687
If the queryType used to create queryPool was VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT the
VkCommandPool that commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBeginQuery-queryType-06688
If the queryType used to create queryPool was VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT then
primitivesGeneratedQuery must be enabled

• VUID-vkCmdBeginQuery-queryPool-07289
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, then the
VkQueryPoolPerformanceCreateInfoKHR::queueFamilyIndex queryPool was created with
must equal the queue family index of the VkCommandPool that commandBuffer was allocated
from

• VUID-vkCmdBeginQuery-queryPool-03223
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, the
profiling lock must have been held before vkBeginCommandBuffer was called on
commandBuffer

• VUID-vkCmdBeginQuery-queryPool-03224
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR and one
of the counters used to create queryPool was
VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_BUFFER_KHR, the query begin must be the first
recorded command in commandBuffer

• VUID-vkCmdBeginQuery-queryPool-03225
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR and one
of the counters used to create queryPool was
VK_PERFORMANCE_COUNTER_SCOPE_RENDER_PASS_KHR, the begin command must not be recorded
within a render pass instance

• VUID-vkCmdBeginQuery-queryPool-03226
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR and
another query pool with a queryType VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR has been used
within commandBuffer, its parent primary command buffer or secondary command buffer

1530

recorded within the same parent primary command buffer as commandBuffer, the
performanceCounterMultipleQueryPools feature must be enabled

• VUID-vkCmdBeginQuery-None-02863
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, this
command must not be recorded in a command buffer that, either directly or through
secondary command buffers, also contains a vkCmdResetQueryPool command affecting the
same query

Valid Usage (Implicit)

• VUID-vkCmdBeginQuery-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginQuery-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdBeginQuery-flags-parameter
flags must be a valid combination of VkQueryControlFlagBits values

• VUID-vkCmdBeginQuery-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginQuery-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdBeginQuery-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Graphics
Compute
Decode
Encode

Action
State

1531

To begin an indexed query, call:

// Provided by VK_EXT_transform_feedback
void vkCmdBeginQueryIndexedEXT(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t query,
 VkQueryControlFlags flags,
 uint32_t index);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that will manage the results of the query.

• query is the query index within the query pool that will contain the results.

• flags is a bitmask of VkQueryControlFlagBits specifying constraints on the types of queries that
can be performed.

• index is the query type specific index. When the query type is
VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT or VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT, the
index represents the vertex stream.

The vkCmdBeginQueryIndexedEXT command operates the same as the vkCmdBeginQuery command,
except that it also accepts a query type specific index parameter.

This command defines an execution dependency between other query commands that reference
the same query index.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by query and index that occur earlier in submission order.

The second synchronization scope includes all commands which reference the queries in queryPool
indicated by query and index that occur later in submission order.

The operation of this command happens after the first scope and happens before the second scope.

Valid Usage

• VUID-vkCmdBeginQueryIndexedEXT-None-00807
All queries used by the command must be unavailable

• VUID-vkCmdBeginQueryIndexedEXT-queryType-02804
The queryType used to create queryPool must not be VK_QUERY_TYPE_TIMESTAMP

• VUID-vkCmdBeginQueryIndexedEXT-queryType-04728
The queryType used to create queryPool must not be
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR or
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR

• VUID-vkCmdBeginQueryIndexedEXT-queryType-06741
The queryType used to create queryPool must not be

1532

VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR or
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR

• VUID-vkCmdBeginQueryIndexedEXT-queryType-04729
The queryType used to create queryPool must not be
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_NV

• VUID-vkCmdBeginQueryIndexedEXT-queryType-00800
If the occlusionQueryPrecise feature is not enabled, or the queryType used to create
queryPool was not VK_QUERY_TYPE_OCCLUSION, flags must not contain
VK_QUERY_CONTROL_PRECISE_BIT

• VUID-vkCmdBeginQueryIndexedEXT-query-00802
query must be less than the number of queries in queryPool

• VUID-vkCmdBeginQueryIndexedEXT-queryType-00803
If the queryType used to create queryPool was VK_QUERY_TYPE_OCCLUSION, the VkCommandPool
that commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBeginQueryIndexedEXT-queryType-00804
If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any
of the pipelineStatistics indicate graphics operations, the VkCommandPool that
commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBeginQueryIndexedEXT-queryType-00805
If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any
of the pipelineStatistics indicate compute operations, the VkCommandPool that
commandBuffer was allocated from must support compute operations

• VUID-vkCmdBeginQueryIndexedEXT-commandBuffer-01885
commandBuffer must not be a protected command buffer

• VUID-vkCmdBeginQueryIndexedEXT-query-00808
If called within a render pass instance, the sum of query and the number of bits set in the
current subpass’s view mask must be less than or equal to the number of queries in
queryPool

• VUID-vkCmdBeginQueryIndexedEXT-queryType-07126
If the queryType used to create queryPool was VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR, then
the VkCommandPool that commandBuffer was allocated from must have been created with a
queue family index that supports result status queries, as indicated by
VkQueueFamilyQueryResultStatusPropertiesKHR::queryResultStatusSupport

• VUID-vkCmdBeginQueryIndexedEXT-None-07127
If there is a bound video session, then there must be no active queries

• VUID-vkCmdBeginQueryIndexedEXT-None-08370
If there is a bound video session, then it must not have been created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR

• VUID-vkCmdBeginQueryIndexedEXT-queryType-07128
If the queryType used to create queryPool was VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR and
there is a bound video session, then queryPool must have been created with a
VkVideoProfileInfoKHR structure included in the pNext chain of VkQueryPoolCreateInfo
identical to the one specified in VkVideoSessionCreateInfoKHR::pVideoProfile the bound

1533

video session was created with

• VUID-vkCmdBeginQueryIndexedEXT-queryType-07129
If the queryType used to create queryPool was VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR,
then there must be a bound video session

• VUID-vkCmdBeginQueryIndexedEXT-queryType-07130
If the queryType used to create queryPool was VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR and
there is a bound video session, then queryPool must have been created with a
VkVideoProfileInfoKHR structure included in the pNext chain of VkQueryPoolCreateInfo
identical to the one specified in VkVideoSessionCreateInfoKHR::pVideoProfile the bound
video session was created with

• VUID-vkCmdBeginQueryIndexedEXT-queryType-07131
If the queryType used to create queryPool was not VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR or
VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR, then there must be no bound video session

• VUID-vkCmdBeginQueryIndexedEXT-queryPool-04753
If the queryPool was created with the same queryType as that of another active query
within commandBuffer, then index must not match the index used for the active query

• VUID-vkCmdBeginQueryIndexedEXT-queryType-02338
If the queryType used to create queryPool was VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT
the VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginQueryIndexedEXT-queryType-02339
If the queryType used to create queryPool was VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT
the index parameter must be less than VkPhysicalDeviceTransformFeedbackPropertiesEXT
::maxTransformFeedbackStreams

• VUID-vkCmdBeginQueryIndexedEXT-queryType-06692
If the queryType used to create queryPool was not
VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT and not
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT, the index must be zero

• VUID-vkCmdBeginQueryIndexedEXT-queryType-06689
If the queryType used to create queryPool was VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT the
VkCommandPool that commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBeginQueryIndexedEXT-queryType-06690
If the queryType used to create queryPool was VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT the
index parameter must be less than VkPhysicalDeviceTransformFeedbackPropertiesEXT
::maxTransformFeedbackStreams

• VUID-vkCmdBeginQueryIndexedEXT-queryType-06691
If the queryType used to create queryPool was VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT and
the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled, the index
parameter must be zero

• VUID-vkCmdBeginQueryIndexedEXT-queryType-06693
If the queryType used to create queryPool was VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT then
primitivesGeneratedQuery must be enabled

• VUID-vkCmdBeginQueryIndexedEXT-queryType-02341

1534

If the queryType used to create queryPool was VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT
then VkPhysicalDeviceTransformFeedbackPropertiesEXT::transformFeedbackQueries must be
supported

• VUID-vkCmdBeginQueryIndexedEXT-queryType-07071
The queryType used to create queryPool must not be
VK_QUERY_TYPE_MESH_PRIMITIVES_GENERATED_EXT

• VUID-vkCmdBeginQueryIndexedEXT-queryPool-07289
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, then the
VkQueryPoolPerformanceCreateInfoKHR::queueFamilyIndex queryPool was created with
must equal the queue family index of the VkCommandPool that commandBuffer was allocated
from

• VUID-vkCmdBeginQueryIndexedEXT-queryPool-03223
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, the
profiling lock must have been held before vkBeginCommandBuffer was called on
commandBuffer

• VUID-vkCmdBeginQueryIndexedEXT-queryPool-03224
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR and one
of the counters used to create queryPool was
VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_BUFFER_KHR, the query begin must be the first
recorded command in commandBuffer

• VUID-vkCmdBeginQueryIndexedEXT-queryPool-03225
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR and one
of the counters used to create queryPool was
VK_PERFORMANCE_COUNTER_SCOPE_RENDER_PASS_KHR, the begin command must not be recorded
within a render pass instance

• VUID-vkCmdBeginQueryIndexedEXT-queryPool-03226
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR and
another query pool with a queryType VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR has been used
within commandBuffer, its parent primary command buffer or secondary command buffer
recorded within the same parent primary command buffer as commandBuffer, the
performanceCounterMultipleQueryPools feature must be enabled

• VUID-vkCmdBeginQueryIndexedEXT-None-02863
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, this
command must not be recorded in a command buffer that, either directly or through
secondary command buffers, also contains a vkCmdResetQueryPool command affecting the
same query

Valid Usage (Implicit)

• VUID-vkCmdBeginQueryIndexedEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginQueryIndexedEXT-queryPool-parameter
queryPool must be a valid VkQueryPool handle

1535

• VUID-vkCmdBeginQueryIndexedEXT-flags-parameter
flags must be a valid combination of VkQueryControlFlagBits values

• VUID-vkCmdBeginQueryIndexedEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginQueryIndexedEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdBeginQueryIndexedEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBeginQueryIndexedEXT-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute
Decode
Encode

Action
State

Bits which can be set in vkCmdBeginQuery::flags, specifying constraints on the types of queries
that can be performed, are:

// Provided by VK_VERSION_1_0
typedef enum VkQueryControlFlagBits {
 VK_QUERY_CONTROL_PRECISE_BIT = 0x00000001,
} VkQueryControlFlagBits;

• VK_QUERY_CONTROL_PRECISE_BIT specifies the precision of occlusion queries.

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueryControlFlags;

1536

VkQueryControlFlags is a bitmask type for setting a mask of zero or more VkQueryControlFlagBits.

To end a query after the set of desired drawing or dispatching commands is executed, call:

// Provided by VK_VERSION_1_0
void vkCmdEndQuery(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t query);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that is managing the results of the query.

• query is the query index within the query pool where the result is stored.

The command completes the query in queryPool identified by query, and marks it as available.

This command defines an execution dependency between other query commands that reference
the same query.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur earlier in submission order.

The second synchronization scope includes only the operation of this command.

Calling vkCmdEndQuery is equivalent to calling vkCmdEndQueryIndexedEXT with the index parameter
set to zero.

Valid Usage

• VUID-vkCmdEndQuery-None-01923
All queries used by the command must be active

• VUID-vkCmdEndQuery-query-00810
query must be less than the number of queries in queryPool

• VUID-vkCmdEndQuery-commandBuffer-01886
commandBuffer must not be a protected command buffer

• VUID-vkCmdEndQuery-query-00812
If vkCmdEndQuery is called within a render pass instance, the sum of query and the number
of bits set in the current subpass’s view mask must be less than or equal to the number of
queries in queryPool

• VUID-vkCmdEndQuery-queryPool-03227
If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR and one
or more of the counters used to create queryPool was
VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_BUFFER_KHR, the vkCmdEndQuery must be the last
recorded command in commandBuffer

• VUID-vkCmdEndQuery-queryPool-03228

1537

If queryPool was created with a queryType of VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR and one
or more of the counters used to create queryPool was
VK_PERFORMANCE_COUNTER_SCOPE_RENDER_PASS_KHR, the vkCmdEndQuery must not be
recorded within a render pass instance

• VUID-vkCmdEndQuery-None-07007
If called within a subpass of a render pass instance, the corresponding vkCmdBeginQuery*
command must have been called previously within the same subpass

Valid Usage (Implicit)

• VUID-vkCmdEndQuery-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndQuery-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdEndQuery-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndQuery-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdEndQuery-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Graphics
Compute
Decode
Encode

Action
State

To end an indexed query after the set of desired drawing or dispatching commands is recorded,
call:

1538

// Provided by VK_EXT_transform_feedback
void vkCmdEndQueryIndexedEXT(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t query,
 uint32_t index);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that is managing the results of the query.

• query is the query index within the query pool where the result is stored.

• index is the query type specific index.

The command completes the query in queryPool identified by query and index, and marks it as
available.

The vkCmdEndQueryIndexedEXT command operates the same as the vkCmdEndQuery command,
except that it also accepts a query type specific index parameter.

This command defines an execution dependency between other query commands that reference
the same query index.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur earlier in submission order.

The second synchronization scope includes only the operation of this command.

Valid Usage

• VUID-vkCmdEndQueryIndexedEXT-None-02342
All queries used by the command must be active

• VUID-vkCmdEndQueryIndexedEXT-query-02343
query must be less than the number of queries in queryPool

• VUID-vkCmdEndQueryIndexedEXT-commandBuffer-02344
commandBuffer must not be a protected command buffer

• VUID-vkCmdEndQueryIndexedEXT-query-02345
If vkCmdEndQueryIndexedEXT is called within a render pass instance, the sum of query and
the number of bits set in the current subpass’s view mask must be less than or equal to
the number of queries in queryPool

• VUID-vkCmdEndQueryIndexedEXT-queryType-06694
If the queryType used to create queryPool was VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT
or VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT, the index parameter must be less than
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreams

• VUID-vkCmdEndQueryIndexedEXT-queryType-06695
If the queryType used to create queryPool was not
VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT and not

1539

VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT, the index must be zero

• VUID-vkCmdEndQueryIndexedEXT-queryType-06696
If the queryType used to create queryPool was VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT
or VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT, index must equal the index used to begin the
query

• VUID-vkCmdEndQueryIndexedEXT-None-07007
If called within a subpass of a render pass instance, the corresponding vkCmdBeginQuery*
command must have been called previously within the same subpass

Valid Usage (Implicit)

• VUID-vkCmdEndQueryIndexedEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndQueryIndexedEXT-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdEndQueryIndexedEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndQueryIndexedEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
decode, or encode operations

• VUID-vkCmdEndQueryIndexedEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdEndQueryIndexedEXT-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute
Decode
Encode

Action
State

1540

An application can retrieve results either by requesting they be written into application-provided
memory, or by requesting they be copied into a VkBuffer. In either case, the layout in memory is
defined as follows:

• The first query’s result is written starting at the first byte requested by the command, and each
subsequent query’s result begins stride bytes later.

• Occlusion queries, pipeline statistics queries, transform feedback queries, primitives generated
queries, mesh shader queries, video encode feedback queries, and timestamp queries store
results in a tightly packed array of unsigned integers, either 32- or 64-bits as requested by the
command, storing the numerical results and, if requested, the availability status.

• Performance queries store results in a tightly packed array whose type is determined by the
unit member of the corresponding VkPerformanceCounterKHR.

• If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is used, the final element of each query’s result is an
integer indicating whether the query’s result is available, with any non-zero value indicating
that it is available.

• If VK_QUERY_RESULT_WITH_STATUS_BIT_KHR is used, the final element of each query’s result is an
integer value indicating that status of the query result. Positive values indicate success, negative
values indicate failure, and 0 indicates that the result is not yet available. Specific error codes
are encoded in the VkQueryResultStatusKHR enumeration.

• Occlusion queries write one integer value - the number of samples passed. Pipeline statistics
queries write one integer value for each bit that is enabled in the pipelineStatistics when the
pool is created, and the statistics values are written in bit order starting from the least
significant bit. Timestamp queries write one integer value. Performance queries write one
VkPerformanceCounterResultKHR value for each VkPerformanceCounterKHR in the query.
Transform feedback queries write two integers; the first integer is the number of primitives
successfully written to the corresponding transform feedback buffer and the second is the
number of primitives output to the vertex stream, regardless of whether they were successfully
captured or not. In other words, if the transform feedback buffer was sized too small for the
number of primitives output by the vertex stream, the first integer represents the number of
primitives actually written and the second is the number that would have been written if all the
transform feedback buffers associated with that vertex stream were large enough. Primitives
generated queries write the number of primitives output to the vertex stream, regardless of
whether transform feedback is active or not, or whether they were successfully captured by
transform feedback or not. This is identical to the second integer of the transform feedback
queries if transform feedback is active. Mesh shader queries write a single integer. Video
encode feedback queries write one or more integer values for each bit that is enabled in
VkQueryPoolVideoEncodeFeedbackCreateInfoKHR::encodeFeedbackFlags when the pool is
created, and the feedback values are written in bit order starting from the least significant bit,
as described here.

• If more than one query is retrieved and stride is not at least as large as the size of the array of
values corresponding to a single query, the values written to memory are undefined.

To retrieve status and results for a set of queries, call:

// Provided by VK_VERSION_1_0

1541

VkResult vkGetQueryPoolResults(
 VkDevice device,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount,
 size_t dataSize,
 void* pData,
 VkDeviceSize stride,
 VkQueryResultFlags flags);

• device is the logical device that owns the query pool.

• queryPool is the query pool managing the queries containing the desired results.

• firstQuery is the initial query index.

• queryCount is the number of queries to read.

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written

• stride is the stride in bytes between results for individual queries within pData.

• flags is a bitmask of VkQueryResultFlagBits specifying how and when results are returned.

Any results written for a query are written according to a layout dependent on the query type.

If no bits are set in flags, and all requested queries are in the available state, results are written as
an array of 32-bit unsigned integer values. Behavior when not all queries are available is described
below.

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, results for all queries in queryPool identified by
firstQuery and queryCount are copied to pData, along with an extra availability or status value
written directly after the results of each query and interpreted as an unsigned integer. A value of
zero indicates that the results are not yet available, otherwise the query is complete and results are
available. The size of the availability or status values is 64 bits if VK_QUERY_RESULT_64_BIT is set in
flags. Otherwise, it is 32 bits.

If VK_QUERY_RESULT_WITH_STATUS_BIT_KHR is set, results for all queries in queryPool identified by
firstQuery and queryCount are copied to pData, along with an extra status value written directly after
the results of each query and interpreted as a signed integer. A value of zero indicates that the
results are not yet available. Positive values indicate that the operations within the query
completed successfully, and the query results are valid. Negative values indicate that the operations
within the query completed unsuccessfully.

VkQueryResultStatusKHR defines specific meaning for values returned here, though
implementations are free to return other values.

If the status value written is negative, indicating that the operations within the query completed
unsuccessfully, then all other results written by this command are undefined unless otherwise
specified for any of the results of the used query type.

 Note

1542

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT or VK_QUERY_RESULT_WITH_STATUS_BIT_KHR
is set, the layout of data in the buffer is a (result,availability) or (result,status) pair
for each query returned, and stride is the stride between each pair.

Results for any available query written by this command are final and represent the final result of
the query. If VK_QUERY_RESULT_PARTIAL_BIT is set, then for any query that is unavailable, an
intermediate result between zero and the final result value is written for that query. Otherwise, any
result written by this command is undefined.

If VK_QUERY_RESULT_64_BIT is set, results and, if returned, availability or status values for all queries
are written as an array of 64-bit values. If the queryPool was created with
VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, results for each query are written as an array of the type
indicated by VkPerformanceCounterKHR::storage for the counter being queried. Otherwise, results
and availability or status values are written as an array of 32-bit values. If an unsigned integer
query’s value overflows the result type, the value may either wrap or saturate. If a signed integer
query’s value overflows the result type, the value is undefined. If a floating point query’s value is
not representable as the result type, the value is undefined.

If VK_QUERY_RESULT_WAIT_BIT is set, this command defines an execution dependency with any earlier
commands that writes one of the identified queries. The first synchronization scope includes all
instances of vkCmdEndQuery, vkCmdEndQueryIndexedEXT, vkCmdWriteTimestamp2, and
vkCmdWriteTimestamp that reference any query in queryPool indicated by firstQuery and
queryCount. The second synchronization scope includes the host operations of this command.

If VK_QUERY_RESULT_WAIT_BIT is not set, vkGetQueryPoolResults may return VK_NOT_READY if there are
queries in the unavailable state.

Note

Applications must take care to ensure that use of the VK_QUERY_RESULT_WAIT_BIT bit
has the desired effect.

For example, if a query has been used previously and a command buffer records
the commands vkCmdResetQueryPool, vkCmdBeginQuery, and vkCmdEndQuery for that
query, then the query will remain in the available state until vkResetQueryPool is
called or the vkCmdResetQueryPool command executes on a queue. Applications can
use fences or events to ensure that a query has already been reset before checking
for its results or availability status. Otherwise, a stale value could be returned
from a previous use of the query.

The above also applies when VK_QUERY_RESULT_WAIT_BIT is used in combination with
VK_QUERY_RESULT_WITH_AVAILABILITY_BIT. In this case, the returned availability
status may reflect the result of a previous use of the query unless vkResetQueryPool
is called or the vkCmdResetQueryPool command has been executed since the last use
of the query.

A similar situation can arise with the VK_QUERY_RESULT_WITH_STATUS_BIT_KHR flag.

Note

1543

Applications can double-buffer query pool usage, with a pool per frame, and reset
queries at the end of the frame in which they are read.

Valid Usage

• VUID-vkGetQueryPoolResults-firstQuery-09436
firstQuery must be less than the number of queries in queryPool

• VUID-vkGetQueryPoolResults-firstQuery-09437
The sum of firstQuery and queryCount must be less than or equal to the number of queries
in queryPool

• VUID-vkGetQueryPoolResults-queryCount-09438
If queryCount is greater than 1, stride must not be zero

• VUID-vkGetQueryPoolResults-queryType-09439
If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not
contain VK_QUERY_RESULT_PARTIAL_BIT

• VUID-vkGetQueryPoolResults-queryType-09440
If the queryType used to create queryPool was VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, flags
must not contain VK_QUERY_RESULT_WITH_AVAILABILITY_BIT,
VK_QUERY_RESULT_WITH_STATUS_BIT_KHR, VK_QUERY_RESULT_PARTIAL_BIT, or
VK_QUERY_RESULT_64_BIT

• VUID-vkGetQueryPoolResults-queryType-09441
If the queryType used to create queryPool was VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, the
queryPool must have been recorded once for each pass as retrieved via a call to
vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR

• VUID-vkGetQueryPoolResults-queryType-09442
If the queryType used to create queryPool was VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR, then
flags must include VK_QUERY_RESULT_WITH_STATUS_BIT_KHR

• VUID-vkGetQueryPoolResults-flags-09443
If flags includes VK_QUERY_RESULT_WITH_STATUS_BIT_KHR, then it must not include
VK_QUERY_RESULT_WITH_AVAILABILITY_BIT

• VUID-vkGetQueryPoolResults-None-09401
All queries used by the command must not be uninitialized

• VUID-vkGetQueryPoolResults-flags-02828
If VK_QUERY_RESULT_64_BIT is not set in flags and the queryType used to create queryPool was
not VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, then pData and stride must be multiples of 4

• VUID-vkGetQueryPoolResults-flags-00815
If VK_QUERY_RESULT_64_BIT is set in flags then pData and stride must be multiples of 8

• VUID-vkGetQueryPoolResults-stride-08993
If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, stride must be large enough to contain
the unsigned integer representing availability or status in addition to the query result.

• VUID-vkGetQueryPoolResults-queryType-03229
If the queryType used to create queryPool was VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, then

1544

pData and stride must be multiples of the size of VkPerformanceCounterResultKHR

• VUID-vkGetQueryPoolResults-queryType-04519
If the queryType used to create queryPool was VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, then
stride must be large enough to contain the VkQueryPoolPerformanceCreateInfoKHR
::counterIndexCount used to create queryPool times the size of
VkPerformanceCounterResultKHR

• VUID-vkGetQueryPoolResults-dataSize-00817
dataSize must be large enough to contain the result of each query, as described here

Valid Usage (Implicit)

• VUID-vkGetQueryPoolResults-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetQueryPoolResults-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkGetQueryPoolResults-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-vkGetQueryPoolResults-flags-parameter
flags must be a valid combination of VkQueryResultFlagBits values

• VUID-vkGetQueryPoolResults-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkGetQueryPoolResults-queryPool-parent
queryPool must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

Bits which can be set in vkGetQueryPoolResults::flags and vkCmdCopyQueryPoolResults::flags,
specifying how and when results are returned, are:

// Provided by VK_VERSION_1_0
typedef enum VkQueryResultFlagBits {
 VK_QUERY_RESULT_64_BIT = 0x00000001,

1545

 VK_QUERY_RESULT_WAIT_BIT = 0x00000002,
 VK_QUERY_RESULT_WITH_AVAILABILITY_BIT = 0x00000004,
 VK_QUERY_RESULT_PARTIAL_BIT = 0x00000008,
 // Provided by VK_KHR_video_queue
 VK_QUERY_RESULT_WITH_STATUS_BIT_KHR = 0x00000010,
} VkQueryResultFlagBits;

• VK_QUERY_RESULT_64_BIT specifies the results will be written as an array of 64-bit unsigned
integer values. If this bit is not set, the results will be written as an array of 32-bit unsigned
integer values.

• VK_QUERY_RESULT_WAIT_BIT specifies that Vulkan will wait for each query’s status to become
available before retrieving its results.

• VK_QUERY_RESULT_WITH_AVAILABILITY_BIT specifies that the availability status accompanies the
results.

• VK_QUERY_RESULT_PARTIAL_BIT specifies that returning partial results is acceptable.

• VK_QUERY_RESULT_WITH_STATUS_BIT_KHR specifies that the last value returned in the query is a
VkQueryResultStatusKHR value. See result status query for information on how an application
can determine whether the use of this flag bit is supported.

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueryResultFlags;

VkQueryResultFlags is a bitmask type for setting a mask of zero or more VkQueryResultFlagBits.

Specific status codes that can be returned from a query are:

// Provided by VK_KHR_video_queue
typedef enum VkQueryResultStatusKHR {
 VK_QUERY_RESULT_STATUS_ERROR_KHR = -1,
 VK_QUERY_RESULT_STATUS_NOT_READY_KHR = 0,
 VK_QUERY_RESULT_STATUS_COMPLETE_KHR = 1,
 // Provided by VK_KHR_video_encode_queue
 VK_QUERY_RESULT_STATUS_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_KHR = -1000299000,
} VkQueryResultStatusKHR;

• VK_QUERY_RESULT_STATUS_NOT_READY_KHR indicates that the query result is not yet available.

• VK_QUERY_RESULT_STATUS_ERROR_KHR indicates that operations did not complete successfully.

• VK_QUERY_RESULT_STATUS_COMPLETE_KHR indicates that operations completed successfully and the
query result is available.

• VK_QUERY_RESULT_STATUS_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_KHR indicates that a video encode
operation did not complete successfully due to the destination video bitstream buffer range not
being sufficiently large to fit the encoded bitstream data.

To copy query statuses and numerical results directly to buffer memory, call:

1546

// Provided by VK_VERSION_1_0
void vkCmdCopyQueryPoolResults(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount,
 VkBuffer dstBuffer,
 VkDeviceSize dstOffset,
 VkDeviceSize stride,
 VkQueryResultFlags flags);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool managing the queries containing the desired results.

• firstQuery is the initial query index.

• queryCount is the number of queries. firstQuery and queryCount together define a range of
queries.

• dstBuffer is a VkBuffer object that will receive the results of the copy command.

• dstOffset is an offset into dstBuffer.

• stride is the stride in bytes between results for individual queries within dstBuffer. The
required size of the backing memory for dstBuffer is determined as described above for
vkGetQueryPoolResults.

• flags is a bitmask of VkQueryResultFlagBits specifying how and when results are returned.

Any results written for a query are written according to a layout dependent on the query type.

Results for any query in queryPool identified by firstQuery and queryCount that is available are
copied to dstBuffer.

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, results for all queries in queryPool identified by
firstQuery and queryCount are copied to dstBuffer, along with an extra availability value written
directly after the results of each query and interpreted as an unsigned integer. A value of zero
indicates that the results are not yet available, otherwise the query is complete and results are
available.

If VK_QUERY_RESULT_WITH_STATUS_BIT_KHR is set, results for all queries in queryPool identified by
firstQuery and queryCount are copied to dstBuffer, along with an extra status value written directly
after the results of each query and interpreted as a signed integer. A value of zero indicates that the
results are not yet available. Positive values indicate that the operations within the query
completed successfully, and the query results are valid. Negative values indicate that the operations
within the query completed unsuccessfully.

VkQueryResultStatusKHR defines specific meaning for values returned here, though
implementations are free to return other values.

If the status value written is negative, indicating that the operations within the query completed
unsuccessfully, then all other results written by this command are undefined unless otherwise

1547

specified for any of the results of the used query type.

Results for any available query written by this command are final and represent the final result of
the query. If VK_QUERY_RESULT_PARTIAL_BIT is set, then for any query that is unavailable, an
intermediate result between zero and the final result value is written for that query. Otherwise, any
result written by this command is undefined.

If VK_QUERY_RESULT_64_BIT is set, results and availability or status values for all queries are written
as an array of 64-bit values. If the queryPool was created with VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR,
results for each query are written as an array of the type indicated by VkPerformanceCounterKHR
::storage for the counter being queried. Otherwise, results and availability or status values are
written as an array of 32-bit values. If an unsigned integer query’s value overflows the result type,
the value may either wrap or saturate. If a signed integer query’s value overflows the result type,
the value is undefined. If a floating point query’s value is not representable as the result type, the
value is undefined.

This command defines an execution dependency between other query commands that reference
the same query.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur earlier in submission order. If flags does not include
VK_QUERY_RESULT_WAIT_BIT, vkCmdEndQueryIndexedEXT, vkCmdWriteTimestamp2,
vkCmdEndQuery, and vkCmdWriteTimestamp are excluded from this scope.

The second synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur later in submission order.

The operation of this command happens after the first scope and happens before the second scope.

vkCmdCopyQueryPoolResults is considered to be a transfer operation, and its writes to buffer memory
must be synchronized using VK_PIPELINE_STAGE_TRANSFER_BIT and VK_ACCESS_TRANSFER_WRITE_BIT
before using the results.

Valid Usage

• VUID-vkCmdCopyQueryPoolResults-firstQuery-09436
firstQuery must be less than the number of queries in queryPool

• VUID-vkCmdCopyQueryPoolResults-firstQuery-09437
The sum of firstQuery and queryCount must be less than or equal to the number of queries
in queryPool

• VUID-vkCmdCopyQueryPoolResults-queryCount-09438
If queryCount is greater than 1, stride must not be zero

• VUID-vkCmdCopyQueryPoolResults-queryType-09439
If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not
contain VK_QUERY_RESULT_PARTIAL_BIT

• VUID-vkCmdCopyQueryPoolResults-queryType-09440
If the queryType used to create queryPool was VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, flags

1548

must not contain VK_QUERY_RESULT_WITH_AVAILABILITY_BIT,
VK_QUERY_RESULT_WITH_STATUS_BIT_KHR, VK_QUERY_RESULT_PARTIAL_BIT, or
VK_QUERY_RESULT_64_BIT

• VUID-vkCmdCopyQueryPoolResults-queryType-09441
If the queryType used to create queryPool was VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR, the
queryPool must have been recorded once for each pass as retrieved via a call to
vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR

• VUID-vkCmdCopyQueryPoolResults-queryType-09442
If the queryType used to create queryPool was VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR, then
flags must include VK_QUERY_RESULT_WITH_STATUS_BIT_KHR

• VUID-vkCmdCopyQueryPoolResults-flags-09443
If flags includes VK_QUERY_RESULT_WITH_STATUS_BIT_KHR, then it must not include
VK_QUERY_RESULT_WITH_AVAILABILITY_BIT

• VUID-vkCmdCopyQueryPoolResults-None-09402
All queries used by the command must not be uninitialized when the command is
executed

• VUID-vkCmdCopyQueryPoolResults-dstOffset-00819
dstOffset must be less than the size of dstBuffer

• VUID-vkCmdCopyQueryPoolResults-flags-00822
If VK_QUERY_RESULT_64_BIT is not set in flags then dstOffset and stride must be multiples
of 4

• VUID-vkCmdCopyQueryPoolResults-flags-00823
If VK_QUERY_RESULT_64_BIT is set in flags then dstOffset and stride must be multiples of 8

• VUID-vkCmdCopyQueryPoolResults-dstBuffer-00824
dstBuffer must have enough storage, from dstOffset, to contain the result of each query,
as described here

• VUID-vkCmdCopyQueryPoolResults-dstBuffer-00825
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyQueryPoolResults-dstBuffer-00826
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyQueryPoolResults-queryType-03232
If the queryType used to create queryPool was VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR,
VkPhysicalDevicePerformanceQueryPropertiesKHR::allowCommandBufferQueryCopies must
be VK_TRUE

• VUID-vkCmdCopyQueryPoolResults-queryType-02734
vkCmdCopyQueryPoolResults must not be called if the queryType used to create queryPool
was VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL

• VUID-vkCmdCopyQueryPoolResults-None-07429
All queries used by the command must not be active

• VUID-vkCmdCopyQueryPoolResults-None-08752
All queries used by the command must have been made available by prior executed

1549

commands

Valid Usage (Implicit)

• VUID-vkCmdCopyQueryPoolResults-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyQueryPoolResults-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdCopyQueryPoolResults-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyQueryPoolResults-flags-parameter
flags must be a valid combination of VkQueryResultFlagBits values

• VUID-vkCmdCopyQueryPoolResults-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyQueryPoolResults-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdCopyQueryPoolResults-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyQueryPoolResults-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdCopyQueryPoolResults-commonparent
Each of commandBuffer, dstBuffer, and queryPool must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics
Compute

Action

Rendering operations such as clears, MSAA resolves, attachment load/store operations, and blits
may count towards the results of queries. This behavior is implementation-dependent and may

1550

vary depending on the path used within an implementation. For example, some implementations
have several types of clears, some of which may include vertices and some not.

18.3. Occlusion Queries
Occlusion queries track the number of samples that pass the per-fragment tests for a set of drawing
commands. As such, occlusion queries are only available on queue families supporting graphics
operations. The application can then use these results to inform future rendering decisions. An
occlusion query is begun and ended by calling vkCmdBeginQuery and vkCmdEndQuery, respectively.
When an occlusion query begins, the count of passing samples always starts at zero. For each
drawing command, the count is incremented as described in Sample Counting. If flags does not
contain VK_QUERY_CONTROL_PRECISE_BIT an implementation may generate any non-zero result value
for the query if the count of passing samples is non-zero.

Note

Not setting VK_QUERY_CONTROL_PRECISE_BIT mode may be more efficient on some
implementations, and should be used where it is sufficient to know a boolean
result on whether any samples passed the per-fragment tests. In this case, some
implementations may only return zero or one, indifferent to the actual number of
samples passing the per-fragment tests.

Setting VK_QUERY_CONTROL_PRECISE_BIT does not guarantee that different
implementations return the same number of samples in an occlusion query. Some
implementations may kill fragments in the pre-rasterization shader stage, and
these killed fragments do not contribute to the final result of the query. It is
possible that some implementations generate a zero result value for the query,
while others generate a non-zero value.

When an occlusion query finishes, the result for that query is marked as available. The application
can then either copy the result to a buffer (via vkCmdCopyQueryPoolResults) or request it be put into
host memory (via vkGetQueryPoolResults).

Note

If occluding geometry is not drawn first, samples can pass the depth test, but still
not be visible in a final image.

18.4. Pipeline Statistics Queries
Pipeline statistics queries allow the application to sample a specified set of VkPipeline counters.
These counters are accumulated by Vulkan for a set of either drawing or dispatching commands
while a pipeline statistics query is active. As such, pipeline statistics queries are available on queue
families supporting either graphics or compute operations. The availability of pipeline statistics
queries is indicated by the pipelineStatisticsQuery member of the VkPhysicalDeviceFeatures object
(see vkGetPhysicalDeviceFeatures and vkCreateDevice for detecting and requesting this query type
on a VkDevice).

A pipeline statistics query is begun and ended by calling vkCmdBeginQuery and vkCmdEndQuery,

1551

respectively. When a pipeline statistics query begins, all statistics counters are set to zero. While the
query is active, the pipeline type determines which set of statistics are available, but these must be
configured on the query pool when it is created. If a statistic counter is issued on a command buffer
that does not support the corresponding operation, the value of that counter is undefined after the
query has been made available. At least one statistic counter relevant to the operations supported
on the recording command buffer must be enabled.

Bits which can be set in VkQueryPoolCreateInfo::pipelineStatistics for query pools and in
VkCommandBufferInheritanceInfo::pipelineStatistics for secondary command buffers,
individually enabling pipeline statistics counters, are:

// Provided by VK_VERSION_1_0
typedef enum VkQueryPipelineStatisticFlagBits {
 VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT = 0x00000001,
 VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT = 0x00000002,
 VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT = 0x00000004,
 VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT = 0x00000008,
 VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT = 0x00000010,
 VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT = 0x00000020,
 VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT = 0x00000040,
 VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT = 0x00000080,
 VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT = 0x00000100,
 VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT =
0x00000200,
 VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT = 0x00000400,
 // Provided by VK_EXT_mesh_shader
 VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT = 0x00000800,
 // Provided by VK_EXT_mesh_shader
 VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT = 0x00001000,
 // Provided by VK_HUAWEI_cluster_culling_shader
 VK_QUERY_PIPELINE_STATISTIC_CLUSTER_CULLING_SHADER_INVOCATIONS_BIT_HUAWEI =
0x00002000,
} VkQueryPipelineStatisticFlagBits;

• VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT specifies that queries managed by the
pool will count the number of vertices processed by the input assembly stage. Vertices
corresponding to incomplete primitives may contribute to the count.

• VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT specifies that queries managed by
the pool will count the number of primitives processed by the input assembly stage. If primitive
restart is enabled, restarting the primitive topology has no effect on the count. Incomplete
primitives may be counted.

• VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT specifies that queries managed by
the pool will count the number of vertex shader invocations. This counter’s value is
incremented each time a vertex shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT specifies that queries managed
by the pool will count the number of geometry shader invocations. This counter’s value is
incremented each time a geometry shader is invoked. In the case of instanced geometry

1552

shaders, the geometry shader invocations count is incremented for each separate instanced
invocation.

• VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT specifies that queries managed by
the pool will count the number of primitives generated by geometry shader invocations. The
counter’s value is incremented each time the geometry shader emits a primitive. Restarting
primitive topology using the SPIR-V instructions OpEndPrimitive or OpEndStreamPrimitive has no
effect on the geometry shader output primitives count.

• VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT specifies that queries managed by the
pool will count the number of primitives processed by the Primitive Clipping stage of the
pipeline. The counter’s value is incremented each time a primitive reaches the primitive
clipping stage.

• VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT specifies that queries managed by the
pool will count the number of primitives output by the Primitive Clipping stage of the pipeline.
The counter’s value is incremented each time a primitive passes the primitive clipping stage.
The actual number of primitives output by the primitive clipping stage for a particular input
primitive is implementation-dependent but must satisfy the following conditions:

◦ If at least one vertex of the input primitive lies inside the clipping volume, the counter is
incremented by one or more.

◦ Otherwise, the counter is incremented by zero or more.

• VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT specifies that queries managed
by the pool will count the number of fragment shader invocations. The counter’s value is
incremented each time the fragment shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT specifies that queries
managed by the pool will count the number of patches processed by the tessellation control
shader. The counter’s value is incremented once for each patch for which a tessellation control
shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT specifies that
queries managed by the pool will count the number of invocations of the tessellation evaluation
shader. The counter’s value is incremented each time the tessellation evaluation shader is
invoked.

• VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT specifies that queries managed by
the pool will count the number of compute shader invocations. The counter’s value is
incremented every time the compute shader is invoked. Implementations may skip the
execution of certain compute shader invocations or execute additional compute shader
invocations for implementation-dependent reasons as long as the results of rendering
otherwise remain unchanged.

• VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT specifies that queries managed
by the pool will count the number of task shader invocations. The counter’s value is
incremented every time the task shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT specifies that queries managed
by the pool will count the number of mesh shader invocations. The counter’s value is
incremented every time the mesh shader is invoked.

These values are intended to measure relative statistics on one implementation. Various device

1553

architectures will count these values differently. Any or all counters may be affected by the issues
described in Query Operation.

This counting difference is especially true if the pipeline contains mesh or task shaders, which may
affect several of the counters in unexpected ways.

Note

For example, tile-based rendering devices may need to replay the scene multiple
times, affecting some of the counts.

If a pipeline has rasterizerDiscardEnable enabled, implementations may discard primitives after
the final pre-rasterization shader stage. As a result, if rasterizerDiscardEnable is enabled, the
clipping input and output primitives counters may not be incremented.

When a pipeline statistics query finishes, the result for that query is marked as available. The
application can copy the result to a buffer (via vkCmdCopyQueryPoolResults), or request it be put into
host memory (via vkGetQueryPoolResults).

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueryPipelineStatisticFlags;

VkQueryPipelineStatisticFlags is a bitmask type for setting a mask of zero or more
VkQueryPipelineStatisticFlagBits.

18.5. Timestamp Queries
Timestamps provide applications with a mechanism for timing the execution of commands. A
timestamp is an integer value generated by the VkPhysicalDevice. Unlike other queries, timestamps
do not operate over a range, and so do not use vkCmdBeginQuery or vkCmdEndQuery. The
mechanism is built around a set of commands that allow the application to tell the VkPhysicalDevice
to write timestamp values to a query pool and then either read timestamp values on the host (using
vkGetQueryPoolResults) or copy timestamp values to a VkBuffer (using
vkCmdCopyQueryPoolResults). The application can then compute differences between timestamps
to determine execution time.

The number of valid bits in a timestamp value is determined by the VkQueueFamilyProperties
::timestampValidBits property of the queue on which the timestamp is written. Timestamps are
supported on any queue which reports a non-zero value for timestampValidBits via
vkGetPhysicalDeviceQueueFamilyProperties. If the timestampComputeAndGraphics limit is VK_TRUE,
timestamps are supported by every queue family that supports either graphics or compute
operations (see VkQueueFamilyProperties).

The number of nanoseconds it takes for a timestamp value to be incremented by 1 can be obtained
from VkPhysicalDeviceLimits::timestampPeriod after a call to vkGetPhysicalDeviceProperties.

To request a timestamp and write the value to memory, call:

1554

// Provided by VK_VERSION_1_3
void vkCmdWriteTimestamp2(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlags2 stage,
 VkQueryPool queryPool,
 uint32_t query);

or the equivalent command

// Provided by VK_KHR_synchronization2
void vkCmdWriteTimestamp2KHR(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlags2 stage,
 VkQueryPool queryPool,
 uint32_t query);

• commandBuffer is the command buffer into which the command will be recorded.

• stage specifies a stage of the pipeline.

• queryPool is the query pool that will manage the timestamp.

• query is the query within the query pool that will contain the timestamp.

When vkCmdWriteTimestamp2 is submitted to a queue, it defines an execution dependency on
commands that were submitted before it, and writes a timestamp to a query pool.

The first synchronization scope includes all commands that occur earlier in submission order. The
synchronization scope is limited to operations on the pipeline stage specified by stage.

The second synchronization scope includes only the timestamp write operation.

Note

Implementations may write the timestamp at any stage that is logically later than
stage.

Any timestamp write that happens-after another timestamp write in the same submission must not
have a lower value unless its value overflows the maximum supported integer bit width of the
query. If VK_KHR_calibrated_timestamps or VK_EXT_calibrated_timestamps is enabled, this extends to
timestamp writes across all submissions on the same logical device: any timestamp write that
happens-after another must not have a lower value unless its value overflows the maximum
supported integer bit width of the query. Timestamps written by this command must be in the
VK_TIME_DOMAIN_DEVICE_KHR time domain. If an overflow occurs, the timestamp value must wrap
back to zero.

Note

Comparisons between timestamps should be done between timestamps where
they are guaranteed to not decrease. For example, subtracting an older timestamp

1555

from a newer one to determine the execution time of a sequence of commands is
only a reliable measurement if the two timestamp writes were performed in the
same submission, or if the writes were performed on the same logical device and
VK_KHR_calibrated_timestamps or VK_EXT_calibrated_timestamps is enabled.

If vkCmdWriteTimestamp2 is called while executing a render pass instance that has multiview enabled,
the timestamp uses N consecutive query indices in the query pool (starting at query) where N is the
number of bits set in the view mask of the subpass the command is executed in. The resulting query
values are determined by an implementation-dependent choice of one of the following behaviors:

• The first query is a timestamp value and (if more than one bit is set in the view mask) zero is
written to the remaining queries. If two timestamps are written in the same subpass, the sum of
the execution time of all views between those commands is the difference between the first
query written by each command.

• All N queries are timestamp values. If two timestamps are written in the same subpass, the sum
of the execution time of all views between those commands is the sum of the difference
between corresponding queries written by each command. The difference between
corresponding queries may be the execution time of a single view.

In either case, the application can sum the differences between all N queries to determine the total
execution time.

Valid Usage

• VUID-vkCmdWriteTimestamp2-stage-03929
If the geometryShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-vkCmdWriteTimestamp2-stage-03930
If the tessellationShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWriteTimestamp2-stage-03931
If the conditionalRendering feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdWriteTimestamp2-stage-03932
If the fragmentDensityMap feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdWriteTimestamp2-stage-03933
If the transformFeedback feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdWriteTimestamp2-stage-03934
If the meshShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-vkCmdWriteTimestamp2-stage-03935
If the taskShader feature is not enabled, stage must not contain

1556

VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-vkCmdWriteTimestamp2-stage-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled, stage must
not contain VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdWriteTimestamp2-stage-04957
If the subpassShading feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-vkCmdWriteTimestamp2-stage-04995
If the invocationMask feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-vkCmdWriteTimestamp2-stage-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
stage must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdWriteTimestamp2-synchronization2-03858
The synchronization2 feature must be enabled

• VUID-vkCmdWriteTimestamp2-stage-03859
stage must only include a single pipeline stage

• VUID-vkCmdWriteTimestamp2-stage-03860
stage must only include stages valid for the queue family that was used to create the
command pool that commandBuffer was allocated from

• VUID-vkCmdWriteTimestamp2-queryPool-03861
queryPool must have been created with a queryType of VK_QUERY_TYPE_TIMESTAMP

• VUID-vkCmdWriteTimestamp2-timestampValidBits-03863
The command pool’s queue family must support a non-zero timestampValidBits

• VUID-vkCmdWriteTimestamp2-query-04903
query must be less than the number of queries in queryPool

• VUID-vkCmdWriteTimestamp2-None-03864
All queries used by the command must be unavailable

• VUID-vkCmdWriteTimestamp2-query-03865
If vkCmdWriteTimestamp2 is called within a render pass instance, the sum of query and the
number of bits set in the current subpass’s view mask must be less than or equal to the
number of queries in queryPool

Valid Usage (Implicit)

• VUID-vkCmdWriteTimestamp2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteTimestamp2-stage-parameter
stage must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-vkCmdWriteTimestamp2-queryPool-parameter
queryPool must be a valid VkQueryPool handle

1557

• VUID-vkCmdWriteTimestamp2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteTimestamp2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
compute, decode, or encode operations

• VUID-vkCmdWriteTimestamp2-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Transfer
Graphics
Compute
Decode
Encode

Action

To request a timestamp and write the value to memory, call:

// Provided by VK_VERSION_1_0
void vkCmdWriteTimestamp(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlagBits pipelineStage,
 VkQueryPool queryPool,
 uint32_t query);

• commandBuffer is the command buffer into which the command will be recorded.

• pipelineStage is a VkPipelineStageFlagBits value, specifying a stage of the pipeline.

• queryPool is the query pool that will manage the timestamp.

• query is the query within the query pool that will contain the timestamp.

When vkCmdWriteTimestamp is submitted to a queue, it defines an execution dependency on
commands that were submitted before it, and writes a timestamp to a query pool.

1558

The first synchronization scope includes all commands that occur earlier in submission order. The
synchronization scope is limited to operations on the pipeline stage specified by pipelineStage.

The second synchronization scope includes only the timestamp write operation.

Note

Implementations may write the timestamp at any stage that is logically later than
stage.

Any timestamp write that happens-after another timestamp write in the same submission must not
have a lower value unless its value overflows the maximum supported integer bit width of the
query. If VK_KHR_calibrated_timestamps or VK_EXT_calibrated_timestamps is enabled, this extends to
timestamp writes across all submissions on the same logical device: any timestamp write that
happens-after another must not have a lower value unless its value overflows the maximum
supported integer bit width of the query. Timestamps written by this command must be in the
VK_TIME_DOMAIN_DEVICE_KHR time domain. If an overflow occurs, the timestamp value must wrap
back to zero.

Note

Comparisons between timestamps should be done between timestamps where
they are guaranteed to not decrease. For example, subtracting an older timestamp
from a newer one to determine the execution time of a sequence of commands is
only a reliable measurement if the two timestamp writes were performed in the
same submission, or if the writes were performed on the same logical device and
VK_KHR_calibrated_timestamps or VK_EXT_calibrated_timestamps is enabled.

If vkCmdWriteTimestamp is called while executing a render pass instance that has multiview enabled,
the timestamp uses N consecutive query indices in the query pool (starting at query) where N is the
number of bits set in the view mask of the subpass the command is executed in. The resulting query
values are determined by an implementation-dependent choice of one of the following behaviors:

• The first query is a timestamp value and (if more than one bit is set in the view mask) zero is
written to the remaining queries. If two timestamps are written in the same subpass, the sum of
the execution time of all views between those commands is the difference between the first
query written by each command.

• All N queries are timestamp values. If two timestamps are written in the same subpass, the sum
of the execution time of all views between those commands is the sum of the difference
between corresponding queries written by each command. The difference between
corresponding queries may be the execution time of a single view.

In either case, the application can sum the differences between all N queries to determine the total
execution time.

Valid Usage

• VUID-vkCmdWriteTimestamp-pipelineStage-04074
pipelineStage must be a valid stage for the queue family that was used to create the

1559

command pool that commandBuffer was allocated from

• VUID-vkCmdWriteTimestamp-pipelineStage-04075
If the geometryShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdWriteTimestamp-pipelineStage-04076
If the tessellationShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWriteTimestamp-pipelineStage-04077
If the conditionalRendering feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdWriteTimestamp-pipelineStage-04078
If the fragmentDensityMap feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdWriteTimestamp-pipelineStage-04079
If the transformFeedback feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdWriteTimestamp-pipelineStage-04080
If the meshShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-vkCmdWriteTimestamp-pipelineStage-07077
If the taskShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-vkCmdWriteTimestamp-shadingRateImage-07314
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
pipelineStage must not be VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdWriteTimestamp-synchronization2-06489
If the synchronization2 feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_NONE

• VUID-vkCmdWriteTimestamp-rayTracingPipeline-07943
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
pipelineStage must not be VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdWriteTimestamp-queryPool-01416
queryPool must have been created with a queryType of VK_QUERY_TYPE_TIMESTAMP

• VUID-vkCmdWriteTimestamp-timestampValidBits-00829
The command pool’s queue family must support a non-zero timestampValidBits

• VUID-vkCmdWriteTimestamp-query-04904
query must be less than the number of queries in queryPool

• VUID-vkCmdWriteTimestamp-None-00830
All queries used by the command must be unavailable

• VUID-vkCmdWriteTimestamp-query-00831
If vkCmdWriteTimestamp is called within a render pass instance, the sum of query and the

1560

number of bits set in the current subpass’s view mask must be less than or equal to the
number of queries in queryPool

Valid Usage (Implicit)

• VUID-vkCmdWriteTimestamp-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteTimestamp-pipelineStage-parameter
pipelineStage must be a valid VkPipelineStageFlagBits value

• VUID-vkCmdWriteTimestamp-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdWriteTimestamp-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteTimestamp-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
compute, decode, encode, or optical flow operations

• VUID-vkCmdWriteTimestamp-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Both Transfer
Graphics
Compute
Decode
Encode
Opticalflow

Action

18.6. Performance Queries
Performance queries provide applications with a mechanism for getting performance counter

1561

information about the execution of command buffers, render passes, and commands.

Each queue family advertises the performance counters that can be queried on a queue of that
family via a call to vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR.
Implementations may limit access to performance counters based on platform requirements or
only to specialized drivers for development purposes.

Note

This may include no performance counters being enumerated, or a reduced set.
Please refer to platform-specific documentation for guidance on any such
restrictions.

Performance queries use the existing vkCmdBeginQuery and vkCmdEndQuery to control what
command buffers, render passes, or commands to get performance information for.

Implementations may require multiple passes where the command buffer, render passes, or
commands being recorded are the same and are executed on the same queue to record
performance counter data. This is achieved by submitting the same batch and providing a
VkPerformanceQuerySubmitInfoKHR structure containing a counter pass index. The number of
passes required for a given performance query pool can be queried via a call to
vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR.

Note

Command buffers created with VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT must
not be re-submitted. Changing command buffer usage bits may affect
performance. To avoid this, the application should re-record any command
buffers with the VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT when multiple
counter passes are required.

Performance counter results from a performance query pool can be obtained with the command
vkGetQueryPoolResults.

The VkPerformanceCounterResultKHR union is defined as:

// Provided by VK_KHR_performance_query
typedef union VkPerformanceCounterResultKHR {
 int32_t int32;
 int64_t int64;
 uint32_t uint32;
 uint64_t uint64;
 float float32;
 double float64;
} VkPerformanceCounterResultKHR;

• int32 is a 32-bit signed integer value.

• int64 is a 64-bit signed integer value.

• uint32 is a 32-bit unsigned integer value.

1562

• uint64 is a 64-bit unsigned integer value.

• float32 is a 32-bit floating-point value.

• float64 is a 64-bit floating-point value.

Performance query results are returned in an array of VkPerformanceCounterResultKHR unions
containing the data associated with each counter in the query, stored in the same order as the
counters supplied in pCounterIndices when creating the performance query.
VkPerformanceCounterKHR::storage specifies how to parse the counter data.

18.6.1. Profiling Lock

To record and submit a command buffer containing a performance query pool the profiling lock
must be held. The profiling lock must be acquired prior to any call to vkBeginCommandBuffer that
will be using a performance query pool. The profiling lock must be held while any command buffer
containing a performance query pool is in the recording, executable, or pending state. To acquire the
profiling lock, call:

// Provided by VK_KHR_performance_query
VkResult vkAcquireProfilingLockKHR(
 VkDevice device,
 const VkAcquireProfilingLockInfoKHR* pInfo);

• device is the logical device to profile.

• pInfo is a pointer to a VkAcquireProfilingLockInfoKHR structure containing information about
how the profiling is to be acquired.

Implementations may allow multiple actors to hold the profiling lock concurrently.

Valid Usage (Implicit)

• VUID-vkAcquireProfilingLockKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkAcquireProfilingLockKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkAcquireProfilingLockInfoKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_TIMEOUT

1563

The VkAcquireProfilingLockInfoKHR structure is defined as:

// Provided by VK_KHR_performance_query
typedef struct VkAcquireProfilingLockInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkAcquireProfilingLockFlagsKHR flags;
 uint64_t timeout;
} VkAcquireProfilingLockInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• timeout indicates how long the function waits, in nanoseconds, if the profiling lock is not
available.

Valid Usage (Implicit)

• VUID-VkAcquireProfilingLockInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACQUIRE_PROFILING_LOCK_INFO_KHR

• VUID-VkAcquireProfilingLockInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkAcquireProfilingLockInfoKHR-flags-zerobitmask
flags must be 0

If timeout is 0, vkAcquireProfilingLockKHR will not block while attempting to acquire the profiling
lock. If timeout is UINT64_MAX, the function will not return until the profiling lock was acquired.

// Provided by VK_KHR_performance_query
typedef enum VkAcquireProfilingLockFlagBitsKHR {
} VkAcquireProfilingLockFlagBitsKHR;

// Provided by VK_KHR_performance_query
typedef VkFlags VkAcquireProfilingLockFlagsKHR;

VkAcquireProfilingLockFlagsKHR is a bitmask type for setting a mask, but is currently reserved for
future use.

To release the profiling lock, call:

// Provided by VK_KHR_performance_query
void vkReleaseProfilingLockKHR(

1564

 VkDevice device);

• device is the logical device to cease profiling on.

Valid Usage

• VUID-vkReleaseProfilingLockKHR-device-03235
The profiling lock of device must have been held via a previous successful call to
vkAcquireProfilingLockKHR

Valid Usage (Implicit)

• VUID-vkReleaseProfilingLockKHR-device-parameter
device must be a valid VkDevice handle

18.7. Transform Feedback Queries
Transform feedback queries track the number of primitives attempted to be written and actually
written, by the vertex stream being captured, to a transform feedback buffer. This query is updated
during drawing commands while transform feedback is active. The number of primitives actually
written will be less than the number attempted to be written if the bound transform feedback
buffer size was too small for the number of primitives actually drawn. Primitives are not written
beyond the bound range of the transform feedback buffer. A transform feedback query is begun
and ended by calling vkCmdBeginQuery and vkCmdEndQuery, respectively to query for vertex stream
zero. vkCmdBeginQueryIndexedEXT and vkCmdEndQueryIndexedEXT can be used to begin and end
transform feedback queries for any supported vertex stream. When a transform feedback query
begins, the count of primitives written and primitives needed starts from zero. For each drawing
command, the count is incremented as vertex attribute outputs are captured to the transform
feedback buffers while transform feedback is active.

When a transform feedback query finishes, the result for that query is marked as available. The
application can then either copy the result to a buffer (via vkCmdCopyQueryPoolResults) or request it
be put into host memory (via vkGetQueryPoolResults).

18.8. Primitives Generated Queries
When a generated primitive query for a vertex stream is active, the primitives-generated count is
incremented every time a primitive emitted to that stream reaches the transform feedback stage,
whether or not transform feedback is active. A primitives generated query is begun and ended by
calling vkCmdBeginQuery and vkCmdEndQuery, respectively to query for vertex stream zero.
vkCmdBeginQueryIndexedEXT and vkCmdEndQueryIndexedEXT can be used to begin and end primitives
generated queries for any supported vertex stream. When a primitives generated query begins, the
count of primitives generated starts from zero.

When a primitives generated query finishes, the result for that query is marked as available. The

1565

application can then either copy the result to a buffer (via vkCmdCopyQueryPoolResults) or request it
be put into host memory (via vkGetQueryPoolResults).

Note

The result of this query is typically identical to
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT, but the primitives
generated query is deterministic, i.e. it must be identical to the number of
primitives processed. VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT may
vary for implementation-dependent reasons, e.g. the same primitive may be
processed multiple times for purposes of clipping.

18.9. Mesh Shader Queries
When a generated mesh primitives query is active, the mesh-primitives-generated count is
incremented every time a primitive emitted from the mesh shader stage reaches the fragment
shader stage. When a generated mesh primitives query begins, the mesh-primitives-generated
count starts from zero.

Mesh and task shader pipeline statistics queries function the same way that invocation queries
work for other shader stages, counting the number of times the respective shader stage has been
run. When the statistics query begins, the invocation counters start from zero.

18.10. Intel Performance Queries
Intel performance queries allow an application to capture performance data for a set of commands.
Performance queries are used in a similar way than other types of queries. A main difference with
existing queries is that the resulting data should be handed over to a library capable to produce
human readable results rather than being read directly by an application.

Prior to creating a performance query pool, initialize the device for performance queries with the
call:

// Provided by VK_INTEL_performance_query
VkResult vkInitializePerformanceApiINTEL(
 VkDevice device,
 const VkInitializePerformanceApiInfoINTEL* pInitializeInfo);

• device is the logical device used for the queries.

• pInitializeInfo is a pointer to a VkInitializePerformanceApiInfoINTEL structure specifying
initialization parameters.

Valid Usage (Implicit)

• VUID-vkInitializePerformanceApiINTEL-device-parameter
device must be a valid VkDevice handle

1566

• VUID-vkInitializePerformanceApiINTEL-pInitializeInfo-parameter
pInitializeInfo must be a valid pointer to a valid VkInitializePerformanceApiInfoINTEL
structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkInitializePerformanceApiInfoINTEL structure is defined as :

// Provided by VK_INTEL_performance_query
typedef struct VkInitializePerformanceApiInfoINTEL {
 VkStructureType sType;
 const void* pNext;
 void* pUserData;
} VkInitializePerformanceApiInfoINTEL;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pUserData is a pointer for application data.

Valid Usage (Implicit)

• VUID-VkInitializePerformanceApiInfoINTEL-sType-sType
sType must be VK_STRUCTURE_TYPE_INITIALIZE_PERFORMANCE_API_INFO_INTEL

• VUID-VkInitializePerformanceApiInfoINTEL-pNext-pNext
pNext must be NULL

Once performance query operations have completed, uninitialize the device for performance
queries with the call:

// Provided by VK_INTEL_performance_query
void vkUninitializePerformanceApiINTEL(
 VkDevice device);

• device is the logical device used for the queries.

1567

Valid Usage (Implicit)

• VUID-vkUninitializePerformanceApiINTEL-device-parameter
device must be a valid VkDevice handle

Some performance query features of a device can be discovered with the call:

// Provided by VK_INTEL_performance_query
VkResult vkGetPerformanceParameterINTEL(
 VkDevice device,
 VkPerformanceParameterTypeINTEL parameter,
 VkPerformanceValueINTEL* pValue);

• device is the logical device to query.

• parameter is the parameter to query.

• pValue is a pointer to a VkPerformanceValueINTEL structure in which the type and value of the
parameter are returned.

Valid Usage (Implicit)

• VUID-vkGetPerformanceParameterINTEL-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPerformanceParameterINTEL-parameter-parameter
parameter must be a valid VkPerformanceParameterTypeINTEL value

• VUID-vkGetPerformanceParameterINTEL-pValue-parameter
pValue must be a valid pointer to a VkPerformanceValueINTEL structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

Possible values of vkGetPerformanceParameterINTEL::parameter, specifying a performance query
feature, are:

// Provided by VK_INTEL_performance_query
typedef enum VkPerformanceParameterTypeINTEL {
 VK_PERFORMANCE_PARAMETER_TYPE_HW_COUNTERS_SUPPORTED_INTEL = 0,

1568

 VK_PERFORMANCE_PARAMETER_TYPE_STREAM_MARKER_VALID_BITS_INTEL = 1,
} VkPerformanceParameterTypeINTEL;

• VK_PERFORMANCE_PARAMETER_TYPE_HW_COUNTERS_SUPPORTED_INTEL has a boolean result which tells
whether hardware counters can be captured.

• VK_PERFORMANCE_PARAMETER_TYPE_STREAM_MARKER_VALID_BITS_INTEL has a 32 bits integer result
which tells how many bits can be written into the VkPerformanceValueINTEL value.

The VkPerformanceValueINTEL structure is defined as:

// Provided by VK_INTEL_performance_query
typedef struct VkPerformanceValueINTEL {
 VkPerformanceValueTypeINTEL type;
 VkPerformanceValueDataINTEL data;
} VkPerformanceValueINTEL;

• type is a VkPerformanceValueTypeINTEL value specifying the type of the returned data.

• data is a VkPerformanceValueDataINTEL union specifying the value of the returned data.

Possible values of VkPerformanceValueINTEL::type, specifying the type of the data returned in
VkPerformanceValueINTEL::data, are:

• VK_PERFORMANCE_VALUE_TYPE_UINT32_INTEL specifies that unsigned 32-bit integer data is returned
in data.value32.

• VK_PERFORMANCE_VALUE_TYPE_UINT64_INTEL specifies that unsigned 64-bit integer data is returned
in data.value64.

• VK_PERFORMANCE_VALUE_TYPE_FLOAT_INTEL specifies that floating-point data is returned in
data.valueFloat.

• VK_PERFORMANCE_VALUE_TYPE_BOOL_INTEL specifies that VkBool32 data is returned in
data.valueBool.

• VK_PERFORMANCE_VALUE_TYPE_STRING_INTEL specifies that a pointer to a null-terminated UTF-8
string is returned in data.valueString. The pointer is valid for the lifetime of the device
parameter passed to vkGetPerformanceParameterINTEL.

// Provided by VK_INTEL_performance_query
typedef enum VkPerformanceValueTypeINTEL {
 VK_PERFORMANCE_VALUE_TYPE_UINT32_INTEL = 0,
 VK_PERFORMANCE_VALUE_TYPE_UINT64_INTEL = 1,
 VK_PERFORMANCE_VALUE_TYPE_FLOAT_INTEL = 2,
 VK_PERFORMANCE_VALUE_TYPE_BOOL_INTEL = 3,
 VK_PERFORMANCE_VALUE_TYPE_STRING_INTEL = 4,
} VkPerformanceValueTypeINTEL;

The VkPerformanceValueDataINTEL union is defined as:

1569

// Provided by VK_INTEL_performance_query
typedef union VkPerformanceValueDataINTEL {
 uint32_t value32;
 uint64_t value64;
 float valueFloat;
 VkBool32 valueBool;
 const char* valueString;
} VkPerformanceValueDataINTEL;

• data.value32 represents 32-bit integer data.

• data.value64 represents 64-bit integer data.

• data.valueFloat represents floating-point data.

• data.valueBool represents VkBool32 data.

• data.valueString represents a pointer to a null-terminated UTF-8 string.

The correct member of the union is determined by the associated VkPerformanceValueTypeINTEL
value.

The VkQueryPoolPerformanceQueryCreateInfoINTEL structure is defined as:

// Provided by VK_INTEL_performance_query
typedef struct VkQueryPoolPerformanceQueryCreateInfoINTEL {
 VkStructureType sType;
 const void* pNext;
 VkQueryPoolSamplingModeINTEL performanceCountersSampling;
} VkQueryPoolPerformanceQueryCreateInfoINTEL;

// Provided by VK_INTEL_performance_query
typedef VkQueryPoolPerformanceQueryCreateInfoINTEL VkQueryPoolCreateInfoINTEL;

To create a pool for Intel performance queries, set VkQueryPoolCreateInfo::queryType to
VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL and add a VkQueryPoolPerformanceQueryCreateInfoINTEL
structure to the pNext chain of the VkQueryPoolCreateInfo structure.

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• performanceCountersSampling describe how performance queries should be captured.

Valid Usage (Implicit)

• VUID-VkQueryPoolPerformanceQueryCreateInfoINTEL-sType-sType
sType must be VK_STRUCTURE_TYPE_QUERY_POOL_PERFORMANCE_QUERY_CREATE_INFO_INTEL

• VUID-VkQueryPoolPerformanceQueryCreateInfoINTEL-performanceCountersSampling-

1570

parameter
performanceCountersSampling must be a valid VkQueryPoolSamplingModeINTEL value

Possible values of VkQueryPoolPerformanceQueryCreateInfoINTEL::performanceCountersSampling
are:

// Provided by VK_INTEL_performance_query
typedef enum VkQueryPoolSamplingModeINTEL {
 VK_QUERY_POOL_SAMPLING_MODE_MANUAL_INTEL = 0,
} VkQueryPoolSamplingModeINTEL;

• VK_QUERY_POOL_SAMPLING_MODE_MANUAL_INTEL is the default mode in which the application calls
vkCmdBeginQuery and vkCmdEndQuery to record performance data.

To help associate query results with a particular point at which an application emitted commands,
markers can be set into the command buffers with the call:

// Provided by VK_INTEL_performance_query
VkResult vkCmdSetPerformanceMarkerINTEL(
 VkCommandBuffer commandBuffer,
 const VkPerformanceMarkerInfoINTEL* pMarkerInfo);

The last marker set onto a command buffer before the end of a query will be part of the query
result.

Valid Usage (Implicit)

• VUID-vkCmdSetPerformanceMarkerINTEL-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPerformanceMarkerINTEL-pMarkerInfo-parameter
pMarkerInfo must be a valid pointer to a valid VkPerformanceMarkerInfoINTEL structure

• VUID-vkCmdSetPerformanceMarkerINTEL-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetPerformanceMarkerINTEL-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
or transfer operations

• VUID-vkCmdSetPerformanceMarkerINTEL-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

1571

synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute
Transfer

Action
State

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPerformanceMarkerInfoINTEL structure is defined as:

// Provided by VK_INTEL_performance_query
typedef struct VkPerformanceMarkerInfoINTEL {
 VkStructureType sType;
 const void* pNext;
 uint64_t marker;
} VkPerformanceMarkerInfoINTEL;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• marker is the marker value that will be recorded into the opaque query results.

Valid Usage (Implicit)

• VUID-VkPerformanceMarkerInfoINTEL-sType-sType
sType must be VK_STRUCTURE_TYPE_PERFORMANCE_MARKER_INFO_INTEL

• VUID-VkPerformanceMarkerInfoINTEL-pNext-pNext
pNext must be NULL

When monitoring the behavior of an application within the dataset generated by the entire set of
applications running on the system, it is useful to identify draw calls within a potentially huge

1572

amount of performance data. To do so, application can generate stream markers that will be used
to trace back a particular draw call with a particular performance data item.

// Provided by VK_INTEL_performance_query
VkResult vkCmdSetPerformanceStreamMarkerINTEL(
 VkCommandBuffer commandBuffer,
 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo);

• commandBuffer is a VkCommandBuffer into which a stream marker is added.

• pMarkerInfo is a pointer to a VkPerformanceStreamMarkerInfoINTEL structure describing the
marker to insert.

Valid Usage (Implicit)

• VUID-vkCmdSetPerformanceStreamMarkerINTEL-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPerformanceStreamMarkerINTEL-pMarkerInfo-parameter
pMarkerInfo must be a valid pointer to a valid VkPerformanceStreamMarkerInfoINTEL
structure

• VUID-vkCmdSetPerformanceStreamMarkerINTEL-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetPerformanceStreamMarkerINTEL-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
or transfer operations

• VUID-vkCmdSetPerformanceStreamMarkerINTEL-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute
Transfer

Action
State

1573

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPerformanceStreamMarkerInfoINTEL structure is defined as:

// Provided by VK_INTEL_performance_query
typedef struct VkPerformanceStreamMarkerInfoINTEL {
 VkStructureType sType;
 const void* pNext;
 uint32_t marker;
} VkPerformanceStreamMarkerInfoINTEL;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• marker is the marker value that will be recorded into the reports consumed by an external
application.

Valid Usage

• VUID-VkPerformanceStreamMarkerInfoINTEL-marker-02735
The value written by the application into marker must only used the valid bits as reported
by vkGetPerformanceParameterINTEL with the
VK_PERFORMANCE_PARAMETER_TYPE_STREAM_MARKER_VALID_BITS_INTEL

Valid Usage (Implicit)

• VUID-VkPerformanceStreamMarkerInfoINTEL-sType-sType
sType must be VK_STRUCTURE_TYPE_PERFORMANCE_STREAM_MARKER_INFO_INTEL

• VUID-VkPerformanceStreamMarkerInfoINTEL-pNext-pNext
pNext must be NULL

Some applications might want measure the effect of a set of commands with a different settings. It
is possible to override a particular settings using :

// Provided by VK_INTEL_performance_query
VkResult vkCmdSetPerformanceOverrideINTEL(
 VkCommandBuffer commandBuffer,

1574

 const VkPerformanceOverrideInfoINTEL* pOverrideInfo);

• commandBuffer is the command buffer where the override takes place.

• pOverrideInfo is a pointer to a VkPerformanceOverrideInfoINTEL structure selecting the
parameter to override.

Valid Usage

• VUID-vkCmdSetPerformanceOverrideINTEL-pOverrideInfo-02736
pOverrideInfo must not be used with a VkPerformanceOverrideTypeINTEL that is not
reported available by vkGetPerformanceParameterINTEL

Valid Usage (Implicit)

• VUID-vkCmdSetPerformanceOverrideINTEL-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPerformanceOverrideINTEL-pOverrideInfo-parameter
pOverrideInfo must be a valid pointer to a valid VkPerformanceOverrideInfoINTEL
structure

• VUID-vkCmdSetPerformanceOverrideINTEL-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetPerformanceOverrideINTEL-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
or transfer operations

• VUID-vkCmdSetPerformanceOverrideINTEL-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute
Transfer

State

1575

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPerformanceOverrideInfoINTEL structure is defined as:

// Provided by VK_INTEL_performance_query
typedef struct VkPerformanceOverrideInfoINTEL {
 VkStructureType sType;
 const void* pNext;
 VkPerformanceOverrideTypeINTEL type;
 VkBool32 enable;
 uint64_t parameter;
} VkPerformanceOverrideInfoINTEL;

• type is the particular VkPerformanceOverrideTypeINTEL to set.

• enable defines whether the override is enabled.

• parameter is a potential required parameter for the override.

Valid Usage (Implicit)

• VUID-VkPerformanceOverrideInfoINTEL-sType-sType
sType must be VK_STRUCTURE_TYPE_PERFORMANCE_OVERRIDE_INFO_INTEL

• VUID-VkPerformanceOverrideInfoINTEL-pNext-pNext
pNext must be NULL

• VUID-VkPerformanceOverrideInfoINTEL-type-parameter
type must be a valid VkPerformanceOverrideTypeINTEL value

Possible values of VkPerformanceOverrideInfoINTEL::type, specifying performance override types,
are:

// Provided by VK_INTEL_performance_query
typedef enum VkPerformanceOverrideTypeINTEL {
 VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL = 0,
 VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL = 1,
} VkPerformanceOverrideTypeINTEL;

• VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL turns all rendering operations into noop.

1576

• VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL stalls the stream of commands until all
previously emitted commands have completed and all caches been flushed and invalidated.

Before submitting command buffers containing performance queries commands to a device queue,
the application must acquire and set a performance query configuration. The configuration can be
released once all command buffers containing performance query commands are not in a pending
state.

// Provided by VK_INTEL_performance_query
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPerformanceConfigurationINTEL)

To acquire a device performance configuration, call:

// Provided by VK_INTEL_performance_query
VkResult vkAcquirePerformanceConfigurationINTEL(
 VkDevice device,
 const VkPerformanceConfigurationAcquireInfoINTEL* pAcquireInfo,
 VkPerformanceConfigurationINTEL* pConfiguration);

• device is the logical device that the performance query commands will be submitted to.

• pAcquireInfo is a pointer to a VkPerformanceConfigurationAcquireInfoINTEL structure,
specifying the performance configuration to acquire.

• pConfiguration is a pointer to a VkPerformanceConfigurationINTEL handle in which the resulting
configuration object is returned.

Valid Usage (Implicit)

• VUID-vkAcquirePerformanceConfigurationINTEL-device-parameter
device must be a valid VkDevice handle

• VUID-vkAcquirePerformanceConfigurationINTEL-pAcquireInfo-parameter
pAcquireInfo must be a valid pointer to a valid
VkPerformanceConfigurationAcquireInfoINTEL structure

• VUID-vkAcquirePerformanceConfigurationINTEL-pConfiguration-parameter
pConfiguration must be a valid pointer to a VkPerformanceConfigurationINTEL handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

1577

The VkPerformanceConfigurationAcquireInfoINTEL structure is defined as:

// Provided by VK_INTEL_performance_query
typedef struct VkPerformanceConfigurationAcquireInfoINTEL {
 VkStructureType sType;
 const void* pNext;
 VkPerformanceConfigurationTypeINTEL type;
} VkPerformanceConfigurationAcquireInfoINTEL;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• type is one of the VkPerformanceConfigurationTypeINTEL type of performance configuration
that will be acquired.

Valid Usage (Implicit)

• VUID-VkPerformanceConfigurationAcquireInfoINTEL-sType-sType
sType must be VK_STRUCTURE_TYPE_PERFORMANCE_CONFIGURATION_ACQUIRE_INFO_INTEL

• VUID-VkPerformanceConfigurationAcquireInfoINTEL-pNext-pNext
pNext must be NULL

• VUID-VkPerformanceConfigurationAcquireInfoINTEL-type-parameter
type must be a valid VkPerformanceConfigurationTypeINTEL value

Possible values of VkPerformanceConfigurationAcquireInfoINTEL::type, specifying performance
configuration types, are:

// Provided by VK_INTEL_performance_query
typedef enum VkPerformanceConfigurationTypeINTEL {
 VK_PERFORMANCE_CONFIGURATION_TYPE_COMMAND_QUEUE_METRICS_DISCOVERY_ACTIVATED_INTEL
= 0,
} VkPerformanceConfigurationTypeINTEL;

To set a performance configuration, call:

// Provided by VK_INTEL_performance_query
VkResult vkQueueSetPerformanceConfigurationINTEL(
 VkQueue queue,
 VkPerformanceConfigurationINTEL configuration);

• queue is the queue on which the configuration will be used.

• configuration is the configuration to use.

1578

Valid Usage (Implicit)

• VUID-vkQueueSetPerformanceConfigurationINTEL-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueSetPerformanceConfigurationINTEL-configuration-parameter
configuration must be a valid VkPerformanceConfigurationINTEL handle

• VUID-vkQueueSetPerformanceConfigurationINTEL-commonparent
Both of configuration, and queue must have been created, allocated, or retrieved from the
same VkDevice

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

To release a device performance configuration, call:

// Provided by VK_INTEL_performance_query
VkResult vkReleasePerformanceConfigurationINTEL(
 VkDevice device,
 VkPerformanceConfigurationINTEL configuration);

• device is the device associated to the configuration object to release.

• configuration is the configuration object to release.

Valid Usage

• VUID-vkReleasePerformanceConfigurationINTEL-configuration-02737
configuration must not be released before all command buffers submitted while the
configuration was set are in pending state

1579

Valid Usage (Implicit)

• VUID-vkReleasePerformanceConfigurationINTEL-device-parameter
device must be a valid VkDevice handle

• VUID-vkReleasePerformanceConfigurationINTEL-configuration-parameter
If configuration is not VK_NULL_HANDLE, configuration must be a valid
VkPerformanceConfigurationINTEL handle

• VUID-vkReleasePerformanceConfigurationINTEL-configuration-parent
If configuration is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to configuration must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_OUT_OF_HOST_MEMORY

18.11. Result Status Queries
Result status queries serve a single purpose: allowing the application to determine whether a set of
operations have completed successfully or not, as indicated by the VkQueryResultStatusKHR value
written when retrieving the result of a query using the VK_QUERY_RESULT_WITH_STATUS_BIT_KHR flag.

Unlike other query types, result status queries do not track or maintain any other data beyond the
completion status, thus no other data is written when retrieving their results.

Support for result status queries is indicated by VkQueueFamilyQueryResultStatusPropertiesKHR
::queryResultStatusSupport , as returned by vkGetPhysicalDeviceQueueFamilyProperties2 for the
queue family in question.

18.12. Video Encode Feedback Queries
Video encode feedback queries allow the application to capture feedback values generated by video
encode operations. As such, video encode feedback queries are available on queue families
supporting video encode operations. The availability of individual video encode feedback values is
indicated by the bits of VkVideoEncodeCapabilitiesKHR::supportedEncodeFeedbackFlags, as returned

1580

by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the queries are intended to be
used with.

The set of enabled video encode feedback values must be configured on the query pool when it is
created using the encodeFeedbackFlags member of the
VkQueryPoolVideoEncodeFeedbackCreateInfoKHR included in the pNext chain of
VkQueryPoolCreateInfo.

The VkQueryPoolVideoEncodeFeedbackCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkQueryPoolVideoEncodeFeedbackCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoEncodeFeedbackFlagsKHR encodeFeedbackFlags;
} VkQueryPoolVideoEncodeFeedbackCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• encodeFeedbackFlags is a bitmask of VkVideoEncodeFeedbackFlagBitsKHR values specifying the
set of enabled video encode feedback values captured by queries of the new pool.

Valid Usage (Implicit)

• VUID-VkQueryPoolVideoEncodeFeedbackCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_QUERY_POOL_VIDEO_ENCODE_FEEDBACK_CREATE_INFO_KHR

• VUID-VkQueryPoolVideoEncodeFeedbackCreateInfoKHR-encodeFeedbackFlags-parameter
encodeFeedbackFlags must be a valid combination of VkVideoEncodeFeedbackFlagBitsKHR
values

• VUID-VkQueryPoolVideoEncodeFeedbackCreateInfoKHR-encodeFeedbackFlags-
requiredbitmask
encodeFeedbackFlags must not be 0

Bits which can be set in VkQueryPoolVideoEncodeFeedbackCreateInfoKHR::encodeFeedbackFlags for
video encode feedback query pools are:

// Provided by VK_KHR_video_encode_queue
typedef enum VkVideoEncodeFeedbackFlagBitsKHR {
 VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_BUFFER_OFFSET_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_BYTES_WRITTEN_BIT_KHR = 0x00000002,
 VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_HAS_OVERRIDES_BIT_KHR = 0x00000004,
} VkVideoEncodeFeedbackFlagBitsKHR;

• VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_BUFFER_OFFSET_BIT_KHR specifies that queries managed by
the pool will capture the byte offset of the bitstream data written by the video encode operation

1581

to the bitstream buffer specified in VkVideoEncodeInfoKHR::dstBuffer relative to the offset
specified in VkVideoEncodeInfoKHR::dstBufferOffset. For the first video encode operation
issued by any video encode command, this value will always be zero, meaning that bitstream
data is always written to the buffer specified in VkVideoEncodeInfoKHR::dstBuffer starting
from the offset specified in VkVideoEncodeInfoKHR::dstBufferOffset.

• VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_BYTES_WRITTEN_BIT_KHR specifies that queries managed by
the pool will capture the number of bytes written by the video encode operation to the
bitstream buffer specified in VkVideoEncodeInfoKHR::dstBuffer.

• VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_HAS_OVERRIDES_BIT_KHR specifies that queries managed by
the pool will capture a boolean value indicating that the data written to the bitstream buffer
specified in VkVideoEncodeInfoKHR::dstBuffer contains overridden parameters.

When retrieving the results of video encode feedback queries, the values corresponding to each
enabled video encode feedback are written in the order of the bits defined above, followed by an
optional value indicating availability or result status if VK_QUERY_RESULT_WITH_AVAILABILITY_BIT or
VK_QUERY_RESULT_WITH_STATUS_BIT_KHR is specified, respectively.

If the result status of a video encode feedback query is negative, then the results of all enabled
video encode feedback values will be undefined.

Note

Thus it is recommended that applications always specify
VK_QUERY_RESULT_WITH_STATUS_BIT_KHR when retrieving the results of video encode
feedback queries and ignore such undefined video encode feedback values for any
unsuccessfully completed video encode operations.

// Provided by VK_KHR_video_encode_queue
typedef VkFlags VkVideoEncodeFeedbackFlagsKHR;

VkVideoEncodeFeedbackFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeFeedbackFlagBitsKHR.

1582

Chapter 19. Clear Commands

19.1. Clearing Images Outside a Render Pass Instance
Color and depth/stencil images can be cleared outside a render pass instance using
vkCmdClearColorImage or vkCmdClearDepthStencilImage, respectively. These commands are only
allowed outside of a render pass instance.

To clear one or more subranges of a color image, call:

// Provided by VK_VERSION_1_0
void vkCmdClearColorImage(
 VkCommandBuffer commandBuffer,
 VkImage image,
 VkImageLayout imageLayout,
 const VkClearColorValue* pColor,
 uint32_t rangeCount,
 const VkImageSubresourceRange* pRanges);

• commandBuffer is the command buffer into which the command will be recorded.

• image is the image to be cleared.

• imageLayout specifies the current layout of the image subresource ranges to be cleared, and
must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR, VK_IMAGE_LAYOUT_GENERAL or
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

• pColor is a pointer to a VkClearColorValue structure containing the values that the image
subresource ranges will be cleared to (see Clear Values below).

• rangeCount is the number of image subresource range structures in pRanges.

• pRanges is a pointer to an array of VkImageSubresourceRange structures describing a range of
mipmap levels, array layers, and aspects to be cleared, as described in Image Views.

Each specified range in pRanges is cleared to the value specified by pColor.

Valid Usage

• VUID-vkCmdClearColorImage-image-01993
The format features of image must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-vkCmdClearColorImage-image-00002
image must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdClearColorImage-image-01545
image must not use any of the formats that require a sampler Y′CBCR conversion

• VUID-vkCmdClearColorImage-image-00003
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

1583

• VUID-vkCmdClearColorImage-imageLayout-00004
imageLayout must specify the layout of the image subresource ranges of image specified in
pRanges at the time this command is executed on a VkDevice

• VUID-vkCmdClearColorImage-imageLayout-01394
imageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdClearColorImage-aspectMask-02498
The VkImageSubresourceRange::aspectMask members of the elements of the pRanges array
must each only include VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkCmdClearColorImage-baseMipLevel-01470
The VkImageSubresourceRange::baseMipLevel members of the elements of the pRanges
array must each be less than the mipLevels specified in VkImageCreateInfo when image
was created

• VUID-vkCmdClearColorImage-pRanges-01692
For each VkImageSubresourceRange element of pRanges, if the levelCount member is not
VK_REMAINING_MIP_LEVELS, then baseMipLevel + levelCount must be less than or equal to the
mipLevels specified in VkImageCreateInfo when image was created

• VUID-vkCmdClearColorImage-baseArrayLayer-01472
The VkImageSubresourceRange::baseArrayLayer members of the elements of the pRanges
array must each be less than the arrayLayers specified in VkImageCreateInfo when image
was created

• VUID-vkCmdClearColorImage-pRanges-01693
For each VkImageSubresourceRange element of pRanges, if the layerCount member is not
VK_REMAINING_ARRAY_LAYERS, then baseArrayLayer + layerCount must be less than or equal to
the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-vkCmdClearColorImage-image-00007
image must not have a compressed or depth/stencil format

• VUID-vkCmdClearColorImage-pColor-04961
pColor must be a valid pointer to a VkClearColorValue union

• VUID-vkCmdClearColorImage-commandBuffer-01805
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
image must not be a protected image

• VUID-vkCmdClearColorImage-commandBuffer-01806
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdClearColorImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdClearColorImage-image-parameter
image must be a valid VkImage handle

1584

• VUID-vkCmdClearColorImage-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

• VUID-vkCmdClearColorImage-pRanges-parameter
pRanges must be a valid pointer to an array of rangeCount valid VkImageSubresourceRange
structures

• VUID-vkCmdClearColorImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdClearColorImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdClearColorImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdClearColorImage-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdClearColorImage-rangeCount-arraylength
rangeCount must be greater than 0

• VUID-vkCmdClearColorImage-commonparent
Both of commandBuffer, and image must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics
Compute

Action

To clear one or more subranges of a depth/stencil image, call:

// Provided by VK_VERSION_1_0
void vkCmdClearDepthStencilImage(
 VkCommandBuffer commandBuffer,
 VkImage image,
 VkImageLayout imageLayout,
 const VkClearDepthStencilValue* pDepthStencil,

1585

 uint32_t rangeCount,
 const VkImageSubresourceRange* pRanges);

• commandBuffer is the command buffer into which the command will be recorded.

• image is the image to be cleared.

• imageLayout specifies the current layout of the image subresource ranges to be cleared, and
must be VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

• pDepthStencil is a pointer to a VkClearDepthStencilValue structure containing the values that
the depth and stencil image subresource ranges will be cleared to (see Clear Values below).

• rangeCount is the number of image subresource range structures in pRanges.

• pRanges is a pointer to an array of VkImageSubresourceRange structures describing a range of
mipmap levels, array layers, and aspects to be cleared, as described in Image Views.

Valid Usage

• VUID-vkCmdClearDepthStencilImage-image-01994
The format features of image must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-vkCmdClearDepthStencilImage-pRanges-02658
If the aspect member of any element of pRanges includes VK_IMAGE_ASPECT_STENCIL_BIT, and
image was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_DST_BIT must have
been included in the VkImageStencilUsageCreateInfo::stencilUsage used to create image

• VUID-vkCmdClearDepthStencilImage-pRanges-02659
If the aspect member of any element of pRanges includes VK_IMAGE_ASPECT_STENCIL_BIT, and
image was not created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_DST_BIT must
have been included in the VkImageCreateInfo::usage used to create image

• VUID-vkCmdClearDepthStencilImage-pRanges-02660
If the aspect member of any element of pRanges includes VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_USAGE_TRANSFER_DST_BIT must have been included in the VkImageCreateInfo
::usage used to create image

• VUID-vkCmdClearDepthStencilImage-image-00010
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdClearDepthStencilImage-imageLayout-00011
imageLayout must specify the layout of the image subresource ranges of image specified in
pRanges at the time this command is executed on a VkDevice

• VUID-vkCmdClearDepthStencilImage-imageLayout-00012
imageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or
VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdClearDepthStencilImage-aspectMask-02824
The VkImageSubresourceRange::aspectMask member of each element of the pRanges array
must not include bits other than VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

1586

• VUID-vkCmdClearDepthStencilImage-image-02825
If the image’s format does not have a stencil component, then the
VkImageSubresourceRange::aspectMask member of each element of the pRanges array
must not include the VK_IMAGE_ASPECT_STENCIL_BIT bit

• VUID-vkCmdClearDepthStencilImage-image-02826
If the image’s format does not have a depth component, then the
VkImageSubresourceRange::aspectMask member of each element of the pRanges array
must not include the VK_IMAGE_ASPECT_DEPTH_BIT bit

• VUID-vkCmdClearDepthStencilImage-baseMipLevel-01474
The VkImageSubresourceRange::baseMipLevel members of the elements of the pRanges
array must each be less than the mipLevels specified in VkImageCreateInfo when image
was created

• VUID-vkCmdClearDepthStencilImage-pRanges-01694
For each VkImageSubresourceRange element of pRanges, if the levelCount member is not
VK_REMAINING_MIP_LEVELS, then baseMipLevel + levelCount must be less than or equal to the
mipLevels specified in VkImageCreateInfo when image was created

• VUID-vkCmdClearDepthStencilImage-baseArrayLayer-01476
The VkImageSubresourceRange::baseArrayLayer members of the elements of the pRanges
array must each be less than the arrayLayers specified in VkImageCreateInfo when image
was created

• VUID-vkCmdClearDepthStencilImage-pRanges-01695
For each VkImageSubresourceRange element of pRanges, if the layerCount member is not
VK_REMAINING_ARRAY_LAYERS, then baseArrayLayer + layerCount must be less than or equal to
the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-vkCmdClearDepthStencilImage-image-00014
image must have a depth/stencil format

• VUID-vkCmdClearDepthStencilImage-commandBuffer-01807
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
image must not be a protected image

• VUID-vkCmdClearDepthStencilImage-commandBuffer-01808
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
image must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdClearDepthStencilImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdClearDepthStencilImage-image-parameter
image must be a valid VkImage handle

• VUID-vkCmdClearDepthStencilImage-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

• VUID-vkCmdClearDepthStencilImage-pDepthStencil-parameter

1587

pDepthStencil must be a valid pointer to a valid VkClearDepthStencilValue structure

• VUID-vkCmdClearDepthStencilImage-pRanges-parameter
pRanges must be a valid pointer to an array of rangeCount valid VkImageSubresourceRange
structures

• VUID-vkCmdClearDepthStencilImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdClearDepthStencilImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdClearDepthStencilImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdClearDepthStencilImage-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdClearDepthStencilImage-rangeCount-arraylength
rangeCount must be greater than 0

• VUID-vkCmdClearDepthStencilImage-commonparent
Both of commandBuffer, and image must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics Action

Clears outside render pass instances are treated as transfer operations for the purposes of memory
barriers.

19.2. Clearing Images Inside a Render Pass Instance
To clear one or more regions of color and depth/stencil attachments inside a render pass instance,
call:

1588

// Provided by VK_VERSION_1_0
void vkCmdClearAttachments(
 VkCommandBuffer commandBuffer,
 uint32_t attachmentCount,
 const VkClearAttachment* pAttachments,
 uint32_t rectCount,
 const VkClearRect* pRects);

• commandBuffer is the command buffer into which the command will be recorded.

• attachmentCount is the number of entries in the pAttachments array.

• pAttachments is a pointer to an array of VkClearAttachment structures defining the attachments
to clear and the clear values to use.

• rectCount is the number of entries in the pRects array.

• pRects is a pointer to an array of VkClearRect structures defining regions within each selected
attachment to clear.

If the render pass has a fragment density map attachment, clears follow the operations of fragment
density maps as if each clear region was a primitive which generates fragments. The clear color is
applied to all pixels inside each fragment’s area regardless if the pixels lie outside of the clear
region. Clears may have a different set of supported fragment areas than draws.

Unlike other clear commands, vkCmdClearAttachments is not a transfer command. It performs its
operations in rasterization order. For color attachments, the operations are executed as color
attachment writes, by the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT stage. For depth/stencil
attachments, the operations are executed as depth writes and stencil writes by the
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT and VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT stages.

vkCmdClearAttachments is not affected by the bound pipeline state.

Note

It is generally preferable to clear attachments by using the
VK_ATTACHMENT_LOAD_OP_CLEAR load operation at the start of rendering, as it is more
efficient on some implementations.

If any attachment’s aspectMask to be cleared is not backed by an image view, the clear has no effect
on that aspect.

If an attachment being cleared refers to an image view created with an aspectMask equal to one of
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT or VK_IMAGE_ASPECT_PLANE_2_BIT, it is
considered to be VK_IMAGE_ASPECT_COLOR_BIT for purposes of this command, and must be cleared
with the VK_IMAGE_ASPECT_COLOR_BIT aspect as specified by image view creation.

Valid Usage

• VUID-vkCmdClearAttachments-aspectMask-07884
If the current render pass instance does not use dynamic rendering, and the aspectMask

1589

member of any element of pAttachments contains VK_IMAGE_ASPECT_DEPTH_BIT, the current
subpass instance’s depth-stencil attachment must be either VK_ATTACHMENT_UNUSED or the
attachment format must contain a depth component

• VUID-vkCmdClearAttachments-aspectMask-07885
If the current render pass instance does not use dynamic rendering, and the aspectMask
member of any element of pAttachments contains VK_IMAGE_ASPECT_STENCIL_BIT, the current
subpass instance’s depth-stencil attachment must be either VK_ATTACHMENT_UNUSED or the
attachment format must contain a stencil component

• VUID-vkCmdClearAttachments-aspectMask-07271
If the aspectMask member of any element of pAttachments contains
VK_IMAGE_ASPECT_COLOR_BIT, the colorAttachment must be a valid color attachment index in
the current render pass instance

• VUID-vkCmdClearAttachments-rect-02682
The rect member of each element of pRects must have an extent.width greater than 0

• VUID-vkCmdClearAttachments-rect-02683
The rect member of each element of pRects must have an extent.height greater than 0

• VUID-vkCmdClearAttachments-pRects-00016
The rectangular region specified by each element of pRects must be contained within the
render area of the current render pass instance

• VUID-vkCmdClearAttachments-pRects-06937
The layers specified by each element of pRects must be contained within every
attachment that pAttachments refers to, i.e. for each element of pRects, VkClearRect
::baseArrayLayer + VkClearRect::layerCount must be less than or equal to the number of
layers rendered to in the current render pass instance

• VUID-vkCmdClearAttachments-layerCount-01934
The layerCount member of each element of pRects must not be 0

• VUID-vkCmdClearAttachments-commandBuffer-02504
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
each attachment to be cleared must not be a protected image

• VUID-vkCmdClearAttachments-commandBuffer-02505
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
each attachment to be cleared must not be an unprotected image

• VUID-vkCmdClearAttachments-baseArrayLayer-00018
If the render pass instance this is recorded in uses multiview, then baseArrayLayer must
be zero and layerCount must be one

• VUID-vkCmdClearAttachments-colorAttachment-09503
The colorAttachment member of each element of pAttachments must not identify a color
attachment that is currently mapped to VK_ATTACHMENT_UNUSED in commandBuffer via
VkRenderingAttachmentLocationInfoKHR

• VUID-vkCmdClearAttachments-aspectMask-09298
If the subpass this is recorded in performs an external format resolve, the aspectMask
member of any element of pAttachments must not include VK_IMAGE_ASPECT_PLANE_i_BIT for
any index i

1590

Valid Usage (Implicit)

• VUID-vkCmdClearAttachments-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdClearAttachments-pAttachments-parameter
pAttachments must be a valid pointer to an array of attachmentCount valid
VkClearAttachment structures

• VUID-vkCmdClearAttachments-pRects-parameter
pRects must be a valid pointer to an array of rectCount VkClearRect structures

• VUID-vkCmdClearAttachments-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdClearAttachments-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdClearAttachments-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdClearAttachments-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdClearAttachments-attachmentCount-arraylength
attachmentCount must be greater than 0

• VUID-vkCmdClearAttachments-rectCount-arraylength
rectCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

The VkClearRect structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkClearRect {

1591

 VkRect2D rect;
 uint32_t baseArrayLayer;
 uint32_t layerCount;
} VkClearRect;

• rect is the two-dimensional region to be cleared.

• baseArrayLayer is the first layer to be cleared.

• layerCount is the number of layers to clear.

The layers [baseArrayLayer, baseArrayLayer + layerCount) counting from the base layer of the
attachment image view are cleared.

The VkClearAttachment structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkClearAttachment {
 VkImageAspectFlags aspectMask;
 uint32_t colorAttachment;
 VkClearValue clearValue;
} VkClearAttachment;

• aspectMask is a mask selecting the color, depth and/or stencil aspects of the attachment to be
cleared.

• colorAttachment is only meaningful if VK_IMAGE_ASPECT_COLOR_BIT is set in aspectMask, in which
case it is an index into the currently bound color attachments.

• clearValue is the color or depth/stencil value to clear the attachment to, as described in Clear
Values below.

Valid Usage

• VUID-VkClearAttachment-aspectMask-00019
If aspectMask includes VK_IMAGE_ASPECT_COLOR_BIT, it must not include
VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkClearAttachment-aspectMask-00020
aspectMask must not include VK_IMAGE_ASPECT_METADATA_BIT

• VUID-VkClearAttachment-aspectMask-02246
aspectMask must not include VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT for any index i

Valid Usage (Implicit)

• VUID-VkClearAttachment-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkClearAttachment-aspectMask-requiredbitmask

1592

aspectMask must not be 0

19.3. Clear Values
The VkClearColorValue structure is defined as:

// Provided by VK_VERSION_1_0
typedef union VkClearColorValue {
 float float32[4];
 int32_t int32[4];
 uint32_t uint32[4];
} VkClearColorValue;

• float32 are the color clear values when the format of the image or attachment is one of the
numeric formats with a numeric type that is floating-point. Floating point values are
automatically converted to the format of the image, with the clear value being treated as linear
if the image is sRGB.

• int32 are the color clear values when the format of the image or attachment has a numeric type
that is signed integer (SINT). Signed integer values are converted to the format of the image by
casting to the smaller type (with negative 32-bit values mapping to negative values in the
smaller type). If the integer clear value is not representable in the target type (e.g. would
overflow in conversion to that type), the clear value is undefined.

• uint32 are the color clear values when the format of the image or attachment has a numeric
type that is unsigned integer (UINT). Unsigned integer values are converted to the format of the
image by casting to the integer type with fewer bits.

The four array elements of the clear color map to R, G, B, and A components of image formats, in
order.

If the image has more than one sample, the same value is written to all samples for any pixels being
cleared.

The VkClearDepthStencilValue structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkClearDepthStencilValue {
 float depth;
 uint32_t stencil;
} VkClearDepthStencilValue;

• depth is the clear value for the depth aspect of the depth/stencil attachment. It is a floating-point
value which is automatically converted to the attachment’s format.

• stencil is the clear value for the stencil aspect of the depth/stencil attachment. It is a 32-bit
integer value which is converted to the attachment’s format by taking the appropriate number
of LSBs.

1593

Valid Usage

• VUID-VkClearDepthStencilValue-depth-00022
Unless the VK_EXT_depth_range_unrestricted extension is enabled depth must be between
0.0 and 1.0, inclusive

The VkClearValue union is defined as:

// Provided by VK_VERSION_1_0
typedef union VkClearValue {
 VkClearColorValue color;
 VkClearDepthStencilValue depthStencil;
} VkClearValue;

• color specifies the color image clear values to use when clearing a color image or attachment.

• depthStencil specifies the depth and stencil clear values to use when clearing a depth/stencil
image or attachment.

This union is used where part of the API requires either color or depth/stencil clear values,
depending on the attachment, and defines the initial clear values in the VkRenderPassBeginInfo
structure.

19.4. Filling Buffers
To clear buffer data, call:

// Provided by VK_VERSION_1_0
void vkCmdFillBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer dstBuffer,
 VkDeviceSize dstOffset,
 VkDeviceSize size,
 uint32_t data);

• commandBuffer is the command buffer into which the command will be recorded.

• dstBuffer is the buffer to be filled.

• dstOffset is the byte offset into the buffer at which to start filling, and must be a multiple of 4.

• size is the number of bytes to fill, and must be either a multiple of 4, or VK_WHOLE_SIZE to fill the
range from offset to the end of the buffer. If VK_WHOLE_SIZE is used and the remaining size of the
buffer is not a multiple of 4, then the nearest smaller multiple is used.

• data is the 4-byte word written repeatedly to the buffer to fill size bytes of data. The data word
is written to memory according to the host endianness.

vkCmdFillBuffer is treated as a “transfer” operation for the purposes of synchronization barriers.

1594

The VK_BUFFER_USAGE_TRANSFER_DST_BIT must be specified in usage of VkBufferCreateInfo in order for
the buffer to be compatible with vkCmdFillBuffer.

Valid Usage

• VUID-vkCmdFillBuffer-dstOffset-00024
dstOffset must be less than the size of dstBuffer

• VUID-vkCmdFillBuffer-dstOffset-00025
dstOffset must be a multiple of 4

• VUID-vkCmdFillBuffer-size-00026
If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-vkCmdFillBuffer-size-00027
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of
dstBuffer minus dstOffset

• VUID-vkCmdFillBuffer-size-00028
If size is not equal to VK_WHOLE_SIZE, size must be a multiple of 4

• VUID-vkCmdFillBuffer-dstBuffer-00029
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdFillBuffer-apiVersion-07894
If the VK_KHR_maintenance1 extension is not enabled and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, the VkCommandPool that commandBuffer was allocated
from must support graphics or compute operations

• VUID-vkCmdFillBuffer-dstBuffer-00031
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdFillBuffer-commandBuffer-01811
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdFillBuffer-commandBuffer-01812
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

Valid Usage (Implicit)

• VUID-vkCmdFillBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdFillBuffer-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdFillBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdFillBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics

1595

or compute operations

• VUID-vkCmdFillBuffer-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdFillBuffer-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdFillBuffer-commonparent
Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

19.5. Updating Buffers
To update buffer data inline in a command buffer, call:

// Provided by VK_VERSION_1_0
void vkCmdUpdateBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer dstBuffer,
 VkDeviceSize dstOffset,
 VkDeviceSize dataSize,
 const void* pData);

• commandBuffer is the command buffer into which the command will be recorded.

• dstBuffer is a handle to the buffer to be updated.

• dstOffset is the byte offset into the buffer to start updating, and must be a multiple of 4.

• dataSize is the number of bytes to update, and must be a multiple of 4.

• pData is a pointer to the source data for the buffer update, and must be at least dataSize bytes in

1596

size.

dataSize must be less than or equal to 65536 bytes. For larger updates, applications can use buffer
to buffer copies.

Note

Buffer updates performed with vkCmdUpdateBuffer first copy the data into
command buffer memory when the command is recorded (which requires
additional storage and may incur an additional allocation), and then copy the data
from the command buffer into dstBuffer when the command is executed on a
device.

The additional cost of this functionality compared to buffer to buffer copies means
it is only recommended for very small amounts of data, and is why it is limited to
only 65536 bytes.

Applications can work around this by issuing multiple vkCmdUpdateBuffer
commands to different ranges of the same buffer, but it is strongly recommended
that they should not.

The source data is copied from the user pointer to the command buffer when the command is
called.

vkCmdUpdateBuffer is only allowed outside of a render pass. This command is treated as a “transfer”
operation for the purposes of synchronization barriers. The VK_BUFFER_USAGE_TRANSFER_DST_BIT must
be specified in usage of VkBufferCreateInfo in order for the buffer to be compatible with
vkCmdUpdateBuffer.

Valid Usage

• VUID-vkCmdUpdateBuffer-dstOffset-00032
dstOffset must be less than the size of dstBuffer

• VUID-vkCmdUpdateBuffer-dataSize-00033
dataSize must be less than or equal to the size of dstBuffer minus dstOffset

• VUID-vkCmdUpdateBuffer-dstBuffer-00034
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdUpdateBuffer-dstBuffer-00035
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdUpdateBuffer-dstOffset-00036
dstOffset must be a multiple of 4

• VUID-vkCmdUpdateBuffer-dataSize-00037
dataSize must be less than or equal to 65536

• VUID-vkCmdUpdateBuffer-dataSize-00038
dataSize must be a multiple of 4

1597

• VUID-vkCmdUpdateBuffer-commandBuffer-01813
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdUpdateBuffer-commandBuffer-01814
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

Valid Usage (Implicit)

• VUID-vkCmdUpdateBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdUpdateBuffer-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdUpdateBuffer-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-vkCmdUpdateBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdUpdateBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdUpdateBuffer-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdUpdateBuffer-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdUpdateBuffer-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkCmdUpdateBuffer-commonparent
Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

1598

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

Note

The pData parameter was of type uint32_t* instead of void* prior to version 1.0.19
of the Specification and VK_HEADER_VERSION 19 of the Vulkan Header Files. This
was a historical anomaly, as the source data may be of other types.

1599

Chapter 20. Copy Commands
An application can copy buffer and image data using several methods described in this chapter,
depending on the type of data transfer.

All copy commands are treated as “transfer” operations for the purposes of synchronization
barriers.

All copy commands that have a source format with an X component in its format description read
undefined values from those bits.

All copy commands that have a destination format with an X component in its format description
write undefined values to those bits.

20.1. Copying Data Between Buffers
To copy data between buffer objects, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer srcBuffer,
 VkBuffer dstBuffer,
 uint32_t regionCount,
 const VkBufferCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcBuffer is the source buffer.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferCopy structures specifying the regions to copy.

Each source region specified by pRegions is copied from the source buffer to the destination region
of the destination buffer. If any of the specified regions in srcBuffer overlaps in memory with any
of the specified regions in dstBuffer, values read from those overlapping regions are undefined.

Valid Usage

• VUID-vkCmdCopyBuffer-commandBuffer-01822
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcBuffer must not be a protected buffer

• VUID-vkCmdCopyBuffer-commandBuffer-01823
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdCopyBuffer-commandBuffer-01824

1600

If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

• VUID-vkCmdCopyBuffer-srcOffset-00113
The srcOffset member of each element of pRegions must be less than the size of srcBuffer

• VUID-vkCmdCopyBuffer-dstOffset-00114
The dstOffset member of each element of pRegions must be less than the size of dstBuffer

• VUID-vkCmdCopyBuffer-size-00115
The size member of each element of pRegions must be less than or equal to the size of
srcBuffer minus srcOffset

• VUID-vkCmdCopyBuffer-size-00116
The size member of each element of pRegions must be less than or equal to the size of
dstBuffer minus dstOffset

• VUID-vkCmdCopyBuffer-pRegions-00117
The union of the source regions, and the union of the destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdCopyBuffer-srcBuffer-00118
srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdCopyBuffer-srcBuffer-00119
If srcBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyBuffer-dstBuffer-00120
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyBuffer-dstBuffer-00121
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

Valid Usage (Implicit)

• VUID-vkCmdCopyBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyBuffer-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyBuffer-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyBuffer-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferCopy structures

• VUID-vkCmdCopyBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

1601

• VUID-vkCmdCopyBuffer-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyBuffer-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdCopyBuffer-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdCopyBuffer-commonparent
Each of commandBuffer, dstBuffer, and srcBuffer must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

The VkBufferCopy structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferCopy {
 VkDeviceSize srcOffset;
 VkDeviceSize dstOffset;
 VkDeviceSize size;
} VkBufferCopy;

• srcOffset is the starting offset in bytes from the start of srcBuffer.

• dstOffset is the starting offset in bytes from the start of dstBuffer.

• size is the number of bytes to copy.

Valid Usage

• VUID-VkBufferCopy-size-01988
The size must be greater than 0

1602

A more extensible version of the copy buffer command is defined below.

To copy data between buffer objects, call:

// Provided by VK_VERSION_1_3
void vkCmdCopyBuffer2(
 VkCommandBuffer commandBuffer,
 const VkCopyBufferInfo2* pCopyBufferInfo);

or the equivalent command

// Provided by VK_KHR_copy_commands2
void vkCmdCopyBuffer2KHR(
 VkCommandBuffer commandBuffer,
 const VkCopyBufferInfo2* pCopyBufferInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pCopyBufferInfo is a pointer to a VkCopyBufferInfo2 structure describing the copy parameters.

Each source region specified by pCopyBufferInfo->pRegions is copied from the source buffer to the
destination region of the destination buffer. If any of the specified regions in pCopyBufferInfo-
>srcBuffer overlaps in memory with any of the specified regions in pCopyBufferInfo->dstBuffer,
values read from those overlapping regions are undefined.

Valid Usage

• VUID-vkCmdCopyBuffer2-commandBuffer-01822
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcBuffer must not be a protected buffer

• VUID-vkCmdCopyBuffer2-commandBuffer-01823
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdCopyBuffer2-commandBuffer-01824
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

Valid Usage (Implicit)

• VUID-vkCmdCopyBuffer2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyBuffer2-pCopyBufferInfo-parameter
pCopyBufferInfo must be a valid pointer to a valid VkCopyBufferInfo2 structure

• VUID-vkCmdCopyBuffer2-commandBuffer-recording

1603

commandBuffer must be in the recording state

• VUID-vkCmdCopyBuffer2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyBuffer2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyBuffer2-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

The VkCopyBufferInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCopyBufferInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkBuffer srcBuffer;
 VkBuffer dstBuffer;
 uint32_t regionCount;
 const VkBufferCopy2* pRegions;
} VkCopyBufferInfo2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkCopyBufferInfo2 VkCopyBufferInfo2KHR;

• sType is a VkStructureType value identifying this structure.

1604

• pNext is NULL or a pointer to a structure extending this structure.

• srcBuffer is the source buffer.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferCopy2 structures specifying the regions to copy.

Valid Usage

• VUID-VkCopyBufferInfo2-srcOffset-00113
The srcOffset member of each element of pRegions must be less than the size of srcBuffer

• VUID-VkCopyBufferInfo2-dstOffset-00114
The dstOffset member of each element of pRegions must be less than the size of dstBuffer

• VUID-VkCopyBufferInfo2-size-00115
The size member of each element of pRegions must be less than or equal to the size of
srcBuffer minus srcOffset

• VUID-VkCopyBufferInfo2-size-00116
The size member of each element of pRegions must be less than or equal to the size of
dstBuffer minus dstOffset

• VUID-VkCopyBufferInfo2-pRegions-00117
The union of the source regions, and the union of the destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkCopyBufferInfo2-srcBuffer-00118
srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkCopyBufferInfo2-srcBuffer-00119
If srcBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkCopyBufferInfo2-dstBuffer-00120
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkCopyBufferInfo2-dstBuffer-00121
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

Valid Usage (Implicit)

• VUID-VkCopyBufferInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2

• VUID-VkCopyBufferInfo2-pNext-pNext
pNext must be NULL

• VUID-VkCopyBufferInfo2-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

1605

• VUID-VkCopyBufferInfo2-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-VkCopyBufferInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferCopy2
structures

• VUID-VkCopyBufferInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyBufferInfo2-commonparent
Both of dstBuffer, and srcBuffer must have been created, allocated, or retrieved from the
same VkDevice

The VkBufferCopy2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkBufferCopy2 {
 VkStructureType sType;
 const void* pNext;
 VkDeviceSize srcOffset;
 VkDeviceSize dstOffset;
 VkDeviceSize size;
} VkBufferCopy2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkBufferCopy2 VkBufferCopy2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcOffset is the starting offset in bytes from the start of srcBuffer.

• dstOffset is the starting offset in bytes from the start of dstBuffer.

• size is the number of bytes to copy.

Valid Usage

• VUID-VkBufferCopy2-size-01988
The size must be greater than 0

Valid Usage (Implicit)

• VUID-VkBufferCopy2-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_COPY_2

1606

• VUID-VkBufferCopy2-pNext-pNext
pNext must be NULL

20.2. Copying Data Between Images
To copy data between image objects, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyImage(
 VkCommandBuffer commandBuffer,
 VkImage srcImage,
 VkImageLayout srcImageLayout,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the current layout of the source image subresource.

• dstImage is the destination image.

• dstImageLayout is the current layout of the destination image subresource.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkImageCopy structures specifying the regions to copy.

Each source region specified by pRegions is copied from the source image to the destination region
of the destination image. If any of the specified regions in srcImage overlaps in memory with any of
the specified regions in dstImage, values read from those overlapping regions are undefined.

Multi-planar images can only be copied on a per-plane basis, and the subresources used in each
region when copying to or from such images must specify only one plane, though different regions
can specify different planes. When copying planes of multi-planar images, the format considered is
the compatible format for that plane, rather than the format of the multi-planar image.

If the format of the destination image has a different block extent than the source image (e.g. one is
a compressed format), the offset and extent for each of the regions specified is scaled according to
the block extents of each format to match in size. Copy regions for each image must be aligned to a
multiple of the texel block extent in each dimension, except at the edges of the image, where region
extents must match the edge of the image.

Image data can be copied between images with different image types. If one image is
VK_IMAGE_TYPE_3D and the other image is VK_IMAGE_TYPE_2D with multiple layers, then each slice is
copied to or from a different layer; depth slices in the 3D image correspond to layerCount layers in
the 2D image, with an effective depth of 1 used for the 2D image. If maintenance5 is enabled, all other
combinations are allowed and function as if 1D images are 2D images with a height of 1. Otherwise,

1607

other combinations of image types are disallowed.

Valid Usage

• VUID-vkCmdCopyImage-commandBuffer-01825
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdCopyImage-commandBuffer-01826
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdCopyImage-commandBuffer-01827
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdCopyImage-pRegions-00124
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdCopyImage-srcImage-01995
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-vkCmdCopyImage-srcImageLayout-00128
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdCopyImage-srcImageLayout-01917
srcImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyImage-srcImage-09460
If srcImage and dstImage are the same, and any elements of pRegions contains the
srcSubresource and dstSubresource with matching mipLevel and overlapping array layers,
then the srcImageLayout and dstImageLayout must be VK_IMAGE_LAYOUT_GENERAL or
VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR

• VUID-vkCmdCopyImage-dstImage-01996
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-vkCmdCopyImage-dstImageLayout-00133
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdCopyImage-dstImageLayout-01395
dstImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyImage-srcImage-01548
If the VkFormat of each of srcImage and dstImage is not a multi-planar format, the
VkFormat of each of srcImage and dstImage must be size-compatible

• VUID-vkCmdCopyImage-None-01549
In a copy to or from a plane of a multi-planar image, the VkFormat of the image and plane

1608

must be compatible according to the description of compatible planes for the plane being
copied

• VUID-vkCmdCopyImage-srcImage-09247
If the VkFormat of each of srcImage and dstImage is a compressed image format, the
formats must have the same texel block extent

• VUID-vkCmdCopyImage-srcImage-00136
The sample count of srcImage and dstImage must match

• VUID-vkCmdCopyImage-srcOffset-01783
The srcOffset and extent members of each element of pRegions must respect the image
transfer granularity requirements of commandBuffer’s command pool’s queue family, as
described in VkQueueFamilyProperties

• VUID-vkCmdCopyImage-dstOffset-01784
The dstOffset and extent members of each element of pRegions must respect the image
transfer granularity requirements of commandBuffer’s command pool’s queue family, as
described in VkQueueFamilyProperties

• VUID-vkCmdCopyImage-srcImage-01551
If neither srcImage nor dstImage has a multi-planar image format then for each element of
pRegions, srcSubresource.aspectMask and dstSubresource.aspectMask must match

• VUID-vkCmdCopyImage-srcImage-08713
If srcImage has a multi-planar image format, then for each element of pRegions,
srcSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-vkCmdCopyImage-dstImage-08714
If dstImage has a multi-planar image format, then for each element of pRegions,
dstSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-vkCmdCopyImage-srcImage-01556
If srcImage has a multi-planar image format and the dstImage does not have a multi-planar
image format, then for each element of pRegions, dstSubresource.aspectMask must be
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkCmdCopyImage-dstImage-01557
If dstImage has a multi-planar image format and the srcImage does not have a multi-planar
image format, then for each element of pRegions, srcSubresource.aspectMask must be
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkCmdCopyImage-apiVersion-07932
If the VK_KHR_maintenance1 extension is not enabled, or VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, and either srcImage or dstImage is of type
VK_IMAGE_TYPE_3D, then for each element of pRegions, srcSubresource.baseArrayLayer and
dstSubresource.baseArrayLayer must both be 0, and srcSubresource.layerCount and
dstSubresource.layerCount must both be 1

• VUID-vkCmdCopyImage-srcImage-04443
If srcImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.baseArrayLayer must be 0 and srcSubresource.layerCount must be 1

• VUID-vkCmdCopyImage-dstImage-04444
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,

1609

dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

• VUID-vkCmdCopyImage-aspectMask-00142
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-vkCmdCopyImage-aspectMask-00143
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-vkCmdCopyImage-srcOffset-00144
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-vkCmdCopyImage-srcOffset-00145
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-vkCmdCopyImage-srcImage-00146
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

• VUID-vkCmdCopyImage-srcOffset-00147
If srcImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions, srcOffset.z and
(extent.depth + srcOffset.z) must both be greater than or equal to 0 and less than or
equal to the depth of the specified srcSubresource of srcImage

• VUID-vkCmdCopyImage-srcImage-01785
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.z
must be 0 and extent.depth must be 1

• VUID-vkCmdCopyImage-dstImage-01786
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.z
must be 0 and extent.depth must be 1

• VUID-vkCmdCopyImage-srcImage-01787
If srcImage is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, srcOffset.z
must be 0

• VUID-vkCmdCopyImage-dstImage-01788
If dstImage is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, dstOffset.z
must be 0

• VUID-vkCmdCopyImage-apiVersion-07933
If the VK_KHR_maintenance1 extension is not enabled, and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, srcImage and dstImage must have the same
VkImageType

• VUID-vkCmdCopyImage-apiVersion-08969
If the VK_KHR_maintenance1 extension is not enabled, and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, srcImage or dstImage is of type VK_IMAGE_TYPE_2D, then
for each element of pRegions, extent.depth must be 1

• VUID-vkCmdCopyImage-srcImage-07743

1610

If srcImage and dstImage have a different VkImageType, and maintenance5 is not enabled,
one must be VK_IMAGE_TYPE_3D and the other must be VK_IMAGE_TYPE_2D

• VUID-vkCmdCopyImage-srcImage-08793
If srcImage and dstImage have the same VkImageType, for each element of pRegions, if
neither of the layerCount members of srcSubresource or dstSubresource are
VK_REMAINING_ARRAY_LAYERS, the layerCount members of srcSubresource or dstSubresource
must match

• VUID-vkCmdCopyImage-srcImage-08794
If srcImage and dstImage have the same VkImageType, and one of the layerCount members
of srcSubresource or dstSubresource is VK_REMAINING_ARRAY_LAYERS, the other member must
be either VK_REMAINING_ARRAY_LAYERS or equal to the arrayLayers member of the
VkImageCreateInfo used to create the image minus baseArrayLayer

• VUID-vkCmdCopyImage-srcImage-01790
If srcImage and dstImage are both of type VK_IMAGE_TYPE_2D, then for each element of
pRegions, extent.depth must be 1

• VUID-vkCmdCopyImage-srcImage-01791
If srcImage is of type VK_IMAGE_TYPE_2D, and dstImage is of type VK_IMAGE_TYPE_3D, then for
each element of pRegions, extent.depth must equal srcSubresource.layerCount

• VUID-vkCmdCopyImage-dstImage-01792
If dstImage is of type VK_IMAGE_TYPE_2D, and srcImage is of type VK_IMAGE_TYPE_3D, then for
each element of pRegions, extent.depth must equal dstSubresource.layerCount

• VUID-vkCmdCopyImage-dstOffset-00150
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-vkCmdCopyImage-dstOffset-00151
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-vkCmdCopyImage-dstImage-00152
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-vkCmdCopyImage-dstOffset-00153
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions, dstOffset.z and
(extent.depth + dstOffset.z) must both be greater than or equal to 0 and less than or
equal to the depth of the specified dstSubresource of dstImage

• VUID-vkCmdCopyImage-pRegions-07278
For each element of pRegions, srcOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-vkCmdCopyImage-pRegions-07279
For each element of pRegions, srcOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-vkCmdCopyImage-pRegions-07280

1611

For each element of pRegions, srcOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-vkCmdCopyImage-pRegions-07281
For each element of pRegions, dstOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-vkCmdCopyImage-pRegions-07282
For each element of pRegions, dstOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-vkCmdCopyImage-pRegions-07283
For each element of pRegions, dstOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-vkCmdCopyImage-srcImage-01728
For each element of pRegions, if the sum of srcOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-vkCmdCopyImage-srcImage-01729
For each element of pRegions, if the sum of srcOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-vkCmdCopyImage-srcImage-01730
For each element of pRegions, if the sum of srcOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-vkCmdCopyImage-dstImage-01732
For each element of pRegions, if the sum of dstOffset.x and extent.width does not equal
the width of the subresource specified by dstSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-vkCmdCopyImage-dstImage-01733
For each element of pRegions, if the sum of dstOffset.y and extent.height does not equal
the height of the subresource specified by dstSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

• VUID-vkCmdCopyImage-dstImage-01734
For each element of pRegions, if the sum of dstOffset.z and extent.depth does not equal
the depth of the subresource specified by dstSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of dstImage

• VUID-vkCmdCopyImage-aspect-06662
If the aspect member of any element of pRegions includes any flag other than
VK_IMAGE_ASPECT_STENCIL_BIT or srcImage was not created with separate stencil usage,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT must have been included in the VkImageCreateInfo
::usage used to create srcImage

• VUID-vkCmdCopyImage-aspect-06663
If the aspect member of any element of pRegions includes any flag other than
VK_IMAGE_ASPECT_STENCIL_BIT or dstImage was not created with separate stencil usage,

1612

VK_IMAGE_USAGE_TRANSFER_DST_BIT must have been included in the VkImageCreateInfo
::usage used to create dstImage

• VUID-vkCmdCopyImage-aspect-06664
If the aspect member of any element of pRegions includes VK_IMAGE_ASPECT_STENCIL_BIT,
and srcImage was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_SRC_BIT
must have been included in the VkImageStencilUsageCreateInfo::stencilUsage used to
create srcImage

• VUID-vkCmdCopyImage-aspect-06665
If the aspect member of any element of pRegions includes VK_IMAGE_ASPECT_STENCIL_BIT,
and dstImage was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_DST_BIT
must have been included in the VkImageStencilUsageCreateInfo::stencilUsage used to
create dstImage

• VUID-vkCmdCopyImage-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyImage-srcSubresource-07967
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-vkCmdCopyImage-srcSubresource-07968
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-vkCmdCopyImage-srcImage-07969
srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-vkCmdCopyImage-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyImage-dstSubresource-07967
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-vkCmdCopyImage-dstSubresource-07968
If dstSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-vkCmdCopyImage-dstImage-07969
dstImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

1613

Valid Usage (Implicit)

• VUID-vkCmdCopyImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyImage-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-vkCmdCopyImage-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyImage-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdCopyImage-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyImage-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageCopy structures

• VUID-vkCmdCopyImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyImage-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdCopyImage-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdCopyImage-commonparent
Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

1614

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

The VkImageCopy structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageCopy {
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffset;
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffset;
 VkExtent3D extent;
} VkImageCopy;

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the
image subresources of the images used for the source and destination image data, respectively.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the
source and destination image data.

• extent is the size in texels of the image to copy in width, height and depth.

Valid Usage

• VUID-VkImageCopy-apiVersion-07940
If the VK_KHR_sampler_ycbcr_conversion extension is not enabled, and
VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, the aspectMask member of
srcSubresource and dstSubresource must match

• VUID-VkImageCopy-apiVersion-07941
If the VK_KHR_maintenance1 extension is not enabled, and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, the layerCount member of srcSubresource and
dstSubresource must match

• VUID-VkImageCopy-extent-06668
extent.width must not be 0

• VUID-VkImageCopy-extent-06669
extent.height must not be 0

• VUID-VkImageCopy-extent-06670
extent.depth must not be 0

1615

Valid Usage (Implicit)

• VUID-VkImageCopy-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageCopy-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

The VkImageSubresourceLayers structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageSubresourceLayers {
 VkImageAspectFlags aspectMask;
 uint32_t mipLevel;
 uint32_t baseArrayLayer;
 uint32_t layerCount;
} VkImageSubresourceLayers;

• aspectMask is a combination of VkImageAspectFlagBits, selecting the color, depth and/or stencil
aspects to be copied.

• mipLevel is the mipmap level to copy

• baseArrayLayer and layerCount are the starting layer and number of layers to copy.

Valid Usage

• VUID-VkImageSubresourceLayers-aspectMask-00167
If aspectMask contains VK_IMAGE_ASPECT_COLOR_BIT, it must not contain either of
VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageSubresourceLayers-aspectMask-00168
aspectMask must not contain VK_IMAGE_ASPECT_METADATA_BIT

• VUID-VkImageSubresourceLayers-aspectMask-02247
aspectMask must not include VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT for any index i

• VUID-VkImageSubresourceLayers-layerCount-09243
If the maintenance5 feature is not enabled, layerCount must not be
VK_REMAINING_ARRAY_LAYERS

• VUID-VkImageSubresourceLayers-layerCount-01700
If layerCount is not VK_REMAINING_ARRAY_LAYERS, it must be greater than 0

Valid Usage (Implicit)

• VUID-VkImageSubresourceLayers-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkImageSubresourceLayers-aspectMask-requiredbitmask

1616

aspectMask must not be 0

A more extensible version of the copy image command is defined below.

To copy data between image objects, call:

// Provided by VK_VERSION_1_3
void vkCmdCopyImage2(
 VkCommandBuffer commandBuffer,
 const VkCopyImageInfo2* pCopyImageInfo);

or the equivalent command

// Provided by VK_KHR_copy_commands2
void vkCmdCopyImage2KHR(
 VkCommandBuffer commandBuffer,
 const VkCopyImageInfo2* pCopyImageInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pCopyImageInfo is a pointer to a VkCopyImageInfo2 structure describing the copy parameters.

This command is functionally identical to vkCmdCopyImage, but includes extensible sub-structures
that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdCopyImage2-commandBuffer-01825
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdCopyImage2-commandBuffer-01826
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdCopyImage2-commandBuffer-01827
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdCopyImage2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyImage2-pCopyImageInfo-parameter
pCopyImageInfo must be a valid pointer to a valid VkCopyImageInfo2 structure

• VUID-vkCmdCopyImage2-commandBuffer-recording

1617

commandBuffer must be in the recording state

• VUID-vkCmdCopyImage2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyImage2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyImage2-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

The VkCopyImageInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCopyImageInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkImageCopy2* pRegions;
} VkCopyImageInfo2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkCopyImageInfo2 VkCopyImageInfo2KHR;

1618

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcImage is the source image.

• srcImageLayout is the current layout of the source image subresource.

• dstImage is the destination image.

• dstImageLayout is the current layout of the destination image subresource.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkImageCopy2 structures specifying the regions to copy.

Valid Usage

• VUID-VkCopyImageInfo2-pRegions-00124
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkCopyImageInfo2-srcImage-01995
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-VkCopyImageInfo2-srcImageLayout-00128
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkCopyImageInfo2-srcImageLayout-01917
srcImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyImageInfo2-srcImage-09460
If srcImage and dstImage are the same, and any elements of pRegions contains the
srcSubresource and dstSubresource with matching mipLevel and overlapping array layers,
then the srcImageLayout and dstImageLayout must be VK_IMAGE_LAYOUT_GENERAL or
VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR

• VUID-VkCopyImageInfo2-dstImage-01996
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-VkCopyImageInfo2-dstImageLayout-00133
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkCopyImageInfo2-dstImageLayout-01395
dstImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyImageInfo2-srcImage-01548
If the VkFormat of each of srcImage and dstImage is not a multi-planar format, the
VkFormat of each of srcImage and dstImage must be size-compatible

• VUID-VkCopyImageInfo2-None-01549
In a copy to or from a plane of a multi-planar image, the VkFormat of the image and plane
must be compatible according to the description of compatible planes for the plane being

1619

copied

• VUID-VkCopyImageInfo2-srcImage-09247
If the VkFormat of each of srcImage and dstImage is a compressed image format, the
formats must have the same texel block extent

• VUID-VkCopyImageInfo2-srcImage-00136
The sample count of srcImage and dstImage must match

• VUID-VkCopyImageInfo2-srcOffset-01783
The srcOffset and extent members of each element of pRegions must respect the image
transfer granularity requirements of commandBuffer’s command pool’s queue family, as
described in VkQueueFamilyProperties

• VUID-VkCopyImageInfo2-dstOffset-01784
The dstOffset and extent members of each element of pRegions must respect the image
transfer granularity requirements of commandBuffer’s command pool’s queue family, as
described in VkQueueFamilyProperties

• VUID-VkCopyImageInfo2-srcImage-01551
If neither srcImage nor dstImage has a multi-planar image format then for each element of
pRegions, srcSubresource.aspectMask and dstSubresource.aspectMask must match

• VUID-VkCopyImageInfo2-srcImage-08713
If srcImage has a multi-planar image format, then for each element of pRegions,
srcSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyImageInfo2-dstImage-08714
If dstImage has a multi-planar image format, then for each element of pRegions,
dstSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyImageInfo2-srcImage-01556
If srcImage has a multi-planar image format and the dstImage does not have a multi-planar
image format, then for each element of pRegions, dstSubresource.aspectMask must be
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkCopyImageInfo2-dstImage-01557
If dstImage has a multi-planar image format and the srcImage does not have a multi-planar
image format, then for each element of pRegions, srcSubresource.aspectMask must be
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkCopyImageInfo2-apiVersion-07932
If the VK_KHR_maintenance1 extension is not enabled, or VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, and either srcImage or dstImage is of type
VK_IMAGE_TYPE_3D, then for each element of pRegions, srcSubresource.baseArrayLayer and
dstSubresource.baseArrayLayer must both be 0, and srcSubresource.layerCount and
dstSubresource.layerCount must both be 1

• VUID-VkCopyImageInfo2-srcImage-04443
If srcImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.baseArrayLayer must be 0 and srcSubresource.layerCount must be 1

• VUID-VkCopyImageInfo2-dstImage-04444
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

1620

• VUID-VkCopyImageInfo2-aspectMask-00142
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-VkCopyImageInfo2-aspectMask-00143
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-VkCopyImageInfo2-srcOffset-00144
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-VkCopyImageInfo2-srcOffset-00145
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-VkCopyImageInfo2-srcImage-00146
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

• VUID-VkCopyImageInfo2-srcOffset-00147
If srcImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions, srcOffset.z and
(extent.depth + srcOffset.z) must both be greater than or equal to 0 and less than or
equal to the depth of the specified srcSubresource of srcImage

• VUID-VkCopyImageInfo2-srcImage-01785
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.z
must be 0 and extent.depth must be 1

• VUID-VkCopyImageInfo2-dstImage-01786
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.z
must be 0 and extent.depth must be 1

• VUID-VkCopyImageInfo2-srcImage-01787
If srcImage is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, srcOffset.z
must be 0

• VUID-VkCopyImageInfo2-dstImage-01788
If dstImage is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, dstOffset.z
must be 0

• VUID-VkCopyImageInfo2-apiVersion-07933
If the VK_KHR_maintenance1 extension is not enabled, and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, srcImage and dstImage must have the same
VkImageType

• VUID-VkCopyImageInfo2-apiVersion-08969
If the VK_KHR_maintenance1 extension is not enabled, and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, srcImage or dstImage is of type VK_IMAGE_TYPE_2D, then
for each element of pRegions, extent.depth must be 1

• VUID-VkCopyImageInfo2-srcImage-07743
If srcImage and dstImage have a different VkImageType, and maintenance5 is not enabled,

1621

one must be VK_IMAGE_TYPE_3D and the other must be VK_IMAGE_TYPE_2D

• VUID-VkCopyImageInfo2-srcImage-08793
If srcImage and dstImage have the same VkImageType, for each element of pRegions, if
neither of the layerCount members of srcSubresource or dstSubresource are
VK_REMAINING_ARRAY_LAYERS, the layerCount members of srcSubresource or dstSubresource
must match

• VUID-VkCopyImageInfo2-srcImage-08794
If srcImage and dstImage have the same VkImageType, and one of the layerCount members
of srcSubresource or dstSubresource is VK_REMAINING_ARRAY_LAYERS, the other member must
be either VK_REMAINING_ARRAY_LAYERS or equal to the arrayLayers member of the
VkImageCreateInfo used to create the image minus baseArrayLayer

• VUID-VkCopyImageInfo2-srcImage-01790
If srcImage and dstImage are both of type VK_IMAGE_TYPE_2D, then for each element of
pRegions, extent.depth must be 1

• VUID-VkCopyImageInfo2-srcImage-01791
If srcImage is of type VK_IMAGE_TYPE_2D, and dstImage is of type VK_IMAGE_TYPE_3D, then for
each element of pRegions, extent.depth must equal srcSubresource.layerCount

• VUID-VkCopyImageInfo2-dstImage-01792
If dstImage is of type VK_IMAGE_TYPE_2D, and srcImage is of type VK_IMAGE_TYPE_3D, then for
each element of pRegions, extent.depth must equal dstSubresource.layerCount

• VUID-VkCopyImageInfo2-dstOffset-00150
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-VkCopyImageInfo2-dstOffset-00151
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-VkCopyImageInfo2-dstImage-00152
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-VkCopyImageInfo2-dstOffset-00153
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions, dstOffset.z and
(extent.depth + dstOffset.z) must both be greater than or equal to 0 and less than or
equal to the depth of the specified dstSubresource of dstImage

• VUID-VkCopyImageInfo2-pRegions-07278
For each element of pRegions, srcOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-pRegions-07279
For each element of pRegions, srcOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-pRegions-07280
For each element of pRegions, srcOffset.z must be a multiple of the texel block extent

1622

depth of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-pRegions-07281
For each element of pRegions, dstOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-pRegions-07282
For each element of pRegions, dstOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-pRegions-07283
For each element of pRegions, dstOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-srcImage-01728
For each element of pRegions, if the sum of srcOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-srcImage-01729
For each element of pRegions, if the sum of srcOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-srcImage-01730
For each element of pRegions, if the sum of srcOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-dstImage-01732
For each element of pRegions, if the sum of dstOffset.x and extent.width does not equal
the width of the subresource specified by dstSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-dstImage-01733
For each element of pRegions, if the sum of dstOffset.y and extent.height does not equal
the height of the subresource specified by dstSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-dstImage-01734
For each element of pRegions, if the sum of dstOffset.z and extent.depth does not equal
the depth of the subresource specified by dstSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-aspect-06662
If the aspect member of any element of pRegions includes any flag other than
VK_IMAGE_ASPECT_STENCIL_BIT or srcImage was not created with separate stencil usage,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT must have been included in the VkImageCreateInfo
::usage used to create srcImage

• VUID-VkCopyImageInfo2-aspect-06663
If the aspect member of any element of pRegions includes any flag other than
VK_IMAGE_ASPECT_STENCIL_BIT or dstImage was not created with separate stencil usage,
VK_IMAGE_USAGE_TRANSFER_DST_BIT must have been included in the VkImageCreateInfo

1623

::usage used to create dstImage

• VUID-VkCopyImageInfo2-aspect-06664
If the aspect member of any element of pRegions includes VK_IMAGE_ASPECT_STENCIL_BIT,
and srcImage was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_SRC_BIT
must have been included in the VkImageStencilUsageCreateInfo::stencilUsage used to
create srcImage

• VUID-VkCopyImageInfo2-aspect-06665
If the aspect member of any element of pRegions includes VK_IMAGE_ASPECT_STENCIL_BIT,
and dstImage was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_DST_BIT
must have been included in the VkImageStencilUsageCreateInfo::stencilUsage used to
create dstImage

• VUID-VkCopyImageInfo2-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageInfo2-srcSubresource-07967
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkCopyImageInfo2-srcSubresource-07968
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-VkCopyImageInfo2-srcImage-07969
srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkCopyImageInfo2-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageInfo2-dstSubresource-07967
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-VkCopyImageInfo2-dstSubresource-07968
If dstSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-VkCopyImageInfo2-dstImage-07969
dstImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

1624

Valid Usage (Implicit)

• VUID-VkCopyImageInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2

• VUID-VkCopyImageInfo2-pNext-pNext
pNext must be NULL

• VUID-VkCopyImageInfo2-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkCopyImageInfo2-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkCopyImageInfo2-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkCopyImageInfo2-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkCopyImageInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageCopy2
structures

• VUID-VkCopyImageInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyImageInfo2-commonparent
Both of dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

The VkImageCopy2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkImageCopy2 {
 VkStructureType sType;
 const void* pNext;
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffset;
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffset;
 VkExtent3D extent;
} VkImageCopy2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkImageCopy2 VkImageCopy2KHR;

• sType is a VkStructureType value identifying this structure.

1625

• pNext is NULL or a pointer to a structure extending this structure.

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the
image subresources of the images used for the source and destination image data, respectively.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the
source and destination image data.

• extent is the size in texels of the image to copy in width, height and depth.

Valid Usage

• VUID-VkImageCopy2-apiVersion-07940
If the VK_KHR_sampler_ycbcr_conversion extension is not enabled, and
VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, the aspectMask member of
srcSubresource and dstSubresource must match

• VUID-VkImageCopy2-apiVersion-07941
If the VK_KHR_maintenance1 extension is not enabled, and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, the layerCount member of srcSubresource and
dstSubresource must match

• VUID-VkImageCopy2-extent-06668
extent.width must not be 0

• VUID-VkImageCopy2-extent-06669
extent.height must not be 0

• VUID-VkImageCopy2-extent-06670
extent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkImageCopy2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_COPY_2

• VUID-VkImageCopy2-pNext-pNext
pNext must be NULL

• VUID-VkImageCopy2-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageCopy2-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

20.3. Copying Data Between Buffers and Images
Data can be copied between buffers and images, enabling applications to load and store data
between images and user defined offsets in buffer memory.

When copying between a buffer and an image, whole texel blocks are always copied; each texel
block in the specified extent in the image to be copied will be written to a region in the buffer,

1626

specified according to the position of the texel block, and the texel block extent and size of the
format being copied.

For a set of coordinates (x,y,z,layer), where:

x is in the range [imageOffset.x / blockWidth, ⌈(imageOffset.x + imageExtent.width) /
blockWidth⌉),

y is in the range [imageOffset.y / blockHeight, ⌈(imageOffset.y + imageExtent.height) /
blockHeight⌉),

z is in the range [imageOffset.z / blockDepth, ⌈(imageOffset.z + imageExtent.depth) / blockDepth⌉),

layer is in the range [imageSubresource.baseArrayLayer, imageSubresource.baseArrayLayer +
imageSubresource.layerCount),

and where blockWidth, blockHeight, and blockDepth are the dimensions of the texel block extent of
the image’s format.

For each (x,y,z,layer) coordinate, texels in the image layer selected by layer are accessed in the
following ranges:

[x × blockWidth, max((x × blockWidth) + blockWidth, imageWidth))

[y × blockHeight, max((y × blockHeight) + blockHeight, imageHeight))

[z × blockDepth, max((z × blockDepth) + blockDepth, imageDepth))

where imageWidth, imageHeight, and imageDepth are the dimensions of the image subresource.

For each (x,y,z,layer) coordinate, bytes in the buffer are accessed at offsets in the range [texelOffset,
texelOffset + blockSize), where:

texelOffset = bufferOffset + (x × blockSize) + (y × rowExtent) + (z × sliceExtent) + (layer ×
layerExtent)

blockSize is the size of the block in bytes for the format

rowExtent = max(bufferRowLength, ⌈imageExtent.width / blockWidth⌉ × blockSize)

1627

sliceExtent = max(bufferImageHeight, imageExtent.height × rowExtent)

layerExtent = imageExtent.depth × sliceExtent

If a rotation is specified by VkCopyCommandTransformInfoQCOM, the 2D region of the image being
addressed is rotated around the offset, modifying the range of x and y coordinates for the image
address according to the specified VkSurfaceTransformFlagBitsKHR:

• If VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR is specified, no rotation is performed:

x' is in the same range as x

y' is in the same range as y

blockWidth' = blockWidth

blockHeight' = blockHeight

imageWidth' = imageWidth

imageHeight' = imageHeight

• If VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR is specified

x' is in the range [⌈(imageOffset.x - imageExtent.height) / blockHeight⌉, imageOffset.x - image/
blockHeight)

y' is in the range [imageOffset.y / blockWidth, ⌈(imageOffset.y + imageExtent.width) /
blockWidth⌉)

blockWidth' = blockHeight

blockHeight' = blockWidth

imageWidth' = imageHeight

1628

imageHeight' = imageWidth

• If VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR is specified:

x' is in the range [⌈(imageOffset.x - imageExtent.width) / blockWidth⌉, imageOffset.x /
blockWidth),

y' is in the range [⌈(imageOffset.x + imageExtent.height) / blockHeight⌉, imageOffset.x /
blockHeight),

blockWidth' = blockWidth

blockHeight' = blockHeight

imageWidth' = imageWidth

imageHeight' = imageHeight

• If VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR is specified:

x is in the range [imageOffset.x / blockHeight, ⌈(imageOffset.x + imageExtent.height) /
blockHeight⌉)

y is in the range [⌈(imageOffset.y - imageExtent.width) / blockWidth⌉, imageOffset.y /
blockWidth).

blockWidth' = blockHeight

blockHeight' = blockWidth

imageWidth' = imageHeight

imageHeight' = imageWidth

When rotation is performed, for each (x,y,z,layer) coordinate, texels in the image layer selected by
layer are instead accessed in the following ranges:

1629

[x' × blockWidth', max((x' × blockWidth') + blockWidth', imageWidth'))

[y' × blockHeight', max((y' × blockHeight') + blockHeight', imageHeight'))

[z' × blockDepth', max((z' × blockDepth') + blockDepth', imageDepth'))

Buffer addressing calculations are unaffected by this rotation.

When copying between a buffer and the depth or stencil aspect of an image, data in the buffer is
assumed to be laid out as separate planes rather than interleaved. Addressing calculations are thus
performed for a different format than the base image, according to the aspect, as described in the
following table:

Table 30. Depth/Stencil Aspect Copy Table

Base Format Depth Aspect Format Stencil Aspect Format

VK_FORMAT_D16_UNORM VK_FORMAT_D16_UNORM -

VK_FORMAT_X8_D24_UNORM_PACK32 VK_FORMAT_X8_D24_UNORM_PACK32 -

VK_FORMAT_D32_SFLOAT VK_FORMAT_D32_SFLOAT -

VK_FORMAT_S8_UINT - VK_FORMAT_S8_UINT

VK_FORMAT_D16_UNORM_S8_UINT VK_FORMAT_D16_UNORM VK_FORMAT_S8_UINT

VK_FORMAT_D24_UNORM_S8_UINT VK_FORMAT_X8_D24_UNORM_PACK32 VK_FORMAT_S8_UINT

VK_FORMAT_D32_SFLOAT_S8_UINT VK_FORMAT_D32_SFLOAT VK_FORMAT_S8_UINT

When copying between a buffer and any plane of a multi-planar image, addressing calculations are
performed using the compatible format for that plane, rather than the format of the multi-planar
image.

Each texel block is copied from one resource to the other according to the above addressing
equations.

To copy data from a buffer object to an image object, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyBufferToImage(
 VkCommandBuffer commandBuffer,
 VkBuffer srcBuffer,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkBufferImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

1630

• srcBuffer is the source buffer.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy structures specifying the regions to copy.

Each source region specified by pRegions is copied from the source buffer to the destination region
of the destination image according to the addressing calculations for each resource. If any of the
specified regions in srcBuffer overlaps in memory with any of the specified regions in dstImage,
values read from those overlapping regions are undefined. If any region accesses a depth aspect in
dstImage and the VK_EXT_depth_range_unrestricted extension is not enabled, values copied from
srcBuffer outside of the range [0,1] will be be written as undefined values to the destination image.

Copy regions for the image must be aligned to a multiple of the texel block extent in each
dimension, except at the edges of the image, where region extents must match the edge of the
image.

Valid Usage

• VUID-vkCmdCopyBufferToImage-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyBufferToImage-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-vkCmdCopyBufferToImage-imageSubresource-07968
If imageSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when dstImage was created

• VUID-vkCmdCopyBufferToImage-dstImage-07969
dstImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-vkCmdCopyBufferToImage-imageSubresource-07970
The image region specified by each element of pRegions must be contained within the
specified imageSubresource of dstImage

• VUID-vkCmdCopyBufferToImage-imageSubresource-07971
For each element of pRegions, imageOffset.x and (imageExtent.width + imageOffset.x) must
both be greater than or equal to 0 and less than or equal to the width of the specified
imageSubresource of dstImage

• VUID-vkCmdCopyBufferToImage-imageSubresource-07972
For each element of pRegions, imageOffset.y and (imageExtent.height + imageOffset.y)
must both be greater than or equal to 0 and less than or equal to the height of the
specified imageSubresource of dstImage

1631

• VUID-vkCmdCopyBufferToImage-dstImage-07973
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdCopyBufferToImage-commandBuffer-01828
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcBuffer must not be a protected buffer

• VUID-vkCmdCopyBufferToImage-commandBuffer-01829
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdCopyBufferToImage-commandBuffer-01830
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdCopyBufferToImage-commandBuffer-07737
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, the bufferOffset
member of any element of pRegions must be a multiple of 4

• VUID-vkCmdCopyBufferToImage-imageOffset-07738
The imageOffset and imageExtent members of each element of pRegions must respect the
image transfer granularity requirements of commandBuffer’s command pool’s queue family,
as described in VkQueueFamilyProperties

• VUID-vkCmdCopyBufferToImage-commandBuffer-07739
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT, for each element of pRegions, the aspectMask
member of imageSubresource must not be VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkCmdCopyBufferToImage-pRegions-00171
srcBuffer must be large enough to contain all buffer locations that are accessed according
to Buffer and Image Addressing, for each element of pRegions

• VUID-vkCmdCopyBufferToImage-pRegions-00173
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdCopyBufferToImage-srcBuffer-00174
srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdCopyBufferToImage-dstImage-01997
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-vkCmdCopyBufferToImage-srcBuffer-00176
If srcBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyBufferToImage-dstImage-00177
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyBufferToImage-dstImageLayout-00180
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

1632

• VUID-vkCmdCopyBufferToImage-dstImageLayout-01396
dstImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyBufferToImage-pRegions-07931
If VK_EXT_depth_range_unrestricted is not enabled, for each element of pRegions whose
imageSubresource contains a depth aspect, the data in srcBuffer must be in the range [0,1]

• VUID-vkCmdCopyBufferToImage-dstImage-07979
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-vkCmdCopyBufferToImage-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07980
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

• VUID-vkCmdCopyBufferToImage-dstImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07981
If dstImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

1633

• VUID-vkCmdCopyBufferToImage-dstImage-07983
If dstImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-vkCmdCopyBufferToImage-bufferRowLength-09106
For each element of pRegions, bufferRowLength must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-bufferImageHeight-09107
For each element of pRegions, bufferImageHeight must be a multiple of the texel block
extent height of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-bufferRowLength-09108
For each element of pRegions, bufferRowLength divided by the texel block extent width and
then multiplied by the texel block size of dstImage must be less than or equal to 231-1

• VUID-vkCmdCopyBufferToImage-dstImage-07975
If dstImage does not have either a depth/stencil format or a multi-planar format, then for
each element of pRegions, bufferOffset must be a multiple of the texel block size

• VUID-vkCmdCopyBufferToImage-dstImage-07976
If dstImage has a multi-planar format, then for each element of pRegions, bufferOffset
must be a multiple of the element size of the compatible format for the format and the
aspectMask of the imageSubresource as defined in Compatible Formats of Planes of Multi-
Planar Formats

• VUID-vkCmdCopyBufferToImage-dstImage-07978
If dstImage has a depth/stencil format, the bufferOffset member of any element of
pRegions must be a multiple of 4

Valid Usage (Implicit)

• VUID-vkCmdCopyBufferToImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyBufferToImage-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyBufferToImage-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdCopyBufferToImage-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyBufferToImage-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferImageCopy
structures

• VUID-vkCmdCopyBufferToImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyBufferToImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,

1634

or compute operations

• VUID-vkCmdCopyBufferToImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyBufferToImage-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdCopyBufferToImage-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdCopyBufferToImage-commonparent
Each of commandBuffer, dstImage, and srcBuffer must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

To copy data from an image object to a buffer object, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyImageToBuffer(
 VkCommandBuffer commandBuffer,
 VkImage srcImage,
 VkImageLayout srcImageLayout,
 VkBuffer dstBuffer,
 uint32_t regionCount,
 const VkBufferImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the copy.

• dstBuffer is the destination buffer.

1635

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy structures specifying the regions to copy.

Each source region specified by pRegions is copied from the source image to the destination region
of the destination buffer according to the addressing calculations for each resource. If any of the
specified regions in srcImage overlaps in memory with any of the specified regions in dstBuffer,
values read from those overlapping regions are undefined.

Copy regions for the image must be aligned to a multiple of the texel block extent in each
dimension, except at the edges of the image, where region extents must match the edge of the
image.

Valid Usage

• VUID-vkCmdCopyImageToBuffer-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07968
If imageSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when srcImage was created

• VUID-vkCmdCopyImageToBuffer-srcImage-07969
srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07970
The image region specified by each element of pRegions must be contained within the
specified imageSubresource of srcImage

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07971
For each element of pRegions, imageOffset.x and (imageExtent.width + imageOffset.x) must
both be greater than or equal to 0 and less than or equal to the width of the specified
imageSubresource of srcImage

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07972
For each element of pRegions, imageOffset.y and (imageExtent.height + imageOffset.y)
must both be greater than or equal to 0 and less than or equal to the height of the
specified imageSubresource of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07973
srcImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdCopyImageToBuffer-commandBuffer-01831
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,

1636

srcImage must not be a protected image

• VUID-vkCmdCopyImageToBuffer-commandBuffer-01832
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdCopyImageToBuffer-commandBuffer-01833
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

• VUID-vkCmdCopyImageToBuffer-commandBuffer-07746
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, the bufferOffset
member of any element of pRegions must be a multiple of 4

• VUID-vkCmdCopyImageToBuffer-imageOffset-07747
The imageOffset and imageExtent members of each element of pRegions must respect the
image transfer granularity requirements of commandBuffer’s command pool’s queue family,
as described in VkQueueFamilyProperties

• VUID-vkCmdCopyImageToBuffer-pRegions-00183
dstBuffer must be large enough to contain all buffer locations that are accessed according
to Buffer and Image Addressing, for each element of pRegions

• VUID-vkCmdCopyImageToBuffer-pRegions-00184
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdCopyImageToBuffer-srcImage-00186
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdCopyImageToBuffer-srcImage-01998
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-vkCmdCopyImageToBuffer-dstBuffer-00191
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyImageToBuffer-dstBuffer-00192
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyImageToBuffer-srcImageLayout-00189
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdCopyImageToBuffer-srcImageLayout-01397
srcImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyImageToBuffer-srcImage-07979
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-vkCmdCopyImageToBuffer-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must

1637

both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07980
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

• VUID-vkCmdCopyImageToBuffer-srcImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07981
If srcImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-vkCmdCopyImageToBuffer-srcImage-07983
If srcImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-vkCmdCopyImageToBuffer-bufferRowLength-09106
For each element of pRegions, bufferRowLength must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-bufferImageHeight-09107
For each element of pRegions, bufferImageHeight must be a multiple of the texel block
extent height of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-bufferRowLength-09108

1638

For each element of pRegions, bufferRowLength divided by the texel block extent width and
then multiplied by the texel block size of srcImage must be less than or equal to 231-1

• VUID-vkCmdCopyImageToBuffer-srcImage-07975
If srcImage does not have either a depth/stencil format or a multi-planar format, then for
each element of pRegions, bufferOffset must be a multiple of the texel block size

• VUID-vkCmdCopyImageToBuffer-srcImage-07976
If srcImage has a multi-planar format, then for each element of pRegions, bufferOffset
must be a multiple of the element size of the compatible format for the format and the
aspectMask of the imageSubresource as defined in Compatible Formats of Planes of Multi-
Planar Formats

• VUID-vkCmdCopyImageToBuffer-srcImage-07978
If srcImage has a depth/stencil format, the bufferOffset member of any element of
pRegions must be a multiple of 4

Valid Usage (Implicit)

• VUID-vkCmdCopyImageToBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyImageToBuffer-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-vkCmdCopyImageToBuffer-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyImageToBuffer-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyImageToBuffer-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferImageCopy
structures

• VUID-vkCmdCopyImageToBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyImageToBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyImageToBuffer-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyImageToBuffer-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdCopyImageToBuffer-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdCopyImageToBuffer-commonparent
Each of commandBuffer, dstBuffer, and srcImage must have been created, allocated, or
retrieved from the same VkDevice

1639

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

For both vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer, each element of pRegions is a
structure defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferImageCopy {
 VkDeviceSize bufferOffset;
 uint32_t bufferRowLength;
 uint32_t bufferImageHeight;
 VkImageSubresourceLayers imageSubresource;
 VkOffset3D imageOffset;
 VkExtent3D imageExtent;
} VkBufferImageCopy;

• bufferOffset is the offset in bytes from the start of the buffer object where the image data is
copied from or to.

• bufferRowLength and bufferImageHeight specify in texels a subregion of a larger two- or three-
dimensional image in buffer memory, and control the addressing calculations. If either of these
values is zero, that aspect of the buffer memory is considered to be tightly packed according to
the imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image
subresources of the image used for the source or destination image data.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the source or
destination image data.

• imageExtent is the size in texels of the image to copy in width, height and depth.

Valid Usage

• VUID-VkBufferImageCopy-bufferRowLength-09101

1640

bufferRowLength must be 0, or greater than or equal to the width member of imageExtent

• VUID-VkBufferImageCopy-bufferImageHeight-09102
bufferImageHeight must be 0, or greater than or equal to the height member of imageExtent

• VUID-VkBufferImageCopy-aspectMask-09103
The aspectMask member of imageSubresource must only have a single bit set

• VUID-VkBufferImageCopy-imageExtent-06659
imageExtent.width must not be 0

• VUID-VkBufferImageCopy-imageExtent-06660
imageExtent.height must not be 0

• VUID-VkBufferImageCopy-imageExtent-06661
imageExtent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkBufferImageCopy-imageSubresource-parameter
imageSubresource must be a valid VkImageSubresourceLayers structure

More extensible versions of the commands to copy between buffers and images are defined below.

To copy data from a buffer object to an image object, call:

// Provided by VK_VERSION_1_3
void vkCmdCopyBufferToImage2(
 VkCommandBuffer commandBuffer,
 const VkCopyBufferToImageInfo2* pCopyBufferToImageInfo);

or the equivalent command

// Provided by VK_KHR_copy_commands2
void vkCmdCopyBufferToImage2KHR(
 VkCommandBuffer commandBuffer,
 const VkCopyBufferToImageInfo2* pCopyBufferToImageInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pCopyBufferToImageInfo is a pointer to a VkCopyBufferToImageInfo2 structure describing the
copy parameters.

This command is functionally identical to vkCmdCopyBufferToImage, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdCopyBufferToImage2-commandBuffer-01828

1641

If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcBuffer must not be a protected buffer

• VUID-vkCmdCopyBufferToImage2-commandBuffer-01829
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdCopyBufferToImage2-commandBuffer-01830
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdCopyBufferToImage2-commandBuffer-07737
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, the bufferOffset
member of any element of pCopyBufferToImageInfo->pRegions must be a multiple of 4

• VUID-vkCmdCopyBufferToImage2-imageOffset-07738
The imageOffset and imageExtent members of each element of pCopyBufferToImageInfo-
>pRegions must respect the image transfer granularity requirements of commandBuffer’s
command pool’s queue family, as described in VkQueueFamilyProperties

• VUID-vkCmdCopyBufferToImage2-commandBuffer-07739
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT, for each element of pCopyBufferToImageInfo-
>pRegions, the aspectMask member of imageSubresource must not be
VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

Valid Usage (Implicit)

• VUID-vkCmdCopyBufferToImage2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyBufferToImage2-pCopyBufferToImageInfo-parameter
pCopyBufferToImageInfo must be a valid pointer to a valid VkCopyBufferToImageInfo2
structure

• VUID-vkCmdCopyBufferToImage2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyBufferToImage2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyBufferToImage2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyBufferToImage2-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

1642

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

The VkCopyBufferToImageInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCopyBufferToImageInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkBuffer srcBuffer;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkBufferImageCopy2* pRegions;
} VkCopyBufferToImageInfo2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkCopyBufferToImageInfo2 VkCopyBufferToImageInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcBuffer is the source buffer.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy2 structures specifying the regions to
copy.

Valid Usage

• VUID-VkCopyBufferToImageInfo2-pRegions-04565
The image region specified by each element of pRegions that does not contain

1643

VkCopyCommandTransformInfoQCOM in its pNext chain must be contained within the
specified imageSubresource of dstImage

• VUID-VkCopyBufferToImageInfo2KHR-pRegions-04554
If the image region specified by each element of pRegions contains
VkCopyCommandTransformInfoQCOM in its pNext chain, the rotated destination region as
described in [copies-buffers-images-rotation-addressing] must be contained within
dstImage

• VUID-VkCopyBufferToImageInfo2KHR-pRegions-04555
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then dstImage must have a 1x1x1 texel block extent

• VUID-VkCopyBufferToImageInfo2KHR-pRegions-06203
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then dstImage must be of type VK_IMAGE_TYPE_2D

• VUID-VkCopyBufferToImageInfo2KHR-pRegions-06204
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then dstImage must not have a multi-planar format

• VUID-VkCopyBufferToImageInfo2-pRegions-00171
srcBuffer must be large enough to contain all buffer locations that are accessed according
to Buffer and Image Addressing, for each element of pRegions

• VUID-VkCopyBufferToImageInfo2-pRegions-00173
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkCopyBufferToImageInfo2-srcBuffer-00174
srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkCopyBufferToImageInfo2-dstImage-01997
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-VkCopyBufferToImageInfo2-srcBuffer-00176
If srcBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkCopyBufferToImageInfo2-dstImage-00177
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkCopyBufferToImageInfo2-dstImageLayout-00180
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkCopyBufferToImageInfo2-dstImageLayout-01396
dstImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyBufferToImageInfo2-pRegions-07931
If VK_EXT_depth_range_unrestricted is not enabled, for each element of pRegions whose
imageSubresource contains a depth aspect, the data in srcBuffer must be in the range [0,1]

• VUID-VkCopyBufferToImageInfo2-dstImage-07966

1644

If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyBufferToImageInfo2-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-VkCopyBufferToImageInfo2-imageSubresource-07968
If imageSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when dstImage was created

• VUID-VkCopyBufferToImageInfo2-dstImage-07969
dstImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkCopyBufferToImageInfo2-dstImage-07973
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-VkCopyBufferToImageInfo2-dstImage-07979
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-VkCopyBufferToImageInfo2-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-07980
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

• VUID-VkCopyBufferToImageInfo2-dstImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

1645

• VUID-VkCopyBufferToImageInfo2-dstImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-07981
If dstImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyBufferToImageInfo2-dstImage-07983
If dstImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-VkCopyBufferToImageInfo2-bufferRowLength-09106
For each element of pRegions, bufferRowLength must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-bufferImageHeight-09107
For each element of pRegions, bufferImageHeight must be a multiple of the texel block
extent height of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-bufferRowLength-09108
For each element of pRegions, bufferRowLength divided by the texel block extent width and
then multiplied by the texel block size of dstImage must be less than or equal to 231-1

• VUID-VkCopyBufferToImageInfo2-dstImage-07975
If dstImage does not have either a depth/stencil format or a multi-planar format, then for
each element of pRegions, bufferOffset must be a multiple of the texel block size

• VUID-VkCopyBufferToImageInfo2-dstImage-07976
If dstImage has a multi-planar format, then for each element of pRegions, bufferOffset
must be a multiple of the element size of the compatible format for the format and the
aspectMask of the imageSubresource as defined in Compatible Formats of Planes of Multi-
Planar Formats

• VUID-VkCopyBufferToImageInfo2-dstImage-07978
If dstImage has a depth/stencil format, the bufferOffset member of any element of
pRegions must be a multiple of 4

• VUID-VkCopyBufferToImageInfo2-pRegions-06223
For each element of pRegions not containing VkCopyCommandTransformInfoQCOM in its pNext
chain, imageOffset.x and (imageExtent.width + imageOffset.x) must both be greater than or
equal to 0 and less than or equal to the width of the specified imageSubresource of dstImage

• VUID-VkCopyBufferToImageInfo2-pRegions-06224
For each element of pRegions not containing VkCopyCommandTransformInfoQCOM in its pNext
chain, imageOffset.y and (imageExtent.height + imageOffset.y) must both be greater than
or equal to 0 and less than or equal to the height of the specified imageSubresource of
dstImage

1646

Valid Usage (Implicit)

• VUID-VkCopyBufferToImageInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2

• VUID-VkCopyBufferToImageInfo2-pNext-pNext
pNext must be NULL

• VUID-VkCopyBufferToImageInfo2-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

• VUID-VkCopyBufferToImageInfo2-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkCopyBufferToImageInfo2-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkCopyBufferToImageInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferImageCopy2
structures

• VUID-VkCopyBufferToImageInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyBufferToImageInfo2-commonparent
Both of dstImage, and srcBuffer must have been created, allocated, or retrieved from the
same VkDevice

To copy data from an image object to a buffer object, call:

// Provided by VK_VERSION_1_3
void vkCmdCopyImageToBuffer2(
 VkCommandBuffer commandBuffer,
 const VkCopyImageToBufferInfo2* pCopyImageToBufferInfo);

or the equivalent command

// Provided by VK_KHR_copy_commands2
void vkCmdCopyImageToBuffer2KHR(
 VkCommandBuffer commandBuffer,
 const VkCopyImageToBufferInfo2* pCopyImageToBufferInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pCopyImageToBufferInfo is a pointer to a VkCopyImageToBufferInfo2 structure describing the
copy parameters.

This command is functionally identical to vkCmdCopyImageToBuffer, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

1647

Valid Usage

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-01831
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-01832
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-01833
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-07746
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, the bufferOffset
member of any element of pCopyImageToBufferInfo->pRegions must be a multiple of 4

• VUID-vkCmdCopyImageToBuffer2-imageOffset-07747
The imageOffset and imageExtent members of each element of pCopyImageToBufferInfo-
>pRegions must respect the image transfer granularity requirements of commandBuffer’s
command pool’s queue family, as described in VkQueueFamilyProperties

Valid Usage (Implicit)

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyImageToBuffer2-pCopyImageToBufferInfo-parameter
pCopyImageToBufferInfo must be a valid pointer to a valid VkCopyImageToBufferInfo2
structure

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyImageToBuffer2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyImageToBuffer2-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

1648

synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

The VkCopyImageToBufferInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCopyImageToBufferInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkBuffer dstBuffer;
 uint32_t regionCount;
 const VkBufferImageCopy2* pRegions;
} VkCopyImageToBufferInfo2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkCopyImageToBufferInfo2 VkCopyImageToBufferInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the copy.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy2 structures specifying the regions to
copy.

Valid Usage

• VUID-VkCopyImageToBufferInfo2-pRegions-04566
The image region specified by each element of pRegions that does not contain
VkCopyCommandTransformInfoQCOM in its pNext chain must be contained within the

1649

specified imageSubresource of srcImage

• VUID-VkCopyImageToBufferInfo2KHR-pRegions-04557
If the image region specified by each element of pRegions contains
VkCopyCommandTransformInfoQCOM in its pNext chain, the rotated source region as
described in [copies-buffers-images-rotation-addressing] must be contained within
srcImage

• VUID-VkCopyImageToBufferInfo2KHR-pRegions-04558
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then srcImage must have a 1x1x1 texel block extent

• VUID-VkCopyImageToBufferInfo2KHR-pRegions-06205
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then srcImage must be of type VK_IMAGE_TYPE_2D

• VUID-VkCopyImageToBufferInfo2KHR-pRegions-06206
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then srcImage must not have a multi-planar format

• VUID-VkCopyImageToBufferInfo2-pRegions-00183
dstBuffer must be large enough to contain all buffer locations that are accessed according
to Buffer and Image Addressing, for each element of pRegions

• VUID-VkCopyImageToBufferInfo2-pRegions-00184
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkCopyImageToBufferInfo2-srcImage-00186
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkCopyImageToBufferInfo2-srcImage-01998
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-VkCopyImageToBufferInfo2-dstBuffer-00191
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkCopyImageToBufferInfo2-dstBuffer-00192
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkCopyImageToBufferInfo2-srcImageLayout-00189
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkCopyImageToBufferInfo2-srcImageLayout-01397
srcImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyImageToBufferInfo2-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageToBufferInfo2-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the

1650

mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkCopyImageToBufferInfo2-imageSubresource-07968
If imageSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when srcImage was created

• VUID-VkCopyImageToBufferInfo2-srcImage-07969
srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkCopyImageToBufferInfo2-srcImage-07973
srcImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-VkCopyImageToBufferInfo2-srcImage-07979
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-VkCopyImageToBufferInfo2-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-07980
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

• VUID-VkCopyImageToBufferInfo2-srcImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

1651

• VUID-VkCopyImageToBufferInfo2-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-07981
If srcImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyImageToBufferInfo2-srcImage-07983
If srcImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-VkCopyImageToBufferInfo2-bufferRowLength-09106
For each element of pRegions, bufferRowLength must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-bufferImageHeight-09107
For each element of pRegions, bufferImageHeight must be a multiple of the texel block
extent height of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-bufferRowLength-09108
For each element of pRegions, bufferRowLength divided by the texel block extent width and
then multiplied by the texel block size of srcImage must be less than or equal to 231-1

• VUID-VkCopyImageToBufferInfo2-srcImage-07975
If srcImage does not have either a depth/stencil format or a multi-planar format, then for
each element of pRegions, bufferOffset must be a multiple of the texel block size

• VUID-VkCopyImageToBufferInfo2-srcImage-07976
If srcImage has a multi-planar format, then for each element of pRegions, bufferOffset
must be a multiple of the element size of the compatible format for the format and the
aspectMask of the imageSubresource as defined in Compatible Formats of Planes of Multi-
Planar Formats

• VUID-VkCopyImageToBufferInfo2-srcImage-07978
If srcImage has a depth/stencil format, the bufferOffset member of any element of
pRegions must be a multiple of 4

• VUID-VkCopyImageToBufferInfo2-imageOffset-00197
For each element of pRegions not containing VkCopyCommandTransformInfoQCOM in its pNext
chain, imageOffset.x and (imageExtent.width + imageOffset.x) must both be greater than or
equal to 0 and less than or equal to the width of the specified imageSubresource of srcImage

• VUID-VkCopyImageToBufferInfo2-imageOffset-00198
For each element of pRegions not containing VkCopyCommandTransformInfoQCOM in its pNext
chain, imageOffset.y and (imageExtent.height + imageOffset.y) must both be greater than
or equal to 0 and less than or equal to the height of the specified imageSubresource of
srcImage

Valid Usage (Implicit)

• VUID-VkCopyImageToBufferInfo2-sType-sType

1652

sType must be VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2

• VUID-VkCopyImageToBufferInfo2-pNext-pNext
pNext must be NULL

• VUID-VkCopyImageToBufferInfo2-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkCopyImageToBufferInfo2-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkCopyImageToBufferInfo2-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-VkCopyImageToBufferInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferImageCopy2
structures

• VUID-VkCopyImageToBufferInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyImageToBufferInfo2-commonparent
Both of dstBuffer, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

For both vkCmdCopyBufferToImage2 and vkCmdCopyImageToBuffer2, each element of pRegions is
a structure defined as:

// Provided by VK_VERSION_1_3
typedef struct VkBufferImageCopy2 {
 VkStructureType sType;
 const void* pNext;
 VkDeviceSize bufferOffset;
 uint32_t bufferRowLength;
 uint32_t bufferImageHeight;
 VkImageSubresourceLayers imageSubresource;
 VkOffset3D imageOffset;
 VkExtent3D imageExtent;
} VkBufferImageCopy2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkBufferImageCopy2 VkBufferImageCopy2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• bufferOffset is the offset in bytes from the start of the buffer object where the image data is
copied from or to.

1653

• bufferRowLength and bufferImageHeight specify in texels a subregion of a larger two- or three-
dimensional image in buffer memory, and control the addressing calculations. If either of these
values is zero, that aspect of the buffer memory is considered to be tightly packed according to
the imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image
subresources of the image used for the source or destination image data.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the source or
destination image data.

• imageExtent is the size in texels of the image to copy in width, height and depth.

This structure is functionally identical to VkBufferImageCopy, but adds sType and pNext parameters,
allowing it to be more easily extended.

Valid Usage

• VUID-VkBufferImageCopy2-bufferRowLength-09101
bufferRowLength must be 0, or greater than or equal to the width member of imageExtent

• VUID-VkBufferImageCopy2-bufferImageHeight-09102
bufferImageHeight must be 0, or greater than or equal to the height member of imageExtent

• VUID-VkBufferImageCopy2-aspectMask-09103
The aspectMask member of imageSubresource must only have a single bit set

• VUID-VkBufferImageCopy2-imageExtent-06659
imageExtent.width must not be 0

• VUID-VkBufferImageCopy2-imageExtent-06660
imageExtent.height must not be 0

• VUID-VkBufferImageCopy2-imageExtent-06661
imageExtent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkBufferImageCopy2-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2

• VUID-VkBufferImageCopy2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkCopyCommandTransformInfoQCOM

• VUID-VkBufferImageCopy2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBufferImageCopy2-imageSubresource-parameter
imageSubresource must be a valid VkImageSubresourceLayers structure

The VkCopyCommandTransformInfoQCOM structure is defined as:

1654

// Provided by VK_QCOM_rotated_copy_commands
typedef struct VkCopyCommandTransformInfoQCOM {
 VkStructureType sType;
 const void* pNext;
 VkSurfaceTransformFlagBitsKHR transform;
} VkCopyCommandTransformInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• transform is a VkSurfaceTransformFlagBitsKHR value describing the transform to be applied.

Including this structure in the pNext chain of VkBufferImageCopy2 defines a rotation to be
performed when copying between an image and a buffer. Including this structure in the pNext
chain of VkBlitImageInfo2 defines a rotation to be performed when blitting between two images. If
this structure is not specified in either case, the implementation behaves as if it was specified with
a transform equal to VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR.

Specifying a transform for a copy between an image and a buffer rotates the region accessed in the
image around the offset. Specifying a transform for a blit performs a similar transform as described
in Image Blits with Scaling and Rotation.

Rotations other than VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR can only be specified for single-plane
2D images with a 1x1x1 texel block extent.

Valid Usage

• VUID-VkCopyCommandTransformInfoQCOM-transform-04560
transform must be VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR, VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR, or
VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR

Valid Usage (Implicit)

• VUID-VkCopyCommandTransformInfoQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_COMMAND_TRANSFORM_INFO_QCOM

The following commands can be used to copy between host memory and images.

To copy data from host memory to an image object, call:

// Provided by VK_EXT_host_image_copy
VkResult vkCopyMemoryToImageEXT(
 VkDevice device,
 const VkCopyMemoryToImageInfoEXT* pCopyMemoryToImageInfo);

1655

• device is the device which owns pCopyMemoryToImageInfo->dstImage.

• pCopyMemoryToImageInfo is a pointer to a VkCopyMemoryToImageInfoEXT structure describing
the copy parameters.

This command is functionally similar to vkCmdCopyBufferToImage2, except it is executed on the
host and reads from host memory instead of a buffer.

Valid Usage

• VUID-vkCopyMemoryToImageEXT-hostImageCopy-09058
The hostImageCopy feature must be enabled

Valid Usage (Implicit)

• VUID-vkCopyMemoryToImageEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyMemoryToImageEXT-pCopyMemoryToImageInfo-parameter
pCopyMemoryToImageInfo must be a valid pointer to a valid
VkCopyMemoryToImageInfoEXT structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_MEMORY_MAP_FAILED

The VkCopyMemoryToImageInfoEXT structure is defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkCopyMemoryToImageInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkHostImageCopyFlagsEXT flags;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkMemoryToImageCopyEXT* pRegions;
} VkCopyMemoryToImageInfoEXT;

1656

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkHostImageCopyFlagBitsEXT values describing additional copy
parameters.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkMemoryToImageCopyEXT structures specifying the
regions to copy.

vkCopyMemoryToImageEXT does not check whether the device memory associated with dstImage is
currently in use before performing the copy. The application must guarantee that any previously
submitted command that reads from or writes to the copy regions has completed before the host
performs the copy.

Copy regions for the image must be aligned to a multiple of the texel block extent in each
dimension, except at the edges of the image, where region extents must match the edge of the
image.

Valid Usage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-09109
If dstImage is sparse then all memory ranges accessed by the copy command must be
bound as described in Binding Resource Memory

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-09111
If the stencil aspect of dstImage is accessed, and dstImage was not created with separate
stencil usage, dstImage must have been created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in VkImageCreateInfo::usage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-09112
If the stencil aspect of dstImage is accessed, and dstImage was created with separate stencil
usage, dstImage must have been created with VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in
VkImageStencilUsageCreateInfo::stencilUsage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-09113
If non-stencil aspects of dstImage are accessed, dstImage must have been created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in VkImageCreateInfo::usage

• VUID-VkCopyMemoryToImageInfoEXT-imageOffset-09114
If flags contains VK_HOST_IMAGE_COPY_MEMCPY_EXT, the x, y, and z members of the
imageOffset member of each element of pRegions must be 0

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-09115
If flags contains VK_HOST_IMAGE_COPY_MEMCPY_EXT, the imageExtent member of each element
of pRegions must equal the extents of dstImage identified by imageSubresource

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound

1657

completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyMemoryToImageInfoEXT-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-VkCopyMemoryToImageInfoEXT-imageSubresource-07968
If imageSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when dstImage was created

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07969
dstImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkCopyMemoryToImageInfoEXT-imageSubresource-07970
The image region specified by each element of pRegions must be contained within the
specified imageSubresource of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-imageSubresource-07971
For each element of pRegions, imageOffset.x and (imageExtent.width + imageOffset.x) must
both be greater than or equal to 0 and less than or equal to the width of the specified
imageSubresource of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-imageSubresource-07972
For each element of pRegions, imageOffset.y and (imageExtent.height + imageOffset.y)
must both be greater than or equal to 0 and less than or equal to the height of the
specified imageSubresource of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07973
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07979
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-VkCopyMemoryToImageInfoEXT-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07980
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

1658

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
dstImage

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07981
If dstImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-07983
If dstImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-VkCopyMemoryToImageInfoEXT-memoryRowLength-09106
For each element of pRegions, memoryRowLength must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-memoryImageHeight-09107
For each element of pRegions, memoryImageHeight must be a multiple of the texel block
extent height of the VkFormat of dstImage

• VUID-VkCopyMemoryToImageInfoEXT-memoryRowLength-09108
For each element of pRegions, memoryRowLength divided by the texel block extent width and
then multiplied by the texel block size of dstImage must be less than or equal to 231-1

• VUID-VkCopyMemoryToImageInfoEXT-dstImageLayout-09059
dstImageLayout must specify the current layout of the image subresources of dstImage
specified in pRegions

• VUID-VkCopyMemoryToImageInfoEXT-dstImageLayout-09060
dstImageLayout must be one of the image layouts returned in
VkPhysicalDeviceHostImageCopyPropertiesEXT::pCopyDstLayouts

• VUID-VkCopyMemoryToImageInfoEXT-flags-09393
If flags includes VK_HOST_IMAGE_COPY_MEMCPY_EXT, for each region in pRegions,
memoryRowLength and memoryImageHeight must both be 0

1659

Valid Usage (Implicit)

• VUID-VkCopyMemoryToImageInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_MEMORY_TO_IMAGE_INFO_EXT

• VUID-VkCopyMemoryToImageInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkCopyMemoryToImageInfoEXT-flags-parameter
flags must be a valid combination of VkHostImageCopyFlagBitsEXT values

• VUID-VkCopyMemoryToImageInfoEXT-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkCopyMemoryToImageInfoEXT-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkCopyMemoryToImageInfoEXT-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid
VkMemoryToImageCopyEXT structures

• VUID-VkCopyMemoryToImageInfoEXT-regionCount-arraylength
regionCount must be greater than 0

Each element of VkCopyMemoryToImageInfoEXT::pRegions is a structure defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkMemoryToImageCopyEXT {
 VkStructureType sType;
 const void* pNext;
 const void* pHostPointer;
 uint32_t memoryRowLength;
 uint32_t memoryImageHeight;
 VkImageSubresourceLayers imageSubresource;
 VkOffset3D imageOffset;
 VkExtent3D imageExtent;
} VkMemoryToImageCopyEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pHostPointer is the host memory address which is the source of the copy.

• memoryRowLength and memoryImageHeight specify in texels a subregion of a larger two- or three-
dimensional image in host memory, and control the addressing calculations. If either of these
values is zero, that aspect of the host memory is considered to be tightly packed according to the
imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image
subresources of the image used for the source or destination image data.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the destination image

1660

data.

• imageExtent is the size in texels of the image to copy in width, height and depth.

This structure is functionally similar to VkBufferImageCopy2, except it defines host memory as the
source of copy instead of a buffer. In particular, the same data packing rules and restrictions as that
structure apply here as well.

Valid Usage

• VUID-VkMemoryToImageCopyEXT-pHostPointer-09061
pHostPointer must point to memory that is large enough to contain all memory locations
that are accessed according to Buffer and Image Addressing, for each element of pRegions

• VUID-VkMemoryToImageCopyEXT-pRegions-09062
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkMemoryToImageCopyEXT-memoryRowLength-09101
memoryRowLength must be 0, or greater than or equal to the width member of imageExtent

• VUID-VkMemoryToImageCopyEXT-memoryImageHeight-09102
memoryImageHeight must be 0, or greater than or equal to the height member of imageExtent

• VUID-VkMemoryToImageCopyEXT-aspectMask-09103
The aspectMask member of imageSubresource must only have a single bit set

• VUID-VkMemoryToImageCopyEXT-imageExtent-06659
imageExtent.width must not be 0

• VUID-VkMemoryToImageCopyEXT-imageExtent-06660
imageExtent.height must not be 0

• VUID-VkMemoryToImageCopyEXT-imageExtent-06661
imageExtent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkMemoryToImageCopyEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_TO_IMAGE_COPY_EXT

• VUID-VkMemoryToImageCopyEXT-pNext-pNext
pNext must be NULL

• VUID-VkMemoryToImageCopyEXT-pHostPointer-parameter
pHostPointer must be a pointer value

• VUID-VkMemoryToImageCopyEXT-imageSubresource-parameter
imageSubresource must be a valid VkImageSubresourceLayers structure

To copy data from an image object to host memory, call:

1661

// Provided by VK_EXT_host_image_copy
VkResult vkCopyImageToMemoryEXT(
 VkDevice device,
 const VkCopyImageToMemoryInfoEXT* pCopyImageToMemoryInfo);

• device is the device which owns pCopyImageToMemoryInfo->srcImage.

• pCopyImageToMemoryInfo is a pointer to a VkCopyImageToMemoryInfoEXT structure describing
the copy parameters.

This command is functionally similar to vkCmdCopyImageToBuffer2, except it is executed on the
host and writes to host memory instead of a buffer.

Valid Usage

• VUID-vkCopyImageToMemoryEXT-hostImageCopy-09063
The hostImageCopy feature must be enabled

Valid Usage (Implicit)

• VUID-vkCopyImageToMemoryEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyImageToMemoryEXT-pCopyImageToMemoryInfo-parameter
pCopyImageToMemoryInfo must be a valid pointer to a valid
VkCopyImageToMemoryInfoEXT structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_MEMORY_MAP_FAILED

The VkCopyImageToMemoryInfoEXT structure is defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkCopyImageToMemoryInfoEXT {
 VkStructureType sType;
 const void* pNext;

1662

 VkHostImageCopyFlagsEXT flags;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 uint32_t regionCount;
 const VkImageToMemoryCopyEXT* pRegions;
} VkCopyImageToMemoryInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkHostImageCopyFlagBitsEXT values describing additional copy
parameters.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the copy.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkImageToMemoryCopyEXT structures specifying the
regions to copy.

vkCopyImageToMemoryEXT does not check whether the device memory associated with srcImage is
currently in use before performing the copy. The application must guarantee that any previously
submitted command that writes to the copy regions has completed before the host performs the
copy.

Copy regions for the image must be aligned to a multiple of the texel block extent in each
dimension, except at the edges of the image, where region extents must match the edge of the
image.

Valid Usage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-09109
If srcImage is sparse then all memory ranges accessed by the copy command must be
bound as described in Binding Resource Memory

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-09111
If the stencil aspect of srcImage is accessed, and srcImage was not created with separate
stencil usage, srcImage must have been created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in VkImageCreateInfo::usage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-09112
If the stencil aspect of srcImage is accessed, and srcImage was created with separate stencil
usage, srcImage must have been created with VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in
VkImageStencilUsageCreateInfo::stencilUsage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-09113
If non-stencil aspects of srcImage are accessed, srcImage must have been created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in VkImageCreateInfo::usage

• VUID-VkCopyImageToMemoryInfoEXT-imageOffset-09114
If flags contains VK_HOST_IMAGE_COPY_MEMCPY_EXT, the x, y, and z members of the

1663

imageOffset member of each element of pRegions must be 0

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-09115
If flags contains VK_HOST_IMAGE_COPY_MEMCPY_EXT, the imageExtent member of each element
of pRegions must equal the extents of srcImage identified by imageSubresource

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageToMemoryInfoEXT-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkCopyImageToMemoryInfoEXT-imageSubresource-07968
If imageSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when srcImage was created

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07969
srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkCopyImageToMemoryInfoEXT-imageSubresource-07970
The image region specified by each element of pRegions must be contained within the
specified imageSubresource of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-imageSubresource-07971
For each element of pRegions, imageOffset.x and (imageExtent.width + imageOffset.x) must
both be greater than or equal to 0 and less than or equal to the width of the specified
imageSubresource of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-imageSubresource-07972
For each element of pRegions, imageOffset.y and (imageExtent.height + imageOffset.y)
must both be greater than or equal to 0 and less than or equal to the height of the
specified imageSubresource of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07973
srcImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07979
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-VkCopyImageToMemoryInfoEXT-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07980
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

1664

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
srcImage

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07981
If srcImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-07983
If srcImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-VkCopyImageToMemoryInfoEXT-memoryRowLength-09106
For each element of pRegions, memoryRowLength must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-memoryImageHeight-09107
For each element of pRegions, memoryImageHeight must be a multiple of the texel block
extent height of the VkFormat of srcImage

• VUID-VkCopyImageToMemoryInfoEXT-memoryRowLength-09108
For each element of pRegions, memoryRowLength divided by the texel block extent width and
then multiplied by the texel block size of srcImage must be less than or equal to 231-1

• VUID-VkCopyImageToMemoryInfoEXT-srcImageLayout-09064
srcImageLayout must specify the current layout of the image subresources of srcImage
specified in pRegions

1665

• VUID-VkCopyImageToMemoryInfoEXT-srcImageLayout-09065
srcImageLayout must be one of the image layouts returned in
VkPhysicalDeviceHostImageCopyPropertiesEXT::pCopySrcLayouts

• VUID-VkCopyImageToMemoryInfoEXT-flags-09394
If flags includes VK_HOST_IMAGE_COPY_MEMCPY_EXT, for each region in pRegions,
memoryRowLength and memoryImageHeight must both be 0

Valid Usage (Implicit)

• VUID-VkCopyImageToMemoryInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_IMAGE_TO_MEMORY_INFO_EXT

• VUID-VkCopyImageToMemoryInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkCopyImageToMemoryInfoEXT-flags-parameter
flags must be a valid combination of VkHostImageCopyFlagBitsEXT values

• VUID-VkCopyImageToMemoryInfoEXT-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkCopyImageToMemoryInfoEXT-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkCopyImageToMemoryInfoEXT-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid
VkImageToMemoryCopyEXT structures

• VUID-VkCopyImageToMemoryInfoEXT-regionCount-arraylength
regionCount must be greater than 0

Each element of VkCopyImageToMemoryInfoEXT::pRegions is a structure defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkImageToMemoryCopyEXT {
 VkStructureType sType;
 const void* pNext;
 void* pHostPointer;
 uint32_t memoryRowLength;
 uint32_t memoryImageHeight;
 VkImageSubresourceLayers imageSubresource;
 VkOffset3D imageOffset;
 VkExtent3D imageExtent;
} VkImageToMemoryCopyEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pHostPointer is the host memory address which is the destination of the copy.

1666

• memoryRowLength and memoryImageHeight specify in texels a subregion of a larger two- or three-
dimensional image in host memory, and control the addressing calculations. If either of these
values is zero, that aspect of the host memory is considered to be tightly packed according to the
imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image
subresources of the image used for the source or destination image data.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the source image data.

• imageExtent is the size in texels of the image to copy in width, height and depth.

This structure is functionally similar to VkBufferImageCopy2, except it defines host memory as the
target of copy instead of a buffer. In particular, the same data packing rules and restrictions as that
structure apply here as well.

Valid Usage

• VUID-VkImageToMemoryCopyEXT-pHostPointer-09066
pHostPointer must point to memory that is large enough to contain all memory locations
that are accessed according to Buffer and Image Addressing, for each element of pRegions

• VUID-VkImageToMemoryCopyEXT-pRegions-09067
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkImageToMemoryCopyEXT-memoryRowLength-09101
memoryRowLength must be 0, or greater than or equal to the width member of imageExtent

• VUID-VkImageToMemoryCopyEXT-memoryImageHeight-09102
memoryImageHeight must be 0, or greater than or equal to the height member of imageExtent

• VUID-VkImageToMemoryCopyEXT-aspectMask-09103
The aspectMask member of imageSubresource must only have a single bit set

• VUID-VkImageToMemoryCopyEXT-imageExtent-06659
imageExtent.width must not be 0

• VUID-VkImageToMemoryCopyEXT-imageExtent-06660
imageExtent.height must not be 0

• VUID-VkImageToMemoryCopyEXT-imageExtent-06661
imageExtent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkImageToMemoryCopyEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_TO_MEMORY_COPY_EXT

• VUID-VkImageToMemoryCopyEXT-pNext-pNext
pNext must be NULL

• VUID-VkImageToMemoryCopyEXT-pHostPointer-parameter

1667

pHostPointer must be a pointer value

• VUID-VkImageToMemoryCopyEXT-imageSubresource-parameter
imageSubresource must be a valid VkImageSubresourceLayers structure

Bits which can be set in VkCopyMemoryToImageInfoEXT::flags, VkCopyImageToMemoryInfoEXT
::flags, and VkCopyImageToImageInfoEXT::flags, specifying additional copy parameters are:

// Provided by VK_EXT_host_image_copy
typedef enum VkHostImageCopyFlagBitsEXT {
 VK_HOST_IMAGE_COPY_MEMCPY_EXT = 0x00000001,
} VkHostImageCopyFlagBitsEXT;

• VK_HOST_IMAGE_COPY_MEMCPY_EXT specifies that no memory layout swizzling is to be applied during
data copy. For copies between memory and images, this flag indicates that image data in host
memory is swizzled in exactly the same way as the image data on the device. Using this flag
indicates that the implementations may use a simple memory copy to transfer the data between
the host memory and the device memory. The format of the swizzled data in host memory is
platform dependent and is not defined in this specification.

// Provided by VK_EXT_host_image_copy
typedef VkFlags VkHostImageCopyFlagsEXT;

VkHostImageCopyFlagsEXT is a bitmask type for setting a mask of zero or more
VkHostImageCopyFlagBitsEXT.

To copy data from an image object to another image object using the host, call:

// Provided by VK_EXT_host_image_copy
VkResult vkCopyImageToImageEXT(
 VkDevice device,
 const VkCopyImageToImageInfoEXT* pCopyImageToImageInfo);

• device is the device which owns pCopyImageToMemoryInfo->srcImage.

• pCopyImageToImageInfo is a pointer to a VkCopyImageToImageInfoEXT structure describing the
copy parameters.

This command is functionally similar to vkCmdCopyImage2, except it is executed on the host.

Valid Usage

• VUID-vkCopyImageToImageEXT-hostImageCopy-09068
The hostImageCopy feature must be enabled

1668

Valid Usage (Implicit)

• VUID-vkCopyImageToImageEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyImageToImageEXT-pCopyImageToImageInfo-parameter
pCopyImageToImageInfo must be a valid pointer to a valid VkCopyImageToImageInfoEXT
structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_MEMORY_MAP_FAILED

The VkCopyImageToImageInfoEXT structure is defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkCopyImageToImageInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkHostImageCopyFlagsEXT flags;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkImageCopy2* pRegions;
} VkCopyImageToImageInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkHostImageCopyFlagBitsEXT values describing additional copy
parameters.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the copy.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

1669

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkImageCopy2 structures specifying the regions to copy.

vkCopyImageToImageEXT does not check whether the device memory associated with srcImage or
dstImage is currently in use before performing the copy. The application must guarantee that any
previously submitted command that writes to the copy regions has completed before the host
performs the copy.

Valid Usage

• VUID-VkCopyImageToImageInfoEXT-srcImage-09069
srcImage and dstImage must have been created with identical image creation parameters

• VUID-VkCopyImageToImageInfoEXT-srcImage-09109
If srcImage is sparse then all memory ranges accessed by the copy command must be
bound as described in Binding Resource Memory

• VUID-VkCopyImageToImageInfoEXT-srcImage-09111
If the stencil aspect of srcImage is accessed, and srcImage was not created with separate
stencil usage, srcImage must have been created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in VkImageCreateInfo::usage

• VUID-VkCopyImageToImageInfoEXT-srcImage-09112
If the stencil aspect of srcImage is accessed, and srcImage was created with separate stencil
usage, srcImage must have been created with VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in
VkImageStencilUsageCreateInfo::stencilUsage

• VUID-VkCopyImageToImageInfoEXT-srcImage-09113
If non-stencil aspects of srcImage are accessed, srcImage must have been created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in VkImageCreateInfo::usage

• VUID-VkCopyImageToImageInfoEXT-srcOffset-09114
If flags contains VK_HOST_IMAGE_COPY_MEMCPY_EXT, the x, y, and z members of the srcOffset
member of each element of pRegions must be 0

• VUID-VkCopyImageToImageInfoEXT-srcImage-09115
If flags contains VK_HOST_IMAGE_COPY_MEMCPY_EXT, the extent member of each element of
pRegions must equal the extents of srcImage identified by srcSubresource

• VUID-VkCopyImageToImageInfoEXT-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageToImageInfoEXT-srcSubresource-07967
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkCopyImageToImageInfoEXT-srcSubresource-07968
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

1670

• VUID-VkCopyImageToImageInfoEXT-srcImage-07969
srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkCopyImageToImageInfoEXT-srcSubresource-07970
The image region specified by each element of pRegions must be contained within the
specified srcSubresource of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcSubresource-07971
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcSubresource-07972
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcImage-07979
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

• VUID-VkCopyImageToImageInfoEXT-srcOffset-09104
For each element of pRegions, srcOffset.z and (extent.depth + srcOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
srcSubresource of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcImage-07980
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffset.z must be 0 and extent.depth must be 1

• VUID-VkCopyImageToImageInfoEXT-srcImage-07274
For each element of pRegions, srcOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcImage-07275
For each element of pRegions, srcOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcImage-07276
For each element of pRegions, srcOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcImage-00207
For each element of pRegions, if the sum of srcOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcImage-00208
For each element of pRegions, if the sum of srcOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcImage-00209

1671

For each element of pRegions, if the sum of srcOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-VkCopyImageToImageInfoEXT-srcSubresource-09105
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-VkCopyImageToImageInfoEXT-srcImage-07981
If srcImage has a multi-planar image format, then for each element of pRegions,
srcSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyImageToImageInfoEXT-srcImage-07983
If srcImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
srcSubresource.baseArrayLayer must be 0 and srcSubresource.layerCount must be 1

• VUID-VkCopyImageToImageInfoEXT-dstImage-09109
If dstImage is sparse then all memory ranges accessed by the copy command must be
bound as described in Binding Resource Memory

• VUID-VkCopyImageToImageInfoEXT-dstImage-09111
If the stencil aspect of dstImage is accessed, and dstImage was not created with separate
stencil usage, dstImage must have been created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in VkImageCreateInfo::usage

• VUID-VkCopyImageToImageInfoEXT-dstImage-09112
If the stencil aspect of dstImage is accessed, and dstImage was created with separate stencil
usage, dstImage must have been created with VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in
VkImageStencilUsageCreateInfo::stencilUsage

• VUID-VkCopyImageToImageInfoEXT-dstImage-09113
If non-stencil aspects of dstImage are accessed, dstImage must have been created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT set in VkImageCreateInfo::usage

• VUID-VkCopyImageToImageInfoEXT-dstOffset-09114
If flags contains VK_HOST_IMAGE_COPY_MEMCPY_EXT, the x, y, and z members of the dstOffset
member of each element of pRegions must be 0

• VUID-VkCopyImageToImageInfoEXT-dstImage-09115
If flags contains VK_HOST_IMAGE_COPY_MEMCPY_EXT, the extent member of each element of
pRegions must equal the extents of dstImage identified by dstSubresource

• VUID-VkCopyImageToImageInfoEXT-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageToImageInfoEXT-dstSubresource-07967
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-VkCopyImageToImageInfoEXT-dstSubresource-07968
If dstSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when

1672

dstImage was created

• VUID-VkCopyImageToImageInfoEXT-dstImage-07969
dstImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkCopyImageToImageInfoEXT-dstSubresource-07970
The image region specified by each element of pRegions must be contained within the
specified dstSubresource of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstSubresource-07971
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstSubresource-07972
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstImage-07979
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-VkCopyImageToImageInfoEXT-dstOffset-09104
For each element of pRegions, dstOffset.z and (extent.depth + dstOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
dstSubresource of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstImage-07980
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffset.z must be 0 and extent.depth must be 1

• VUID-VkCopyImageToImageInfoEXT-dstImage-07274
For each element of pRegions, dstOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstImage-07275
For each element of pRegions, dstOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstImage-07276
For each element of pRegions, dstOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstImage-00207
For each element of pRegions, if the sum of dstOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstImage-00208
For each element of pRegions, if the sum of dstOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

1673

• VUID-VkCopyImageToImageInfoEXT-dstImage-00209
For each element of pRegions, if the sum of dstOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of dstImage

• VUID-VkCopyImageToImageInfoEXT-dstSubresource-09105
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-VkCopyImageToImageInfoEXT-dstImage-07981
If dstImage has a multi-planar image format, then for each element of pRegions,
dstSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyImageToImageInfoEXT-dstImage-07983
If dstImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

• VUID-VkCopyImageToImageInfoEXT-srcImageLayout-09070
srcImageLayout must specify the current layout of the image subresources of srcImage
specified in pRegions

• VUID-VkCopyImageToImageInfoEXT-dstImageLayout-09071
dstImageLayout must specify the current layout of the image subresources of dstImage
specified in pRegions

• VUID-VkCopyImageToImageInfoEXT-srcImageLayout-09072
srcImageLayout must be one of the image layouts returned in
VkPhysicalDeviceHostImageCopyPropertiesEXT::pCopySrcLayouts

• VUID-VkCopyImageToImageInfoEXT-dstImageLayout-09073
dstImageLayout must be one of the image layouts returned in
VkPhysicalDeviceHostImageCopyPropertiesEXT::pCopyDstLayouts

Valid Usage (Implicit)

• VUID-VkCopyImageToImageInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_IMAGE_TO_IMAGE_INFO_EXT

• VUID-VkCopyImageToImageInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkCopyImageToImageInfoEXT-flags-parameter
flags must be a valid combination of VkHostImageCopyFlagBitsEXT values

• VUID-VkCopyImageToImageInfoEXT-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkCopyImageToImageInfoEXT-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkCopyImageToImageInfoEXT-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkCopyImageToImageInfoEXT-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

1674

• VUID-VkCopyImageToImageInfoEXT-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageCopy2
structures

• VUID-VkCopyImageToImageInfoEXT-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyImageToImageInfoEXT-commonparent
Both of dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

20.4. Indirect Copies
An application can use indirect copies when the copy parameters are not known during the
command buffer creation time.

To copy data between two memory regions by specifying copy parameters indirectly in a buffer,
call:

// Provided by VK_NV_copy_memory_indirect
void vkCmdCopyMemoryIndirectNV(
 VkCommandBuffer commandBuffer,
 VkDeviceAddress copyBufferAddress,
 uint32_t copyCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command will be recorded.

• copyBufferAddress is the buffer address specifying the copy parameters. This buffer is laid out in
memory as an array of VkCopyMemoryIndirectCommandNV structures.

• copyCount is the number of copies to execute, and can be zero.

• stride is the stride in bytes between successive sets of copy parameters.

Each region read from copyBufferAddress is copied from the source region to the specified
destination region. The results are undefined if any of the source and destination regions overlap in
memory.

Valid Usage

• VUID-vkCmdCopyMemoryIndirectNV-None-07653
The indirectCopy feature must be enabled

• VUID-vkCmdCopyMemoryIndirectNV-copyBufferAddress-07654
copyBufferAddress must be 4 byte aligned

• VUID-vkCmdCopyMemoryIndirectNV-stride-07655
stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkCopyMemoryIndirectCommandNV)

1675

• VUID-vkCmdCopyMemoryIndirectNV-commandBuffer-07656
The VkCommandPool that commandBuffer was allocated from must support at least one of
the VkPhysicalDeviceCopyMemoryIndirectPropertiesNV::supportedQueues

Valid Usage (Implicit)

• VUID-vkCmdCopyMemoryIndirectNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyMemoryIndirectNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyMemoryIndirectNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyMemoryIndirectNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyMemoryIndirectNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

The structure describing source and destination memory regions, VkCopyMemoryIndirectCommandNV is
defined as:

// Provided by VK_NV_copy_memory_indirect
typedef struct VkCopyMemoryIndirectCommandNV {
 VkDeviceAddress srcAddress;
 VkDeviceAddress dstAddress;
 VkDeviceSize size;

1676

} VkCopyMemoryIndirectCommandNV;

• srcAddress is the starting address of the source device memory to copy from.

• dstAddress is the starting address of the destination device memory to copy to.

• size is the size of the copy in bytes.

Valid Usage

• VUID-VkCopyMemoryIndirectCommandNV-srcAddress-07657
The srcAddress must be 4 byte aligned

• VUID-VkCopyMemoryIndirectCommandNV-dstAddress-07658
The dstAddress must be 4 byte aligned

• VUID-VkCopyMemoryIndirectCommandNV-size-07659
The size must be 4 byte aligned

To copy data from a memory region to an image object by specifying copy parameters in a buffer,
call:

// Provided by VK_NV_copy_memory_indirect
void vkCmdCopyMemoryToImageIndirectNV(
 VkCommandBuffer commandBuffer,
 VkDeviceAddress copyBufferAddress,
 uint32_t copyCount,
 uint32_t stride,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 const VkImageSubresourceLayers* pImageSubresources);

• commandBuffer is the command buffer into which the command will be recorded.

• copyBufferAddress is the buffer address specifying the copy parameters. This buffer is laid out in
memory as an array of VkCopyMemoryToImageIndirectCommandNV structures.

• copyCount is the number of copies to execute, and can be zero.

• stride is the byte stride between successive sets of copy parameters.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

• pImageSubresources is a pointer to an array of size copyCount of VkImageSubresourceLayers used
to specify the specific image subresource of the destination image data for that copy.

Each region in copyBufferAddress is copied from the source memory region to an image region in
the destination image. If the destination image is of type VK_IMAGE_TYPE_3D, the starting slice and
number of slices to copy are specified in pImageSubresources->baseArrayLayer and
pImageSubresources->layerCount respectively. The copy must be performed on a queue that supports

1677

indirect copy operations, see VkPhysicalDeviceCopyMemoryIndirectPropertiesNV.

Valid Usage

• VUID-vkCmdCopyMemoryToImageIndirectNV-None-07660
The indirectCopy feature must be enabled

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImage-07661
dstImage must not be a protected image

• VUID-vkCmdCopyMemoryToImageIndirectNV-aspectMask-07662
The aspectMask member for every subresource in pImageSubresources must only have a
single bit set

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImage-07663
The image region specified by each element in copyBufferAddress must be a region that is
contained within dstImage

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImage-07664
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImage-07665
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImage-07973
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImageLayout-07667
dstImageLayout must specify the layout of the image subresources of dstImage at the time
this command is executed on a VkDevice

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImageLayout-07669
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyMemoryToImageIndirectNV-mipLevel-07670
The specified mipLevel of each region must be less than the mipLevels specified in
VkImageCreateInfo when dstImage was created

• VUID-vkCmdCopyMemoryToImageIndirectNV-layerCount-08764
If layerCount is not VK_REMAINING_ARRAY_LAYERS, the specified baseArrayLayer + layerCount of
each region must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when dstImage was created

• VUID-vkCmdCopyMemoryToImageIndirectNV-imageOffset-07672
The imageOffset and imageExtent members of each region must respect the image transfer
granularity requirements of commandBuffer’s command pool’s queue family, as described
in VkQueueFamilyProperties

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImage-07673
dstImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-vkCmdCopyMemoryToImageIndirectNV-commandBuffer-07674

1678

If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT, for each region, the aspectMask member of
pImageSubresources must not be VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkCmdCopyMemoryToImageIndirectNV-imageOffset-07675
For each region in copyBufferAddress, imageOffset.y and (imageExtent.height +
imageOffset.y) must both be greater than or equal to 0 and less than or equal to the height
of the specified subresource

• VUID-vkCmdCopyMemoryToImageIndirectNV-offset-07676
offset must be 4 byte aligned

• VUID-vkCmdCopyMemoryToImageIndirectNV-stride-07677
stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkCopyMemoryToImageIndirectCommandNV)

Valid Usage (Implicit)

• VUID-vkCmdCopyMemoryToImageIndirectNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdCopyMemoryToImageIndirectNV-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyMemoryToImageIndirectNV-pImageSubresources-parameter
pImageSubresources must be a valid pointer to an array of copyCount valid
VkImageSubresourceLayers structures

• VUID-vkCmdCopyMemoryToImageIndirectNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyMemoryToImageIndirectNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyMemoryToImageIndirectNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyMemoryToImageIndirectNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdCopyMemoryToImageIndirectNV-copyCount-arraylength
copyCount must be greater than 0

• VUID-vkCmdCopyMemoryToImageIndirectNV-commonparent
Both of commandBuffer, and dstImage must have been created, allocated, or retrieved from
the same VkDevice

1679

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Transfer
Graphics
Compute

Action

The VkCopyMemoryToImageIndirectCommandNV is defined as:

// Provided by VK_NV_copy_memory_indirect
typedef struct VkCopyMemoryToImageIndirectCommandNV {
 VkDeviceAddress srcAddress;
 uint32_t bufferRowLength;
 uint32_t bufferImageHeight;
 VkImageSubresourceLayers imageSubresource;
 VkOffset3D imageOffset;
 VkExtent3D imageExtent;
} VkCopyMemoryToImageIndirectCommandNV;

• srcAddress is the starting address of the source device memory to copy from.

• bufferRowLength and bufferImageHeight specify in texels a subregion of a larger two- or three-
dimensional image in buffer memory, and control the addressing calculations. If either of these
values is zero, that aspect of the buffer memory is considered to be tightly packed according to
the imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image
subresources of the image used for the destination image data, which must match the values
specified in pImageSubresources parameter of vkCmdCopyMemoryToImageIndirectNV during
command recording.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the destination image
data.

• imageExtent is the size in texels of the destination image in width, height and depth.

Valid Usage

• VUID-VkCopyMemoryToImageIndirectCommandNV-srcAddress-07678

1680

The srcAddress must be 4 byte aligned

• VUID-VkCopyMemoryToImageIndirectCommandNV-bufferRowLength-07679
bufferRowLength must be 0, or greater than or equal to the width member of imageExtent

• VUID-VkCopyMemoryToImageIndirectCommandNV-bufferImageHeight-07680
bufferImageHeight must be 0, or greater than or equal to the height member of imageExtent

• VUID-VkCopyMemoryToImageIndirectCommandNV-imageOffset-07681
imageOffset must specify a valid offset in the destination image

• VUID-VkCopyMemoryToImageIndirectCommandNV-imageExtent-07682
imageExtent must specify a valid region in the destination image and can be 0

Valid Usage (Implicit)

• VUID-VkCopyMemoryToImageIndirectCommandNV-imageSubresource-parameter
imageSubresource must be a valid VkImageSubresourceLayers structure

20.5. Image Copies With Scaling
To copy regions of a source image into a destination image, potentially performing format
conversion, arbitrary scaling, and filtering, call:

// Provided by VK_VERSION_1_0
void vkCmdBlitImage(
 VkCommandBuffer commandBuffer,
 VkImage srcImage,
 VkImageLayout srcImageLayout,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkImageBlit* pRegions,
 VkFilter filter);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the blit.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the blit.

• regionCount is the number of regions to blit.

• pRegions is a pointer to an array of VkImageBlit structures specifying the regions to blit.

• filter is a VkFilter specifying the filter to apply if the blits require scaling.

vkCmdBlitImage must not be used for multisampled source or destination images. Use

1681

vkCmdResolveImage for this purpose.

As the sizes of the source and destination extents can differ in any dimension, texels in the source
extent are scaled and filtered to the destination extent. Scaling occurs via the following operations:

• For each destination texel, the integer coordinate of that texel is converted to an unnormalized
texture coordinate, using the effective inverse of the equations described in unnormalized to
integer conversion:

ubase = i + ½

vbase = j + ½

wbase = k + ½

• These base coordinates are then offset by the first destination offset:

uoffset = ubase - xdst0

voffset = vbase - ydst0

woffset = wbase - zdst0

aoffset = a - baseArrayCountdst

• The scale is determined from the source and destination regions, and applied to the offset
coordinates:

scaleu = (xsrc1 - xsrc0) / (xdst1 - xdst0)

scalev = (ysrc1 - ysrc0) / (ydst1 - ydst0)

scalew = (zsrc1 - zsrc0) / (zdst1 - zdst0)

uscaled = uoffset × scaleu

vscaled = voffset × scalev

1682

wscaled = woffset × scalew

• Finally the source offset is added to the scaled coordinates, to determine the final unnormalized
coordinates used to sample from srcImage:

u = uscaled + xsrc0

v = vscaled + ysrc0

w = wscaled + zsrc0

q = mipLevel

a = aoffset + baseArrayCountsrc

These coordinates are used to sample from the source image, as described in Image Operations
chapter, with the filter mode equal to that of filter, a mipmap mode of
VK_SAMPLER_MIPMAP_MODE_NEAREST and an address mode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.
Implementations must clamp at the edge of the source image, and may additionally clamp to the
edge of the source region.

Note

Due to allowable rounding errors in the generation of the source texture
coordinates, it is not always possible to guarantee exactly which source texels will
be sampled for a given blit. As rounding errors are implementation-dependent, the
exact results of a blitting operation are also implementation-dependent.

Blits are done layer by layer starting with the baseArrayLayer member of srcSubresource for the
source and dstSubresource for the destination. layerCount layers are blitted to the destination image.

When blitting 3D textures, slices in the destination region bounded by dstOffsets[0].z and
dstOffsets[1].z are sampled from slices in the source region bounded by srcOffsets[0].z and
srcOffsets[1].z. If the filter parameter is VK_FILTER_LINEAR then the value sampled from the source
image is taken by doing linear filtering using the interpolated z coordinate represented by w in the
previous equations. If the filter parameter is VK_FILTER_NEAREST then the value sampled from the
source image is taken from the single nearest slice, with an implementation-dependent arithmetic
rounding mode.

The following filtering and conversion rules apply:

• Integer formats can only be converted to other integer formats with the same signedness.

• No format conversion is supported between depth/stencil images. The formats must match.

1683

• Format conversions on unorm, snorm, scaled and packed float formats of the copied aspect of
the image are performed by first converting the pixels to float values.

• For sRGB source formats, nonlinear RGB values are converted to linear representation prior to
filtering.

• After filtering, the float values are first clamped and then cast to the destination image format.
In case of sRGB destination format, linear RGB values are converted to nonlinear representation
before writing the pixel to the image.

Signed and unsigned integers are converted by first clamping to the representable range of the
destination format, then casting the value.

Valid Usage

• VUID-vkCmdBlitImage-commandBuffer-01834
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdBlitImage-commandBuffer-01835
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdBlitImage-commandBuffer-01836
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdBlitImage-pRegions-00215
The source region specified by each element of pRegions must be a region that is
contained within srcImage

• VUID-vkCmdBlitImage-pRegions-00216
The destination region specified by each element of pRegions must be a region that is
contained within dstImage

• VUID-vkCmdBlitImage-pRegions-00217
The union of all destination regions, specified by the elements of pRegions, must not
overlap in memory with any texel that may be sampled during the blit operation

• VUID-vkCmdBlitImage-srcImage-01999
The format features of srcImage must contain VK_FORMAT_FEATURE_BLIT_SRC_BIT

• VUID-vkCmdBlitImage-srcImage-06421
srcImage must not use a format that requires a sampler Y′CBCR conversion

• VUID-vkCmdBlitImage-srcImage-00219
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdBlitImage-srcImage-00220
If srcImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBlitImage-srcImageLayout-00221
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

1684

• VUID-vkCmdBlitImage-srcImageLayout-01398
srcImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdBlitImage-srcImage-09459
If srcImage and dstImage are the same, and an elements of pRegions contains the
srcSubresource and dstSubresource with matching mipLevel and overlapping array layers,
then the srcImageLayout and dstImageLayout must be VK_IMAGE_LAYOUT_GENERAL or
VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR

• VUID-vkCmdBlitImage-dstImage-02000
The format features of dstImage must contain VK_FORMAT_FEATURE_BLIT_DST_BIT

• VUID-vkCmdBlitImage-dstImage-06422
dstImage must not use a format that requires a sampler Y′CBCR conversion

• VUID-vkCmdBlitImage-dstImage-00224
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdBlitImage-dstImage-00225
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBlitImage-dstImageLayout-00226
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdBlitImage-dstImageLayout-01399
dstImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdBlitImage-srcImage-00229
If either of srcImage or dstImage was created with a signed integer VkFormat, the other
must also have been created with a signed integer VkFormat

• VUID-vkCmdBlitImage-srcImage-00230
If either of srcImage or dstImage was created with an unsigned integer VkFormat, the other
must also have been created with an unsigned integer VkFormat

• VUID-vkCmdBlitImage-srcImage-00231
If either of srcImage or dstImage was created with a depth/stencil format, the other must
have exactly the same format

• VUID-vkCmdBlitImage-srcImage-00232
If srcImage was created with a depth/stencil format, filter must be VK_FILTER_NEAREST

• VUID-vkCmdBlitImage-srcImage-00233
srcImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdBlitImage-dstImage-00234
dstImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdBlitImage-filter-02001
If filter is VK_FILTER_LINEAR, then the format features of srcImage must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdBlitImage-filter-02002

1685

If filter is VK_FILTER_CUBIC_EXT, then the format features of srcImage must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdBlitImage-filter-00237
If filter is VK_FILTER_CUBIC_EXT, srcImage must be of type VK_IMAGE_TYPE_2D

• VUID-vkCmdBlitImage-srcSubresource-01705
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-vkCmdBlitImage-dstSubresource-01706
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-vkCmdBlitImage-srcSubresource-01707
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-vkCmdBlitImage-dstSubresource-01708
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-vkCmdBlitImage-dstImage-02545
dstImage and srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-vkCmdBlitImage-srcImage-00240
If either srcImage or dstImage is of type VK_IMAGE_TYPE_3D, then for each element of
pRegions, srcSubresource.baseArrayLayer and dstSubresource.baseArrayLayer must each be
0, and srcSubresource.layerCount and dstSubresource.layerCount must each be 1

• VUID-vkCmdBlitImage-aspectMask-00241
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-vkCmdBlitImage-aspectMask-00242
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-vkCmdBlitImage-srcOffset-00243
For each element of pRegions, srcOffsets[0].x and srcOffsets[1].x must both be greater
than or equal to 0 and less than or equal to the width of the specified srcSubresource of
srcImage

• VUID-vkCmdBlitImage-srcOffset-00244
For each element of pRegions, srcOffsets[0].y and srcOffsets[1].y must both be greater
than or equal to 0 and less than or equal to the height of the specified srcSubresource of
srcImage

• VUID-vkCmdBlitImage-srcImage-00245
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffsets[0].y

1686

must be 0 and srcOffsets[1].y must be 1

• VUID-vkCmdBlitImage-srcOffset-00246
For each element of pRegions, srcOffsets[0].z and srcOffsets[1].z must both be greater
than or equal to 0 and less than or equal to the depth of the specified srcSubresource of
srcImage

• VUID-vkCmdBlitImage-srcImage-00247
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffsets[0].z must be 0 and srcOffsets[1].z must be 1

• VUID-vkCmdBlitImage-dstOffset-00248
For each element of pRegions, dstOffsets[0].x and dstOffsets[1].x must both be greater
than or equal to 0 and less than or equal to the width of the specified dstSubresource of
dstImage

• VUID-vkCmdBlitImage-dstOffset-00249
For each element of pRegions, dstOffsets[0].y and dstOffsets[1].y must both be greater
than or equal to 0 and less than or equal to the height of the specified dstSubresource of
dstImage

• VUID-vkCmdBlitImage-dstImage-00250
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffsets[0].y
must be 0 and dstOffsets[1].y must be 1

• VUID-vkCmdBlitImage-dstOffset-00251
For each element of pRegions, dstOffsets[0].z and dstOffsets[1].z must both be greater
than or equal to 0 and less than or equal to the depth of the specified dstSubresource of
dstImage

• VUID-vkCmdBlitImage-dstImage-00252
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffsets[0].z must be 0 and dstOffsets[1].z must be 1

Valid Usage (Implicit)

• VUID-vkCmdBlitImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBlitImage-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-vkCmdBlitImage-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-vkCmdBlitImage-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdBlitImage-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdBlitImage-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageBlit structures

• VUID-vkCmdBlitImage-filter-parameter

1687

filter must be a valid VkFilter value

• VUID-vkCmdBlitImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBlitImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBlitImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBlitImage-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBlitImage-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdBlitImage-commonparent
Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics Action

The VkImageBlit structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageBlit {
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffsets[2];
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffsets[2];
} VkImageBlit;

• srcSubresource is the subresource to blit from.

• srcOffsets is a pointer to an array of two VkOffset3D structures specifying the bounds of the

1688

source region within srcSubresource.

• dstSubresource is the subresource to blit into.

• dstOffsets is a pointer to an array of two VkOffset3D structures specifying the bounds of the
destination region within dstSubresource.

For each element of the pRegions array, a blit operation is performed for the specified source and
destination regions.

Valid Usage

• VUID-VkImageBlit-aspectMask-00238
The aspectMask member of srcSubresource and dstSubresource must match

• VUID-VkImageBlit-layerCount-08800
If neither of the layerCount members of srcSubresource or dstSubresource are
VK_REMAINING_ARRAY_LAYERS, the layerCount members of srcSubresource or dstSubresource
must match

• VUID-VkImageBlit-layerCount-08801
If one of the layerCount members of srcSubresource or dstSubresource is
VK_REMAINING_ARRAY_LAYERS, the other member must be either VK_REMAINING_ARRAY_LAYERS
or equal to the arrayLayers member of the VkImageCreateInfo used to create the image
minus baseArrayLayer

Valid Usage (Implicit)

• VUID-VkImageBlit-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageBlit-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

A more extensible version of the blit image command is defined below.

To copy regions of a source image into a destination image, potentially performing format
conversion, arbitrary scaling, and filtering, call:

// Provided by VK_VERSION_1_3
void vkCmdBlitImage2(
 VkCommandBuffer commandBuffer,
 const VkBlitImageInfo2* pBlitImageInfo);

or the equivalent command

// Provided by VK_KHR_copy_commands2
void vkCmdBlitImage2KHR(

1689

 VkCommandBuffer commandBuffer,
 const VkBlitImageInfo2* pBlitImageInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pBlitImageInfo is a pointer to a VkBlitImageInfo2 structure describing the blit parameters.

This command is functionally identical to vkCmdBlitImage, but includes extensible sub-structures
that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdBlitImage2-commandBuffer-01834
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdBlitImage2-commandBuffer-01835
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdBlitImage2-commandBuffer-01836
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdBlitImage2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBlitImage2-pBlitImageInfo-parameter
pBlitImageInfo must be a valid pointer to a valid VkBlitImageInfo2 structure

• VUID-vkCmdBlitImage2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBlitImage2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBlitImage2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBlitImage2-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

1690

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics Action

The VkBlitImageInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkBlitImageInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkImageBlit2* pRegions;
 VkFilter filter;
} VkBlitImageInfo2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkBlitImageInfo2 VkBlitImageInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the blit.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the blit.

• regionCount is the number of regions to blit.

• pRegions is a pointer to an array of VkImageBlit2 structures specifying the regions to blit.

• filter is a VkFilter specifying the filter to apply if the blits require scaling.

Valid Usage

• VUID-VkBlitImageInfo2-pRegions-00215
The source region specified by each element of pRegions must be a region that is

1691

contained within srcImage

• VUID-VkBlitImageInfo2-pRegions-00216
The destination region specified by each element of pRegions must be a region that is
contained within dstImage

• VUID-VkBlitImageInfo2-pRegions-00217
The union of all destination regions, specified by the elements of pRegions, must not
overlap in memory with any texel that may be sampled during the blit operation

• VUID-VkBlitImageInfo2-srcImage-01999
The format features of srcImage must contain VK_FORMAT_FEATURE_BLIT_SRC_BIT

• VUID-VkBlitImageInfo2-srcImage-06421
srcImage must not use a format that requires a sampler Y′CBCR conversion

• VUID-VkBlitImageInfo2-srcImage-00219
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkBlitImageInfo2-srcImage-00220
If srcImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBlitImageInfo2-srcImageLayout-00221
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkBlitImageInfo2-srcImageLayout-01398
srcImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkBlitImageInfo2-srcImage-09459
If srcImage and dstImage are the same, and an elements of pRegions contains the
srcSubresource and dstSubresource with matching mipLevel and overlapping array layers,
then the srcImageLayout and dstImageLayout must be VK_IMAGE_LAYOUT_GENERAL or
VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR

• VUID-VkBlitImageInfo2-dstImage-02000
The format features of dstImage must contain VK_FORMAT_FEATURE_BLIT_DST_BIT

• VUID-VkBlitImageInfo2-dstImage-06422
dstImage must not use a format that requires a sampler Y′CBCR conversion

• VUID-VkBlitImageInfo2-dstImage-00224
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkBlitImageInfo2-dstImage-00225
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBlitImageInfo2-dstImageLayout-00226
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkBlitImageInfo2-dstImageLayout-01399
dstImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

1692

• VUID-VkBlitImageInfo2-srcImage-00229
If either of srcImage or dstImage was created with a signed integer VkFormat, the other
must also have been created with a signed integer VkFormat

• VUID-VkBlitImageInfo2-srcImage-00230
If either of srcImage or dstImage was created with an unsigned integer VkFormat, the other
must also have been created with an unsigned integer VkFormat

• VUID-VkBlitImageInfo2-srcImage-00231
If either of srcImage or dstImage was created with a depth/stencil format, the other must
have exactly the same format

• VUID-VkBlitImageInfo2-srcImage-00232
If srcImage was created with a depth/stencil format, filter must be VK_FILTER_NEAREST

• VUID-VkBlitImageInfo2-srcImage-00233
srcImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-VkBlitImageInfo2-dstImage-00234
dstImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-VkBlitImageInfo2-filter-02001
If filter is VK_FILTER_LINEAR, then the format features of srcImage must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-VkBlitImageInfo2-filter-02002
If filter is VK_FILTER_CUBIC_EXT, then the format features of srcImage must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-VkBlitImageInfo2-filter-00237
If filter is VK_FILTER_CUBIC_EXT, srcImage must be of type VK_IMAGE_TYPE_2D

• VUID-VkBlitImageInfo2-srcSubresource-01705
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkBlitImageInfo2-dstSubresource-01706
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-VkBlitImageInfo2-srcSubresource-01707
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-VkBlitImageInfo2-dstSubresource-01708
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-VkBlitImageInfo2-dstImage-02545
dstImage and srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

1693

• VUID-VkBlitImageInfo2-srcImage-00240
If either srcImage or dstImage is of type VK_IMAGE_TYPE_3D, then for each element of
pRegions, srcSubresource.baseArrayLayer and dstSubresource.baseArrayLayer must each be
0, and srcSubresource.layerCount and dstSubresource.layerCount must each be 1

• VUID-VkBlitImageInfo2-aspectMask-00241
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-VkBlitImageInfo2-aspectMask-00242
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-VkBlitImageInfo2-srcOffset-00243
For each element of pRegions, srcOffsets[0].x and srcOffsets[1].x must both be greater
than or equal to 0 and less than or equal to the width of the specified srcSubresource of
srcImage

• VUID-VkBlitImageInfo2-srcOffset-00244
For each element of pRegions, srcOffsets[0].y and srcOffsets[1].y must both be greater
than or equal to 0 and less than or equal to the height of the specified srcSubresource of
srcImage

• VUID-VkBlitImageInfo2-srcImage-00245
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffsets[0].y
must be 0 and srcOffsets[1].y must be 1

• VUID-VkBlitImageInfo2-srcOffset-00246
For each element of pRegions, srcOffsets[0].z and srcOffsets[1].z must both be greater
than or equal to 0 and less than or equal to the depth of the specified srcSubresource of
srcImage

• VUID-VkBlitImageInfo2-srcImage-00247
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffsets[0].z must be 0 and srcOffsets[1].z must be 1

• VUID-VkBlitImageInfo2-dstOffset-00248
For each element of pRegions, dstOffsets[0].x and dstOffsets[1].x must both be greater
than or equal to 0 and less than or equal to the width of the specified dstSubresource of
dstImage

• VUID-VkBlitImageInfo2-dstOffset-00249
For each element of pRegions, dstOffsets[0].y and dstOffsets[1].y must both be greater
than or equal to 0 and less than or equal to the height of the specified dstSubresource of
dstImage

• VUID-VkBlitImageInfo2-dstImage-00250
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffsets[0].y
must be 0 and dstOffsets[1].y must be 1

• VUID-VkBlitImageInfo2-dstOffset-00251
For each element of pRegions, dstOffsets[0].z and dstOffsets[1].z must both be greater
than or equal to 0 and less than or equal to the depth of the specified dstSubresource of
dstImage

1694

• VUID-VkBlitImageInfo2-dstImage-00252
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffsets[0].z must be 0 and dstOffsets[1].z must be 1

• VUID-VkBlitImageInfo2-pRegions-04561
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then srcImage and dstImage must not be block-compressed images

• VUID-VkBlitImageInfo2KHR-pRegions-06207
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then srcImage must be of type VK_IMAGE_TYPE_2D

• VUID-VkBlitImageInfo2KHR-pRegions-06208
If any element of pRegions contains VkCopyCommandTransformInfoQCOM in its pNext
chain, then srcImage must not have a multi-planar format

• VUID-VkBlitImageInfo2-filter-09204
If filter is VK_FILTER_CUBIC_EXT and if the selectableCubicWeights feature is not enabled
then the cubic weights must be VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

Valid Usage (Implicit)

• VUID-VkBlitImageInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2

• VUID-VkBlitImageInfo2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkBlitImageCubicWeightsInfoQCOM

• VUID-VkBlitImageInfo2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBlitImageInfo2-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkBlitImageInfo2-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkBlitImageInfo2-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkBlitImageInfo2-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkBlitImageInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageBlit2 structures

• VUID-VkBlitImageInfo2-filter-parameter
filter must be a valid VkFilter value

• VUID-VkBlitImageInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkBlitImageInfo2-commonparent
Both of dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

1695

If filter is VK_FILTER_CUBIC_EXT and if the pNext chain of VkBlitImageInfo2 includes a
VkBlitImageCubicWeightsInfoQCOM structure, then that structure specifies cubic weights are used in
the blit. If that structure is not present, then cubic weights are considered to be
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM.

The VkBlitImageCubicWeightsInfoQCOM structure is defined as:

// Provided by VK_QCOM_filter_cubic_weights
typedef struct VkBlitImageCubicWeightsInfoQCOM {
 VkStructureType sType;
 const void* pNext;
 VkCubicFilterWeightsQCOM cubicWeights;
} VkBlitImageCubicWeightsInfoQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• cubicWeights is a VkCubicFilterWeightsQCOM value controlling cubic filter weights for the blit.

Valid Usage (Implicit)

• VUID-VkBlitImageCubicWeightsInfoQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_BLIT_IMAGE_CUBIC_WEIGHTS_INFO_QCOM

• VUID-VkBlitImageCubicWeightsInfoQCOM-cubicWeights-parameter
cubicWeights must be a valid VkCubicFilterWeightsQCOM value

The VkImageBlit2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkImageBlit2 {
 VkStructureType sType;
 const void* pNext;
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffsets[2];
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffsets[2];
} VkImageBlit2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkImageBlit2 VkImageBlit2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

1696

• srcSubresource is the subresource to blit from.

• srcOffsets is a pointer to an array of two VkOffset3D structures specifying the bounds of the
source region within srcSubresource.

• dstSubresource is the subresource to blit into.

• dstOffsets is a pointer to an array of two VkOffset3D structures specifying the bounds of the
destination region within dstSubresource.

For each element of the pRegions array, a blit operation is performed for the specified source and
destination regions.

Valid Usage

• VUID-VkImageBlit2-aspectMask-00238
The aspectMask member of srcSubresource and dstSubresource must match

• VUID-VkImageBlit2-layerCount-08800
If neither of the layerCount members of srcSubresource or dstSubresource are
VK_REMAINING_ARRAY_LAYERS, the layerCount members of srcSubresource or dstSubresource
must match

• VUID-VkImageBlit2-layerCount-08801
If one of the layerCount members of srcSubresource or dstSubresource is
VK_REMAINING_ARRAY_LAYERS, the other member must be either VK_REMAINING_ARRAY_LAYERS
or equal to the arrayLayers member of the VkImageCreateInfo used to create the image
minus baseArrayLayer

Valid Usage (Implicit)

• VUID-VkImageBlit2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_BLIT_2

• VUID-VkImageBlit2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkCopyCommandTransformInfoQCOM

• VUID-VkImageBlit2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkImageBlit2-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageBlit2-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

For vkCmdBlitImage2, each region copied can include a rotation. To specify a rotated region, add
VkCopyCommandTransformInfoQCOM to the pNext chain of VkImageBlit2. For each region with a
rotation specified, Image Blits with Scaling and Rotation specifies how coordinates are rotated prior
to sampling from the source image. When rotation is specified, the source and destination images

1697

must each be 2D images, have a 1x1x1 texel block extent, and only one plane.

20.5.1. Image Blits With Scaling and Rotation

When VkCopyCommandTransformInfoQCOM is in the pNext chain of VkImageBlit2, the specified
region is rotated during the blit. The following description of rotated addressing replaces the
description in vkCmdBlitImage.

The following code computes rotation of normalized coordinates.

// rotation of normalized coordinates
VkOffset2D RotateNormUV(VkOffset2D in, VkSurfaceTransformFlagBitsKHR flags)
{
 VkOffset2D output;
 switch (flags)
 {
 case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
 out.x = in.x;
 out.y = in.y;
 break;
 case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
 out.x = in.y;
 out.y = 1.0 - in.x;
 break;
 case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
 out.x = 1.0 - in.x;
 out.y = 1.0 - in.y;
 break;
 case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
 out.x = 1.0 - in.y;
 out.y = in.x;
 break;
 }
 return out;
}

• For each destination texel, the integer coordinate of that texel is converted to an unnormalized
texture coordinate, using the effective inverse of the equations described in unnormalized to
integer conversion:

ubase = i + ½

vbase = j + ½

wbase = k + ½

1698

• These base coordinates are then offset by the first destination offset:

uoffset = ubase - xdst0

voffset = vbase - ydst0

woffset = wbase - zdst0

aoffset = a - baseArrayCountdst

• The UV destination coordinates are scaled by the destination region, rotated, and scaled by the
source region.

udest_scaled = uoffset / (xdst1 - xdst0)

vdest_scaled = voffset / (ydst1 - ydst0)

(usrc_scaled, vsrc_scaled) = RotateNormUV(udest_scaled, vdest_scaled, transform)

uscaled = usrc_scaled × (xSrc1 - xSrc0)

vscaled = vsrc_scaled × (ySrc1 - ySrc0)

• The W coordinate is unaffected by rotation. The scale is determined from the ratio of source and
destination regions, and applied to the offset coordinate:

scalew = (zSrc1 - zSrc0) / (zdst1 - zdst0)

wscaled = woffset × scalew

• Finally the source offset is added to the scaled source coordinates, to determine the final
unnormalized coordinates used to sample from srcImage:

u = uscaled + xSrc0

v = vscaled + ySrc0

1699

w = wscaled + zSrc0

q = mipLevel

a = aoffset + baseArrayCountsrc

These coordinates are used to sample from the source image as described for Image Operations,
with the filter mode equal to that of filter; a mipmap mode of VK_SAMPLER_MIPMAP_MODE_NEAREST; and
an address mode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE. Implementations must clamp at the
edge of the source image, and may additionally clamp to the edge of the source region.

20.6. Resolving Multisample Images
To resolve a multisample color image to a non-multisample color image, call:

// Provided by VK_VERSION_1_0
void vkCmdResolveImage(
 VkCommandBuffer commandBuffer,
 VkImage srcImage,
 VkImageLayout srcImageLayout,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkImageResolve* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the resolve.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the resolve.

• regionCount is the number of regions to resolve.

• pRegions is a pointer to an array of VkImageResolve structures specifying the regions to resolve.

During the resolve the samples corresponding to each pixel location in the source are converted to
a single sample before being written to the destination. If the source formats are floating-point or
normalized types, the sample values for each pixel are resolved in an implementation-dependent
manner. If the source formats are integer types, a single sample’s value is selected for each pixel.

srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the source
and destination image data. extent is the size in texels of the source image to resolve in width,
height and depth. Each element of pRegions must be a region that is contained within its
corresponding image.

1700

Resolves are done layer by layer starting with baseArrayLayer member of srcSubresource for the
source and dstSubresource for the destination. layerCount layers are resolved to the destination
image.

Valid Usage

• VUID-vkCmdResolveImage-commandBuffer-01837
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdResolveImage-commandBuffer-01838
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdResolveImage-commandBuffer-01839
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdResolveImage-pRegions-00255
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdResolveImage-srcImage-00256
If srcImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdResolveImage-srcImage-00257
srcImage must have a sample count equal to any valid sample count value other than
VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdResolveImage-dstImage-00258
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdResolveImage-dstImage-00259
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdResolveImage-srcImageLayout-00260
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdResolveImage-srcImageLayout-01400
srcImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdResolveImage-dstImageLayout-00262
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdResolveImage-dstImageLayout-01401
dstImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdResolveImage-dstImage-02003

1701

The format features of dstImage must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-vkCmdResolveImage-linearColorAttachment-06519
If the linearColorAttachment feature is enabled and the image is created with
VK_IMAGE_TILING_LINEAR, the format features of dstImage must contain
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-vkCmdResolveImage-srcImage-01386
srcImage and dstImage must have been created with the same image format

• VUID-vkCmdResolveImage-srcSubresource-01709
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-vkCmdResolveImage-dstSubresource-01710
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-vkCmdResolveImage-srcSubresource-01711
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-vkCmdResolveImage-dstSubresource-01712
If dstSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-vkCmdResolveImage-dstImage-02546
dstImage and srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-vkCmdResolveImage-srcImage-04446
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.layerCount must be 1

• VUID-vkCmdResolveImage-srcImage-04447
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

• VUID-vkCmdResolveImage-srcOffset-00269
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-vkCmdResolveImage-srcOffset-00270
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-vkCmdResolveImage-srcImage-00271
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

1702

• VUID-vkCmdResolveImage-srcOffset-00272
For each element of pRegions, srcOffset.z and (extent.depth + srcOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
srcSubresource of srcImage

• VUID-vkCmdResolveImage-srcImage-00273
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffset.z must be 0 and extent.depth must be 1

• VUID-vkCmdResolveImage-dstOffset-00274
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-vkCmdResolveImage-dstOffset-00275
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-vkCmdResolveImage-dstImage-00276
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-vkCmdResolveImage-dstOffset-00277
For each element of pRegions, dstOffset.z and (extent.depth + dstOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
dstSubresource of dstImage

• VUID-vkCmdResolveImage-dstImage-00278
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffset.z must be 0 and extent.depth must be 1

• VUID-vkCmdResolveImage-srcImage-06762
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdResolveImage-srcImage-06763
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-vkCmdResolveImage-dstImage-06764
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdResolveImage-dstImage-06765
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

Valid Usage (Implicit)

• VUID-vkCmdResolveImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResolveImage-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-vkCmdResolveImage-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

1703

• VUID-vkCmdResolveImage-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdResolveImage-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdResolveImage-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageResolve
structures

• VUID-vkCmdResolveImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResolveImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdResolveImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResolveImage-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdResolveImage-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdResolveImage-commonparent
Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics Action

The VkImageResolve structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageResolve {
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffset;

1704

 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffset;
 VkExtent3D extent;
} VkImageResolve;

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the
image subresources of the images used for the source and destination image data, respectively.
Resolve of depth/stencil images is not supported.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the
source and destination image data.

• extent is the size in texels of the source image to resolve in width, height and depth.

Valid Usage

• VUID-VkImageResolve-aspectMask-00266
The aspectMask member of srcSubresource and dstSubresource must only contain
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageResolve-layerCount-08803
If neither of the layerCount members of srcSubresource or dstSubresource are
VK_REMAINING_ARRAY_LAYERS, the layerCount member of srcSubresource and dstSubresource
must match

• VUID-VkImageResolve-layerCount-08804
If one of the layerCount members of srcSubresource or dstSubresource is
VK_REMAINING_ARRAY_LAYERS, the other member must be either VK_REMAINING_ARRAY_LAYERS
or equal to the arrayLayers member of the VkImageCreateInfo used to create the image
minus baseArrayLayer

Valid Usage (Implicit)

• VUID-VkImageResolve-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageResolve-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

A more extensible version of the resolve image command is defined below.

To resolve a multisample image to a non-multisample image, call:

// Provided by VK_VERSION_1_3
void vkCmdResolveImage2(
 VkCommandBuffer commandBuffer,
 const VkResolveImageInfo2* pResolveImageInfo);

1705

or the equivalent command

// Provided by VK_KHR_copy_commands2
void vkCmdResolveImage2KHR(
 VkCommandBuffer commandBuffer,
 const VkResolveImageInfo2* pResolveImageInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pResolveImageInfo is a pointer to a VkResolveImageInfo2 structure describing the resolve
parameters.

This command is functionally identical to vkCmdResolveImage, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdResolveImage2-commandBuffer-01837
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdResolveImage2-commandBuffer-01838
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdResolveImage2-commandBuffer-01839
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdResolveImage2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResolveImage2-pResolveImageInfo-parameter
pResolveImageInfo must be a valid pointer to a valid VkResolveImageInfo2 structure

• VUID-vkCmdResolveImage2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResolveImage2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdResolveImage2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResolveImage2-videocoding
This command must only be called outside of a video coding scope

1706

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics Action

The VkResolveImageInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkResolveImageInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkImageResolve2* pRegions;
} VkResolveImageInfo2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkResolveImageInfo2 VkResolveImageInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the resolve.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the resolve.

• regionCount is the number of regions to resolve.

• pRegions is a pointer to an array of VkImageResolve2 structures specifying the regions to
resolve.

1707

Valid Usage

• VUID-VkResolveImageInfo2-pRegions-00255
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkResolveImageInfo2-srcImage-00256
If srcImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkResolveImageInfo2-srcImage-00257
srcImage must have a sample count equal to any valid sample count value other than
VK_SAMPLE_COUNT_1_BIT

• VUID-VkResolveImageInfo2-dstImage-00258
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkResolveImageInfo2-dstImage-00259
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-VkResolveImageInfo2-srcImageLayout-00260
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkResolveImageInfo2-srcImageLayout-01400
srcImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkResolveImageInfo2-dstImageLayout-00262
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkResolveImageInfo2-dstImageLayout-01401
dstImageLayout must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkResolveImageInfo2-dstImage-02003
The format features of dstImage must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkResolveImageInfo2-linearColorAttachment-06519
If the linearColorAttachment feature is enabled and the image is created with
VK_IMAGE_TILING_LINEAR, the format features of dstImage must contain
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

• VUID-VkResolveImageInfo2-srcImage-01386
srcImage and dstImage must have been created with the same image format

• VUID-VkResolveImageInfo2-srcSubresource-01709
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkResolveImageInfo2-dstSubresource-01710
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

1708

• VUID-VkResolveImageInfo2-srcSubresource-01711
If srcSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-VkResolveImageInfo2-dstSubresource-01712
If dstSubresource.layerCount is not VK_REMAINING_ARRAY_LAYERS,
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-VkResolveImageInfo2-dstImage-02546
dstImage and srcImage must not have been created with flags containing
VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• VUID-VkResolveImageInfo2-srcImage-04446
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.layerCount must be 1

• VUID-VkResolveImageInfo2-srcImage-04447
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

• VUID-VkResolveImageInfo2-srcOffset-00269
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-VkResolveImageInfo2-srcOffset-00270
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-VkResolveImageInfo2-srcImage-00271
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

• VUID-VkResolveImageInfo2-srcOffset-00272
For each element of pRegions, srcOffset.z and (extent.depth + srcOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
srcSubresource of srcImage

• VUID-VkResolveImageInfo2-srcImage-00273
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffset.z must be 0 and extent.depth must be 1

• VUID-VkResolveImageInfo2-dstOffset-00274
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-VkResolveImageInfo2-dstOffset-00275
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be

1709

greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-VkResolveImageInfo2-dstImage-00276
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-VkResolveImageInfo2-dstOffset-00277
For each element of pRegions, dstOffset.z and (extent.depth + dstOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
dstSubresource of dstImage

• VUID-VkResolveImageInfo2-dstImage-00278
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffset.z must be 0 and extent.depth must be 1

• VUID-VkResolveImageInfo2-srcImage-06762
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkResolveImageInfo2-srcImage-06763
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-VkResolveImageInfo2-dstImage-06764
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkResolveImageInfo2-dstImage-06765
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

Valid Usage (Implicit)

• VUID-VkResolveImageInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2

• VUID-VkResolveImageInfo2-pNext-pNext
pNext must be NULL

• VUID-VkResolveImageInfo2-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkResolveImageInfo2-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkResolveImageInfo2-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkResolveImageInfo2-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkResolveImageInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageResolve2
structures

• VUID-VkResolveImageInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkResolveImageInfo2-commonparent

1710

Both of dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

The VkImageResolve2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkImageResolve2 {
 VkStructureType sType;
 const void* pNext;
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffset;
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffset;
 VkExtent3D extent;
} VkImageResolve2;

or the equivalent

// Provided by VK_KHR_copy_commands2
typedef VkImageResolve2 VkImageResolve2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the
image subresources of the images used for the source and destination image data, respectively.
Resolve of depth/stencil images is not supported.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the
source and destination image data.

• extent is the size in texels of the source image to resolve in width, height and depth.

Valid Usage

• VUID-VkImageResolve2-aspectMask-00266
The aspectMask member of srcSubresource and dstSubresource must only contain
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageResolve2-layerCount-08803
If neither of the layerCount members of srcSubresource or dstSubresource are
VK_REMAINING_ARRAY_LAYERS, the layerCount member of srcSubresource and dstSubresource
must match

• VUID-VkImageResolve2-layerCount-08804
If one of the layerCount members of srcSubresource or dstSubresource is
VK_REMAINING_ARRAY_LAYERS, the other member must be either VK_REMAINING_ARRAY_LAYERS
or equal to the arrayLayers member of the VkImageCreateInfo used to create the image

1711

minus baseArrayLayer

Valid Usage (Implicit)

• VUID-VkImageResolve2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2

• VUID-VkImageResolve2-pNext-pNext
pNext must be NULL

• VUID-VkImageResolve2-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageResolve2-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

20.7. Buffer Markers
To write a 32-bit marker value into a buffer as a pipelined operation, call:

// Provided by VK_KHR_synchronization2 with VK_AMD_buffer_marker
void vkCmdWriteBufferMarker2AMD(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlags2 stage,
 VkBuffer dstBuffer,
 VkDeviceSize dstOffset,
 uint32_t marker);

• commandBuffer is the command buffer into which the command will be recorded.

• stage specifies the pipeline stage whose completion triggers the marker write.

• dstBuffer is the buffer where the marker will be written.

• dstOffset is the byte offset into the buffer where the marker will be written.

• marker is the 32-bit value of the marker.

The command will write the 32-bit marker value into the buffer only after all preceding commands
have finished executing up to at least the specified pipeline stage. This includes the completion of
other preceding vkCmdWriteBufferMarker2AMD commands so long as their specified pipeline stages
occur either at the same time or earlier than this command’s specified stage.

While consecutive buffer marker writes with the same stage parameter implicitly complete in
submission order, memory and execution dependencies between buffer marker writes and other
operations must still be explicitly ordered using synchronization commands. The access scope for
buffer marker writes falls under the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for
identifying the synchronization scope must include both stage and VK_PIPELINE_STAGE_TRANSFER_BIT.

 Note

1712

Similar to vkCmdWriteTimestamp2, if an implementation is unable to write a marker
at any specific pipeline stage, it may instead do so at any logically later stage.

Note

Implementations may only support a limited number of pipelined marker write
operations in flight at a given time. Thus an excessive number of marker write
operations may degrade command execution performance.

Valid Usage

• VUID-vkCmdWriteBufferMarker2AMD-stage-03929
If the geometryShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-vkCmdWriteBufferMarker2AMD-stage-03930
If the tessellationShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWriteBufferMarker2AMD-stage-03931
If the conditionalRendering feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdWriteBufferMarker2AMD-stage-03932
If the fragmentDensityMap feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdWriteBufferMarker2AMD-stage-03933
If the transformFeedback feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdWriteBufferMarker2AMD-stage-03934
If the meshShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

• VUID-vkCmdWriteBufferMarker2AMD-stage-03935
If the taskShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

• VUID-vkCmdWriteBufferMarker2AMD-stage-07316
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled, stage must
not contain VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdWriteBufferMarker2AMD-stage-04957
If the subpassShading feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

• VUID-vkCmdWriteBufferMarker2AMD-stage-04995
If the invocationMask feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• VUID-vkCmdWriteBufferMarker2AMD-stage-07946
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,

1713

stage must not contain VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdWriteBufferMarker2AMD-synchronization2-03893
The synchronization2 feature must be enabled

• VUID-vkCmdWriteBufferMarker2AMD-stage-03894
stage must include only a single pipeline stage

• VUID-vkCmdWriteBufferMarker2AMD-stage-03895
stage must include only stages that are valid for the queue family that was used to create
the command pool that commandBuffer was allocated from

• VUID-vkCmdWriteBufferMarker2AMD-dstOffset-03896
dstOffset must be less than or equal to the size of dstBuffer minus 4

• VUID-vkCmdWriteBufferMarker2AMD-dstBuffer-03897
dstBuffer must have been created with the VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdWriteBufferMarker2AMD-dstBuffer-03898
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdWriteBufferMarker2AMD-dstOffset-03899
dstOffset must be a multiple of 4

Valid Usage (Implicit)

• VUID-vkCmdWriteBufferMarker2AMD-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteBufferMarker2AMD-stage-parameter
stage must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-vkCmdWriteBufferMarker2AMD-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdWriteBufferMarker2AMD-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteBufferMarker2AMD-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdWriteBufferMarker2AMD-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdWriteBufferMarker2AMD-commonparent
Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

1714

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Transfer
Graphics
Compute

Action

To write a 32-bit marker value into a buffer as a pipelined operation, call:

// Provided by VK_AMD_buffer_marker
void vkCmdWriteBufferMarkerAMD(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlagBits pipelineStage,
 VkBuffer dstBuffer,
 VkDeviceSize dstOffset,
 uint32_t marker);

• commandBuffer is the command buffer into which the command will be recorded.

• pipelineStage is a VkPipelineStageFlagBits value specifying the pipeline stage whose completion
triggers the marker write.

• dstBuffer is the buffer where the marker will be written to.

• dstOffset is the byte offset into the buffer where the marker will be written to.

• marker is the 32-bit value of the marker.

The command will write the 32-bit marker value into the buffer only after all preceding commands
have finished executing up to at least the specified pipeline stage. This includes the completion of
other preceding vkCmdWriteBufferMarkerAMD commands so long as their specified pipeline stages
occur either at the same time or earlier than this command’s specified pipelineStage.

While consecutive buffer marker writes with the same pipelineStage parameter are implicitly
complete in submission order, memory and execution dependencies between buffer marker writes
and other operations must still be explicitly ordered using synchronization commands. The access
scope for buffer marker writes falls under the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline
stages for identifying the synchronization scope must include both pipelineStage and
VK_PIPELINE_STAGE_TRANSFER_BIT.

Note

Similar to vkCmdWriteTimestamp, if an implementation is unable to write a marker at
any specific pipeline stage, it may instead do so at any logically later stage.

1715

Note

Implementations may only support a limited number of pipelined marker write
operations in flight at a given time, thus excessive number of marker write
operations may degrade command execution performance.

Valid Usage

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-04074
pipelineStage must be a valid stage for the queue family that was used to create the
command pool that commandBuffer was allocated from

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-04075
If the geometryShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-04076
If the tessellationShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-04077
If the conditionalRendering feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-04078
If the fragmentDensityMap feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-04079
If the transformFeedback feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-04080
If the meshShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-07077
If the taskShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• VUID-vkCmdWriteBufferMarkerAMD-shadingRateImage-07314
If neither the shadingRateImage or attachmentFragmentShadingRate are enabled,
pipelineStage must not be VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdWriteBufferMarkerAMD-synchronization2-06489
If the synchronization2 feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_NONE

• VUID-vkCmdWriteBufferMarkerAMD-rayTracingPipeline-07943
If neither the VK_NV_ray_tracing extension or rayTracingPipeline feature are enabled,
pipelineStage must not be VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• VUID-vkCmdWriteBufferMarkerAMD-dstOffset-01798

1716

dstOffset must be less than or equal to the size of dstBuffer minus 4

• VUID-vkCmdWriteBufferMarkerAMD-dstBuffer-01799
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdWriteBufferMarkerAMD-dstBuffer-01800
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdWriteBufferMarkerAMD-dstOffset-01801
dstOffset must be a multiple of 4

Valid Usage (Implicit)

• VUID-vkCmdWriteBufferMarkerAMD-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteBufferMarkerAMD-pipelineStage-parameter
If pipelineStage is not 0, pipelineStage must be a valid VkPipelineStageFlagBits value

• VUID-vkCmdWriteBufferMarkerAMD-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdWriteBufferMarkerAMD-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteBufferMarkerAMD-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdWriteBufferMarkerAMD-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdWriteBufferMarkerAMD-commonparent
Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

1717

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Transfer
Graphics
Compute

Action

1718

Chapter 21. Drawing Commands
Drawing commands (commands with Draw in the name) provoke work in a graphics pipeline.
Drawing commands are recorded into a command buffer and when executed by a queue, will
produce work which executes according to the bound graphics pipeline, or if the shaderObject
feature is enabled, any shader objects bound to graphics stages. A graphics pipeline or a
combination of one or more graphics shader objects must be bound to a command buffer before
any drawing commands are recorded in that command buffer.

Drawing can be achieved in two modes:

• Programmable Mesh Shading, the mesh shader assembles primitives, or

• Programmable Primitive Shading, the input primitives are assembled as follows.

Each draw is made up of zero or more vertices and zero or more instances, which are processed by
the device and result in the assembly of primitives. Primitives are assembled according to the
pInputAssemblyState member of the VkGraphicsPipelineCreateInfo structure, which is of type
VkPipelineInputAssemblyStateCreateInfo:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineInputAssemblyStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineInputAssemblyStateCreateFlags flags;
 VkPrimitiveTopology topology;
 VkBool32 primitiveRestartEnable;
} VkPipelineInputAssemblyStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• topology is a VkPrimitiveTopology defining the primitive topology, as described below.

• primitiveRestartEnable controls whether a special vertex index value is treated as restarting the
assembly of primitives. This enable only applies to indexed draws (vkCmdDrawIndexed,
vkCmdDrawMultiIndexedEXT, and vkCmdDrawIndexedIndirect), and the special index value is
either 0xFFFFFFFF when the indexType parameter of vkCmdBindIndexBuffer2KHR or
vkCmdBindIndexBuffer is equal to VK_INDEX_TYPE_UINT32, 0xFF when indexType is equal to
VK_INDEX_TYPE_UINT8_KHR, or 0xFFFF when indexType is equal to VK_INDEX_TYPE_UINT16. Primitive
restart is not allowed for “list” topologies, unless one of the features
primitiveTopologyPatchListRestart (for VK_PRIMITIVE_TOPOLOGY_PATCH_LIST) or
primitiveTopologyListRestart (for all other list topologies) is enabled.

Restarting the assembly of primitives discards the most recent index values if those elements
formed an incomplete primitive, and restarts the primitive assembly using the subsequent indices,
but only assembling the immediately following element through the end of the originally specified
elements. The primitive restart index value comparison is performed before adding the

1719

vertexOffset value to the index value.

Valid Usage

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-06252
If the primitiveTopologyListRestart feature is not enabled, and topology is
VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, primitiveRestartEnable must be
VK_FALSE

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-06253
If the primitiveTopologyPatchListRestart feature is not enabled, and topology is
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, primitiveRestartEnable must be VK_FALSE

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-00429
If the geometryShader feature is not enabled, topology must not be any of
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-00430
If the tessellationShader feature is not enabled, topology must not be
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

• VUID-VkPipelineInputAssemblyStateCreateInfo-triangleFans-04452
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::triangleFans is VK_FALSE, topology must
not be VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN

Valid Usage (Implicit)

• VUID-VkPipelineInputAssemblyStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO

• VUID-VkPipelineInputAssemblyStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineInputAssemblyStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-parameter
topology must be a valid VkPrimitiveTopology value

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineInputAssemblyStateCreateFlags;

VkPipelineInputAssemblyStateCreateFlags is a bitmask type for setting a mask, but is currently

1720

reserved for future use.

To dynamically control whether a special vertex index value is treated as restarting the assembly of
primitives, call:

// Provided by VK_VERSION_1_3
void vkCmdSetPrimitiveRestartEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 primitiveRestartEnable);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state2, VK_EXT_shader_object
void vkCmdSetPrimitiveRestartEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 primitiveRestartEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• primitiveRestartEnable controls whether a special vertex index value is treated as restarting the
assembly of primitives. It behaves in the same way as VkPipelineInputAssemblyStateCreateInfo
::primitiveRestartEnable

This command sets the primitive restart enable for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineInputAssemblyStateCreateInfo
::primitiveRestartEnable value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetPrimitiveRestartEnable-None-08970
At least one of the following must be true:

◦ the extendedDynamicState2 feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetPrimitiveRestartEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPrimitiveRestartEnable-commandBuffer-recording
commandBuffer must be in the recording state

1721

• VUID-vkCmdSetPrimitiveRestartEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetPrimitiveRestartEnable-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

21.1. Primitive Topologies
Primitive topology determines how consecutive vertices are organized into primitives, and
determines the type of primitive that is used at the beginning of the graphics pipeline. The effective
topology for later stages of the pipeline is altered by tessellation or geometry shading (if either is in
use) and depends on the execution modes of those shaders. In the case of mesh shading the only
effective topology is defined by the execution mode of the mesh shader.

The primitive topologies defined by VkPrimitiveTopology are:

// Provided by VK_VERSION_1_0
typedef enum VkPrimitiveTopology {
 VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,
 VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,
 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,
 VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,
 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 8,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY = 9,
 VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,
} VkPrimitiveTopology;

1722

• VK_PRIMITIVE_TOPOLOGY_POINT_LIST specifies a series of separate point primitives.

• VK_PRIMITIVE_TOPOLOGY_LINE_LIST specifies a series of separate line primitives.

• VK_PRIMITIVE_TOPOLOGY_LINE_STRIP specifies a series of connected line primitives with
consecutive lines sharing a vertex.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST specifies a series of separate triangle primitives.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP specifies a series of connected triangle primitives with
consecutive triangles sharing an edge.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN specifies a series of connected triangle primitives with all
triangles sharing a common vertex. If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::triangleFans is VK_FALSE, then triangle fans are
not supported by the implementation, and VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN must not be
used.

• VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY specifies a series of separate line primitives
with adjacency.

• VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY specifies a series of connected line primitives
with adjacency, with consecutive primitives sharing three vertices.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY specifies a series of separate triangle
primitives with adjacency.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY specifies connected triangle primitives
with adjacency, with consecutive triangles sharing an edge.

• VK_PRIMITIVE_TOPOLOGY_PATCH_LIST specifies separate patch primitives.

Each primitive topology, and its construction from a list of vertices, is described in detail below
with a supporting diagram, according to the following key:

Vertex
A point in 3-dimensional space. Positions chosen within the diagrams are
arbitrary and for illustration only.

5 Vertex Number Sequence position of a vertex within the provided vertex data.

Provoking
Vertex

Provoking vertex within the main primitive. The tail is angled towards
the relevant primitive. Used in flat shading.

Primitive Edge An edge connecting the points of a main primitive.

Adjacency
Edge

Points connected by these lines do not contribute to a main primitive, and
are only accessible in a geometry shader.

Winding Order
The relative order in which vertices are defined within a primitive, used
in the facing determination. This ordering has no specific start or end
point.

The diagrams are supported with mathematical definitions where the vertices (v) and primitives (p)
are numbered starting from 0; v0 is the first vertex in the provided data and p0 is the first primitive
in the set of primitives defined by the vertices and topology.

To dynamically set primitive topology, call:

1723

// Provided by VK_VERSION_1_3
void vkCmdSetPrimitiveTopology(
 VkCommandBuffer commandBuffer,
 VkPrimitiveTopology primitiveTopology);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetPrimitiveTopologyEXT(
 VkCommandBuffer commandBuffer,
 VkPrimitiveTopology primitiveTopology);

• commandBuffer is the command buffer into which the command will be recorded.

• primitiveTopology specifies the primitive topology to use for drawing.

This command sets the primitive topology for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
set in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineInputAssemblyStateCreateInfo::topology value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetPrimitiveTopology-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetPrimitiveTopology-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPrimitiveTopology-primitiveTopology-parameter
primitiveTopology must be a valid VkPrimitiveTopology value

• VUID-vkCmdSetPrimitiveTopology-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetPrimitiveTopology-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetPrimitiveTopology-videocoding

1724

This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

21.1.1. Topology Class

The primitive topologies are grouped into the following topology classes:

Table 31. Topology classes

Topology Class Primitive Topology

Point VK_PRIMITIVE_TOPOLOGY_POINT_LIST

Line VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENC
Y

Triangle VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJAC
ENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJA
CENCY

Patch VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

21.1.2. Point Lists

When the topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, each consecutive vertex defines a single
point primitive, according to the equation:

pi = {vi}

1725

As there is only one vertex, that vertex is the provoking vertex. The number of primitives generated
is equal to vertexCount.

0
4

2
1

3

21.1.3. Line Lists

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_LINE_LIST, each consecutive pair of vertices
defines a single line primitive, according to the equation:

pi = {v2i, v2i+1}

The number of primitives generated is equal to ⌊vertexCount/2⌋.

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex
for pi is v2i.

0

2

1

3

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex
for pi is v2i+1.

0

2

1

3

21.1.4. Line Strips

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, one line primitive is defined by
each vertex and the following vertex, according to the equation:

1726

pi = {vi, vi+1}

The number of primitives generated is equal to max(0,vertexCount-1).

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex
for pi is vi.

0 21 3

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex
for pi is vi+1.

0 21 3

21.1.5. Triangle Lists

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, each consecutive set of three
vertices defines a single triangle primitive, according to the equation:

pi = {v3i, v3i+1, v3i+2}

The number of primitives generated is equal to ⌊vertexCount/3⌋.

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex
for pi is v3i.

2

1

0

3

5

4

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex
for pi is v3i+2.

2

1

0

3

5

4

1727

21.1.6. Triangle Strips

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, one triangle primitive is
defined by each vertex and the two vertices that follow it, according to the equation:

pi = {vi, vi+(1+i%2), vi+(2-i%2)}

The number of primitives generated is equal to max(0,vertexCount-2).

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex
for pi is vi.

0 42

1 3

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex
for pi is vi+2.

0 42

1 3

Note

The ordering of the vertices in each successive triangle is reversed, so that the
winding order is consistent throughout the strip.

21.1.7. Triangle Fans

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, triangle primitives are defined
around a shared common vertex, according to the equation:

pi = {vi+1, vi+2, v0}

The number of primitives generated is equal to max(0,vertexCount-2).

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex
for pi is vi+1.

1728

0 4

2

1

3

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex
for pi is vi+2.

0 4

2

1

3

Note

If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::triangleFans is VK_FALSE, then
triangle fans are not supported by the implementation, and
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN must not be used.

21.1.8. Line Lists With Adjacency

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, each consecutive
set of four vertices defines a single line primitive with adjacency, according to the equation:

pi = {v4i, v4i+1, v4i+2,v4i+3}

A line primitive is described by the second and third vertices of the total primitive, with the
remaining two vertices only accessible in a geometry shader.

The number of primitives generated is equal to ⌊vertexCount/4⌋.

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex
for pi is v4i+1.

0 21 3

4 65 7

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex

1729

for pi is v4i+2.

0 21 3

4 65 7

21.1.9. Line Strips With Adjacency

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, one line
primitive with adjacency is defined by each vertex and the following vertex, according to the
equation:

pi = {vi, vi+1, vi+2, vi+3}

A line primitive is described by the second and third vertices of the total primitive, with the
remaining two vertices only accessible in a geometry shader.

The number of primitives generated is equal to max(0,vertexCount-3).

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex
for pi is vi+1.

0 21 3 4 5

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex
for pi is vi+2.

0 21 3 4 5

21.1.10. Triangle Lists With Adjacency

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, each
consecutive set of six vertices defines a single triangle primitive with adjacency, according to the
equations:

pi = {v6i, v6i+1, v6i+2, v6i+3, v6i+4, v6i+5}

A triangle primitive is described by the first, third, and fifth vertices of the total primitive, with the
remaining three vertices only accessible in a geometry shader.

The number of primitives generated is equal to ⌊vertexCount/6⌋.

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex

1730

for pi is v6i.

0 4

21

5

3

6 8

1011

7

9

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex
for pi is v6i+4.

0 4

21

5

3

6 8

1011

7

9

21.1.11. Triangle Strips With Adjacency

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, one triangle
primitive with adjacency is defined by each vertex and the following 5 vertices.

The number of primitives generated, n, is equal to ⌊max(0, vertexCount - 4)/2⌋.

If n=1, the primitive is defined as:

p = {v0, v1, v2, v5, v4, v3}

If n>1, the total primitive consists of different vertices according to where it is in the strip:

pi = {v2i, v2i+1, v2i+2, v2i+6, v2i+4, v2i+3} when i=0

pi = {v2i, v2i+3, v2i+4, v2i+6, v2i+2, v2i-2} when i>0, i<n-1, and i%2=1

1731

pi = {v2i, v2i-2, v2i+2, v2i+6, v2i+4, v2i+3} when i>0, i<n-1, and i%2=0

pi = {v2i, v2i+3, v2i+4, v2i+5, v2i+2, v2i-2} when i=n-1 and i%2=1

pi = {v2i, v2i-2, v2i+2, v2i+5, v2i+4, v2i+3} when i=n-1 and i%2=0

A triangle primitive is described by the first, third, and fifth vertices of the total primitive in all
cases, with the remaining three vertices only accessible in a geometry shader.

Note

The ordering of the vertices in each successive triangle is altered so that the
winding order is consistent throughout the strip.

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the provoking vertex
for pi is always v2i.

0 4

21 5

3

2 6

5

7

7

8

9

7

8

10

9

11

0 4

1

3

2 6

5

0 4

1

3

2 6

5

0 4

1

3

When the provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the provoking vertex
for pi is always v2i+4.

1732

0 4

21 5

3

2 6

5

7

7

8

9

7

8

10

9

11

0 4

1

3

2 6

5

0 4

1

3

2 6

5

0 4

1

3

21.1.12. Patch Lists

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, each consecutive set of m
vertices defines a single patch primitive, according to the equation:

pi = {vmi, vmi+1, …, vmi+(m-2), vmi+(m-1)}

where m is equal to VkPipelineTessellationStateCreateInfo::patchControlPoints.

Patch lists are never passed to vertex post-processing, and as such no provoking vertex is defined
for patch primitives. The number of primitives generated is equal to ⌊vertexCount/m⌋.

The vertices comprising a patch have no implied geometry, and are used as inputs to tessellation
shaders and the fixed-function tessellator to generate new point, line, or triangle primitives.

21.2. Primitive Order
Primitives generated by drawing commands progress through the stages of the graphics pipeline in
primitive order. Primitive order is initially determined in the following way:

1. Submission order determines the initial ordering

2. For indirect drawing commands, the order in which accessed instances of the

1733

VkDrawIndirectCommand are stored in buffer, from lower indirect buffer addresses to higher
addresses.

3. If a drawing command includes multiple instances, the order in which instances are executed,
from lower numbered instances to higher.

4. The order in which primitives are specified by a drawing command:

◦ For non-indexed draws, from vertices with a lower numbered vertexIndex to a higher
numbered vertexIndex.

◦ For indexed draws, vertices sourced from a lower index buffer addresses to higher
addresses.

◦ For draws using mesh shaders, the order is provided by mesh shading.

◦ For draws using cluster culling shaders, the order is provided by cluster culling shading.

Within this order implementations further sort primitives:

5. If tessellation shading is active, by an implementation-dependent order of new primitives
generated by tessellation.

6. If geometry shading is active, by the order new primitives are generated by geometry shading.

7. If the polygon mode is not VK_POLYGON_MODE_FILL, or VK_POLYGON_MODE_FILL_RECTANGLE_NV, by an
implementation-dependent ordering of the new primitives generated within the original
primitive.

Primitive order is later used to define rasterization order, which determines the order in which
fragments output results to a framebuffer.

21.3. Programmable Primitive Shading
Once primitives are assembled, they proceed to the vertex shading stage of the pipeline. If the draw
includes multiple instances, then the set of primitives is sent to the vertex shading stage multiple
times, once for each instance.

It is implementation-dependent whether vertex shading occurs on vertices that are discarded as
part of incomplete primitives, but if it does occur then it operates as if they were vertices in
complete primitives and such invocations can have side effects.

Vertex shading receives two per-vertex inputs from the primitive assembly stage - the vertexIndex
and the instanceIndex. How these values are generated is defined below, with each command.

Drawing commands fall roughly into two categories:

• Non-indexed drawing commands present a sequential vertexIndex to the vertex shader. The
sequential index is generated automatically by the device (see Fixed-Function Vertex Processing
for details on both specifying the vertex attributes indexed by vertexIndex, as well as binding
vertex buffers containing those attributes to a command buffer). These commands are:

◦ vkCmdDraw

◦ vkCmdDrawIndirect

1734

◦ vkCmdDrawIndirectCount

◦ vkCmdDrawIndirectCountKHR

◦ vkCmdDrawIndirectCountAMD

◦ vkCmdDrawMultiEXT

• Indexed drawing commands read index values from an index buffer and use this to compute the
vertexIndex value for the vertex shader. These commands are:

◦ vkCmdDrawIndexed

◦ vkCmdDrawIndexedIndirect

◦ vkCmdDrawIndexedIndirectCount

◦ vkCmdDrawIndexedIndirectCountKHR

◦ vkCmdDrawIndexedIndirectCountAMD

◦ vkCmdDrawMultiIndexedEXT

To bind an index buffer to a command buffer, call:

// Provided by VK_VERSION_1_0
void vkCmdBindIndexBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkIndexType indexType);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer being bound.

• offset is the starting offset in bytes within buffer used in index buffer address calculations.

• indexType is a VkIndexType value specifying the size of the indices.

If the maintenance6 feature is enabled, buffer can be VK_NULL_HANDLE. If buffer is
VK_NULL_HANDLE and the nullDescriptor feature is enabled, every index fetched results in a value
of zero.

Valid Usage

• VUID-vkCmdBindIndexBuffer-offset-08782
offset must be less than the size of buffer

• VUID-vkCmdBindIndexBuffer-offset-08783
The sum of offset and the base address of the range of VkDeviceMemory object that is
backing buffer, must be a multiple of the size of the type indicated by indexType

• VUID-vkCmdBindIndexBuffer-buffer-08784
buffer must have been created with the VK_BUFFER_USAGE_INDEX_BUFFER_BIT flag

• VUID-vkCmdBindIndexBuffer-buffer-08785

1735

If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBindIndexBuffer-indexType-08786
indexType must not be VK_INDEX_TYPE_NONE_KHR

• VUID-vkCmdBindIndexBuffer-indexType-08787
If indexType is VK_INDEX_TYPE_UINT8_KHR, the indexTypeUint8 feature must be enabled

• VUID-vkCmdBindIndexBuffer-None-09493
If maintenance6 is not enabled, buffer must not be VK_NULL_HANDLE

• VUID-vkCmdBindIndexBuffer-buffer-09494
If buffer is VK_NULL_HANDLE, offset must be zero

Valid Usage (Implicit)

• VUID-vkCmdBindIndexBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindIndexBuffer-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• VUID-vkCmdBindIndexBuffer-indexType-parameter
indexType must be a valid VkIndexType value

• VUID-vkCmdBindIndexBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindIndexBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindIndexBuffer-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindIndexBuffer-commonparent
Both of buffer, and commandBuffer that are valid handles of non-ignored parameters must
have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

1736

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To bind an index buffer, along with its size, to a command buffer, call:

// Provided by VK_KHR_maintenance5
void vkCmdBindIndexBuffer2KHR(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkDeviceSize size,
 VkIndexType indexType);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer being bound.

• offset is the starting offset in bytes within buffer used in index buffer address calculations.

• size is the size in bytes of index data bound from buffer.

• indexType is a VkIndexType value specifying the size of the indices.

size specifies the bound size of the index buffer starting from offset. If size is VK_WHOLE_SIZE then
the bound size is from offset to the end of the buffer.

If the maintenance6 feature is enabled, buffer can be VK_NULL_HANDLE. If buffer is
VK_NULL_HANDLE and the nullDescriptor feature is enabled, every index fetched results in a value
of zero.

Valid Usage

• VUID-vkCmdBindIndexBuffer2KHR-offset-08782
offset must be less than the size of buffer

• VUID-vkCmdBindIndexBuffer2KHR-offset-08783
The sum of offset and the base address of the range of VkDeviceMemory object that is
backing buffer, must be a multiple of the size of the type indicated by indexType

• VUID-vkCmdBindIndexBuffer2KHR-buffer-08784
buffer must have been created with the VK_BUFFER_USAGE_INDEX_BUFFER_BIT flag

• VUID-vkCmdBindIndexBuffer2KHR-buffer-08785
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

1737

• VUID-vkCmdBindIndexBuffer2KHR-indexType-08786
indexType must not be VK_INDEX_TYPE_NONE_KHR

• VUID-vkCmdBindIndexBuffer2KHR-indexType-08787
If indexType is VK_INDEX_TYPE_UINT8_KHR, the indexTypeUint8 feature must be enabled

• VUID-vkCmdBindIndexBuffer2KHR-None-09493
If maintenance6 is not enabled, buffer must not be VK_NULL_HANDLE

• VUID-vkCmdBindIndexBuffer2KHR-buffer-09494
If buffer is VK_NULL_HANDLE, offset must be zero

• VUID-vkCmdBindIndexBuffer2KHR-size-08767
If size is not VK_WHOLE_SIZE, size must be a multiple of the size of the type indicated by
indexType

• VUID-vkCmdBindIndexBuffer2KHR-size-08768
If size is not VK_WHOLE_SIZE, the sum of offset and size must be less than or equal to the
size of buffer

Valid Usage (Implicit)

• VUID-vkCmdBindIndexBuffer2KHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindIndexBuffer2KHR-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• VUID-vkCmdBindIndexBuffer2KHR-indexType-parameter
indexType must be a valid VkIndexType value

• VUID-vkCmdBindIndexBuffer2KHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindIndexBuffer2KHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindIndexBuffer2KHR-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindIndexBuffer2KHR-commonparent
Both of buffer, and commandBuffer that are valid handles of non-ignored parameters must
have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

1738

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Possible values of vkCmdBindIndexBuffer2KHR::indexType and vkCmdBindIndexBuffer::indexType,
specifying the size of indices, are:

// Provided by VK_VERSION_1_0
typedef enum VkIndexType {
 VK_INDEX_TYPE_UINT16 = 0,
 VK_INDEX_TYPE_UINT32 = 1,
 // Provided by VK_KHR_acceleration_structure
 VK_INDEX_TYPE_NONE_KHR = 1000165000,
 // Provided by VK_KHR_index_type_uint8
 VK_INDEX_TYPE_UINT8_KHR = 1000265000,
 // Provided by VK_NV_ray_tracing
 VK_INDEX_TYPE_NONE_NV = VK_INDEX_TYPE_NONE_KHR,
 // Provided by VK_EXT_index_type_uint8
 VK_INDEX_TYPE_UINT8_EXT = VK_INDEX_TYPE_UINT8_KHR,
} VkIndexType;

• VK_INDEX_TYPE_UINT16 specifies that indices are 16-bit unsigned integer values.

• VK_INDEX_TYPE_UINT32 specifies that indices are 32-bit unsigned integer values.

• VK_INDEX_TYPE_NONE_KHR specifies that no indices are provided.

• VK_INDEX_TYPE_UINT8_KHR specifies that indices are 8-bit unsigned integer values.

The parameters for each drawing command are specified directly in the command or read from
buffer memory, depending on the command. Drawing commands that source their parameters
from buffer memory are known as indirect drawing commands.

All drawing commands interact with the robustBufferAccess feature.

To record a non-indexed draw, call:

// Provided by VK_VERSION_1_0
void vkCmdDraw(
 VkCommandBuffer commandBuffer,
 uint32_t vertexCount,
 uint32_t instanceCount,
 uint32_t firstVertex,
 uint32_t firstInstance);

1739

• commandBuffer is the command buffer into which the command is recorded.

• vertexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstVertex is the index of the first vertex to draw.

• firstInstance is the instance ID of the first instance to draw.

When the command is executed, primitives are assembled using the current primitive topology and
vertexCount consecutive vertex indices with the first vertexIndex value equal to firstVertex. The
primitives are drawn instanceCount times with instanceIndex starting with firstInstance and
increasing sequentially for each instance. The assembled primitives execute the bound graphics
pipeline.

Valid Usage

• VUID-vkCmdDraw-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDraw-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDraw-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDraw-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDraw-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDraw-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain

1740

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDraw-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDraw-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDraw-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDraw-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDraw-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDraw-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDraw-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDraw-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDraw-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDraw-OpTypeImage-07027

1741

For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDraw-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDraw-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDraw-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDraw-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDraw-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDraw-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDraw-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDraw-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDraw-None-08116

1742

Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDraw-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDraw-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDraw-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDraw-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDraw-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDraw-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDraw-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDraw-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDraw-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any

1743

VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDraw-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDraw-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDraw-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDraw-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDraw-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDraw-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDraw-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDraw-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

1744

• VUID-vkCmdDraw-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDraw-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDraw-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDraw-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDraw-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDraw-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDraw-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDraw-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDraw-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDraw-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDraw-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

1745

• VUID-vkCmdDraw-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDraw-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDraw-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDraw-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDraw-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDraw-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDraw-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDraw-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDraw-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDraw-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format

1746

must be a single-component format.

• VUID-vkCmdDraw-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDraw-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDraw-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDraw-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDraw-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDraw-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDraw-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDraw-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDraw-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDraw-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR

1747

:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDraw-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDraw-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDraw-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDraw-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDraw-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

1748

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDraw-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDraw-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDraw-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDraw-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDraw-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer

1749

prior to this drawing command

• VUID-vkCmdDraw-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDraw-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in

1750

the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDraw-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been

1751

created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDraw-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDraw-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then

1752

vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08634

1753

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDraw-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDraw-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDraw-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDraw-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDraw-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to

1754

vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDraw-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDraw-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDraw-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDraw-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to

1755

vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDraw-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDraw-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDraw-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08639

1756

If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDraw-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDraw-primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDraw-primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDraw-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDraw-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent

1757

call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDraw-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDraw-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDraw-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDraw-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDraw-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDraw-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this

1758

command must not write any values to the depth attachment

• VUID-vkCmdDraw-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDraw-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDraw-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDraw-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDraw-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have

1759

been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDraw-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDraw-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDraw-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDraw-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

1760

• VUID-vkCmdDraw-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDraw-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDraw-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDraw-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDraw-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDraw-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-attachmentCount-07750
If the bound graphics pipeline state was created with the

1761

VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDraw-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDraw-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDraw-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set

1762

discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not

1763

VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDraw-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDraw-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDraw-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDraw-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDraw-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDraw-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo

1764

::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDraw-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDraw-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDraw-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDraw-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDraw-primitivesGeneratedQueryWithNonZeroStreams-06709

1765

If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDraw-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07623

1766

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDraw-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDraw-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

1767

• VUID-vkCmdDraw-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

1768

• VUID-vkCmdDraw-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any

1769

graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

1770

vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to

1771

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07643

1772

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call

1773

to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to

1774

vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDraw-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDraw-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDraw-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDraw-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDraw-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDraw-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDraw-rasterizerDiscardEnable-09417

1775

If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDraw-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDraw-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDraw-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDraw-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDraw-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where

1776

blending is enabled

• VUID-vkCmdDraw-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDraw-primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDraw-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDraw-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDraw-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDraw-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling

1777

rasterizationSamples

• VUID-vkCmdDraw-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDraw-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDraw-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDraw-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDraw-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

1778

• VUID-vkCmdDraw-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDraw-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDraw-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDraw-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDraw-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDraw-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

1779

• VUID-vkCmdDraw-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDraw-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDraw-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDraw-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDraw-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDraw-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDraw-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDraw-conservativePointAndLineRasterization-07499

1780

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDraw-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDraw-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDraw-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDraw-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDraw-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDraw-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDraw-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

1781

• VUID-vkCmdDraw-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDraw-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDraw-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDraw-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDraw-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDraw-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDraw-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDraw-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDraw-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDraw-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is

1782

bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDraw-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDraw-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDraw-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDraw-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDraw-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDraw-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDraw-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,

1783

any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDraw-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDraw-commandBuffer-04617
If any of the shader stages of the VkPipeline bound to the pipeline bind point used by this
command uses the RayQueryKHR capability, then commandBuffer must not be a protected
command buffer

• VUID-vkCmdDraw-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDraw-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDraw-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDraw-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDraw-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDraw-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDraw-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of

1784

vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDraw-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDraw-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDraw-Input-08734
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDraw-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDraw-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDraw-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdDraw-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound

1785

graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDraw-stage-06481
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDraw-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDraw-pNext-09461
If the bound graphics pipeline state was created with
VkPipelineVertexInputDivisorStateCreateInfoKHR in the pNext chain of
VkGraphicsPipelineCreateInfo::pVertexInputState, any member of
VkPipelineVertexInputDivisorStateCreateInfoKHR::pVertexBindingDivisors has a value
other than 1 in divisor, and VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR
::supportsNonZeroFirstInstance is VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDraw-None-09462
If shader objects are used for drawing or the bound graphics pipeline state was created
with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, any member of the
pVertexBindingDescriptions parameter to the vkCmdSetVertexInputEXT call that sets this
dynamic state has a value other than 1 in divisor, and
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::supportsNonZeroFirstInstance is
VK_FALSE, then firstInstance must be 0

Valid Usage (Implicit)

• VUID-vkCmdDraw-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDraw-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDraw-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDraw-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDraw-videocoding
This command must only be called outside of a video coding scope

1786

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

To record an indexed draw, call:

// Provided by VK_VERSION_1_0
void vkCmdDrawIndexed(
 VkCommandBuffer commandBuffer,
 uint32_t indexCount,
 uint32_t instanceCount,
 uint32_t firstIndex,
 int32_t vertexOffset,
 uint32_t firstInstance);

• commandBuffer is the command buffer into which the command is recorded.

• indexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstIndex is the base index within the index buffer.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer.

• firstInstance is the instance ID of the first instance to draw.

When the command is executed, primitives are assembled using the current primitive topology and
indexCount vertices whose indices are retrieved from the index buffer. The index buffer is treated
as an array of tightly packed unsigned integers of size defined by the vkCmdBindIndexBuffer2KHR
::indexType or the vkCmdBindIndexBuffer::indexType parameter with which the buffer was bound.

The first vertex index is at an offset of firstIndex × indexSize + offset within the bound index
buffer, where offset is the offset specified by vkCmdBindIndexBuffer or vkCmdBindIndexBuffer2KHR,
and indexSize is the byte size of the type specified by indexType. Subsequent index values are
retrieved from consecutive locations in the index buffer. Indices are first compared to the primitive
restart value, then zero extended to 32 bits (if the indexType is VK_INDEX_TYPE_UINT8_KHR or
VK_INDEX_TYPE_UINT16) and have vertexOffset added to them, before being supplied as the

1787

vertexIndex value.

The primitives are drawn instanceCount times with instanceIndex starting with firstInstance and
increasing sequentially for each instance. The assembled primitives execute the bound graphics
pipeline.

Valid Usage

• VUID-vkCmdDrawIndexed-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexed-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexed-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexed-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexed-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndexed-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndexed-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndexed-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then

1788

the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawIndexed-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawIndexed-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndexed-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndexed-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawIndexed-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawIndexed-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawIndexed-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawIndexed-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexed-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

1789

• VUID-vkCmdDrawIndexed-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexed-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexed-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexed-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexed-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexed-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexed-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexed-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexed-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this

1790

command

• VUID-vkCmdDrawIndexed-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexed-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawIndexed-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawIndexed-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawIndexed-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawIndexed-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndexed-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndexed-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndexed-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the

1791

pipeline bind point used by this command

• VUID-vkCmdDrawIndexed-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndexed-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexed-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndexed-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexed-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndexed-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndexed-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndexed-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndexed-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

1792

• VUID-vkCmdDrawIndexed-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawIndexed-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawIndexed-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawIndexed-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndexed-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndexed-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndexed-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndexed-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndexed-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndexed-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndexed-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

1793

• VUID-vkCmdDrawIndexed-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawIndexed-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexed-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexed-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawIndexed-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndexed-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndexed-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexed-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawIndexed-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawIndexed-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndexed-None-09600

1794

If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndexed-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexed-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexed-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndexed-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndexed-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndexed-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawIndexed-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawIndexed-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawIndexed-None-06537
Memory backing image subresources used as attachments in the current render pass

1795

must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndexed-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndexed-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndexed-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndexed-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

1796

• VUID-vkCmdDrawIndexed-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndexed-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndexed-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndexed-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07834

1797

If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexed-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08623
If a shader object is bound to any graphics stage, and the most recent call to

1798

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndexed-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndexed-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08626
If a shader object is bound to any graphics stage, and the most recent call to

1799

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexed-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07845

1800

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the

1801

VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndexed-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndexed-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexed-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexed-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08636

1802

If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been

1803

created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-08640

1804

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawIndexed-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawIndexed-primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndexed-primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndexed-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndexed-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawIndexed-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is

1805

enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexed-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexed-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawIndexed-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndexed-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexed-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndexed-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexed-imageView-06176

1806

If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndexed-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndexed-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndexed-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a

1807

VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndexed-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndexed-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndexed-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndexed-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndexed-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndexed-None-09368

1808

If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndexed-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndexed-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndexed-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndexed-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawIndexed-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to

1809

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawIndexed-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawIndexed-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound

1810

graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawIndexed-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

1811

• VUID-vkCmdDrawIndexed-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawIndexed-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexed-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexed-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndexed-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexed-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of

1812

rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexed-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawIndexed-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndexed-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawIndexed-primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawIndexed-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command

1813

buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

1814

• VUID-vkCmdDrawIndexed-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndexed-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndexed-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then

1815

vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

1816

• VUID-vkCmdDrawIndexed-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

1817

• VUID-vkCmdDrawIndexed-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must

1818

have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current

1819

command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

1820

vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-pipelineFragmentShadingRate-09238

1821

If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawIndexed-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

1822

• VUID-vkCmdDrawIndexed-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawIndexed-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexed-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawIndexed-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawIndexed-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawIndexed-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawIndexed-firstAttachment-07477
If the bound graphics pipeline state was created with the

1823

VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndexed-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndexed-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawIndexed-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawIndexed-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawIndexed-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

1824

• VUID-vkCmdDrawIndexed-primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawIndexed-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawIndexed-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexed-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndexed-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndexed-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT

1825

::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndexed-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawIndexed-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexed-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexed-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexed-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

1826

• VUID-vkCmdDrawIndexed-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawIndexed-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndexed-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndexed-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawIndexed-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-viewportCount-09421

1827

If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexed-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawIndexed-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawIndexed-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawIndexed-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawIndexed-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawIndexed-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

1828

• VUID-vkCmdDrawIndexed-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawIndexed-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawIndexed-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawIndexed-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawIndexed-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawIndexed-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawIndexed-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawIndexed-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndexed-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or

1829

VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawIndexed-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndexed-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndexed-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawIndexed-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawIndexed-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawIndexed-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawIndexed-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawIndexed-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawIndexed-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

1830

• VUID-vkCmdDrawIndexed-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawIndexed-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawIndexed-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawIndexed-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndexed-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawIndexed-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawIndexed-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDrawIndexed-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

1831

• VUID-vkCmdDrawIndexed-commandBuffer-04617
If any of the shader stages of the VkPipeline bound to the pipeline bind point used by this
command uses the RayQueryKHR capability, then commandBuffer must not be a protected
command buffer

• VUID-vkCmdDrawIndexed-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndexed-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndexed-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndexed-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndexed-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDrawIndexed-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDrawIndexed-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDrawIndexed-Input-07939

1832

If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDrawIndexed-Input-08734
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDrawIndexed-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDrawIndexed-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDrawIndexed-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdDrawIndexed-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-stage-06481
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or

1833

VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndexed-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDrawIndexed-None-07312
If maintenance6 is not enabled, a valid index buffer must be bound

• VUID-vkCmdDrawIndexed-robustBufferAccess2-07825
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

• VUID-vkCmdDrawIndexed-pNext-09461
If the bound graphics pipeline state was created with
VkPipelineVertexInputDivisorStateCreateInfoKHR in the pNext chain of
VkGraphicsPipelineCreateInfo::pVertexInputState, any member of
VkPipelineVertexInputDivisorStateCreateInfoKHR::pVertexBindingDivisors has a value
other than 1 in divisor, and VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR
::supportsNonZeroFirstInstance is VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDrawIndexed-None-09462
If shader objects are used for drawing or the bound graphics pipeline state was created
with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, any member of the
pVertexBindingDescriptions parameter to the vkCmdSetVertexInputEXT call that sets this
dynamic state has a value other than 1 in divisor, and
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::supportsNonZeroFirstInstance is
VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDrawIndexed-robustBufferAccess2-08798
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer or vkCmdBindIndexBuffer2KHR. If
vkCmdBindIndexBuffer2KHR is used to bind the index buffer, the size of the bound index
buffer is vkCmdBindIndexBuffer2KHR::size

Valid Usage (Implicit)

• VUID-vkCmdDrawIndexed-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndexed-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndexed-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

1834

• VUID-vkCmdDrawIndexed-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndexed-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

To record an ordered sequence of draws which have no state changes between them, call:

// Provided by VK_EXT_multi_draw
void vkCmdDrawMultiEXT(
 VkCommandBuffer commandBuffer,
 uint32_t drawCount,
 const VkMultiDrawInfoEXT* pVertexInfo,
 uint32_t instanceCount,
 uint32_t firstInstance,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• drawCount is the number of draws to execute, and can be zero.

• pVertexInfo is a pointer to an array of VkMultiDrawInfoEXT with vertex information to be
drawn.

• instanceCount is the number of instances per draw.

• firstInstance is the instance ID of the first instance in each draw.

• stride is the byte stride between consecutive elements of pVertexInfo.

The number of draws recorded is drawCount, with each draw reading, sequentially, a firstVertex
and a vertexCount from pVertexInfo. For each recorded draw, primitives are assembled as for
vkCmdDraw, and drawn instanceCount times with instanceIndex starting with firstInstance and
sequentially for each instance.

1835

Valid Usage

• VUID-vkCmdDrawMultiEXT-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMultiEXT-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMultiEXT-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMultiEXT-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMultiEXT-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawMultiEXT-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawMultiEXT-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawMultiEXT-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawMultiEXT-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of

1836

VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawMultiEXT-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMultiEXT-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMultiEXT-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawMultiEXT-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawMultiEXT-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawMultiEXT-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawMultiEXT-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMultiEXT-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMultiEXT-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMultiEXT-OpTypeImage-07030

1837

Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMultiEXT-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMultiEXT-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawMultiEXT-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMultiEXT-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMultiEXT-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMultiEXT-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMultiEXT-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawMultiEXT-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

1838

• VUID-vkCmdDrawMultiEXT-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawMultiEXT-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawMultiEXT-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawMultiEXT-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawMultiEXT-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawMultiEXT-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawMultiEXT-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawMultiEXT-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawMultiEXT-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,

1839

and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMultiEXT-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawMultiEXT-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMultiEXT-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawMultiEXT-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawMultiEXT-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawMultiEXT-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawMultiEXT-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawMultiEXT-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawMultiEXT-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawMultiEXT-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using

1840

OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawMultiEXT-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawMultiEXT-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMultiEXT-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMultiEXT-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMultiEXT-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMultiEXT-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMultiEXT-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMultiEXT-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMultiEXT-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMultiEXT-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawMultiEXT-OpImageBlockMatchSSDQCOM-06974

1841

If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMultiEXT-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMultiEXT-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawMultiEXT-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMultiEXT-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMultiEXT-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMultiEXT-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawMultiEXT-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawMultiEXT-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawMultiEXT-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

1842

• VUID-vkCmdDrawMultiEXT-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMultiEXT-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMultiEXT-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawMultiEXT-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawMultiEXT-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawMultiEXT-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawMultiEXT-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawMultiEXT-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawMultiEXT-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawMultiEXT-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

1843

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMultiEXT-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMultiEXT-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMultiEXT-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawMultiEXT-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawMultiEXT-None-06886

1844

If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawMultiEXT-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawMultiEXT-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08620
If a shader object is bound to any graphics stage, and the most recent call to

1845

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMultiEXT-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

1846

• VUID-vkCmdDrawMultiEXT-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawMultiEXT-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMultiEXT-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

1847

• VUID-vkCmdDrawMultiEXT-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMultiEXT-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08631

1848

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

1849

• VUID-vkCmdDrawMultiEXT-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawMultiEXT-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawMultiEXT-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawMultiEXT-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

1850

• VUID-vkCmdDrawMultiEXT-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a

1851

VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiEXT-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiEXT-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-logicOp-04878

1852

If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawMultiEXT-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawMultiEXT-primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMultiEXT-primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMultiEXT-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawMultiEXT-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawMultiEXT-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

1853

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawMultiEXT-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawMultiEXT-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawMultiEXT-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawMultiEXT-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawMultiEXT-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawMultiEXT-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawMultiEXT-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawMultiEXT-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView

1854

member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawMultiEXT-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawMultiEXT-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the

1855

VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMultiEXT-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMultiEXT-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMultiEXT-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMultiEXT-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

1856

• VUID-vkCmdDrawMultiEXT-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMultiEXT-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMultiEXT-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMultiEXT-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawMultiEXT-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawMultiEXT-None-07751
If the bound graphics pipeline state was created with the

1857

VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawMultiEXT-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound

1858

graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawMultiEXT-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawMultiEXT-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawMultiEXT-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a

1859

sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawMultiEXT-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMultiEXT-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMultiEXT-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawMultiEXT-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMultiEXT-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMultiEXT-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a

1860

VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawMultiEXT-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawMultiEXT-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiEXT-primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawMultiEXT-primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawMultiEXT-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer

1861

prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

1862

• VUID-vkCmdDrawMultiEXT-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMultiEXT-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMultiEXT-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set

1863

rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT

1864

must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of

1865

vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer

1866

prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

1867

• VUID-vkCmdDrawMultiEXT-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then

1868

vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08681

1869

If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawMultiEXT-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawMultiEXT-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create

1870

the bound graphics pipeline

• VUID-vkCmdDrawMultiEXT-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiEXT-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawMultiEXT-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawMultiEXT-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawMultiEXT-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawMultiEXT-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

1871

• VUID-vkCmdDrawMultiEXT-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMultiEXT-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawMultiEXT-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawMultiEXT-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawMultiEXT-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawMultiEXT-primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawMultiEXT-sampleLocationsPerPixel-07482

1872

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawMultiEXT-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiEXT-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMultiEXT-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMultiEXT-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMultiEXT-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the

1873

VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawMultiEXT-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiEXT-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiEXT-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiEXT-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawMultiEXT-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawMultiEXT-coverageToColorEnable-07490

1874

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMultiEXT-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMultiEXT-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawMultiEXT-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiEXT-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass

1875

has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawMultiEXT-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawMultiEXT-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawMultiEXT-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawMultiEXT-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawMultiEXT-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawMultiEXT-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

1876

• VUID-vkCmdDrawMultiEXT-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawMultiEXT-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawMultiEXT-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawMultiEXT-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMultiEXT-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawMultiEXT-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawMultiEXT-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMultiEXT-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawMultiEXT-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the

1877

VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMultiEXT-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMultiEXT-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawMultiEXT-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawMultiEXT-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawMultiEXT-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawMultiEXT-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawMultiEXT-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawMultiEXT-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

1878

• VUID-vkCmdDrawMultiEXT-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawMultiEXT-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawMultiEXT-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawMultiEXT-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawMultiEXT-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawMultiEXT-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDrawMultiEXT-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDrawMultiEXT-commandBuffer-04617
If any of the shader stages of the VkPipeline bound to the pipeline bind point used by this
command uses the RayQueryKHR capability, then commandBuffer must not be a protected
command buffer

• VUID-vkCmdDrawMultiEXT-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex

1879

shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawMultiEXT-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawMultiEXT-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawMultiEXT-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawMultiEXT-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDrawMultiEXT-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDrawMultiEXT-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDrawMultiEXT-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDrawMultiEXT-Input-08734

1880

If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDrawMultiEXT-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDrawMultiEXT-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDrawMultiEXT-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdDrawMultiEXT-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiEXT-stage-06481
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMultiEXT-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDrawMultiEXT-pNext-09461

1881

If the bound graphics pipeline state was created with
VkPipelineVertexInputDivisorStateCreateInfoKHR in the pNext chain of
VkGraphicsPipelineCreateInfo::pVertexInputState, any member of
VkPipelineVertexInputDivisorStateCreateInfoKHR::pVertexBindingDivisors has a value
other than 1 in divisor, and VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR
::supportsNonZeroFirstInstance is VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDrawMultiEXT-None-09462
If shader objects are used for drawing or the bound graphics pipeline state was created
with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, any member of the
pVertexBindingDescriptions parameter to the vkCmdSetVertexInputEXT call that sets this
dynamic state has a value other than 1 in divisor, and
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::supportsNonZeroFirstInstance is
VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDrawMultiEXT-None-04933
The multiDraw feature must be enabled

• VUID-vkCmdDrawMultiEXT-drawCount-04934
drawCount must be less than VkPhysicalDeviceMultiDrawPropertiesEXT::maxMultiDrawCount

• VUID-vkCmdDrawMultiEXT-drawCount-04935
If drawCount is greater than zero, pVertexInfo must be a valid pointer to memory
containing one or more valid instances of VkMultiDrawInfoEXT structures

• VUID-vkCmdDrawMultiEXT-stride-04936
stride must be a multiple of 4

Valid Usage (Implicit)

• VUID-vkCmdDrawMultiEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawMultiEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawMultiEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawMultiEXT-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawMultiEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

1882

synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

To record an ordered sequence of indexed draws which have no state changes between them, call:

// Provided by VK_EXT_multi_draw
void vkCmdDrawMultiIndexedEXT(
 VkCommandBuffer commandBuffer,
 uint32_t drawCount,
 const VkMultiDrawIndexedInfoEXT* pIndexInfo,
 uint32_t instanceCount,
 uint32_t firstInstance,
 uint32_t stride,
 const int32_t* pVertexOffset);

• commandBuffer is the command buffer into which the command is recorded.

• drawCount is the number of draws to execute, and can be zero.

• pIndexInfo is a pointer to an array of VkMultiDrawIndexedInfoEXT with index information to be
drawn.

• instanceCount is the number of instances per draw.

• firstInstance is the instance ID of the first instance in each draw.

• stride is the byte stride between consecutive elements of pIndexInfo.

• pVertexOffset is NULL or a pointer to the value added to the vertex index before indexing into the
vertex buffer. When specified, VkMultiDrawIndexedInfoEXT::offset is ignored.

The number of draws recorded is drawCount, with each draw reading, sequentially, a firstIndex and
an indexCount from pIndexInfo. For each recorded draw, primitives are assembled as for
vkCmdDrawIndexed, and drawn instanceCount times with instanceIndex starting with firstInstance
and sequentially for each instance. If pVertexOffset is NULL, a vertexOffset is also read from
pIndexInfo, otherwise the value from dereferencing pVertexOffset is used.

Valid Usage

• VUID-vkCmdDrawMultiIndexedEXT-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the

1883

image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMultiIndexedEXT-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMultiIndexedEXT-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMultiIndexedEXT-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawMultiIndexedEXT-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

1884

• VUID-vkCmdDrawMultiIndexedEXT-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMultiIndexedEXT-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawMultiIndexedEXT-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawMultiIndexedEXT-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMultiIndexedEXT-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMultiIndexedEXT-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMultiIndexedEXT-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for

1885

set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMultiIndexedEXT-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawMultiIndexedEXT-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMultiIndexedEXT-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawMultiIndexedEXT-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawMultiIndexedEXT-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a

1886

VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawMultiIndexedEXT-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawMultiIndexedEXT-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawMultiIndexedEXT-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawMultiIndexedEXT-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawMultiIndexedEXT-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawMultiIndexedEXT-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawMultiIndexedEXT-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMultiIndexedEXT-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage

1887

corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawMultiIndexedEXT-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMultiIndexedEXT-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawMultiIndexedEXT-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawMultiIndexedEXT-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawMultiIndexedEXT-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawMultiIndexedEXT-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawMultiIndexedEXT-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawMultiIndexedEXT-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawMultiIndexedEXT-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawMultiIndexedEXT-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as

1888

the buffer view’s format

• VUID-vkCmdDrawMultiIndexedEXT-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMultiIndexedEXT-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMultiIndexedEXT-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMultiIndexedEXT-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMultiIndexedEXT-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMultiIndexedEXT-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMultiIndexedEXT-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this

1889

command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawMultiIndexedEXT-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMultiIndexedEXT-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawMultiIndexedEXT-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawMultiIndexedEXT-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawMultiIndexedEXT-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawMultiIndexedEXT-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMultiIndexedEXT-subpass-02685

1890

The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMultiIndexedEXT-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawMultiIndexedEXT-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawMultiIndexedEXT-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawMultiIndexedEXT-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawMultiIndexedEXT-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawMultiIndexedEXT-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawMultiIndexedEXT-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawMultiIndexedEXT-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

1891

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMultiIndexedEXT-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMultiIndexedEXT-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMultiIndexedEXT-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawMultiIndexedEXT-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawMultiIndexedEXT-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawMultiIndexedEXT-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is

1892

enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawMultiIndexedEXT-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

1893

• VUID-vkCmdDrawMultiIndexedEXT-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

1894

• VUID-vkCmdDrawMultiIndexedEXT-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMultiIndexedEXT-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08627

1895

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

1896

• VUID-vkCmdDrawMultiIndexedEXT-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawMultiIndexedEXT-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount

1897

must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawMultiIndexedEXT-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal

1898

to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-None-07878

1899

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawMultiIndexedEXT-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent

1900

call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawMultiIndexedEXT-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMultiIndexedEXT-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMultiIndexedEXT-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawMultiIndexedEXT-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawMultiIndexedEXT-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawMultiIndexedEXT-None-08644

1901

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawMultiIndexedEXT-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawMultiIndexedEXT-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawMultiIndexedEXT-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawMultiIndexedEXT-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawMultiIndexedEXT-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawMultiIndexedEXT-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawMultiIndexedEXT-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

1902

• VUID-vkCmdDrawMultiIndexedEXT-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawMultiIndexedEXT-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMultiIndexedEXT-None-09363

1903

If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMultiIndexedEXT-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMultiIndexedEXT-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was

1904

created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMultiIndexedEXT-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawMultiIndexedEXT-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawMultiIndexedEXT-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in

1905

VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawMultiIndexedEXT-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08915

1906

If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawMultiIndexedEXT-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawMultiIndexedEXT-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

1907

• VUID-vkCmdDrawMultiIndexedEXT-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMultiIndexedEXT-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMultiIndexedEXT-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawMultiIndexedEXT-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMultiIndexedEXT-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMultiIndexedEXT-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

1908

• VUID-vkCmdDrawMultiIndexedEXT-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawMultiIndexedEXT-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMultiIndexedEXT-primitivesGeneratedQueryWithRasterizerDiscard-
06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawMultiIndexedEXT-primitivesGeneratedQueryWithNonZeroStreams-
06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawMultiIndexedEXT-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-09237

1909

If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the

1910

VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMultiIndexedEXT-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMultiIndexedEXT-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer

1911

prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

1912

• VUID-vkCmdDrawMultiIndexedEXT-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have

1913

been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

1914

• VUID-vkCmdDrawMultiIndexedEXT-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07640

1915

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command

1916

buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics

1917

stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawMultiIndexedEXT-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawMultiIndexedEXT-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

1918

• VUID-vkCmdDrawMultiIndexedEXT-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiIndexedEXT-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawMultiIndexedEXT-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawMultiIndexedEXT-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawMultiIndexedEXT-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawMultiIndexedEXT-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMultiIndexedEXT-rasterizerDiscardEnable-09418

1919

If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMultiIndexedEXT-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawMultiIndexedEXT-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawMultiIndexedEXT-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawMultiIndexedEXT-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawMultiIndexedEXT-primitivesGeneratedQueryWithNonZeroStreams-
07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsPerPixel-07482

1920

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the

1921

VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiIndexedEXT-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMultiIndexedEXT-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawMultiIndexedEXT-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawMultiIndexedEXT-coverageToColorEnable-07490

1922

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMultiIndexedEXT-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMultiIndexedEXT-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMultiIndexedEXT-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass

1923

has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawMultiIndexedEXT-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawMultiIndexedEXT-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawMultiIndexedEXT-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawMultiIndexedEXT-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawMultiIndexedEXT-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawMultiIndexedEXT-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

1924

• VUID-vkCmdDrawMultiIndexedEXT-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawMultiIndexedEXT-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawMultiIndexedEXT-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the

1925

VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMultiIndexedEXT-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMultiIndexedEXT-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawMultiIndexedEXT-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawMultiIndexedEXT-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawMultiIndexedEXT-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawMultiIndexedEXT-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawMultiIndexedEXT-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawMultiIndexedEXT-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

1926

• VUID-vkCmdDrawMultiIndexedEXT-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawMultiIndexedEXT-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawMultiIndexedEXT-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawMultiIndexedEXT-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawMultiIndexedEXT-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawMultiIndexedEXT-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDrawMultiIndexedEXT-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDrawMultiIndexedEXT-commandBuffer-04617
If any of the shader stages of the VkPipeline bound to the pipeline bind point used by this
command uses the RayQueryKHR capability, then commandBuffer must not be a protected
command buffer

• VUID-vkCmdDrawMultiIndexedEXT-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex

1927

shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawMultiIndexedEXT-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawMultiIndexedEXT-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawMultiIndexedEXT-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawMultiIndexedEXT-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDrawMultiIndexedEXT-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDrawMultiIndexedEXT-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDrawMultiIndexedEXT-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDrawMultiIndexedEXT-Input-08734

1928

If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDrawMultiIndexedEXT-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDrawMultiIndexedEXT-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDrawMultiIndexedEXT-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdDrawMultiIndexedEXT-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMultiIndexedEXT-stage-06481
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMultiIndexedEXT-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDrawMultiIndexedEXT-None-07312

1929

If maintenance6 is not enabled, a valid index buffer must be bound

• VUID-vkCmdDrawMultiIndexedEXT-robustBufferAccess2-07825
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

• VUID-vkCmdDrawMultiIndexedEXT-pNext-09461
If the bound graphics pipeline state was created with
VkPipelineVertexInputDivisorStateCreateInfoKHR in the pNext chain of
VkGraphicsPipelineCreateInfo::pVertexInputState, any member of
VkPipelineVertexInputDivisorStateCreateInfoKHR::pVertexBindingDivisors has a value
other than 1 in divisor, and VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR
::supportsNonZeroFirstInstance is VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDrawMultiIndexedEXT-None-09462
If shader objects are used for drawing or the bound graphics pipeline state was created
with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, any member of the
pVertexBindingDescriptions parameter to the vkCmdSetVertexInputEXT call that sets this
dynamic state has a value other than 1 in divisor, and
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::supportsNonZeroFirstInstance is
VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDrawMultiIndexedEXT-robustBufferAccess2-08798
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer or vkCmdBindIndexBuffer2KHR. If
vkCmdBindIndexBuffer2KHR is used to bind the index buffer, the size of the bound index
buffer is vkCmdBindIndexBuffer2KHR::size

• VUID-vkCmdDrawMultiIndexedEXT-None-04937
The multiDraw feature must be enabled

• VUID-vkCmdDrawMultiIndexedEXT-drawCount-04939
drawCount must be less than VkPhysicalDeviceMultiDrawPropertiesEXT::maxMultiDrawCount

• VUID-vkCmdDrawMultiIndexedEXT-drawCount-04940
If drawCount is greater than zero, pIndexInfo must be a valid pointer to memory containing
one or more valid instances of VkMultiDrawIndexedInfoEXT structures

• VUID-vkCmdDrawMultiIndexedEXT-stride-04941
stride must be a multiple of 4

Valid Usage (Implicit)

• VUID-vkCmdDrawMultiIndexedEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawMultiIndexedEXT-pVertexOffset-parameter

1930

If pVertexOffset is not NULL, pVertexOffset must be a valid pointer to a valid int32_t value

• VUID-vkCmdDrawMultiIndexedEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawMultiIndexedEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawMultiIndexedEXT-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawMultiIndexedEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

The VkMultiDrawInfoEXT structure is defined as:

// Provided by VK_EXT_multi_draw
typedef struct VkMultiDrawInfoEXT {
 uint32_t firstVertex;
 uint32_t vertexCount;
} VkMultiDrawInfoEXT;

• firstVertex is the first vertex to draw.

• vertexCount is the number of vertices to draw.

The members of VkMultiDrawInfoEXT have the same meaning as the firstVertex and vertexCount
parameters in vkCmdDraw.

The VkMultiDrawIndexedInfoEXT structure is defined as:

// Provided by VK_EXT_multi_draw

1931

typedef struct VkMultiDrawIndexedInfoEXT {
 uint32_t firstIndex;
 uint32_t indexCount;
 int32_t vertexOffset;
} VkMultiDrawIndexedInfoEXT;

• firstIndex is the first index to draw.

• indexCount is the number of vertices to draw.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer for
indexed multidraws.

The firstIndex, indexCount, and vertexOffset members of VkMultiDrawIndexedInfoEXT have the same
meaning as the firstIndex, indexCount, and vertexOffset parameters, respectively, of
vkCmdDrawIndexed.

To record a non-indexed indirect drawing command, call:

// Provided by VK_VERSION_1_0
void vkCmdDrawIndirect(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 uint32_t drawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndirect behaves similarly to vkCmdDraw except that the parameters are read by the
device from a buffer during execution. drawCount draws are executed by the command, with
parameters taken from buffer starting at offset and increasing by stride bytes for each successive
draw. The parameters of each draw are encoded in an array of VkDrawIndirectCommand
structures. If drawCount is less than or equal to one, stride is ignored.

Valid Usage

• VUID-vkCmdDrawIndirect-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

1932

• VUID-vkCmdDrawIndirect-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirect-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndirect-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirect-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndirect-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndirect-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndirect-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawIndirect-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawIndirect-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndirect-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of

1933

either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndirect-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawIndirect-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawIndirect-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawIndirect-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawIndirect-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirect-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirect-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirect-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirect-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in

1934

Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirect-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirect-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirect-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirect-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirect-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirect-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawIndirect-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirect-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawIndirect-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must

1935

be resident

• VUID-vkCmdDrawIndirect-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawIndirect-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawIndirect-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndirect-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndirect-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndirect-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawIndirect-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndirect-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the

1936

descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirect-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndirect-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirect-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndirect-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndirect-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndirect-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndirect-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndirect-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawIndirect-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawIndirect-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

1937

• VUID-vkCmdDrawIndirect-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndirect-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndirect-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndirect-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndirect-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndirect-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndirect-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndirect-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndirect-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawIndirect-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndirect-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

1938

• VUID-vkCmdDrawIndirect-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawIndirect-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndirect-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndirect-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndirect-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawIndirect-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawIndirect-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndirect-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndirect-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirect-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to

1939

VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirect-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndirect-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndirect-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndirect-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawIndirect-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawIndirect-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawIndirect-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndirect-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with

1940

VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirect-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirect-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirect-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawIndirect-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndirect-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndirect-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndirect-None-07831

1941

If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants

1942

must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirect-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

1943

rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndirect-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndirect-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in

1944

the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirect-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07846
If the bound graphics pipeline state was created with the

1945

VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndirect-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndirect-viewportCount-03419

1946

If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndirect-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndirect-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-viewportCount-04140

1947

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then

1948

vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawIndirect-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

1949

vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawIndirect-primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndirect-primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndirect-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndirect-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawIndirect-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndirect-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

1950

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndirect-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawIndirect-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndirect-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirect-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndirect-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirect-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndirect-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndirect-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

1951

• VUID-vkCmdDrawIndirect-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndirect-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to

1952

VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndirect-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndirect-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndirect-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndirect-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndirect-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndirect-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndirect-pFragmentSize-09370

1953

If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndirect-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndirect-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawIndirect-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawIndirect-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawIndirect-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command

1954

buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo

1955

::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawIndirect-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawIndirect-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawIndirect-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples

1956

member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirect-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirect-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndirect-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirect-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirect-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawIndirect-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

1957

• VUID-vkCmdDrawIndirect-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawIndirect-primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawIndirect-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command

1958

buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndirect-None-08654
If a shader object is bound to any graphics stage, and the most recent call to

1959

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndirect-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

1960

• VUID-vkCmdDrawIndirect-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is

1961

bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08665

1962

If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the

1963

current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in

1964

the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

1965

• VUID-vkCmdDrawIndirect-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then

1966

vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawIndirect-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawIndirect-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawIndirect-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirect-rasterizationSamples-07474

1967

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawIndirect-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawIndirect-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawIndirect-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawIndirect-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndirect-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

1968

• VUID-vkCmdDrawIndirect-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawIndirect-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawIndirect-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawIndirect-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawIndirect-primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawIndirect-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawIndirect-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the

1969

VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirect-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndirect-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndirect-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndirect-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawIndirect-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state

1970

enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirect-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirect-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirect-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawIndirect-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawIndirect-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndirect-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is

1971

bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndirect-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawIndirect-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirect-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawIndirect-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature

1972

must be enabled

• VUID-vkCmdDrawIndirect-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawIndirect-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawIndirect-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawIndirect-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawIndirect-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawIndirect-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

1973

• VUID-vkCmdDrawIndirect-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawIndirect-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawIndirect-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawIndirect-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawIndirect-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawIndirect-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawIndirect-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndirect-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawIndirect-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndirect-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndirect-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the

1974

VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawIndirect-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawIndirect-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawIndirect-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawIndirect-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawIndirect-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawIndirect-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawIndirect-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawIndirect-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color

1975

attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawIndirect-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndirect-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawIndirect-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawIndirect-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndirect-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndirect-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndirect-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndirect-None-04912
If the bound graphics pipeline was created with both the

1976

VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDrawIndirect-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDrawIndirect-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDrawIndirect-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDrawIndirect-Input-08734
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDrawIndirect-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDrawIndirect-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDrawIndirect-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

1977

• VUID-vkCmdDrawIndirect-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-stage-06481
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndirect-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDrawIndirect-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawIndirect-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndirect-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawIndirect-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawIndirect-drawCount-02718
If the multiDrawIndirect feature is not enabled, drawCount must be 0 or 1

• VUID-vkCmdDrawIndirect-drawCount-02719
drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• VUID-vkCmdDrawIndirect-drawCount-00476
If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or
equal to sizeof(VkDrawIndirectCommand)

• VUID-vkCmdDrawIndirect-drawCount-00487
If drawCount is equal to 1, (offset + sizeof(VkDrawIndirectCommand)) must be less than or
equal to the size of buffer

• VUID-vkCmdDrawIndirect-drawCount-00488
If drawCount is greater than 1, (stride × (drawCount - 1) + offset + sizeof
(VkDrawIndirectCommand)) must be less than or equal to the size of buffer

1978

Valid Usage (Implicit)

• VUID-vkCmdDrawIndirect-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndirect-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndirect-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndirect-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndirect-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndirect-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawIndirect-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

The VkDrawIndirectCommand structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDrawIndirectCommand {
 uint32_t vertexCount;
 uint32_t instanceCount;
 uint32_t firstVertex;
 uint32_t firstInstance;

1979

} VkDrawIndirectCommand;

• vertexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstVertex is the index of the first vertex to draw.

• firstInstance is the instance ID of the first instance to draw.

The members of VkDrawIndirectCommand have the same meaning as the similarly named parameters
of vkCmdDraw.

Valid Usage

• VUID-VkDrawIndirectCommand-pNext-09461
If the bound graphics pipeline state was created with
VkPipelineVertexInputDivisorStateCreateInfoKHR in the pNext chain of
VkGraphicsPipelineCreateInfo::pVertexInputState, any member of
VkPipelineVertexInputDivisorStateCreateInfoKHR::pVertexBindingDivisors has a value
other than 1 in divisor, and VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR
::supportsNonZeroFirstInstance is VK_FALSE, then firstInstance must be 0

• VUID-VkDrawIndirectCommand-None-09462
If shader objects are used for drawing or the bound graphics pipeline state was created
with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, any member of the
pVertexBindingDescriptions parameter to the vkCmdSetVertexInputEXT call that sets this
dynamic state has a value other than 1 in divisor, and
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::supportsNonZeroFirstInstance is
VK_FALSE, then firstInstance must be 0

• VUID-VkDrawIndirectCommand-None-00500
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-VkDrawIndirectCommand-firstInstance-00501
If the drawIndirectFirstInstance feature is not enabled, firstInstance must be 0

To record a non-indexed draw call with a draw call count sourced from a buffer, call:

// Provided by VK_VERSION_1_2
void vkCmdDrawIndirectCount(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

1980

or the equivalent command

// Provided by VK_KHR_draw_indirect_count
void vkCmdDrawIndirectCountKHR(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

or the equivalent command

// Provided by VK_AMD_draw_indirect_count
void vkCmdDrawIndirectCountAMD(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• countBuffer is the buffer containing the draw count.

• countBufferOffset is the byte offset into countBuffer where the draw count begins.

• maxDrawCount specifies the maximum number of draws that will be executed. The actual number
of executed draw calls is the minimum of the count specified in countBuffer and maxDrawCount.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndirectCount behaves similarly to vkCmdDrawIndirect except that the draw count is read
by the device from a buffer during execution. The command will read an unsigned 32-bit integer
from countBuffer located at countBufferOffset and use this as the draw count.

Valid Usage

• VUID-vkCmdDrawIndirectCount-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

1981

• VUID-vkCmdDrawIndirectCount-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirectCount-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndirectCount-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirectCount-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndirectCount-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndirectCount-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndirectCount-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawIndirectCount-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawIndirectCount-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndirectCount-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of

1982

either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndirectCount-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawIndirectCount-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawIndirectCount-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawIndirectCount-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectCount-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in

1983

Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirectCount-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirectCount-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirectCount-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirectCount-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirectCount-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirectCount-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawIndirectCount-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirectCount-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawIndirectCount-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must

1984

be resident

• VUID-vkCmdDrawIndirectCount-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawIndirectCount-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawIndirectCount-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndirectCount-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndirectCount-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndirectCount-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawIndirectCount-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndirectCount-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the

1985

descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirectCount-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndirectCount-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirectCount-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndirectCount-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndirectCount-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndirectCount-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndirectCount-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndirectCount-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawIndirectCount-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawIndirectCount-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

1986

• VUID-vkCmdDrawIndirectCount-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndirectCount-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndirectCount-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndirectCount-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndirectCount-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndirectCount-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndirectCount-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndirectCount-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndirectCount-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawIndirectCount-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndirectCount-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

1987

• VUID-vkCmdDrawIndirectCount-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawIndirectCount-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndirectCount-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndirectCount-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndirectCount-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawIndirectCount-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawIndirectCount-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndirectCount-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndirectCount-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirectCount-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to

1988

VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirectCount-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndirectCount-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndirectCount-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawIndirectCount-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawIndirectCount-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawIndirectCount-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectCount-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with

1989

VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectCount-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectCount-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectCount-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawIndirectCount-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndirectCount-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndirectCount-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndirectCount-None-07831

1990

If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants

1991

must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirectCount-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

1992

rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndirectCount-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndirectCount-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in

1993

the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirectCount-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07846
If the bound graphics pipeline state was created with the

1994

VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndirectCount-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndirectCount-viewportCount-03419

1995

If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndirectCount-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndirectCount-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-viewportCount-04140

1996

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then

1997

vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawIndirectCount-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

1998

vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawIndirectCount-primitiveFragmentShadingRateWithMultipleViewports-
04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndirectCount-primitiveFragmentShadingRateWithMultipleViewports-
08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndirectCount-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndirectCount-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawIndirectCount-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndirectCount-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

1999

rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndirectCount-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawIndirectCount-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndirectCount-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirectCount-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndirectCount-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirectCount-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndirectCount-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndirectCount-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently

2000

bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndirectCount-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndirectCount-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount

2001

equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndirectCount-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndirectCount-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndirectCount-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndirectCount-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then

2002

vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndirectCount-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndirectCount-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndirectCount-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawIndirectCount-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawIndirectCount-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawIndirectCount-None-07880

2003

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo

2004

::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawIndirectCount-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawIndirectCount-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawIndirectCount-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently

2005

bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirectCount-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirectCount-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndirectCount-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirectCount-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirectCount-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawIndirectCount-renderPass-06198

2006

If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndirectCount-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawIndirectCount-primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawIndirectCount-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

2007

• VUID-vkCmdDrawIndirectCount-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

2008

• VUID-vkCmdDrawIndirectCount-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndirectCount-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then

2009

vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

2010

• VUID-vkCmdDrawIndirectCount-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command

2011

buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2012

vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08674

2013

If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then

2014

vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07648

2015

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawIndirectCount-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawIndirectCount-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawIndirectCount-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to

2016

vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectCount-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawIndirectCount-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawIndirectCount-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawIndirectCount-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawIndirectCount-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndirectCount-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and

2017

attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndirectCount-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawIndirectCount-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawIndirectCount-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawIndirectCount-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawIndirectCount-primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawIndirectCount-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been

2018

created with

• VUID-vkCmdDrawIndirectCount-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectCount-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndirectCount-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndirectCount-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndirectCount-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawIndirectCount-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the

2019

VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectCount-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectCount-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectCount-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawIndirectCount-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawIndirectCount-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,

2020

VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndirectCount-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndirectCount-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawIndirectCount-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectCount-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawIndirectCount-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or

2021

VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawIndirectCount-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawIndirectCount-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawIndirectCount-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawIndirectCount-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawIndirectCount-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawIndirectCount-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07850

2022

If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawIndirectCount-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawIndirectCount-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawIndirectCount-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawIndirectCount-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawIndirectCount-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawIndirectCount-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndirectCount-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawIndirectCount-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndirectCount-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT

2023

flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndirectCount-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawIndirectCount-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawIndirectCount-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawIndirectCount-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawIndirectCount-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawIndirectCount-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawIndirectCount-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawIndirectCount-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

2024

• VUID-vkCmdDrawIndirectCount-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawIndirectCount-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndirectCount-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawIndirectCount-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawIndirectCount-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndirectCount-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndirectCount-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndirectCount-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline

2025

VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndirectCount-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDrawIndirectCount-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDrawIndirectCount-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDrawIndirectCount-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDrawIndirectCount-Input-08734
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDrawIndirectCount-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDrawIndirectCount-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDrawIndirectCount-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic

2026

state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdDrawIndirectCount-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-stage-06481
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndirectCount-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDrawIndirectCount-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawIndirectCount-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndirectCount-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawIndirectCount-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawIndirectCount-countBuffer-02714
If countBuffer is non-sparse then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdDrawIndirectCount-countBuffer-02715
countBuffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndirectCount-countBufferOffset-02716
countBufferOffset must be a multiple of 4

• VUID-vkCmdDrawIndirectCount-countBuffer-02717
The count stored in countBuffer must be less than or equal to VkPhysicalDeviceLimits
::maxDrawIndirectCount

2027

• VUID-vkCmdDrawIndirectCount-countBufferOffset-04129
(countBufferOffset + sizeof(uint32_t)) must be less than or equal to the size of countBuffer

• VUID-vkCmdDrawIndirectCount-None-04445
If drawIndirectCount is not enabled this function must not be used

• VUID-vkCmdDrawIndirectCount-stride-03110
stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkDrawIndirectCommand)

• VUID-vkCmdDrawIndirectCount-maxDrawCount-03111
If maxDrawCount is greater than or equal to 1, (stride × (maxDrawCount - 1) + offset +
sizeof(VkDrawIndirectCommand)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawIndirectCount-countBuffer-03121
If the count stored in countBuffer is equal to 1, (offset + sizeof(VkDrawIndirectCommand))
must be less than or equal to the size of buffer

• VUID-vkCmdDrawIndirectCount-countBuffer-03122
If the count stored in countBuffer is greater than 1, (stride × (drawCount - 1) + offset +
sizeof(VkDrawIndirectCommand)) must be less than or equal to the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndirectCount-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndirectCount-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndirectCount-countBuffer-parameter
countBuffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndirectCount-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndirectCount-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndirectCount-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndirectCount-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawIndirectCount-commonparent
Each of buffer, commandBuffer, and countBuffer must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

2028

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

To record an indexed indirect drawing command, call:

// Provided by VK_VERSION_1_0
void vkCmdDrawIndexedIndirect(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 uint32_t drawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndexedIndirect behaves similarly to vkCmdDrawIndexed except that the parameters are
read by the device from a buffer during execution. drawCount draws are executed by the command,
with parameters taken from buffer starting at offset and increasing by stride bytes for each
successive draw. The parameters of each draw are encoded in an array of
VkDrawIndexedIndirectCommand structures. If drawCount is less than or equal to one, stride is
ignored.

Valid Usage

• VUID-vkCmdDrawIndexedIndirect-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexedIndirect-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and

2029

reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexedIndirect-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexedIndirect-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexedIndirect-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndexedIndirect-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndexedIndirect-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndexedIndirect-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawIndexedIndirect-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndexedIndirect-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering

2030

together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndexedIndirect-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawIndexedIndirect-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawIndexedIndirect-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawIndexedIndirect-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirect-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirect-None-08601

2031

For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirect-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirect-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawIndexedIndirect-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawIndexedIndirect-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawIndexedIndirect-None-08606

2032

If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawIndexedIndirect-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawIndexedIndirect-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndexedIndirect-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndexedIndirect-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndexedIndirect-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawIndexedIndirect-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndexedIndirect-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexedIndirect-storageBuffers-06936

2033

If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndexedIndirect-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndexedIndirect-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndexedIndirect-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndexedIndirect-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndexedIndirect-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndexedIndirect-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawIndexedIndirect-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawIndexedIndirect-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawIndexedIndirect-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction

2034

must have a Width of 64

• VUID-vkCmdDrawIndexedIndirect-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndexedIndirect-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndexedIndirect-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndexedIndirect-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndexedIndirect-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndexedIndirect-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirect-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirect-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirect-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirect-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirect-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a

2035

reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawIndexedIndirect-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirect-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirect-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirect-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawIndexedIndirect-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawIndexedIndirect-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndexedIndirect-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndexedIndirect-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexedIndirect-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexedIndirect-None-07748

2036

If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndexedIndirect-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndexedIndirect-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawIndexedIndirect-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawIndexedIndirect-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawIndexedIndirect-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirect-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

2037

• VUID-vkCmdDrawIndexedIndirect-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirect-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirect-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawIndexedIndirect-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndexedIndirect-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndexedIndirect-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndexedIndirect-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current

2038

command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

2039

• VUID-vkCmdDrawIndexedIndirect-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2040

vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndexedIndirect-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

2041

• VUID-vkCmdDrawIndexedIndirect-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer

2042

prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndexedIndirect-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndexedIndirect-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic

2043

states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexedIndirect-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexedIndirect-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and

2044

VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

2045

• VUID-vkCmdDrawIndexedIndirect-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawIndexedIndirect-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

2046

• VUID-vkCmdDrawIndexedIndirect-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndexedIndirect-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndexedIndirect-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndexedIndirect-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawIndexedIndirect-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexedIndirect-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

2047

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexedIndirect-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawIndexedIndirect-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirect-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndexedIndirect-colorAttachmentCount-06179

2048

If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndexedIndirect-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a

2049

VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndexedIndirect-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndexedIndirect-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndexedIndirect-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndexedIndirect-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirect-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass

2050

includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndexedIndirect-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawIndexedIndirect-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawIndexedIndirect-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawIndexedIndirect-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

2051

• VUID-vkCmdDrawIndexedIndirect-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

2052

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawIndexedIndirect-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirect-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV

2053

used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirect-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawIndexedIndirect-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndexedIndirect-pColorAttachments-08963

2054

If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-primitivesGeneratedQueryWithRasterizerDiscard-
06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawIndexedIndirect-primitivesGeneratedQueryWithNonZeroStreams-
06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawIndexedIndirect-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,

2055

and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndexedIndirect-None-08654

2056

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndexedIndirect-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer

2057

prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

2058

• VUID-vkCmdDrawIndexedIndirect-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command

2059

buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2060

vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08674

2061

If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then

2062

vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07648

2063

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawIndexedIndirect-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawIndexedIndirect-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirect-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to

2064

vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirect-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawIndexedIndirect-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawIndexedIndirect-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawIndexedIndirect-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawIndexedIndirect-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndexedIndirect-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and

2065

attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndexedIndirect-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawIndexedIndirect-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawIndexedIndirect-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawIndexedIndirect-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawIndexedIndirect-primitivesGeneratedQueryWithNonZeroStreams-
07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the

2066

VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsEnable-07936

2067

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirect-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirect-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawIndexedIndirect-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawIndexedIndirect-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of

2068

VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndexedIndirect-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndexedIndirect-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawIndexedIndirect-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirect-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawIndexedIndirect-stippledLineEnable-07495
If the bound graphics pipeline state was created with the

2069

VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawIndexedIndirect-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawIndexedIndirect-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawIndexedIndirect-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawIndexedIndirect-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawIndexedIndirect-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawIndexedIndirect-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

2070

• VUID-vkCmdDrawIndexedIndirect-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawIndexedIndirect-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawIndexedIndirect-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawIndexedIndirect-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawIndexedIndirect-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawIndexedIndirect-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawIndexedIndirect-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndexedIndirect-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT

2071

stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndexedIndirect-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawIndexedIndirect-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawIndexedIndirect-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawIndexedIndirect-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawIndexedIndirect-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawIndexedIndirect-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawIndexedIndirect-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawIndexedIndirect-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to

2072

vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawIndexedIndirect-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawIndexedIndirect-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndexedIndirect-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawIndexedIndirect-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawIndexedIndirect-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndexedIndirect-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndexedIndirect-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndexedIndirect-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter

2073

of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndexedIndirect-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDrawIndexedIndirect-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDrawIndexedIndirect-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDrawIndexedIndirect-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDrawIndexedIndirect-Input-08734
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDrawIndexedIndirect-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDrawIndexedIndirect-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDrawIndexedIndirect-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound

2074

graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdDrawIndexedIndirect-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-stage-06481
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndexedIndirect-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDrawIndexedIndirect-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawIndexedIndirect-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndexedIndirect-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawIndexedIndirect-drawCount-02718
If the multiDrawIndirect feature is not enabled, drawCount must be 0 or 1

• VUID-vkCmdDrawIndexedIndirect-drawCount-02719
drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• VUID-vkCmdDrawIndexedIndirect-None-07312
If maintenance6 is not enabled, a valid index buffer must be bound

• VUID-vkCmdDrawIndexedIndirect-robustBufferAccess2-07825
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on

2075

the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

• VUID-vkCmdDrawIndexedIndirect-drawCount-00528
If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or
equal to sizeof(VkDrawIndexedIndirectCommand)

• VUID-vkCmdDrawIndexedIndirect-drawCount-00539
If drawCount is equal to 1, (offset + sizeof(VkDrawIndexedIndirectCommand)) must be less
than or equal to the size of buffer

• VUID-vkCmdDrawIndexedIndirect-drawCount-00540
If drawCount is greater than 1, (stride × (drawCount - 1) + offset + sizeof
(VkDrawIndexedIndirectCommand)) must be less than or equal to the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndexedIndirect-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndexedIndirect-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndexedIndirect-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawIndexedIndirect-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2076

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

The VkDrawIndexedIndirectCommand structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDrawIndexedIndirectCommand {
 uint32_t indexCount;
 uint32_t instanceCount;
 uint32_t firstIndex;
 int32_t vertexOffset;
 uint32_t firstInstance;
} VkDrawIndexedIndirectCommand;

• indexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstIndex is the base index within the index buffer.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer.

• firstInstance is the instance ID of the first instance to draw.

The members of VkDrawIndexedIndirectCommand have the same meaning as the similarly named
parameters of vkCmdDrawIndexed.

Valid Usage

• VUID-VkDrawIndexedIndirectCommand-pNext-09461
If the bound graphics pipeline state was created with
VkPipelineVertexInputDivisorStateCreateInfoKHR in the pNext chain of
VkGraphicsPipelineCreateInfo::pVertexInputState, any member of
VkPipelineVertexInputDivisorStateCreateInfoKHR::pVertexBindingDivisors has a value
other than 1 in divisor, and VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR
::supportsNonZeroFirstInstance is VK_FALSE, then firstInstance must be 0

• VUID-VkDrawIndexedIndirectCommand-None-09462
If shader objects are used for drawing or the bound graphics pipeline state was created
with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, any member of the
pVertexBindingDescriptions parameter to the vkCmdSetVertexInputEXT call that sets this
dynamic state has a value other than 1 in divisor, and
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::supportsNonZeroFirstInstance is
VK_FALSE, then firstInstance must be 0

2077

• VUID-VkDrawIndexedIndirectCommand-robustBufferAccess2-08798
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer or vkCmdBindIndexBuffer2KHR. If
vkCmdBindIndexBuffer2KHR is used to bind the index buffer, the size of the bound index
buffer is vkCmdBindIndexBuffer2KHR::size

• VUID-VkDrawIndexedIndirectCommand-None-00552
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-VkDrawIndexedIndirectCommand-firstInstance-00554
If the drawIndirectFirstInstance feature is not enabled, firstInstance must be 0

To record an indexed draw call with a draw call count sourced from a buffer, call:

// Provided by VK_VERSION_1_2
void vkCmdDrawIndexedIndirectCount(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

or the equivalent command

// Provided by VK_KHR_draw_indirect_count
void vkCmdDrawIndexedIndirectCountKHR(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

or the equivalent command

// Provided by VK_AMD_draw_indirect_count
void vkCmdDrawIndexedIndirectCountAMD(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,

2078

 uint32_t maxDrawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• countBuffer is the buffer containing the draw count.

• countBufferOffset is the byte offset into countBuffer where the draw count begins.

• maxDrawCount specifies the maximum number of draws that will be executed. The actual number
of executed draw calls is the minimum of the count specified in countBuffer and maxDrawCount.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndexedIndirectCount behaves similarly to vkCmdDrawIndexedIndirect except that the
draw count is read by the device from a buffer during execution. The command will read an
unsigned 32-bit integer from countBuffer located at countBufferOffset and use this as the draw
count.

Valid Usage

• VUID-vkCmdDrawIndexedIndirectCount-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexedIndirectCount-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexedIndirectCount-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexedIndirectCount-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

2079

• VUID-vkCmdDrawIndexedIndirectCount-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawIndexedIndirectCount-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndexedIndirectCount-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndexedIndirectCount-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawIndexedIndirectCount-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to

2080

VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirectCount-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirectCount-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirectCount-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was

2081

not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawIndexedIndirectCount-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawIndexedIndirectCount-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawIndexedIndirectCount-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawIndexedIndirectCount-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndexedIndirectCount-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any

2082

VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndexedIndirectCount-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndexedIndirectCount-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawIndexedIndirectCount-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndexedIndirectCount-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexedIndirectCount-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndexedIndirectCount-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndexedIndirectCount-None-06550

2083

If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndexedIndirectCount-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndexedIndirectCount-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndexedIndirectCount-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawIndexedIndirectCount-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndexedIndirectCount-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndexedIndirectCount-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndexedIndirectCount-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndexedIndirectCount-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the

2084

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndexedIndirectCount-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-OpImageBlockMatchWindow-09215

2085

If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndexedIndirectCount-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawIndexedIndirectCount-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawIndexedIndirectCount-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndexedIndirectCount-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndexedIndirectCount-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexedIndirectCount-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexedIndirectCount-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndexedIndirectCount-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndexedIndirectCount-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or

2086

VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawIndexedIndirectCount-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawIndexedIndirectCount-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawIndexedIndirectCount-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the

2087

VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndexedIndirectCount-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndexedIndirectCount-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndexedIndirectCount-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

2088

• VUID-vkCmdDrawIndexedIndirectCount-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

2089

• VUID-vkCmdDrawIndexedIndirectCount-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum

2090

instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndexedIndirectCount-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08629
If a shader object is bound to any graphics stage, and the most recent call to

2091

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

2092

• VUID-vkCmdDrawIndexedIndirectCount-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndexedIndirectCount-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexedIndirectCount-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to

2093

vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must

2094

have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-04876

2095

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawIndexedIndirectCount-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawIndexedIndirectCount-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndexedIndirectCount-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndexedIndirectCount-blendEnable-04727

2096

If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndexedIndirectCount-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawIndexedIndirectCount-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexedIndirectCount-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexedIndirectCount-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView

2097

member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirectCount-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndexedIndirectCount-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the

2098

corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndexedIndirectCount-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndexedIndirectCount-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

2099

• VUID-vkCmdDrawIndexedIndirectCount-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndexedIndirectCount-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndexedIndirectCount-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to

2100

the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawIndexedIndirectCount-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawIndexedIndirectCount-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawIndexedIndirectCount-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command

2101

buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of

2102

VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirectCount-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to

2103

VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirectCount-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawIndexedIndirectCount-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndexedIndirectCount-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must

2104

not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-
primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawIndexedIndirectCount-
primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawIndexedIndirectCount-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then

2105

vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndexedIndirectCount-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndexedIndirectCount-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,

2106

and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set

2107

rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current

2108

command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2109

vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have

2110

been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command

2111

buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07646

2112

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08683

2113

If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawIndexedIndirectCount-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawIndexedIndirectCount-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirectCount-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirectCount-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawIndexedIndirectCount-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

2114

• VUID-vkCmdDrawIndexedIndirectCount-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawIndexedIndirectCount-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawIndexedIndirectCount-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndexedIndirectCount-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndexedIndirectCount-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawIndexedIndirectCount-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color

2115

attachments in the current subpass

• VUID-vkCmdDrawIndexedIndirectCount-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawIndexedIndirectCount-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawIndexedIndirectCount-
primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsEnable-07485

2116

If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the

2117

value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirectCount-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndexedIndirectCount-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawIndexedIndirectCount-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawIndexedIndirectCount-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndexedIndirectCount-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndexedIndirectCount-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the

2118

sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndexedIndirectCount-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawIndexedIndirectCount-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawIndexedIndirectCount-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawIndexedIndirectCount-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is

2119

VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawIndexedIndirectCount-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawIndexedIndirectCount-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawIndexedIndirectCount-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawIndexedIndirectCount-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-08687

2120

If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawIndexedIndirectCount-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndexedIndirectCount-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndexedIndirectCount-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawIndexedIndirectCount-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawIndexedIndirectCount-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

2121

• VUID-vkCmdDrawIndexedIndirectCount-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawIndexedIndirectCount-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawIndexedIndirectCount-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawIndexedIndirectCount-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawIndexedIndirectCount-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawIndexedIndirectCount-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawIndexedIndirectCount-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndexedIndirectCount-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by

2122

vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawIndexedIndirectCount-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawIndexedIndirectCount-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndexedIndirectCount-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndexedIndirectCount-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndexedIndirectCount-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndexedIndirectCount-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDrawIndexedIndirectCount-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDrawIndexedIndirectCount-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic

2123

state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDrawIndexedIndirectCount-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDrawIndexedIndirectCount-Input-08734
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDrawIndexedIndirectCount-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDrawIndexedIndirectCount-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDrawIndexedIndirectCount-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdDrawIndexedIndirectCount-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-stage-06481

2124

The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndexedIndirectCount-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDrawIndexedIndirectCount-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawIndexedIndirectCount-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndexedIndirectCount-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-02714
If countBuffer is non-sparse then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-02715
countBuffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndexedIndirectCount-countBufferOffset-02716
countBufferOffset must be a multiple of 4

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-02717
The count stored in countBuffer must be less than or equal to VkPhysicalDeviceLimits
::maxDrawIndirectCount

• VUID-vkCmdDrawIndexedIndirectCount-countBufferOffset-04129
(countBufferOffset + sizeof(uint32_t)) must be less than or equal to the size of countBuffer

• VUID-vkCmdDrawIndexedIndirectCount-None-04445
If drawIndirectCount is not enabled this function must not be used

• VUID-vkCmdDrawIndexedIndirectCount-None-07312
If maintenance6 is not enabled, a valid index buffer must be bound

• VUID-vkCmdDrawIndexedIndirectCount-robustBufferAccess2-07825
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

• VUID-vkCmdDrawIndexedIndirectCount-stride-03142
stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkDrawIndexedIndirectCommand)

• VUID-vkCmdDrawIndexedIndirectCount-maxDrawCount-03143

2125

If maxDrawCount is greater than or equal to 1, (stride × (maxDrawCount - 1) + offset +
sizeof(VkDrawIndexedIndirectCommand)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-03153
If count stored in countBuffer is equal to 1, (offset + sizeof(VkDrawIndexedIndirectCommand))
must be less than or equal to the size of buffer

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-03154
If count stored in countBuffer is greater than 1, (stride × (drawCount - 1) + offset +
sizeof(VkDrawIndexedIndirectCommand)) must be less than or equal to the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndexedIndirectCount-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-parameter
countBuffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndexedIndirectCount-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndexedIndirectCount-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawIndexedIndirectCount-commonparent
Each of buffer, commandBuffer, and countBuffer must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2126

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

21.3.1. Drawing Transform Feedback

It is possible to draw vertex data that was previously captured during active transform feedback by
binding one or more of the transform feedback buffers as vertex buffers. A pipeline barrier is
required between using the buffers as transform feedback buffers and vertex buffers to ensure all
writes to the transform feedback buffers are visible when the data is read as vertex attributes. The
source access is VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT and the destination access is
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT for the pipeline stages
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT and VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
respectively. The value written to the counter buffer by vkCmdEndTransformFeedbackEXT can be
used to determine the vertex count for the draw. A pipeline barrier is required between using the
counter buffer for vkCmdEndTransformFeedbackEXT and vkCmdDrawIndirectByteCountEXT where the
source access is VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT and the destination access is
VK_ACCESS_INDIRECT_COMMAND_READ_BIT for the pipeline stages
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT and VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT
respectively.

To record a non-indexed draw call, where the vertex count is based on a byte count read from a
buffer and the passed in vertex stride parameter, call:

// Provided by VK_EXT_transform_feedback
void vkCmdDrawIndirectByteCountEXT(
 VkCommandBuffer commandBuffer,
 uint32_t instanceCount,
 uint32_t firstInstance,
 VkBuffer counterBuffer,
 VkDeviceSize counterBufferOffset,
 uint32_t counterOffset,
 uint32_t vertexStride);

• commandBuffer is the command buffer into which the command is recorded.

• instanceCount is the number of instances to draw.

• firstInstance is the instance ID of the first instance to draw.

• counterBuffer is the buffer handle from where the byte count is read.

• counterBufferOffset is the offset into the buffer used to read the byte count, which is used to
calculate the vertex count for this draw call.

• counterOffset is subtracted from the byte count read from the counterBuffer at the

2127

counterBufferOffset

• vertexStride is the stride in bytes between each element of the vertex data that is used to
calculate the vertex count from the counter value. This value is typically the same value that
was used in the graphics pipeline state when the transform feedback was captured as the
XfbStride.

When the command is executed, primitives are assembled in the same way as done with
vkCmdDraw except the vertexCount is calculated based on the byte count read from counterBuffer
at offset counterBufferOffset. The assembled primitives execute the bound graphics pipeline.

The effective vertexCount is calculated as follows:

const uint32_t * counterBufferPtr = (const uint8_t *)counterBuffer.address +
counterBufferOffset;
vertexCount = floor(max(0, (*counterBufferPtr - counterOffset)) / vertexStride);

The effective firstVertex is zero.

Valid Usage

• VUID-vkCmdDrawIndirectByteCountEXT-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-06479

2128

If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawIndirectByteCountEXT-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndirectByteCountEXT-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawIndirectByteCountEXT-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

2129

• VUID-vkCmdDrawIndirectByteCountEXT-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawIndirectByteCountEXT-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirectByteCountEXT-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirectByteCountEXT-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirectByteCountEXT-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

2130

• VUID-vkCmdDrawIndirectByteCountEXT-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawIndirectByteCountEXT-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawIndirectByteCountEXT-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawIndirectByteCountEXT-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndirectByteCountEXT-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this

2131

command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndirectByteCountEXT-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndirectByteCountEXT-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawIndirectByteCountEXT-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndirectByteCountEXT-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirectByteCountEXT-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawIndirectByteCountEXT-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirectByteCountEXT-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndirectByteCountEXT-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

2132

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndirectByteCountEXT-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndirectByteCountEXT-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndirectByteCountEXT-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawIndirectByteCountEXT-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndirectByteCountEXT-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndirectByteCountEXT-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawIndirectByteCountEXT-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawIndirectByteCountEXT-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions

2133

through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndirectByteCountEXT-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to

2134

read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawIndirectByteCountEXT-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawIndirectByteCountEXT-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndirectByteCountEXT-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndirectByteCountEXT-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirectByteCountEXT-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirectByteCountEXT-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndirectByteCountEXT-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndirectByteCountEXT-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndirectByteCountEXT-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must

2135

be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawIndirectByteCountEXT-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawIndirectByteCountEXT-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawIndirectByteCountEXT-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectByteCountEXT-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectByteCountEXT-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectByteCountEXT-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

2136

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectByteCountEXT-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawIndirectByteCountEXT-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndirectByteCountEXT-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndirectByteCountEXT-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndirectByteCountEXT-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08618

2137

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08622

2138

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties

2139

::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndirectByteCountEXT-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2140

rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

2141

• VUID-vkCmdDrawIndirectByteCountEXT-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to

2142

vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must

2143

have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-04876

2144

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawIndirectByteCountEXT-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawIndirectByteCountEXT-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndirectByteCountEXT-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawIndirectByteCountEXT-blendEnable-04727

2145

If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndirectByteCountEXT-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawIndirectByteCountEXT-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndirectByteCountEXT-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndirectByteCountEXT-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawIndirectByteCountEXT-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndirectByteCountEXT-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView

2146

member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirectByteCountEXT-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndirectByteCountEXT-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirectByteCountEXT-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndirectByteCountEXT-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndirectByteCountEXT-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndirectByteCountEXT-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the

2147

corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

2148

• VUID-vkCmdDrawIndirectByteCountEXT-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to

2149

the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawIndirectByteCountEXT-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawIndirectByteCountEXT-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command

2150

buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of

2151

VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawIndirectByteCountEXT-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirectByteCountEXT-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirectByteCountEXT-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to

2152

VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirectByteCountEXT-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirectByteCountEXT-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawIndirectByteCountEXT-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndirectByteCountEXT-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must

2153

not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectByteCountEXT-
primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawIndirectByteCountEXT-
primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawIndirectByteCountEXT-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then

2154

vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndirectByteCountEXT-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawIndirectByteCountEXT-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,

2155

and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set

2156

rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current

2157

command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2158

vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have

2159

been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command

2160

buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07646

2161

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08683

2162

If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawIndirectByteCountEXT-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawIndirectByteCountEXT-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

2163

• VUID-vkCmdDrawIndirectByteCountEXT-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawIndirectByteCountEXT-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawIndirectByteCountEXT-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color

2164

attachments in the current subpass

• VUID-vkCmdDrawIndirectByteCountEXT-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawIndirectByteCountEXT-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawIndirectByteCountEXT-
primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsEnable-07485

2165

If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the

2166

value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectByteCountEXT-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawIndirectByteCountEXT-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawIndirectByteCountEXT-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawIndirectByteCountEXT-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the

2167

sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawIndirectByteCountEXT-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawIndirectByteCountEXT-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawIndirectByteCountEXT-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawIndirectByteCountEXT-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is

2168

VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawIndirectByteCountEXT-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawIndirectByteCountEXT-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawIndirectByteCountEXT-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08687

2169

If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawIndirectByteCountEXT-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndirectByteCountEXT-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawIndirectByteCountEXT-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawIndirectByteCountEXT-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawIndirectByteCountEXT-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

2170

• VUID-vkCmdDrawIndirectByteCountEXT-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawIndirectByteCountEXT-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawIndirectByteCountEXT-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawIndirectByteCountEXT-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawIndirectByteCountEXT-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawIndirectByteCountEXT-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawIndirectByteCountEXT-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndirectByteCountEXT-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by

2171

vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawIndirectByteCountEXT-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawIndirectByteCountEXT-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndirectByteCountEXT-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndirectByteCountEXT-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndirectByteCountEXT-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndirectByteCountEXT-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdDrawIndirectByteCountEXT-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer
prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdDrawIndirectByteCountEXT-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic

2172

state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdDrawIndirectByteCountEXT-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdDrawIndirectByteCountEXT-Input-08734
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdDrawIndirectByteCountEXT-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdDrawIndirectByteCountEXT-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdDrawIndirectByteCountEXT-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdDrawIndirectByteCountEXT-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-None-04879
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectByteCountEXT-stage-06481

2173

The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawIndirectByteCountEXT-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdDrawIndirectByteCountEXT-pNext-09461
If the bound graphics pipeline state was created with
VkPipelineVertexInputDivisorStateCreateInfoKHR in the pNext chain of
VkGraphicsPipelineCreateInfo::pVertexInputState, any member of
VkPipelineVertexInputDivisorStateCreateInfoKHR::pVertexBindingDivisors has a value
other than 1 in divisor, and VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR
::supportsNonZeroFirstInstance is VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDrawIndirectByteCountEXT-None-09462
If shader objects are used for drawing or the bound graphics pipeline state was created
with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, any member of the
pVertexBindingDescriptions parameter to the vkCmdSetVertexInputEXT call that sets this
dynamic state has a value other than 1 in divisor, and
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::supportsNonZeroFirstInstance is
VK_FALSE, then firstInstance must be 0

• VUID-vkCmdDrawIndirectByteCountEXT-transformFeedback-02287
VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback must be enabled

• VUID-vkCmdDrawIndirectByteCountEXT-transformFeedbackDraw-02288
The implementation must support VkPhysicalDeviceTransformFeedbackPropertiesEXT
::transformFeedbackDraw

• VUID-vkCmdDrawIndirectByteCountEXT-vertexStride-02289
vertexStride must be greater than 0 and less than or equal to
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBufferDataStride

• VUID-vkCmdDrawIndirectByteCountEXT-counterBuffer-04567
If counterBuffer is non-sparse then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdDrawIndirectByteCountEXT-counterBuffer-02290
counterBuffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit
set

• VUID-vkCmdDrawIndirectByteCountEXT-counterBufferOffset-04568
counterBufferOffset must be a multiple of 4

• VUID-vkCmdDrawIndirectByteCountEXT-counterOffset-09474
counterOffset must be a multiple of 4

• VUID-vkCmdDrawIndirectByteCountEXT-vertexStride-09475
vertexStride must be a multiple of 4

• VUID-vkCmdDrawIndirectByteCountEXT-commandBuffer-02646

2174

commandBuffer must not be a protected command buffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndirectByteCountEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndirectByteCountEXT-counterBuffer-parameter
counterBuffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndirectByteCountEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndirectByteCountEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndirectByteCountEXT-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndirectByteCountEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawIndirectByteCountEXT-commonparent
Both of commandBuffer, and counterBuffer must have been created, allocated, or retrieved
from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

21.4. Conditional Rendering
Certain rendering commands can be executed conditionally based on a value in buffer memory.
These rendering commands are limited to drawing commands, dispatching commands, and
clearing attachments with vkCmdClearAttachments within a conditional rendering block which is
defined by commands vkCmdBeginConditionalRenderingEXT and

2175

vkCmdEndConditionalRenderingEXT. Other rendering commands remain unaffected by
conditional rendering.

After beginning conditional rendering, it is considered active within the command buffer it was
called until it is ended with vkCmdEndConditionalRenderingEXT.

Conditional rendering must begin and end in the same command buffer. When conditional
rendering is active, a primary command buffer can execute secondary command buffers if the
inheritedConditionalRendering feature is enabled. For a secondary command buffer to be executed
while conditional rendering is active in the primary command buffer, it must set the
conditionalRenderingEnable flag of VkCommandBufferInheritanceConditionalRenderingInfoEXT, as
described in the Command Buffer Recording section.

Conditional rendering must also either begin and end inside the same subpass of a render pass
instance, or must both begin and end outside of a render pass instance (i.e. contain entire render
pass instances).

To begin conditional rendering, call:

// Provided by VK_EXT_conditional_rendering
void vkCmdBeginConditionalRenderingEXT(
 VkCommandBuffer commandBuffer,
 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin);

• commandBuffer is the command buffer into which this command will be recorded.

• pConditionalRenderingBegin is a pointer to a VkConditionalRenderingBeginInfoEXT structure
specifying parameters of conditional rendering.

Valid Usage

• VUID-vkCmdBeginConditionalRenderingEXT-None-01980
Conditional rendering must not already be active

Valid Usage (Implicit)

• VUID-vkCmdBeginConditionalRenderingEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginConditionalRenderingEXT-pConditionalRenderingBegin-parameter
pConditionalRenderingBegin must be a valid pointer to a valid
VkConditionalRenderingBeginInfoEXT structure

• VUID-vkCmdBeginConditionalRenderingEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginConditionalRenderingEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

2176

• VUID-vkCmdBeginConditionalRenderingEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action
State

The VkConditionalRenderingBeginInfoEXT structure is defined as:

// Provided by VK_EXT_conditional_rendering
typedef struct VkConditionalRenderingBeginInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkBuffer buffer;
 VkDeviceSize offset;
 VkConditionalRenderingFlagsEXT flags;
} VkConditionalRenderingBeginInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is a buffer containing the predicate for conditional rendering.

• offset is the byte offset into buffer where the predicate is located.

• flags is a bitmask of VkConditionalRenderingFlagsEXT specifying the behavior of conditional
rendering.

If the 32-bit value at offset in buffer memory is zero, then the rendering commands are discarded,
otherwise they are executed as normal. If the value of the predicate in buffer memory changes
while conditional rendering is active, the rendering commands may be discarded in an
implementation-dependent way. Some implementations may latch the value of the predicate upon
beginning conditional rendering while others may read it before every rendering command.

2177

Valid Usage

• VUID-VkConditionalRenderingBeginInfoEXT-buffer-01981
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkConditionalRenderingBeginInfoEXT-buffer-01982
buffer must have been created with the VK_BUFFER_USAGE_CONDITIONAL_RENDERING_BIT_EXT
bit set

• VUID-VkConditionalRenderingBeginInfoEXT-offset-01983
offset must be less than the size of buffer by at least 32 bits

• VUID-VkConditionalRenderingBeginInfoEXT-offset-01984
offset must be a multiple of 4

Valid Usage (Implicit)

• VUID-VkConditionalRenderingBeginInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_CONDITIONAL_RENDERING_BEGIN_INFO_EXT

• VUID-VkConditionalRenderingBeginInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkConditionalRenderingBeginInfoEXT-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-VkConditionalRenderingBeginInfoEXT-flags-parameter
flags must be a valid combination of VkConditionalRenderingFlagBitsEXT values

Bits which can be set in vkCmdBeginConditionalRenderingEXT::flags, specifying the behavior of
conditional rendering, are:

// Provided by VK_EXT_conditional_rendering
typedef enum VkConditionalRenderingFlagBitsEXT {
 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT = 0x00000001,
} VkConditionalRenderingFlagBitsEXT;

• VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT specifies the condition used to determine whether to
discard rendering commands or not. That is, if the 32-bit predicate read from buffer memory at
offset is zero, the rendering commands are not discarded, and if non zero, then they are
discarded.

// Provided by VK_EXT_conditional_rendering
typedef VkFlags VkConditionalRenderingFlagsEXT;

VkConditionalRenderingFlagsEXT is a bitmask type for setting a mask of zero or more
VkConditionalRenderingFlagBitsEXT.

2178

To end conditional rendering, call:

// Provided by VK_EXT_conditional_rendering
void vkCmdEndConditionalRenderingEXT(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer into which this command will be recorded.

Once ended, conditional rendering becomes inactive.

Valid Usage

• VUID-vkCmdEndConditionalRenderingEXT-None-01985
Conditional rendering must be active

• VUID-vkCmdEndConditionalRenderingEXT-None-01986
If conditional rendering was made active outside of a render pass instance, it must not be
ended inside a render pass instance

• VUID-vkCmdEndConditionalRenderingEXT-None-01987
If conditional rendering was made active within a subpass it must be ended in the same
subpass

Valid Usage (Implicit)

• VUID-vkCmdEndConditionalRenderingEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndConditionalRenderingEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndConditionalRenderingEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdEndConditionalRenderingEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2179

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action
State

21.5. Programmable Mesh Shading
In this drawing approach, primitives are assembled by the mesh shader stage. Mesh shading
operates similarly to dispatching compute as the shaders make use of workgroups.

To record a mesh tasks drawing command, call:

// Provided by VK_NV_mesh_shader
void vkCmdDrawMeshTasksNV(
 VkCommandBuffer commandBuffer,
 uint32_t taskCount,
 uint32_t firstTask);

• commandBuffer is the command buffer into which the command will be recorded.

• taskCount is the number of local workgroups to dispatch in the X dimension. Y and Z dimension
are implicitly set to one.

• firstTask is the X component of the first workgroup ID.

When the command is executed, a global workgroup consisting of taskCount local workgroups is
assembled.

Valid Usage

• VUID-vkCmdDrawMeshTasksNV-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksNV-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksNV-mipmapMode-04770

2180

If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksNV-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksNV-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawMeshTasksNV-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksNV-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksNV-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawMeshTasksNV-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawMeshTasksNV-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksNV-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksNV-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with

2181

VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawMeshTasksNV-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawMeshTasksNV-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawMeshTasksNV-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawMeshTasksNV-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksNV-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksNV-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksNV-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksNV-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksNV-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

2182

• VUID-vkCmdDrawMeshTasksNV-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksNV-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksNV-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksNV-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksNV-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawMeshTasksNV-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksNV-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawMeshTasksNV-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawMeshTasksNV-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawMeshTasksNV-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as

2183

dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawMeshTasksNV-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawMeshTasksNV-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawMeshTasksNV-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawMeshTasksNV-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawMeshTasksNV-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksNV-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksNV-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values

2184

outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksNV-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksNV-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawMeshTasksNV-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawMeshTasksNV-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawMeshTasksNV-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawMeshTasksNV-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawMeshTasksNV-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawMeshTasksNV-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawMeshTasksNV-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawMeshTasksNV-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksNV-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that

2185

instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksNV-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksNV-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksNV-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksNV-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksNV-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksNV-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksNV-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawMeshTasksNV-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksNV-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksNV-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksNV-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,

2186

OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksNV-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksNV-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksNV-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawMeshTasksNV-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksNV-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawMeshTasksNV-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawMeshTasksNV-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksNV-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksNV-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawMeshTasksNV-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim

2187

operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawMeshTasksNV-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawMeshTasksNV-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawMeshTasksNV-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawMeshTasksNV-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawMeshTasksNV-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksNV-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksNV-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

2188

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksNV-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksNV-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawMeshTasksNV-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawMeshTasksNV-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawMeshTasksNV-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawMeshTasksNV-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current

2189

command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of

2190

pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07839
If the bound graphics pipeline state was created with the

2191

VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksNV-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

2192

• VUID-vkCmdDrawMeshTasksNV-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command

2193

buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawMeshTasksNV-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawMeshTasksNV-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

2194

• VUID-vkCmdDrawMeshTasksNV-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksNV-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

2195

• VUID-vkCmdDrawMeshTasksNV-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior

2196

to this drawing command

• VUID-vkCmdDrawMeshTasksNV-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawMeshTasksNV-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawMeshTasksNV-primitiveFragmentShadingRateWithMultipleViewports-
04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the

2197

bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksNV-primitiveFragmentShadingRateWithMultipleViewports-
08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksNV-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawMeshTasksNV-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawMeshTasksNV-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksNV-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

2198

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksNV-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawMeshTasksNV-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksNV-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksNV-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksNV-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksNV-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksNV-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksNV-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawMeshTasksNV-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo

2199

::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksNV-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

2200

• VUID-vkCmdDrawMeshTasksNV-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksNV-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksNV-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksNV-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksNV-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this

2201

drawing command

• VUID-vkCmdDrawMeshTasksNV-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawMeshTasksNV-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawMeshTasksNV-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawMeshTasksNV-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the

2202

current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo

2203

::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksNV-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawMeshTasksNV-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawMeshTasksNV-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksNV-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksNV-pStencilAttachment-06187

2204

If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksNV-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksNV-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksNV-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksNV-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawMeshTasksNV-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawMeshTasksNV-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the

2205

corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksNV-primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawMeshTasksNV-primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawMeshTasksNV-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07621

2206

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksNV-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

2207

• VUID-vkCmdDrawMeshTasksNV-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksNV-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set

2208

rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2209

vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2210

rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a

2211

shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07641
If the bound graphics pipeline state was created with the

2212

VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then

2213

vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08682

2214

If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawMeshTasksNV-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawMeshTasksNV-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawMeshTasksNV-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksNV-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are

2215

enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawMeshTasksNV-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawMeshTasksNV-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksNV-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawMeshTasksNV-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksNV-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksNV-firstAttachment-07478
If the bound graphics pipeline state was created with the

2216

VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksNV-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawMeshTasksNV-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawMeshTasksNV-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawMeshTasksNV-primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the

2217

sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by

2218

vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksNV-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksNV-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawMeshTasksNV-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawMeshTasksNV-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksNV-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2219

rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksNV-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawMeshTasksNV-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksNV-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksNV-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksNV-stippledLineEnable-07496

2220

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawMeshTasksNV-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksNV-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawMeshTasksNV-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawMeshTasksNV-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawMeshTasksNV-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the

2221

current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawMeshTasksNV-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawMeshTasksNV-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawMeshTasksNV-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksNV-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawMeshTasksNV-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawMeshTasksNV-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMeshTasksNV-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksNV-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksNV-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksNV-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

2222

• VUID-vkCmdDrawMeshTasksNV-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawMeshTasksNV-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksNV-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawMeshTasksNV-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawMeshTasksNV-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawMeshTasksNV-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksNV-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksNV-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawMeshTasksNV-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or

2223

none of them

• VUID-vkCmdDrawMeshTasksNV-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawMeshTasksNV-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawMeshTasksNV-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawMeshTasksNV-stage-06480
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
or VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksNV-None-07074
Transform Feedback Queries must not be active

• VUID-vkCmdDrawMeshTasksNV-None-07075
Primitives Generated Queries must not be active

• VUID-vkCmdDrawMeshTasksNV-pipelineStatistics-07076
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, or
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT

• VUID-vkCmdDrawMeshTasksNV-taskCount-02119
taskCount must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesNV
::maxDrawMeshTasksCount

• VUID-vkCmdDrawMeshTasksNV-MeshNV-07080
The current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS must contain a shader
stage using the MeshNV Execution Model

2224

Valid Usage (Implicit)

• VUID-vkCmdDrawMeshTasksNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawMeshTasksNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawMeshTasksNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawMeshTasksNV-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawMeshTasksNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

To record an indirect mesh tasks drawing command, call:

// Provided by VK_NV_mesh_shader
void vkCmdDrawMeshTasksIndirectNV(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 uint32_t drawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

2225

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawMeshTasksIndirectNV behaves similarly to vkCmdDrawMeshTasksNV except that the
parameters are read by the device from a buffer during execution. drawCount draws are executed by
the command, with parameters taken from buffer starting at offset and increasing by stride bytes
for each successive draw. The parameters of each draw are encoded in an array of
VkDrawMeshTasksIndirectCommandNV structures. If drawCount is less than or equal to one, stride
is ignored.

Valid Usage

• VUID-vkCmdDrawMeshTasksIndirectNV-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic

2226

operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawMeshTasksIndirectNV-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksIndirectNV-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksIndirectNV-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawMeshTasksIndirectNV-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawMeshTasksIndirectNV-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

2227

• VUID-vkCmdDrawMeshTasksIndirectNV-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectNV-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

2228

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

2229

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawMeshTasksIndirectNV-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectNV-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectNV-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawMeshTasksIndirectNV-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawMeshTasksIndirectNV-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawMeshTasksIndirectNV-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

2230

• VUID-vkCmdDrawMeshTasksIndirectNV-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawMeshTasksIndirectNV-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksIndirectNV-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksIndirectNV-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksIndirectNV-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksIndirectNV-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksIndirectNV-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

2231

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawMeshTasksIndirectNV-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail

2232

integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawMeshTasksIndirectNV-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksIndirectNV-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawMeshTasksIndirectNV-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawMeshTasksIndirectNV-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawMeshTasksIndirectNV-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawMeshTasksIndirectNV-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an

2233

InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawMeshTasksIndirectNV-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

2234

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawMeshTasksIndirectNV-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawMeshTasksIndirectNV-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and

2235

the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current

2236

stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksIndirectNV-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then

2237

vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08630
If a shader object is bound to any graphics stage, and the most recent call to

2238

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer

2239

prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in

2240

the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-VkPipelineVieportCreateInfo-04141

2241

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then

2242

vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawMeshTasksIndirectNV-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksIndirectNV-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksIndirectNV-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain

2243

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectNV-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawMeshTasksIndirectNV-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectNV-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectNV-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectNV-imageView-06175

2244

If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectNV-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectNV-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectNV-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawMeshTasksIndirectNV-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently

2245

bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass

2246

includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the

2247

VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

2248

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectNV-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

2249

• VUID-vkCmdDrawMeshTasksIndirectNV-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectNV-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectNV-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectNV-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

2250

• VUID-vkCmdDrawMeshTasksIndirectNV-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectNV-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectNV-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawMeshTasksIndirectNV-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectNV-
primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawMeshTasksIndirectNV-primitivesGeneratedQueryWithNonZeroStreams-
06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the

2251

VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07623
If the bound graphics pipeline state was created with the

2252

VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08656

2253

If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08660

2254

If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the

2255

current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any

2256

line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2257

rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07643
If the bound graphics pipeline state was created with the

2258

VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set

2259

coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,

2260

then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawMeshTasksIndirectNV-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawMeshTasksIndirectNV-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent

2261

call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectNV-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksIndirectNV-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectNV-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

2262

• VUID-vkCmdDrawMeshTasksIndirectNV-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawMeshTasksIndirectNV-primitivesGeneratedQueryWithNonZeroStreams-
07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

2263

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectNV-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectNV-coverageModulationTableEnable-07488

2264

If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectNV-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksIndirectNV-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

2265

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectNV-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectNV-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksIndirectNV-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawMeshTasksIndirectNV-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksIndirectNV-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawMeshTasksIndirectNV-conservativePointAndLineRasterization-07499

2266

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawMeshTasksIndirectNV-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

2267

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawMeshTasksIndirectNV-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is

2268

bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawMeshTasksIndirectNV-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectNV-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectNV-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawMeshTasksIndirectNV-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawMeshTasksIndirectNV-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawMeshTasksIndirectNV-stage-06480
The bound graphics pipeline must not have been created with the

2269

VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
or VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07074
Transform Feedback Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectNV-None-07075
Primitives Generated Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectNV-pipelineStatistics-07076
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, or
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT

• VUID-vkCmdDrawMeshTasksIndirectNV-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawMeshTasksIndirectNV-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawMeshTasksIndirectNV-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawMeshTasksIndirectNV-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawMeshTasksIndirectNV-drawCount-02718
If the multiDrawIndirect feature is not enabled, drawCount must be 0 or 1

• VUID-vkCmdDrawMeshTasksIndirectNV-drawCount-02719
drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• VUID-vkCmdDrawMeshTasksIndirectNV-drawCount-02146
If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or
equal to sizeof(VkDrawMeshTasksIndirectCommandNV)

• VUID-vkCmdDrawMeshTasksIndirectNV-drawCount-02156
If drawCount is equal to 1, (offset + sizeof(VkDrawMeshTasksIndirectCommandNV)) must
be less than or equal to the size of buffer

• VUID-vkCmdDrawMeshTasksIndirectNV-drawCount-02157
If drawCount is greater than 1, (stride × (drawCount - 1) + offset + sizeof
(VkDrawMeshTasksIndirectCommandNV)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawMeshTasksIndirectNV-MeshNV-07081

2270

The current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS must contain a shader
stage using the MeshNV Execution Model

Valid Usage (Implicit)

• VUID-vkCmdDrawMeshTasksIndirectNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectNV-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawMeshTasksIndirectNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawMeshTasksIndirectNV-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawMeshTasksIndirectNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawMeshTasksIndirectNV-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

The VkDrawMeshTasksIndirectCommandNV structure is defined as:

// Provided by VK_NV_mesh_shader
typedef struct VkDrawMeshTasksIndirectCommandNV {
 uint32_t taskCount;

2271

 uint32_t firstTask;
} VkDrawMeshTasksIndirectCommandNV;

• taskCount is the number of local workgroups to dispatch in the X dimension. Y and Z dimension
are implicitly set to one.

• firstTask is the X component of the first workgroup ID.

The members of VkDrawMeshTasksIndirectCommandNV have the same meaning as the similarly named
parameters of vkCmdDrawMeshTasksNV.

Valid Usage

• VUID-VkDrawMeshTasksIndirectCommandNV-taskCount-02175
taskCount must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesNV
::maxDrawMeshTasksCount

To record an indirect mesh tasks drawing command with the draw count sourced from a buffer,
call:

// Provided by VK_NV_mesh_shader
void vkCmdDrawMeshTasksIndirectCountNV(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• countBuffer is the buffer containing the draw count.

• countBufferOffset is the byte offset into countBuffer where the draw count begins.

• maxDrawCount specifies the maximum number of draws that will be executed. The actual number
of executed draw calls is the minimum of the count specified in countBuffer and maxDrawCount.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawMeshTasksIndirectCountNV behaves similarly to vkCmdDrawMeshTasksIndirectNV except
that the draw count is read by the device from a buffer during execution. The command will read
an unsigned 32-bit integer from countBuffer located at countBufferOffset and use this as the draw
count.

2272

Valid Usage

• VUID-vkCmdDrawMeshTasksIndirectCountNV-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of

2273

VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawMeshTasksIndirectCountNV-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksIndirectCountNV-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksIndirectCountNV-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpTypeImage-07030

2274

Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectCountNV-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

2275

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,

2276

and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectCountNV-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectCountNV-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawMeshTasksIndirectCountNV-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawMeshTasksIndirectCountNV-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using

2277

OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawMeshTasksIndirectCountNV-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksIndirectCountNV-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksIndirectCountNV-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksIndirectCountNV-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageBlockMatchSSDQCOM-06974

2278

If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

2279

• VUID-vkCmdDrawMeshTasksIndirectCountNV-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksIndirectCountNV-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawMeshTasksIndirectCountNV-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawMeshTasksIndirectCountNV-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

2280

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-06886

2281

If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08620
If a shader object is bound to any graphics stage, and the most recent call to

2282

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

2283

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

2284

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08631

2285

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

2286

• VUID-vkCmdDrawMeshTasksIndirectCountNV-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

2287

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a

2288

VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-logicOp-04878

2289

If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawMeshTasksIndirectCountNV-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksIndirectCountNV-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksIndirectCountNV-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectCountNV-multisampledRenderToSingleSampled-
07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

2290

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawMeshTasksIndirectCountNV-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectCountNV-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectCountNV-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectCountNV-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectCountNV-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not

2291

write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectCountNV-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawMeshTasksIndirectCountNV-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a

2292

VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09368

2293

If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to

2294

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of

2295

VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountNV-dynamicRenderingUnusedAttachments-
08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with

2296

VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawMeshTasksIndirectCountNV-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountNV-multisampledRenderToSingleSampled-
07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-multisampledRenderToSingleSampled-
07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and

2297

the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountNV-multisampledRenderToSingleSampled-
07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectCountNV-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountNV-
primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the

2298

VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawMeshTasksIndirectCountNV-
primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08652
If a shader object is bound to any graphics stage, and the most recent call to

2299

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07626

2300

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07630

2301

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then

2302

vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08667

2303

If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR

2304

must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to

2305

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

2306

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command

2307

buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawMeshTasksIndirectCountNV-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawMeshTasksIndirectCountNV-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer

2308

prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountNV-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksIndirectCountNV-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountNV-firstAttachment-07479
If the bound graphics pipeline state was created with the

2309

VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawMeshTasksIndirectCountNV-advancedBlendMaxColorAttachments-
07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawMeshTasksIndirectCountNV-
primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state

2310

enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-sampleLocationsEnable-07938

2311

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectCountNV-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

2312

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectCountNV-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksIndirectCountNV-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawMeshTasksIndirectCountNV-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksIndirectCountNV-stippledLineEnable-07498

2313

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawMeshTasksIndirectCountNV-conservativePointAndLineRasterization-
07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

2314

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

2315

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawMeshTasksIndirectCountNV-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawMeshTasksIndirectCountNV-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-09549

2316

If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawMeshTasksIndirectCountNV-stage-06480
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
or VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07074
Transform Feedback Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-07075
Primitives Generated Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectCountNV-pipelineStatistics-07076
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, or
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountNV-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawMeshTasksIndirectCountNV-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawMeshTasksIndirectCountNV-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawMeshTasksIndirectCountNV-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawMeshTasksIndirectCountNV-countBuffer-02714
If countBuffer is non-sparse then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdDrawMeshTasksIndirectCountNV-countBuffer-02715
countBuffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawMeshTasksIndirectCountNV-countBufferOffset-02716
countBufferOffset must be a multiple of 4

• VUID-vkCmdDrawMeshTasksIndirectCountNV-countBuffer-02717

2317

The count stored in countBuffer must be less than or equal to VkPhysicalDeviceLimits
::maxDrawIndirectCount

• VUID-vkCmdDrawMeshTasksIndirectCountNV-countBufferOffset-04129
(countBufferOffset + sizeof(uint32_t)) must be less than or equal to the size of countBuffer

• VUID-vkCmdDrawMeshTasksIndirectCountNV-None-04445
If drawIndirectCount is not enabled this function must not be used

• VUID-vkCmdDrawMeshTasksIndirectCountNV-stride-02182
stride must be a multiple of 4 and must be greater than or equal to sizeof
(VkDrawMeshTasksIndirectCommandNV)

• VUID-vkCmdDrawMeshTasksIndirectCountNV-maxDrawCount-02183
If maxDrawCount is greater than or equal to 1, (stride × (maxDrawCount - 1) + offset + sizeof
(VkDrawMeshTasksIndirectCommandNV)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawMeshTasksIndirectCountNV-countBuffer-02191
If the count stored in countBuffer is equal to 1, (offset + sizeof
(VkDrawMeshTasksIndirectCommandNV)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawMeshTasksIndirectCountNV-countBuffer-02192
If the count stored in countBuffer is greater than 1, (stride × (drawCount - 1) + offset +
sizeof(VkDrawMeshTasksIndirectCommandNV)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawMeshTasksIndirectCountNV-MeshNV-07082
The current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS must contain a shader
stage using the MeshNV Execution Model

Valid Usage (Implicit)

• VUID-vkCmdDrawMeshTasksIndirectCountNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectCountNV-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectCountNV-countBuffer-parameter
countBuffer must be a valid VkBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectCountNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawMeshTasksIndirectCountNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawMeshTasksIndirectCountNV-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawMeshTasksIndirectCountNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawMeshTasksIndirectCountNV-commonparent
Each of buffer, commandBuffer, and countBuffer must have been created, allocated, or

2318

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

To record a mesh tasks drawing command, call:

// Provided by VK_EXT_mesh_shader
void vkCmdDrawMeshTasksEXT(
 VkCommandBuffer commandBuffer,
 uint32_t groupCountX,
 uint32_t groupCountY,
 uint32_t groupCountZ);

• commandBuffer is the command buffer into which the command will be recorded.

• groupCountX is the number of local workgroups to dispatch in the X dimension.

• groupCountY is the number of local workgroups to dispatch in the Y dimension.

• groupCountZ is the number of local workgroups to dispatch in the Z dimension.

When the command is executed, a global workgroup consisting of groupCountX × groupCountY ×
groupCountZ local workgroups is assembled.

Valid Usage

• VUID-vkCmdDrawMeshTasksEXT-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksEXT-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and

2319

reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksEXT-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksEXT-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawMeshTasksEXT-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawMeshTasksEXT-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksEXT-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering

2320

together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksEXT-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawMeshTasksEXT-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawMeshTasksEXT-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawMeshTasksEXT-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawMeshTasksEXT-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksEXT-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksEXT-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksEXT-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksEXT-None-08601

2321

For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksEXT-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksEXT-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksEXT-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksEXT-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksEXT-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawMeshTasksEXT-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksEXT-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawMeshTasksEXT-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawMeshTasksEXT-None-08606

2322

If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawMeshTasksEXT-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawMeshTasksEXT-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawMeshTasksEXT-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawMeshTasksEXT-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawMeshTasksEXT-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawMeshTasksEXT-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksEXT-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksEXT-storageBuffers-06936

2323

If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksEXT-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksEXT-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawMeshTasksEXT-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawMeshTasksEXT-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawMeshTasksEXT-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawMeshTasksEXT-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawMeshTasksEXT-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawMeshTasksEXT-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawMeshTasksEXT-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawMeshTasksEXT-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction

2324

must have a Width of 64

• VUID-vkCmdDrawMeshTasksEXT-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksEXT-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksEXT-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksEXT-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksEXT-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksEXT-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksEXT-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksEXT-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawMeshTasksEXT-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksEXT-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksEXT-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a

2325

reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksEXT-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksEXT-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksEXT-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksEXT-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawMeshTasksEXT-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksEXT-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawMeshTasksEXT-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawMeshTasksEXT-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksEXT-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksEXT-None-07748

2326

If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawMeshTasksEXT-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawMeshTasksEXT-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawMeshTasksEXT-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawMeshTasksEXT-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawMeshTasksEXT-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawMeshTasksEXT-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksEXT-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

2327

• VUID-vkCmdDrawMeshTasksEXT-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksEXT-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksEXT-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawMeshTasksEXT-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawMeshTasksEXT-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawMeshTasksEXT-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawMeshTasksEXT-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current

2328

command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

2329

• VUID-vkCmdDrawMeshTasksEXT-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2330

vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksEXT-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

2331

• VUID-vkCmdDrawMeshTasksEXT-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer

2332

prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawMeshTasksEXT-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic

2333

states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksEXT-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and

2334

VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

2335

• VUID-vkCmdDrawMeshTasksEXT-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawMeshTasksEXT-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

2336

• VUID-vkCmdDrawMeshTasksEXT-primitiveFragmentShadingRateWithMultipleViewports-
04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksEXT-primitiveFragmentShadingRateWithMultipleViewports-
08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksEXT-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawMeshTasksEXT-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawMeshTasksEXT-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksEXT-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

2337

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksEXT-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawMeshTasksEXT-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksEXT-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksEXT-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksEXT-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksEXT-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksEXT-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksEXT-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawMeshTasksEXT-colorAttachmentCount-06179

2338

If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksEXT-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksEXT-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a

2339

VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksEXT-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksEXT-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksEXT-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass

2340

includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksEXT-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawMeshTasksEXT-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawMeshTasksEXT-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawMeshTasksEXT-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

2341

• VUID-vkCmdDrawMeshTasksEXT-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

2342

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksEXT-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksEXT-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawMeshTasksEXT-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawMeshTasksEXT-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksEXT-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV

2343

used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksEXT-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksEXT-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksEXT-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksEXT-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksEXT-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawMeshTasksEXT-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawMeshTasksEXT-pColorAttachments-08963

2344

If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksEXT-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksEXT-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksEXT-primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawMeshTasksEXT-primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawMeshTasksEXT-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT

2345

must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksEXT-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2346

rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksEXT-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

2347

• VUID-vkCmdDrawMeshTasksEXT-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is

2348

bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08665

2349

If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the

2350

current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in

2351

the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

2352

• VUID-vkCmdDrawMeshTasksEXT-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then

2353

vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawMeshTasksEXT-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawMeshTasksEXT-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawMeshTasksEXT-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksEXT-rasterizationSamples-07474

2354

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawMeshTasksEXT-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawMeshTasksEXT-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksEXT-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawMeshTasksEXT-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksEXT-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

2355

• VUID-vkCmdDrawMeshTasksEXT-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksEXT-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawMeshTasksEXT-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawMeshTasksEXT-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawMeshTasksEXT-primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the

2356

VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state

2357

enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksEXT-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksEXT-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawMeshTasksEXT-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawMeshTasksEXT-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksEXT-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is

2358

bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksEXT-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksEXT-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksEXT-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature

2359

must be enabled

• VUID-vkCmdDrawMeshTasksEXT-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawMeshTasksEXT-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksEXT-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawMeshTasksEXT-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawMeshTasksEXT-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawMeshTasksEXT-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

2360

• VUID-vkCmdDrawMeshTasksEXT-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawMeshTasksEXT-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMeshTasksEXT-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksEXT-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksEXT-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksEXT-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the

2361

VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksEXT-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawMeshTasksEXT-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksEXT-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawMeshTasksEXT-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawMeshTasksEXT-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawMeshTasksEXT-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksEXT-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksEXT-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawMeshTasksEXT-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color

2362

attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawMeshTasksEXT-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawMeshTasksEXT-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawMeshTasksEXT-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawMeshTasksEXT-stage-06480
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
or VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksEXT-None-07074
Transform Feedback Queries must not be active

• VUID-vkCmdDrawMeshTasksEXT-None-07075
Primitives Generated Queries must not be active

• VUID-vkCmdDrawMeshTasksEXT-pipelineStatistics-07076
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, or
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT

• VUID-vkCmdDrawMeshTasksEXT-TaskEXT-07322
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS contains a shader using
the TaskEXT Execution Model, groupCountX must be less than or equal to

2363

VkPhysicalDeviceMeshShaderPropertiesEXT::maxTaskWorkGroupCount[0]

• VUID-vkCmdDrawMeshTasksEXT-TaskEXT-07323
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS contains a shader using
the TaskEXT Execution Model, groupCountY must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxTaskWorkGroupCount[1]

• VUID-vkCmdDrawMeshTasksEXT-TaskEXT-07324
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS contains a shader using
the TaskEXT Execution Model, groupCountZ must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxTaskWorkGroupCount[2]

• VUID-vkCmdDrawMeshTasksEXT-TaskEXT-07325
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS contains a shader using
the TaskEXT Execution Model, The product of groupCountX, groupCountY and groupCountZ must
be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxTaskWorkGroupTotalCount

• VUID-vkCmdDrawMeshTasksEXT-TaskEXT-07326
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS does not contain a
shader using the TaskEXT Execution Model, groupCountX must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[0]

• VUID-vkCmdDrawMeshTasksEXT-TaskEXT-07327
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS does not contain a
shader using the TaskEXT Execution Model, groupCountY must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[1]

• VUID-vkCmdDrawMeshTasksEXT-TaskEXT-07328
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS does not contain a
shader using the TaskEXT Execution Model, groupCountZ must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[2]

• VUID-vkCmdDrawMeshTasksEXT-TaskEXT-07329
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS does not contain a
shader using the TaskEXT Execution Model, The product of groupCountX, groupCountY and
groupCountZ must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxMeshWorkGroupTotalCount

• VUID-vkCmdDrawMeshTasksEXT-MeshEXT-07087
The current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS must contain a shader
stage using the MeshEXT Execution Model

Valid Usage (Implicit)

• VUID-vkCmdDrawMeshTasksEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawMeshTasksEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawMeshTasksEXT-commandBuffer-cmdpool

2364

The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawMeshTasksEXT-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawMeshTasksEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

To record an indirect mesh tasks drawing command, call:

// Provided by VK_EXT_mesh_shader
void vkCmdDrawMeshTasksIndirectEXT(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 uint32_t drawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawMeshTasksIndirectEXT behaves similarly to vkCmdDrawMeshTasksEXT except that the
parameters are read by the device from a buffer during execution. drawCount draws are executed by
the command, with parameters taken from buffer starting at offset and increasing by stride bytes
for each successive draw. The parameters of each draw are encoded in an array of
VkDrawMeshTasksIndirectCommandEXT structures. If drawCount is less than or equal to one, stride

2365

is ignored.

Valid Usage

• VUID-vkCmdDrawMeshTasksIndirectEXT-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-02693

2366

If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawMeshTasksIndirectEXT-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksIndirectEXT-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksIndirectEXT-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain

2367

VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectEXT-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08117

2368

If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawMeshTasksIndirectEXT-uniformBuffers-06935

2369

If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectEXT-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectEXT-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawMeshTasksIndirectEXT-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawMeshTasksIndirectEXT-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed

2370

using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawMeshTasksIndirectEXT-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksIndirectEXT-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksIndirectEXT-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksIndirectEXT-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksIndirectEXT-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksIndirectEXT-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageBoxFilterQCOM-06973

2371

If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,

2372

VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawMeshTasksIndirectEXT-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksIndirectEXT-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawMeshTasksIndirectEXT-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawMeshTasksIndirectEXT-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawMeshTasksIndirectEXT-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawMeshTasksIndirectEXT-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

2373

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-06539

2374

If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS

2375

dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2376

rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2377

rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07845
If the bound graphics pipeline state was created with the

2378

VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then

2379

vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to

2380

any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or

2381

equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08640
If a shader object is bound to any graphics stage, and the most recent call to

2382

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawMeshTasksIndirectEXT-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksIndirectEXT-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksIndirectEXT-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectEXT-multisampledRenderToSingleSampled-07284

2383

If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawMeshTasksIndirectEXT-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectEXT-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectEXT-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectEXT-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

2384

• VUID-vkCmdDrawMeshTasksIndirectEXT-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectEXT-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawMeshTasksIndirectEXT-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-colorAttachmentCount-09362

2385

If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

2386

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to

2387

the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of

2388

VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectEXT-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawMeshTasksIndirectEXT-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with

2389

VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectEXT-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectEXT-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectEXT-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and

2390

the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectEXT-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectEXT-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawMeshTasksIndirectEXT-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectEXT-
primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawMeshTasksIndirectEXT-
primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

2391

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08653

2392

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been

2393

called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

2394

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

2395

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08668

2396

If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command

2397

buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

2398

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07647

2399

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizationSamples-07471

2400

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawMeshTasksIndirectEXT-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawMeshTasksIndirectEXT-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the

2401

attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectEXT-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksIndirectEXT-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectEXT-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawMeshTasksIndirectEXT-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the

2402

VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawMeshTasksIndirectEXT-
primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsEnable-07486

2403

If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was

2404

created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectEXT-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksIndirectEXT-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-07493

2405

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectEXT-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksIndirectEXT-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawMeshTasksIndirectEXT-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksIndirectEXT-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawMeshTasksIndirectEXT-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the

2406

VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08690

2407

If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawMeshTasksIndirectEXT-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

2408

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectEXT-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectEXT-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawMeshTasksIndirectEXT-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawMeshTasksIndirectEXT-stage-06480
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_VERTEX_BIT,

2409

VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
or VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07074
Transform Feedback Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectEXT-None-07075
Primitives Generated Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectEXT-pipelineStatistics-07076
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, or
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT

• VUID-vkCmdDrawMeshTasksIndirectEXT-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawMeshTasksIndirectEXT-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawMeshTasksIndirectEXT-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawMeshTasksIndirectEXT-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawMeshTasksIndirectEXT-drawCount-02718
If the multiDrawIndirect feature is not enabled, drawCount must be 0 or 1

• VUID-vkCmdDrawMeshTasksIndirectEXT-drawCount-02719
drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• VUID-vkCmdDrawMeshTasksIndirectEXT-drawCount-07088
If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or
equal to sizeof(VkDrawMeshTasksIndirectCommandEXT)

• VUID-vkCmdDrawMeshTasksIndirectEXT-drawCount-07089
If drawCount is equal to 1, (offset + sizeof(VkDrawMeshTasksIndirectCommandEXT)) must
be less than or equal to the size of buffer

• VUID-vkCmdDrawMeshTasksIndirectEXT-drawCount-07090
If drawCount is greater than 1, (stride × (drawCount - 1) + offset + sizeof
(VkDrawMeshTasksIndirectCommandEXT)) must be less than or equal to the size of
buffer

• VUID-vkCmdDrawMeshTasksIndirectEXT-MeshEXT-07091
The current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS must contain a shader

2410

stage using the MeshEXT Execution Model

Valid Usage (Implicit)

• VUID-vkCmdDrawMeshTasksIndirectEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectEXT-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawMeshTasksIndirectEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawMeshTasksIndirectEXT-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawMeshTasksIndirectEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawMeshTasksIndirectEXT-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

The VkDrawMeshTasksIndirectCommandEXT structure is defined as:

// Provided by VK_EXT_mesh_shader
typedef struct VkDrawMeshTasksIndirectCommandEXT {
 uint32_t groupCountX;
 uint32_t groupCountY;

2411

 uint32_t groupCountZ;
} VkDrawMeshTasksIndirectCommandEXT;

• groupCountX is the number of local workgroups to dispatch in the X dimension.

• groupCountY is the number of local workgroups to dispatch in the Y dimension.

• groupCountZ is the number of local workgroups to dispatch in the Z dimension.

The members of VkDrawMeshTasksIndirectCommandEXT have the same meaning as the similarly named
parameters of vkCmdDrawMeshTasksEXT.

Valid Usage

• VUID-VkDrawMeshTasksIndirectCommandEXT-TaskEXT-07322
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS contains a shader using
the TaskEXT Execution Model, groupCountX must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxTaskWorkGroupCount[0]

• VUID-VkDrawMeshTasksIndirectCommandEXT-TaskEXT-07323
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS contains a shader using
the TaskEXT Execution Model, groupCountY must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxTaskWorkGroupCount[1]

• VUID-VkDrawMeshTasksIndirectCommandEXT-TaskEXT-07324
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS contains a shader using
the TaskEXT Execution Model, groupCountZ must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxTaskWorkGroupCount[2]

• VUID-VkDrawMeshTasksIndirectCommandEXT-TaskEXT-07325
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS contains a shader using
the TaskEXT Execution Model, The product of groupCountX, groupCountY and groupCountZ must
be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxTaskWorkGroupTotalCount

• VUID-VkDrawMeshTasksIndirectCommandEXT-TaskEXT-07326
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS does not contain a
shader using the TaskEXT Execution Model, groupCountX must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[0]

• VUID-VkDrawMeshTasksIndirectCommandEXT-TaskEXT-07327
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS does not contain a
shader using the TaskEXT Execution Model, groupCountY must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[1]

• VUID-VkDrawMeshTasksIndirectCommandEXT-TaskEXT-07328
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS does not contain a
shader using the TaskEXT Execution Model, groupCountZ must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[2]

• VUID-VkDrawMeshTasksIndirectCommandEXT-TaskEXT-07329
If the current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS does not contain a
shader using the TaskEXT Execution Model, The product of groupCountX, groupCountY and

2412

groupCountZ must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxMeshWorkGroupTotalCount

To record an indirect mesh tasks drawing command with the draw count sourced from a buffer,
call:

// Provided by VK_EXT_mesh_shader
void vkCmdDrawMeshTasksIndirectCountEXT(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• countBuffer is the buffer containing the draw count.

• countBufferOffset is the byte offset into countBuffer where the draw count begins.

• maxDrawCount specifies the maximum number of draws that will be executed. The actual number
of executed draw calls is the minimum of the count specified in countBuffer and maxDrawCount.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawMeshTasksIndirectCountEXT behaves similarly to vkCmdDrawMeshTasksIndirectEXT except
that the draw count is read by the device from a buffer during execution. The command will read
an unsigned 32-bit integer from countBuffer located at countBufferOffset and use this as the draw
count.

Valid Usage

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

2413

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-cubicRangeClamp-09212

2414

If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,

2415

as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not

2416

have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,

2417

and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is

2418

accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageWeightedSampleQCOM-06977

2419

If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-OpTypeImage-07468

2420

If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the

2421

VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR

2422

dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2423

vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07839

2424

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

2425

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command

2426

buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

2427

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

2428

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior

2429

to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the

2430

bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-multisampledRenderToSingleSampled-
07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

2431

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo

2432

::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a

2433

VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass

2434

includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

2435

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of

2436

VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-dynamicRenderingUnusedAttachments-
08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

2437

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-multisampledRenderToSingleSampled-
07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-multisampledRenderToSingleSampled-
07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-multisampledRenderToSingleSampled-
07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with

2438

multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-
primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-
primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then

2439

vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command

2440

buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08657

2441

If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to

2442

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to

2443

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07638
If the bound graphics pipeline state was created with the

2444

VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics

2445

stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

2446

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2447

rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the

2448

VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and

2449

attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-advancedBlendMaxColorAttachments-
07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-
primitivesGeneratedQueryWithNonZeroStreams-07481

2450

If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by

2451

vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizationSamples-07489

2452

If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any

2453

graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-conservativePointAndLineRasterization-
07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

2454

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or

2455

VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

2456

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-stage-06480
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
or VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07074
Transform Feedback Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-07075

2457

Primitives Generated Queries must not be active

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-pipelineStatistics-07076
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, or
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-countBuffer-02714
If countBuffer is non-sparse then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-countBuffer-02715
countBuffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-countBufferOffset-02716
countBufferOffset must be a multiple of 4

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-countBuffer-02717
The count stored in countBuffer must be less than or equal to VkPhysicalDeviceLimits
::maxDrawIndirectCount

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-countBufferOffset-04129
(countBufferOffset + sizeof(uint32_t)) must be less than or equal to the size of countBuffer

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-None-04445
If drawIndirectCount is not enabled this function must not be used

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-stride-07096
stride must be a multiple of 4 and must be greater than or equal to sizeof
(VkDrawMeshTasksIndirectCommandEXT)

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-maxDrawCount-07097
If maxDrawCount is greater than or equal to 1, (stride × (maxDrawCount - 1) + offset + sizeof
(VkDrawMeshTasksIndirectCommandEXT)) must be less than or equal to the size of buffer

2458

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-countBuffer-07098
If the count stored in countBuffer is equal to 1, (offset + sizeof
(VkDrawMeshTasksIndirectCommandEXT)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-countBuffer-07099
If the count stored in countBuffer is greater than 1, (stride × (drawCount - 1) + offset +
sizeof(VkDrawMeshTasksIndirectCommandEXT)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-MeshEXT-07100
The current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS must contain a shader
stage using the MeshEXT Execution Model

Valid Usage (Implicit)

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-countBuffer-parameter
countBuffer must be a valid VkBuffer handle

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawMeshTasksIndirectCountEXT-commonparent
Each of buffer, commandBuffer, and countBuffer must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2459

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

21.6. Programmable Cluster Culling Shading
In this drawing approach, cluster are generated by the cluster culling shader stage. It operates
similarly to dispatching compute as the shaders make use of workgroups.

To record a cluster culling shader drawing command, call:

// Provided by VK_HUAWEI_cluster_culling_shader
void vkCmdDrawClusterHUAWEI(
 VkCommandBuffer commandBuffer,
 uint32_t groupCountX,
 uint32_t groupCountY,
 uint32_t groupCountZ);

• commandBuffer is the command buffer into which the command will be recorded.

• groupCountX is the number of local workgroups to dispatch in the X dimension.

• groupCountY is the number of local workgroups to dispatch in the Y dimension.

• groupCountZ is the number of local workgroups to dispatch in the Z dimension.

When the command is executed,a global workgroup consisting of
groupCountX*groupCountY*groupCountZ local workgroup is assembled. Note that the cluster
culling shader pipeline only accepts vkCmdDrawClusterHUAWEI and
vkCmdDrawClusterIndirectHUAWEI as drawing commands.

Valid Usage

• VUID-vkCmdDrawClusterHUAWEI-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawClusterHUAWEI-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this

2460

command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawClusterHUAWEI-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawClusterHUAWEI-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawClusterHUAWEI-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawClusterHUAWEI-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by

2461

vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawClusterHUAWEI-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawClusterHUAWEI-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawClusterHUAWEI-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDrawClusterHUAWEI-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawClusterHUAWEI-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawClusterHUAWEI-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawClusterHUAWEI-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawClusterHUAWEI-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawClusterHUAWEI-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is

2462

compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawClusterHUAWEI-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawClusterHUAWEI-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawClusterHUAWEI-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawClusterHUAWEI-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawClusterHUAWEI-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

2463

• VUID-vkCmdDrawClusterHUAWEI-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawClusterHUAWEI-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawClusterHUAWEI-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawClusterHUAWEI-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawClusterHUAWEI-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawClusterHUAWEI-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawClusterHUAWEI-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawClusterHUAWEI-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either

2464

VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawClusterHUAWEI-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawClusterHUAWEI-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawClusterHUAWEI-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawClusterHUAWEI-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawClusterHUAWEI-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawClusterHUAWEI-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawClusterHUAWEI-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawClusterHUAWEI-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawClusterHUAWEI-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawClusterHUAWEI-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

2465

• VUID-vkCmdDrawClusterHUAWEI-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawClusterHUAWEI-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawClusterHUAWEI-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawClusterHUAWEI-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawClusterHUAWEI-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawClusterHUAWEI-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawClusterHUAWEI-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawClusterHUAWEI-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawClusterHUAWEI-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawClusterHUAWEI-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawClusterHUAWEI-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

2466

• VUID-vkCmdDrawClusterHUAWEI-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawClusterHUAWEI-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawClusterHUAWEI-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawClusterHUAWEI-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawClusterHUAWEI-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawClusterHUAWEI-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawClusterHUAWEI-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawClusterHUAWEI-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawClusterHUAWEI-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawClusterHUAWEI-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

2467

• VUID-vkCmdDrawClusterHUAWEI-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawClusterHUAWEI-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawClusterHUAWEI-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawClusterHUAWEI-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawClusterHUAWEI-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawClusterHUAWEI-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawClusterHUAWEI-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawClusterHUAWEI-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,

2468

store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawClusterHUAWEI-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawClusterHUAWEI-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawClusterHUAWEI-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawClusterHUAWEI-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawClusterHUAWEI-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawClusterHUAWEI-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07832

2469

If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set

2470

rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

2471

• VUID-vkCmdDrawClusterHUAWEI-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawClusterHUAWEI-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current

2472

command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08632

2473

If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawClusterHUAWEI-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,

2474

and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawClusterHUAWEI-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must

2475

be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07879
If the bound graphics pipeline state was created with the

2476

VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawClusterHUAWEI-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawClusterHUAWEI-

2477

primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawClusterHUAWEI-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawClusterHUAWEI-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawClusterHUAWEI-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawClusterHUAWEI-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawClusterHUAWEI-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

2478

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawClusterHUAWEI-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawClusterHUAWEI-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawClusterHUAWEI-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawClusterHUAWEI-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawClusterHUAWEI-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawClusterHUAWEI-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawClusterHUAWEI-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawClusterHUAWEI-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawClusterHUAWEI-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render

2479

pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawClusterHUAWEI-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the

2480

VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawClusterHUAWEI-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawClusterHUAWEI-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawClusterHUAWEI-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the

2481

VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawClusterHUAWEI-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawClusterHUAWEI-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawClusterHUAWEI-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawClusterHUAWEI-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-rasterizerDiscardEnable-09236

2482

If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08916

2483

If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawClusterHUAWEI-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawClusterHUAWEI-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawClusterHUAWEI-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count

2484

used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawClusterHUAWEI-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawClusterHUAWEI-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawClusterHUAWEI-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawClusterHUAWEI-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawClusterHUAWEI-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawClusterHUAWEI-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawClusterHUAWEI-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a

2485

graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterHUAWEI-primitivesGeneratedQueryWithRasterizerDiscard-
06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawClusterHUAWEI-primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawClusterHUAWEI-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT

2486

must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawClusterHUAWEI-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2487

rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawClusterHUAWEI-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

2488

• VUID-vkCmdDrawClusterHUAWEI-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is

2489

bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08665

2490

If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the

2491

current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in

2492

the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

2493

• VUID-vkCmdDrawClusterHUAWEI-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then

2494

vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawClusterHUAWEI-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawClusterHUAWEI-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawClusterHUAWEI-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterHUAWEI-rasterizationSamples-07474

2495

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawClusterHUAWEI-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdDrawClusterHUAWEI-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawClusterHUAWEI-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawClusterHUAWEI-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawClusterHUAWEI-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

2496

• VUID-vkCmdDrawClusterHUAWEI-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawClusterHUAWEI-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdDrawClusterHUAWEI-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawClusterHUAWEI-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawClusterHUAWEI-primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the

2497

VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state

2498

enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterHUAWEI-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterHUAWEI-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawClusterHUAWEI-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawClusterHUAWEI-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawClusterHUAWEI-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is

2499

bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawClusterHUAWEI-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterHUAWEI-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawClusterHUAWEI-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature

2500

must be enabled

• VUID-vkCmdDrawClusterHUAWEI-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawClusterHUAWEI-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawClusterHUAWEI-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawClusterHUAWEI-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawClusterHUAWEI-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawClusterHUAWEI-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

2501

• VUID-vkCmdDrawClusterHUAWEI-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawClusterHUAWEI-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawClusterHUAWEI-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawClusterHUAWEI-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the

2502

VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawClusterHUAWEI-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawClusterHUAWEI-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdDrawClusterHUAWEI-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawClusterHUAWEI-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawClusterHUAWEI-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawClusterHUAWEI-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterHUAWEI-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawClusterHUAWEI-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawClusterHUAWEI-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color

2503

attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawClusterHUAWEI-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawClusterHUAWEI-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawClusterHUAWEI-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawClusterHUAWEI-stage-06480
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
or VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-07074
Transform Feedback Queries must not be active

• VUID-vkCmdDrawClusterHUAWEI-None-07075
Primitives Generated Queries must not be active

• VUID-vkCmdDrawClusterHUAWEI-pipelineStatistics-07076
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, or
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT

• VUID-vkCmdDrawClusterHUAWEI-None-07819
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT, or

2504

VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT

• VUID-vkCmdDrawClusterHUAWEI-groupCountX-07820
groupCountX must be less than or equal to
VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI::maxWorkGroupCount[0]

• VUID-vkCmdDrawClusterHUAWEI-groupCountY-07821
groupCountY must be less than or equal to
VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI::maxWorkGroupCount[1]

• VUID-vkCmdDrawClusterHUAWEI-groupCountZ-07822
groupCountZ must be less than or equal to
VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI::maxWorkGroupCount[2]

• VUID-vkCmdDrawClusterHUAWEI-ClusterCullingHUAWEI-07823
The current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS must contain a shader
stage using the ClusterCullingHUAWEI Execution Model.

Valid Usage (Implicit)

• VUID-vkCmdDrawClusterHUAWEI-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawClusterHUAWEI-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawClusterHUAWEI-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawClusterHUAWEI-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawClusterHUAWEI-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

2505

To record an indirect cluster culling drawing command, call:

// Provided by VK_HUAWEI_cluster_culling_shader
void vkCmdDrawClusterIndirectHUAWEI(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

vkCmdDrawClusterIndirectHUAWEI behaves similarly to vkCmdDrawClusterHUAWEI except that the
parameters are read by the device from a buffer during execution. The parameters of the dispatch
are encoded in a VkDispatchIndirectCommand structure taken from buffer starting at offset.Note
the cluster culling shader pipeline only accepts vkCmdDrawClusterHUAWEI and
vkCmdDrawClusterIndirectHUAWEI as drawing commands.

Valid Usage

• VUID-vkCmdDrawClusterIndirectHUAWEI-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-06479

2506

If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDrawClusterIndirectHUAWEI-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawClusterIndirectHUAWEI-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDrawClusterIndirectHUAWEI-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

2507

• VUID-vkCmdDrawClusterIndirectHUAWEI-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawClusterIndirectHUAWEI-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

2508

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this

2509

command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawClusterIndirectHUAWEI-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDrawClusterIndirectHUAWEI-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

2510

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawClusterIndirectHUAWEI-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawClusterIndirectHUAWEI-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawClusterIndirectHUAWEI-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawClusterIndirectHUAWEI-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawClusterIndirectHUAWEI-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDrawClusterIndirectHUAWEI-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDrawClusterIndirectHUAWEI-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions

2511

through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to

2512

read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawClusterIndirectHUAWEI-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawClusterIndirectHUAWEI-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawClusterIndirectHUAWEI-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawClusterIndirectHUAWEI-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must

2513

be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdDrawClusterIndirectHUAWEI-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdDrawClusterIndirectHUAWEI-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an
InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

2514

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08618

2515

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08622

2516

If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties

2517

::maxMultiviewInstanceIndex

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then
vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set

2518

rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08630
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

2519

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to

2520

vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must

2521

have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-VkPipelineVieportCreateInfo-04141
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-04876

2522

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdDrawClusterIndirectHUAWEI-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawClusterIndirectHUAWEI-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdDrawClusterIndirectHUAWEI-blendEnable-04727

2523

If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdDrawClusterIndirectHUAWEI-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdDrawClusterIndirectHUAWEI-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawClusterIndirectHUAWEI-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView

2524

member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawClusterIndirectHUAWEI-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawClusterIndirectHUAWEI-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawClusterIndirectHUAWEI-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawClusterIndirectHUAWEI-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawClusterIndirectHUAWEI-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the

2525

corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

2526

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to

2527

the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-attachmentCount-07750
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command

2528

buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawClusterIndirectHUAWEI-dynamicRenderingUnusedAttachments-08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of

2529

VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdDrawClusterIndirectHUAWEI-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawClusterIndirectHUAWEI-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawClusterIndirectHUAWEI-multisampledRenderToSingleSampled-07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo
::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to

2530

VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-multisampledRenderToSingleSampled-07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawClusterIndirectHUAWEI-multisampledRenderToSingleSampled-07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawClusterIndirectHUAWEI-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdDrawClusterIndirectHUAWEI-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawClusterIndirectHUAWEI-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must

2531

not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawClusterIndirectHUAWEI-
primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdDrawClusterIndirectHUAWEI-
primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then

2532

vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,

2533

and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08659
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set

2534

rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08663
If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current

2535

command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to

2536

vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have

2537

been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07642
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command

2538

buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07646

2539

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08683

2540

If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdDrawClusterIndirectHUAWEI-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples
in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

2541

• VUID-vkCmdDrawClusterIndirectHUAWEI-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdDrawClusterIndirectHUAWEI-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdDrawClusterIndirectHUAWEI-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been
called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color

2542

attachments in the current subpass

• VUID-vkCmdDrawClusterIndirectHUAWEI-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdDrawClusterIndirectHUAWEI-advancedBlendMaxColorAttachments-07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdDrawClusterIndirectHUAWEI-
primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsEnable-07485

2543

If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the

2544

value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdDrawClusterIndirectHUAWEI-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdDrawClusterIndirectHUAWEI-coverageReductionMode-07491
If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the

2545

sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdDrawClusterIndirectHUAWEI-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdDrawClusterIndirectHUAWEI-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdDrawClusterIndirectHUAWEI-stippledLineEnable-07497
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is

2546

VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdDrawClusterIndirectHUAWEI-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdDrawClusterIndirectHUAWEI-conservativePointAndLineRasterization-07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08686
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08687

2547

If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08699
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

2548

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdDrawClusterIndirectHUAWEI-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawClusterIndirectHUAWEI-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdDrawClusterIndirectHUAWEI-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdDrawClusterIndirectHUAWEI-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by

2549

vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdDrawClusterIndirectHUAWEI-stage-06480
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT
or VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07074
Transform Feedback Queries must not be active

• VUID-vkCmdDrawClusterIndirectHUAWEI-None-07075
Primitives Generated Queries must not be active

• VUID-vkCmdDrawClusterIndirectHUAWEI-pipelineStatistics-07076
The pipelineStatistics member used to create any active Pipeline Statistics Query must
not contain VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, or
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT

• VUID-vkCmdDrawClusterIndirectHUAWEI-drawCount-02718
If the multiDrawIndirect feature is not enabled, drawCount must be 0 or 1

• VUID-vkCmdDrawClusterIndirectHUAWEI-drawCount-02719
drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• VUID-vkCmdDrawClusterIndirectHUAWEI-ClusterCullingHUAWEI-07824
The current pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS must contain a shader
stage using the ClusterCullingHUAWEI Execution Model.

• VUID-vkCmdDrawClusterIndirectHUAWEI-offset-07918
offset must be a multiple of VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI
::indirectBufferOffsetAlignment

Valid Usage (Implicit)

• VUID-vkCmdDrawClusterIndirectHUAWEI-commandBuffer-parameter

2550

commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawClusterIndirectHUAWEI-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawClusterIndirectHUAWEI-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawClusterIndirectHUAWEI-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawClusterIndirectHUAWEI-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawClusterIndirectHUAWEI-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDrawClusterIndirectHUAWEI-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

2551

Chapter 22. Fixed-Function Vertex
Processing
Vertex fetching is controlled via configurable state, as a logically distinct graphics pipeline stage.

22.1. Vertex Attributes
Vertex shaders can define input variables, which receive vertex attribute data transferred from one
or more VkBuffer(s) by drawing commands. Vertex shader input variables are bound to buffers via
an indirect binding where the vertex shader associates a vertex input attribute number with each
variable, vertex input attributes are associated to vertex input bindings on a per-pipeline basis, and
vertex input bindings are associated with specific buffers on a per-draw basis via the
vkCmdBindVertexBuffers command. Vertex input attribute and vertex input binding descriptions also
contain format information controlling how data is extracted from buffer memory and converted
to the format expected by the vertex shader.

There are VkPhysicalDeviceLimits::maxVertexInputAttributes number of vertex input attributes and
VkPhysicalDeviceLimits::maxVertexInputBindings number of vertex input bindings (each referred to
by zero-based indices), where there are at least as many vertex input attributes as there are vertex
input bindings. Applications can store multiple vertex input attributes interleaved in a single
buffer, and use a single vertex input binding to access those attributes.

In GLSL, vertex shaders associate input variables with a vertex input attribute number using the
location layout qualifier. The Component layout qualifier associates components of a vertex shader
input variable with components of a vertex input attribute.

GLSL example

// Assign location M to variableName
layout (location=M, component=2) in vec2 variableName;

// Assign locations [N,N+L) to the array elements of variableNameArray
layout (location=N) in vec4 variableNameArray[L];

In SPIR-V, vertex shaders associate input variables with a vertex input attribute number using the
Location decoration. The Component decoration associates components of a vertex shader input
variable with components of a vertex input attribute. The Location and Component decorations are
specified via the OpDecorate instruction.

SPIR-V example

 ...
 %1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "variableName"
 OpName %15 "variableNameArray"
 OpDecorate %18 BuiltIn VertexIndex

2552

 OpDecorate %19 BuiltIn InstanceIndex
 OpDecorate %9 Location M
 OpDecorate %9 Component 2
 OpDecorate %15 Location N
 ...
 %2 = OpTypeVoid
 %3 = OpTypeFunction %2
 %6 = OpTypeFloat 32
 %7 = OpTypeVector %6 2
 %8 = OpTypePointer Input %7
 %9 = OpVariable %8 Input
 %10 = OpTypeVector %6 4
 %11 = OpTypeInt 32 0
 %12 = OpConstant %11 L
 %13 = OpTypeArray %10 %12
 %14 = OpTypePointer Input %13
 %15 = OpVariable %14 Input
 ...

22.1.1. Attribute Location and Component Assignment

The Location decoration specifies which vertex input attribute is used to read and interpret the data
that a variable will consume.

When a vertex shader input variable declared using a 16- or 32-bit scalar or vector data type is
assigned a Location, its value(s) are taken from the components of the input attribute specified with
the corresponding VkVertexInputAttributeDescription::location. The components used depend on
the type of variable and the Component decoration specified in the variable declaration, as identified
in Input attribute components accessed by 16-bit and 32-bit input variables. Any 16-bit or 32-bit
scalar or vector input will consume a single Location. For 16-bit and 32-bit data types, missing
components are filled in with default values as described below.

If an implementation supports storageInputOutput16, vertex shader input variables can have a
width of 16 bits.

Table 32. Input attribute components accessed by 16-bit and 32-bit
input variables

16-bit or 32-bit data type Component
decoration

Components
consumed

scalar 0 or unspecified (x, o, o, o)

scalar 1 (o, y, o, o)

scalar 2 (o, o, z, o)

scalar 3 (o, o, o, w)

two-component vector 0 or unspecified (x, y, o, o)

two-component vector 1 (o, y, z, o)

two-component vector 2 (o, o, z, w)

2553

16-bit or 32-bit data type Component
decoration

Components
consumed

three-component vector 0 or unspecified (x, y, z, o)

three-component vector 1 (o, y, z, w)

four-component vector 0 or unspecified (x, y, z, w)

Components indicated by “o” are available for use by other input variables which are sourced from
the same attribute, and if used, are either filled with the corresponding component from the input
format (if present), or the default value.

When a vertex shader input variable declared using a 32-bit floating point matrix type is assigned a
Location i, its values are taken from consecutive input attributes starting with the corresponding
VkVertexInputAttributeDescription::location. Such matrices are treated as an array of column
vectors with values taken from the input attributes identified in Input attributes accessed by 32-bit
input matrix variables. The VkVertexInputAttributeDescription::format must be specified with a
VkFormat that corresponds to the appropriate type of column vector. The Component decoration
must not be used with matrix types.

Table 33. Input attributes accessed by 32-bit input matrix variables

Data
type

Column vector type Locations
consumed

Components consumed

mat2 two-component vector i, i+1 (x, y, o, o), (x, y, o, o)

mat2x3 three-component
vector

i, i+1 (x, y, z, o), (x, y, z, o)

mat2x4 four-component
vector

i, i+1 (x, y, z, w), (x, y, z, w)

mat3x2 two-component vector i, i+1, i+2 (x, y, o, o), (x, y, o, o), (x, y, o, o)

mat3 three-component
vector

i, i+1, i+2 (x, y, z, o), (x, y, z, o), (x, y, z, o)

mat3x4 four-component
vector

i, i+1, i+2 (x, y, z, w), (x, y, z, w), (x, y, z, w)

mat4x2 two-component vector i, i+1, i+2, i+3 (x, y, o, o), (x, y, o, o), (x, y, o, o), (x, y, o, o)

mat4x3 three-component
vector

i, i+1, i+2, i+3 (x, y, z, o), (x, y, z, o), (x, y, z, o), (x, y, z, o)

mat4 four-component
vector

i, i+1, i+2, i+3 (x, y, z, w), (x, y, z, w), (x, y, z, w), (x, y, z, w)

Components indicated by “o” are available for use by other input variables which are sourced from
the same attribute, and if used, are either filled with the corresponding component from the input
(if present), or the default value.

When a vertex shader input variable declared using a scalar or vector 64-bit data type is assigned a
Location i, its values are taken from consecutive input attributes starting with the corresponding

2554

VkVertexInputAttributeDescription::location. The Location slots and Component words used depend
on the type of variable and the Component decoration specified in the variable declaration, as
identified in Input attribute locations and components accessed by 64-bit input variables. For 64-bit
data types, no default attribute values are provided. Input variables must not use more
components than provided by the attribute.

Table 34. Input attribute locations and components accessed by 64-bit input variables

Input format

Locations
consumed

64-bit data type

Location
decoration

Component
decoration

32-bit
component

s
consumed

R64 i scalar i 0 or unspecified (x, y, -, -)

R64G64 i

scalar i 0 or unspecified (x, y, o, o)

scalar i 2 (o, o, z, w)

two-component vector i 0 or unspecified (x, y, z, w)

R64G64B64 i, i+1

scalar i 0 or unspecified (x, y, o, o),
(o, o, -, -)

scalar i 2 (o, o, z, w),
(o, o, -, -)

scalar i+1 0 or unspecified (o, o, o, o),
(x, y, -, -)

two-component vector i 0 or unspecified (x, y, z, w),
(o, o, -, -)

three-component
vector

i unspecified (x, y, z, w),
(x, y, -, -)

R64G64B64A64 i, i+1

scalar i 0 or unspecified (x, y, o, o),
(o, o, o, o)

scalar i 2 (o, o, z, w),
(o, o, o, o)

scalar i+1 0 or unspecified (o, o, o, o),
(x, y, o, o)

scalar i+1 2 (o, o, o, o),
(o, o, z, w)

two-component vector i 0 or unspecified (x, y, z, w),
(o, o, o, o)

two-component vector i+1 0 or unspecified (o, o, o, o),
(x, y, z, w)

three-component
vector

i unspecified (x, y, z, w),
(x, y, o, o)

four-component vector i unspecified (x, y, z, w),
(x, y, z, w)

2555

Components indicated by “o” are available for use by other input variables which are sourced from
the same attribute. Components indicated by “-” are not available for input variables as there are
no default values provided for 64-bit data types, and there is no data provided by the input format.

When a vertex shader input variable declared using a 64-bit floating-point matrix type is assigned a
Location i, its values are taken from consecutive input attribute locations. Such matrices are treated
as an array of column vectors with values taken from the input attributes as shown in Input
attribute locations and components accessed by 64-bit input variables. Each column vector starts at
the Location immediately following the last Location of the previous column vector. The number of
attributes and components assigned to each matrix is determined by the matrix dimensions and
ranges from two to eight locations.

When a vertex shader input variable declared using an array type is assigned a location, its values
are taken from consecutive input attributes starting with the corresponding
VkVertexInputAttributeDescription::location. The number of attributes and components assigned to
each element are determined according to the data type of the array elements and Component
decoration (if any) specified in the declaration of the array, as described above. Each element of the
array, in order, is assigned to consecutive locations, but all at the same specified component within
each location.

Only input variables declared with the data types and component decorations as specified above
are supported. Two variables are allowed to share the same Location slot only if their Component
words do not overlap. If multiple variables share the same Location slot, they must all have the
same SPIR-V floating-point component type or all have the same width scalar type components.

22.2. Vertex Input Description
Applications specify vertex input attribute and vertex input binding descriptions as part of graphics
pipeline creation by setting the VkGraphicsPipelineCreateInfo::pVertexInputState pointer to a
VkPipelineVertexInputStateCreateInfo structure. Alternatively, if the graphics pipeline is created
with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then the vertex input attribute
and vertex input binding descriptions are specified dynamically with vkCmdSetVertexInputEXT,
and the VkGraphicsPipelineCreateInfo::pVertexInputState pointer is ignored.

The VkPipelineVertexInputStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineVertexInputStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineVertexInputStateCreateFlags flags;
 uint32_t vertexBindingDescriptionCount;
 const VkVertexInputBindingDescription* pVertexBindingDescriptions;
 uint32_t vertexAttributeDescriptionCount;
 const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;
} VkPipelineVertexInputStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

2556

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• vertexBindingDescriptionCount is the number of vertex binding descriptions provided in
pVertexBindingDescriptions.

• pVertexBindingDescriptions is a pointer to an array of VkVertexInputBindingDescription
structures.

• vertexAttributeDescriptionCount is the number of vertex attribute descriptions provided in
pVertexAttributeDescriptions.

• pVertexAttributeDescriptions is a pointer to an array of VkVertexInputAttributeDescription
structures.

Valid Usage

• VUID-VkPipelineVertexInputStateCreateInfo-vertexBindingDescriptionCount-00613
vertexBindingDescriptionCount must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputBindings

• VUID-VkPipelineVertexInputStateCreateInfo-vertexAttributeDescriptionCount-00614
vertexAttributeDescriptionCount must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputAttributes

• VUID-VkPipelineVertexInputStateCreateInfo-binding-00615
For every binding specified by each element of pVertexAttributeDescriptions, a
VkVertexInputBindingDescription must exist in pVertexBindingDescriptions with the same
value of binding

• VUID-VkPipelineVertexInputStateCreateInfo-pVertexBindingDescriptions-00616
All elements of pVertexBindingDescriptions must describe distinct binding numbers

• VUID-VkPipelineVertexInputStateCreateInfo-pVertexAttributeDescriptions-00617
All elements of pVertexAttributeDescriptions must describe distinct attribute locations

Valid Usage (Implicit)

• VUID-VkPipelineVertexInputStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO

• VUID-VkPipelineVertexInputStateCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkPipelineVertexInputDivisorStateCreateInfoKHR

• VUID-VkPipelineVertexInputStateCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineVertexInputStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineVertexInputStateCreateInfo-pVertexBindingDescriptions-parameter
If vertexBindingDescriptionCount is not 0, pVertexBindingDescriptions must be a valid

2557

pointer to an array of vertexBindingDescriptionCount valid
VkVertexInputBindingDescription structures

• VUID-VkPipelineVertexInputStateCreateInfo-pVertexAttributeDescriptions-parameter
If vertexAttributeDescriptionCount is not 0, pVertexAttributeDescriptions must be a valid
pointer to an array of vertexAttributeDescriptionCount valid
VkVertexInputAttributeDescription structures

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineVertexInputStateCreateFlags;

VkPipelineVertexInputStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

Each vertex input binding is specified by the VkVertexInputBindingDescription structure, defined as:

// Provided by VK_VERSION_1_0
typedef struct VkVertexInputBindingDescription {
 uint32_t binding;
 uint32_t stride;
 VkVertexInputRate inputRate;
} VkVertexInputBindingDescription;

• binding is the binding number that this structure describes.

• stride is the byte stride between consecutive elements within the buffer.

• inputRate is a VkVertexInputRate value specifying whether vertex attribute addressing is a
function of the vertex index or of the instance index.

Valid Usage

• VUID-VkVertexInputBindingDescription-binding-00618
binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-VkVertexInputBindingDescription-stride-00619
stride must be less than or equal to VkPhysicalDeviceLimits::maxVertexInputBindingStride

• VUID-VkVertexInputBindingDescription-stride-04456
If the VK_KHR_portability_subset extension is enabled, stride must be a multiple of, and at
least as large as, VkPhysicalDevicePortabilitySubsetPropertiesKHR
::minVertexInputBindingStrideAlignment

Valid Usage (Implicit)

• VUID-VkVertexInputBindingDescription-inputRate-parameter
inputRate must be a valid VkVertexInputRate value

2558

Possible values of VkVertexInputBindingDescription::inputRate, specifying the rate at which vertex
attributes are pulled from buffers, are:

// Provided by VK_VERSION_1_0
typedef enum VkVertexInputRate {
 VK_VERTEX_INPUT_RATE_VERTEX = 0,
 VK_VERTEX_INPUT_RATE_INSTANCE = 1,
} VkVertexInputRate;

• VK_VERTEX_INPUT_RATE_VERTEX specifies that vertex attribute addressing is a function of the vertex
index.

• VK_VERTEX_INPUT_RATE_INSTANCE specifies that vertex attribute addressing is a function of the
instance index.

Each vertex input attribute is specified by the VkVertexInputAttributeDescription structure, defined
as:

// Provided by VK_VERSION_1_0
typedef struct VkVertexInputAttributeDescription {
 uint32_t location;
 uint32_t binding;
 VkFormat format;
 uint32_t offset;
} VkVertexInputAttributeDescription;

• location is the shader input location number for this attribute.

• binding is the binding number which this attribute takes its data from.

• format is the size and type of the vertex attribute data.

• offset is a byte offset of this attribute relative to the start of an element in the vertex input
binding.

Valid Usage

• VUID-VkVertexInputAttributeDescription-location-00620
location must be less than VkPhysicalDeviceLimits::maxVertexInputAttributes

• VUID-VkVertexInputAttributeDescription-binding-00621
binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-VkVertexInputAttributeDescription-offset-00622
offset must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputAttributeOffset

• VUID-VkVertexInputAttributeDescription-format-00623
The format features of format must contain VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

• VUID-VkVertexInputAttributeDescription-vertexAttributeAccessBeyondStride-04457

2559

If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::vertexAttributeAccessBeyondStride is
VK_FALSE, the sum of offset plus the size of the vertex attribute data described by format
must not be greater than stride in the VkVertexInputBindingDescription referenced in
binding

Valid Usage (Implicit)

• VUID-VkVertexInputAttributeDescription-format-parameter
format must be a valid VkFormat value

To dynamically set the vertex input attribute and vertex input binding descriptions, call:

// Provided by VK_EXT_shader_object, VK_EXT_vertex_input_dynamic_state
void vkCmdSetVertexInputEXT(
 VkCommandBuffer commandBuffer,
 uint32_t vertexBindingDescriptionCount,
 const VkVertexInputBindingDescription2EXT* pVertexBindingDescriptions,
 uint32_t vertexAttributeDescriptionCount,
 const VkVertexInputAttributeDescription2EXT* pVertexAttributeDescriptions);

• commandBuffer is the command buffer into which the command will be recorded.

• vertexBindingDescriptionCount is the number of vertex binding descriptions provided in
pVertexBindingDescriptions.

• pVertexBindingDescriptions is a pointer to an array of VkVertexInputBindingDescription2EXT
structures.

• vertexAttributeDescriptionCount is the number of vertex attribute descriptions provided in
pVertexAttributeDescriptions.

• pVertexAttributeDescriptions is a pointer to an array of
VkVertexInputAttributeDescription2EXT structures.

This command sets the vertex input attribute and vertex input binding descriptions state for
subsequent drawing commands when drawing using shader objects, or when the graphics pipeline
is created with VK_DYNAMIC_STATE_VERTEX_INPUT_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkGraphicsPipelineCreateInfo
::pVertexInputState values used to create the currently active pipeline.

If drawing using shader objects, or if the bound pipeline state object was also created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE dynamic state enabled, then
vkCmdBindVertexBuffers2 can be used instead of vkCmdSetVertexInputEXT to dynamically set the
stride.

2560

Valid Usage

• VUID-vkCmdSetVertexInputEXT-None-08546
Either the vertexInputDynamicState feature or the shaderObject feature or both must be
enabled

• VUID-vkCmdSetVertexInputEXT-vertexBindingDescriptionCount-04791
vertexBindingDescriptionCount must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputBindings

• VUID-vkCmdSetVertexInputEXT-vertexAttributeDescriptionCount-04792
vertexAttributeDescriptionCount must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputAttributes

• VUID-vkCmdSetVertexInputEXT-binding-04793
For every binding specified by each element of pVertexAttributeDescriptions, a
VkVertexInputBindingDescription2EXT must exist in pVertexBindingDescriptions with the
same value of binding

• VUID-vkCmdSetVertexInputEXT-pVertexBindingDescriptions-04794
All elements of pVertexBindingDescriptions must describe distinct binding numbers

• VUID-vkCmdSetVertexInputEXT-pVertexAttributeDescriptions-04795
All elements of pVertexAttributeDescriptions must describe distinct attribute locations

Valid Usage (Implicit)

• VUID-vkCmdSetVertexInputEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetVertexInputEXT-pVertexBindingDescriptions-parameter
If vertexBindingDescriptionCount is not 0, pVertexBindingDescriptions must be a valid
pointer to an array of vertexBindingDescriptionCount valid
VkVertexInputBindingDescription2EXT structures

• VUID-vkCmdSetVertexInputEXT-pVertexAttributeDescriptions-parameter
If vertexAttributeDescriptionCount is not 0, pVertexAttributeDescriptions must be a valid
pointer to an array of vertexAttributeDescriptionCount valid
VkVertexInputAttributeDescription2EXT structures

• VUID-vkCmdSetVertexInputEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetVertexInputEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetVertexInputEXT-videocoding
This command must only be called outside of a video coding scope

2561

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

The VkVertexInputBindingDescription2EXT structure is defined as:

// Provided by VK_EXT_shader_object, VK_EXT_vertex_input_dynamic_state
typedef struct VkVertexInputBindingDescription2EXT {
 VkStructureType sType;
 void* pNext;
 uint32_t binding;
 uint32_t stride;
 VkVertexInputRate inputRate;
 uint32_t divisor;
} VkVertexInputBindingDescription2EXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• binding is the binding number that this structure describes.

• stride is the byte stride between consecutive elements within the buffer.

• inputRate is a VkVertexInputRate value specifying whether vertex attribute addressing is a
function of the vertex index or of the instance index.

• divisor is the number of successive instances that will use the same value of the vertex attribute
when instanced rendering is enabled. This member can be set to a value other than 1 if the
vertexAttributeInstanceRateDivisor feature is enabled. For example, if the divisor is N, the same
vertex attribute will be applied to N successive instances before moving on to the next vertex
attribute. The maximum value of divisor is implementation-dependent and can be queried
using VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT::maxVertexAttribDivisor. A value of
0 can be used for the divisor if the vertexAttributeInstanceRateZeroDivisor feature is enabled.
In this case, the same vertex attribute will be applied to all instances.

2562

Valid Usage

• VUID-VkVertexInputBindingDescription2EXT-binding-04796
binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-VkVertexInputBindingDescription2EXT-stride-04797
stride must be less than or equal to VkPhysicalDeviceLimits::maxVertexInputBindingStride

• VUID-VkVertexInputBindingDescription2EXT-divisor-04798
If the vertexAttributeInstanceRateZeroDivisor feature is not enabled, divisor must not be
0

• VUID-VkVertexInputBindingDescription2EXT-divisor-04799
If the vertexAttributeInstanceRateDivisor feature is not enabled, divisor must be 1

• VUID-VkVertexInputBindingDescription2EXT-divisor-06226
divisor must be a value between 0 and
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT::maxVertexAttribDivisor, inclusive

• VUID-VkVertexInputBindingDescription2EXT-divisor-06227
If divisor is not 1 then inputRate must be of type VK_VERTEX_INPUT_RATE_INSTANCE

Valid Usage (Implicit)

• VUID-VkVertexInputBindingDescription2EXT-sType-sType
sType must be VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT

• VUID-VkVertexInputBindingDescription2EXT-inputRate-parameter
inputRate must be a valid VkVertexInputRate value

The VkVertexInputAttributeDescription2EXT structure is defined as:

// Provided by VK_EXT_shader_object, VK_EXT_vertex_input_dynamic_state
typedef struct VkVertexInputAttributeDescription2EXT {
 VkStructureType sType;
 void* pNext;
 uint32_t location;
 uint32_t binding;
 VkFormat format;
 uint32_t offset;
} VkVertexInputAttributeDescription2EXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• location is the shader input location number for this attribute.

• binding is the binding number which this attribute takes its data from.

• format is the size and type of the vertex attribute data.

2563

• offset is a byte offset of this attribute relative to the start of an element in the vertex input
binding.

Valid Usage

• VUID-VkVertexInputAttributeDescription2EXT-location-06228
location must be less than VkPhysicalDeviceLimits::maxVertexInputAttributes

• VUID-VkVertexInputAttributeDescription2EXT-binding-06229
binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-VkVertexInputAttributeDescription2EXT-offset-06230
offset must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputAttributeOffset

• VUID-VkVertexInputAttributeDescription2EXT-format-04805
The format features of format must contain VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

• VUID-VkVertexInputAttributeDescription2EXT-vertexAttributeAccessBeyondStride-04806
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::vertexAttributeAccessBeyondStride is
VK_FALSE, the sum of offset plus the size of the vertex attribute data described by format
must not be greater than stride in the VkVertexInputBindingDescription2EXT referenced
in binding

Valid Usage (Implicit)

• VUID-VkVertexInputAttributeDescription2EXT-sType-sType
sType must be VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT

• VUID-VkVertexInputAttributeDescription2EXT-format-parameter
format must be a valid VkFormat value

To bind vertex buffers to a command buffer for use in subsequent drawing commands, call:

// Provided by VK_VERSION_1_0
void vkCmdBindVertexBuffers(
 VkCommandBuffer commandBuffer,
 uint32_t firstBinding,
 uint32_t bindingCount,
 const VkBuffer* pBuffers,
 const VkDeviceSize* pOffsets);

• commandBuffer is the command buffer into which the command is recorded.

• firstBinding is the index of the first vertex input binding whose state is updated by the
command.

• bindingCount is the number of vertex input bindings whose state is updated by the command.

2564

• pBuffers is a pointer to an array of buffer handles.

• pOffsets is a pointer to an array of buffer offsets.

The values taken from elements i of pBuffers and pOffsets replace the current state for the vertex
input binding firstBinding + i, for i in [0, bindingCount). The vertex input binding is updated to start
at the offset indicated by pOffsets[i] from the start of the buffer pBuffers[i]. All vertex input
attributes that use each of these bindings will use these updated addresses in their address
calculations for subsequent drawing commands. If the nullDescriptor feature is enabled, elements
of pBuffers can be VK_NULL_HANDLE, and can be used by the vertex shader. If a vertex input
attribute is bound to a vertex input binding that is VK_NULL_HANDLE, the values taken from
memory are considered to be zero, and missing G, B, or A components are filled with (0,0,1).

Valid Usage

• VUID-vkCmdBindVertexBuffers-firstBinding-00624
firstBinding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-vkCmdBindVertexBuffers-firstBinding-00625
The sum of firstBinding and bindingCount must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-vkCmdBindVertexBuffers-pOffsets-00626
All elements of pOffsets must be less than the size of the corresponding element in
pBuffers

• VUID-vkCmdBindVertexBuffers-pBuffers-00627
All elements of pBuffers must have been created with the
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT flag

• VUID-vkCmdBindVertexBuffers-pBuffers-00628
Each element of pBuffers that is non-sparse must be bound completely and contiguously
to a single VkDeviceMemory object

• VUID-vkCmdBindVertexBuffers-pBuffers-04001
If the nullDescriptor feature is not enabled, all elements of pBuffers must not be
VK_NULL_HANDLE

• VUID-vkCmdBindVertexBuffers-pBuffers-04002
If an element of pBuffers is VK_NULL_HANDLE, then the corresponding element of
pOffsets must be zero

Valid Usage (Implicit)

• VUID-vkCmdBindVertexBuffers-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindVertexBuffers-pBuffers-parameter
pBuffers must be a valid pointer to an array of bindingCount valid or VK_NULL_HANDLE
VkBuffer handles

• VUID-vkCmdBindVertexBuffers-pOffsets-parameter

2565

pOffsets must be a valid pointer to an array of bindingCount VkDeviceSize values

• VUID-vkCmdBindVertexBuffers-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindVertexBuffers-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindVertexBuffers-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindVertexBuffers-bindingCount-arraylength
bindingCount must be greater than 0

• VUID-vkCmdBindVertexBuffers-commonparent
Both of commandBuffer, and the elements of pBuffers that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Alternatively, to bind vertex buffers, along with their sizes and strides, to a command buffer for use
in subsequent drawing commands, call:

// Provided by VK_VERSION_1_3
void vkCmdBindVertexBuffers2(
 VkCommandBuffer commandBuffer,
 uint32_t firstBinding,
 uint32_t bindingCount,
 const VkBuffer* pBuffers,
 const VkDeviceSize* pOffsets,
 const VkDeviceSize* pSizes,
 const VkDeviceSize* pStrides);

or the equivalent command

2566

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdBindVertexBuffers2EXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstBinding,
 uint32_t bindingCount,
 const VkBuffer* pBuffers,
 const VkDeviceSize* pOffsets,
 const VkDeviceSize* pSizes,
 const VkDeviceSize* pStrides);

• commandBuffer is the command buffer into which the command is recorded.

• firstBinding is the index of the first vertex input binding whose state is updated by the
command.

• bindingCount is the number of vertex input bindings whose state is updated by the command.

• pBuffers is a pointer to an array of buffer handles.

• pOffsets is a pointer to an array of buffer offsets.

• pSizes is NULL or a pointer to an array of the size in bytes of vertex data bound from pBuffers.

• pStrides is NULL or a pointer to an array of buffer strides.

The values taken from elements i of pBuffers and pOffsets replace the current state for the vertex
input binding firstBinding + i, for i in [0, bindingCount). The vertex input binding is updated to start
at the offset indicated by pOffsets[i] from the start of the buffer pBuffers[i]. If pSizes is not NULL then
pSizes[i] specifies the bound size of the vertex buffer starting from the corresponding elements of
pBuffers[i] plus pOffsets[i]. If pSizes[i] is VK_WHOLE_SIZE then the bound size is from pBuffers[i] plus
pOffsets[i] to the end of the buffer pBuffers[i]. All vertex input attributes that use each of these
bindings will use these updated addresses in their address calculations for subsequent drawing
commands. If the nullDescriptor feature is enabled, elements of pBuffers can be
VK_NULL_HANDLE, and can be used by the vertex shader. If a vertex input attribute is bound to a
vertex input binding that is VK_NULL_HANDLE, the values taken from memory are considered to
be zero, and missing G, B, or A components are filled with (0,0,1).

This command also dynamically sets the byte strides between consecutive elements within buffer
pBuffers[i] to the corresponding pStrides[i] value when drawing using shader objects, or when the
graphics pipeline is created with VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, strides are specified by the
VkVertexInputBindingDescription::stride values used to create the currently active pipeline.

If drawing using shader objects or if the bound pipeline state object was also created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled then vkCmdSetVertexInputEXT can be
used instead of vkCmdBindVertexBuffers2 to set the stride.

Note

Unlike the static state to set the same, pStrides must be between 0 and the
maximum extent of the attributes in the binding. vkCmdSetVertexInputEXT does
not have this restriction so can be used if other stride values are desired.

2567

Valid Usage

• VUID-vkCmdBindVertexBuffers2-firstBinding-03355
firstBinding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-vkCmdBindVertexBuffers2-firstBinding-03356
The sum of firstBinding and bindingCount must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-vkCmdBindVertexBuffers2-pOffsets-03357
If pSizes is not NULL, all elements of pOffsets must be less than the size of the
corresponding element in pBuffers

• VUID-vkCmdBindVertexBuffers2-pSizes-03358
If pSizes is not NULL, all elements of pOffsets plus pSizes , where pSizes is not
VK_WHOLE_SIZE, must be less than or equal to the size of the corresponding element in
pBuffers

• VUID-vkCmdBindVertexBuffers2-pBuffers-03359
All elements of pBuffers must have been created with the
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT flag

• VUID-vkCmdBindVertexBuffers2-pBuffers-03360
Each element of pBuffers that is non-sparse must be bound completely and contiguously
to a single VkDeviceMemory object

• VUID-vkCmdBindVertexBuffers2-pBuffers-04111
If the nullDescriptor feature is not enabled, all elements of pBuffers must not be
VK_NULL_HANDLE

• VUID-vkCmdBindVertexBuffers2-pBuffers-04112
If an element of pBuffers is VK_NULL_HANDLE, then the corresponding element of
pOffsets must be zero

• VUID-vkCmdBindVertexBuffers2-pStrides-03362
If pStrides is not NULL each element of pStrides must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputBindingStride

• VUID-vkCmdBindVertexBuffers2-pStrides-06209
If pStrides is not NULL each element of pStrides must be either 0 or greater than or equal
to the maximum extent of all vertex input attributes fetched from the corresponding
binding, where the extent is calculated as the VkVertexInputAttributeDescription::offset
plus VkVertexInputAttributeDescription::format size

Valid Usage (Implicit)

• VUID-vkCmdBindVertexBuffers2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindVertexBuffers2-pBuffers-parameter
pBuffers must be a valid pointer to an array of bindingCount valid or VK_NULL_HANDLE
VkBuffer handles

2568

• VUID-vkCmdBindVertexBuffers2-pOffsets-parameter
pOffsets must be a valid pointer to an array of bindingCount VkDeviceSize values

• VUID-vkCmdBindVertexBuffers2-pSizes-parameter
If pSizes is not NULL, pSizes must be a valid pointer to an array of bindingCount
VkDeviceSize values

• VUID-vkCmdBindVertexBuffers2-pStrides-parameter
If pStrides is not NULL, pStrides must be a valid pointer to an array of bindingCount
VkDeviceSize values

• VUID-vkCmdBindVertexBuffers2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindVertexBuffers2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindVertexBuffers2-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindVertexBuffers2-bindingCount-arraylength
If any of pSizes, or pStrides are not NULL, bindingCount must be greater than 0

• VUID-vkCmdBindVertexBuffers2-commonparent
Both of commandBuffer, and the elements of pBuffers that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

22.3. Vertex Attribute Divisor in Instanced Rendering
If the vertexAttributeInstanceRateDivisor feature is enabled and the pNext chain of
VkPipelineVertexInputStateCreateInfo includes a VkPipelineVertexInputDivisorStateCreateInfoKHR
structure, then that structure controls how vertex attributes are assigned to an instance when
instanced rendering is enabled.

2569

The VkPipelineVertexInputDivisorStateCreateInfoKHR structure is defined as:

// Provided by VK_KHR_vertex_attribute_divisor
typedef struct VkPipelineVertexInputDivisorStateCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t vertexBindingDivisorCount;
 const VkVertexInputBindingDivisorDescriptionKHR* pVertexBindingDivisors;
} VkPipelineVertexInputDivisorStateCreateInfoKHR;

or the equivalent

// Provided by VK_EXT_vertex_attribute_divisor
typedef VkPipelineVertexInputDivisorStateCreateInfoKHR
VkPipelineVertexInputDivisorStateCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• vertexBindingDivisorCount is the number of elements in the pVertexBindingDivisors array.

• pVertexBindingDivisors is a pointer to an array of VkVertexInputBindingDivisorDescriptionKHR
structures specifying the divisor value for each binding.

Valid Usage (Implicit)

• VUID-VkPipelineVertexInputDivisorStateCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_KHR

• VUID-VkPipelineVertexInputDivisorStateCreateInfoKHR-pVertexBindingDivisors-
parameter
pVertexBindingDivisors must be a valid pointer to an array of vertexBindingDivisorCount
VkVertexInputBindingDivisorDescriptionKHR structures

• VUID-VkPipelineVertexInputDivisorStateCreateInfoKHR-vertexBindingDivisorCount-
arraylength
vertexBindingDivisorCount must be greater than 0

The individual divisor values per binding are specified using the
VkVertexInputBindingDivisorDescriptionKHR structure which is defined as:

// Provided by VK_KHR_vertex_attribute_divisor
typedef struct VkVertexInputBindingDivisorDescriptionKHR {
 uint32_t binding;
 uint32_t divisor;
} VkVertexInputBindingDivisorDescriptionKHR;

2570

or the equivalent

// Provided by VK_EXT_vertex_attribute_divisor
typedef VkVertexInputBindingDivisorDescriptionKHR
VkVertexInputBindingDivisorDescriptionEXT;

• binding is the binding number for which the divisor is specified.

• divisor is the number of successive instances that will use the same value of the vertex attribute
when instanced rendering is enabled. For example, if the divisor is N, the same vertex attribute
will be applied to N successive instances before moving on to the next vertex attribute. The
maximum value of divisor is implementation-dependent and can be queried using
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::maxVertexAttribDivisor. A value of 0
can be used for the divisor if the vertexAttributeInstanceRateZeroDivisor feature is enabled. In
this case, the same vertex attribute will be applied to all instances.

If this structure is not used to define a divisor value for an attribute, then the divisor has a logical
default value of 1.

Valid Usage

• VUID-VkVertexInputBindingDivisorDescriptionKHR-binding-01869
binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-VkVertexInputBindingDivisorDescriptionKHR-
vertexAttributeInstanceRateZeroDivisor-02228
If the vertexAttributeInstanceRateZeroDivisor feature is not enabled, divisor must not be
0

• VUID-VkVertexInputBindingDivisorDescriptionKHR-vertexAttributeInstanceRateDivisor-
02229
If the vertexAttributeInstanceRateDivisor feature is not enabled, divisor must be 1

• VUID-VkVertexInputBindingDivisorDescriptionKHR-divisor-01870
divisor must be a value between 0 and
VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR::maxVertexAttribDivisor, inclusive

• VUID-VkVertexInputBindingDivisorDescriptionKHR-inputRate-01871
VkVertexInputBindingDescription::inputRate must be of type
VK_VERTEX_INPUT_RATE_INSTANCE for this binding

22.4. Vertex Input Address Calculation
The address of each attribute for each vertexIndex and instanceIndex is calculated as follows:

• Let attribDesc be the member of VkPipelineVertexInputStateCreateInfo
::pVertexAttributeDescriptions with VkVertexInputAttributeDescription::location equal to the
vertex input attribute number.

• Let bindingDesc be the member of VkPipelineVertexInputStateCreateInfo

2571

::pVertexBindingDescriptions with VkVertexInputAttributeDescription::binding equal to
attribDesc.binding.

• Let vertexIndex be the index of the vertex within the draw (a value between firstVertex and
firstVertex+vertexCount for vkCmdDraw, or a value taken from the index buffer plus vertexOffset
for vkCmdDrawIndexed), and let instanceIndex be the instance number of the draw (a value
between firstInstance and firstInstance+instanceCount).

• Let offset be an array of offsets into the currently bound vertex buffers specified during
vkCmdBindVertexBuffers or vkCmdBindVertexBuffers2 with pOffsets.

• Let divisor be the member of VkPipelineVertexInputDivisorStateCreateInfoKHR
::pVertexBindingDivisors with VkVertexInputBindingDivisorDescriptionKHR::binding equal to
attribDesc.binding. If the vertex binding state is dynamically set, instead let divisor be the
member of the pVertexBindingDescriptions parameter to the vkCmdSetVertexInputEXT call with
VkVertexInputBindingDescription2EXT::binding equal to attribDesc.binding.

• Let stride be the member of VkPipelineVertexInputStateCreateInfo
::pVertexBindingDescriptions->stride unless there is dynamic state causing the value to be
ignored. In this case the value is set from the last value from one of the following

◦ vkCmdSetVertexInputEXT::pVertexBindingDescriptions->stride

◦ vkCmdBindVertexBuffers2EXT::pStride, if not NULL

bufferBindingAddress = buffer[binding].baseAddress + offset[binding];

if (bindingDesc.inputRate == VK_VERTEX_INPUT_RATE_VERTEX)
 effectiveVertexOffset = vertexIndex * stride;
else
 if (divisor == 0)
 effectiveVertexOffset = firstInstance * stride;
 else
 effectiveVertexOffset = (firstInstance + ((instanceIndex - firstInstance) /
divisor)) * stride;

attribAddress = bufferBindingAddress + effectiveVertexOffset + attribDesc.offset;

22.4.1. Vertex Input Extraction

For each attribute, raw data is extracted starting at attribAddress and is converted from the
VkVertexInputAttributeDescription’s format to either floating-point, unsigned integer, or signed
integer based on the numeric type of format. The numeric type of format must match the numeric
type of the input variable in the shader. The input variable in the shader must be declared as a 64-
bit data type if and only if format is a 64-bit data type. If format is a packed format, attribAddress
must be a multiple of the size in bytes of the whole attribute data type as described in Packed
Formats. Otherwise, attribAddress must be a multiple of the size in bytes of the component type
indicated by format (see Formats). For attributes that are not 64-bit data types, each component is
converted to the format of the input variable based on its type and size (as defined in the Format
Definition section for each VkFormat), using the appropriate equations in 16-Bit Floating-Point
Numbers, Unsigned 11-Bit Floating-Point Numbers, Unsigned 10-Bit Floating-Point Numbers, Fixed-

2572

Point Data Conversion, and Shared Exponent to RGB. Signed integer components smaller than 32
bits are sign-extended. Attributes that are not 64-bit data types are expanded to four components in
the same way as described in conversion to RGBA. The number of components in the vertex shader
input variable need not exactly match the number of components in the format. If the vertex
shader has fewer components, the extra components are discarded.

2573

Chapter 23. Tessellation
Tessellation involves three pipeline stages. First, a tessellation control shader transforms control
points of a patch and can produce per-patch data. Second, a fixed-function tessellator generates
multiple primitives corresponding to a tessellation of the patch in (u,v) or (u,v,w) parameter space.
Third, a tessellation evaluation shader transforms the vertices of the tessellated patch, for example
to compute their positions and attributes as part of the tessellated surface. The tessellator is
enabled when the pipeline contains both a tessellation control shader and a tessellation evaluation
shader.

23.1. Tessellator
If a pipeline includes both tessellation shaders (control and evaluation), the tessellator consumes
each input patch (after vertex shading) and produces a new set of independent primitives (points,
lines, or triangles). These primitives are logically produced by subdividing a geometric primitive
(rectangle or triangle) according to the per-patch outer and inner tessellation levels written by the
tessellation control shader. These levels are specified using the built-in variables TessLevelOuter
and TessLevelInner, respectively. This subdivision is performed in an implementation-dependent
manner. If no tessellation shaders are present in the pipeline, the tessellator is disabled and
incoming primitives are passed through without modification.

The type of subdivision performed by the tessellator is specified by an OpExecutionMode instruction
using one of the Triangles, Quads, or IsoLines execution modes. When using shader objects, this
instruction must be specified in the tessellation evaluation shader, and may also be specified in the
tessellation control shader. When using pipelines, this instruction may be specified in either the
tessellation evaluation or tessellation control shader. When using shader objects, tessellation-
related modes that are required must be specified in the tessellation evaluation shader, and may
also be specified in the tessellation control shader. Other tessellation-related modes may be
specified in the tessellation evaluation shader. When using pipelines, other tessellation-related
execution modes can also be specified in either the tessellation control or tessellation evaluation
shaders.

Any tessellation-related modes specified in both the tessellation control and tessellation evaluation
shaders must be the same.

Tessellation execution modes include:

• Triangles, Quads, and IsoLines. These control the type of subdivision and topology of the output
primitives. When using shader objects, one mode must be set in at least the tessellation
evaluation stage. When using pipelines, one mode must be set in at least one of the tessellation
shader stages. If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::tessellationIsolines is VK_FALSE, then isoline
tessellation is not supported by the implementation, and IsoLines must not be used in either
tessellation shader stage.

• VertexOrderCw and VertexOrderCcw. These control the orientation of triangles generated by the
tessellator. When using shader objects, one mode must be set in at least the tessellation
evaluation stage. When using pipelines, one mode must be set in at least one of the tessellation

2574

shader stages.

• PointMode. Controls generation of points rather than triangles or lines. This functionality
defaults to disabled, and is enabled if either shader stage includes the execution mode. When
using shader objects, if PointMode is set in the tessellation control stage, it must be identically set
in the tessellation evaluation stage. If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::tessellationPointMode is VK_FALSE, then point
mode tessellation is not supported by the implementation, and PointMode must not be used in
either tessellation shader stage.

• SpacingEqual, SpacingFractionalEven, and SpacingFractionalOdd. Controls the spacing of segments
on the edges of tessellated primitives. When using shader objects, one mode must be set in at
least the tessellation evaluation stage. When using pipelines, one mode must be set in at least
one of the tessellation shader stages.

• OutputVertices. Controls the size of the output patch of the tessellation control shader. When
using shader objects, one value must be set in at least the tessellation control stage. When using
pipelines, one value must be set in at least one of the tessellation shader stages.

For triangles, the tessellator subdivides a triangle primitive into smaller triangles. For quads, the
tessellator subdivides a rectangle primitive into smaller triangles. For isolines, the tessellator
subdivides a rectangle primitive into a collection of line segments arranged in strips stretching
across the rectangle in the u dimension (i.e. the coordinates in TessCoord are of the form (0,x)
through (1,x) for all tessellation evaluation shader invocations that share a line).

Each vertex produced by the tessellator has an associated (u,v,w) or (u,v) position in a normalized
parameter space, with parameter values in the range [0,1], as illustrated in figures Domain
parameterization for tessellation primitive modes (upper-left origin) and Domain parameterization
for tessellation primitive modes (lower-left origin). The domain space can have either an upper-left
or lower-left origin, selected by the domainOrigin member of
VkPipelineTessellationDomainOriginStateCreateInfo.

2575

(no edge)
(0,1) (1,1)

(0,0) (1,0)

(0,1,0)

(1,0,0)(0,0,1)

(0,1) (1,1)

(0,0) (1,0)

OL0

OL1

OL0

OL3

OL1

OL2

IL0

IL1 OL0 OL2

OL1

IL0

Quads Triangles

Isolines

Figure 15. Domain parameterization for tessellation primitive modes (upper-left origin)

2576

(no edge)
(0,1) (1,1)

(0,0) (1,0)

(0,1,0)

(1,0,0)(0,0,1)

(0,1) (1,1)

(0,0) (1,0)

OL0

OL1

OL0

OL1

OL3

OL2

IL0

IL1 OL0 OL2

OL1

IL0

Quads Triangles

Isolines

Figure 16. Domain parameterization for tessellation primitive modes (lower-left origin)

Caption

In the domain parameterization diagrams, the coordinates illustrate the value of TessCoord at
the corners of the domain. The labels on the edges indicate the inner (IL0 and IL1) and outer
(OL0 through OL3) tessellation level values used to control the number of subdivisions along
each edge of the domain.

For triangles, the vertex’s position is a barycentric coordinate (u,v,w), where u + v + w = 1.0, and
indicates the relative influence of the three vertices of the triangle on the position of the vertex. For
quads and isolines, the position is a (u,v) coordinate indicating the relative horizontal and vertical
position of the vertex relative to the subdivided rectangle. The subdivision process is explained in
more detail in subsequent sections.

23.2. Tessellator Patch Discard
A patch is discarded by the tessellator if any relevant outer tessellation level is less than or equal to
zero.

Patches will also be discarded if any relevant outer tessellation level corresponds to a floating-point

2577

NaN (not a number) in implementations supporting NaN.

No new primitives are generated and the tessellation evaluation shader is not executed for patches
that are discarded. For Quads, all four outer levels are relevant. For Triangles and IsoLines, only the
first three or two outer levels, respectively, are relevant. Negative inner levels will not cause a
patch to be discarded; they will be clamped as described below.

23.3. Tessellator Spacing
Each of the tessellation levels is used to determine the number and spacing of segments used to
subdivide a corresponding edge. The method used to derive the number and spacing of segments is
specified by an OpExecutionMode in the tessellation control or tessellation evaluation shader using
one of the identifiers SpacingEqual, SpacingFractionalEven, or SpacingFractionalOdd.

If SpacingEqual is used, the floating-point tessellation level is first clamped to [1, maxLevel], where
maxLevel is the implementation-dependent maximum tessellation level (VkPhysicalDeviceLimits
::maxTessellationGenerationLevel). The result is rounded up to the nearest integer n, and the
corresponding edge is divided into n segments of equal length in (u,v) space.

If SpacingFractionalEven is used, the tessellation level is first clamped to [2, maxLevel] and then
rounded up to the nearest even integer n. If SpacingFractionalOdd is used, the tessellation level is
clamped to [1, maxLevel - 1] and then rounded up to the nearest odd integer n. If n is one, the edge
will not be subdivided. Otherwise, the corresponding edge will be divided into n - 2 segments of
equal length, and two additional segments of equal length that are typically shorter than the other
segments. The length of the two additional segments relative to the others will decrease
monotonically with n - f, where f is the clamped floating-point tessellation level. When n - f is zero,
the additional segments will have equal length to the other segments. As n - f approaches 2.0, the
relative length of the additional segments approaches zero. The two additional segments must be
placed symmetrically on opposite sides of the subdivided edge. The relative location of these two
segments is implementation-dependent, but must be identical for any pair of subdivided edges
with identical values of f.

When tessellating triangles or quads using point mode with fractional odd spacing, the tessellator
may produce interior vertices that are positioned on the edge of the patch if an inner tessellation
level is less than or equal to one. Such vertices are considered distinct from vertices produced by
subdividing the outer edge of the patch, even if there are pairs of vertices with identical
coordinates.

23.4. Tessellation Primitive Ordering
Few guarantees are provided for the relative ordering of primitives produced by tessellation, as
they pertain to primitive order.

• The output primitives generated from each input primitive are passed to subsequent pipeline
stages in an implementation-dependent order.

• All output primitives generated from a given input primitive are passed to subsequent pipeline
stages before any output primitives generated from subsequent input primitives.

2578

23.5. Tessellator Vertex Winding Order
When the tessellator produces triangles (in the Triangles or Quads modes), the orientation of all
triangles is specified with an OpExecutionMode of VertexOrderCw or VertexOrderCcw in the tessellation
control or tessellation evaluation shaders. If the order is VertexOrderCw, the vertices of all generated
triangles will have clockwise ordering in (u,v) or (u,v,w) space. If the order is VertexOrderCcw, the
vertices will have counter-clockwise ordering in that space.

If the tessellation domain has an upper-left origin, the vertices of a triangle have counter-clockwise
ordering if

a = u0 v1 - u1 v0 + u1 v2 - u2 v1 + u2 v0 - u0 v2

is negative, and clockwise ordering if a is positive. ui and vi are the u and v coordinates in
normalized parameter space of the ith vertex of the triangle. If the tessellation domain has a lower-
left origin, the vertices of a triangle have counter-clockwise ordering if a is positive, and clockwise
ordering if a is negative.

Note

The value a is proportional (with a positive factor) to the signed area of the
triangle.

In Triangles mode, even though the vertex coordinates have a w value, it does not
participate directly in the computation of a, being an affine combination of u and
v.

23.6. Triangle Tessellation
If the tessellation primitive mode is Triangles, an equilateral triangle is subdivided into a collection
of triangles covering the area of the original triangle. First, the original triangle is subdivided into a
collection of concentric equilateral triangles. The edges of each of these triangles are subdivided,
and the area between each triangle pair is filled by triangles produced by joining the vertices on the
subdivided edges. The number of concentric triangles and the number of subdivisions along each
triangle except the outermost is derived from the first inner tessellation level. The edges of the
outermost triangle are subdivided independently, using the first, second, and third outer
tessellation levels to control the number of subdivisions of the u = 0 (left), v = 0 (bottom), and w = 0
(right) edges, respectively. The second inner tessellation level and the fourth outer tessellation level
have no effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are exactly one after
clamping and rounding, only a single triangle with (u,v,w) coordinates of (0,0,1), (1,0,0), and (0,1,0)
is generated. If the inner tessellation level is one and any of the outer tessellation levels is greater
than one, the inner tessellation level is treated as though it were originally specified as 1 + ε and
will result in a two- or three-segment subdivision depending on the tessellation spacing. When used
with fractional odd spacing, the three-segment subdivision may produce inner vertices positioned
on the edge of the triangle.

2579

If any tessellation level is greater than one, tessellation begins by producing a set of concentric
inner triangles and subdividing their edges. First, the three outer edges are temporarily subdivided
using the clamped and rounded first inner tessellation level and the specified tessellation spacing,
generating n segments. For the outermost inner triangle, the inner triangle is degenerate — a single
point at the center of the triangle — if n is two. Otherwise, for each corner of the outer triangle, an
inner triangle corner is produced at the intersection of two lines extended perpendicular to the
corner’s two adjacent edges running through the vertex of the subdivided outer edge nearest that
corner. If n is three, the edges of the inner triangle are not subdivided and it is the final triangle in
the set of concentric triangles. Otherwise, each edge of the inner triangle is divided into n - 2
segments, with the n - 1 vertices of this subdivision produced by intersecting the inner edge with
lines perpendicular to the edge running through the n - 1 innermost vertices of the subdivision of
the outer edge. Once the outermost inner triangle is subdivided, the previous subdivision process
repeats itself, using the generated triangle as an outer triangle. This subdivision process is
illustrated in Inner Triangle Tessellation.

(0,1,0)

(a) (b)(1,0,0)(0,0,1)

(0,1,0)

(1,0,0)(0,0,1)

Figure 17. Inner Triangle Tessellation

Caption

In the Inner Triangle Tessellation diagram, inner tessellation levels of (a) four and (b) five are
shown (not to scale). Solid black circles depict vertices along the edges of the concentric
triangles. The edges of inner triangles are subdivided by intersecting the edge with segments
perpendicular to the edge passing through each inner vertex of the subdivided outer edge.
Dotted lines depict edges connecting corresponding vertices on the inner and outer triangle
edges.

Once all the concentric triangles are produced and their edges are subdivided, the area between
each pair of adjacent inner triangles is filled completely with a set of non-overlapping triangles. In
this subdivision, two of the three vertices of each triangle are taken from adjacent vertices on a
subdivided edge of one triangle; the third is one of the vertices on the corresponding edge of the
other triangle. If the innermost triangle is degenerate (i.e., a point), the triangle containing it is
subdivided into six triangles by connecting each of the six vertices on that triangle with the center
point. If the innermost triangle is not degenerate, that triangle is added to the set of generated
triangles as-is.

2580

After the area corresponding to any inner triangles is filled, the tessellator generates triangles to
cover the area between the outermost triangle and the outermost inner triangle. To do this, the
temporary subdivision of the outer triangle edge above is discarded. Instead, the u = 0, v = 0, and w
= 0 edges are subdivided according to the first, second, and third outer tessellation levels,
respectively, and the tessellation spacing. The original subdivision of the first inner triangle is
retained. The area between the outer and first inner triangles is completely filled by non-
overlapping triangles as described above. If the first (and only) inner triangle is degenerate, a set of
triangles is produced by connecting each vertex on the outer triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is assigned a barycentric
(u,v,w) coordinate based on its location relative to the three vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u,v,w) space into individual triangles is
implementation-dependent. However, the set of triangles produced will completely cover the
domain, and no portion of the domain will be covered by multiple triangles.

Output triangles are generated with a topology similar to triangle lists, except that the order in
which each triangle is generated, and the order in which the vertices are generated for each
triangle, are implementation-dependent. However, the order of vertices in each triangle is
consistent across the domain as described in Tessellator Vertex Winding Order.

23.7. Quad Tessellation
If the tessellation primitive mode is Quads, a rectangle is subdivided into a collection of triangles
covering the area of the original rectangle. First, the original rectangle is subdivided into a regular
mesh of rectangles, where the number of rectangles along the u = 0 and u = 1 (vertical) and v = 0
and v = 1 (horizontal) edges are derived from the first and second inner tessellation levels,
respectively. All rectangles, except those adjacent to one of the outer rectangle edges, are
decomposed into triangle pairs. The outermost rectangle edges are subdivided independently, using
the first, second, third, and fourth outer tessellation levels to control the number of subdivisions of
the u = 0 (left), v = 0 (bottom), u = 1 (right), and v = 1 (top) edges, respectively. The area between the
inner rectangles of the mesh and the outer rectangle edges are filled by triangles produced by
joining the vertices on the subdivided outer edges to the vertices on the edge of the inner rectangle
mesh.

If both clamped inner tessellation levels and all four clamped outer tessellation levels are exactly
one, only a single triangle pair covering the outer rectangle is generated. Otherwise, if either
clamped inner tessellation level is one, that tessellation level is treated as though it was originally
specified as 1 + ε and will result in a two- or three-segment subdivision depending on the
tessellation spacing. When used with fractional odd spacing, the three-segment subdivision may
produce inner vertices positioned on the edge of the rectangle.

If any tessellation level is greater than one, tessellation begins by subdividing the u = 0 and u = 1
edges of the outer rectangle into m segments using the clamped and rounded first inner tessellation
level and the tessellation spacing. The v = 0 and v = 1 edges are subdivided into n segments using
the second inner tessellation level. Each vertex on the u = 0 and v = 0 edges are joined with the
corresponding vertex on the u = 1 and v = 1 edges to produce a set of vertical and horizontal lines
that divide the rectangle into a grid of smaller rectangles. The primitive generator emits a pair of

2581

non-overlapping triangles covering each such rectangle not adjacent to an edge of the outer
rectangle. The boundary of the region covered by these triangles forms an inner rectangle, the
edges of which are subdivided by the grid vertices that lie on the edge. If either m or n is two, the
inner rectangle is degenerate, and one or both of the rectangle’s edges consist of a single point. This
subdivision is illustrated in Figure Inner Quad Tessellation.

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(a)

(b)

Figure 18. Inner Quad Tessellation

Caption

In the Inner Quad Tessellation diagram, inner quad tessellation levels of (a) (4,2) and (b) (7,4)
are shown. The regions highlighted in red in figure (b) depict the 10 inner rectangles, each of
which will be subdivided into two triangles. Solid black circles depict vertices on the
boundary of the outer and inner rectangles, where the inner rectangle of figure (a) is
degenerate (a single line segment). Dotted lines depict the horizontal and vertical edges
connecting corresponding vertices on the inner and outer rectangle edges.

After the area corresponding to the inner rectangle is filled, the tessellator must produce triangles
to cover the area between the inner and outer rectangles. To do this, the subdivision of the outer
rectangle edge above is discarded. Instead, the u = 0, v = 0, u = 1, and v = 1 edges are subdivided
according to the first, second, third, and fourth outer tessellation levels, respectively, and the
tessellation spacing. The original subdivision of the inner rectangle is retained. The area between
the outer and inner rectangles is completely filled by non-overlapping triangles. Two of the three
vertices of each triangle are adjacent vertices on a subdivided edge of one rectangle; the third is
one of the vertices on the corresponding edge of the other rectangle. If either edge of the innermost
rectangle is degenerate, the area near the corresponding outer edges is filled by connecting each
vertex on the outer edge with the single vertex making up the inner edge.

The algorithm used to subdivide the rectangular domain in (u,v) space into individual triangles is
implementation-dependent. However, the set of triangles produced will completely cover the
domain, and no portion of the domain will be covered by multiple triangles.

Output triangles are generated with a topology similar to triangle lists, except that the order in
which each triangle is generated, and the order in which the vertices are generated for each
triangle, are implementation-dependent. However, the order of vertices in each triangle is

2582

consistent across the domain as described in Tessellator Vertex Winding Order.

23.8. Isoline Tessellation
If the tessellation primitive mode is IsoLines, a set of independent horizontal line segments is
drawn. The segments are arranged into connected strips called isolines, where the vertices of each
isoline have a constant v coordinate and u coordinates covering the full range [0,1]. The number of
isolines generated is derived from the first outer tessellation level; the number of segments in each
isoline is derived from the second outer tessellation level. Both inner tessellation levels and the
third and fourth outer tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle. The u = 0 and u = 1
edges of the rectangle are subdivided according to the first outer tessellation level. For the purposes
of this subdivision, the tessellation spacing mode is ignored and treated as equal_spacing. An
isoline is drawn connecting each vertex on the u = 0 rectangle edge to the corresponding vertex on
the u = 1 rectangle edge, except that no line is drawn between (0,1) and (1,1). If the number of
isolines on the subdivided u = 0 and u = 1 edges is n, this process will result in n equally spaced
lines with constant v coordinates of 0, .

Each of the n isolines is then subdivided according to the second outer tessellation level and the
tessellation spacing, resulting in m line segments. Each segment of each line is emitted by the
tessellator. These line segments are generated with a topology similar to line lists, except that the
order in which each line is generated, and the order in which the vertices are generated for each
line segment, are implementation-dependent.

Note

If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::tessellationIsolines is VK_FALSE,
then isoline tessellation is not supported by the implementation.

23.9. Tessellation Point Mode
For all primitive modes, the tessellator is capable of generating points instead of lines or triangles.
If the tessellation control or tessellation evaluation shader specifies the OpExecutionMode PointMode,
the primitive generator will generate one point for each distinct vertex produced by tessellation,
rather than emitting triangles or lines. Otherwise, the tessellator will produce a collection of line
segments or triangles according to the primitive mode. These points are generated with a topology
similar to point lists, except the order in which the points are generated for each input primitive is
undefined.

Note

If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::tessellationPointMode is VK_FALSE,
then tessellation point mode is not supported by the implementation.

2583

23.10. Tessellation Pipeline State
The pTessellationState member of VkGraphicsPipelineCreateInfo is a pointer to a
VkPipelineTessellationStateCreateInfo structure.

The VkPipelineTessellationStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineTessellationStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineTessellationStateCreateFlags flags;
 uint32_t patchControlPoints;
} VkPipelineTessellationStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• patchControlPoints is the number of control points per patch.

Valid Usage

• VUID-VkPipelineTessellationStateCreateInfo-patchControlPoints-01214
patchControlPoints must be greater than zero and less than or equal to
VkPhysicalDeviceLimits::maxTessellationPatchSize

Valid Usage (Implicit)

• VUID-VkPipelineTessellationStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO

• VUID-VkPipelineTessellationStateCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkPipelineTessellationDomainOriginStateCreateInfo

• VUID-VkPipelineTessellationStateCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineTessellationStateCreateInfo-flags-zerobitmask
flags must be 0

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineTessellationStateCreateFlags;

VkPipelineTessellationStateCreateFlags is a bitmask type for setting a mask, but is currently

2584

reserved for future use.

The VkPipelineTessellationDomainOriginStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPipelineTessellationDomainOriginStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkTessellationDomainOrigin domainOrigin;
} VkPipelineTessellationDomainOriginStateCreateInfo;

or the equivalent

// Provided by VK_KHR_maintenance2
typedef VkPipelineTessellationDomainOriginStateCreateInfo
VkPipelineTessellationDomainOriginStateCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• domainOrigin is a VkTessellationDomainOrigin value controlling the origin of the tessellation
domain space.

If the VkPipelineTessellationDomainOriginStateCreateInfo structure is included in the pNext chain of
VkPipelineTessellationStateCreateInfo, it controls the origin of the tessellation domain. If this
structure is not present, it is as if domainOrigin was VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT.

Valid Usage (Implicit)

• VUID-VkPipelineTessellationDomainOriginStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO

• VUID-VkPipelineTessellationDomainOriginStateCreateInfo-domainOrigin-parameter
domainOrigin must be a valid VkTessellationDomainOrigin value

The possible tessellation domain origins are specified by the VkTessellationDomainOrigin
enumeration:

// Provided by VK_VERSION_1_1
typedef enum VkTessellationDomainOrigin {
 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT = 0,
 VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT = 1,
 // Provided by VK_KHR_maintenance2
 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR =
VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT,
 // Provided by VK_KHR_maintenance2
 VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR =

2585

VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT,
} VkTessellationDomainOrigin;

or the equivalent

// Provided by VK_KHR_maintenance2
typedef VkTessellationDomainOrigin VkTessellationDomainOriginKHR;

• VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT specifies that the origin of the domain space is in the
upper left corner, as shown in figure Domain parameterization for tessellation primitive modes
(upper-left origin).

• VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT specifies that the origin of the domain space is in the
lower left corner, as shown in figure Domain parameterization for tessellation primitive modes
(lower-left origin).

This enum affects how the VertexOrderCw and VertexOrderCcw tessellation execution modes are
interpreted, since the winding is defined relative to the orientation of the domain.

To dynamically set the origin of the tessellation domain space, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_KHR_maintenance2 or
VK_VERSION_1_1, VK_EXT_shader_object
void vkCmdSetTessellationDomainOriginEXT(
 VkCommandBuffer commandBuffer,
 VkTessellationDomainOrigin domainOrigin);

• commandBuffer is the command buffer into which the command will be recorded.

• domainOrigin specifies the origin of the tessellation domain space.

This command sets the origin of the tessellation domain space for subsequent drawing commands
when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineTessellationDomainOriginStateCreateInfo::domainOrigin value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetTessellationDomainOriginEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3TessellationDomainOrigin feature is enabled

◦ The shaderObject feature is enabled

2586

Valid Usage (Implicit)

• VUID-vkCmdSetTessellationDomainOriginEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetTessellationDomainOriginEXT-domainOrigin-parameter
domainOrigin must be a valid VkTessellationDomainOrigin value

• VUID-vkCmdSetTessellationDomainOriginEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetTessellationDomainOriginEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetTessellationDomainOriginEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2587

Chapter 24. Geometry Shading
The geometry shader operates on a group of vertices and their associated data assembled from a
single input primitive, and emits zero or more output primitives and the group of vertices and their
associated data required for each output primitive. Geometry shading is enabled when a geometry
shader is included in the pipeline.

24.1. Geometry Shader Input Primitives
Each geometry shader invocation has access to all vertices in the primitive (and their associated
data), which are presented to the shader as an array of inputs.

The input primitive type expected by the geometry shader is specified with an OpExecutionMode
instruction in the geometry shader, and must match the incoming primitive type specified by
either the pipeline’s primitive topology if tessellation is inactive, or the tessellation mode if
tessellation is active, as follows:

• An input primitive type of InputPoints must only be used with a pipeline topology of
VK_PRIMITIVE_TOPOLOGY_POINT_LIST, or with a tessellation shader specifying PointMode. The input
arrays always contain one element, as described by the point list topology or tessellation in
point mode.

• An input primitive type of InputLines must only be used with a pipeline topology of
VK_PRIMITIVE_TOPOLOGY_LINE_LIST or VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, or with a tessellation
shader specifying IsoLines that does not specify PointMode. The input arrays always contain two
elements, as described by the line list topology or line strip topology, or by isoline tessellation.

• An input primitive type of InputLinesAdjacency must only be used when tessellation is inactive,
with a pipeline topology of VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY or
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY. The input arrays always contain four
elements, as described by the line list with adjacency topology or line strip with adjacency
topology.

• An input primitive type of Triangles must only be used with a pipeline topology of
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN; or with a tessellation shader specifying Quads or Triangles
that does not specify PointMode. The input arrays always contain three elements, as described by
the triangle list topology, triangle strip topology, or triangle fan topology, or by triangle or quad
tessellation. Vertices may be in a different absolute order than specified by the topology, but
must adhere to the specified winding order.

• An input primitive type of InputTrianglesAdjacency must only be used when tessellation is
inactive, with a pipeline topology of VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY. The input arrays always contain six
elements, as described by the triangle list with adjacency topology or triangle strip with
adjacency topology. Vertices may be in a different absolute order than specified by the topology,
but must adhere to the specified winding order, and the vertices making up the main primitive
must still occur at the first, third, and fifth index.

2588

24.2. Geometry Shader Output Primitives
A geometry shader generates primitives in one of three output modes: points, line strips, or triangle
strips. The primitive mode is specified in the shader using an OpExecutionMode instruction with the
OutputPoints, OutputLineStrip or OutputTriangleStrip modes, respectively. Each geometry shader
must include exactly one output primitive mode.

The vertices output by the geometry shader are assembled into points, lines, or triangles based on
the output primitive type and the resulting primitives are then further processed as described in
Rasterization. If the number of vertices emitted by the geometry shader is not sufficient to produce
a single primitive, vertices corresponding to incomplete primitives are not processed by subsequent
pipeline stages. The number of vertices output by the geometry shader is limited to a maximum
count specified in the shader.

The maximum output vertex count is specified in the shader using an OpExecutionMode instruction
with the mode set to OutputVertices and the maximum number of vertices that will be produced by
the geometry shader specified as a literal. Each geometry shader must specify a maximum output
vertex count.

24.3. Multiple Invocations of Geometry Shaders
Geometry shaders can be invoked more than one time for each input primitive. This is known as
geometry shader instancing and is requested by including an OpExecutionMode instruction with mode
specified as Invocations and the number of invocations specified as an integer literal.

In this mode, the geometry shader will execute at least n times for each input primitive, where n is
the number of invocations specified in the OpExecutionMode instruction. The instance number is
available to each invocation as a built-in input using InvocationId.

24.4. Geometry Shader Primitive Ordering
Limited guarantees are provided for the relative ordering of primitives produced by a geometry
shader, as they pertain to primitive order.

• For instanced geometry shaders, the output primitives generated from each input primitive are
passed to subsequent pipeline stages using the invocation number to order the primitives, from
least to greatest.

• All output primitives generated from a given input primitive are passed to subsequent pipeline
stages before any output primitives generated from subsequent input primitives.

24.5. Geometry Shader Passthrough
A geometry shader that uses the PassthroughNV decoration on a variable in its input interface is
considered a passthrough geometry shader. Output primitives in a passthrough geometry shader
must have the same topology as the input primitive and are not produced by emitting vertices. The
vertices of the output primitive have two different types of attributes, per-vertex and per-primitive.
Geometry shader input variables with PassthroughNV decoration are considered to produce per-

2589

vertex outputs, where values for each output vertex are copied from the corresponding input
vertex. Any built-in or user-defined geometry shader outputs are considered per-primitive in a
passthrough geometry shader, where a single output value is copied to all output vertices.

The remainder of this section details the usage of the PassthroughNV decoration and modifications to
the interface matching rules when using passthrough geometry shaders.

24.5.1. PassthroughNV Decoration

Decorating a geometry shader input variable with the PassthroughNV decoration indicates that
values of this input are copied through to the corresponding vertex of the output primitive. Input
variables and block members which do not have the PassthroughNV decoration are consumed by the
geometry shader without being passed through to subsequent stages.

The PassthroughNV decoration must only be used within a geometry shader.

Any variable decorated with PassthroughNV must be declared using the Input storage class.

The PassthroughNV decoration must not be used with any of:

• an input primitive type other than InputPoints, InputLines, or Triangles, as specified by the
mode for OpExecutionMode.

• an invocation count other than one, as specified by the Invocations mode for OpExecutionMode.

• an OpEntryPoint which statically uses the OpEmitVertex or OpEndPrimitive instructions.

• a variable decorated with the InvocationId built-in decoration.

• a variable decorated with the PrimitiveId built-in decoration that is declared using the Input
storage class.

24.5.2. Passthrough Interface Matching

When a passthrough geometry shader is in use, the Interface Matching rules involving the
geometry shader input and output interfaces operate as described in this section.

For the purposes of matching passthrough geometry shader inputs with outputs of the previous
pipeline stages, the PassthroughNV decoration is ignored.

For the purposes of matching the outputs of the geometry shader with subsequent pipeline stages,
each input variable with the PassthroughNV decoration is considered to add an equivalent output
variable with the same type, decoration (other than PassthroughNV), number, and declaration order
on the output interface. The output variable declaration corresponding to an input variable
decorated with PassthroughNV will be identical to the input declaration, except that the outermost
array dimension of such variables is removed. The output block declaration corresponding to an
input block decorated with PassthroughNV or having members decorated with PassthroughNV will be
identical to the input declaration, except that the outermost array dimension of such declaration is
removed.

If an input block is decorated with PassthroughNV, the equivalent output block contains all the
members of the input block. Otherwise, the equivalent output block contains only those input block

2590

members decorated with PassthroughNV. All members of the corresponding output block are
assigned Location and Component decorations identical to those assigned to the corresponding input
block members.

Output variables and blocks generated from inputs decorated with PassthroughNV will only exist for
the purposes of interface matching; these declarations are not available to geometry shader code or
listed in the module interface.

For the purposes of component counting, passthrough geometry shaders count all statically used
input variable components declared with the PassthroughNV decoration as output components as
well, since their values will be copied to the output primitive produced by the geometry shader.

2591

Chapter 25. Mesh Shading
Task and mesh shaders operate in workgroups to produce a collection of primitives that will be
processed by subsequent stages of the graphics pipeline.

Work on the mesh pipeline is initiated by the application drawing a set of mesh tasks organized in
global workgroups. If the optional task shader is active, each workgroup triggers the execution of
task shader invocations that will create a new set of mesh workgroups upon completion. Each of
these created workgroups, or each of the original workgroups if no task shader is present, triggers
the execution of mesh shader invocations.

Each mesh shader workgroup emits zero or more output primitives along with the group of vertices
and their associated data required for each output primitive.

25.1. Task Shader Input
For every workgroup issued via the drawing commands a group of task shader invocations is
executed. There are no inputs other than the builtin workgroup identifiers.

25.2. Task Shader Output
The task shader can emit zero or more mesh workgroups to be generated. Shaders using the TaskNV
Execution Model can do so using the built-in variable TaskCountNV. This value must be less than or
equal to VkPhysicalDeviceMeshShaderPropertiesNV::maxTaskOutputCount. Shaders using the TaskEXT
Execution Model can do so using the OpEmitMeshTasksEXT instruction. The groupCountX, groupCountY and
groupCountZ arguments passed to this instruction must be less than or equal to the respective
dimension within VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount. The product of
these arguments must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxMeshWorkGroupTotalCount.

The task shader can also pass user-defined data to all mesh shader invocations that it creates.
Shaders using the TaskNV Execution Model can do so by writing to output variables that are decorated
with PerTaskNV. They are available as inputs in mesh shaders. Shaders using the TaskEXT Execution
Model can do so by writing to a payload variable with TaskPayloadWorkgroupEXT storage class that is
passed to the OpEmitMeshTasksEXT instruction.

25.3. Mesh Generation
If a task shader exists, the mesh assembler creates a variable amount of mesh workgroups
depending on each task’s output. If there is no task shader, the drawing commands emit the mesh
shader invocations directly.

25.4. Mesh Shader Input
The only inputs available to the mesh shader are variables identifying the specific workgroup and
invocation and, if applicable, any outputs written as PerTaskNV or the payload variable passed to the

2592

OpEmitMeshTasksEXT instruction by the task shader that spawned the mesh shader’s workgroup. The
mesh shader can operate without a task shader as well.

25.5. Mesh Shader Output
A mesh shader generates primitives in one of three output modes: points, lines, or triangles. For
shaders using the MeshNV Execution Model the primitive mode is specified in the shader using an
OpExecutionMode instruction with the OutputPoints, OutputLinesNV, or OutputTrianglesNV modes,
respectively. For shaders using the MeshEXT Execution Model the primitive mode is specified in the
shader using an OpExecutionMode instruction with the OutputPoints, OutputLinesEXT, or
OutputTrianglesEXT modes, respectively. Each mesh shader must include exactly one output
primitive mode.

For shaders using the MeshNV Execution Model the maximum output vertex count is specified as a
literal in the shader using an OpExecutionMode instruction with the mode set to OutputVertices and
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesNV::maxMeshOutputVertices. For
shaders using the MeshEXT Execution Model the maximum output vertex count is specified as a literal
in the shader using an OpExecutionMode instruction with the mode set to OutputVertices and must be
less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshOutputVertices.

For shaders using the MeshNV Execution Model the maximum output primitive count is specified as a
literal in the shader using an OpExecutionMode instruction with the mode set to OutputPrimitivesNV
and must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesNV::maxMeshOutputPrimitives.
For shaders using the MeshEXT Execution Model the maximum output primitive count is specified as a
literal in the shader using an OpExecutionMode instruction with the mode set to OutputPrimitivesEXT,
and must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxMeshOutputPrimitives.

For shaders using the MeshNV Execution Model the number of primitives output by the mesh shader is
provided via writing to the built-in variable PrimitiveCountNV and must be less than or equal to the
maximum output primitive count specified in the shader. A variable decorated with
PrimitiveIndicesNV is an output array of local index values into the vertex output arrays from
which primitives are assembled according to the output primitive type. For shaders using the
MeshEXT Execution Model the number of vertices and primitives output by the mesh shader is
provided via calling the OpSetMeshOutputsEXT instruction. The vertexCount argument must be less
than or equal to the maximum output vertex count specified in the shader. The primitiveCount
argument must be less than or equal to the maximum output primitive count specified in the
shader.

Depending on the output primitive mode an appropriately-decorated variable is the output array of
local index values into the vertex output arrays from which primitives are assembled according to
the output primitive type:

• OutputPoints uses the PrimitivePointIndicesEXT decoration.

• OutputLinesEXT uses the PrimitiveLineIndicesEXT decoration.

• OutputTrianglesEXT uses the PrimitiveTriangleIndicesEXT decoration.

These resulting primitives are then further processed as described in Rasterization.

2593

With the exception of primitive indices, all output built-ins and custom attributes count towards the
total storage size occupied by output variables in mesh shaders. This size can be calculated as
follows, taking into account the fact that the number of effective scalar attributes is 4 times the
number of effective locations used according to the location assignment rules. Let be the number
of views, be the number of effective scalar per-vertex attributes not dependent on ViewIndex,
be the number of effective scalar per-vertex attributes dependent on ViewIndex, be the maximum
number of vertices specified by the OutputVertices Execution Mode, be
meshOutputPerVertexGranularity, be the number of effective scalar per-primitive attributes not
dependent on ViewIndex, be the number of effective scalar per-primitive attributes dependent
on ViewIndex, be the maximum number of primitives specified by the OutputPrimitivesEXT
Execution Mode and be meshOutputPerPrimitiveGranularity:

25.6. Mesh Shader Per-View Outputs
The mesh shader outputs decorated with the PositionPerViewNV, ClipDistancePerViewNV,
CullDistancePerViewNV, LayerPerViewNV, and ViewportMaskPerViewNV built-in decorations are the per-
view versions of the single-view variables with equivalent names (that is Position, ClipDistance,
CullDistance, Layer, and ViewportMaskNV, respectively). If a shader statically assigns a value to any
element of a per-view array it must not statically assign a value to the equivalent single-view
variable.

Each of these outputs is considered arrayed, with separate values for each view. The view number
is used to index the first dimension of these arrays.

The second dimension of the ClipDistancePerViewNV, and CullDistancePerViewNV arrays have the
same requirements as the ClipDistance, and CullDistance arrays.

If a mesh shader output is per-view, the corresponding fragment shader input is taken from the
element of the per-view output array that corresponds to the view that is currently being processed
by the fragment shader.

These per-view outputs are available only in shaders using the MeshNV Execution Model. They are not
available in shaders using the MeshEXT Execution Model.

25.7. Mesh Shader Primitive Ordering
Following guarantees are provided for the relative ordering of primitives produced by a mesh
shader, as they pertain to primitive order.

• When a task shader is used, mesh workgroups spawned from lower tasks will be ordered prior
those workgroups from subsequent tasks.

• All output primitives generated from a given mesh workgroup are passed to subsequent
pipeline stages before any output primitives generated from subsequent input workgroups.

• All output primitives within a mesh workgroup, will be generated in the ordering provided by
the builtin primitive indexbuffer (from low address to high address).

2594

Chapter 26. Cluster Culling Shading
This shader type has an execution environment similar to that of a compute shader, where a
collection of shader invocations form a workgroup and cooperate to perform coarse level geometry
culling and LOD selection. A shader invocation can emit a set of built-in output variables via a new
built-in function. The cluster culling shader organizes these emitted variables into a drawing
command used by the subsequent rendering pipeline.

26.1. Cluster Culling Shader Input
The only inputs available to the cluster culling shader are variables identifying the specific
workgroup and invocation.

26.2. Cluster Culling Shader Output
If a cluster survives after culling in a cluster culling shader invocation, a drawing command to
draw this cluster should be emitted by this shader invocation for further rendering processing.
There are two types of drawing command, indexed mode and non-indexed mode. Both type of
drawing commands consist of a set of built-in output variables which have a similar definition to
VkDrawIndexedIndirectCommand and VkDrawIndirectCommand members.

Cluster culling shaders have the following built-in output variables:

• built-in variable IndexCountHUAWEI is the number of vertices to draw.

• built-in variable VertexCountHUAWEI is the number of vertices to draw.

• built-in variable InstanceCountHUAWEI is the number of instances to draw.

• built-in variable FirstIndexHUAWEI is the base index within the index buffer.

• built-in variable FirstVertexHUAWEI is the index of the first vertex to draw

• built-in variable VertexOffsetHUAWEI is the value added to the vertex index before indexing into
the vertex buffer.

• built-in variable FirstInstanceHUAWEI is the instance ID of the first instance to draw.

• built-in variable ClusterIDHUAWEI is the index of cluster being rendered by this drawing
command. When cluster culling shader is enabled, ClusterIDHUAWEI will replace gl_DrawID pass
to vertex shader.

• built-in variable ClusterShadingRate is the shading rate of cluster being rendered by this
drawing command.

26.3. Cluster Culling Shader Cluster Ordering
• When a cluster culling shader is used, all output clusters generated by DispatchClusterHUAWEI()

in a given workgroup are passed to subsequent pipeline stage before any cluster generated
from subsequent workgroup.

• In a workgroup, the order of output clusters generated by DispatchClusterHUAWEI() is specified by

2595

the local invocation id, from lower to higher values.

• If any cluster culling invocation in the workgroup does not call DispatchClusterHUAWEI(), no
cluster will be sent to the subsequent rendering pipeline.

• Any cluster culling shader invocation may also call DispatchClusterHUAWEI() many times as
shown below:

// Cluster Culling Shader sample code:

 DispatchClusterHUAWEI(); // dispatch 0

 DispatchClusterHUAWEI(); // dispatch 1

 DispatchClusterHUAWEI(); // dispatch 2

In this case, the output sequence of clusters in a workgroup are specified as shown below (in case
of 32 shader invocations in a workgroup):

1. shader invocation0.dispatch0
2. shader invocation1.dispatch0,

32. shader invocation31.dispatch0
33. shader invocation0.dispatch1
34. shader invocation1.dispatch1

64. shader invocation31.dispatch1
65. shader invocation0.dispatch2
66. shader invocation1.dispatch2

96. shader Invocation31.dispatch2

26.4. Cluster Culling Shader Primitive Ordering
Following guarantees are provided for the relative ordering of primitives produced by a cluster
culling shader, as they pertain to primitive order.

• Limited guarantees are provided for the relative ordering of primitives produced by a cluster
culling shader, as they pertain to primitive order.

• The order of primitives in a given cluster is specified by the content of

◦ DispatchClusterHUAWEI() with indexed output built-in variables, vertices sourced from a
lower index buffer addresses to higher addresses.

◦ DispatchClusterHUAWEI() with non-indexed output built-in variables, from vertices with a
lower numbered vertexIndex to a higher numbered vertexIndex.

2596

Chapter 27. Fixed-Function Vertex Post-
Processing
After pre-rasterization shader stages, the following fixed-function operations are applied to vertices
of the resulting primitives:

• Transform feedback (see Transform Feedback)

• Viewport swizzle (see Viewport Swizzle)

• Flat shading (see Flat Shading).

• Primitive clipping, including client-defined half-spaces (see Primitive Clipping).

• Shader output attribute clipping (see Clipping Shader Outputs).

• Clip space W scaling (see Controlling Viewport W Scaling).

• Perspective division on clip coordinates (see Coordinate Transformations).

• Viewport mapping, including depth range scaling (see Controlling the Viewport).

• Front face determination for polygon primitives (see Basic Polygon Rasterization).

Next, rasterization is performed on primitives as described in chapter Rasterization.

27.1. Transform Feedback
Before any other fixed-function vertex post-processing, vertex outputs from the last shader in the
pre-rasterization shader stage can be written out to one or more transform feedback buffers bound
to the command buffer. To capture vertex outputs the last pre-rasterization shader stage shader
must be declared with the Xfb execution mode. Outputs decorated with XfbBuffer will be written
out to the corresponding transform feedback buffers bound to the command buffer when
transform feedback is active. Transform feedback buffers are bound to the command buffer by
using vkCmdBindTransformFeedbackBuffersEXT. Transform feedback is made active by calling
vkCmdBeginTransformFeedbackEXT and made inactive by calling
vkCmdEndTransformFeedbackEXT. After vertex data is written it is possible to use
vkCmdDrawIndirectByteCountEXT to start a new draw where the vertexCount is derived from the
number of bytes written by a previous transform feedback.

When an individual point, line, or triangle primitive reaches the transform feedback stage while
transform feedback is active, the values of the specified output variables are assembled into
primitives and appended to the bound transform feedback buffers. After activating transform
feedback, the values of the first assembled primitive are written at the starting offsets of the bound
transform feedback buffers, and subsequent primitives are appended to the buffer. If the optional
pCounterBuffers and pCounterBufferOffsets parameters are specified, the starting points within the
transform feedback buffers are adjusted so data is appended to the previously written values
indicated by the value stored by the implementation in the counter buffer.

For multi-vertex primitives, all values for a given vertex are written before writing values for any
other vertex. When transformFeedbackPreservesProvokingVertex is not enabled, implementations
may write out any vertex within the primitive first, but all subsequent vertices for that primitive

2597

must be written out in a consistent winding order defined as follows:

• If neither geometry or tessellation shading is active, vertices within a primitive are appended
according to the winding order described by the primitive topology defined by the
VkPipelineInputAssemblyStateCreateInfo:topology used to execute the drawing command.

• If geometry shading is active, vertices within a primitive are appended according to the winding
order described by the primitive topology defined by the OutputPoints, OutputLineStrip, or
OutputTriangleStrip execution mode.

• If tessellation shading is active but geometry shading is not, vertices within a primitive are
appended according to the winding order defined by triangle tessellation, quad tessellation, and
isoline tessellation.

When transformFeedbackPreservesProvokingVertex is enabled, then in addition to writing vertices
with a consistent winding order, the vertex order must preserve the provoking vertex of each
primitive:

• When the pipeline’s provoking vertex mode is VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT, the
primitive’s provoking vertex must be the first vertex written.

• When the pipeline’s provoking vertex mode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the
primitive’s provoking vertex must be the last vertex written.

If transformFeedbackPreservesTriangleFanProvokingVertex is VK_FALSE, neither geometry nor
tessellation shading is active, and the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,
then the first vertex written from each primitive is implementation-defined even when
transformFeedbackPreservesProvokingVertex is enabled.

When capturing vertices, the stride associated with each transform feedback buffer, as indicated by
the XfbStride decoration, indicates the number of bytes of storage reserved for each vertex in the
transform feedback buffer. For every vertex captured, each output attribute with a Offset
decoration will be written to the storage reserved for the vertex at the associated transform
feedback buffer. When writing output variables that are arrays or structures, individual array
elements or structure members are written tightly packed in order. For vector types, individual
components are written in order. For matrix types, outputs are written as an array of column
vectors.

If any component of an output with an assigned transform feedback offset was not written to by its
shader, the value recorded for that component is undefined. All components of an output variable
must be written at an offset aligned to the size of the component. The size of each component of an
output variable must be at least 32-bits. When capturing a vertex, any portion of the reserved
storage not associated with an output variable with an assigned transform feedback offset will be
unmodified.

When transform feedback is inactive, no vertices are recorded. If there is a valid counter buffer
handle and counter buffer offset in the pCounterBuffers and pCounterBufferOffsets arrays, writes to
the corresponding transform feedback buffer will start at the byte offset represented by the value
stored in the counter buffer location.

Individual lines or triangles of a strip or fan primitive will be extracted and recorded separately.

2598

Incomplete primitives are not recorded.

When using a geometry shader that emits vertices to multiple vertex streams, a primitive will be
assembled and output for each stream when there are enough vertices emitted for the output
primitive type. All outputs assigned to a given transform feedback buffer are required to come
from a single vertex stream.

The sizes of the transform feedback buffers are defined by the
vkCmdBindTransformFeedbackBuffersEXT pSizes parameter for each of the bound buffers, or the
size of the bound buffer, whichever is the lesser. If there is less space remaining in any of the
transform feedback buffers than the size of all of the vertex data for that primitive based on the
XfbStride for that XfbBuffer then no vertex data of that primitive is recorded in any transform
feedback buffer, and the value for the number of primitives written in the corresponding
VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT query for all transform feedback buffers is no longer
incremented.

Any outputs made to a XfbBuffer that is not bound to a transform feedback buffer is ignored.

To bind transform feedback buffers to a command buffer for use in subsequent drawing
commands, call:

// Provided by VK_EXT_transform_feedback
void vkCmdBindTransformFeedbackBuffersEXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstBinding,
 uint32_t bindingCount,
 const VkBuffer* pBuffers,
 const VkDeviceSize* pOffsets,
 const VkDeviceSize* pSizes);

• commandBuffer is the command buffer into which the command is recorded.

• firstBinding is the index of the first transform feedback binding whose state is updated by the
command.

• bindingCount is the number of transform feedback bindings whose state is updated by the
command.

• pBuffers is a pointer to an array of buffer handles.

• pOffsets is a pointer to an array of buffer offsets.

• pSizes is NULL or a pointer to an array of VkDeviceSize buffer sizes, specifying the maximum
number of bytes to capture to the corresponding transform feedback buffer. If pSizes is NULL, or
the value of the pSizes array element is VK_WHOLE_SIZE, then the maximum number of bytes
captured will be the size of the corresponding buffer minus the buffer offset.

The values taken from elements i of pBuffers, pOffsets and pSizes replace the current state for the
transform feedback binding firstBinding + i, for i in [0, bindingCount). The transform feedback
binding is updated to start at the offset indicated by pOffsets[i] from the start of the buffer
pBuffers[i].

2599

Valid Usage

• VUID-vkCmdBindTransformFeedbackBuffersEXT-transformFeedback-02355
VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback must be enabled

• VUID-vkCmdBindTransformFeedbackBuffersEXT-firstBinding-02356
firstBinding must be less than VkPhysicalDeviceTransformFeedbackPropertiesEXT
::maxTransformFeedbackBuffers

• VUID-vkCmdBindTransformFeedbackBuffersEXT-firstBinding-02357
The sum of firstBinding and bindingCount must be less than or equal to
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBuffers

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pOffsets-02358
All elements of pOffsets must be less than the size of the corresponding element in
pBuffers

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pOffsets-02359
All elements of pOffsets must be a multiple of 4

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pBuffers-02360
All elements of pBuffers must have been created with the
VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT flag

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pSize-02361
If the optional pSize array is specified, each element of pSizes must either be
VK_WHOLE_SIZE, or be less than or equal to
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBufferSize

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pSizes-02362
All elements of pSizes must be either VK_WHOLE_SIZE, or less than or equal to the size of the
corresponding buffer in pBuffers

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pOffsets-02363
All elements of pOffsets plus pSizes, where the pSizes, element is not VK_WHOLE_SIZE, must
be less than or equal to the size of the corresponding buffer in pBuffers

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pBuffers-02364
Each element of pBuffers that is non-sparse must be bound completely and contiguously
to a single VkDeviceMemory object

• VUID-vkCmdBindTransformFeedbackBuffersEXT-None-02365
Transform feedback must not be active when the vkCmdBindTransformFeedbackBuffersEXT
command is recorded

Valid Usage (Implicit)

• VUID-vkCmdBindTransformFeedbackBuffersEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pBuffers-parameter
pBuffers must be a valid pointer to an array of bindingCount valid VkBuffer handles

2600

• VUID-vkCmdBindTransformFeedbackBuffersEXT-pOffsets-parameter
pOffsets must be a valid pointer to an array of bindingCount VkDeviceSize values

• VUID-vkCmdBindTransformFeedbackBuffersEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindTransformFeedbackBuffersEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindTransformFeedbackBuffersEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindTransformFeedbackBuffersEXT-bindingCount-arraylength
bindingCount must be greater than 0

• VUID-vkCmdBindTransformFeedbackBuffersEXT-commonparent
Both of commandBuffer, and the elements of pBuffers must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Transform feedback for specific transform feedback buffers is made active by calling:

// Provided by VK_EXT_transform_feedback
void vkCmdBeginTransformFeedbackEXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstCounterBuffer,
 uint32_t counterBufferCount,
 const VkBuffer* pCounterBuffers,
 const VkDeviceSize* pCounterBufferOffsets);

• commandBuffer is the command buffer into which the command is recorded.

• firstCounterBuffer is the index of the first transform feedback buffer corresponding to
pCounterBuffers[0] and pCounterBufferOffsets[0].

2601

• counterBufferCount is the size of the pCounterBuffers and pCounterBufferOffsets arrays.

• pCounterBuffers is NULL or a pointer to an array of VkBuffer handles to counter buffers. Each
buffer contains a 4 byte integer value representing the byte offset from the start of the
corresponding transform feedback buffer from where to start capturing vertex data. If the byte
offset stored to the counter buffer location was done using vkCmdEndTransformFeedbackEXT it
can be used to resume transform feedback from the previous location. If pCounterBuffers is NULL,
then transform feedback will start capturing vertex data to byte offset zero in all bound
transform feedback buffers. For each element of pCounterBuffers that is VK_NULL_HANDLE,
transform feedback will start capturing vertex data to byte zero in the corresponding bound
transform feedback buffer.

• pCounterBufferOffsets is NULL or a pointer to an array of VkDeviceSize values specifying offsets
within each of the pCounterBuffers where the counter values were previously written. The
location in each counter buffer at these offsets must be large enough to contain 4 bytes of data.
This data is the number of bytes captured by the previous transform feedback to this buffer. If
pCounterBufferOffsets is NULL, then it is assumed the offsets are zero.

The active transform feedback buffers will capture primitives emitted from the corresponding
XfbBuffer in the bound graphics pipeline. Any XfbBuffer emitted that does not output to an active
transform feedback buffer will not be captured.

Valid Usage

• VUID-vkCmdBeginTransformFeedbackEXT-transformFeedback-02366
VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback must be enabled

• VUID-vkCmdBeginTransformFeedbackEXT-None-02367
Transform feedback must not be active

• VUID-vkCmdBeginTransformFeedbackEXT-firstCounterBuffer-02368
firstCounterBuffer must be less than VkPhysicalDeviceTransformFeedbackPropertiesEXT
::maxTransformFeedbackBuffers

• VUID-vkCmdBeginTransformFeedbackEXT-firstCounterBuffer-02369
The sum of firstCounterBuffer and counterBufferCount must be less than or equal to
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBuffers

• VUID-vkCmdBeginTransformFeedbackEXT-counterBufferCount-02607
If counterBufferCount is not 0, and pCounterBuffers is not NULL, pCounterBuffers must be a
valid pointer to an array of counterBufferCount VkBuffer handles that are either valid or
VK_NULL_HANDLE

• VUID-vkCmdBeginTransformFeedbackEXT-pCounterBufferOffsets-02370
For each buffer handle in the array, if it is not VK_NULL_HANDLE it must reference a
buffer large enough to hold 4 bytes at the corresponding offset from the
pCounterBufferOffsets array

• VUID-vkCmdBeginTransformFeedbackEXT-pCounterBuffer-02371
If pCounterBuffer is NULL, then pCounterBufferOffsets must also be NULL

• VUID-vkCmdBeginTransformFeedbackEXT-pCounterBuffers-02372
For each buffer handle in the pCounterBuffers array that is not VK_NULL_HANDLE it must

2602

have been created with a usage value containing
VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT

• VUID-vkCmdBeginTransformFeedbackEXT-None-06233
If the shaderObject feature is not enabled, a valid graphics pipeline must be bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdBeginTransformFeedbackEXT-None-04128
The last pre-rasterization shader stage of the bound graphics pipeline must have been
declared with the Xfb execution mode

• VUID-vkCmdBeginTransformFeedbackEXT-None-02373
Transform feedback must not be made active in a render pass instance with multiview
enabled

Valid Usage (Implicit)

• VUID-vkCmdBeginTransformFeedbackEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginTransformFeedbackEXT-pCounterBufferOffsets-parameter
If counterBufferCount is not 0, and pCounterBufferOffsets is not NULL, pCounterBufferOffsets
must be a valid pointer to an array of counterBufferCount VkDeviceSize values

• VUID-vkCmdBeginTransformFeedbackEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginTransformFeedbackEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginTransformFeedbackEXT-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdBeginTransformFeedbackEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBeginTransformFeedbackEXT-commonparent
Both of commandBuffer, and the elements of pCounterBuffers that are valid handles of non-
ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2603

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics State

Transform feedback for specific transform feedback buffers is made inactive by calling:

// Provided by VK_EXT_transform_feedback
void vkCmdEndTransformFeedbackEXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstCounterBuffer,
 uint32_t counterBufferCount,
 const VkBuffer* pCounterBuffers,
 const VkDeviceSize* pCounterBufferOffsets);

• commandBuffer is the command buffer into which the command is recorded.

• firstCounterBuffer is the index of the first transform feedback buffer corresponding to
pCounterBuffers[0] and pCounterBufferOffsets[0].

• counterBufferCount is the size of the pCounterBuffers and pCounterBufferOffsets arrays.

• pCounterBuffers is NULL or a pointer to an array of VkBuffer handles to counter buffers. The
counter buffers are used to record the current byte positions of each transform feedback buffer
where the next vertex output data would be captured. This can be used by a subsequent
vkCmdBeginTransformFeedbackEXT call to resume transform feedback capture from this
position. It can also be used by vkCmdDrawIndirectByteCountEXT to determine the vertex count
of the draw call.

• pCounterBufferOffsets is NULL or a pointer to an array of VkDeviceSize values specifying offsets
within each of the pCounterBuffers where the counter values can be written. The location in
each counter buffer at these offsets must be large enough to contain 4 bytes of data. The data
stored at this location is the byte offset from the start of the transform feedback buffer binding
where the next vertex data would be written. If pCounterBufferOffsets is NULL, then it is assumed
the offsets are zero.

Valid Usage

• VUID-vkCmdEndTransformFeedbackEXT-transformFeedback-02374
VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback must be enabled

• VUID-vkCmdEndTransformFeedbackEXT-None-02375
Transform feedback must be active

• VUID-vkCmdEndTransformFeedbackEXT-firstCounterBuffer-02376
firstCounterBuffer must be less than VkPhysicalDeviceTransformFeedbackPropertiesEXT
::maxTransformFeedbackBuffers

2604

• VUID-vkCmdEndTransformFeedbackEXT-firstCounterBuffer-02377
The sum of firstCounterBuffer and counterBufferCount must be less than or equal to
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBuffers

• VUID-vkCmdEndTransformFeedbackEXT-counterBufferCount-02608
If counterBufferCount is not 0, and pCounterBuffers is not NULL, pCounterBuffers must be a
valid pointer to an array of counterBufferCount VkBuffer handles that are either valid or
VK_NULL_HANDLE

• VUID-vkCmdEndTransformFeedbackEXT-pCounterBufferOffsets-02378
For each buffer handle in the array, if it is not VK_NULL_HANDLE it must reference a
buffer large enough to hold 4 bytes at the corresponding offset from the
pCounterBufferOffsets array

• VUID-vkCmdEndTransformFeedbackEXT-pCounterBuffer-02379
If pCounterBuffer is NULL, then pCounterBufferOffsets must also be NULL

• VUID-vkCmdEndTransformFeedbackEXT-pCounterBuffers-02380
For each buffer handle in the pCounterBuffers array that is not VK_NULL_HANDLE it must
have been created with a usage value containing
VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT

Valid Usage (Implicit)

• VUID-vkCmdEndTransformFeedbackEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndTransformFeedbackEXT-pCounterBufferOffsets-parameter
If counterBufferCount is not 0, and pCounterBufferOffsets is not NULL, pCounterBufferOffsets
must be a valid pointer to an array of counterBufferCount VkDeviceSize values

• VUID-vkCmdEndTransformFeedbackEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndTransformFeedbackEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdEndTransformFeedbackEXT-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdEndTransformFeedbackEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdEndTransformFeedbackEXT-commonparent
Both of commandBuffer, and the elements of pCounterBuffers that are valid handles of non-
ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

2605

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics State

27.2. Viewport Swizzle
Each primitive sent to a given viewport has a swizzle and optional negation applied to its clip
coordinates. The swizzle that is applied depends on the viewport index, and is controlled by the
VkPipelineViewportSwizzleStateCreateInfoNV pipeline state:

// Provided by VK_NV_viewport_swizzle
typedef struct VkPipelineViewportSwizzleStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkPipelineViewportSwizzleStateCreateFlagsNV flags;
 uint32_t viewportCount;
 const VkViewportSwizzleNV* pViewportSwizzles;
} VkPipelineViewportSwizzleStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• viewportCount is the number of viewport swizzles used by the pipeline.

• pViewportSwizzles is a pointer to an array of VkViewportSwizzleNV structures, defining the
viewport swizzles.

Valid Usage

• VUID-VkPipelineViewportSwizzleStateCreateInfoNV-viewportCount-01215
viewportCount must be greater than or equal to the viewportCount set in
VkPipelineViewportStateCreateInfo

Valid Usage (Implicit)

• VUID-VkPipelineViewportSwizzleStateCreateInfoNV-sType-sType

2606

sType must be VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV

• VUID-VkPipelineViewportSwizzleStateCreateInfoNV-flags-zerobitmask
flags must be 0

• VUID-VkPipelineViewportSwizzleStateCreateInfoNV-pViewportSwizzles-parameter
pViewportSwizzles must be a valid pointer to an array of viewportCount valid
VkViewportSwizzleNV structures

• VUID-VkPipelineViewportSwizzleStateCreateInfoNV-viewportCount-arraylength
viewportCount must be greater than 0

// Provided by VK_NV_viewport_swizzle
typedef VkFlags VkPipelineViewportSwizzleStateCreateFlagsNV;

VkPipelineViewportSwizzleStateCreateFlagsNV is a bitmask type for setting a mask, but is currently
reserved for future use.

The VkPipelineViewportSwizzleStateCreateInfoNV state is set by adding this structure to the pNext
chain of a VkPipelineViewportStateCreateInfo structure and setting the graphics pipeline state with
vkCreateGraphicsPipelines.

To dynamically set the viewport swizzle state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_viewport_swizzle,
VK_EXT_shader_object with VK_NV_viewport_swizzle
void vkCmdSetViewportSwizzleNV(
 VkCommandBuffer commandBuffer,
 uint32_t firstViewport,
 uint32_t viewportCount,
 const VkViewportSwizzleNV* pViewportSwizzles);

• commandBuffer is the command buffer into which the command will be recorded.

• firstViewport is the index of the first viewport whose parameters are updated by the command.

• viewportCount is the number of viewports whose parameters are updated by the command.

• pViewportSwizzles is a pointer to an array of VkViewportSwizzleNV structures specifying
viewport swizzles.

This command sets the viewport swizzle state for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount, and VkPipelineViewportSwizzleStateCreateInfoNV::pViewportSwizzles values used
to create the currently active pipeline.

2607

Valid Usage

• VUID-vkCmdSetViewportSwizzleNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ViewportSwizzle feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetViewportSwizzleNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetViewportSwizzleNV-pViewportSwizzles-parameter
pViewportSwizzles must be a valid pointer to an array of viewportCount valid
VkViewportSwizzleNV structures

• VUID-vkCmdSetViewportSwizzleNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetViewportSwizzleNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetViewportSwizzleNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetViewportSwizzleNV-viewportCount-arraylength
viewportCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Each viewport specified from 0 to viewportCount - 1 has its x,y,z,w swizzle state set to the
corresponding x, y, z and w in the VkViewportSwizzleNV structure. Each component is of type

2608

VkViewportCoordinateSwizzleNV, which determines the type of swizzle for that component. The
value of x computes the new x component of the position as:

if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV) x' = x;
if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV) x' = -x;
if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV) x' = y;
if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV) x' = -y;
if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV) x' = z;
if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV) x' = -z;
if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV) x' = w;
if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV) x' = -w;

Similar selections are performed for the y, z, and w coordinates. This swizzling is applied before
clipping and perspective divide. If the swizzle for an active viewport index is not specified, the
swizzle for x is VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV, y is
VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV, z is VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV
and w is VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV.

Viewport swizzle parameters are specified by setting the pNext pointer of
VkGraphicsPipelineCreateInfo to point to a VkPipelineViewportSwizzleStateCreateInfoNV structure.
VkPipelineViewportSwizzleStateCreateInfoNV uses VkViewportSwizzleNV to set the viewport swizzle
parameters.

The VkViewportSwizzleNV structure is defined as:

// Provided by VK_NV_viewport_swizzle
typedef struct VkViewportSwizzleNV {
 VkViewportCoordinateSwizzleNV x;
 VkViewportCoordinateSwizzleNV y;
 VkViewportCoordinateSwizzleNV z;
 VkViewportCoordinateSwizzleNV w;
} VkViewportSwizzleNV;

• x is a VkViewportCoordinateSwizzleNV value specifying the swizzle operation to apply to the x
component of the primitive

• y is a VkViewportCoordinateSwizzleNV value specifying the swizzle operation to apply to the y
component of the primitive

• z is a VkViewportCoordinateSwizzleNV value specifying the swizzle operation to apply to the z
component of the primitive

• w is a VkViewportCoordinateSwizzleNV value specifying the swizzle operation to apply to the w
component of the primitive

Valid Usage (Implicit)

• VUID-VkViewportSwizzleNV-x-parameter
x must be a valid VkViewportCoordinateSwizzleNV value

2609

• VUID-VkViewportSwizzleNV-y-parameter
y must be a valid VkViewportCoordinateSwizzleNV value

• VUID-VkViewportSwizzleNV-z-parameter
z must be a valid VkViewportCoordinateSwizzleNV value

• VUID-VkViewportSwizzleNV-w-parameter
w must be a valid VkViewportCoordinateSwizzleNV value

Possible values of the VkViewportSwizzleNV::x, y, z, and w members, specifying swizzling of the
corresponding components of primitives, are:

// Provided by VK_NV_viewport_swizzle
typedef enum VkViewportCoordinateSwizzleNV {
 VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV = 0,
 VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV = 1,
 VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV = 2,
 VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV = 3,
 VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV = 4,
 VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV = 5,
 VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV = 6,
 VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV = 7,
} VkViewportCoordinateSwizzleNV;

These values are described in detail in Viewport Swizzle.

27.3. Flat Shading
Flat shading a vertex output attribute means to assign all vertices of the primitive the same value
for that output. The output values assigned are those of the provoking vertex of the primitive. Flat
shading is applied to those vertex attributes that match fragment input attributes which are
decorated as Flat.

If neither mesh, geometry nor tessellation shading is active, the provoking vertex is determined by
the primitive topology defined by VkPipelineInputAssemblyStateCreateInfo:topology used to
execute the drawing command.

If a shader using MeshNV Execution Model is active, the provoking vertex is determined by the
primitive topology defined by the OutputPoints, OutputLinesNV, or OutputTrianglesNV execution
mode.

If a shader using MeshEXT Execution Model is active, the provoking vertex is determined by the
primitive topology defined by the OutputPoints, OutputLinesEXT, or OutputTrianglesEXT execution
mode.

If geometry shading is active, the provoking vertex is determined by the primitive topology defined
by the OutputPoints, OutputLineStrip, or OutputTriangleStrip execution mode.

If tessellation shading is active but geometry shading is not, the provoking vertex may be any of the

2610

vertices in each primitive.

For a given primitive topology, the pipeline’s provoking vertex mode determines which vertex is
the provoking vertex. To specify the provoking vertex mode, include a
VkPipelineRasterizationProvokingVertexStateCreateInfoEXT structure in the
VkPipelineRasterizationStateCreateInfo::pNext chain when creating the pipeline.

The VkPipelineRasterizationProvokingVertexStateCreateInfoEXT structure is defined as:

// Provided by VK_EXT_provoking_vertex
typedef struct VkPipelineRasterizationProvokingVertexStateCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkProvokingVertexModeEXT provokingVertexMode;
} VkPipelineRasterizationProvokingVertexStateCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• provokingVertexMode is a VkProvokingVertexModeEXT value selecting the provoking vertex
mode.

If this struct is not provided when creating the pipeline, the pipeline will use the
VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT mode.

If the provokingVertexModePerPipeline limit is VK_FALSE, then all pipelines bound within a render
pass instance must have the same provokingVertexMode.

Valid Usage

• VUID-VkPipelineRasterizationProvokingVertexStateCreateInfoEXT-provokingVertexMode-
04883
If provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, then the
provokingVertexLast feature must be enabled

Valid Usage (Implicit)

• VUID-VkPipelineRasterizationProvokingVertexStateCreateInfoEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_PROVOKING_VERTEX_STATE_CREATE_INFO_EXT

• VUID-VkPipelineRasterizationProvokingVertexStateCreateInfoEXT-provokingVertexMode-
parameter
provokingVertexMode must be a valid VkProvokingVertexModeEXT value

Possible values of VkPipelineRasterizationProvokingVertexStateCreateInfoEXT::provokingVertexMode
are:

2611

// Provided by VK_EXT_provoking_vertex
typedef enum VkProvokingVertexModeEXT {
 VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT = 0,
 VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT = 1,
} VkProvokingVertexModeEXT;

• VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT specifies that the provoking vertex is the first non-
adjacency vertex in the list of vertices used by a primitive.

• VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT specifies that the provoking vertex is the last non-
adjacency vertex in the list of vertices used by a primitive.

These modes are described more precisely in Primitive Topologies.

To dynamically set the provokingVertexMode state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_provoking_vertex,
VK_EXT_provoking_vertex with VK_EXT_shader_object
void vkCmdSetProvokingVertexModeEXT(
 VkCommandBuffer commandBuffer,
 VkProvokingVertexModeEXT provokingVertexMode);

• commandBuffer is the command buffer into which the command will be recorded.

• provokingVertexMode specifies the provokingVertexMode state.

This command sets the provokingVertexMode state for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationProvokingVertexStateCreateInfoEXT::provokingVertexMode value used to
create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetProvokingVertexModeEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ProvokingVertexMode feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetProvokingVertexModeEXT-provokingVertexMode-07447
If provokingVertexMode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, then the
provokingVertexLast feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdSetProvokingVertexModeEXT-commandBuffer-parameter

2612

commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetProvokingVertexModeEXT-provokingVertexMode-parameter
provokingVertexMode must be a valid VkProvokingVertexModeEXT value

• VUID-vkCmdSetProvokingVertexModeEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetProvokingVertexModeEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetProvokingVertexModeEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

27.4. Primitive Clipping
Primitives are culled against the cull volume and then clipped to the clip volume. In clip coordinates,
the view volume is defined by:

where if VkPipelineViewportDepthClipControlCreateInfoEXT::negativeOneToOne is VK_TRUE zm is
equal to -wc otherwise zm is equal to zero.

This view volume can be further restricted by as many as VkPhysicalDeviceLimits::maxClipDistances
client-defined half-spaces.

The cull volume is the intersection of up to VkPhysicalDeviceLimits::maxCullDistances client-defined
half-spaces (if no client-defined cull half-spaces are enabled, culling against the cull volume is
skipped).

2613

A shader must write a single cull distance for each enabled cull half-space to elements of the
CullDistance array. If the cull distance for any enabled cull half-space is negative for all of the
vertices of the primitive under consideration, the primitive is discarded. Otherwise the primitive is
clipped against the clip volume as defined below.

The clip volume is the intersection of up to VkPhysicalDeviceLimits::maxClipDistances client-defined
half-spaces with the view volume (if no client-defined clip half-spaces are enabled, the clip volume
is the view volume).

A shader must write a single clip distance for each enabled clip half-space to elements of the
ClipDistance array. Clip half-space i is then given by the set of points satisfying the inequality

ci(P) ≥ 0

where ci(P) is the clip distance i at point P. For point primitives, ci(P) is simply the clip distance for
the vertex in question. For line and triangle primitives, per-vertex clip distances are interpolated
using a weighted mean, with weights derived according to the algorithms described in sections
Basic Line Segment Rasterization and Basic Polygon Rasterization, using the perspective
interpolation equations.

The number of client-defined clip and cull half-spaces that are enabled is determined by the explicit
size of the built-in arrays ClipDistance and CullDistance, respectively, declared as an output in the
interface of the entry point of the final shader stage before clipping.

If VkPipelineRasterizationDepthClipStateCreateInfoEXT is present in the graphics pipeline state
then depth clipping is disabled if VkPipelineRasterizationDepthClipStateCreateInfoEXT
::depthClipEnable is VK_FALSE. Otherwise, if VkPipelineRasterizationDepthClipStateCreateInfoEXT is
not present, depth clipping is disabled when VkPipelineRasterizationStateCreateInfo
::depthClampEnable is VK_TRUE.

To dynamically set enable or disable depth clamping, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetDepthClampEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 depthClampEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthClampEnable specifies whether depth clamping is enabled.

This command sets whether depth clamping is enabled or disabled for subsequent drawing
commands when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineRasterizationStateCreateInfo::depthClampEnable
value used to create the currently active pipeline.

If the depth clamping state is changed dynamically, and the pipeline was not created with

2614

VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT enabled, then depth clipping is enabled when depth
clamping is disabled and vice versa.

Valid Usage

• VUID-vkCmdSetDepthClampEnableEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3DepthClampEnable feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetDepthClampEnableEXT-depthClamp-07449
If the depthClamp feature is not enabled, depthClampEnable must be VK_FALSE

Valid Usage (Implicit)

• VUID-vkCmdSetDepthClampEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthClampEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthClampEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthClampEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set enable or disable depth clipping, call:

// Provided by VK_EXT_depth_clip_enable with VK_EXT_extended_dynamic_state3,

2615

VK_EXT_depth_clip_enable with VK_EXT_shader_object
void vkCmdSetDepthClipEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 depthClipEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthClipEnable specifies whether depth clipping is enabled.

This command sets whether depth clipping is enabled or disabled for subsequent drawing
commands when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineRasterizationDepthClipStateCreateInfoEXT
::depthClipEnable value used to create the currently active pipeline, or is set to the inverse of
VkPipelineRasterizationStateCreateInfo::depthClampEnable if
VkPipelineRasterizationDepthClipStateCreateInfoEXT is not specified.

Valid Usage

• VUID-vkCmdSetDepthClipEnableEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3DepthClipEnable feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetDepthClipEnableEXT-depthClipEnable-07451
The depthClipEnable feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdSetDepthClipEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthClipEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthClipEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthClipEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2616

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

When depth clipping is disabled, the plane equation

zm ≤ zc ≤ wc

(see the clip volume definition above) is ignored by view volume clipping (effectively, there is no
near or far plane clipping).

If the primitive under consideration is a point or line segment, then clipping passes it unchanged if
its vertices lie entirely within the clip volume.

Possible values of VkPhysicalDevicePointClippingProperties::pointClippingBehavior, specifying
clipping behavior of a point primitive whose vertex lies outside the clip volume, are:

// Provided by VK_VERSION_1_1
typedef enum VkPointClippingBehavior {
 VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES = 0,
 VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY = 1,
 // Provided by VK_KHR_maintenance2
 VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR =
VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES,
 // Provided by VK_KHR_maintenance2
 VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY_KHR =
VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY,
} VkPointClippingBehavior;

or the equivalent

// Provided by VK_KHR_maintenance2
typedef VkPointClippingBehavior VkPointClippingBehaviorKHR;

• VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES specifies that the primitive is discarded if the
vertex lies outside any clip plane, including the planes bounding the view volume.

• VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY specifies that the primitive is discarded only
if the vertex lies outside any user clip plane.

If either of a line segment’s vertices lie outside of the clip volume, the line segment may be clipped,
with new vertex coordinates computed for each vertex that lies outside the clip volume. A clipped

2617

line segment endpoint lies on both the original line segment and the boundary of the clip volume.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the coordinates of a clipped
vertex are P and the unclipped line segment’s vertex coordinates are P1 and P2, then t satisfies the
following equation

P = t P1 + (1-t) P2.

t is used to clip vertex output attributes as described in Clipping Shader Outputs.

If the primitive is a polygon, it passes unchanged if every one of its edges lies entirely inside the clip
volume, and is either clipped or discarded otherwise. If the edges of the polygon intersect the
boundary of the clip volume, the intersecting edges are reconnected by new edges that lie along the
boundary of the clip volume - in some cases requiring the introduction of new vertices into a
polygon.

If a polygon intersects an edge of the clip volume’s boundary, the clipped polygon must include a
point on this boundary edge.

Primitives rendered with user-defined half-spaces must satisfy a complementarity criterion.
Suppose a series of primitives is drawn where each vertex i has a single specified clip distance di (or
a number of similarly specified clip distances, if multiple half-spaces are enabled). Next, suppose
that the same series of primitives are drawn again with each such clip distance replaced by -di (and
the graphics pipeline is otherwise the same). In this case, primitives must not be missing any pixels,
and pixels must not be drawn twice in regions where those primitives are cut by the clip planes.

The VkPipelineViewportDepthClipControlCreateInfoEXT structure is defined as:

// Provided by VK_EXT_depth_clip_control
typedef struct VkPipelineViewportDepthClipControlCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkBool32 negativeOneToOne;
} VkPipelineViewportDepthClipControlCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• negativeOneToOne sets the zm in the view volume to -wc

Valid Usage

• VUID-VkPipelineViewportDepthClipControlCreateInfoEXT-negativeOneToOne-06470
If depthClipControl is not enabled, negativeOneToOne must be VK_FALSE

2618

Valid Usage (Implicit)

• VUID-VkPipelineViewportDepthClipControlCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_DEPTH_CLIP_CONTROL_CREATE_INFO_EXT

To dynamically set negativeOneToOne, call:

// Provided by VK_EXT_depth_clip_control with VK_EXT_extended_dynamic_state3,
VK_EXT_depth_clip_control with VK_EXT_shader_object
void vkCmdSetDepthClipNegativeOneToOneEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 negativeOneToOne);

• commandBuffer is the command buffer into which the command will be recorded.

• negativeOneToOne specifies the negativeOneToOne state.

This command sets the negativeOneToOne state for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineViewportDepthClipControlCreateInfoEXT::negativeOneToOne value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetDepthClipNegativeOneToOneEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3DepthClipNegativeOneToOne feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetDepthClipNegativeOneToOneEXT-depthClipControl-07453
The depthClipControl feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdSetDepthClipNegativeOneToOneEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthClipNegativeOneToOneEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthClipNegativeOneToOneEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthClipNegativeOneToOneEXT-videocoding

2619

This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

27.5. Clipping Shader Outputs
Next, vertex output attributes are clipped. The output values associated with a vertex that lies
within the clip volume are unaffected by clipping. If a primitive is clipped, however, the output
values assigned to vertices produced by clipping are clipped.

Let the output values assigned to the two vertices P1 and P2 of an unclipped edge be c1 and c2. The
value of t (see Primitive Clipping) for a clipped point P is used to obtain the output value associated
with P as

c = t c1 + (1-t) c2.

(Multiplying an output value by a scalar means multiplying each of x, y, z, and w by the scalar.)

Since this computation is performed in clip space before division by wc, clipped output values are
perspective-correct.

Polygon clipping creates a clipped vertex along an edge of the clip volume’s boundary. This
situation is handled by noting that polygon clipping proceeds by clipping against one half-space at a
time. Output value clipping is done in the same way, so that clipped points always occur at the
intersection of polygon edges (possibly already clipped) with the clip volume’s boundary.

For vertex output attributes whose matching fragment input attributes are decorated with
NoPerspective, the value of t used to obtain the output value associated with P will be adjusted to
produce results that vary linearly in framebuffer space.

Output attributes of integer or unsigned integer type must always be flat shaded. Flat shaded
attributes are constant over the primitive being rasterized (see Basic Line Segment Rasterization
and Basic Polygon Rasterization), and no interpolation is performed. The output value c is taken

2620

from either c1 or c2, since flat shading has already occurred and the two values are identical.

27.6. Controlling Viewport W Scaling
If viewport W scaling is enabled, the W component of the clip coordinate is modified by the
provided coefficients from the corresponding viewport as follows.

wc' = xcoeff xc + ycoeff yc + wc

The VkPipelineViewportWScalingStateCreateInfoNV structure is defined as:

// Provided by VK_NV_clip_space_w_scaling
typedef struct VkPipelineViewportWScalingStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkBool32 viewportWScalingEnable;
 uint32_t viewportCount;
 const VkViewportWScalingNV* pViewportWScalings;
} VkPipelineViewportWScalingStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• viewportWScalingEnable controls whether viewport W scaling is enabled.

• viewportCount is the number of viewports used by W scaling, and must match the number of
viewports in the pipeline if viewport W scaling is enabled.

• pViewportWScalings is a pointer to an array of VkViewportWScalingNV structures defining the W
scaling parameters for the corresponding viewports. If the viewport W scaling state is dynamic,
this member is ignored.

Valid Usage (Implicit)

• VUID-VkPipelineViewportWScalingStateCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV

• VUID-VkPipelineViewportWScalingStateCreateInfoNV-viewportCount-arraylength
viewportCount must be greater than 0

The VkPipelineViewportWScalingStateCreateInfoNV state is set by adding this structure to the pNext
chain of a VkPipelineViewportStateCreateInfo structure and setting the graphics pipeline state with
vkCreateGraphicsPipelines.

To dynamically set the viewportWScalingEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_clip_space_w_scaling,

2621

VK_EXT_shader_object with VK_NV_clip_space_w_scaling
void vkCmdSetViewportWScalingEnableNV(
 VkCommandBuffer commandBuffer,
 VkBool32 viewportWScalingEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• viewportWScalingEnable specifies the viewportWScalingEnable state.

This command sets the viewportWScalingEnable state for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineViewportWScalingStateCreateInfoNV::viewportWScalingEnable value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetViewportWScalingEnableNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ViewportWScalingEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetViewportWScalingEnableNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetViewportWScalingEnableNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetViewportWScalingEnableNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetViewportWScalingEnableNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2622

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the viewport W scaling parameters, call:

// Provided by VK_NV_clip_space_w_scaling
void vkCmdSetViewportWScalingNV(
 VkCommandBuffer commandBuffer,
 uint32_t firstViewport,
 uint32_t viewportCount,
 const VkViewportWScalingNV* pViewportWScalings);

• commandBuffer is the command buffer into which the command will be recorded.

• firstViewport is the index of the first viewport whose parameters are updated by the command.

• viewportCount is the number of viewports whose parameters are updated by the command.

• pViewportWScalings is a pointer to an array of VkViewportWScalingNV structures specifying
viewport parameters.

The viewport parameters taken from element i of pViewportWScalings replace the current state for
the viewport index firstViewport + i, for i in [0, viewportCount).

This command sets the viewport W scaling for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineViewportWScalingStateCreateInfoNV
::pViewportWScalings values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetViewportWScalingNV-firstViewport-01324
The sum of firstViewport and viewportCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

Valid Usage (Implicit)

• VUID-vkCmdSetViewportWScalingNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetViewportWScalingNV-pViewportWScalings-parameter
pViewportWScalings must be a valid pointer to an array of viewportCount

2623

VkViewportWScalingNV structures

• VUID-vkCmdSetViewportWScalingNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetViewportWScalingNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetViewportWScalingNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetViewportWScalingNV-viewportCount-arraylength
viewportCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Both VkPipelineViewportWScalingStateCreateInfoNV and vkCmdSetViewportWScalingNV use
VkViewportWScalingNV to set the viewport transformation parameters.

The VkViewportWScalingNV structure is defined as:

// Provided by VK_NV_clip_space_w_scaling
typedef struct VkViewportWScalingNV {
 float xcoeff;
 float ycoeff;
} VkViewportWScalingNV;

• xcoeff and ycoeff are the viewport’s W scaling factor for x and y respectively.

27.7. Coordinate Transformations
Clip coordinates for a vertex result from shader execution, which yields a vertex coordinate
Position.

2624

Perspective division on clip coordinates yields normalized device coordinates, followed by a
viewport transformation (see Controlling the Viewport) to convert these coordinates into
framebuffer coordinates.

If a vertex in clip coordinates has a position given by

then the vertex’s normalized device coordinates are

27.8. Render Pass Transform
A render pass transform can be enabled for render pass instances. The clip coordinates (xc, yc) that
result from vertex shader execution are transformed by a rotation of 0, 90, 180, or 270 degrees in
the XY plane, centered at the origin.

When Render pass transform is enabled, the transform applies to all primitives for all subpasses of
the render pass. The transformed vertex in clip coordinates has a position given by

where

• θ is 0 degrees for VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR

• θ is 90 degrees for VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR

• θ is 180 degrees for VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR

• θ is 270 degrees for VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR

The transformed vertex’s normalized device coordinates are

2625

When render pass transform is enabled for a render pass instance, the following additional
features are enabled:

• Each VkViewport specified by either VkPipelineViewportStateCreateInfo::pViewports or
vkCmdSetViewport will have its width/height (px, py) and its center (ox, oy) similarly transformed
by the implementation.

• Each scissor specified by VkPipelineViewportStateCreateInfo::pScissors or vkCmdSetScissor will
have its (offsetx, offsety) and (extentx, extenty) similarly transformed by the implementation.

• The renderArea specified in VkCommandBufferInheritanceRenderPassTransformInfoQCOM and
VkRenderPassBeginInfo will be similarly transformed by the implementation.

• The (x, y) components of shader variables with built-in decorations FragCoord, SamplePosition, or
PointCoord will be similarly transformed by the implementation.

• The (x,y) components of the offset operand of the InterpolateAtOffset extended instruction will
be similarly transformed by the implementation.

• The values returned by SPIR-V derivative instructions OpDPdx, OpDPdy, OpDPdxCourse, OpDPdyCourse,
OpDPdxFine, OpDPdyFine will be similarly transformed by the implementation.

The net result of the above, is that applications can act as if rendering to a framebuffer oriented
with the VkSurfaceCapabilitiesKHR::currentTransform. In other words, applications can act as if the
presentation engine will be performing the transformation of the swapchain image after rendering
and prior to presentation to the user. In fact, the transformation of the various items cited above
are being handled by the implementation as the rendering takes place.

27.9. Controlling the Viewport
The viewport transformation is determined by the selected viewport’s width and height in pixels, px

and py, respectively, and its center (ox, oy) (also in pixels), as well as its depth range min and max
determining a depth range scale value pz and a depth range bias value oz (defined below). The
vertex’s framebuffer coordinates (xf, yf, zf) are given by

xf = (px / 2) xd + ox

yf = (py / 2) yd + oy

zf = pz × zd + oz

Multiple viewports are available, numbered zero up to VkPhysicalDeviceLimits::maxViewports minus
one. The number of viewports used by a pipeline is controlled by the viewportCount member of the
VkPipelineViewportStateCreateInfo structure used in pipeline creation.

xf and yf have limited precision, where the number of fractional bits retained is specified by
VkPhysicalDeviceLimits::subPixelPrecisionBits. When rasterizing line segments, the number of
fractional bits is specified by VkPhysicalDeviceLineRasterizationPropertiesKHR

2626

::lineSubPixelPrecisionBits.

The VkPipelineViewportStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineViewportStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineViewportStateCreateFlags flags;
 uint32_t viewportCount;
 const VkViewport* pViewports;
 uint32_t scissorCount;
 const VkRect2D* pScissors;
} VkPipelineViewportStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• viewportCount is the number of viewports used by the pipeline.

• pViewports is a pointer to an array of VkViewport structures, defining the viewport transforms.
If the viewport state is dynamic, this member is ignored.

• scissorCount is the number of scissors and must match the number of viewports.

• pScissors is a pointer to an array of VkRect2D structures defining the rectangular bounds of the
scissor for the corresponding viewport. If the scissor state is dynamic, this member is ignored.

Valid Usage

• VUID-VkPipelineViewportStateCreateInfo-viewportCount-01216
If the multiViewport feature is not enabled, viewportCount must not be greater than 1

• VUID-VkPipelineViewportStateCreateInfo-scissorCount-01217
If the multiViewport feature is not enabled, scissorCount must not be greater than 1

• VUID-VkPipelineViewportStateCreateInfo-viewportCount-01218
viewportCount must be less than or equal to VkPhysicalDeviceLimits::maxViewports

• VUID-VkPipelineViewportStateCreateInfo-scissorCount-01219
scissorCount must be less than or equal to VkPhysicalDeviceLimits::maxViewports

• VUID-VkPipelineViewportStateCreateInfo-x-02821
The x and y members of offset member of any element of pScissors must be greater than
or equal to 0

• VUID-VkPipelineViewportStateCreateInfo-offset-02822
Evaluation of (offset.x + extent.width) must not cause a signed integer addition overflow
for any element of pScissors

• VUID-VkPipelineViewportStateCreateInfo-offset-02823
Evaluation of (offset.y + extent.height) must not cause a signed integer addition

2627

overflow for any element of pScissors

• VUID-VkPipelineViewportStateCreateInfo-scissorCount-04134
If scissorCount and viewportCount are both not dynamic, then scissorCount and
viewportCount must be identical

• VUID-VkPipelineViewportStateCreateInfo-viewportCount-04135
If the graphics pipeline is being created with VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT set
then viewportCount must be 0, otherwise viewportCount must be greater than 0

• VUID-VkPipelineViewportStateCreateInfo-scissorCount-04136
If the graphics pipeline is being created with VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT set
then scissorCount must be 0, otherwise scissorCount must be greater than 0

• VUID-VkPipelineViewportStateCreateInfo-viewportWScalingEnable-01726
If the viewportWScalingEnable member of a
VkPipelineViewportWScalingStateCreateInfoNV structure included in the pNext chain is
VK_TRUE, the viewportCount member of the VkPipelineViewportWScalingStateCreateInfoNV
structure must be greater than or equal to VkPipelineViewportStateCreateInfo
::viewportCount

Valid Usage (Implicit)

• VUID-VkPipelineViewportStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO

• VUID-VkPipelineViewportStateCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of
VkPipelineViewportCoarseSampleOrderStateCreateInfoNV,
VkPipelineViewportDepthClipControlCreateInfoEXT,
VkPipelineViewportExclusiveScissorStateCreateInfoNV,
VkPipelineViewportShadingRateImageStateCreateInfoNV,
VkPipelineViewportSwizzleStateCreateInfoNV, or
VkPipelineViewportWScalingStateCreateInfoNV

• VUID-VkPipelineViewportStateCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineViewportStateCreateInfo-flags-zerobitmask
flags must be 0

To dynamically set the viewport count and viewports, call:

// Provided by VK_VERSION_1_3
void vkCmdSetViewportWithCount(
 VkCommandBuffer commandBuffer,
 uint32_t viewportCount,
 const VkViewport* pViewports);

2628

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetViewportWithCountEXT(
 VkCommandBuffer commandBuffer,
 uint32_t viewportCount,
 const VkViewport* pViewports);

• commandBuffer is the command buffer into which the command will be recorded.

• viewportCount specifies the viewport count.

• pViewports specifies the viewports to use for drawing.

This command sets the viewport count and viewports state for subsequent drawing commands
when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the corresponding VkPipelineViewportStateCreateInfo
::viewportCount and pViewports values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetViewportWithCount-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

• VUID-vkCmdSetViewportWithCount-viewportCount-03394
viewportCount must be between 1 and VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetViewportWithCount-viewportCount-03395
If the multiViewport feature is not enabled, viewportCount must be 1

• VUID-vkCmdSetViewportWithCount-commandBuffer-04819
commandBuffer must not have VkCommandBufferInheritanceViewportScissorInfoNV
::viewportScissor2D enabled

Valid Usage (Implicit)

• VUID-vkCmdSetViewportWithCount-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetViewportWithCount-pViewports-parameter
pViewports must be a valid pointer to an array of viewportCount valid VkViewport
structures

• VUID-vkCmdSetViewportWithCount-commandBuffer-recording

2629

commandBuffer must be in the recording state

• VUID-vkCmdSetViewportWithCount-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetViewportWithCount-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetViewportWithCount-viewportCount-arraylength
viewportCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the scissor count and scissor rectangular bounds, call:

// Provided by VK_VERSION_1_3
void vkCmdSetScissorWithCount(
 VkCommandBuffer commandBuffer,
 uint32_t scissorCount,
 const VkRect2D* pScissors);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetScissorWithCountEXT(
 VkCommandBuffer commandBuffer,
 uint32_t scissorCount,
 const VkRect2D* pScissors);

• commandBuffer is the command buffer into which the command will be recorded.

• scissorCount specifies the scissor count.

• pScissors specifies the scissors to use for drawing.

2630

This command sets the scissor count and scissor rectangular bounds state for subsequent drawing
commands when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the corresponding VkPipelineViewportStateCreateInfo
::scissorCount and pScissors values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetScissorWithCount-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

• VUID-vkCmdSetScissorWithCount-scissorCount-03397
scissorCount must be between 1 and VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetScissorWithCount-scissorCount-03398
If the multiViewport feature is not enabled, scissorCount must be 1

• VUID-vkCmdSetScissorWithCount-x-03399
The x and y members of offset member of any element of pScissors must be greater than
or equal to 0

• VUID-vkCmdSetScissorWithCount-offset-03400
Evaluation of (offset.x + extent.width) must not cause a signed integer addition overflow
for any element of pScissors

• VUID-vkCmdSetScissorWithCount-offset-03401
Evaluation of (offset.y + extent.height) must not cause a signed integer addition
overflow for any element of pScissors

• VUID-vkCmdSetScissorWithCount-commandBuffer-04820
commandBuffer must not have VkCommandBufferInheritanceViewportScissorInfoNV
::viewportScissor2D enabled

Valid Usage (Implicit)

• VUID-vkCmdSetScissorWithCount-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetScissorWithCount-pScissors-parameter
pScissors must be a valid pointer to an array of scissorCount VkRect2D structures

• VUID-vkCmdSetScissorWithCount-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetScissorWithCount-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

2631

• VUID-vkCmdSetScissorWithCount-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetScissorWithCount-scissorCount-arraylength
scissorCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineViewportStateCreateFlags;

VkPipelineViewportStateCreateFlags is a bitmask type for setting a mask, but is currently reserved
for future use.

A pre-rasterization shader stage can direct each primitive to zero or more viewports. The
destination viewports for a primitive are selected by the last active pre-rasterization shader stage
that has an output variable decorated with ViewportIndex (selecting a single viewport) or
ViewportMaskNV (selecting multiple viewports). The viewport transform uses the viewport
corresponding to either the value assigned to ViewportIndex or one of the bits set in ViewportMaskNV,
and taken from an implementation-dependent vertex of each primitive. If ViewportIndex or any of
the bits in ViewportMaskNV are outside the range zero to viewportCount minus one for a primitive, or
if the last active pre-rasterization shader stage did not assign a value to either ViewportIndex or
ViewportMaskNV for all vertices of a primitive due to flow control, the values resulting from the
viewport transformation of the vertices of such primitives are undefined. If the last pre-
rasterization shader stage does not have an output decorated with ViewportIndex or ViewportMaskNV,
the viewport numbered zero is used by the viewport transformation.

A single vertex can be used in more than one individual primitive, in primitives such as
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP. In this case, the viewport transformation is applied
separately for each primitive.

To dynamically set the viewport transformation parameters, call:

2632

// Provided by VK_VERSION_1_0
void vkCmdSetViewport(
 VkCommandBuffer commandBuffer,
 uint32_t firstViewport,
 uint32_t viewportCount,
 const VkViewport* pViewports);

• commandBuffer is the command buffer into which the command will be recorded.

• firstViewport is the index of the first viewport whose parameters are updated by the command.

• viewportCount is the number of viewports whose parameters are updated by the command.

• pViewports is a pointer to an array of VkViewport structures specifying viewport parameters.

This command sets the viewport transformation parameters state for subsequent drawing
commands when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_VIEWPORT set in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise,
this state is specified by the VkPipelineViewportStateCreateInfo::pViewports values used to create the
currently active pipeline.

The viewport parameters taken from element i of pViewports replace the current state for the
viewport index firstViewport + i, for i in [0, viewportCount).

Valid Usage

• VUID-vkCmdSetViewport-firstViewport-01223
The sum of firstViewport and viewportCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetViewport-firstViewport-01224
If the multiViewport feature is not enabled, firstViewport must be 0

• VUID-vkCmdSetViewport-viewportCount-01225
If the multiViewport feature is not enabled, viewportCount must be 1

• VUID-vkCmdSetViewport-commandBuffer-04821
commandBuffer must not have VkCommandBufferInheritanceViewportScissorInfoNV
::viewportScissor2D enabled

Valid Usage (Implicit)

• VUID-vkCmdSetViewport-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetViewport-pViewports-parameter
pViewports must be a valid pointer to an array of viewportCount valid VkViewport
structures

• VUID-vkCmdSetViewport-commandBuffer-recording
commandBuffer must be in the recording state

2633

• VUID-vkCmdSetViewport-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetViewport-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetViewport-viewportCount-arraylength
viewportCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Both VkPipelineViewportStateCreateInfo and vkCmdSetViewport use VkViewport to set the viewport
transformation parameters.

The VkViewport structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkViewport {
 float x;
 float y;
 float width;
 float height;
 float minDepth;
 float maxDepth;
} VkViewport;

• x and y are the viewport’s upper left corner (x,y).

• width and height are the viewport’s width and height, respectively.

• minDepth and maxDepth are the depth range for the viewport.

Note

Despite their names, minDepth can be less than, equal to, or greater than maxDepth.

2634

The framebuffer depth coordinate zf may be represented using either a fixed-point or floating-point
representation. However, a floating-point representation must be used if the depth/stencil
attachment has a floating-point depth component. If an m-bit fixed-point representation is used, we
assume that it represents each value , where k ∈ { 0, 1, …, 2m-1 }, as k (e.g. 1.0 is represented in
binary as a string of all ones).

The viewport parameters shown in the above equations are found from these values as

ox = x + width / 2

oy = y + height / 2

oz = minDepth (or (maxDepth + minDepth) / 2 if VkPipelineViewportDepthClipControlCreateInfoEXT
::negativeOneToOne is VK_TRUE)

px = width

py = height

pz = maxDepth - minDepth (or (maxDepth - minDepth) / 2 if
VkPipelineViewportDepthClipControlCreateInfoEXT::negativeOneToOne is VK_TRUE)

If a render pass transform is enabled, the values (px,py) and (ox, oy) defining the viewport are
transformed as described in render pass transform before participating in the viewport transform.

The application can specify a negative term for height, which has the effect of negating the y
coordinate in clip space before performing the transform. When using a negative height, the
application should also adjust the y value to point to the lower left corner of the viewport instead of
the upper left corner. Using the negative height allows the application to avoid having to negate the
y component of the Position output from the last pre-rasterization shader stage.

The width and height of the implementation-dependent maximum viewport dimensions must be
greater than or equal to the width and height of the largest image which can be created and
attached to a framebuffer.

The floating-point viewport bounds are represented with an implementation-dependent precision.

Valid Usage

• VUID-VkViewport-width-01770
width must be greater than 0.0

• VUID-VkViewport-width-01771

2635

width must be less than or equal to VkPhysicalDeviceLimits::maxViewportDimensions[0]

• VUID-VkViewport-apiVersion-07917
If the VK_KHR_maintenance1 extension is not enabled, the
VK_AMD_negative_viewport_height extension is not enabled, and
VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, height must be greater
than 0.0

• VUID-VkViewport-height-01773
The absolute value of height must be less than or equal to VkPhysicalDeviceLimits
::maxViewportDimensions[1]

• VUID-VkViewport-x-01774
x must be greater than or equal to viewportBoundsRange[0]

• VUID-VkViewport-x-01232
(x + width) must be less than or equal to viewportBoundsRange[1]

• VUID-VkViewport-y-01775
y must be greater than or equal to viewportBoundsRange[0]

• VUID-VkViewport-y-01776
y must be less than or equal to viewportBoundsRange[1]

• VUID-VkViewport-y-01777
(y + height) must be greater than or equal to viewportBoundsRange[0]

• VUID-VkViewport-y-01233
(y + height) must be less than or equal to viewportBoundsRange[1]

• VUID-VkViewport-minDepth-01234
If the VK_EXT_depth_range_unrestricted extension is not enabled, minDepth must be
between 0.0 and 1.0, inclusive

• VUID-VkViewport-maxDepth-01235
If the VK_EXT_depth_range_unrestricted extension is not enabled, maxDepth must be
between 0.0 and 1.0, inclusive

2636

Chapter 28. Rasterization
Rasterization is the process by which a primitive is converted to a two-dimensional image. Each
discrete location of this image contains associated data such as depth, color, or other attributes.

Rasterizing a primitive begins by determining which squares of an integer grid in framebuffer
coordinates are occupied by the primitive, and assigning one or more depth values to each such
square. This process is described below for points, lines, and polygons.

A grid square, including its (x,y) framebuffer coordinates, z (depth), and associated data added by
fragment shaders, is called a fragment. A fragment is located by its upper left corner, which lies on
integer grid coordinates.

Rasterization operations also refer to a fragment’s sample locations, which are offset by fractional
values from its upper left corner. The rasterization rules for points, lines, and triangles involve
testing whether each sample location is inside the primitive. Fragments need not actually be
square, and rasterization rules are not affected by the aspect ratio of fragments. Display of non-
square grids, however, will cause rasterized points and line segments to appear fatter in one
direction than the other.

We assume that fragments are square, since it simplifies antialiasing and texturing. After
rasterization, fragments are processed by fragment operations.

Several factors affect rasterization, including the members of
VkPipelineRasterizationStateCreateInfo and VkPipelineMultisampleStateCreateInfo.

The VkPipelineRasterizationStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineRasterizationStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineRasterizationStateCreateFlags flags;
 VkBool32 depthClampEnable;
 VkBool32 rasterizerDiscardEnable;
 VkPolygonMode polygonMode;
 VkCullModeFlags cullMode;
 VkFrontFace frontFace;
 VkBool32 depthBiasEnable;
 float depthBiasConstantFactor;
 float depthBiasClamp;
 float depthBiasSlopeFactor;
 float lineWidth;
} VkPipelineRasterizationStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

2637

• depthClampEnable controls whether to clamp the fragment’s depth values as described in Depth
Test. If the pipeline is not created with VkPipelineRasterizationDepthClipStateCreateInfoEXT
present then enabling depth clamp will also disable clipping primitives to the z planes of the
frustum as described in Primitive Clipping. Otherwise depth clipping is controlled by the state
set in VkPipelineRasterizationDepthClipStateCreateInfoEXT.

• rasterizerDiscardEnable controls whether primitives are discarded immediately before the
rasterization stage.

• polygonMode is the triangle rendering mode. See VkPolygonMode.

• cullMode is the triangle facing direction used for primitive culling. See VkCullModeFlagBits.

• frontFace is a VkFrontFace value specifying the front-facing triangle orientation to be used for
culling.

• depthBiasEnable controls whether to bias fragment depth values.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each
fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

• lineWidth is the width of rasterized line segments.

The application can also add a VkPipelineRasterizationStateRasterizationOrderAMD structure to the
pNext chain of a VkPipelineRasterizationStateCreateInfo structure. This structure enables selecting
the rasterization order to use when rendering with the corresponding graphics pipeline as
described in Rasterization Order.

Valid Usage

• VUID-VkPipelineRasterizationStateCreateInfo-depthClampEnable-00782
If the depthClamp feature is not enabled, depthClampEnable must be VK_FALSE

• VUID-VkPipelineRasterizationStateCreateInfo-polygonMode-01507
If the fillModeNonSolid feature is not enabled, polygonMode must be VK_POLYGON_MODE_FILL
or VK_POLYGON_MODE_FILL_RECTANGLE_NV

• VUID-VkPipelineRasterizationStateCreateInfo-polygonMode-01414
If the VK_NV_fill_rectangle extension is not enabled, polygonMode must not be
VK_POLYGON_MODE_FILL_RECTANGLE_NV

• VUID-VkPipelineRasterizationStateCreateInfo-pointPolygons-04458
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::pointPolygons is VK_FALSE, and
rasterizerDiscardEnable is VK_FALSE, polygonMode must not be VK_POLYGON_MODE_POINT

Valid Usage (Implicit)

• VUID-VkPipelineRasterizationStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO

2638

• VUID-VkPipelineRasterizationStateCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDepthBiasRepresentationInfoEXT,
VkPipelineRasterizationConservativeStateCreateInfoEXT,
VkPipelineRasterizationDepthClipStateCreateInfoEXT,
VkPipelineRasterizationLineStateCreateInfoKHR,
VkPipelineRasterizationProvokingVertexStateCreateInfoEXT,
VkPipelineRasterizationStateRasterizationOrderAMD, or
VkPipelineRasterizationStateStreamCreateInfoEXT

• VUID-VkPipelineRasterizationStateCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineRasterizationStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineRasterizationStateCreateInfo-polygonMode-parameter
polygonMode must be a valid VkPolygonMode value

• VUID-VkPipelineRasterizationStateCreateInfo-cullMode-parameter
cullMode must be a valid combination of VkCullModeFlagBits values

• VUID-VkPipelineRasterizationStateCreateInfo-frontFace-parameter
frontFace must be a valid VkFrontFace value

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineRasterizationStateCreateFlags;

VkPipelineRasterizationStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

If the pNext chain of VkPipelineRasterizationStateCreateInfo includes a
VkPipelineRasterizationDepthClipStateCreateInfoEXT structure, then that structure controls
whether depth clipping is enabled or disabled.

The VkPipelineRasterizationDepthClipStateCreateInfoEXT structure is defined as:

// Provided by VK_EXT_depth_clip_enable
typedef struct VkPipelineRasterizationDepthClipStateCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkPipelineRasterizationDepthClipStateCreateFlagsEXT flags;
 VkBool32 depthClipEnable;
} VkPipelineRasterizationDepthClipStateCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

2639

• depthClipEnable controls whether depth clipping is enabled as described in Primitive Clipping.

Valid Usage (Implicit)

• VUID-VkPipelineRasterizationDepthClipStateCreateInfoEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT

• VUID-VkPipelineRasterizationDepthClipStateCreateInfoEXT-flags-zerobitmask
flags must be 0

// Provided by VK_EXT_depth_clip_enable
typedef VkFlags VkPipelineRasterizationDepthClipStateCreateFlagsEXT;

VkPipelineRasterizationDepthClipStateCreateFlagsEXT is a bitmask type for setting a mask, but is
currently reserved for future use.

The VkPipelineMultisampleStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineMultisampleStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineMultisampleStateCreateFlags flags;
 VkSampleCountFlagBits rasterizationSamples;
 VkBool32 sampleShadingEnable;
 float minSampleShading;
 const VkSampleMask* pSampleMask;
 VkBool32 alphaToCoverageEnable;
 VkBool32 alphaToOneEnable;
} VkPipelineMultisampleStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• rasterizationSamples is a VkSampleCountFlagBits value specifying the number of samples used
in rasterization. This value is ignored for the purposes of setting the number of samples used in
rasterization if the pipeline is created with the VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
dynamic state set, but if VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state is not set, it is still used
to define the size of the pSampleMask array as described below.

• sampleShadingEnable can be used to enable Sample Shading.

• minSampleShading specifies a minimum fraction of sample shading if sampleShadingEnable is set to
VK_TRUE.

• pSampleMask is a pointer to an array of VkSampleMask values used in the sample mask test.

2640

• alphaToCoverageEnable controls whether a temporary coverage value is generated based on the
alpha component of the fragment’s first color output as specified in the Multisample Coverage
section.

• alphaToOneEnable controls whether the alpha component of the fragment’s first color output is
replaced with one as described in Multisample Coverage.

Each bit in the sample mask is associated with a unique sample index as defined for the coverage
mask. Each bit b for mask word w in the sample mask corresponds to sample index i, where i = 32 ×
w + b. pSampleMask has a length equal to ⌈ rasterizationSamples / 32 ⌉ words.

If pSampleMask is NULL, it is treated as if the mask has all bits set to 1.

Valid Usage

• VUID-VkPipelineMultisampleStateCreateInfo-sampleShadingEnable-00784
If the sampleRateShading feature is not enabled, sampleShadingEnable must be VK_FALSE

• VUID-VkPipelineMultisampleStateCreateInfo-alphaToOneEnable-00785
If the alphaToOne feature is not enabled, alphaToOneEnable must be VK_FALSE

• VUID-VkPipelineMultisampleStateCreateInfo-minSampleShading-00786
minSampleShading must be in the range [0,1]

• VUID-VkPipelineMultisampleStateCreateInfo-rasterizationSamples-01415
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the subpass has any
color attachments and rasterizationSamples is greater than the number of color samples,
then sampleShadingEnable must be VK_FALSE

Valid Usage (Implicit)

• VUID-VkPipelineMultisampleStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO

• VUID-VkPipelineMultisampleStateCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkPipelineCoverageModulationStateCreateInfoNV,
VkPipelineCoverageReductionStateCreateInfoNV,
VkPipelineCoverageToColorStateCreateInfoNV, or
VkPipelineSampleLocationsStateCreateInfoEXT

• VUID-VkPipelineMultisampleStateCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineMultisampleStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineMultisampleStateCreateInfo-rasterizationSamples-parameter
rasterizationSamples must be a valid VkSampleCountFlagBits value

• VUID-VkPipelineMultisampleStateCreateInfo-pSampleMask-parameter
If pSampleMask is not NULL, pSampleMask must be a valid pointer to an array of

2641

 VkSampleMask values

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineMultisampleStateCreateFlags;

VkPipelineMultisampleStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

The elements of the sample mask array are of type VkSampleMask, each representing 32 bits of
coverage information:

// Provided by VK_VERSION_1_0
typedef uint32_t VkSampleMask;

Rasterization only generates fragments which cover one or more pixels inside the framebuffer.
Pixels outside the framebuffer are never considered covered in the fragment. Fragments which
would be produced by application of any of the primitive rasterization rules described below but
which lie outside the framebuffer are not produced, nor are they processed by any later stage of the
pipeline, including any of the fragment operations.

Surviving fragments are processed by fragment shaders. Fragment shaders determine associated
data for fragments, and can also modify or replace their assigned depth values.

28.1. Discarding Primitives Before Rasterization
Primitives are discarded before rasterization if the rasterizerDiscardEnable member of
VkPipelineRasterizationStateCreateInfo is enabled. When enabled, primitives are discarded after
they are processed by the last active shader stage in the pipeline before rasterization.

To dynamically enable whether primitives are discarded before the rasterization stage, call:

// Provided by VK_VERSION_1_3
void vkCmdSetRasterizerDiscardEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 rasterizerDiscardEnable);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state2, VK_EXT_shader_object
void vkCmdSetRasterizerDiscardEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 rasterizerDiscardEnable);

• commandBuffer is the command buffer into which the command will be recorded.

2642

• rasterizerDiscardEnable controls whether primitives are discarded immediately before the
rasterization stage.

This command sets the discard enable for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineRasterizationStateCreateInfo
::rasterizerDiscardEnable value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetRasterizerDiscardEnable-None-08970
At least one of the following must be true:

◦ the extendedDynamicState2 feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetRasterizerDiscardEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetRasterizerDiscardEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetRasterizerDiscardEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetRasterizerDiscardEnable-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2643

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

28.2. Controlling the Vertex Stream Used for
Rasterization
By default vertex data output from the last pre-rasterization shader stage are directed to vertex
stream zero. Geometry shaders can emit primitives to multiple independent vertex streams. Each
vertex emitted by the geometry shader is directed at one of the vertex streams. As vertices are
received on each vertex stream, they are arranged into primitives of the type specified by the
geometry shader output primitive type. The shading language instructions OpEndPrimitive and
OpEndStreamPrimitive can be used to end the primitive being assembled on a given vertex stream
and start a new empty primitive of the same type. An implementation supports up to
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreams streams, which is at
least 1. The individual streams are numbered 0 through maxTransformFeedbackStreams minus 1.
There is no requirement on the order of the streams to which vertices are emitted, and the number
of vertices emitted to each vertex stream can be completely independent, subject only to the
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreamDataSize and
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBufferDataSize limits. The
primitives output from all vertex streams are passed to the transform feedback stage to be captured
to transform feedback buffers in the manner specified by the last pre-rasterization shader stage
shader’s XfbBuffer, XfbStride, and Offsets decorations on the output interface variables in the
graphics pipeline. To use a vertex stream other than zero, or to use multiple streams, the
GeometryStreams capability must be specified.

By default, the primitives output from vertex stream zero are rasterized. If the implementation
supports the VkPhysicalDeviceTransformFeedbackPropertiesEXT
::transformFeedbackRasterizationStreamSelect property it is possible to rasterize a vertex stream
other than zero.

By default, geometry shaders that emit vertices to multiple vertex streams are limited to using only
the OutputPoints output primitive type. If the implementation supports the
VkPhysicalDeviceTransformFeedbackPropertiesEXT::transformFeedbackStreamsLinesTriangles
property it is possible to emit OutputLineStrip or OutputTriangleStrip in addition to OutputPoints.

The vertex stream used for rasterization is specified by adding a
VkPipelineRasterizationStateStreamCreateInfoEXT structure to the pNext chain of a
VkPipelineRasterizationStateCreateInfo structure.

The VkPipelineRasterizationStateStreamCreateInfoEXT structure is defined as:

2644

// Provided by VK_EXT_transform_feedback
typedef struct VkPipelineRasterizationStateStreamCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkPipelineRasterizationStateStreamCreateFlagsEXT flags;
 uint32_t rasterizationStream;
} VkPipelineRasterizationStateStreamCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• rasterizationStream is the vertex stream selected for rasterization.

If this structure is not present, rasterizationStream is assumed to be zero.

Valid Usage

• VUID-VkPipelineRasterizationStateStreamCreateInfoEXT-geometryStreams-02324
VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams must be enabled

• VUID-VkPipelineRasterizationStateStreamCreateInfoEXT-rasterizationStream-02325
rasterizationStream must be less than
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreams

• VUID-VkPipelineRasterizationStateStreamCreateInfoEXT-rasterizationStream-02326
rasterizationStream must be zero if VkPhysicalDeviceTransformFeedbackPropertiesEXT
::transformFeedbackRasterizationStreamSelect is VK_FALSE

Valid Usage (Implicit)

• VUID-VkPipelineRasterizationStateStreamCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT

• VUID-VkPipelineRasterizationStateStreamCreateInfoEXT-flags-zerobitmask
flags must be 0

// Provided by VK_EXT_transform_feedback
typedef VkFlags VkPipelineRasterizationStateStreamCreateFlagsEXT;

VkPipelineRasterizationStateStreamCreateFlagsEXT is a bitmask type for setting a mask, but is
currently reserved for future use.

To dynamically set the rasterizationStream state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_transform_feedback,

2645

VK_EXT_shader_object with VK_EXT_transform_feedback
void vkCmdSetRasterizationStreamEXT(
 VkCommandBuffer commandBuffer,
 uint32_t rasterizationStream);

• commandBuffer is the command buffer into which the command will be recorded.

• rasterizationStream specifies the rasterizationStream state.

This command sets the rasterizationStream state for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetRasterizationStreamEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3RasterizationStream feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetRasterizationStreamEXT-transformFeedback-07411
The transformFeedback feature must be enabled

• VUID-vkCmdSetRasterizationStreamEXT-rasterizationStream-07412
rasterizationStream must be less than
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreams

• VUID-vkCmdSetRasterizationStreamEXT-rasterizationStream-07413
rasterizationStream must be zero if VkPhysicalDeviceTransformFeedbackPropertiesEXT
::transformFeedbackRasterizationStreamSelect is VK_FALSE

Valid Usage (Implicit)

• VUID-vkCmdSetRasterizationStreamEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetRasterizationStreamEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetRasterizationStreamEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetRasterizationStreamEXT-videocoding
This command must only be called outside of a video coding scope

2646

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

28.3. Rasterization Order
Within a subpass of a render pass instance, for a given (x,y,layer,sample) sample location, the
following operations are guaranteed to execute in rasterization order, for each separate primitive
that includes that sample location:

1. Fragment operations, in the order defined

2. Blending, logic operations, and color writes

Execution of these operations for each primitive in a subpass occurs in an order determined by the
application.

The rasterization order to use for a graphics pipeline is specified by adding a
VkPipelineRasterizationStateRasterizationOrderAMD structure to the pNext chain of a
VkPipelineRasterizationStateCreateInfo structure.

The VkPipelineRasterizationStateRasterizationOrderAMD structure is defined as:

// Provided by VK_AMD_rasterization_order
typedef struct VkPipelineRasterizationStateRasterizationOrderAMD {
 VkStructureType sType;
 const void* pNext;
 VkRasterizationOrderAMD rasterizationOrder;
} VkPipelineRasterizationStateRasterizationOrderAMD;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rasterizationOrder is a VkRasterizationOrderAMD value specifying the primitive rasterization
order to use.

2647

Valid Usage (Implicit)

• VUID-VkPipelineRasterizationStateRasterizationOrderAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD

• VUID-VkPipelineRasterizationStateRasterizationOrderAMD-rasterizationOrder-parameter
rasterizationOrder must be a valid VkRasterizationOrderAMD value

If the VK_AMD_rasterization_order device extension is not enabled or the application does not
request a particular rasterization order through specifying a
VkPipelineRasterizationStateRasterizationOrderAMD structure then the rasterization order used by
the graphics pipeline defaults to VK_RASTERIZATION_ORDER_STRICT_AMD.

Possible values of VkPipelineRasterizationStateRasterizationOrderAMD::rasterizationOrder,
specifying the primitive rasterization order, are:

// Provided by VK_AMD_rasterization_order
typedef enum VkRasterizationOrderAMD {
 VK_RASTERIZATION_ORDER_STRICT_AMD = 0,
 VK_RASTERIZATION_ORDER_RELAXED_AMD = 1,
} VkRasterizationOrderAMD;

• VK_RASTERIZATION_ORDER_STRICT_AMD specifies that operations for each primitive in a subpass
must occur in primitive order.

• VK_RASTERIZATION_ORDER_RELAXED_AMD specifies that operations for each primitive in a subpass
may not occur in primitive order.

28.4. Multisampling
Multisampling is a mechanism to antialias all Vulkan primitives: points, lines, and polygons. The
technique is to sample all primitives multiple times at each pixel. Each sample in each framebuffer
attachment has storage for a color, depth, and/or stencil value, such that per-fragment operations
apply to each sample independently. The color sample values can be later resolved to a single color
(see Resolving Multisample Images and the Render Pass chapter for more details on how to resolve
multisample images to non-multisample images).

Vulkan defines rasterization rules for single-sample modes in a way that is equivalent to a
multisample mode with a single sample in the center of each fragment.

Each fragment includes a coverage mask with a single bit for each sample in the fragment, and a
number of depth values and associated data for each sample.

It is understood that each pixel has rasterizationSamples locations associated with it. These
locations are exact positions, rather than regions or areas, and each is referred to as a sample point.
The sample points associated with a pixel must be located inside or on the boundary of the unit
square that is considered to bound the pixel. Furthermore, the relative locations of sample points
may be identical for each pixel in the framebuffer, or they may differ.

2648

If the render pass has a fragment density map attachment, each fragment only has
rasterizationSamples locations associated with it regardless of how many pixels are covered in the
fragment area. Fragment sample locations are defined as if the fragment had an area of (1,1) and its
sample points must be located within these bounds. Their actual location in the framebuffer is
calculated by scaling the sample location by the fragment area. Attachments with storage for
multiple samples per pixel are located at the pixel sample locations. Otherwise, the fragment’s
sample locations are generally used for evaluation of associated data and fragment operations.

If the current pipeline includes a fragment shader with one or more variables in its interface
decorated with Sample and Input, the data associated with those variables will be assigned
independently for each sample. The values for each sample must be evaluated at the location of the
sample. The data associated with any other variables not decorated with Sample and Input need not
be evaluated independently for each sample.

A coverage mask is generated for each fragment, based on which samples within that fragment are
determined to be within the area of the primitive that generated the fragment.

Single pixel fragments and multi-pixel fragments defined by a fragment density map have one set
of samples. Multi-pixel fragments defined by a shading rate image have one set of samples per
pixel. Multi-pixel fragments defined by setting the fragment shading rate have one set of samples
per pixel. Each set of samples has a number of samples determined by
VkPipelineMultisampleStateCreateInfo::rasterizationSamples. Each sample in a set is assigned a
unique sample index i in the range [0, rasterizationSamples).

To dynamically set the rasterizationSamples, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetRasterizationSamplesEXT(
 VkCommandBuffer commandBuffer,
 VkSampleCountFlagBits rasterizationSamples);

• commandBuffer is the command buffer into which the command will be recorded.

• rasterizationSamples specifies rasterizationSamples.

This command sets the rasterizationSamples for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineMultisampleStateCreateInfo
::rasterizationSamples value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetRasterizationSamplesEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3RasterizationSamples feature is enabled

◦ The shaderObject feature is enabled

2649

Valid Usage (Implicit)

• VUID-vkCmdSetRasterizationSamplesEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetRasterizationSamplesEXT-rasterizationSamples-parameter
rasterizationSamples must be a valid VkSampleCountFlagBits value

• VUID-vkCmdSetRasterizationSamplesEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetRasterizationSamplesEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetRasterizationSamplesEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Each sample in a fragment is also assigned a unique coverage index j in the range [0, n ×
rasterizationSamples), where n is the number of sets in the fragment. If the fragment contains a
single set of samples, the coverage index is always equal to the sample index. If a shading rate image
is used and a fragment covers multiple pixels, the coverage index is determined as defined by
VkPipelineViewportCoarseSampleOrderStateCreateInfoNV or vkCmdSetCoarseSampleOrderNV.

If the fragment shading rate is set, the coverage index j is determined as a function of the pixel
index p, the sample index i, and the number of rasterization samples r as:

j = i + r × ((fw × fh) - 1 - p)

where the pixel index p is determined as a function of the pixel’s framebuffer location (x,y) and the
fragment size (fw,fh):

2650

px = x % fw

py = y % fh

p = px + (py × fw)

The table below illustrates the pixel index for multi-pixel fragments:

Table 35. Pixel indices - 1 wide

1x1 1x2 1x4

xf

yf 0

xf

yf

0

1

xf

yf

0

1

2

3

Table 36. Pixel indices - 2 wide

2x1 2x2 2x4

xf

yf 0 1

xf

yf

0 1

2 3

xf

yf

0 1

2 3

54

76

Table 37. Pixel indices - 4 wide

2651

4x1 4x2 4x4

xf

yf 0 1 2 3

xf

yf

0 1 2 3

7654

xf

yf

0 1 2 3

7654

8 9 10 11

15141312

The coverage mask includes B bits packed into W words, defined as:

B = n × rasterizationSamples

W = ⌈B/32⌉

Bit b in coverage mask word w is 1 if the sample with coverage index j = 32×w + b is covered, and 0
otherwise.

If the standardSampleLocations member of VkPhysicalDeviceLimits is VK_TRUE, then the sample
counts VK_SAMPLE_COUNT_1_BIT, VK_SAMPLE_COUNT_2_BIT, VK_SAMPLE_COUNT_4_BIT, VK_SAMPLE_COUNT_8_BIT,
and VK_SAMPLE_COUNT_16_BIT have sample locations as listed in the following table, with the ith entry
in the table corresponding to sample index i. VK_SAMPLE_COUNT_32_BIT and VK_SAMPLE_COUNT_64_BIT do
not have standard sample locations. Locations are defined relative to an origin in the upper left
corner of the fragment.

2652

Table 38. Standard sample locations

Sample count Sample Locations

VK_SAMPLE_COUNT_1_BIT (0.5,0.5)

0

VK_SAMPLE_COUNT_2_BIT (0.75,0.75)
(0.25,0.25)

0

1

VK_SAMPLE_COUNT_4_BIT (0.375, 0.125)
(0.875, 0.375)
(0.125, 0.625)
(0.625, 0.875)

0

1

2

3

VK_SAMPLE_COUNT_8_BIT (0.5625, 0.3125)
(0.4375, 0.6875)
(0.8125, 0.5625)
(0.3125, 0.1875)
(0.1875, 0.8125)
(0.0625, 0.4375)
(0.6875, 0.9375)
(0.9375, 0.0625)

0

1
2

3

4

5

6

7

VK_SAMPLE_COUNT_16_BIT (0.5625, 0.5625)
(0.4375, 0.3125)
(0.3125, 0.625)
(0.75, 0.4375)
(0.1875, 0.375)
(0.625, 0.8125)
(0.8125, 0.6875)
(0.6875, 0.1875)
(0.375, 0.875)
(0.5, 0.0625)
(0.25, 0.125)
(0.125, 0.75)
(0.0, 0.5)
(0.9375, 0.25)
(0.875, 0.9375)
(0.0625, 0.0)

0

1

2

34

5
6

7

8

910

11

12

13

14

15

Color images created with multiple samples per pixel use a compression technique where there are

2653

two arrays of data associated with each pixel. The first array contains one element per sample
where each element stores an index to the second array defining the fragment mask of the pixel.
The second array contains one element per color fragment and each element stores a unique color
value in the format of the image. With this compression technique it is not always necessary to
actually use unique storage locations for each color sample: when multiple samples share the same
color value the fragment mask may have two samples referring to the same color fragment. The
number of color fragments is determined by the samples member of the VkImageCreateInfo
structure used to create the image. The VK_AMD_shader_fragment_mask device extension provides
shader instructions enabling the application to get direct access to the fragment mask and the
individual color fragment values.

Color
Samples

0

0

1

1

12

2

3

Color
Fragments

0

1

2

3

Unused

Unused

0
1

2

3

Figure 19. Fragment Mask

28.5. Custom Sample Locations
Applications can also control the sample locations used for rasterization.

If the pNext chain of the VkPipelineMultisampleStateCreateInfo structure specified at pipeline
creation time includes a VkPipelineSampleLocationsStateCreateInfoEXT structure, then that structure
controls the sample locations used when rasterizing primitives with the pipeline.

The VkPipelineSampleLocationsStateCreateInfoEXT structure is defined as:

// Provided by VK_EXT_sample_locations
typedef struct VkPipelineSampleLocationsStateCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkBool32 sampleLocationsEnable;
 VkSampleLocationsInfoEXT sampleLocationsInfo;
} VkPipelineSampleLocationsStateCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• sampleLocationsEnable controls whether custom sample locations are used. If
sampleLocationsEnable is VK_FALSE, the default sample locations are used and the values specified
in sampleLocationsInfo are ignored.

• sampleLocationsInfo is the sample locations to use during rasterization if sampleLocationsEnable
is VK_TRUE and the graphics pipeline is not created with VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT.

2654

Valid Usage (Implicit)

• VUID-VkPipelineSampleLocationsStateCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT

• VUID-VkPipelineSampleLocationsStateCreateInfoEXT-sampleLocationsInfo-parameter
sampleLocationsInfo must be a valid VkSampleLocationsInfoEXT structure

The VkSampleLocationsInfoEXT structure is defined as:

// Provided by VK_EXT_sample_locations
typedef struct VkSampleLocationsInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkSampleCountFlagBits sampleLocationsPerPixel;
 VkExtent2D sampleLocationGridSize;
 uint32_t sampleLocationsCount;
 const VkSampleLocationEXT* pSampleLocations;
} VkSampleLocationsInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• sampleLocationsPerPixel is a VkSampleCountFlagBits value specifying the number of sample
locations per pixel.

• sampleLocationGridSize is the size of the sample location grid to select custom sample locations
for.

• sampleLocationsCount is the number of sample locations in pSampleLocations.

• pSampleLocations is a pointer to an array of sampleLocationsCount VkSampleLocationEXT
structures.

This structure can be used either to specify the sample locations to be used for rendering or to
specify the set of sample locations an image subresource has been last rendered with for the
purposes of layout transitions of depth/stencil images created with
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT.

The sample locations in pSampleLocations specify sampleLocationsPerPixel number of sample
locations for each pixel in the grid of the size specified in sampleLocationGridSize. The sample
location for sample i at the pixel grid location (x,y) is taken from pSampleLocations[(x + y ×
sampleLocationGridSize.width) × sampleLocationsPerPixel + i].

If the render pass has a fragment density map, the implementation will choose the sample locations
for the fragment and the contents of pSampleLocations may be ignored.

2655

Valid Usage

• VUID-VkSampleLocationsInfoEXT-sampleLocationsPerPixel-01526
sampleLocationsPerPixel must be a valid VkSampleCountFlagBits value that is set in
VkPhysicalDeviceSampleLocationsPropertiesEXT::sampleLocationSampleCounts

• VUID-VkSampleLocationsInfoEXT-sampleLocationsCount-01527
sampleLocationsCount must equal sampleLocationsPerPixel × sampleLocationGridSize.width
× sampleLocationGridSize.height

Valid Usage (Implicit)

• VUID-VkSampleLocationsInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT

• VUID-VkSampleLocationsInfoEXT-pSampleLocations-parameter
If sampleLocationsCount is not 0, pSampleLocations must be a valid pointer to an array of
sampleLocationsCount VkSampleLocationEXT structures

The VkSampleLocationEXT structure is defined as:

// Provided by VK_EXT_sample_locations
typedef struct VkSampleLocationEXT {
 float x;
 float y;
} VkSampleLocationEXT;

• x is the horizontal coordinate of the sample’s location.

• y is the vertical coordinate of the sample’s location.

The domain space of the sample location coordinates has an upper-left origin within the pixel in
framebuffer space.

The values specified in a VkSampleLocationEXT structure are always clamped to the implementation-
dependent sample location coordinate range [sampleLocationCoordinateRange
[0],sampleLocationCoordinateRange[1]] that can be queried using
VkPhysicalDeviceSampleLocationsPropertiesEXT.

To dynamically set the sampleLocationsEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_sample_locations,
VK_EXT_sample_locations with VK_EXT_shader_object
void vkCmdSetSampleLocationsEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 sampleLocationsEnable);

2656

• commandBuffer is the command buffer into which the command will be recorded.

• sampleLocationsEnable specifies the sampleLocationsEnable state.

This command sets the sampleLocationsEnable state for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetSampleLocationsEnableEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3SampleLocationsEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetSampleLocationsEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetSampleLocationsEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetSampleLocationsEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetSampleLocationsEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2657

To dynamically set the sample locations used for rasterization, call:

// Provided by VK_EXT_sample_locations
void vkCmdSetSampleLocationsEXT(
 VkCommandBuffer commandBuffer,
 const VkSampleLocationsInfoEXT* pSampleLocationsInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pSampleLocationsInfo is the sample locations state to set.

This command sets the custom sample locations for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates,
and when the VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable property of
the bound graphics pipeline is VK_TRUE. Otherwise, this state is specified by the
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsInfo values used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetSampleLocationsEXT-variableSampleLocations-01530
If VkPhysicalDeviceSampleLocationsPropertiesEXT::variableSampleLocations is VK_FALSE
then the current render pass must have been begun by specifying a
VkRenderPassSampleLocationsBeginInfoEXT structure whose
pPostSubpassSampleLocations member contains an element with a subpassIndex matching
the current subpass index and the sampleLocationsInfo member of that element must
match the sample locations state pointed to by pSampleLocationsInfo

Valid Usage (Implicit)

• VUID-vkCmdSetSampleLocationsEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetSampleLocationsEXT-pSampleLocationsInfo-parameter
pSampleLocationsInfo must be a valid pointer to a valid VkSampleLocationsInfoEXT
structure

• VUID-vkCmdSetSampleLocationsEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetSampleLocationsEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetSampleLocationsEXT-videocoding
This command must only be called outside of a video coding scope

2658

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

28.6. Fragment Shading Rates
The features advertised by VkPhysicalDeviceFragmentShadingRateFeaturesKHR allow an
application to control the shading rate of a given fragment shader invocation.

The fragment shading rate strongly interacts with Multisampling, and the set of available rates for
an implementation may be restricted by sample rate.

To query available shading rates, call:

// Provided by VK_KHR_fragment_shading_rate
VkResult vkGetPhysicalDeviceFragmentShadingRatesKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t* pFragmentShadingRateCount,
 VkPhysicalDeviceFragmentShadingRateKHR* pFragmentShadingRates);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pFragmentShadingRateCount is a pointer to an integer related to the number of fragment shading
rates available or queried, as described below.

• pFragmentShadingRates is either NULL or a pointer to an array of
VkPhysicalDeviceFragmentShadingRateKHR structures.

If pFragmentShadingRates is NULL, then the number of fragment shading rates available is returned in
pFragmentShadingRateCount. Otherwise, pFragmentShadingRateCount must point to a variable set by the
user to the number of elements in the pFragmentShadingRates array, and on return the variable is
overwritten with the number of structures actually written to pFragmentShadingRates. If
pFragmentShadingRateCount is less than the number of fragment shading rates available, at most
pFragmentShadingRateCount structures will be written, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available fragment shading rates were returned.

2659

The returned array of fragment shading rates must be ordered from largest fragmentSize.width
value to smallest, and each set of fragment shading rates with the same fragmentSize.width value
must be ordered from largest fragmentSize.height to smallest. Any two entries in the array must
not have the same fragmentSize values.

For any entry in the array, the following rules also apply:

• The value of fragmentSize.width must be less than or equal to maxFragmentSize.width.

• The value of fragmentSize.width must be greater than or equal to 1.

• The value of fragmentSize.width must be a power-of-two.

• The value of fragmentSize.height must be less than or equal to maxFragmentSize.height.

• The value of fragmentSize.height must be greater than or equal to 1.

• The value of fragmentSize.height must be a power-of-two.

• The highest sample count in sampleCounts must be less than or equal to
maxFragmentShadingRateRasterizationSamples.

• The product of fragmentSize.width, fragmentSize.height, and the highest sample count in
sampleCounts must be less than or equal to maxFragmentShadingRateCoverageSamples.

Implementations must support at least the following shading rates:

sampleCounts fragmentSize

VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT {2,2}

VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT {2,1}

~0 {1,1}

If framebufferColorSampleCounts, includes VK_SAMPLE_COUNT_2_BIT, the required rates must also
include VK_SAMPLE_COUNT_2_BIT.

Note

Including the {1,1} fragment size is done for completeness; it has no actual effect
on the support of rendering without setting the fragment size. All sample counts
and render pass transforms are supported for this rate.

The returned set of fragment shading rates must be returned in the native (rotated) coordinate
system. For rasterization using render pass transform not equal to
VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR, the application must transform the returned fragment
shading rates into the current (unrotated) coordinate system to get the supported rates for that
transform.

Note

For example, consider an implementation returning support for 4x2, but not 2x4
in the set of supported fragment shading rates. This means that for transforms
VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR and
VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR, 2x4 is a supported rate, but 4x2 is an

2660

unsupported rate.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFragmentShadingRatesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceFragmentShadingRatesKHR-pFragmentShadingRateCount-
parameter
pFragmentShadingRateCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceFragmentShadingRatesKHR-pFragmentShadingRates-
parameter
If the value referenced by pFragmentShadingRateCount is not 0, and pFragmentShadingRates is
not NULL, pFragmentShadingRates must be a valid pointer to an array of
pFragmentShadingRateCount VkPhysicalDeviceFragmentShadingRateKHR structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPhysicalDeviceFragmentShadingRateKHR structure is defined as

// Provided by VK_KHR_fragment_shading_rate
typedef struct VkPhysicalDeviceFragmentShadingRateKHR {
 VkStructureType sType;
 void* pNext;
 VkSampleCountFlags sampleCounts;
 VkExtent2D fragmentSize;
} VkPhysicalDeviceFragmentShadingRateKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• sampleCounts is a bitmask of sample counts for which the shading rate described by fragmentSize
is supported.

• fragmentSize is a VkExtent2D describing the width and height of a supported shading rate.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentShadingRateKHR-sType-sType

2661

sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_KHR

• VUID-VkPhysicalDeviceFragmentShadingRateKHR-pNext-pNext
pNext must be NULL

Fragment shading rates can be set at three points, with the three rates combined to determine the
final shading rate.

28.6.1. Pipeline Fragment Shading Rate

The pipeline fragment shading rate can be set on a per-draw basis by either setting the rate in a
graphics pipeline, or dynamically via vkCmdSetFragmentShadingRateKHR.

The VkPipelineFragmentShadingRateStateCreateInfoKHR structure is defined as:

// Provided by VK_KHR_fragment_shading_rate
typedef struct VkPipelineFragmentShadingRateStateCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkExtent2D fragmentSize;
 VkFragmentShadingRateCombinerOpKHR combinerOps[2];
} VkPipelineFragmentShadingRateStateCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentSize specifies a VkExtent2D structure containing the fragment size used to define the
pipeline fragment shading rate for drawing commands using this pipeline.

• combinerOps specifies a VkFragmentShadingRateCombinerOpKHR value determining how the
pipeline, primitive, and attachment shading rates are combined for fragments generated by
drawing commands using the created pipeline.

If the pNext chain of VkGraphicsPipelineCreateInfo includes a
VkPipelineFragmentShadingRateStateCreateInfoKHR structure, then that structure includes
parameters controlling the pipeline fragment shading rate.

If this structure is not present, fragmentSize is considered to be equal to (1,1), and both elements of
combinerOps are considered to be equal to VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR.

Valid Usage (Implicit)

• VUID-VkPipelineFragmentShadingRateStateCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR

To dynamically set the pipeline fragment shading rate and combiner operation, call:

// Provided by VK_KHR_fragment_shading_rate

2662

void vkCmdSetFragmentShadingRateKHR(
 VkCommandBuffer commandBuffer,
 const VkExtent2D* pFragmentSize,
 const VkFragmentShadingRateCombinerOpKHR combinerOps[2]);

• commandBuffer is the command buffer into which the command will be recorded.

• pFragmentSize specifies the pipeline fragment shading rate for subsequent drawing commands.

• combinerOps specifies a VkFragmentShadingRateCombinerOpKHR determining how the pipeline,
primitive, and attachment shading rates are combined for fragments generated by subsequent
drawing commands.

This command sets the pipeline fragment shading rate and combiner operation for subsequent
drawing commands when drawing using shader objects, or when the graphics pipeline is created
with VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineFragmentShadingRateStateCreateInfoKHR values used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetFragmentShadingRateKHR-pipelineFragmentShadingRate-04507
If pipelineFragmentShadingRate is not enabled, pFragmentSize->width must be 1

• VUID-vkCmdSetFragmentShadingRateKHR-pipelineFragmentShadingRate-04508
If pipelineFragmentShadingRate is not enabled, pFragmentSize->height must be 1

• VUID-vkCmdSetFragmentShadingRateKHR-pipelineFragmentShadingRate-04509
One of pipelineFragmentShadingRate, primitiveFragmentShadingRate, or
attachmentFragmentShadingRate must be enabled

• VUID-vkCmdSetFragmentShadingRateKHR-primitiveFragmentShadingRate-04510
If the primitiveFragmentShadingRate feature is not enabled, combinerOps[0] must be
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR

• VUID-vkCmdSetFragmentShadingRateKHR-attachmentFragmentShadingRate-04511
If the attachmentFragmentShadingRate feature is not enabled, combinerOps[1] must be
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR

• VUID-vkCmdSetFragmentShadingRateKHR-fragmentSizeNonTrivialCombinerOps-04512
If the fragmentSizeNonTrivialCombinerOps limit is not supported, elements of combinerOps
must be either VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR or
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR

• VUID-vkCmdSetFragmentShadingRateKHR-pFragmentSize-04513
pFragmentSize->width must be greater than or equal to 1

• VUID-vkCmdSetFragmentShadingRateKHR-pFragmentSize-04514
pFragmentSize->height must be greater than or equal to 1

• VUID-vkCmdSetFragmentShadingRateKHR-pFragmentSize-04515
pFragmentSize->width must be a power-of-two value

2663

• VUID-vkCmdSetFragmentShadingRateKHR-pFragmentSize-04516
pFragmentSize->height must be a power-of-two value

• VUID-vkCmdSetFragmentShadingRateKHR-pFragmentSize-04517
pFragmentSize->width must be less than or equal to 4

• VUID-vkCmdSetFragmentShadingRateKHR-pFragmentSize-04518
pFragmentSize->height must be less than or equal to 4

Valid Usage (Implicit)

• VUID-vkCmdSetFragmentShadingRateKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetFragmentShadingRateKHR-pFragmentSize-parameter
pFragmentSize must be a valid pointer to a valid VkExtent2D structure

• VUID-vkCmdSetFragmentShadingRateKHR-combinerOps-parameter
Each element of combinerOps must be a valid VkFragmentShadingRateCombinerOpKHR
value

• VUID-vkCmdSetFragmentShadingRateKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetFragmentShadingRateKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetFragmentShadingRateKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

28.6.2. Primitive Fragment Shading Rate

The primitive fragment shading rate can be set via the PrimitiveShadingRateKHR built-in in the last

2664

active pre-rasterization shader stage. If the last pre-rasterization shader stage is using the MeshEXT
Execution Model, the rate associated with a given primitive is sourced from the value written to the
per-primitive PrimitiveShadingRateKHR. Otherwise the rate associated with a given primitive is
sourced from the value written to PrimitiveShadingRateKHR by that primitive’s provoking vertex.

28.6.3. Attachment Fragment Shading Rate

The attachment shading rate can be set by including VkFragmentShadingRateAttachmentInfoKHR
in a subpass to define a fragment shading rate attachment. Each pixel in the framebuffer is assigned
an attachment fragment shading rate by the corresponding texel in the fragment shading rate
attachment, according to:

x' = floor(x / regionx)

y' = floor(y / regiony)

where x' and y' are the coordinates of a texel in the fragment shading rate attachment, x and y are
the coordinates of the pixel in the framebuffer, and regionx and regiony are the size of the region
each texel corresponds to, as defined by the shadingRateAttachmentTexelSize member of
VkFragmentShadingRateAttachmentInfoKHR.

If multiview is enabled and the shading rate attachment has multiple layers, the shading rate
attachment texel is selected from the layer determined by the ViewIndex built-in. If multiview is
disabled, and both the shading rate attachment and the framebuffer have multiple layers, the
shading rate attachment texel is selected from the layer determined by the Layer built-in.
Otherwise, the texel is unconditionally selected from the first layer of the attachment.

The fragment size is encoded into the first component of the identified texel as follows:

sizew = 2((texel/4)&3)

sizeh = 2(texel&3)

where texel is the value in the first component of the identified texel, and sizew and sizeh are the
width and height of the fragment size, decoded from the texel.

If no fragment shading rate attachment is specified, this size is calculated as sizew = sizeh = 1.
Applications must not specify a width or height greater than 4 by this method.

The Fragment Shading Rate enumeration in SPIR-V adheres to the above encoding.

28.6.4. Combining the Fragment Shading Rates

The final rate (Cxy') used for fragment shading must be one of the rates returned by
vkGetPhysicalDeviceFragmentShadingRatesKHR for the sample count and render pass transform

2665

used by rasterization.

If any of the following conditions are met, Cxy' must be set to {1,1}:

• If Sample Shading is enabled.

• The fragmentShadingRateWithSampleMask limit is not supported, and
VkPipelineMultisampleStateCreateInfo::pSampleMask contains a zero value in any bit used by
fragment operations.

• The fragmentShadingRateWithShaderSampleMask is not supported, and the fragment shader has
SampleMask in the input or output interface.

• The fragmentShadingRateWithShaderDepthStencilWrites limit is not supported, and the fragment
shader declares the FragDepth or FragStencilRefEXT built-in.

• The fragmentShadingRateWithConservativeRasterization limit is not supported, and
VkPipelineRasterizationConservativeStateCreateInfoEXT::conservativeRasterizationMode is not
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT.

• The fragmentShadingRateWithFragmentShaderInterlock limit is not supported, and the fragment
shader declares any of the fragment shader interlock execution modes.

• The fragmentShadingRateWithCustomSampleLocations limit is not supported, and
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable is VK_TRUE.

• The fragment shader declares any of the TileImageColorReadAccessEXT,
TileImageDepthReadAccessEXT, or TileImageStencilReadAccessEXT capabilities.

Otherwise, each of the specified shading rates are combined and then used to derive the value of C

xy'. As there are three ways to specify shading rates, two combiner operations are specified -
between the pipeline and primitive shading rates, and between the result of that and the
attachment shading rate.

The equation used for each combiner operation is defined by VkFragmentShadingRateCombinerOpKHR:

// Provided by VK_KHR_fragment_shading_rate
typedef enum VkFragmentShadingRateCombinerOpKHR {
 VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR = 0,
 VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR = 1,
 VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR = 2,
 VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR = 3,
 VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MUL_KHR = 4,
} VkFragmentShadingRateCombinerOpKHR;

• VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR specifies a combiner operation of combine(Axy

,Bxy) = Axy.

• VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR specifies a combiner operation of
combine(Axy,Bxy) = Bxy.

• VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR specifies a combiner operation of combine(Axy,B

xy) = min(Axy,Bxy).

2666

• VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR specifies a combiner operation of combine(Axy,B

xy) = max(Axy,Bxy).

• VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MUL_KHR specifies a combiner operation of combine(Axy,B

xy) = Axy*Bxy.

where combine(Axy,Bxy) is the combine operation, and Axy and Bxy are the inputs to the operation.

If fragmentShadingRateStrictMultiplyCombiner is VK_FALSE, using
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MUL_KHR with values of 1 for both A and B in the same
dimension results in the value 2 being produced for that dimension. See the definition of
fragmentShadingRateStrictMultiplyCombiner for more information.

These operations are performed in a component-wise fashion.

This is used to generate a combined fragment area using the equation:

Cxy = combine(Axy,Bxy)

where Cxy is the combined fragment area result, and Axy and Bxy are the fragment areas of the
fragment shading rates being combined.

Two combine operations are performed, first with Axy equal to the pipeline fragment shading rate
and Bxy equal to the primitive fragment shading rate, with the combine() operation selected by
combinerOps[0]. A second combination is then performed, with Axy equal to the result of the first
combination and Bxy equal to the attachment fragment shading rate, with the combine() operation
selected by combinerOps[1]. The result of the second combination is used as the final fragment
shading rate, reported via the ShadingRateKHR built-in.

Implementations should clamp the inputs to the combiner operations Axy and Bxy, and must do so if
VkPhysicalDeviceMaintenance6PropertiesKHR::fragmentShadingRateClampCombinerInputs is set to
VK_TRUE. All implementations must clamp the result of the second combiner operation.

A fragment shading rate Rxy representing any of Axy, Bxy or Cxy is clamped as follows. If Rxy is one of
the rates returned by vkGetPhysicalDeviceFragmentShadingRatesKHR for the sample count and
render pass transform used by rasterization, the clamped shading rate Rxy' is Rxy. Otherwise, the
clamped shading rate is selected from the rates returned by
vkGetPhysicalDeviceFragmentShadingRatesKHR for the sample count and render pass transform
used by rasterization. From this list of supported rates, the following steps are applied in order, to
select a single value:

1. Keep only rates where Rx' ≤ Rx and Ry' ≤ Ry.

◦ Implementations may also keep rates where Rx' ≤ Ry and Ry' ≤ Rx.

2. Keep only rates with the highest area (Rx' × Ry').

3. Keep only rates with the lowest aspect ratio (Rx' + Ry').

4. In cases where a wide (e.g. 4x1) and tall (e.g. 1x4) rate remain, the implementation may choose
either rate. However, it must choose this rate consistently for the same shading rates, render
pass transform, and combiner operations for the lifetime of the VkDevice.

2667

28.6.5. Extended Fragment Shading Rates

The features advertised by VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV provide
support for additional fragment shading rates beyond those specifying one fragment shader
invocation covering all pixels in a fragment whose size is indicated by the fragment shading rate.

If the fragmentShadingRateEnums feature is enabled, fragment shading rates may be specified using
the VkFragmentShadingRateNV enumerated type defined as:

// Provided by VK_NV_fragment_shading_rate_enums
typedef enum VkFragmentShadingRateNV {
 VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_PIXEL_NV = 0,
 VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_1X2_PIXELS_NV = 1,
 VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_2X1_PIXELS_NV = 4,
 VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_2X2_PIXELS_NV = 5,
 VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_2X4_PIXELS_NV = 6,
 VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_4X2_PIXELS_NV = 9,
 VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_4X4_PIXELS_NV = 10,
 VK_FRAGMENT_SHADING_RATE_2_INVOCATIONS_PER_PIXEL_NV = 11,
 VK_FRAGMENT_SHADING_RATE_4_INVOCATIONS_PER_PIXEL_NV = 12,
 VK_FRAGMENT_SHADING_RATE_8_INVOCATIONS_PER_PIXEL_NV = 13,
 VK_FRAGMENT_SHADING_RATE_16_INVOCATIONS_PER_PIXEL_NV = 14,
 VK_FRAGMENT_SHADING_RATE_NO_INVOCATIONS_NV = 15,
} VkFragmentShadingRateNV;

• VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_PIXEL_NV specifies a fragment size of 1x1 pixels.

• VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_1X2_PIXELS_NV specifies a fragment size of 1x2
pixels.

• VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_2X1_PIXELS_NV specifies a fragment size of 2x1
pixels.

• VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_2X2_PIXELS_NV specifies a fragment size of 2x2
pixels.

• VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_2X4_PIXELS_NV specifies a fragment size of 2x4
pixels.

• VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_4X2_PIXELS_NV specifies a fragment size of 4x2
pixels.

• VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_4X4_PIXELS_NV specifies a fragment size of 4x4
pixels.

• VK_FRAGMENT_SHADING_RATE_2_INVOCATIONS_PER_PIXEL_NV specifies a fragment size of 1x1 pixels,
with two fragment shader invocations per fragment.

• VK_FRAGMENT_SHADING_RATE_4_INVOCATIONS_PER_PIXEL_NV specifies a fragment size of 1x1 pixels,
with four fragment shader invocations per fragment.

• VK_FRAGMENT_SHADING_RATE_8_INVOCATIONS_PER_PIXEL_NV specifies a fragment size of 1x1 pixels,
with eight fragment shader invocations per fragment.

2668

• VK_FRAGMENT_SHADING_RATE_16_INVOCATIONS_PER_PIXEL_NV specifies a fragment size of 1x1 pixels,
with sixteen fragment shader invocations per fragment.

• VK_FRAGMENT_SHADING_RATE_NO_INVOCATIONS_NV specifies that any portions of a primitive that use
that shading rate should be discarded without invoking any fragment shader.

To use the shading rates VK_FRAGMENT_SHADING_RATE_2_INVOCATIONS_PER_PIXEL_NV,
VK_FRAGMENT_SHADING_RATE_4_INVOCATIONS_PER_PIXEL_NV,
VK_FRAGMENT_SHADING_RATE_8_INVOCATIONS_PER_PIXEL_NV, and
VK_FRAGMENT_SHADING_RATE_16_INVOCATIONS_PER_PIXEL_NV as a pipeline, primitive, or attachment
shading rate, the supersampleFragmentShadingRates feature must be enabled. To use the shading rate
VK_FRAGMENT_SHADING_RATE_NO_INVOCATIONS_NV as a pipeline, primitive, or attachment shading rate,
the noInvocationFragmentShadingRates feature must be enabled.

When using fragment shading rate enums, the pipeline fragment shading rate can be set on a per-
draw basis by either setting the rate in a graphics pipeline, or dynamically via
vkCmdSetFragmentShadingRateEnumNV.

The VkPipelineFragmentShadingRateEnumStateCreateInfoNV structure is defined as:

// Provided by VK_NV_fragment_shading_rate_enums
typedef struct VkPipelineFragmentShadingRateEnumStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkFragmentShadingRateTypeNV shadingRateType;
 VkFragmentShadingRateNV shadingRate;
 VkFragmentShadingRateCombinerOpKHR combinerOps[2];
} VkPipelineFragmentShadingRateEnumStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shadingRateType specifies a VkFragmentShadingRateTypeNV value indicating whether fragment
shading rates are specified using fragment sizes or VkFragmentShadingRateNV enums.

• shadingRate specifies a VkFragmentShadingRateNV value indicating the pipeline fragment
shading rate.

• combinerOps specifies VkFragmentShadingRateCombinerOpKHR values determining how the
pipeline, primitive, and attachment shading rates are combined for fragments generated by
drawing commands using the created pipeline.

If the pNext chain of VkGraphicsPipelineCreateInfo includes a
VkPipelineFragmentShadingRateEnumStateCreateInfoNV structure, then that structure includes
parameters controlling the pipeline fragment shading rate.

If this structure is not present, shadingRateType is considered to be equal to
VK_FRAGMENT_SHADING_RATE_TYPE_FRAGMENT_SIZE_NV, shadingRate is considered to be equal to
VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_PIXEL_NV, and both elements of combinerOps are
considered to be equal to VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR.

2669

Valid Usage (Implicit)

• VUID-VkPipelineFragmentShadingRateEnumStateCreateInfoNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_FRAGMENT_SHADING_RATE_ENUM_STATE_CREATE_INFO_NV

The VkFragmentShadingRateTypeNV enumerated type specifies whether a graphics pipeline gets its
pipeline fragment shading rates and combiners from the
VkPipelineFragmentShadingRateEnumStateCreateInfoNV structure or the
VkPipelineFragmentShadingRateStateCreateInfoKHR structure.

// Provided by VK_NV_fragment_shading_rate_enums
typedef enum VkFragmentShadingRateTypeNV {
 VK_FRAGMENT_SHADING_RATE_TYPE_FRAGMENT_SIZE_NV = 0,
 VK_FRAGMENT_SHADING_RATE_TYPE_ENUMS_NV = 1,
} VkFragmentShadingRateTypeNV;

• VK_FRAGMENT_SHADING_RATE_TYPE_FRAGMENT_SIZE_NV specifies that a graphics pipeline should obtain
its pipeline fragment shading rate and shading rate combiner state from the
VkPipelineFragmentShadingRateStateCreateInfoKHR structure and that any state specified by
the VkPipelineFragmentShadingRateEnumStateCreateInfoNV structure should be ignored.

• VK_FRAGMENT_SHADING_RATE_TYPE_ENUMS_NV specifies that a graphics pipeline should obtain its
pipeline fragment shading rate and shading rate combiner state from the
VkPipelineFragmentShadingRateEnumStateCreateInfoNV structure and that any state specified
by the VkPipelineFragmentShadingRateStateCreateInfoKHR structure should be ignored.

To dynamically set the pipeline fragment shading rate and combiner operation, call:

// Provided by VK_NV_fragment_shading_rate_enums
void vkCmdSetFragmentShadingRateEnumNV(
 VkCommandBuffer commandBuffer,
 VkFragmentShadingRateNV shadingRate,
 const VkFragmentShadingRateCombinerOpKHR combinerOps[2]);

• commandBuffer is the command buffer into which the command will be recorded.

• shadingRate specifies a VkFragmentShadingRateNV enum indicating the pipeline fragment
shading rate for subsequent drawing commands.

• combinerOps specifies a VkFragmentShadingRateCombinerOpKHR determining how the pipeline,
primitive, and attachment shading rates are combined for fragments generated by subsequent
drawing commands.

This command sets the pipeline fragment shading rate and combiner operation for subsequent
drawing commands when drawing using shader objects, or when the graphics pipeline is created
with VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the

2670

VkPipelineFragmentShadingRateEnumStateCreateInfoNV values used to create the currently active
pipeline.

Note

This command allows specifying additional shading rates beyond those supported
by vkCmdSetFragmentShadingRateKHR. For more information, refer to the
VK_NV_fragment_shading_rate_enums appendix.

Valid Usage

• VUID-vkCmdSetFragmentShadingRateEnumNV-pipelineFragmentShadingRate-04576
If pipelineFragmentShadingRate is not enabled, shadingRate must be
VK_FRAGMENT_SHADING_RATE_1_INVOCATION_PER_PIXEL_NV

• VUID-vkCmdSetFragmentShadingRateEnumNV-supersampleFragmentShadingRates-
04577
If supersampleFragmentShadingRates is not enabled, shadingRate must not be
VK_FRAGMENT_SHADING_RATE_2_INVOCATIONS_PER_PIXEL_NV,
VK_FRAGMENT_SHADING_RATE_4_INVOCATIONS_PER_PIXEL_NV,
VK_FRAGMENT_SHADING_RATE_8_INVOCATIONS_PER_PIXEL_NV, or
VK_FRAGMENT_SHADING_RATE_16_INVOCATIONS_PER_PIXEL_NV

• VUID-vkCmdSetFragmentShadingRateEnumNV-noInvocationFragmentShadingRates-
04578
If noInvocationFragmentShadingRates is not enabled, shadingRate must not be
VK_FRAGMENT_SHADING_RATE_NO_INVOCATIONS_NV

• VUID-vkCmdSetFragmentShadingRateEnumNV-fragmentShadingRateEnums-04579
The fragmentShadingRateEnums feature must be enabled

• VUID-vkCmdSetFragmentShadingRateEnumNV-pipelineFragmentShadingRate-04580
One of the pipelineFragmentShadingRate, primitiveFragmentShadingRate, or
attachmentFragmentShadingRate features must be enabled

• VUID-vkCmdSetFragmentShadingRateEnumNV-primitiveFragmentShadingRate-04581
If the primitiveFragmentShadingRate feature is not enabled, combinerOps[0] must be
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR

• VUID-vkCmdSetFragmentShadingRateEnumNV-attachmentFragmentShadingRate-04582
If the attachmentFragmentShadingRate feature is not enabled, combinerOps[1] must be
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR

• VUID-vkCmdSetFragmentShadingRateEnumNV-fragmentSizeNonTrivialCombinerOps-
04583
If the fragmentSizeNonTrivialCombinerOps limit is not supported, elements of combinerOps
must be either VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR or
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR

2671

Valid Usage (Implicit)

• VUID-vkCmdSetFragmentShadingRateEnumNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetFragmentShadingRateEnumNV-shadingRate-parameter
shadingRate must be a valid VkFragmentShadingRateNV value

• VUID-vkCmdSetFragmentShadingRateEnumNV-combinerOps-parameter
Each element of combinerOps must be a valid VkFragmentShadingRateCombinerOpKHR
value

• VUID-vkCmdSetFragmentShadingRateEnumNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetFragmentShadingRateEnumNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetFragmentShadingRateEnumNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

When the supersampleFragmentShadingRates or noInvocationFragmentShadingRates features are
enabled, the behavior of the shading rate combiner operations is extended to support the shading
rates enabled by those features. Primitive and attachment shading rate values are interpreted as
VkFragmentShadingRateNV values and the behavior of the combiners is modified as follows:

• For VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR,
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR, and
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MUL_KHR, if either Axy or Bxy is
VK_FRAGMENT_SHADING_RATE_NO_INVOCATIONS_NV, combine(Axy,Bxy) produces a shading rate of
VK_FRAGMENT_SHADING_RATE_NO_INVOCATIONS_NV, regardless of the other input shading rate.

• For VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR, combine(Axy,Bxy) produces a shading rate

2672

whose fragment size is the smaller of the fragment sizes of Axy and Bxy and whose invocation
count is the larger of the invocation counts of Axy and Bxy.

• For VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR, combine(Axy,Bxy) produces a shading rate
whose fragment size is the larger of the fragment sizes of Axy and Bxy and whose invocation
count is the smaller of the invocation counts of Axy and Bxy.

• For VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MUL_KHR, combine(Axy,Bxy) produces a shading rate
whose fragment size and invocation count is the product of the fragment sizes and invocation
counts, respectively, of Axy and Bxy. If the resulting shading rate has both multiple pixels and
multiple invocations per fragment, an implementation may adjust the shading rate by reducing
both the pixel and invocation counts.

If the final shading rate from the combiners is VK_FRAGMENT_SHADING_RATE_NO_INVOCATIONS_NV, no
fragments will be generated for any portion of a primitive using that shading rate.

If the final shading rate from the combiners specifies multiple fragment shader invocations per
fragment, the fragment will be processed with multiple unique samples as in sample shading,
where the total number the total number of invocations is taken from the shading rate and then
clamped to rasterizationSamples and maxFragmentShadingRateInvocationCount.

28.7. Shading Rate Image
The shadingRateImage feature allows pipelines to use a shading rate image to control the fragment
area and the minimum number of fragment shader invocations launched for each fragment. When
the shading rate image is enabled, the rasterizer determines a base shading rate for each region of
the framebuffer covered by a primitive by fetching a value from the shading rate image and
translating it to a shading rate using a per-viewport shading rate palette. This base shading rate is
then adjusted to derive a final shading rate. The final shading rate specifies the fragment area and
fragment shader invocation count to use for fragments generated in the region.

If the pNext chain of VkPipelineViewportStateCreateInfo includes a
VkPipelineViewportShadingRateImageStateCreateInfoNV structure, then that structure includes
parameters controlling the shading rate.

The VkPipelineViewportShadingRateImageStateCreateInfoNV structure is defined as:

// Provided by VK_NV_shading_rate_image
typedef struct VkPipelineViewportShadingRateImageStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkBool32 shadingRateImageEnable;
 uint32_t viewportCount;
 const VkShadingRatePaletteNV* pShadingRatePalettes;
} VkPipelineViewportShadingRateImageStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

2673

• shadingRateImageEnable specifies whether shading rate image and palettes are used during
rasterization.

• viewportCount specifies the number of per-viewport palettes used to translate values stored in
shading rate images.

• pShadingRatePalettes is a pointer to an array of VkShadingRatePaletteNV structures defining the
palette for each viewport. If the shading rate palette state is dynamic, this member is ignored.

If this structure is not present, shadingRateImageEnable is considered to be VK_FALSE, and the shading
rate image and palettes are not used.

Valid Usage

• VUID-VkPipelineViewportShadingRateImageStateCreateInfoNV-viewportCount-02054
If the multiViewport feature is not enabled, viewportCount must be 0 or 1

• VUID-VkPipelineViewportShadingRateImageStateCreateInfoNV-viewportCount-02055
viewportCount must be less than or equal to VkPhysicalDeviceLimits::maxViewports

• VUID-VkPipelineViewportShadingRateImageStateCreateInfoNV-shadingRateImageEnable-
02056
If shadingRateImageEnable is VK_TRUE, viewportCount must be greater or equal to the
viewportCount member of VkPipelineViewportStateCreateInfo

Valid Usage (Implicit)

• VUID-VkPipelineViewportShadingRateImageStateCreateInfoNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SHADING_RATE_IMAGE_STATE_CREATE_INFO_NV

When shading rate image usage is enabled in the bound pipeline, the pipeline uses a shading rate
image specified by the command:

// Provided by VK_NV_shading_rate_image
void vkCmdBindShadingRateImageNV(
 VkCommandBuffer commandBuffer,
 VkImageView imageView,
 VkImageLayout imageLayout);

• commandBuffer is the command buffer into which the command will be recorded.

• imageView is an image view handle specifying the shading rate image. imageView may be set to
VK_NULL_HANDLE, which is equivalent to specifying a view of an image filled with zero values.

• imageLayout is the layout that the image subresources accessible from imageView will be in when
the shading rate image is accessed.

2674

Valid Usage

• VUID-vkCmdBindShadingRateImageNV-None-02058
The shadingRateImage feature must be enabled

• VUID-vkCmdBindShadingRateImageNV-imageView-02059
If imageView is not VK_NULL_HANDLE, it must be a valid VkImageView handle of type
VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-vkCmdBindShadingRateImageNV-imageView-02060
If imageView is not VK_NULL_HANDLE, it must have a format of VK_FORMAT_R8_UINT

• VUID-vkCmdBindShadingRateImageNV-imageView-02061
If imageView is not VK_NULL_HANDLE, it must have been created with a usage value
including VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV

• VUID-vkCmdBindShadingRateImageNV-imageView-02062
If imageView is not VK_NULL_HANDLE, imageLayout must match the actual VkImageLayout
of each subresource accessible from imageView at the time the subresource is accessed

• VUID-vkCmdBindShadingRateImageNV-imageLayout-02063
If imageView is not VK_NULL_HANDLE, imageLayout must be
VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV or VK_IMAGE_LAYOUT_GENERAL

Valid Usage (Implicit)

• VUID-vkCmdBindShadingRateImageNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindShadingRateImageNV-imageView-parameter
If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• VUID-vkCmdBindShadingRateImageNV-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

• VUID-vkCmdBindShadingRateImageNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindShadingRateImageNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindShadingRateImageNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindShadingRateImageNV-commonparent
Both of commandBuffer, and imageView that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

2675

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

When the shading rate image is enabled in the current pipeline, rasterizing a primitive covering the
pixel with coordinates (x,y) will fetch a shading rate index value from the shading rate image
bound by vkCmdBindShadingRateImageNV. If the shading rate image view has a type of
VK_IMAGE_VIEW_TYPE_2D, the lookup will use texel coordinates (u,v) where , , and

 and are the width and height of the implementation-dependent shading rate texel
size. If the shading rate image view has a type of VK_IMAGE_VIEW_TYPE_2D_ARRAY, the lookup will use
texel coordinates (u,v) to extract a texel from the layer l, where l is the layer of the framebuffer
being rendered to. If l is greater than or equal to the number of layers in the image view, layer zero
will be used.

If the bound shading rate image view is not VK_NULL_HANDLE and contains a texel with
coordinates (u,v) in layer l (if applicable), the single unsigned integer component for that texel will
be used as the shading rate index. If the (u,v) coordinate is outside the extents of the subresource
used by the shading rate image view, or if the image view is VK_NULL_HANDLE, the shading rate
index is zero. If the shading rate image view has multiple mipmap levels, the base level identified
by VkImageSubresourceRange::baseMipLevel will be used.

A shading rate index is mapped to a base shading rate using a lookup table called the shading rate
image palette. There is a separate palette for each viewport. The number of entries in each palette
is given by the implementation-dependent shading rate image palette size.

To dynamically set the shadingRateImageEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_shading_rate_image,
VK_EXT_shader_object with VK_NV_shading_rate_image
void vkCmdSetShadingRateImageEnableNV(
 VkCommandBuffer commandBuffer,
 VkBool32 shadingRateImageEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• shadingRateImageEnable specifies the shadingRateImageEnable state.

This command sets the shadingRateImageEnable state for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV set in VkPipelineDynamicStateCreateInfo

2676

::pDynamicStates. Otherwise, this state is specified by the
VkPipelineViewportShadingRateImageStateCreateInfoNV::shadingRateImageEnable value used to
create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetShadingRateImageEnableNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ShadingRateImageEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetShadingRateImageEnableNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetShadingRateImageEnableNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetShadingRateImageEnableNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetShadingRateImageEnableNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the per-viewport shading rate image palettes, call:

// Provided by VK_NV_shading_rate_image
void vkCmdSetViewportShadingRatePaletteNV(

2677

 VkCommandBuffer commandBuffer,
 uint32_t firstViewport,
 uint32_t viewportCount,
 const VkShadingRatePaletteNV* pShadingRatePalettes);

• commandBuffer is the command buffer into which the command will be recorded.

• firstViewport is the index of the first viewport whose shading rate palette is updated by the
command.

• viewportCount is the number of viewports whose shading rate palettes are updated by the
command.

• pShadingRatePalettes is a pointer to an array of VkShadingRatePaletteNV structures defining the
palette for each viewport.

This command sets the per-viewport shading rate image palettes for subsequent drawing
commands when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineViewportShadingRateImageStateCreateInfoNV::pShadingRatePalettes values used to
create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetViewportShadingRatePaletteNV-None-02064
The shadingRateImage feature must be enabled

• VUID-vkCmdSetViewportShadingRatePaletteNV-firstViewport-02067
The sum of firstViewport and viewportCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetViewportShadingRatePaletteNV-firstViewport-02068
If the multiViewport feature is not enabled, firstViewport must be 0

• VUID-vkCmdSetViewportShadingRatePaletteNV-viewportCount-02069
If the multiViewport feature is not enabled, viewportCount must be 1

Valid Usage (Implicit)

• VUID-vkCmdSetViewportShadingRatePaletteNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetViewportShadingRatePaletteNV-pShadingRatePalettes-parameter
pShadingRatePalettes must be a valid pointer to an array of viewportCount valid
VkShadingRatePaletteNV structures

• VUID-vkCmdSetViewportShadingRatePaletteNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetViewportShadingRatePaletteNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics

2678

operations

• VUID-vkCmdSetViewportShadingRatePaletteNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetViewportShadingRatePaletteNV-viewportCount-arraylength
viewportCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

The VkShadingRatePaletteNV structure specifies to contents of a single shading rate image palette
and is defined as:

// Provided by VK_NV_shading_rate_image
typedef struct VkShadingRatePaletteNV {
 uint32_t shadingRatePaletteEntryCount;
 const VkShadingRatePaletteEntryNV* pShadingRatePaletteEntries;
} VkShadingRatePaletteNV;

• shadingRatePaletteEntryCount specifies the number of entries in the shading rate image palette.

• pShadingRatePaletteEntries is a pointer to an array of VkShadingRatePaletteEntryNV enums
defining the shading rate for each palette entry.

Valid Usage

• VUID-VkShadingRatePaletteNV-shadingRatePaletteEntryCount-02071
shadingRatePaletteEntryCount must be between 1 and
VkPhysicalDeviceShadingRateImagePropertiesNV::shadingRatePaletteSize, inclusive

Valid Usage (Implicit)

• VUID-VkShadingRatePaletteNV-pShadingRatePaletteEntries-parameter

2679

pShadingRatePaletteEntries must be a valid pointer to an array of
shadingRatePaletteEntryCount valid VkShadingRatePaletteEntryNV values

• VUID-VkShadingRatePaletteNV-shadingRatePaletteEntryCount-arraylength
shadingRatePaletteEntryCount must be greater than 0

To determine the base shading rate image, a shading rate index i is mapped to array element i in
the array pShadingRatePaletteEntries for the palette corresponding to the viewport used for the
fragment. If i is greater than or equal to the palette size shadingRatePaletteEntryCount, the base
shading rate is undefined.

The supported shading rate image palette entries are defined by VkShadingRatePaletteEntryNV:

// Provided by VK_NV_shading_rate_image
typedef enum VkShadingRatePaletteEntryNV {
 VK_SHADING_RATE_PALETTE_ENTRY_NO_INVOCATIONS_NV = 0,
 VK_SHADING_RATE_PALETTE_ENTRY_16_INVOCATIONS_PER_PIXEL_NV = 1,
 VK_SHADING_RATE_PALETTE_ENTRY_8_INVOCATIONS_PER_PIXEL_NV = 2,
 VK_SHADING_RATE_PALETTE_ENTRY_4_INVOCATIONS_PER_PIXEL_NV = 3,
 VK_SHADING_RATE_PALETTE_ENTRY_2_INVOCATIONS_PER_PIXEL_NV = 4,
 VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_PIXEL_NV = 5,
 VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X1_PIXELS_NV = 6,
 VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_1X2_PIXELS_NV = 7,
 VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X2_PIXELS_NV = 8,
 VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X2_PIXELS_NV = 9,
 VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X4_PIXELS_NV = 10,
 VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X4_PIXELS_NV = 11,
} VkShadingRatePaletteEntryNV;

The following table indicates the width and height (in pixels) of each fragment generated using the
indicated shading rate, as well as the maximum number of fragment shader invocations launched
for each fragment. When processing regions of a primitive that have a shading rate of
VK_SHADING_RATE_PALETTE_ENTRY_NO_INVOCATIONS_NV, no fragments will be generated in that region.

Shading Rate Width Height Invocations

VK_SHADING_RATE_PALETT
E_ENTRY_NO_INVOCATIONS
_NV

0 0 0

VK_SHADING_RATE_PALETT
E_ENTRY_16_INVOCATIONS
_PER_PIXEL_NV

1 1 16

VK_SHADING_RATE_PALETT
E_ENTRY_8_INVOCATIONS_
PER_PIXEL_NV

1 1 8

VK_SHADING_RATE_PALETT
E_ENTRY_4_INVOCATIONS_
PER_PIXEL_NV

1 1 4

2680

Shading Rate Width Height Invocations

VK_SHADING_RATE_PALETT
E_ENTRY_2_INVOCATIONS_
PER_PIXEL_NV

1 1 2

VK_SHADING_RATE_PALETT
E_ENTRY_1_INVOCATION_P
ER_PIXEL_NV

1 1 1

VK_SHADING_RATE_PALETT
E_ENTRY_1_INVOCATION_P
ER_2X1_PIXELS_NV

2 1 1

VK_SHADING_RATE_PALETT
E_ENTRY_1_INVOCATION_P
ER_1X2_PIXELS_NV

1 2 1

VK_SHADING_RATE_PALETT
E_ENTRY_1_INVOCATION_P
ER_2X2_PIXELS_NV

2 2 1

VK_SHADING_RATE_PALETT
E_ENTRY_1_INVOCATION_P
ER_4X2_PIXELS_NV

4 2 1

VK_SHADING_RATE_PALETT
E_ENTRY_1_INVOCATION_P
ER_2X4_PIXELS_NV

2 4 1

VK_SHADING_RATE_PALETT
E_ENTRY_1_INVOCATION_P
ER_4X4_PIXELS_NV

4 4 1

When the shading rate image is disabled, a shading rate of
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_PIXEL_NV will be used as the base shading rate.

Once a base shading rate has been established, it is adjusted to produce a final shading rate. First, if
the base shading rate uses multiple pixels for each fragment, the implementation may reduce the
fragment area to ensure that the total number of coverage samples for all pixels in a fragment does
not exceed an implementation-dependent maximum.

If sample shading is active in the current pipeline and would result in processing n (n > 1) unique
samples per fragment when the shading rate image is disabled, the shading rate is adjusted in an
implementation-dependent manner to increase the number of fragment shader invocations
spawned by the primitive. If the shading rate indicates fs pixels per fragment and fs is greater than
n, the fragment area is adjusted so each fragment has approximately pixels. Otherwise, if the
shading rate indicates ipf invocations per fragment, the fragment area will be adjusted to a single
pixel with approximately invocations per fragment.

If sample shading occurs due to the use of a fragment shader input variable decorated with
SampleId or SamplePosition, the shading rate is ignored. Each fragment will have a single pixel and
will spawn up to rasterizationSamples fragment shader invocations, as when using sample shading
without a shading rate image.

Finally, if the shading rate specifies multiple fragment shader invocations per fragment, the total
number of invocations in the shading rate is clamped to be no larger than rasterizationSamples.

2681

When the final shading rate for a primitive covering pixel (x,y) has a fragment area of , the
fragment for that pixel will cover all pixels with coordinates (x',y') that satisfy the equations:

This combined fragment is considered to have multiple coverage samples; the total number of
samples in this fragment is given by where rs indicates the value of
VkPipelineMultisampleStateCreateInfo::rasterizationSamples specified at pipeline creation time. The
set of coverage samples in the fragment is the union of the per-pixel coverage samples in each of
the fragment’s pixels The location and order of coverage samples within each pixel in the combined
fragment are assigned as described in Multisampling and Custom Sample Locations. Each coverage
sample in the set of pixels belonging to the combined fragment is assigned a unique coverage index
in the range [0,samples-1]. If the shadingRateCoarseSampleOrder feature is supported, the order of
coverage samples can be specified for each combination of fragment area and coverage sample
count. If this feature is not supported, the sample order is implementation-dependent.

If the pNext chain of VkPipelineViewportStateCreateInfo includes a
VkPipelineViewportCoarseSampleOrderStateCreateInfoNV structure, then that structure includes
parameters controlling the order of coverage samples in fragments larger than one pixel.

The VkPipelineViewportCoarseSampleOrderStateCreateInfoNV structure is defined as:

// Provided by VK_NV_shading_rate_image
typedef struct VkPipelineViewportCoarseSampleOrderStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkCoarseSampleOrderTypeNV sampleOrderType;
 uint32_t customSampleOrderCount;
 const VkCoarseSampleOrderCustomNV* pCustomSampleOrders;
} VkPipelineViewportCoarseSampleOrderStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• sampleOrderType specifies the mechanism used to order coverage samples in fragments larger
than one pixel.

• customSampleOrderCount specifies the number of custom sample orderings to use when ordering
coverage samples.

• pCustomSampleOrders is a pointer to an array of customSampleOrderCount
VkCoarseSampleOrderCustomNV structures, each structure specifying the coverage sample
order for a single combination of fragment area and coverage sample count.

If this structure is not present, sampleOrderType is considered to be

2682

VK_COARSE_SAMPLE_ORDER_TYPE_DEFAULT_NV.

If sampleOrderType is VK_COARSE_SAMPLE_ORDER_TYPE_CUSTOM_NV, the coverage sample order used for
any combination of fragment area and coverage sample count not enumerated in
pCustomSampleOrders will be identical to that used for VK_COARSE_SAMPLE_ORDER_TYPE_DEFAULT_NV.

If the pipeline was created with VK_DYNAMIC_STATE_VIEWPORT_COARSE_SAMPLE_ORDER_NV, the contents of
this structure (if present) are ignored, and the coverage sample order is instead specified by
vkCmdSetCoarseSampleOrderNV.

Valid Usage

• VUID-VkPipelineViewportCoarseSampleOrderStateCreateInfoNV-sampleOrderType-02072
If sampleOrderType is not VK_COARSE_SAMPLE_ORDER_TYPE_CUSTOM_NV, customSamplerOrderCount
must be 0

• VUID-VkPipelineViewportCoarseSampleOrderStateCreateInfoNV-pCustomSampleOrders-
02234
The array pCustomSampleOrders must not contain two structures with matching values for
both the shadingRate and sampleCount members

Valid Usage (Implicit)

• VUID-VkPipelineViewportCoarseSampleOrderStateCreateInfoNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_COARSE_SAMPLE_ORDER_STATE_CREATE_INFO_NV

• VUID-VkPipelineViewportCoarseSampleOrderStateCreateInfoNV-sampleOrderType-
parameter
sampleOrderType must be a valid VkCoarseSampleOrderTypeNV value

• VUID-VkPipelineViewportCoarseSampleOrderStateCreateInfoNV-pCustomSampleOrders-
parameter
If customSampleOrderCount is not 0, pCustomSampleOrders must be a valid pointer to an array
of customSampleOrderCount valid VkCoarseSampleOrderCustomNV structures

The type VkCoarseSampleOrderTypeNV specifies the technique used to order coverage samples in
fragments larger than one pixel, and is defined as:

// Provided by VK_NV_shading_rate_image
typedef enum VkCoarseSampleOrderTypeNV {
 VK_COARSE_SAMPLE_ORDER_TYPE_DEFAULT_NV = 0,
 VK_COARSE_SAMPLE_ORDER_TYPE_CUSTOM_NV = 1,
 VK_COARSE_SAMPLE_ORDER_TYPE_PIXEL_MAJOR_NV = 2,
 VK_COARSE_SAMPLE_ORDER_TYPE_SAMPLE_MAJOR_NV = 3,
} VkCoarseSampleOrderTypeNV;

• VK_COARSE_SAMPLE_ORDER_TYPE_DEFAULT_NV specifies that coverage samples will be ordered in an

2683

implementation-dependent manner.

• VK_COARSE_SAMPLE_ORDER_TYPE_CUSTOM_NV specifies that coverage samples will be ordered
according to the array of custom orderings provided in either the pCustomSampleOrders member
of VkPipelineViewportCoarseSampleOrderStateCreateInfoNV or the pCustomSampleOrders member of
vkCmdSetCoarseSampleOrderNV.

• VK_COARSE_SAMPLE_ORDER_TYPE_PIXEL_MAJOR_NV specifies that coverage samples will be ordered
sequentially, sorted first by pixel coordinate (in row-major order) and then by sample index.

• VK_COARSE_SAMPLE_ORDER_TYPE_SAMPLE_MAJOR_NV specifies that coverage samples will be ordered
sequentially, sorted first by sample index and then by pixel coordinate (in row-major order).

When using a coarse sample order of VK_COARSE_SAMPLE_ORDER_TYPE_PIXEL_MAJOR_NV for a fragment
with an upper-left corner of with a width of and samples per pixel, coverage
index of the fragment will be assigned to sample index of pixel as follows:

When using a coarse sample order of VK_COARSE_SAMPLE_ORDER_TYPE_SAMPLE_MAJOR_NV, coverage index
 will be assigned as follows:

The VkCoarseSampleOrderCustomNV structure is defined as:

// Provided by VK_NV_shading_rate_image
typedef struct VkCoarseSampleOrderCustomNV {
 VkShadingRatePaletteEntryNV shadingRate;
 uint32_t sampleCount;
 uint32_t sampleLocationCount;
 const VkCoarseSampleLocationNV* pSampleLocations;
} VkCoarseSampleOrderCustomNV;

• shadingRate is a shading rate palette entry that identifies the fragment width and height for the
combination of fragment area and per-pixel coverage sample count to control.

• sampleCount identifies the per-pixel coverage sample count for the combination of fragment area
and coverage sample count to control.

• sampleLocationCount specifies the number of sample locations in the custom ordering.

• pSampleLocations is a pointer to an array of VkCoarseSampleLocationNV structures specifying
the location of each sample in the custom ordering.

2684

The VkCoarseSampleOrderCustomNV structure is used with a coverage sample ordering type of
VK_COARSE_SAMPLE_ORDER_TYPE_CUSTOM_NV to specify the order of coverage samples for one
combination of fragment width, fragment height, and coverage sample count.

When using a custom sample ordering, element j in pSampleLocations specifies a specific pixel
location and sample index that corresponds to coverage index j in the multi-pixel fragment.

Valid Usage

• VUID-VkCoarseSampleOrderCustomNV-shadingRate-02073
shadingRate must be a shading rate that generates fragments with more than one pixel

• VUID-VkCoarseSampleOrderCustomNV-sampleCount-02074
sampleCount must correspond to a sample count enumerated in VkSampleCountFlags
whose corresponding bit is set in VkPhysicalDeviceLimits
::framebufferNoAttachmentsSampleCounts

• VUID-VkCoarseSampleOrderCustomNV-sampleLocationCount-02075
sampleLocationCount must be equal to the product of sampleCount, the fragment width for
shadingRate, and the fragment height for shadingRate

• VUID-VkCoarseSampleOrderCustomNV-sampleLocationCount-02076
sampleLocationCount must be less than or equal to the value of
VkPhysicalDeviceShadingRateImagePropertiesNV::shadingRateMaxCoarseSamples

• VUID-VkCoarseSampleOrderCustomNV-pSampleLocations-02077
The array pSampleLocations must contain exactly one entry for every combination of valid
values for pixelX, pixelY, and sample in the structure VkCoarseSampleOrderCustomNV

Valid Usage (Implicit)

• VUID-VkCoarseSampleOrderCustomNV-shadingRate-parameter
shadingRate must be a valid VkShadingRatePaletteEntryNV value

• VUID-VkCoarseSampleOrderCustomNV-pSampleLocations-parameter
pSampleLocations must be a valid pointer to an array of sampleLocationCount
VkCoarseSampleLocationNV structures

• VUID-VkCoarseSampleOrderCustomNV-sampleLocationCount-arraylength
sampleLocationCount must be greater than 0

The VkCoarseSampleLocationNV structure identifies a specific pixel and sample index for one of the
coverage samples in a fragment that is larger than one pixel. This structure is defined as:

// Provided by VK_NV_shading_rate_image
typedef struct VkCoarseSampleLocationNV {
 uint32_t pixelX;
 uint32_t pixelY;
 uint32_t sample;

2685

} VkCoarseSampleLocationNV;

• pixelX is added to the x coordinate of the upper-leftmost pixel of each fragment to identify the
pixel containing the coverage sample.

• pixelY is added to the y coordinate of the upper-leftmost pixel of each fragment to identify the
pixel containing the coverage sample.

• sample is the number of the coverage sample in the pixel identified by pixelX and pixelY.

Valid Usage

• VUID-VkCoarseSampleLocationNV-pixelX-02078
pixelX must be less than the width (in pixels) of the fragment

• VUID-VkCoarseSampleLocationNV-pixelY-02079
pixelY must be less than the height (in pixels) of the fragment

• VUID-VkCoarseSampleLocationNV-sample-02080
sample must be less than the number of coverage samples in each pixel belonging to the
fragment

To dynamically set the order of coverage samples in fragments larger than one pixel, call:

// Provided by VK_NV_shading_rate_image
void vkCmdSetCoarseSampleOrderNV(
 VkCommandBuffer commandBuffer,
 VkCoarseSampleOrderTypeNV sampleOrderType,
 uint32_t customSampleOrderCount,
 const VkCoarseSampleOrderCustomNV* pCustomSampleOrders);

• commandBuffer is the command buffer into which the command will be recorded.

• sampleOrderType specifies the mechanism used to order coverage samples in fragments larger
than one pixel.

• customSampleOrderCount specifies the number of custom sample orderings to use when ordering
coverage samples.

• pCustomSampleOrders is a pointer to an array of VkCoarseSampleOrderCustomNV structures, each
structure specifying the coverage sample order for a single combination of fragment area and
coverage sample count.

If sampleOrderType is VK_COARSE_SAMPLE_ORDER_TYPE_CUSTOM_NV, the coverage sample order used for
any combination of fragment area and coverage sample count not enumerated in
pCustomSampleOrders will be identical to that used for VK_COARSE_SAMPLE_ORDER_TYPE_DEFAULT_NV.

This command sets the order of coverage samples for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_VIEWPORT_COARSE_SAMPLE_ORDER_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the

2686

VkPipelineViewportCoarseSampleOrderStateCreateInfoNV values used to create the currently
active pipeline.

Valid Usage

• VUID-vkCmdSetCoarseSampleOrderNV-sampleOrderType-02081
If sampleOrderType is not VK_COARSE_SAMPLE_ORDER_TYPE_CUSTOM_NV, customSamplerOrderCount
must be 0

• VUID-vkCmdSetCoarseSampleOrderNV-pCustomSampleOrders-02235
The array pCustomSampleOrders must not contain two structures with matching values for
both the shadingRate and sampleCount members

Valid Usage (Implicit)

• VUID-vkCmdSetCoarseSampleOrderNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCoarseSampleOrderNV-sampleOrderType-parameter
sampleOrderType must be a valid VkCoarseSampleOrderTypeNV value

• VUID-vkCmdSetCoarseSampleOrderNV-pCustomSampleOrders-parameter
If customSampleOrderCount is not 0, pCustomSampleOrders must be a valid pointer to an array
of customSampleOrderCount valid VkCoarseSampleOrderCustomNV structures

• VUID-vkCmdSetCoarseSampleOrderNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCoarseSampleOrderNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetCoarseSampleOrderNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2687

If the final shading rate for a primitive covering pixel (x,y) results in n invocations per pixel (n > 1),
n separate fragment shader invocations will be generated for the fragment. Each coverage sample
in the fragment will be assigned to one of the n fragment shader invocations in an implementation-
dependent manner. The outputs from the fragment output interface of each shader invocation will
be broadcast to all of the framebuffer samples associated with the invocation. If none of the
coverage samples associated with a fragment shader invocation is covered by a primitive, the
implementation may discard the fragment shader invocation for those samples.

If the final shading rate for a primitive covering pixel (x,y) results in a fragment containing multiple
pixels, a single set of fragment shader invocations will be generated for all pixels in the combined
fragment. Outputs from the fragment output interface will be broadcast to all covered framebuffer
samples belonging to the fragment. If the fragment shader executes code discarding the fragment,
none of the samples of the fragment will be updated.

28.8. Sample Shading
Sample shading can be used to specify a minimum number of unique samples to process for each
fragment. If sample shading is enabled, an implementation must invoke the fragment shader at
least max(⌈ VkPipelineMultisampleStateCreateInfo::minSampleShading ×
VkPipelineMultisampleStateCreateInfo::rasterizationSamples ⌉, 1) times per fragment. If
VkPipelineMultisampleStateCreateInfo::sampleShadingEnable is set to VK_TRUE, sample shading is
enabled.

If a fragment shader entry point statically uses an input variable decorated with a BuiltIn of
SampleId or SamplePosition, sample shading is enabled and a value of 1.0 is used instead of
minSampleShading. If a fragment shader entry point statically uses an input variable decorated with
Sample, sample shading may be enabled and a value of 1.0 will be used instead of minSampleShading
if it is. If the VK_AMD_mixed_attachment_samples extension is enabled and the subpass uses color
attachments, the samples value used to create each color attachment is used instead of
rasterizationSamples.

Note

If a shader decorates an input variable with Sample and that value meaningfully
impacts the output of a shader, sample shading will be enabled to ensure that the
input is in fact interpolated per-sample. This is inherent to the specification and
not spelled out here - if an application simply declares such a variable it is
implementation-defined whether sample shading is enabled or not. It is possible to
see the effects of this by using atomics in the shader or using a pipeline statistics
query to query the number of fragment invocations, even if the shader itself does
not use any per-sample variables.

If there are fewer fragment invocations than covered samples, implementations may include those
samples in fragment shader invocations in any manner as long as covered samples are all shaded
at least once, and each invocation that is not a helper invocation covers at least one sample.

2688

28.9. Barycentric Interpolation
When the fragmentShaderBarycentric feature is enabled, the PerVertexKHR interpolation decoration
can be used with fragment shader inputs to indicate that the decorated inputs do not have
associated data in the fragment. Such inputs can only be accessed in a fragment shader using an
array index whose value (0, 1, or 2) identifies one of the vertices of the primitive that produced the
fragment. Reads of per-vertex values for missing vertices, such as the third vertex of a line
primitive, will return values from the valid vertex with the highest index. This means that the per-
vertex values of indices 1 and 2 for point primitives will be equal to those of index 0, and the per-
vertex values of index 2 for line primitives will be equal to those of index 1.

When tessellation, geometry shading, and mesh shading are not active, fragment shader inputs
decorated with PerVertexKHR will take values from one of the vertices of the primitive that produced
the fragment, identified by the extra index provided in SPIR-V code accessing the input. If the n
vertices passed to a draw call are numbered 0 through n-1, and the point, line, and triangle
primitives produced by the draw call are numbered with consecutive integers beginning with zero,
the following table indicates the original vertex numbers used when the provoking vertex mode is
VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT for index values of 0, 1, and 2. If an input decorated
with PerVertexKHR is accessed with any other vertex index value, or is accessed while rasterizing a
polygon when the VkPipelineRasterizationStateCreateInfo::polygonMode property of the currently
active pipeline is not VK_POLYGON_MODE_FILL, an undefined value is returned.

Primitive Topology Vertex 0 Vertex 1 Vertex 2

VK_PRIMITIVE_TOPOLOGY_
POINT_LIST

i i i

VK_PRIMITIVE_TOPOLOGY_
LINE_LIST

2i 2i+1 2i+1

VK_PRIMITIVE_TOPOLOGY_
LINE_STRIP

i i+1 i+1

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_LIST

3i 3i+1 3i+2

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_STRIP (even)

i i+1 i+2

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_STRIP (odd)

i i+2 i+1

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_FAN

i+1 i+2 0

VK_PRIMITIVE_TOPOLOGY_
LINE_LIST_WITH_ADJACEN
CY

4i+1 4i+2 4i+2

VK_PRIMITIVE_TOPOLOGY_
LINE_STRIP_WITH_ADJACE
NCY

i+1 i+2 i+2

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_LIST_WITH_ADJ
ACENCY

6i 6i+2 6i+4

2689

Primitive Topology Vertex 0 Vertex 1 Vertex 2

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_STRIP_WITH_AD
JACENCY (even)

2i 2i+2 2i+4

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_STRIP_WITH_AD
JACENCY (odd)

2i 2i+4 2i+2

When the provoking vertex mode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, the original vertex
numbers used are the same as above except as indicated in the table below.

Primitive Topology Vertex 0 Vertex 1 Vertex 2

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_STRIP (odd,
and
triStripVertexOrderInd
ependentOfProvokingVer
tex of
VkPhysicalDeviceFrag
mentShaderBarycentric
PropertiesKHR is
VK_FALSE)

i+1 i i+2

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_FAN

0 i+1 i+2

VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_STRIP_WITH_AD
JACENCY (odd)

2i+2 2i 2i+4

When geometry or mesh shading is active, primitives processed by fragment shaders are assembled
from the vertices emitted by the geometry or mesh shader. In this case, the vertices used for
fragment shader inputs decorated with PerVertexKHR are derived by treating the primitives
produced by the shader as though they were specified by a draw call and consulting the table
above.

When using tessellation without geometry shading, the tessellator produces primitives in an
implementation-dependent manner. While there is no defined vertex ordering for inputs decorated
with PerVertexKHR, the vertex ordering used in this case will be consistent with the ordering used to
derive the values of inputs decorated with BaryCoordKHR or BaryCoordNoPerspKHR.

Fragment shader inputs decorated with BaryCoordKHR or BaryCoordNoPerspKHR hold three-component
vectors with barycentric weights that indicate the location of the fragment relative to the screen-
space locations of vertices of its primitive. For point primitives, such variables are always assigned
the value (1,0,0). For line primitives, the built-ins are obtained by interpolating an attribute whose
values for the vertices numbered 0 and 1 are (1,0,0) and (0,1,0), respectively. For polygon primitives,
the built-ins are obtained by interpolating an attribute whose values for the vertices numbered 0, 1,
and 2 are (1,0,0), (0,1,0), and (0,0,1), respectively. For BaryCoordKHR, the values are obtained using
perspective interpolation. For BaryCoordNoPerspKHR, the values are obtained using linear
interpolation. The values of BaryCoordKHR and BaryCoordNoPerspKHR are undefined while rasterizing a

2690

polygon when the VkPipelineRasterizationStateCreateInfo::polygonMode property of the currently
active pipeline is not VK_POLYGON_MODE_FILL.

28.10. Points
A point is drawn by generating a set of fragments in the shape of a square centered around the
vertex of the point. Each vertex has an associated point size controlling the width/height of that
square. The point size is taken from the (potentially clipped) shader built-in PointSize written by:

• the geometry shader, if active;

• the tessellation evaluation shader, if active and no geometry shader is active;

• the vertex shader, otherwise

and clamped to the implementation-dependent point size range [pointSizeRange[0],
pointSizeRange[1]]. The value written to PointSize must be greater than zero. If maintenance5 is
enabled, and a value is not written to PointSize, the point size takes a default value of 1.0.

Not all point sizes need be supported, but the size 1.0 must be supported. The range of supported
sizes and the size of evenly-spaced gradations within that range are implementation-dependent.
The range and gradations are obtained from the pointSizeRange and pointSizeGranularity members
of VkPhysicalDeviceLimits. If, for instance, the size range is from 0.1 to 2.0 and the gradation size is
0.1, then the sizes 0.1, 0.2, …, 1.9, 2.0 are supported. Additional point sizes may also be supported.
There is no requirement that these sizes be equally spaced. If an unsupported size is requested, the
nearest supported size is used instead.

Further, if the render pass has a fragment density map attachment, point size may be rounded by
the implementation to a multiple of the fragment’s width or height.

28.10.1. Basic Point Rasterization

Point rasterization produces a fragment for each fragment area group of framebuffer pixels with
one or more sample points that intersect a region centered at the point’s (xf,yf). This region is a
square with side equal to the current point size. Coverage bits that correspond to sample points that
intersect the region are 1, other coverage bits are 0. All fragments produced in rasterizing a point
are assigned the same associated data, which are those of the vertex corresponding to the point.
However, the fragment shader built-in PointCoord contains point sprite texture coordinates. The s
and t point sprite texture coordinates vary from zero to one across the point horizontally left-to-
right and vertically top-to-bottom, respectively. The following formulas are used to evaluate s and t:

where size is the point’s size; (xp,yp) is the location at which the point sprite coordinates are
evaluated - this may be the framebuffer coordinates of the fragment center, or the location of a
sample; and (xf,yf) is the exact, unrounded framebuffer coordinate of the vertex for the point.

2691

28.11. Line Segments
Line segment rasterization options are controlled by the
VkPipelineRasterizationLineStateCreateInfoKHR structure.

The VkPipelineRasterizationLineStateCreateInfoKHR structure is defined as:

// Provided by VK_KHR_line_rasterization
typedef struct VkPipelineRasterizationLineStateCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkLineRasterizationModeKHR lineRasterizationMode;
 VkBool32 stippledLineEnable;
 uint32_t lineStippleFactor;
 uint16_t lineStipplePattern;
} VkPipelineRasterizationLineStateCreateInfoKHR;

or the equivalent

// Provided by VK_EXT_line_rasterization
typedef VkPipelineRasterizationLineStateCreateInfoKHR
VkPipelineRasterizationLineStateCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• lineRasterizationMode is a VkLineRasterizationModeKHR value selecting the style of line
rasterization.

• stippledLineEnable enables stippled line rasterization.

• lineStippleFactor is the repeat factor used in stippled line rasterization.

• lineStipplePattern is the bit pattern used in stippled line rasterization.

If stippledLineEnable is VK_FALSE, the values of lineStippleFactor and lineStipplePattern are
ignored.

Valid Usage

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-lineRasterizationMode-02768
If lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the
rectangularLines feature must be enabled

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-lineRasterizationMode-02769
If lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the
bresenhamLines feature must be enabled

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-lineRasterizationMode-02770
If lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the

2692

smoothLines feature must be enabled

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-stippledLineEnable-02771
If stippledLineEnable is VK_TRUE and lineRasterizationMode is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-stippledLineEnable-02772
If stippledLineEnable is VK_TRUE and lineRasterizationMode is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-stippledLineEnable-02773
If stippledLineEnable is VK_TRUE and lineRasterizationMode is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-stippledLineEnable-02774
If stippledLineEnable is VK_TRUE and lineRasterizationMode is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

Valid Usage (Implicit)

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_KHR

• VUID-VkPipelineRasterizationLineStateCreateInfoKHR-lineRasterizationMode-parameter
lineRasterizationMode must be a valid VkLineRasterizationModeKHR value

Possible values of VkPipelineRasterizationLineStateCreateInfoKHR::lineRasterizationMode are:

// Provided by VK_KHR_line_rasterization
typedef enum VkLineRasterizationModeKHR {
 VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR = 0,
 VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR = 1,
 VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR = 2,
 VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR = 3,
 VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT = VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR,
 VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT =
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR,
 VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT =
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR,
 VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT =
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR,
} VkLineRasterizationModeKHR;

or the equivalent

2693

// Provided by VK_EXT_line_rasterization
typedef VkLineRasterizationModeKHR VkLineRasterizationModeEXT;

• VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR is equivalent to
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR if VkPhysicalDeviceLimits::strictLines is VK_TRUE,
otherwise lines are drawn as non-strictLines parallelograms. Both of these modes are defined
in Basic Line Segment Rasterization.

• VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR specifies lines drawn as if they were rectangles
extruded from the line

• VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR specifies lines drawn by determining which pixel
diamonds the line intersects and exits, as defined in Bresenham Line Segment Rasterization.

• VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR specifies lines drawn if they were
rectangles extruded from the line, with alpha falloff, as defined in Smooth Lines.

To dynamically set the lineRasterizationMode state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_line_rasterization,
VK_EXT_line_rasterization with VK_EXT_shader_object
void vkCmdSetLineRasterizationModeEXT(
 VkCommandBuffer commandBuffer,
 VkLineRasterizationModeEXT lineRasterizationMode);

• commandBuffer is the command buffer into which the command will be recorded.

• lineRasterizationMode specifies the lineRasterizationMode state.

This command sets the lineRasterizationMode state for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationLineStateCreateInfoKHR::lineRasterizationMode value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetLineRasterizationModeEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3LineRasterizationMode feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetLineRasterizationModeEXT-lineRasterizationMode-07418
If lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the
rectangularLines feature must be enabled

• VUID-vkCmdSetLineRasterizationModeEXT-lineRasterizationMode-07419
If lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the

2694

bresenhamLines feature must be enabled

• VUID-vkCmdSetLineRasterizationModeEXT-lineRasterizationMode-07420
If lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the
smoothLines feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdSetLineRasterizationModeEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetLineRasterizationModeEXT-lineRasterizationMode-parameter
lineRasterizationMode must be a valid VkLineRasterizationModeEXT value

• VUID-vkCmdSetLineRasterizationModeEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetLineRasterizationModeEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetLineRasterizationModeEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the stippledLineEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_EXT_line_rasterization,
VK_EXT_line_rasterization with VK_EXT_shader_object
void vkCmdSetLineStippleEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 stippledLineEnable);

2695

• commandBuffer is the command buffer into which the command will be recorded.

• stippledLineEnable specifies the stippledLineEnable state.

This command sets the stippledLineEnable state for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo::
pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationLineStateCreateInfoKHR::stippledLineEnable value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetLineStippleEnableEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3LineStippleEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetLineStippleEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetLineStippleEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetLineStippleEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetLineStippleEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2696

To dynamically set the line width, call:

// Provided by VK_VERSION_1_0
void vkCmdSetLineWidth(
 VkCommandBuffer commandBuffer,
 float lineWidth);

• commandBuffer is the command buffer into which the command will be recorded.

• lineWidth is the width of rasterized line segments.

This command sets the line width for subsequent drawing commands when drawing using shader
objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_LINE_WIDTH set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateCreateInfo::lineWidth value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetLineWidth-lineWidth-00788
If the wideLines feature is not enabled, lineWidth must be 1.0

Valid Usage (Implicit)

• VUID-vkCmdSetLineWidth-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetLineWidth-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetLineWidth-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetLineWidth-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2697

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Not all line widths need be supported for line segment rasterization, but width 1.0 antialiased
segments must be provided. The range and gradations are obtained from the lineWidthRange and
lineWidthGranularity members of VkPhysicalDeviceLimits. If, for instance, the size range is from 0.1
to 2.0 and the gradation size is 0.1, then the sizes 0.1, 0.2, …, 1.9, 2.0 are supported. Additional line
widths may also be supported. There is no requirement that these widths be equally spaced. If an
unsupported width is requested, the nearest supported width is used instead.

Further, if the render pass has a fragment density map attachment, line width may be rounded by
the implementation to a multiple of the fragment’s width or height.

28.11.1. Basic Line Segment Rasterization

If the lineRasterizationMode member of VkPipelineRasterizationLineStateCreateInfoKHR is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, rasterized line segments produce fragments which
intersect a rectangle centered on the line segment. Two of the edges are parallel to the specified line
segment; each is at a distance of one-half the current width from that segment in directions
perpendicular to the direction of the line. The other two edges pass through the line endpoints and
are perpendicular to the direction of the specified line segment. Coverage bits that correspond to
sample points that intersect the rectangle are 1, other coverage bits are 0.

Next we specify how the data associated with each rasterized fragment are obtained. Let pr = (xd, yd)
be the framebuffer coordinates at which associated data are evaluated. This may be the center of a
fragment or the location of a sample within the fragment. When rasterizationSamples is
VK_SAMPLE_COUNT_1_BIT, the fragment center must be used. Let pa = (xa, ya) and pb = (xb,yb) be initial
and final endpoints of the line segment, respectively. Set

(Note that t = 0 at pa and t = 1 at pb. Also note that this calculation projects the vector from pa to pr

onto the line, and thus computes the normalized distance of the fragment along the line.)

If strictLines is VK_TRUE, line segments are rasterized using perspective or linear interpolation.

Perspective interpolation for a line segment interpolates two values in a manner that is correct
when taking the perspective of the viewport into consideration, by way of the line segment’s clip
coordinates. An interpolated value f can be determined by

2698

where fa and fb are the data associated with the starting and ending endpoints of the segment,
respectively; wa and wb are the clip w coordinates of the starting and ending endpoints of the
segment, respectively.

Linear interpolation for a line segment directly interpolates two values, and an interpolated value f
can be determined by

f = (1 - t) fa + t fb

where fa and fb are the data associated with the starting and ending endpoints of the segment,
respectively.

The clip coordinate w for a sample is determined using perspective interpolation. The depth value z
for a sample is determined using linear interpolation. Interpolation of fragment shader input
values are determined by Interpolation decorations.

The above description documents the preferred method of line rasterization, and must be used
when lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR.

By default, when strictLines is VK_FALSE, or the relaxedLineRasterization feature is enabled, and
when the lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, the edges of the lines
are generated as a parallelogram surrounding the original line. The major axis is chosen by noting
the axis in which there is the greatest distance between the line start and end points. If the
difference is equal in both directions then the X axis is chosen as the major axis. Edges 2 and 3 are
aligned to the minor axis and are centered on the endpoints of the line as in Non strict lines, and
each is lineWidth long. Edges 0 and 1 are parallel to the line and connect the endpoints of edges 2
and 3. Coverage bits that correspond to sample points that intersect the parallelogram are 1, other
coverage bits are 0.

Samples that fall exactly on the edge of the parallelogram follow the polygon rasterization rules.

Interpolation occurs as if the parallelogram was decomposed into two triangles where each pair of
vertices at each end of the line has identical attributes.

2699

Edge 0

Edge 1

Edge 3

Edge 2

Original

Line

(Xb,Yb,Zb)

(Xa,Ya,Za)

Line
Width

Figure 20. Non strict lines

When strictLines is VK_FALSE or when the relaxedLineRasterization feature is enabled, and
lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT implementations may deviate
from the non-strict line algorithm described above in the following ways:

• Implementations may instead interpolate each fragment according to the formula in Basic Line
Segment Rasterization using the original line segment endpoints.

• Rasterization of non-antialiased non-strict line segments may be performed using the rules
defined in Bresenham Line Segment Rasterization.

If VkPhysicalDeviceMaintenance5PropertiesKHR::nonStrictSinglePixelWideLinesUseParallelogram is
VK_TRUE, the lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT, and strictLines is
VK_FALSE, non-strict lines of width 1.0 are rasterized as parallelograms, otherwise they are
rasterized using Bresenham’s algorithm.

If VkPhysicalDeviceMaintenance5PropertiesKHR::nonStrictWideLinesUseParallelogram is VK_TRUE, the
lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT, and strictLines is VK_FALSE, non-
strict lines of width greater than 1.0 are rasterized as parallelograms, otherwise they are rasterized
using Bresenham’s algorithm.

28.11.2. Bresenham Line Segment Rasterization

If lineRasterizationMode is VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the following rules
replace the line rasterization rules defined in Basic Line Segment Rasterization.

Non-strict lines may also follow these rasterization rules for non-antialiased lines.

If the relaxedLineRasterization feature is enabled, and lineRasterizationMode is
VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT implementations must follow these rasterization rules for
non-antialised lines of width 1.0.

Line segment rasterization begins by characterizing the segment as either x-major or y-major. x-
major line segments have slope in the closed interval [-1,1]; all other line segments are y-major

2700

(slope is determined by the segment’s endpoints). We specify rasterization only for x-major
segments except in cases where the modifications for y-major segments are not self-evident.

Ideally, Vulkan uses a diamond-exit rule to determine those fragments that are produced by
rasterizing a line segment. For each fragment f with center at framebuffer coordinates xf and yf,
define a diamond-shaped region that is the intersection of four half planes:

Essentially, a line segment starting at pa and ending at pb produces those fragments f for which the
segment intersects Rf, except if pb is contained in Rf.

Figure 21. Visualization of Bresenham’s algorithm

To avoid difficulties when an endpoint lies on a boundary of Rf we (in principle) perturb the
supplied endpoints by a tiny amount. Let pa and pb have framebuffer coordinates (xa, ya) and (xb, yb),
respectively. Obtain the perturbed endpoints pa' given by (xa, ya) - (ε, ε2) and pb' given by (xb, yb) - (ε,
ε2). Rasterizing the line segment starting at pa and ending at pb produces those fragments f for
which the segment starting at pa' and ending on pb' intersects Rf, except if pb' is contained in Rf. ε is
chosen to be so small that rasterizing the line segment produces the same fragments when δ is
substituted for ε for any 0 < δ ≤ ε.

When pa and pb lie on fragment centers, this characterization of fragments reduces to Bresenham’s
algorithm with one modification: lines produced in this description are “half-open”, meaning that
the final fragment (corresponding to pb) is not drawn. This means that when rasterizing a series of
connected line segments, shared endpoints will be produced only once rather than twice (as would
occur with Bresenham’s algorithm).

2701

Implementations may use other line segment rasterization algorithms, subject to the following
rules:

• The coordinates of a fragment produced by the algorithm must not deviate by more than one
unit in either x or y framebuffer coordinates from a corresponding fragment produced by the
diamond-exit rule.

• The total number of fragments produced by the algorithm must not differ from that produced
by the diamond-exit rule by more than one.

• For an x-major line, two fragments that lie in the same framebuffer-coordinate column must
not be produced (for a y-major line, two fragments that lie in the same framebuffer-coordinate
row must not be produced).

• If two line segments share a common endpoint, and both segments are either x-major (both left-
to-right or both right-to-left) or y-major (both bottom-to-top or both top-to-bottom), then
rasterizing both segments must not produce duplicate fragments. Fragments also must not be
omitted so as to interrupt continuity of the connected segments.

The actual width w of Bresenham lines is determined by rounding the line width to the nearest
integer, clamping it to the implementation-dependent lineWidthRange (with both values rounded to
the nearest integer), then clamping it to be no less than 1.

Bresenham line segments of width other than one are rasterized by offsetting them in the minor
direction (for an x-major line, the minor direction is y, and for a y-major line, the minor direction is
x) and producing a row or column of fragments in the minor direction. If the line segment has
endpoints given by (x0, y0) and (x1, y1) in framebuffer coordinates, the segment with endpoints

 and is rasterized, but instead of a single fragment, a column of fragments
of height w (a row of fragments of length w for a y-major segment) is produced at each x (y for y-
major) location. The lowest fragment of this column is the fragment that would be produced by
rasterizing the segment of width 1 with the modified coordinates.

The preferred method of attribute interpolation for a wide line is to generate the same attribute
values for all fragments in the row or column described above, as if the adjusted line was used for
interpolation and those values replicated to the other fragments, except for FragCoord which is
interpolated as usual. Implementations may instead interpolate each fragment according to the
formula in Basic Line Segment Rasterization, using the original line segment endpoints.

When Bresenham lines are being rasterized, sample locations may all be treated as being at the
pixel center (this may affect attribute and depth interpolation).

Note

The sample locations described above are not used for determining coverage, they
are only used for things like attribute interpolation. The rasterization rules that
determine coverage are defined in terms of whether the line intersects pixels, as
opposed to the point sampling rules used for other primitive types. So these rules
are independent of the sample locations. One consequence of this is that
Bresenham lines cover the same pixels regardless of the number of rasterization
samples, and cover all samples in those pixels (unless masked out or killed).

2702

28.11.3. Line Stipple

If the stippledLineEnable member of VkPipelineRasterizationLineStateCreateInfoKHR is VK_TRUE,
then lines are rasterized with a line stipple determined by lineStippleFactor and
lineStipplePattern. lineStipplePattern is an unsigned 16-bit integer that determines which
fragments are to be drawn or discarded when the line is rasterized. lineStippleFactor is a count
that is used to modify the effective line stipple by causing each bit in lineStipplePattern to be used
lineStippleFactor times.

Line stippling discards certain fragments that are produced by rasterization. The masking is
achieved using three parameters: the 16-bit line stipple pattern p, the line stipple factor r, and an
integer stipple counter s. Let

Then a fragment is produced if the b'th bit of p is 1, and discarded otherwise. The bits of p are
numbered with 0 being the least significant and 15 being the most significant.

The initial value of s is zero. For VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR lines, s is incremented
after production of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending point). For
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR and
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR lines, the rectangular region is subdivided into
adjacent unit-length rectangles, and s is incremented once for each rectangle. Rectangles with a
value of s such that the b'th bit of p is zero are discarded. If the last rectangle in a line segment is
shorter than unit-length, then the remainder may carry over to the next line segment in the line
strip using the same value of s (this is the preferred behavior, for the stipple pattern to appear
more consistent through the strip).

s is reset to 0 at the start of each strip (for line strips), and before every line segment in a group of
independent segments.

If the line segment has been clipped, then the value of s at the beginning of the line segment is
implementation-dependent.

To dynamically set the line stipple state, call:

// Provided by VK_KHR_line_rasterization
void vkCmdSetLineStippleKHR(
 VkCommandBuffer commandBuffer,
 uint32_t lineStippleFactor,
 uint16_t lineStipplePattern);

or the equivalent command

// Provided by VK_EXT_line_rasterization
void vkCmdSetLineStippleEXT(
 VkCommandBuffer commandBuffer,

2703

 uint32_t lineStippleFactor,
 uint16_t lineStipplePattern);

• commandBuffer is the command buffer into which the command will be recorded.

• lineStippleFactor is the repeat factor used in stippled line rasterization.

• lineStipplePattern is the bit pattern used in stippled line rasterization.

This command sets the line stipple state for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_LINE_STIPPLE_EXT set
in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationLineStateCreateInfoKHR::lineStippleFactor and
VkPipelineRasterizationLineStateCreateInfoKHR::lineStipplePattern values used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetLineStippleKHR-lineStippleFactor-02776
lineStippleFactor must be in the range [1,256]

Valid Usage (Implicit)

• VUID-vkCmdSetLineStippleKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetLineStippleKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetLineStippleKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetLineStippleKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2704

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

28.11.4. Smooth Lines

If the lineRasterizationMode member of VkPipelineRasterizationLineStateCreateInfoKHR is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then lines are considered to be rectangles
using the same geometry as for VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR lines. The rules for
determining which pixels are covered are implementation-dependent, and may include nearby
pixels where no sample locations are covered or where the rectangle does not intersect the pixel at
all. For each pixel that is considered covered, the fragment computes a coverage value that
approximates the area of the intersection of the rectangle with the pixel square, and this coverage
value is multiplied into the color location 0’s alpha value after fragment shading, as described in
Multisample Coverage.

Note

The details of the rasterization rules and area calculation are left intentionally
vague, to allow implementations to generate coverage and values that are
aesthetically pleasing.

28.12. Polygons
A polygon results from the decomposition of a triangle strip, triangle fan or a series of independent
triangles. Like points and line segments, polygon rasterization is controlled by several variables in
the VkPipelineRasterizationStateCreateInfo structure.

28.12.1. Basic Polygon Rasterization

The first step of polygon rasterization is to determine whether the triangle is back-facing or front-
facing. This determination is made based on the sign of the (clipped or unclipped) polygon’s area
computed in framebuffer coordinates. One way to compute this area is:

where and are the x and y framebuffer coordinates of the ith vertex of the n-vertex polygon
(vertices are numbered starting at zero for the purposes of this computation) and i ⊕ 1 is (i + 1) mod
n.

The interpretation of the sign of a is determined by the VkPipelineRasterizationStateCreateInfo
::frontFace property of the currently active pipeline. Possible values are:

2705

// Provided by VK_VERSION_1_0
typedef enum VkFrontFace {
 VK_FRONT_FACE_COUNTER_CLOCKWISE = 0,
 VK_FRONT_FACE_CLOCKWISE = 1,
} VkFrontFace;

• VK_FRONT_FACE_COUNTER_CLOCKWISE specifies that a triangle with positive area is considered front-
facing.

• VK_FRONT_FACE_CLOCKWISE specifies that a triangle with negative area is considered front-facing.

Any triangle which is not front-facing is back-facing, including zero-area triangles.

To dynamically set the front face orientation, call:

// Provided by VK_VERSION_1_3
void vkCmdSetFrontFace(
 VkCommandBuffer commandBuffer,
 VkFrontFace frontFace);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetFrontFaceEXT(
 VkCommandBuffer commandBuffer,
 VkFrontFace frontFace);

• commandBuffer is the command buffer into which the command will be recorded.

• frontFace is a VkFrontFace value specifying the front-facing triangle orientation to be used for
culling.

This command sets the front face orientation for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_FRONT_FACE set
in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateCreateInfo::frontFace value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetFrontFace-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

2706

Valid Usage (Implicit)

• VUID-vkCmdSetFrontFace-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetFrontFace-frontFace-parameter
frontFace must be a valid VkFrontFace value

• VUID-vkCmdSetFrontFace-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetFrontFace-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetFrontFace-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Once the orientation of triangles is determined, they are culled according to the
VkPipelineRasterizationStateCreateInfo::cullMode property of the currently active pipeline. Possible
values are:

// Provided by VK_VERSION_1_0
typedef enum VkCullModeFlagBits {
 VK_CULL_MODE_NONE = 0,
 VK_CULL_MODE_FRONT_BIT = 0x00000001,
 VK_CULL_MODE_BACK_BIT = 0x00000002,
 VK_CULL_MODE_FRONT_AND_BACK = 0x00000003,
} VkCullModeFlagBits;

• VK_CULL_MODE_NONE specifies that no triangles are discarded

• VK_CULL_MODE_FRONT_BIT specifies that front-facing triangles are discarded

2707

• VK_CULL_MODE_BACK_BIT specifies that back-facing triangles are discarded

• VK_CULL_MODE_FRONT_AND_BACK specifies that all triangles are discarded.

Following culling, fragments are produced for any triangles which have not been discarded.

// Provided by VK_VERSION_1_0
typedef VkFlags VkCullModeFlags;

VkCullModeFlags is a bitmask type for setting a mask of zero or more VkCullModeFlagBits.

To dynamically set the cull mode, call:

// Provided by VK_VERSION_1_3
void vkCmdSetCullMode(
 VkCommandBuffer commandBuffer,
 VkCullModeFlags cullMode);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetCullModeEXT(
 VkCommandBuffer commandBuffer,
 VkCullModeFlags cullMode);

• commandBuffer is the command buffer into which the command will be recorded.

• cullMode specifies the cull mode property to use for drawing.

This command sets the cull mode for subsequent drawing commands when drawing using shader
objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_CULL_MODE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateCreateInfo::cullMode value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetCullMode-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

2708

Valid Usage (Implicit)

• VUID-vkCmdSetCullMode-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCullMode-cullMode-parameter
cullMode must be a valid combination of VkCullModeFlagBits values

• VUID-vkCmdSetCullMode-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCullMode-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetCullMode-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

The rule for determining which fragments are produced by polygon rasterization is called point
sampling. The two-dimensional projection obtained by taking the x and y framebuffer coordinates
of the polygon’s vertices is formed. Fragments are produced for any fragment area groups of pixels
for which any sample points lie inside of this polygon. Coverage bits that correspond to sample
points that satisfy the point sampling criteria are 1, other coverage bits are 0. Special treatment is
given to a sample whose sample location lies on a polygon edge. In such a case, if two polygons lie
on either side of a common edge (with identical endpoints) on which a sample point lies, then
exactly one of the polygons must result in a covered sample for that fragment during rasterization.
As for the data associated with each fragment produced by rasterizing a polygon, we begin by
specifying how these values are produced for fragments in a triangle.

Barycentric coordinates are a set of three numbers, a, b, and c, each in the range [0,1], with a + b + c
= 1. These coordinates uniquely specify any point p within the triangle or on the triangle’s
boundary as

2709

p = a pa + b pb + c pc

where pa, pb, and pc are the vertices of the triangle. a, b, and c are determined by:

where A(lmn) denotes the area in framebuffer coordinates of the triangle with vertices l, m, and n.

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively.

Perspective interpolation for a triangle interpolates three values in a manner that is correct when
taking the perspective of the viewport into consideration, by way of the triangle’s clip coordinates.
An interpolated value f can be determined by

where wa, wb, and wc are the clip w coordinates of pa, pb, and pc, respectively. a, b, and c are the
barycentric coordinates of the location at which the data are produced.

Linear interpolation for a triangle directly interpolates three values, and an interpolated value f can
be determined by

f = a fa + b fb + c fc

where fa, fb, and fc are the data associated with pa, pb, and pc, respectively.

The clip coordinate w for a sample is determined using perspective interpolation. The depth value z
for a sample is determined using linear interpolation. Interpolation of fragment shader input
values are determined by Interpolation decorations.

For a polygon with more than three edges, such as are produced by clipping a triangle, a convex
combination of the values of the datum at the polygon’s vertices must be used to obtain the value
assigned to each fragment produced by the rasterization algorithm. That is, it must be the case that
at every fragment

where n is the number of vertices in the polygon and fi is the value of f at vertex i. For each i, 0 ≤ ai ≤
1 and . The values of ai may differ from fragment to fragment, but at vertex i, ai = 1 and aj

= 0 for j ≠ i.

Note

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge

2710

and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case the numerator and denominator of
perspective interpolation are iterated independently, and a division is performed
for each fragment).

28.12.2. Polygon Mode

Possible values of the VkPipelineRasterizationStateCreateInfo::polygonMode property of the currently
active pipeline, specifying the method of rasterization for polygons, are:

// Provided by VK_VERSION_1_0
typedef enum VkPolygonMode {
 VK_POLYGON_MODE_FILL = 0,
 VK_POLYGON_MODE_LINE = 1,
 VK_POLYGON_MODE_POINT = 2,
 // Provided by VK_NV_fill_rectangle
 VK_POLYGON_MODE_FILL_RECTANGLE_NV = 1000153000,
} VkPolygonMode;

• VK_POLYGON_MODE_POINT specifies that polygon vertices are drawn as points.

• VK_POLYGON_MODE_LINE specifies that polygon edges are drawn as line segments.

• VK_POLYGON_MODE_FILL specifies that polygons are rendered using the polygon rasterization rules
in this section.

• VK_POLYGON_MODE_FILL_RECTANGLE_NV specifies that polygons are rendered using polygon
rasterization rules, modified to consider a sample within the primitive if the sample location is
inside the axis-aligned bounding box of the triangle after projection. Note that the barycentric
weights used in attribute interpolation can extend outside the range [0,1] when these primitives
are shaded. Special treatment is given to a sample position on the boundary edge of the
bounding box. In such a case, if two rectangles lie on either side of a common edge (with
identical endpoints) on which a sample position lies, then exactly one of the triangles must
produce a fragment that covers that sample during rasterization.

Polygons rendered in VK_POLYGON_MODE_FILL_RECTANGLE_NV mode may be clipped by the frustum
or by user clip planes. If clipping is applied, the triangle is culled rather than clipped.

Area calculation and facingness are determined for VK_POLYGON_MODE_FILL_RECTANGLE_NV mode
using the triangle’s vertices.

These modes affect only the final rasterization of polygons: in particular, a polygon’s vertices are
shaded and the polygon is clipped and possibly culled before these modes are applied.

If VkPhysicalDeviceMaintenance5PropertiesKHR::polygonModePointSize is set to VK_TRUE, the point size
of the final rasterization of polygons is taken from PointSize when polygon mode is
VK_POLYGON_MODE_POINT.

Otherwise, if VkPhysicalDeviceMaintenance5PropertiesKHR::polygonModePointSize is set to VK_FALSE,
the point size of the final rasterization of polygons is 1.0 when polygon mode is

2711

VK_POLYGON_MODE_POINT.

To dynamically set the polygon mode, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetPolygonModeEXT(
 VkCommandBuffer commandBuffer,
 VkPolygonMode polygonMode);

• commandBuffer is the command buffer into which the command will be recorded.

• polygonMode specifies polygon mode.

This command sets the polygon mode for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_POLYGON_MODE_EXT set
in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateCreateInfo::polygonMode value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetPolygonModeEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3PolygonMode feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetPolygonModeEXT-fillModeNonSolid-07424
If the fillModeNonSolid feature is not enabled, polygonMode must be VK_POLYGON_MODE_FILL
or VK_POLYGON_MODE_FILL_RECTANGLE_NV

• VUID-vkCmdSetPolygonModeEXT-polygonMode-07425
If the VK_NV_fill_rectangle extension is not enabled, polygonMode must not be
VK_POLYGON_MODE_FILL_RECTANGLE_NV

Valid Usage (Implicit)

• VUID-vkCmdSetPolygonModeEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPolygonModeEXT-polygonMode-parameter
polygonMode must be a valid VkPolygonMode value

• VUID-vkCmdSetPolygonModeEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetPolygonModeEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetPolygonModeEXT-videocoding

2712

This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

28.12.3. Depth Bias

The depth values of all fragments generated by the rasterization of a polygon can be biased (offset)
by a single depth bias value that is computed for that polygon.

Depth Bias Enable

The depth bias computation is enabled by the depthBiasEnable set with vkCmdSetDepthBiasEnable
and vkCmdSetDepthBiasEnableEXT, or the corresponding VkPipelineRasterizationStateCreateInfo
::depthBiasEnable value used to create the currently active pipeline. If the depth bias enable is
VK_FALSE, no bias is applied and the fragment’s depth values are unchanged.

To dynamically enable whether to bias fragment depth values, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthBiasEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 depthBiasEnable);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state2, VK_EXT_shader_object
void vkCmdSetDepthBiasEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 depthBiasEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthBiasEnable controls whether to bias fragment depth values.

2713

This command sets the depth bias enable for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE
set in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateCreateInfo::depthBiasEnable value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetDepthBiasEnable-None-08970
At least one of the following must be true:

◦ the extendedDynamicState2 feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBiasEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBiasEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBiasEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthBiasEnable-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2714

Depth Bias Computation

The depth bias depends on three parameters:

• depthBiasSlopeFactor scales the maximum depth slope m of the polygon

• depthBiasConstantFactor scales the parameter r of the depth attachment

• the scaled terms are summed to produce a value which is then clamped to a minimum or
maximum value specified by depthBiasClamp

depthBiasSlopeFactor, depthBiasConstantFactor, and depthBiasClamp can each be positive, negative,
or zero. These parameters are set as described for vkCmdSetDepthBias and
vkCmdSetDepthBias2EXT below.

The maximum depth slope m of a triangle is

where (xf, yf, zf) is a point on the triangle. m may be approximated as

In a pipeline with a depth bias representation of VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT, r, for the
given primitive is defined as

r = 1

Otherwise r is the minimum resolvable difference that depends on the depth attachment
representation. If VkDepthBiasRepresentationInfoEXT::depthBiasExact is VK_FALSE it is the smallest
difference in framebuffer coordinate z values that is guaranteed to remain distinct throughout
polygon rasterization and in the depth attachment. All pairs of fragments generated by the
rasterization of two polygons with otherwise identical vertices, but zf values that differ by r, will
have distinct depth values.

For fixed-point depth attachment representations, or in a pipeline with a depth bias representation
of VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT, r is constant
throughout the range of the entire depth attachment. If VkDepthBiasRepresentationInfoEXT
::depthBiasExact is VK_TRUE, then its value must be

r = 2-n

Otherwise its value is implementation-dependent but must be at most

r = 2 × 2-n

2715

where n is the number of bits used for the depth aspect when using a fixed-point attachment, or the
number of mantissa bits plus one when using a floating-point attachment.

Otherwise for floating-point depth attachment, there is no single minimum resolvable difference. In
this case, the minimum resolvable difference for a given polygon is dependent on the maximum
exponent, e, in the range of z values spanned by the primitive. If n is the number of bits in the
floating-point mantissa, the minimum resolvable difference, r, for the given primitive is defined as

r = 2e-n

If a triangle is rasterized using the VK_POLYGON_MODE_FILL_RECTANGLE_NV polygon mode, then this
minimum resolvable difference may not be resolvable for samples outside of the triangle, where
the depth is extrapolated.

If no depth attachment is present, r is undefined.

The bias value o for a polygon is

m is computed as described above. If the depth attachment uses a fixed-point representation, m is a
function of depth values in the range [0,1], and o is applied to depth values in the same range.

Depth bias is applied to triangle topology primitives received by the rasterizer regardless of
polygon mode. Depth bias may also be applied to line and point topology primitives received by the
rasterizer.

To dynamically set the depth bias parameters, call:

// Provided by VK_VERSION_1_0
void vkCmdSetDepthBias(
 VkCommandBuffer commandBuffer,
 float depthBiasConstantFactor,
 float depthBiasClamp,
 float depthBiasSlopeFactor);

• commandBuffer is the command buffer into which the command will be recorded.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each
fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

This command sets the depth bias parameters for subsequent drawing commands when drawing

2716

using shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_DEPTH_BIAS set
in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
corresponding VkPipelineRasterizationStateCreateInfo::depthBiasConstantFactor, depthBiasClamp,
and depthBiasSlopeFactor values used to create the currently active pipeline.

Calling this function is equivalent to calling vkCmdSetDepthBias2EXT without a
VkDepthBiasRepresentationInfoEXT in the pNext chain of VkDepthBiasInfoEXT.

Valid Usage

• VUID-vkCmdSetDepthBias-depthBiasClamp-00790
If the depthBiasClamp feature is not enabled, depthBiasClamp must be 0.0

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBias-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBias-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBias-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthBias-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

The VkDepthBiasRepresentationInfoEXT structure is defined as:

// Provided by VK_EXT_depth_bias_control

2717

typedef struct VkDepthBiasRepresentationInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDepthBiasRepresentationEXT depthBiasRepresentation;
 VkBool32 depthBiasExact;
} VkDepthBiasRepresentationInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• depthBiasRepresentation is a VkDepthBiasRepresentationEXT value specifying the depth bias
representation.

• depthBiasExact specifies that the implementation is not allowed to scale the depth bias value to
ensure a minimum resolvable distance.

Valid Usage

• VUID-VkDepthBiasRepresentationInfoEXT-
leastRepresentableValueForceUnormRepresentation-08947
If the leastRepresentableValueForceUnormRepresentation feature is not enabled,
depthBiasRepresentation must not be
VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT

• VUID-VkDepthBiasRepresentationInfoEXT-floatRepresentation-08948
If the floatRepresentation feature is not enabled, depthBiasRepresentation must not be
VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT

• VUID-VkDepthBiasRepresentationInfoEXT-depthBiasExact-08949
If the depthBiasExact feature is not enabled, depthBiasExact must be VK_FALSE

Valid Usage (Implicit)

• VUID-VkDepthBiasRepresentationInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEPTH_BIAS_REPRESENTATION_INFO_EXT

• VUID-VkDepthBiasRepresentationInfoEXT-depthBiasRepresentation-parameter
depthBiasRepresentation must be a valid VkDepthBiasRepresentationEXT value

Possible values of VkDepthBiasRepresentationInfoEXT::depthBiasRepresentation, specifying the
depth bias representation are:

// Provided by VK_EXT_depth_bias_control
typedef enum VkDepthBiasRepresentationEXT {
 VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORMAT_EXT = 0,
 VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT = 1,
 VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT = 2,
} VkDepthBiasRepresentationEXT;

2718

• VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORMAT_EXT specifies that the depth
bias representation is a factor of the format’s r as described in Depth Bias Computation.

• VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT specifies that the
depth bias representation is a factor of a constant r defined by the bit-size or mantissa of the
format as described in Depth Bias Computation.

• VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT specifies that the depth bias representation is a factor
of constant r equal to 1.

The VkDepthBiasInfoEXT structure is defined as:

// Provided by VK_EXT_depth_bias_control
typedef struct VkDepthBiasInfoEXT {
 VkStructureType sType;
 const void* pNext;
 float depthBiasConstantFactor;
 float depthBiasClamp;
 float depthBiasSlopeFactor;
} VkDepthBiasInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each
fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

If pNext does not contain a VkDepthBiasRepresentationInfoEXT structure, then this command is
equivalent to including a VkDepthBiasRepresentationInfoEXT with depthBiasExact set to VK_FALSE
and depthBiasRepresentation set to
VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORMAT_EXT.

Valid Usage

• VUID-VkDepthBiasInfoEXT-depthBiasClamp-08950
If the depthBiasClamp feature is not enabled, depthBiasClamp must be 0.0

Valid Usage (Implicit)

• VUID-VkDepthBiasInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEPTH_BIAS_INFO_EXT

• VUID-VkDepthBiasInfoEXT-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkDepthBiasRepresentationInfoEXT

• VUID-VkDepthBiasInfoEXT-sType-unique

2719

The sType value of each struct in the pNext chain must be unique

To dynamically set the depth bias parameters, call:

// Provided by VK_EXT_depth_bias_control
void vkCmdSetDepthBias2EXT(
 VkCommandBuffer commandBuffer,
 const VkDepthBiasInfoEXT* pDepthBiasInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pDepthBiasInfo is a pointer to a VkDepthBiasInfoEXT structure specifying depth bias
parameters.

This command is functionally identical to vkCmdSetDepthBias, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBias2EXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBias2EXT-pDepthBiasInfo-parameter
pDepthBiasInfo must be a valid pointer to a valid VkDepthBiasInfoEXT structure

• VUID-vkCmdSetDepthBias2EXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBias2EXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthBias2EXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2720

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

28.12.4. Conservative Rasterization

If the pNext chain of VkPipelineRasterizationStateCreateInfo includes a
VkPipelineRasterizationConservativeStateCreateInfoEXT structure, then that structure includes
parameters controlling conservative rasterization.

VkPipelineRasterizationConservativeStateCreateInfoEXT is defined as:

// Provided by VK_EXT_conservative_rasterization
typedef struct VkPipelineRasterizationConservativeStateCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkPipelineRasterizationConservativeStateCreateFlagsEXT flags;
 VkConservativeRasterizationModeEXT
conservativeRasterizationMode;
 float
extraPrimitiveOverestimationSize;
} VkPipelineRasterizationConservativeStateCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• conservativeRasterizationMode is the conservative rasterization mode to use.

• extraPrimitiveOverestimationSize is the extra size in pixels to increase the generating primitive
during conservative rasterization at each of its edges in X and Y equally in screen space beyond
the base overestimation specified in VkPhysicalDeviceConservativeRasterizationPropertiesEXT
::primitiveOverestimationSize. If conservativeRasterizationMode is not
VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT, this value is ignored.

If this structure is not included in the pNext chain, conservativeRasterizationMode is considered to be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT, and and conservative rasterization is disabled.

Polygon rasterization can be made conservative by setting conservativeRasterizationMode to
VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT or
VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT in
VkPipelineRasterizationConservativeStateCreateInfoEXT.

 Note

2721

If conservativePointAndLineRasterization is supported, conservative rasterization
can be applied to line and point primitives, otherwise it must be disabled.

Valid Usage

• VUID-VkPipelineRasterizationConservativeStateCreateInfoEXT-
extraPrimitiveOverestimationSize-01769
extraPrimitiveOverestimationSize must be in the range of 0.0 to
VkPhysicalDeviceConservativeRasterizationPropertiesEXT::maxExtraPrimitiveOverestimatio
nSize inclusive

Valid Usage (Implicit)

• VUID-VkPipelineRasterizationConservativeStateCreateInfoEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT

• VUID-VkPipelineRasterizationConservativeStateCreateInfoEXT-flags-zerobitmask
flags must be 0

• VUID-VkPipelineRasterizationConservativeStateCreateInfoEXT-
conservativeRasterizationMode-parameter
conservativeRasterizationMode must be a valid VkConservativeRasterizationModeEXT
value

// Provided by VK_EXT_conservative_rasterization
typedef VkFlags VkPipelineRasterizationConservativeStateCreateFlagsEXT;

VkPipelineRasterizationConservativeStateCreateFlagsEXT is a bitmask type for setting a mask, but is
currently reserved for future use.

Possible values of VkPipelineRasterizationConservativeStateCreateInfoEXT
::conservativeRasterizationMode, specifying the conservative rasterization mode are:

// Provided by VK_EXT_conservative_rasterization
typedef enum VkConservativeRasterizationModeEXT {
 VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT = 0,
 VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT = 1,
 VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT = 2,
} VkConservativeRasterizationModeEXT;

• VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT specifies that conservative rasterization is
disabled and rasterization proceeds as normal.

• VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT specifies that conservative rasterization is
enabled in overestimation mode.

2722

• VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT specifies that conservative rasterization
is enabled in underestimation mode.

To dynamically set the conservativeRasterizationMode, call:

// Provided by VK_EXT_conservative_rasterization with VK_EXT_extended_dynamic_state3,
VK_EXT_conservative_rasterization with VK_EXT_shader_object
void vkCmdSetConservativeRasterizationModeEXT(
 VkCommandBuffer commandBuffer,
 VkConservativeRasterizationModeEXT conservativeRasterizationMode);

• commandBuffer is the command buffer into which the command will be recorded.

• conservativeRasterizationMode specifies the conservativeRasterizationMode state.

This command sets the conservativeRasterizationMode state for subsequent drawing commands
when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationConservativeStateCreateInfoEXT::conservativeRasterizationMode value used
to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetConservativeRasterizationModeEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ConservativeRasterizationMode feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetConservativeRasterizationModeEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetConservativeRasterizationModeEXT-conservativeRasterizationMode-
parameter
conservativeRasterizationMode must be a valid VkConservativeRasterizationModeEXT
value

• VUID-vkCmdSetConservativeRasterizationModeEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetConservativeRasterizationModeEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetConservativeRasterizationModeEXT-videocoding
This command must only be called outside of a video coding scope

2723

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the extraPrimitiveOverestimationSize, call:

// Provided by VK_EXT_conservative_rasterization with VK_EXT_extended_dynamic_state3,
VK_EXT_conservative_rasterization with VK_EXT_shader_object
void vkCmdSetExtraPrimitiveOverestimationSizeEXT(
 VkCommandBuffer commandBuffer,
 float extraPrimitiveOverestimationSize);

• commandBuffer is the command buffer into which the command will be recorded.

• extraPrimitiveOverestimationSize specifies the extraPrimitiveOverestimationSize.

This command sets the extraPrimitiveOverestimationSize for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationConservativeStateCreateInfoEXT::extraPrimitiveOverestimationSize value
used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetExtraPrimitiveOverestimationSizeEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ExtraPrimitiveOverestimationSize feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetExtraPrimitiveOverestimationSizeEXT-extraPrimitiveOverestimationSize-
07428
extraPrimitiveOverestimationSize must be in the range of 0.0 to
VkPhysicalDeviceConservativeRasterizationPropertiesEXT::maxExtraPrimitiveOverestimatio
nSize inclusive

2724

Valid Usage (Implicit)

• VUID-vkCmdSetExtraPrimitiveOverestimationSizeEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetExtraPrimitiveOverestimationSizeEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetExtraPrimitiveOverestimationSizeEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetExtraPrimitiveOverestimationSizeEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

When overestimate conservative rasterization is enabled, rather than evaluating coverage at
individual sample locations, a determination is made whether any portion of the pixel (including its
edges and corners) is covered by the primitive. If any portion of the pixel is covered, then all bits of
the coverage mask for the fragment corresponding to that pixel are enabled. If the render pass has
a fragment density map attachment and any bit of the coverage mask for the fragment is enabled,
then all bits of the coverage mask for the fragment are enabled.

For the purposes of evaluating which pixels are covered by the primitive, implementations can
increase the size of the primitive by up to VkPhysicalDeviceConservativeRasterizationPropertiesEXT
::primitiveOverestimationSize pixels at each of the primitive edges. This may increase the number
of fragments generated by this primitive and represents an overestimation of the pixel coverage.

This overestimation size can be increased further by setting the extraPrimitiveOverestimationSize
value above 0.0 in steps of VkPhysicalDeviceConservativeRasterizationPropertiesEXT
::extraPrimitiveOverestimationSizeGranularity up to and including
VkPhysicalDeviceConservativeRasterizationPropertiesEXT::extraPrimitiveOverestimationSize. This
may further increase the number of fragments generated by this primitive.

2725

The actual precision of the overestimation size used for conservative rasterization may vary
between implementations and produce results that only approximate the
primitiveOverestimationSize and extraPrimitiveOverestimationSizeGranularity properties.
Implementations may especially vary these approximations when the render pass has a fragment
density map and the fragment area covers multiple pixels.

For triangles if VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT is enabled, fragments will be
generated if the primitive area covers any portion of any pixel inside the fragment area, including
their edges or corners. The tie-breaking rule described in Basic Polygon Rasterization does not
apply during conservative rasterization and coverage is set for all fragments generated from shared
edges of polygons. Degenerate triangles that evaluate to zero area after rasterization, even for
pixels containing a vertex or edge of the zero-area polygon, will be culled if
VkPhysicalDeviceConservativeRasterizationPropertiesEXT::degenerateTrianglesRasterized is VK_FALSE
or will generate fragments if degenerateTrianglesRasterized is VK_TRUE. The fragment input values
for these degenerate triangles take their attribute and depth values from the provoking vertex.
Degenerate triangles are considered backfacing and the application can enable backface culling if
desired. Triangles that are zero area before rasterization may be culled regardless.

For lines if VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT is enabled, and the
implementation sets VkPhysicalDeviceConservativeRasterizationPropertiesEXT
::conservativePointAndLineRasterization to VK_TRUE, fragments will be generated if the line covers
any portion of any pixel inside the fragment area, including their edges or corners. Degenerate
lines that evaluate to zero length after rasterization will be culled if
VkPhysicalDeviceConservativeRasterizationPropertiesEXT::degenerateLinesRasterized is VK_FALSE or
will generate fragments if degenerateLinesRasterized is VK_TRUE. The fragments input values for
these degenerate lines take their attribute and depth values from the provoking vertex. Lines that
are zero length before rasterization may be culled regardless.

For points if VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT is enabled, and the
implementation sets VkPhysicalDeviceConservativeRasterizationPropertiesEXT
::conservativePointAndLineRasterization to VK_TRUE, fragments will be generated if the point square
covers any portion of any pixel inside the fragment area, including their edges or corners.

When underestimate conservative rasterization is enabled, rather than evaluating coverage at
individual sample locations, a determination is made whether all of the pixel (including its edges
and corners) is covered by the primitive. If the entire pixel is covered, then a fragment is generated
with all bits of its coverage mask corresponding to the pixel enabled, otherwise the pixel is not
considered covered even if some portion of the pixel is covered. The fragment is discarded if no
pixels inside the fragment area are considered covered. If the render pass has a fragment density
map attachment and any pixel inside the fragment area is not considered covered, then the
fragment is discarded even if some pixels are considered covered.

For triangles, if VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT is enabled, fragments will
only be generated if any pixel inside the fragment area is fully covered by the generating primitive,
including its edges and corners.

For lines, if VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT is enabled, fragments will be
generated if any pixel inside the fragment area, including its edges and corners, are entirely
covered by the line.

2726

For points, if VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT is enabled, fragments will only
be generated if the point square covers the entirety of any pixel square inside the fragment area,
including its edges or corners.

If the render pass has a fragment density map and
VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT is enabled, fragments will only be generated
if the entirety of all pixels inside the fragment area are covered by the generating primitive, line, or
point.

For both overestimate and underestimate conservative rasterization modes a fragment has all of its
pixel squares fully covered by the generating primitive must set FullyCoveredEXT to VK_TRUE if the
implementation enables the VkPhysicalDeviceConservativeRasterizationPropertiesEXT
::fullyCoveredFragmentShaderInputVariable feature.

When the use of a shading rate image or setting the fragment shading rate results in fragments
covering multiple pixels, coverage for conservative rasterization is still evaluated on a per-pixel
basis and may result in fragments with partial coverage. For fragment shader inputs decorated with
FullyCoveredEXT, a fragment is considered fully covered if and only if all pixels in the fragment are
fully covered by the generating primitive.

2727

Chapter 29. Fragment Operations
Fragments produced by rasterization go through a number of operations to determine whether or
how values produced by fragment shading are written to the framebuffer.

The following fragment operations adhere to rasterization order, and are typically performed in
this order:

1. Discard rectangles test

2. Scissor test

3. Exclusive scissor test

4. Sample mask test

5. Certain Fragment shading operations:

◦ Sample Mask Accesses

◦ Tile Image Reads

◦ Depth Replacement

◦ Stencil Reference Replacement

◦ Interlocked Operations

6. Multisample coverage

7. Depth bounds test

8. Stencil test

9. Depth test

10. Representative fragment test

11. Sample counting

12. Coverage to color

13. Coverage reduction

14. Coverage modulation

The coverage mask generated by rasterization describes the initial coverage of each sample covered
by the fragment. Fragment operations will update the coverage mask to add or subtract coverage
where appropriate. If a fragment operation results in all bits of the coverage mask being 0, the
fragment is discarded, and no further operations are performed. Fragments can also be
programmatically discarded in a fragment shader by executing one of

• OpTerminateInvocation

• OpDemoteToHelperInvocationEXT

• OpKill.

When one of the fragment operations in this chapter is described as “replacing” a fragment shader
output, that output is replaced unconditionally, even if no fragment shader previously wrote to that
output.

2728

If there is a fragment shader and it declares the PostDepthCoverage execution mode, the sample
mask test is instead performed after the depth test.

If VkPhysicalDeviceMaintenance5PropertiesKHR
::earlyFragmentMultisampleCoverageAfterSampleCounting is set to VK_TRUE and there is a fragment
shader which declares the EarlyFragmentTests execution mode, fragment shading and multisample
coverage operations must be performed after sample counting.

Otherwise, if VkPhysicalDeviceMaintenance5PropertiesKHR
::earlyFragmentMultisampleCoverageAfterSampleCounting is set to VK_FALSE and there is a fragment
shader which declares the EarlyFragmentTests execution mode, fragment shading and multisample
coverage operations should instead be performed after sample counting, but may be performed
before sample counting.

If VkPhysicalDeviceMaintenance5PropertiesKHR::earlyFragmentSampleMaskTestBeforeSampleCounting is
set to VK_TRUE and there is a fragment shader which declares the EarlyFragmentTests execution mode
sample mask test operations must follow the order of fragment operations from above.

Otherwise, if VkPhysicalDeviceMaintenance5PropertiesKHR
::earlyFragmentSampleMaskTestBeforeSampleCounting is set to VK_FALSE and there is a fragment shader
which declares the EarlyFragmentTests execution mode, sample mask test operations should follow
the order of fragment operations from above but may instead be performed after sample counting.

If there is a fragment shader which declares the EarlyAndLateFragmentTestsAMD execution mode, and
it does not declare the DepthReplacing or StencilRefReplacingEXT execution mode, fragment shading
and multisample coverage operations are instead be performed after sample counting.

For a pipeline with the following properties:

• a fragment shader is specified

• the fragment shader either specifies EarlyAndLateFragmentTestsAMD or does not write to storage
resources;

• the fragment shader specifies the StencilRefReplacingEXT execution mode;

• either

◦ the fragment shader specifies the StencilRefUnchangedFrontAMD execution mode;

◦ the fragment shader specifies the StencilRefLessFrontAMD execution mode and the pipeline
uses a VkPipelineDepthStencilStateCreateInfo::front.compareOp of VK_COMPARE_OP_GREATER or
VK_COMPARE_OP_GREATER_OR_EQUAL; or

◦ the fragment shader specifies the StencilRefGreaterFrontAMD execution mode and the
pipeline uses a VkPipelineDepthStencilStateCreateInfo::front.compareOp of
VK_COMPARE_OP_LESS or VK_COMPARE_OP_LESS_OR_EQUAL; and

• either

◦ the fragment shader specifies the StencilRefUnchangedBackAMD execution mode;

◦ the fragment shader specifies the StencilRefLessBackAMD execution mode and the pipeline
uses a VkPipelineDepthStencilStateCreateInfo::back.compareOp of VK_COMPARE_OP_GREATER or
VK_COMPARE_OP_GREATER_OR_EQUAL; or

2729

◦ the fragment shader specifies the StencilRefGreaterBackAMD execution mode and the pipeline
uses a VkPipelineDepthStencilStateCreateInfo::back.compareOp of VK_COMPARE_OP_LESS or
VK_COMPARE_OP_LESS_OR_EQUAL

an additional stencil test may be performed before fragment shading, using the stencil reference
value specified by VkPipelineDepthStencilStateCreateInfo::front.reference or
VkPipelineDepthStencilStateCreateInfo::back.reference.

For a pipeline with the following properties:

• a fragment shader is specified

• the fragment shader either specifies EarlyAndLateFragmentTestsAMD or does not write to storage
resources;

• the fragment shader specifies the DepthReplacing execution mode; and

• either

◦ the fragment shader specifies the DepthUnchanged execution mode;

◦ the fragment shader specifies the DepthLess execution mode and the pipeline uses a
VkPipelineDepthStencilStateCreateInfo::depthCompareOp of VK_COMPARE_OP_GREATER or
VK_COMPARE_OP_GREATER_OR_EQUAL; or

◦ the fragment shader specifies the DepthGreater execution mode and the pipeline uses a
VkPipelineDepthStencilStateCreateInfo::depthCompareOp of VK_COMPARE_OP_LESS or
VK_COMPARE_OP_LESS_OR_EQUAL

the implementation may perform depth bounds test before fragment shading and perform an
additional depth test immediately after that using the interpolated depth value generated by
rasterization.

Once all fragment operations have completed, fragment shader outputs for covered color
attachment samples pass through framebuffer operations.

29.1. Discard Rectangles Test
The discard rectangle test compares the framebuffer coordinates (xf,yf) of each sample covered by a
fragment against a set of discard rectangles.

Each discard rectangle is defined by a VkRect2D. These values are either set by the
VkPipelineDiscardRectangleStateCreateInfoEXT structure during pipeline creation, or dynamically
by the vkCmdSetDiscardRectangleEXT command.

A given sample is considered inside a discard rectangle if the xf is in the range [VkRect2D::offset.x,
VkRect2D::offset.x + VkRect2D::extent.x), and yf is in the range [VkRect2D::offset.y, VkRect2D
::offset.y + VkRect2D::extent.y). If the test is set to be inclusive, samples that are not inside any of
the discard rectangles will have their coverage set to 0. If the test is set to be exclusive, samples that
are inside any of the discard rectangles will have their coverage set to 0.

If no discard rectangles are specified, the coverage mask is unmodified by this operation.

2730

The VkPipelineDiscardRectangleStateCreateInfoEXT structure is defined as:

// Provided by VK_EXT_discard_rectangles
typedef struct VkPipelineDiscardRectangleStateCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkPipelineDiscardRectangleStateCreateFlagsEXT flags;
 VkDiscardRectangleModeEXT discardRectangleMode;
 uint32_t discardRectangleCount;
 const VkRect2D* pDiscardRectangles;
} VkPipelineDiscardRectangleStateCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• discardRectangleMode is a VkDiscardRectangleModeEXT value determining whether the discard
rectangle test is inclusive or exclusive.

• discardRectangleCount is the number of discard rectangles to use.

• pDiscardRectangles is a pointer to an array of VkRect2D structures defining discard rectangles.

If the VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state is enabled for a pipeline, the
pDiscardRectangles member is ignored. If the VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT
dynamic state is not enabled for the pipeline the presence of this structure in the
VkGraphicsPipelineCreateInfo chain, and a discardRectangleCount greater than zero, implicitly
enables discard rectangles in the pipeline, otherwise discard rectangles must enabled or disabled
by vkCmdSetDiscardRectangleEnableEXT. If the VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT
dynamic state is enabled for the pipeline, the discardRectangleMode member is ignored, and the
discard rectangle mode must be set by vkCmdSetDiscardRectangleModeEXT.

When this structure is included in the pNext chain of VkGraphicsPipelineCreateInfo, it defines
parameters of the discard rectangle test. If the VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic
state is not enabled, and this structure is not included in the pNext chain, it is equivalent to
specifying this structure with a discardRectangleCount of 0.

Valid Usage

• VUID-VkPipelineDiscardRectangleStateCreateInfoEXT-discardRectangleCount-00582
discardRectangleCount must be less than or equal to
VkPhysicalDeviceDiscardRectanglePropertiesEXT::maxDiscardRectangles

Valid Usage (Implicit)

• VUID-VkPipelineDiscardRectangleStateCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT

2731

• VUID-VkPipelineDiscardRectangleStateCreateInfoEXT-flags-zerobitmask
flags must be 0

• VUID-VkPipelineDiscardRectangleStateCreateInfoEXT-discardRectangleMode-parameter
discardRectangleMode must be a valid VkDiscardRectangleModeEXT value

// Provided by VK_EXT_discard_rectangles
typedef VkFlags VkPipelineDiscardRectangleStateCreateFlagsEXT;

VkPipelineDiscardRectangleStateCreateFlagsEXT is a bitmask type for setting a mask, but is currently
reserved for future use.

VkDiscardRectangleModeEXT values are:

// Provided by VK_EXT_discard_rectangles
typedef enum VkDiscardRectangleModeEXT {
 VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT = 0,
 VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT = 1,
} VkDiscardRectangleModeEXT;

• VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT specifies that the discard rectangle test is inclusive.

• VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT specifies that the discard rectangle test is exclusive.

To dynamically set the discard rectangles, call:

// Provided by VK_EXT_discard_rectangles
void vkCmdSetDiscardRectangleEXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstDiscardRectangle,
 uint32_t discardRectangleCount,
 const VkRect2D* pDiscardRectangles);

• commandBuffer is the command buffer into which the command will be recorded.

• firstDiscardRectangle is the index of the first discard rectangle whose state is updated by the
command.

• discardRectangleCount is the number of discard rectangles whose state are updated by the
command.

• pDiscardRectangles is a pointer to an array of VkRect2D structures specifying discard rectangles.

The discard rectangle taken from element i of pDiscardRectangles replace the current state for the
discard rectangle at index firstDiscardRectangle + i, for i in [0, discardRectangleCount).

This command sets the discard rectangles for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.

2732

Otherwise, this state is specified by the VkPipelineDiscardRectangleStateCreateInfoEXT
::pDiscardRectangles values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetDiscardRectangleEXT-firstDiscardRectangle-00585
The sum of firstDiscardRectangle and discardRectangleCount must be less than or equal
to VkPhysicalDeviceDiscardRectanglePropertiesEXT::maxDiscardRectangles

• VUID-vkCmdSetDiscardRectangleEXT-x-00587
The x and y member of offset in each VkRect2D element of pDiscardRectangles must be
greater than or equal to 0

• VUID-vkCmdSetDiscardRectangleEXT-offset-00588
Evaluation of (offset.x + extent.width) in each VkRect2D element of pDiscardRectangles
must not cause a signed integer addition overflow

• VUID-vkCmdSetDiscardRectangleEXT-offset-00589
Evaluation of (offset.y + extent.height) in each VkRect2D element of pDiscardRectangles
must not cause a signed integer addition overflow

• VUID-vkCmdSetDiscardRectangleEXT-viewportScissor2D-04788
If this command is recorded in a secondary command buffer with
VkCommandBufferInheritanceViewportScissorInfoNV::viewportScissor2D enabled, then
this function must not be called

Valid Usage (Implicit)

• VUID-vkCmdSetDiscardRectangleEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDiscardRectangleEXT-pDiscardRectangles-parameter
pDiscardRectangles must be a valid pointer to an array of discardRectangleCount VkRect2D
structures

• VUID-vkCmdSetDiscardRectangleEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDiscardRectangleEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDiscardRectangleEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetDiscardRectangleEXT-discardRectangleCount-arraylength
discardRectangleCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

2733

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set whether discard rectangles are enabled, call:

// Provided by VK_EXT_discard_rectangles
void vkCmdSetDiscardRectangleEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 discardRectangleEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• discardRectangleEnable specifies whether discard rectangles are enabled or not.

This command sets the discard rectangle enable for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is implied by the
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount value used to create the
currently active pipeline, where a non-zero discardRectangleCount implicitly enables discard
rectangles, otherwise they are disabled.

Valid Usage

• VUID-vkCmdSetDiscardRectangleEnableEXT-specVersion-07851
The VK_EXT_discard_rectangles extension must be enabled, and the implementation must
support at least specVersion 2 of this extension

Valid Usage (Implicit)

• VUID-vkCmdSetDiscardRectangleEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDiscardRectangleEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDiscardRectangleEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics

2734

operations

• VUID-vkCmdSetDiscardRectangleEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the discard rectangle mode, call:

// Provided by VK_EXT_discard_rectangles
void vkCmdSetDiscardRectangleModeEXT(
 VkCommandBuffer commandBuffer,
 VkDiscardRectangleModeEXT discardRectangleMode);

• commandBuffer is the command buffer into which the command will be recorded.

• discardRectangleMode specifies the discard rectangle mode for all discard rectangles, either
inclusive or exclusive.

This command sets the discard rectangle mode for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleMode value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetDiscardRectangleModeEXT-specVersion-07852
The VK_EXT_discard_rectangles extension must be enabled, and the implementation must
support at least specVersion 2 of this extension

2735

Valid Usage (Implicit)

• VUID-vkCmdSetDiscardRectangleModeEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDiscardRectangleModeEXT-discardRectangleMode-parameter
discardRectangleMode must be a valid VkDiscardRectangleModeEXT value

• VUID-vkCmdSetDiscardRectangleModeEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDiscardRectangleModeEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDiscardRectangleModeEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

29.2. Scissor Test
The scissor test compares the framebuffer coordinates (xf,yf) of each sample covered by a fragment
against a scissor rectangle at the index equal to the fragment’s ViewportIndex.

Each scissor rectangle is defined by a VkRect2D. These values are either set by the
VkPipelineViewportStateCreateInfo structure during pipeline creation, or dynamically by the
vkCmdSetScissor command.

A given sample is considered inside a scissor rectangle if xf is in the range [VkRect2D::offset.x,
VkRect2D::offset.x + VkRect2D::extent.x), and yf is in the range [VkRect2D::offset.y, VkRect2D
::offset.y + VkRect2D::extent.y). Samples with coordinates outside the scissor rectangle at the
corresponding ViewportIndex will have their coverage set to 0.

If a render pass transform is enabled, the (offset.x and offset.y) and (extent.width and

2736

extent.height) values are transformed as described in render pass transform before participating
in the scissor test.

To dynamically set the scissor rectangles, call:

// Provided by VK_VERSION_1_0
void vkCmdSetScissor(
 VkCommandBuffer commandBuffer,
 uint32_t firstScissor,
 uint32_t scissorCount,
 const VkRect2D* pScissors);

• commandBuffer is the command buffer into which the command will be recorded.

• firstScissor is the index of the first scissor whose state is updated by the command.

• scissorCount is the number of scissors whose rectangles are updated by the command.

• pScissors is a pointer to an array of VkRect2D structures defining scissor rectangles.

The scissor rectangles taken from element i of pScissors replace the current state for the scissor
index firstScissor + i, for i in [0, scissorCount).

This command sets the scissor rectangles for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_SCISSOR set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineViewportStateCreateInfo::pScissors values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetScissor-firstScissor-00592
The sum of firstScissor and scissorCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetScissor-firstScissor-00593
If the multiViewport feature is not enabled, firstScissor must be 0

• VUID-vkCmdSetScissor-scissorCount-00594
If the multiViewport feature is not enabled, scissorCount must be 1

• VUID-vkCmdSetScissor-x-00595
The x and y members of offset member of any element of pScissors must be greater than
or equal to 0

• VUID-vkCmdSetScissor-offset-00596
Evaluation of (offset.x + extent.width) must not cause a signed integer addition overflow
for any element of pScissors

• VUID-vkCmdSetScissor-offset-00597
Evaluation of (offset.y + extent.height) must not cause a signed integer addition
overflow for any element of pScissors

• VUID-vkCmdSetScissor-viewportScissor2D-04789

2737

If this command is recorded in a secondary command buffer with
VkCommandBufferInheritanceViewportScissorInfoNV::viewportScissor2D enabled, then
this function must not be called

Valid Usage (Implicit)

• VUID-vkCmdSetScissor-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetScissor-pScissors-parameter
pScissors must be a valid pointer to an array of scissorCount VkRect2D structures

• VUID-vkCmdSetScissor-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetScissor-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetScissor-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetScissor-scissorCount-arraylength
scissorCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

29.3. Exclusive Scissor Test
The exclusive scissor test compares the framebuffer coordinates (xf,yf) of each sample covered by a
fragment against an exclusive scissor rectangle at the index equal to the fragment’s ViewportIndex.

Each exclusive scissor rectangle is defined by a VkRect2D. These values are either set by the
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure during pipeline creation, or

2738

dynamically by the vkCmdSetExclusiveScissorNV command.

A given sample is considered inside an exclusive scissor rectangle if xf is in the range [VkRect2D
::offset.x, VkRect2D::offset.x + VkRect2D::extent.x), and yf is in the range [VkRect2D::offset.y,
VkRect2D::offset.y + VkRect2D::extent.y). Samples with coordinates inside the exclusive scissor
rectangle at the corresponding ViewportIndex will have their coverage set to 0.

If no exclusive scissor rectangles are specified, the coverage mask is unmodified by this operation.

The VkPipelineViewportExclusiveScissorStateCreateInfoNV structure is defined as:

// Provided by VK_NV_scissor_exclusive
typedef struct VkPipelineViewportExclusiveScissorStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 uint32_t exclusiveScissorCount;
 const VkRect2D* pExclusiveScissors;
} VkPipelineViewportExclusiveScissorStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• exclusiveScissorCount is the number of exclusive scissor rectangles.

• pExclusiveScissors is a pointer to an array of VkRect2D structures defining exclusive scissor
rectangles.

If the VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state is enabled for a pipeline, the
pExclusiveScissors member is ignored.

When this structure is included in the pNext chain of VkGraphicsPipelineCreateInfo, it defines
parameters of the exclusive scissor test. If this structure is not included in the pNext chain, it is
equivalent to specifying this structure with an exclusiveScissorCount of 0.

Valid Usage

• VUID-VkPipelineViewportExclusiveScissorStateCreateInfoNV-exclusiveScissorCount-
02027
If the multiViewport feature is not enabled, exclusiveScissorCount must be 0 or 1

• VUID-VkPipelineViewportExclusiveScissorStateCreateInfoNV-exclusiveScissorCount-
02028
exclusiveScissorCount must be less than or equal to VkPhysicalDeviceLimits::maxViewports

• VUID-VkPipelineViewportExclusiveScissorStateCreateInfoNV-exclusiveScissorCount-
02029
exclusiveScissorCount must be 0 or greater than or equal to the viewportCount member of
VkPipelineViewportStateCreateInfo

2739

Valid Usage (Implicit)

• VUID-VkPipelineViewportExclusiveScissorStateCreateInfoNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_EXCLUSIVE_SCISSOR_STATE_CREATE_INFO_NV

To dynamically set the exclusive scissor rectangles, call:

// Provided by VK_NV_scissor_exclusive
void vkCmdSetExclusiveScissorNV(
 VkCommandBuffer commandBuffer,
 uint32_t firstExclusiveScissor,
 uint32_t exclusiveScissorCount,
 const VkRect2D* pExclusiveScissors);

• commandBuffer is the command buffer into which the command will be recorded.

• firstExclusiveScissor is the index of the first exclusive scissor rectangle whose state is updated
by the command.

• exclusiveScissorCount is the number of exclusive scissor rectangles updated by the command.

• pExclusiveScissors is a pointer to an array of VkRect2D structures defining exclusive scissor
rectangles.

The scissor rectangles taken from element i of pExclusiveScissors replace the current state for the
scissor index firstExclusiveScissor + i, for i in [0, exclusiveScissorCount).

This command sets the exclusive scissor rectangles for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineViewportExclusiveScissorStateCreateInfoNV
::pExclusiveScissors values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetExclusiveScissorNV-None-02031
The exclusiveScissor feature must be enabled

• VUID-vkCmdSetExclusiveScissorNV-firstExclusiveScissor-02034
The sum of firstExclusiveScissor and exclusiveScissorCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetExclusiveScissorNV-firstExclusiveScissor-02035
If the multiViewport feature is not enabled, firstExclusiveScissor must be 0

• VUID-vkCmdSetExclusiveScissorNV-exclusiveScissorCount-02036
If the multiViewport feature is not enabled, exclusiveScissorCount must be 1

• VUID-vkCmdSetExclusiveScissorNV-x-02037

2740

The x and y members of offset in each member of pExclusiveScissors must be greater
than or equal to 0

• VUID-vkCmdSetExclusiveScissorNV-offset-02038
Evaluation of (offset.x + extent.width) for each member of pExclusiveScissors must not
cause a signed integer addition overflow

• VUID-vkCmdSetExclusiveScissorNV-offset-02039
Evaluation of (offset.y + extent.height) for each member of pExclusiveScissors must not
cause a signed integer addition overflow

Valid Usage (Implicit)

• VUID-vkCmdSetExclusiveScissorNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetExclusiveScissorNV-pExclusiveScissors-parameter
pExclusiveScissors must be a valid pointer to an array of exclusiveScissorCount VkRect2D
structures

• VUID-vkCmdSetExclusiveScissorNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetExclusiveScissorNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetExclusiveScissorNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetExclusiveScissorNV-exclusiveScissorCount-arraylength
exclusiveScissorCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set whether an exclusive scissor is enabled or not, call:

2741

// Provided by VK_NV_scissor_exclusive
void vkCmdSetExclusiveScissorEnableNV(
 VkCommandBuffer commandBuffer,
 uint32_t firstExclusiveScissor,
 uint32_t exclusiveScissorCount,
 const VkBool32* pExclusiveScissorEnables);

• commandBuffer is the command buffer into which the command will be recorded.

• firstExclusiveScissor is the index of the first exclusive scissor rectangle whose state is updated
by the command.

• exclusiveScissorCount is the number of exclusive scissor rectangles updated by the command.

• pExclusiveScissorEnables is a pointer to an array of VkBool32 values defining whether the
exclusive scissor is enabled.

The exclusive scissor enables taken from element i of pExclusiveScissorEnables replace the current
state for the scissor index firstExclusiveScissor + i, for i in [0, exclusiveScissorCount).

This command sets the exclusive scissor enable for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is implied by the
VkPipelineViewportExclusiveScissorStateCreateInfoNV::exclusiveScissorCount value used to create
the currently active pipeline, where all exclusiveScissorCount exclusive scissors are implicitly
enabled and the remainder up to VkPhysicalDeviceLimits::maxViewports are implicitly disabled.

Valid Usage

• VUID-vkCmdSetExclusiveScissorEnableNV-exclusiveScissor-07853
The exclusiveScissor feature must be enabled, and the implementation must support at
least specVersion 2 of the VK_NV_scissor_exclusive extension

Valid Usage (Implicit)

• VUID-vkCmdSetExclusiveScissorEnableNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetExclusiveScissorEnableNV-pExclusiveScissorEnables-parameter
pExclusiveScissorEnables must be a valid pointer to an array of exclusiveScissorCount
VkBool32 values

• VUID-vkCmdSetExclusiveScissorEnableNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetExclusiveScissorEnableNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

2742

• VUID-vkCmdSetExclusiveScissorEnableNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetExclusiveScissorEnableNV-exclusiveScissorCount-arraylength
exclusiveScissorCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

29.4. Sample Mask Test
The sample mask test compares the coverage mask for a fragment with the sample mask defined by
VkPipelineMultisampleStateCreateInfo::pSampleMask.

To dynamically set the sample mask, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetSampleMaskEXT(
 VkCommandBuffer commandBuffer,
 VkSampleCountFlagBits samples,
 const VkSampleMask* pSampleMask);

• commandBuffer is the command buffer into which the command will be recorded.

• samples specifies the number of sample bits in the pSampleMask.

• pSampleMask is a pointer to an array of VkSampleMask values, where the array size is based on
the samples parameter.

This command sets the sample mask for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_SAMPLE_MASK_EXT set
in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineMultisampleStateCreateInfo::pSampleMask value used to create the currently active
pipeline.

2743

Valid Usage

• VUID-vkCmdSetSampleMaskEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3SampleMask feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetSampleMaskEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetSampleMaskEXT-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-vkCmdSetSampleMaskEXT-pSampleMask-parameter
pSampleMask must be a valid pointer to an array of VkSampleMask values

• VUID-vkCmdSetSampleMaskEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetSampleMaskEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetSampleMaskEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Each bit of the coverage mask is associated with a sample index as described in the rasterization
chapter. If the bit in VkPipelineMultisampleStateCreateInfo::pSampleMask which is associated with
that same sample index is set to 0, the coverage mask bit is set to 0.

2744

29.5. Fragment Shading
Fragment shaders are invoked for each fragment, or as helper invocations.

Most operations in the fragment shader are not performed in rasterization order, with exceptions
called out in the following sections.

For fragment shaders invoked by fragments, the following rules apply:

• A fragment shader must not be executed if a fragment operation that executes before fragment
shading discards the fragment.

• A fragment shader may not be executed if:

◦ An implementation determines that another fragment shader, invoked by a subsequent
primitive in primitive order, overwrites all results computed by the shader (including writes
to storage resources).

◦ Any other fragment operation discards the fragment, and the shader does not write to any
storage resources.

◦ If a fragment shader statically computes the same values for different framebuffer locations,
and does not write to any storage resources, multiple fragments may be shaded by one
fragment shader invocation. This may affect
VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT results, but must otherwise
not be visible behavior to applications.

• Otherwise, at least one fragment shader must be executed.

◦ If sample shading is enabled and multiple invocations per fragment are required,
additional invocations must be executed as specified.

◦ If a shading rate image is used and multiple invocations per fragment are required,
additional invocations must be executed as specified.

◦ Each covered sample must be included in at least one fragment shader invocation.

If no fragment shader is included in the pipeline, no fragment shader is executed, and undefined
values may be written to all color attachment outputs during this fragment operation.

Note

Multiple fragment shader invocations may be executed for the same fragment for
any number of implementation-dependent reasons. When there is more than one
fragment shader invocation per fragment, the association of samples to
invocations is implementation-dependent. Stores and atomics performed by these
additional invocations have the normal effect.

For example, if the subpass includes multiple views in its view mask, a fragment
shader may be invoked separately for each view.

Similarly, if the render pass has a fragment density map attachment, more than
one fragment shader invocation may be invoked for each covered sample. Such
additional invocations are only produced if
VkPhysicalDeviceFragmentDensityMapPropertiesEXT::fragmentDensityInvocations is

2745

VK_TRUE. Implementations may generate these additional fragment shader
invocations in order to make transitions between fragment areas with different
fragment densities more smooth.

29.5.1. Sample Mask

Reading from the SampleMask built-in in the Input storage class will return the coverage mask for the
current fragment as calculated by fragment operations that executed prior to fragment shading.

If sample shading is enabled, fragment shaders will only see values of 1 for samples being shaded -
other bits will be 0.

Each bit of the coverage mask is associated with a sample index as described in the rasterization
chapter. If the bit in SampleMask which is associated with that same sample index is set to 0, that
coverage mask bit is set to 0.

Values written to the SampleMask built-in in the Output storage class will be used by the multisample
coverage operation, with the same encoding as the input built-in.

29.5.2. Fragment Shader Tile Image Reads

If the VK_EXT_shader_tile_image extension is enabled, implementations divide the framebuffer into a
grid of tiles. A tile image is a view of a framebuffer attachment tile for fragments with locations
within the tile.

Within a render pass instance initiated by vkCmdBeginRenderingKHR, fragment shader
invocations can read the framebuffer color, depth, and stencil values at the fragment location via
tile images.

Note

Even though fragment shader invocation can only read from the corresponding
fragment location, the abstraction of a tile image is introduced for the following
reasons:

• Tile dimensions will be exposed in a future extension

• Future functionality such as executing compute dispatches within render
passes via tile shaders can leverage tile images.

Enabling shaderTileImageColorReadAccess, shaderTileImageDepthReadAccess,
shaderTileImageStencilReadAccess enables fragment shader invocations to read from color, depth,
and stencil, respectively.

Color values are read from tile image variables with OpColorAttachmentReadEXT. Tile image variables
are linked to specific color attachments using Location decoration. See Fragment Tile Image
Interface for more details.

Depth values are read with OpDepthAttachmentReadEXT.

Stencil values are read with OpStencilAttachmentReadEXT.

2746

The sample to read is specified by a sample index value specified as the Sample operand to
OpColorAttachmentReadEXT, OpDepthAttachmentReadEXT, or OpStencilAttachmentReadEXT.

If sample shading is disabled, a fragment invocation can read from all sample locations associated
with the fragment regardless of the fragment’s coverage. This functionality is supported for
VkPipelineMultisampleStateCreateInfo::rasterizationSamples > 1 when
VkPhysicalDeviceShaderTileImagePropertiesEXT::shaderTileImageReadSampleFromPixelRateInvocatio
n is VK_TRUE.

If sample shading is enabled, and minSampleShading is 1.0, a fragment invocation must only read
from the coverage index sample. Tile image access must not be used if the value of
minSampleShading is not 1.0.

If the fragment shader declares the EarlyFragmentTests execution mode, depth reads are allowed
only if depth writes are disabled and stencil reads are allowed only if stencil writes are disabled.

If VkPhysicalDeviceShaderTileImagePropertiesEXT::shaderTileImageReadFromHelperInvocation is
VK_FALSE, values read from helper invocations are undefined otherwise the values read are subject
to the coherency guarantees described below.

OpDepthAttachmentReadEXT returns an undefined value if no depth attachment is present.
OpStencilAttachmentReadEXT returns an undefined value if no stencil attachment is present.

Tile image reads from color, depth and stencil attachments are said to be coherent when the
accesses happen in raster order and without data race with respect to accesses to the attachments
from framebuffer-space pipeline stages. The samples which qualify for coherent access and the
enabling conditions are described below.

• Let Rc be the set of components being read from an attachment A in a draw call

• Let Wc be the set of components being written to A by the draw call

The samples which qualify for coherent tile image reads from an attachment A are:

• All samples in a pixel when Rc is disjoint with Wc.

• The samples with coverage in a fragment when Rc is not disjoint with Wc. The samples with
coverage are determined by the coverage mask for the fragment as calculated by fragment
operations that executed prior to fragment shading, including early fragment tests if enabled
for the draw call.

A fragment shader can declare NonCoherentColorAttachmentReadEXT,
NonCoherentDepthAttachmentReadEXT, or NonCoherentStencilAttachmentReadEXT execution modes to
enable non-coherent tile image reads which require an explicit vkCmdPipelineBarrier2 call for the
writes to an attachment to be made visible via tile image reads.

When VkPhysicalDeviceShaderTileImagePropertiesEXT::shaderTileImageCoherentReadAccelerated is
VK_TRUE, the implementation prefers that coherent tile image reads are used, otherwise the
implementation prefers that non-coherent tile image reads are used.

Note

2747

In practice, the most common tile image reads usage patterns fall under one of the
following:

• Programmable blending - each fragment reads from a single sample
(SampleID) at its location. Per-sample shading is typically enabled when
multisampled rendertargets are used.

• G-buffer generation and shading in one render pass - in the shading phase a
fragment reads from a single sample at its location.

• Programmable resolve - a fragment reads from all samples at its location (per-
sample shading is disabled). This requires the use of a "full-screen triangle"
instead of a rectangle composed of two triangles in order to avoid data races
along the shared edge of the triangles.

• 1:1 texturing with LOD - in use cases such a deferred screen space decals a
fragment reads a single sample (SampleID) from depth buffer, but requires
being able to read from helper threads to derive the texture LOD. This use case
is supported as long as the attachment components being read are not
overwritten by color, depth, or stencil attachment writes.

All of the above use cases are supported by coherent tile image reads, but only the
latter three are supported when non-coherent reads are used as there is no
mechanism to synchronize non-coherent reads with writes within a draw call.

29.5.3. Depth Replacement

Writing to the FragDepth built-in will replace the fragment’s calculated depth values for each sample
in the input SampleMask. Depth testing performed after the fragment shader for this fragment will
use this new value as zf.

29.5.4. Stencil Reference Replacement

Writing to the FragStencilRefEXT built-in will replace the fragment’s stencil reference value for each
sample in the input SampleMask. Stencil testing performed after the fragment shader for this
fragment will use this new value as sr.

29.5.5. Interlocked Operations

OpBeginInvocationInterlockEXT and OpEndInvocationInterlockEXT define a section of a fragment
shader which imposes additional ordering constraints on operations performed within them. These
operations are defined as interlocked operations. How interlocked operations are ordered against
other fragment shader invocations depends on the specified execution modes.

If the ShadingRateInterlockOrderedEXT execution mode is specified, any interlocked operations in a
fragment shader must happen before interlocked operations in fragment shader invocations that
execute later in rasterization order and cover at least one sample in the same fragment area, and
must happen after interlocked operations in a fragment shader that executes earlier in
rasterization order and cover at least one sample in the same fragment area.

If the ShadingRateInterlockUnorderedEXT execution mode is specified, any interlocked operations in a

2748

fragment shader must happen before or after interlocked operations in fragment shader
invocations that execute earlier or later in rasterization order and cover at least one sample in the
same fragment area.

If the PixelInterlockOrderedEXT execution mode is specified, any interlocked operations in a
fragment shader must happen before interlocked operations in fragment shader invocations that
execute later in rasterization order and cover at least one sample in the same pixel, and must
happen after interlocked operations in a fragment shader that executes earlier in rasterization
order and cover at least one sample in the same pixel.

If the PixelInterlockUnorderedEXT execution mode is specified, any interlocked operations in a
fragment shader must happen before or after interlocked operations in fragment shader
invocations that execute earlier or later in rasterization order and cover at least one sample in the
same pixel.

If the SampleInterlockOrderedEXT execution mode is specified, any interlocked operations in a
fragment shader must happen before interlocked operations in fragment shader invocations that
execute later in rasterization order and cover at least one of the same samples, and must happen
after interlocked operations in a fragment shader that executes earlier in rasterization order and
cover at least one of the same samples.

If the SampleInterlockUnorderedEXT execution mode is specified, any interlocked operations in a
fragment shader must happen before or after interlocked operations in fragment shader
invocations that execute earlier or later in rasterization order and cover at least one of the same
samples.

29.6. Multisample Coverage
If a fragment shader is active and its entry point’s interface includes a built-in output variable
decorated with SampleMask, but not OverrideCoverageNV, the coverage mask is ANDed with the bits of
the SampleMask built-in to generate a new coverage mask. If the SampleMask built-in is also decorated
with OverrideCoverageNV, the coverage mask is replaced with the mask bits set in the shader. If
sample shading is enabled, bits written to SampleMask corresponding to samples that are not being
shaded by the fragment shader invocation are ignored. If no fragment shader is active, or if the
active fragment shader does not include SampleMask in its interface, the coverage mask is not
modified.

Next, the fragment alpha value and coverage mask are modified based on the line coverage factor if
the lineRasterizationMode member of the VkPipelineRasterizationStateCreateInfo structure is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, and the alphaToCoverageEnable and
alphaToOneEnable members of the VkPipelineMultisampleStateCreateInfo structure.

To dynamically set the alphaToCoverageEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetAlphaToCoverageEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 alphaToCoverageEnable);

2749

• commandBuffer is the command buffer into which the command will be recorded.

• alphaToCoverageEnable specifies the alphaToCoverageEnable state.

This command sets the alphaToCoverageEnable state for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineMultisampleStateCreateInfo
::alphaToCoverageEnable value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetAlphaToCoverageEnableEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3AlphaToCoverageEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetAlphaToCoverageEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetAlphaToCoverageEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetAlphaToCoverageEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetAlphaToCoverageEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2750

To dynamically set the alphaToOneEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetAlphaToOneEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 alphaToOneEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• alphaToOneEnable specifies the alphaToOneEnable state.

This command sets the alphaToOneEnable state for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo::
pDynamicStates. Otherwise, this state is specified by the VkPipelineMultisampleStateCreateInfo
::alphaToOneEnable value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetAlphaToOneEnableEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3AlphaToOneEnable feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetAlphaToOneEnableEXT-alphaToOne-07607
If the alphaToOne feature is not enabled, alphaToOneEnable must be VK_FALSE

Valid Usage (Implicit)

• VUID-vkCmdSetAlphaToOneEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetAlphaToOneEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetAlphaToOneEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetAlphaToOneEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2751

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

All alpha values in this section refer only to the alpha component of the fragment shader output
that has a Location and Index decoration of zero (see the Fragment Output Interface section). If that
shader output has an integer or unsigned integer type, then these operations are skipped.

If the lineRasterizationMode member of the VkPipelineRasterizationStateCreateInfo structure is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR and the fragment came from a line segment,
then the alpha value is replaced by multiplying it by the coverage factor for the fragment computed
during smooth line rasterization.

If alphaToCoverageEnable is enabled, a temporary coverage mask is generated where each bit is
determined by the fragment’s alpha value, which is ANDed with the fragment coverage mask.

No specific algorithm is specified for converting the alpha value to a temporary coverage mask. It is
intended that the number of 1’s in this value be proportional to the alpha value (clamped to [0,1]),
with all 1’s corresponding to a value of 1.0 and all 0’s corresponding to 0.0. The algorithm may be
different at different framebuffer coordinates.

Note

Using different algorithms at different framebuffer coordinates may help to avoid
artifacts caused by regular coverage sample locations.

Finally, if alphaToOneEnable is enabled, each alpha value is replaced by the maximum representable
alpha value for fixed-point color attachments, or by 1.0 for floating-point attachments. Otherwise,
the alpha values are not changed.

29.7. Depth and Stencil Operations
Pipeline state controlling the depth bounds tests, stencil test, and depth test is specified through the
members of the VkPipelineDepthStencilStateCreateInfo structure.

The VkPipelineDepthStencilStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineDepthStencilStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineDepthStencilStateCreateFlags flags;
 VkBool32 depthTestEnable;
 VkBool32 depthWriteEnable;

2752

 VkCompareOp depthCompareOp;
 VkBool32 depthBoundsTestEnable;
 VkBool32 stencilTestEnable;
 VkStencilOpState front;
 VkStencilOpState back;
 float minDepthBounds;
 float maxDepthBounds;
} VkPipelineDepthStencilStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineDepthStencilStateCreateFlagBits specifying additional
depth/stencil state information.

• depthTestEnable controls whether depth testing is enabled.

• depthWriteEnable controls whether depth writes are enabled when depthTestEnable is VK_TRUE.
Depth writes are always disabled when depthTestEnable is VK_FALSE.

• depthCompareOp is a VkCompareOp value specifying the comparison operator to use in the Depth
Comparison step of the depth test.

• depthBoundsTestEnable controls whether depth bounds testing is enabled.

• stencilTestEnable controls whether stencil testing is enabled.

• front and back are VkStencilOpState values controlling the corresponding parameters of the
stencil test.

• minDepthBounds is the minimum depth bound used in the depth bounds test.

• maxDepthBounds is the maximum depth bound used in the depth bounds test.

Valid Usage

• VUID-VkPipelineDepthStencilStateCreateInfo-depthBoundsTestEnable-00598
If the depthBounds feature is not enabled, depthBoundsTestEnable must be VK_FALSE

• VUID-VkPipelineDepthStencilStateCreateInfo-separateStencilMaskRef-04453
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::separateStencilMaskRef is VK_FALSE, and
the value of VkPipelineDepthStencilStateCreateInfo::stencilTestEnable is VK_TRUE, and the
value of VkPipelineRasterizationStateCreateInfo::cullMode is VK_CULL_MODE_NONE, the value
of reference in each of the VkStencilOpState structs in front and back must be the same

• VUID-VkPipelineDepthStencilStateCreateInfo-rasterizationOrderDepthAttachmentAccess-
06463
If the rasterizationOrderDepthAttachmentAccess feature is not enabled, flags must not
include
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BI
T_EXT

• VUID-VkPipelineDepthStencilStateCreateInfo-rasterizationOrderStencilAttachmentAccess-

2753

06464
If the rasterizationOrderStencilAttachmentAccess feature is not enabled, flags must not
include
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_
BIT_EXT

Valid Usage (Implicit)

• VUID-VkPipelineDepthStencilStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO

• VUID-VkPipelineDepthStencilStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineDepthStencilStateCreateInfo-flags-parameter
flags must be a valid combination of VkPipelineDepthStencilStateCreateFlagBits values

• VUID-VkPipelineDepthStencilStateCreateInfo-depthCompareOp-parameter
depthCompareOp must be a valid VkCompareOp value

• VUID-VkPipelineDepthStencilStateCreateInfo-front-parameter
front must be a valid VkStencilOpState structure

• VUID-VkPipelineDepthStencilStateCreateInfo-back-parameter
back must be a valid VkStencilOpState structure

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineDepthStencilStateCreateFlags;

VkPipelineDepthStencilStateCreateFlags is a bitmask type for setting a mask of zero or more
VkPipelineDepthStencilStateCreateFlagBits.

Bits which can be set in the VkPipelineDepthStencilStateCreateInfo::flags parameter are:

// Provided by VK_EXT_rasterization_order_attachment_access
typedef enum VkPipelineDepthStencilStateCreateFlagBits {
 // Provided by VK_EXT_rasterization_order_attachment_access

VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT
_EXT = 0x00000001,
 // Provided by VK_EXT_rasterization_order_attachment_access

VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_B
IT_EXT = 0x00000002,
 // Provided by VK_ARM_rasterization_order_attachment_access

VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT
_ARM =
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT

2754

_EXT,
 // Provided by VK_ARM_rasterization_order_attachment_access

VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_B
IT_ARM =
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_B
IT_EXT,
} VkPipelineDepthStencilStateCreateFlagBits;

• VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT
indicates that access to the depth aspects of depth/stencil and input attachments will have
implicit framebuffer-local memory dependencies.

• VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EX
T indicates that access to the stencil aspects of depth/stencil and input attachments will have
implicit framebuffer-local memory dependencies.

When
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT is
included in a pipeline, it forms a framebuffer-local memory dependency for each fragment
generated by draw commands for that pipeline with the following scopes:

• The first synchronization scope includes VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT and
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stages executed by all previous fragments
(as defined by primitive order) in the corresponding framebuffer regions including those
generated by the same draw command.

• The second synchronization scope includes VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT stage
executed by the generated fragment.

• The first access scope includes all writes to the depth aspect of depth/stencil attachments.

• The second access scope includes all reads from the depth aspect of input attachments.

When
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EXT is
included in a pipeline, it forms a framebuffer-local memory dependency for each fragment
generated by draw commands for that pipeline with the following scopes:

• The first synchronization scope includes VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stages executed by all previous fragments
(as defined by primitive order) in the corresponding framebuffer regions including those
generated by the same draw command.

• The second synchronization scope includes VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT and
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stages executed by the generated fragment.

• The first access scope includes all writes to the stencil aspect of depth/stencil attachments.

• The second access scope includes all reads from the stencil aspect of input attachments.

2755

29.8. Depth Bounds Test
The depth bounds test compares the depth value za in the depth/stencil attachment at each sample’s
framebuffer coordinates (xf,yf) and sample index i against a set of depth bounds.

The depth bounds are determined by two floating point values defining a minimum (
minDepthBounds) and maximum (maxDepthBounds) depth value. These values are either set by the
VkPipelineDepthStencilStateCreateInfo structure during pipeline creation, or dynamically by
vkCmdSetDepthBoundsTestEnable and vkCmdSetDepthBounds.

A given sample is considered within the depth bounds if za is in the range [minDepthBounds
,maxDepthBounds]. Samples with depth attachment values outside of the depth bounds will have their
coverage set to 0.

If the depth bounds test is disabled, or if there is no depth attachment, the coverage mask is
unmodified by this operation.

To dynamically enable or disable the depth bounds test, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthBoundsTestEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 depthBoundsTestEnable);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetDepthBoundsTestEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 depthBoundsTestEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthBoundsTestEnable specifies if the depth bounds test is enabled.

This command sets the depth bounds enable for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineDepthStencilStateCreateInfo
::depthBoundsTestEnable value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetDepthBoundsTestEnable-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

2756

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBoundsTestEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBoundsTestEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBoundsTestEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthBoundsTestEnable-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the depth bounds range, call:

// Provided by VK_VERSION_1_0
void vkCmdSetDepthBounds(
 VkCommandBuffer commandBuffer,
 float minDepthBounds,
 float maxDepthBounds);

• commandBuffer is the command buffer into which the command will be recorded.

• minDepthBounds is the minimum depth bound.

• maxDepthBounds is the maximum depth bound.

2757

This command sets the depth bounds range for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_DEPTH_BOUNDS
set in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::minDepthBounds and
VkPipelineDepthStencilStateCreateInfo::maxDepthBounds values used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetDepthBounds-minDepthBounds-00600
If the VK_EXT_depth_range_unrestricted extension is not enabled minDepthBounds must be
between 0.0 and 1.0, inclusive

• VUID-vkCmdSetDepthBounds-maxDepthBounds-00601
If the VK_EXT_depth_range_unrestricted extension is not enabled maxDepthBounds must be
between 0.0 and 1.0, inclusive

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBounds-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBounds-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBounds-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthBounds-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2758

29.9. Stencil Test
The stencil test compares the stencil attachment value sa in the depth/stencil attachment at each
sample’s framebuffer coordinates (xf,yf) and sample index i against a stencil reference value.

If the render pass has a fragment density map attachment and the fragment covers multiple pixels,
there is an implementation-dependent association of coverage samples to stencil attachment
samples within the fragment. However, if all samples in the fragment are covered, and the stencil
attachment value is updated as a result of this test, all stencil attachment samples will be updated.

If the stencil test is not enabled, as specified by vkCmdSetStencilTestEnable or
VkPipelineDepthStencilStateCreateInfo::stencilTestEnable, or if there is no stencil attachment, the
coverage mask is unmodified by this operation.

The stencil test is controlled by one of two sets of stencil-related state, the front stencil state and the
back stencil state. Stencil tests and writes use the back stencil state when processing fragments
generated by back-facing polygons, and the front stencil state when processing fragments
generated by front-facing polygons or any other primitives.

The comparison operation performed is determined by the VkCompareOp value set by
vkCmdSetStencilOp::compareOp, or by VkStencilOpState::compareOp during pipeline creation.

The compare mask sc and stencil reference value sr of the front or the back stencil state set
determine arguments of the comparison operation. sc is set by the
VkPipelineDepthStencilStateCreateInfo structure during pipeline creation, or by the
vkCmdSetStencilCompareMask command. sr is set by VkPipelineDepthStencilStateCreateInfo or by
vkCmdSetStencilReference.

sr and sa are each independently combined with sc using a bitwise AND operation to create masked
reference and attachment values s'r and s'a. s'r and s'a are used as the reference and test values,
respectively, in the operation specified by the VkCompareOp.

If the comparison evaluates to false, the coverage for the sample is set to 0.

A new stencil value sg is generated according to a stencil operation defined by VkStencilOp
parameters set by vkCmdSetStencilOp or VkPipelineDepthStencilStateCreateInfo. If the stencil test
fails, failOp defines the stencil operation used. If the stencil test passes however, the stencil op used
is based on the depth test - if it passes, VkPipelineDepthStencilStateCreateInfo::passOp is used,
otherwise VkPipelineDepthStencilStateCreateInfo::depthFailOp is used.

The stencil attachment value sa is then updated with the generated stencil value sg according to the
write mask sw defined by writeMask in VkPipelineDepthStencilStateCreateInfo::front and
VkPipelineDepthStencilStateCreateInfo::back as:

sa = (sa & ¬sw) | (sg & sw)

To dynamically enable or disable the stencil test, call:

2759

// Provided by VK_VERSION_1_3
void vkCmdSetStencilTestEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 stencilTestEnable);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetStencilTestEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 stencilTestEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• stencilTestEnable specifies if the stencil test is enabled.

This command sets the stencil test enable for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE
set in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::stencilTestEnable value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetStencilTestEnable-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetStencilTestEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilTestEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilTestEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetStencilTestEnable-videocoding
This command must only be called outside of a video coding scope

2760

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the stencil operation, call:

// Provided by VK_VERSION_1_3
void vkCmdSetStencilOp(
 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 VkStencilOp failOp,
 VkStencilOp passOp,
 VkStencilOp depthFailOp,
 VkCompareOp compareOp);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetStencilOpEXT(
 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 VkStencilOp failOp,
 VkStencilOp passOp,
 VkStencilOp depthFailOp,
 VkCompareOp compareOp);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to
update the stencil operation.

• failOp is a VkStencilOp value specifying the action performed on samples that fail the stencil
test.

• passOp is a VkStencilOp value specifying the action performed on samples that pass both the
depth and stencil tests.

2761

• depthFailOp is a VkStencilOp value specifying the action performed on samples that pass the
stencil test and fail the depth test.

• compareOp is a VkCompareOp value specifying the comparison operator used in the stencil test.

This command sets the stencil operation for subsequent drawing commands when when drawing
using shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_STENCIL_OP set
in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
corresponding VkPipelineDepthStencilStateCreateInfo::failOp, passOp, depthFailOp, and compareOp
values used to create the currently active pipeline, for both front and back faces.

Valid Usage

• VUID-vkCmdSetStencilOp-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetStencilOp-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilOp-faceMask-parameter
faceMask must be a valid combination of VkStencilFaceFlagBits values

• VUID-vkCmdSetStencilOp-faceMask-requiredbitmask
faceMask must not be 0

• VUID-vkCmdSetStencilOp-failOp-parameter
failOp must be a valid VkStencilOp value

• VUID-vkCmdSetStencilOp-passOp-parameter
passOp must be a valid VkStencilOp value

• VUID-vkCmdSetStencilOp-depthFailOp-parameter
depthFailOp must be a valid VkStencilOp value

• VUID-vkCmdSetStencilOp-compareOp-parameter
compareOp must be a valid VkCompareOp value

• VUID-vkCmdSetStencilOp-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilOp-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetStencilOp-videocoding

2762

This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

The VkStencilOpState structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkStencilOpState {
 VkStencilOp failOp;
 VkStencilOp passOp;
 VkStencilOp depthFailOp;
 VkCompareOp compareOp;
 uint32_t compareMask;
 uint32_t writeMask;
 uint32_t reference;
} VkStencilOpState;

• failOp is a VkStencilOp value specifying the action performed on samples that fail the stencil
test.

• passOp is a VkStencilOp value specifying the action performed on samples that pass both the
depth and stencil tests.

• depthFailOp is a VkStencilOp value specifying the action performed on samples that pass the
stencil test and fail the depth test.

• compareOp is a VkCompareOp value specifying the comparison operator used in the stencil test.

• compareMask selects the bits of the unsigned integer stencil values participating in the stencil test.

• writeMask selects the bits of the unsigned integer stencil values updated by the stencil test in the
stencil framebuffer attachment.

• reference is an integer stencil reference value that is used in the unsigned stencil comparison.

2763

Valid Usage (Implicit)

• VUID-VkStencilOpState-failOp-parameter
failOp must be a valid VkStencilOp value

• VUID-VkStencilOpState-passOp-parameter
passOp must be a valid VkStencilOp value

• VUID-VkStencilOpState-depthFailOp-parameter
depthFailOp must be a valid VkStencilOp value

• VUID-VkStencilOpState-compareOp-parameter
compareOp must be a valid VkCompareOp value

To dynamically set the stencil compare mask, call:

// Provided by VK_VERSION_1_0
void vkCmdSetStencilCompareMask(
 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 uint32_t compareMask);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to
update the compare mask.

• compareMask is the new value to use as the stencil compare mask.

This command sets the stencil compare mask for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkStencilOpState::compareMask value used to create the
currently active pipeline, for both front and back faces.

Valid Usage (Implicit)

• VUID-vkCmdSetStencilCompareMask-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilCompareMask-faceMask-parameter
faceMask must be a valid combination of VkStencilFaceFlagBits values

• VUID-vkCmdSetStencilCompareMask-faceMask-requiredbitmask
faceMask must not be 0

• VUID-vkCmdSetStencilCompareMask-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilCompareMask-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics

2764

operations

• VUID-vkCmdSetStencilCompareMask-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

VkStencilFaceFlagBits values are:

// Provided by VK_VERSION_1_0
typedef enum VkStencilFaceFlagBits {
 VK_STENCIL_FACE_FRONT_BIT = 0x00000001,
 VK_STENCIL_FACE_BACK_BIT = 0x00000002,
 VK_STENCIL_FACE_FRONT_AND_BACK = 0x00000003,
 VK_STENCIL_FRONT_AND_BACK = VK_STENCIL_FACE_FRONT_AND_BACK,
} VkStencilFaceFlagBits;

• VK_STENCIL_FACE_FRONT_BIT specifies that only the front set of stencil state is updated.

• VK_STENCIL_FACE_BACK_BIT specifies that only the back set of stencil state is updated.

• VK_STENCIL_FACE_FRONT_AND_BACK is the combination of VK_STENCIL_FACE_FRONT_BIT and
VK_STENCIL_FACE_BACK_BIT, and specifies that both sets of stencil state are updated.

// Provided by VK_VERSION_1_0
typedef VkFlags VkStencilFaceFlags;

VkStencilFaceFlags is a bitmask type for setting a mask of zero or more VkStencilFaceFlagBits.

To dynamically set the stencil write mask, call:

// Provided by VK_VERSION_1_0
void vkCmdSetStencilWriteMask(

2765

 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 uint32_t writeMask);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to
update the write mask, as described above for vkCmdSetStencilCompareMask.

• writeMask is the new value to use as the stencil write mask.

This command sets the stencil write mask for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_STENCIL_WRITE_MASK
set in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
writeMask value used to create the currently active pipeline, for both
VkPipelineDepthStencilStateCreateInfo::front and VkPipelineDepthStencilStateCreateInfo::back
faces.

Valid Usage (Implicit)

• VUID-vkCmdSetStencilWriteMask-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilWriteMask-faceMask-parameter
faceMask must be a valid combination of VkStencilFaceFlagBits values

• VUID-vkCmdSetStencilWriteMask-faceMask-requiredbitmask
faceMask must not be 0

• VUID-vkCmdSetStencilWriteMask-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilWriteMask-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetStencilWriteMask-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2766

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the stencil reference value, call:

// Provided by VK_VERSION_1_0
void vkCmdSetStencilReference(
 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 uint32_t reference);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to
update the reference value, as described above for vkCmdSetStencilCompareMask.

• reference is the new value to use as the stencil reference value.

This command sets the stencil reference value for subsequent drawing commands when drawing
using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_STENCIL_REFERENCE set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineDepthStencilStateCreateInfo::reference value
used to create the currently active pipeline, for both front and back faces.

Valid Usage (Implicit)

• VUID-vkCmdSetStencilReference-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilReference-faceMask-parameter
faceMask must be a valid combination of VkStencilFaceFlagBits values

• VUID-vkCmdSetStencilReference-faceMask-requiredbitmask
faceMask must not be 0

• VUID-vkCmdSetStencilReference-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilReference-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetStencilReference-videocoding
This command must only be called outside of a video coding scope

2767

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

Possible values of the failOp, passOp, and depthFailOp members of VkStencilOpState, specifying what
happens to the stored stencil value if this or certain subsequent tests fail or pass, are:

// Provided by VK_VERSION_1_0
typedef enum VkStencilOp {
 VK_STENCIL_OP_KEEP = 0,
 VK_STENCIL_OP_ZERO = 1,
 VK_STENCIL_OP_REPLACE = 2,
 VK_STENCIL_OP_INCREMENT_AND_CLAMP = 3,
 VK_STENCIL_OP_DECREMENT_AND_CLAMP = 4,
 VK_STENCIL_OP_INVERT = 5,
 VK_STENCIL_OP_INCREMENT_AND_WRAP = 6,
 VK_STENCIL_OP_DECREMENT_AND_WRAP = 7,
} VkStencilOp;

• VK_STENCIL_OP_KEEP keeps the current value.

• VK_STENCIL_OP_ZERO sets the value to 0.

• VK_STENCIL_OP_REPLACE sets the value to reference.

• VK_STENCIL_OP_INCREMENT_AND_CLAMP increments the current value and clamps to the maximum
representable unsigned value.

• VK_STENCIL_OP_DECREMENT_AND_CLAMP decrements the current value and clamps to 0.

• VK_STENCIL_OP_INVERT bitwise-inverts the current value.

• VK_STENCIL_OP_INCREMENT_AND_WRAP increments the current value and wraps to 0 when the
maximum value would have been exceeded.

• VK_STENCIL_OP_DECREMENT_AND_WRAP decrements the current value and wraps to the maximum
possible value when the value would go below 0.

For purposes of increment and decrement, the stencil bits are considered as an unsigned integer.

2768

29.10. Depth Test
The depth test compares the depth value za in the depth/stencil attachment at each sample’s
framebuffer coordinates (xf,yf) and sample index i against the sample’s depth value zf. If there is no
depth attachment then the depth test is skipped.

If the render pass has a fragment density map attachment and the fragment covers multiple pixels,
there is an implementation-dependent association of rasterization samples to depth attachment
samples within the fragment. However, if all samples in the fragment are covered, and the depth
attachment value is updated as a result of this test, all depth attachment samples will be updated.

The depth test occurs in three stages, as detailed in the following sections.

29.10.1. Depth Clamping and Range Adjustment

If VkPipelineRasterizationStateCreateInfo::depthClampEnable is enabled, zf is clamped to [zmin, zmax],
where zmin = min(n,f), zmax = max(n,f)], and n and f are the minDepth and maxDepth depth range values
of the viewport used by this fragment, respectively.

If VkPhysicalDeviceDepthClampZeroOneFeaturesEXT::depthClampZeroOne is enabled:

• If the depth attachment has a floating-point format and VK_EXT_depth_range_unrestricted is
enabled then zf is unchanged.

• Otherwise, zf is clamped to the range [0, 1].

Otherwise:

• If zf is not in the range [zmin, zmax], then zf is undefined following this step.

• If the depth attachment has a fixed-point format and zf is not in the range [0, 1], then zf is
undefined following this step.

29.10.2. Depth Comparison

If the depth test is not enabled, as specified by vkCmdSetDepthTestEnable or
VkPipelineDepthStencilStateCreateInfo::depthTestEnable, then this step is skipped.

The comparison operation performed is determined by the VkCompareOp value set by
vkCmdSetDepthCompareOp, or by VkPipelineDepthStencilStateCreateInfo::depthCompareOp during
pipeline creation. zf and za are used as the reference and test values, respectively, in the operation
specified by the VkCompareOp.

If the comparison evaluates to false, the coverage for the sample is set to 0.

29.10.3. Depth Attachment Writes

If depth writes are enabled, as specified by vkCmdSetDepthWriteEnable or
VkPipelineDepthStencilStateCreateInfo::depthWriteEnable, and the comparison evaluated to true,
the depth attachment value za is set to the sample’s depth value zf. If there is no depth attachment,
no value is written.

2769

To dynamically enable or disable the depth test, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthTestEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 depthTestEnable);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetDepthTestEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 depthTestEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthTestEnable specifies if the depth test is enabled.

This command sets the depth test enable for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE
set in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::depthTestEnable value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetDepthTestEnable-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetDepthTestEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthTestEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthTestEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthTestEnable-videocoding

2770

This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the depth compare operator, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthCompareOp(
 VkCommandBuffer commandBuffer,
 VkCompareOp depthCompareOp);

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetDepthCompareOpEXT(
 VkCommandBuffer commandBuffer,
 VkCompareOp depthCompareOp);

• commandBuffer is the command buffer into which the command will be recorded.

• depthCompareOp is a VkCompareOp value specifying the comparison operator used for the Depth
Comparison step of the depth test.

This command sets the depth comparison operator for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineDepthStencilStateCreateInfo::depthCompareOp
value used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetDepthCompareOp-None-08971

2771

At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetDepthCompareOp-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthCompareOp-depthCompareOp-parameter
depthCompareOp must be a valid VkCompareOp value

• VUID-vkCmdSetDepthCompareOp-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthCompareOp-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthCompareOp-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the depth write enable, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthWriteEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 depthWriteEnable);

2772

or the equivalent command

// Provided by VK_EXT_extended_dynamic_state, VK_EXT_shader_object
void vkCmdSetDepthWriteEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 depthWriteEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthWriteEnable specifies if depth writes are enabled.

This command sets the depth write enable for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE
set in VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::depthWriteEnable value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetDepthWriteEnable-None-08971
At least one of the following must be true:

◦ the extendedDynamicState feature is enabled

◦ the shaderObject feature is enabled

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetDepthWriteEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthWriteEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthWriteEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetDepthWriteEnable-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2773

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

29.11. Representative Fragment Test
The representative fragment test allows implementations to reduce the amount of rasterization and
fragment processing work performed for each point, line, or triangle primitive. For any primitive
that produces one or more fragments that pass all prior early fragment tests, the implementation
may choose one or more “representative” fragments for processing and discard all other
fragments. For draw calls rendering multiple points, lines, or triangles arranged in lists, strips, or
fans, the representative fragment test is performed independently for each of those primitives. The
set of fragments discarded by the representative fragment test is implementation-dependent. In
some cases, the representative fragment test may not discard any fragments for a given primitive.

If the pNext chain of VkGraphicsPipelineCreateInfo includes a
VkPipelineRepresentativeFragmentTestStateCreateInfoNV structure, then that structure includes
parameters controlling the representative fragment test.

The VkPipelineRepresentativeFragmentTestStateCreateInfoNV structure is defined as:

// Provided by VK_NV_representative_fragment_test
typedef struct VkPipelineRepresentativeFragmentTestStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkBool32 representativeFragmentTestEnable;
} VkPipelineRepresentativeFragmentTestStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• representativeFragmentTestEnable controls whether the representative fragment test is enabled.

If this structure is not included in the pNext chain, representativeFragmentTestEnable is considered
to be VK_FALSE, and the representative fragment test is disabled.

If the active fragment shader does not specify the EarlyFragmentTests execution mode, the
representative fragment shader test has no effect, even if enabled.

Valid Usage (Implicit)

• VUID-VkPipelineRepresentativeFragmentTestStateCreateInfoNV-sType-sType
sType must be

2774

VK_STRUCTURE_TYPE_PIPELINE_REPRESENTATIVE_FRAGMENT_TEST_STATE_CREATE_INFO_NV

To dynamically set the representativeFragmentTestEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_representative_fragment_test,
VK_EXT_shader_object with VK_NV_representative_fragment_test
void vkCmdSetRepresentativeFragmentTestEnableNV(
 VkCommandBuffer commandBuffer,
 VkBool32 representativeFragmentTestEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• representativeFragmentTestEnable specifies the representativeFragmentTestEnable state.

This command sets the representativeFragmentTestEnable state for subsequent drawing commands
when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRepresentativeFragmentTestStateCreateInfoNV::representativeFragmentTestEnable value
used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetRepresentativeFragmentTestEnableNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3RepresentativeFragmentTestEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetRepresentativeFragmentTestEnableNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetRepresentativeFragmentTestEnableNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetRepresentativeFragmentTestEnableNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetRepresentativeFragmentTestEnableNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

2775

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

29.12. Sample Counting
Occlusion queries use query pool entries to track the number of samples that pass all the per-
fragment tests. The mechanism of collecting an occlusion query value is described in Occlusion
Queries.

The occlusion query sample counter increments by one for each sample with a coverage value of 1
in each fragment that survives all the per-fragment tests, including scissor, exclusive scissor,
sample mask, alpha to coverage, stencil, and depth tests.

29.13. Fragment Coverage to Color
The VkPipelineCoverageToColorStateCreateInfoNV structure is defined as:

// Provided by VK_NV_fragment_coverage_to_color
typedef struct VkPipelineCoverageToColorStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCoverageToColorStateCreateFlagsNV flags;
 VkBool32 coverageToColorEnable;
 uint32_t coverageToColorLocation;
} VkPipelineCoverageToColorStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• coverageToColorEnable controls whether the fragment coverage value replaces a fragment color
output.

• coverageToColorLocation controls which fragment shader color output value is replaced.

If the pNext chain of VkPipelineMultisampleStateCreateInfo includes a
VkPipelineCoverageToColorStateCreateInfoNV structure, then that structure controls whether the
fragment coverage is substituted for a fragment color output and, if so, which output is replaced.

2776

If coverageToColorEnable is VK_TRUE, the coverage mask replaces the first component of the color
value corresponding to the fragment shader output location with Location equal to
coverageToColorLocation and Index equal to zero. If the color attachment format has fewer bits than
the coverage mask, the low bits of the sample coverage mask are taken without any clamping. If the
color attachment format has more bits than the coverage mask, the high bits of the sample coverage
mask are filled with zeros.

If coverageToColorEnable is VK_FALSE, these operations are skipped. If this structure is not included in
the pNext chain, it is as if coverageToColorEnable is VK_FALSE.

Valid Usage

• VUID-VkPipelineCoverageToColorStateCreateInfoNV-coverageToColorEnable-01404
If coverageToColorEnable is VK_TRUE, then the render pass subpass indicated by
VkGraphicsPipelineCreateInfo::renderPass and VkGraphicsPipelineCreateInfo::subpass
must have a color attachment at the location selected by coverageToColorLocation, with a
VkFormat of VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT,
VK_FORMAT_R16_SINT, VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

Valid Usage (Implicit)

• VUID-VkPipelineCoverageToColorStateCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_TO_COLOR_STATE_CREATE_INFO_NV

• VUID-VkPipelineCoverageToColorStateCreateInfoNV-flags-zerobitmask
flags must be 0

// Provided by VK_NV_fragment_coverage_to_color
typedef VkFlags VkPipelineCoverageToColorStateCreateFlagsNV;

VkPipelineCoverageToColorStateCreateFlagsNV is a bitmask type for setting a mask, but is currently
reserved for future use.

To dynamically set the coverageToColorEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_fragment_coverage_to_color,
VK_EXT_shader_object with VK_NV_fragment_coverage_to_color
void vkCmdSetCoverageToColorEnableNV(
 VkCommandBuffer commandBuffer,
 VkBool32 coverageToColorEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• coverageToColorEnable specifies the coverageToColorEnable state.

This command sets the coverageToColorEnable state for subsequent drawing commands when

2777

drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineCoverageToColorStateCreateInfoNV::coverageToColorEnable value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetCoverageToColorEnableNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3CoverageToColorEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetCoverageToColorEnableNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCoverageToColorEnableNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCoverageToColorEnableNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetCoverageToColorEnableNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the coverageToColorLocation state, call:

2778

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_fragment_coverage_to_color,
VK_EXT_shader_object with VK_NV_fragment_coverage_to_color
void vkCmdSetCoverageToColorLocationNV(
 VkCommandBuffer commandBuffer,
 uint32_t coverageToColorLocation);

• commandBuffer is the command buffer into which the command will be recorded.

• coverageToColorLocation specifies the coverageToColorLocation state.

This command sets the coverageToColorLocation state for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineCoverageToColorStateCreateInfoNV::coverageToColorLocation value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetCoverageToColorLocationNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3CoverageToColorLocation feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetCoverageToColorLocationNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCoverageToColorLocationNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCoverageToColorLocationNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetCoverageToColorLocationNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2779

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

29.14. Coverage Reduction
Coverage reduction takes the coverage information for a fragment and converts that to a boolean
coverage value for each color sample in each pixel covered by the fragment.

29.14.1. Pixel Coverage

Coverage for each pixel is first extracted from the total fragment coverage mask. This consists of
rasterizationSamples unique coverage samples for each pixel in the fragment area, each with a
unique sample index. If the fragment only contains a single pixel, coverage for the pixel is
equivalent to the fragment coverage.

If the render pass has a fragment density map attachment and the fragment covers multiple pixels,
pixel coverage is generated in an implementation-dependent manner. If all samples in the fragment
are covered, all samples will be covered in each pixel coverage.

If a shading rate image is used, and the fragment covers multiple pixels, each pixel’s coverage
consists of the coverage samples corresponding to that pixel, and each sample retains its unique
sample index i.

If the fragment shading rate is set, and the fragment covers multiple pixels, each pixel’s coverage
consists of the coverage samples with a pixel index matching that pixel, and each sample retains its
unique sample index i.

29.14.2. Color Sample Coverage

Once pixel coverage is determined, coverage for each individual color sample corresponding to that
pixel is determined.

If the number of rasterizationSamples is identical to the number of samples in the color
attachments, a color sample is covered if the pixel coverage sample with the same sample index i is
covered.

Otherwise, the coverage for each color sample is computed from the pixel coverage as follows.

If the VK_AMD_mixed_attachment_samples extension is enabled, for color samples present in the color
attachments, a color sample is covered if the pixel coverage sample with the same sample index i is
covered; additional pixel coverage samples are discarded.

If the pNext chain of VkSubpassDescription2 or VkRenderingInfo includes a

2780

VkMultisampledRenderToSingleSampledInfoEXT structure with the
multisampledRenderToSingleSampledEnable field equal to VK_TRUE, sample coverage is calculated as if
the attachment has VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples
samples.

When the VK_NV_coverage_reduction_mode extension is enabled, the pipeline state controlling
coverage reduction is specified through the members of the
VkPipelineCoverageReductionStateCreateInfoNV structure.

The VkPipelineCoverageReductionStateCreateInfoNV structure is defined as:

// Provided by VK_NV_coverage_reduction_mode
typedef struct VkPipelineCoverageReductionStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCoverageReductionStateCreateFlagsNV flags;
 VkCoverageReductionModeNV coverageReductionMode;
} VkPipelineCoverageReductionStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• coverageReductionMode is a VkCoverageReductionModeNV value controlling how color sample
coverage is generated from pixel coverage.

If this structure is not included in the pNext chain, or if the extension is not enabled, the default
coverage reduction mode is inferred as follows:

• If the VK_NV_framebuffer_mixed_samples extension is enabled, then it is as if the
coverageReductionMode is VK_COVERAGE_REDUCTION_MODE_MERGE_NV.

• If the VK_AMD_mixed_attachment_samples extension is enabled, then it is as if the
coverageReductionMode is VK_COVERAGE_REDUCTION_MODE_TRUNCATE_NV.

• If both VK_NV_framebuffer_mixed_samples and VK_AMD_mixed_attachment_samples are enabled, then
the default coverage reduction mode is implementation-dependent.

Valid Usage (Implicit)

• VUID-VkPipelineCoverageReductionStateCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_REDUCTION_STATE_CREATE_INFO_NV

• VUID-VkPipelineCoverageReductionStateCreateInfoNV-flags-zerobitmask
flags must be 0

• VUID-VkPipelineCoverageReductionStateCreateInfoNV-coverageReductionMode-
parameter
coverageReductionMode must be a valid VkCoverageReductionModeNV value

2781

// Provided by VK_NV_coverage_reduction_mode
typedef VkFlags VkPipelineCoverageReductionStateCreateFlagsNV;

VkPipelineCoverageReductionStateCreateFlagsNV is a bitmask type for setting a mask, but is currently
reserved for future use.

Possible values of VkPipelineCoverageReductionStateCreateInfoNV::coverageReductionMode,
specifying how color sample coverage is generated from pixel coverage, are:

// Provided by VK_NV_coverage_reduction_mode
typedef enum VkCoverageReductionModeNV {
 VK_COVERAGE_REDUCTION_MODE_MERGE_NV = 0,
 VK_COVERAGE_REDUCTION_MODE_TRUNCATE_NV = 1,
} VkCoverageReductionModeNV;

• VK_COVERAGE_REDUCTION_MODE_MERGE_NV specifies that each color sample will be associated with an
implementation-dependent subset of samples in the pixel coverage. If any of those associated
samples are covered, the color sample is covered.

• VK_COVERAGE_REDUCTION_MODE_TRUNCATE_NV specifies that for color samples present in the color
attachments, a color sample is covered if the pixel coverage sample with the same sample index
i is covered; other pixel coverage samples are discarded.

To dynamically set the coverageReductionMode state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_coverage_reduction_mode,
VK_EXT_shader_object with VK_NV_coverage_reduction_mode
void vkCmdSetCoverageReductionModeNV(
 VkCommandBuffer commandBuffer,
 VkCoverageReductionModeNV coverageReductionMode);

• commandBuffer is the command buffer into which the command will be recorded.

• coverageReductionMode specifies the coverageReductionMode state.

This command sets the coverageReductionMode state for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineCoverageReductionStateCreateInfoNV::coverageReductionMode value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetCoverageReductionModeNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3CoverageReductionMode feature is enabled

2782

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetCoverageReductionModeNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCoverageReductionModeNV-coverageReductionMode-parameter
coverageReductionMode must be a valid VkCoverageReductionModeNV value

• VUID-vkCmdSetCoverageReductionModeNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCoverageReductionModeNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetCoverageReductionModeNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To query the set of mixed sample combinations of coverage reduction mode, rasterization samples
and color, depth, stencil attachment sample counts that are supported by a physical device, call:

// Provided by VK_NV_coverage_reduction_mode
VkResult vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV(
 VkPhysicalDevice physicalDevice,
 uint32_t* pCombinationCount,
 VkFramebufferMixedSamplesCombinationNV* pCombinations);

• physicalDevice is the physical device from which to query the set of combinations.

• pCombinationCount is a pointer to an integer related to the number of combinations available or

2783

queried, as described below.

• pCombinations is either NULL or a pointer to an array of
VkFramebufferMixedSamplesCombinationNV values, indicating the supported combinations of
coverage reduction mode, rasterization samples, and color, depth, stencil attachment sample
counts.

If pCombinations is NULL, then the number of supported combinations for the given physicalDevice is
returned in pCombinationCount. Otherwise, pCombinationCount must point to a variable set by the
user to the number of elements in the pCombinations array, and on return the variable is
overwritten with the number of values actually written to pCombinations. If the value of
pCombinationCount is less than the number of combinations supported for the given physicalDevice,
at most pCombinationCount values will be written to pCombinations, and VK_INCOMPLETE will be
returned instead of VK_SUCCESS, to indicate that not all the supported values were returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV-
physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV-
pCombinationCount-parameter
pCombinationCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV-
pCombinations-parameter
If the value referenced by pCombinationCount is not 0, and pCombinations is not NULL,
pCombinations must be a valid pointer to an array of pCombinationCount
VkFramebufferMixedSamplesCombinationNV structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFramebufferMixedSamplesCombinationNV structure is defined as:

// Provided by VK_NV_coverage_reduction_mode
typedef struct VkFramebufferMixedSamplesCombinationNV {
 VkStructureType sType;
 void* pNext;

2784

 VkCoverageReductionModeNV coverageReductionMode;
 VkSampleCountFlagBits rasterizationSamples;
 VkSampleCountFlags depthStencilSamples;
 VkSampleCountFlags colorSamples;
} VkFramebufferMixedSamplesCombinationNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• coverageReductionMode is a VkCoverageReductionModeNV value specifying the coverage
reduction mode.

• rasterizationSamples is a VkSampleCountFlagBits specifying the number of rasterization
samples in the supported combination.

• depthStencilSamples specifies the number of samples in the depth stencil attachment in the
supported combination. A value of 0 indicates the combination does not have a depth stencil
attachment.

• colorSamples specifies the number of color samples in a color attachment in the supported
combination. A value of 0 indicates the combination does not have a color attachment.

Valid Usage (Implicit)

• VUID-VkFramebufferMixedSamplesCombinationNV-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_MIXED_SAMPLES_COMBINATION_NV

• VUID-VkFramebufferMixedSamplesCombinationNV-pNext-pNext
pNext must be NULL

29.14.3. Coverage Modulation

As part of coverage reduction, fragment color values can also be modulated (multiplied) by a value
that is a function of fraction of covered rasterization samples associated with that color sample.

Pipeline state controlling coverage modulation is specified through the members of the
VkPipelineCoverageModulationStateCreateInfoNV structure.

The VkPipelineCoverageModulationStateCreateInfoNV structure is defined as:

// Provided by VK_NV_framebuffer_mixed_samples
typedef struct VkPipelineCoverageModulationStateCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCoverageModulationStateCreateFlagsNV flags;
 VkCoverageModulationModeNV coverageModulationMode;
 VkBool32 coverageModulationTableEnable;
 uint32_t coverageModulationTableCount;
 const float* pCoverageModulationTable;

2785

} VkPipelineCoverageModulationStateCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• coverageModulationMode is a VkCoverageModulationModeNV value controlling which color
components are modulated.

• coverageModulationTableEnable controls whether the modulation factor is looked up from a table
in pCoverageModulationTable.

• coverageModulationTableCount is the number of elements in pCoverageModulationTable.

• pCoverageModulationTable is a table of modulation factors containing a value for each number of
covered samples.

If coverageModulationTableEnable is VK_FALSE, then for each color sample the associated bits of the
pixel coverage are counted and divided by the number of associated bits to produce a modulation
factor R in the range (0,1] (a value of zero would have been killed due to a color coverage of 0).
Specifically:

• N = value of rasterizationSamples

• M = value of VkAttachmentDescription::samples for any color attachments

• R = popcount(associated coverage bits) / (N / M)

If coverageModulationTableEnable is VK_TRUE, the value R is computed using a programmable lookup
table. The lookup table has N / M elements, and the element of the table is selected by:

• R = pCoverageModulationTable[popcount(associated coverage bits)-1]

Note that the table does not have an entry for popcount(associated coverage bits) = 0, because such
samples would have been killed.

The values of pCoverageModulationTable may be rounded to an implementation-dependent
precision, which is at least as fine as 1 / N, and clamped to [0,1].

For each color attachment with a floating point or normalized color format, each fragment output
color value is replicated to M values which can each be modulated (multiplied) by that color
sample’s associated value of R. Which components are modulated is controlled by
coverageModulationMode.

If this structure is not included in the pNext chain, it is as if coverageModulationMode is
VK_COVERAGE_MODULATION_MODE_NONE_NV.

If the coverage reduction mode is VK_COVERAGE_REDUCTION_MODE_TRUNCATE_NV, each color sample is
associated with only a single coverage sample. In this case, it is as if coverageModulationMode is
VK_COVERAGE_MODULATION_MODE_NONE_NV.

2786

Valid Usage

• VUID-VkPipelineCoverageModulationStateCreateInfoNV-
coverageModulationTableEnable-01405
If coverageModulationTableEnable is VK_TRUE, coverageModulationTableCount must be equal
to the number of rasterization samples divided by the number of color samples in the
subpass

Valid Usage (Implicit)

• VUID-VkPipelineCoverageModulationStateCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV

• VUID-VkPipelineCoverageModulationStateCreateInfoNV-flags-zerobitmask
flags must be 0

• VUID-VkPipelineCoverageModulationStateCreateInfoNV-coverageModulationMode-
parameter
coverageModulationMode must be a valid VkCoverageModulationModeNV value

// Provided by VK_NV_framebuffer_mixed_samples
typedef VkFlags VkPipelineCoverageModulationStateCreateFlagsNV;

VkPipelineCoverageModulationStateCreateFlagsNV is a bitmask type for setting a mask, but is
currently reserved for future use.

Possible values of VkPipelineCoverageModulationStateCreateInfoNV::coverageModulationMode,
specifying which color components are modulated, are:

// Provided by VK_NV_framebuffer_mixed_samples
typedef enum VkCoverageModulationModeNV {
 VK_COVERAGE_MODULATION_MODE_NONE_NV = 0,
 VK_COVERAGE_MODULATION_MODE_RGB_NV = 1,
 VK_COVERAGE_MODULATION_MODE_ALPHA_NV = 2,
 VK_COVERAGE_MODULATION_MODE_RGBA_NV = 3,
} VkCoverageModulationModeNV;

• VK_COVERAGE_MODULATION_MODE_NONE_NV specifies that no components are multiplied by the
modulation factor.

• VK_COVERAGE_MODULATION_MODE_RGB_NV specifies that the red, green, and blue components are
multiplied by the modulation factor.

• VK_COVERAGE_MODULATION_MODE_ALPHA_NV specifies that the alpha component is multiplied by the
modulation factor.

• VK_COVERAGE_MODULATION_MODE_RGBA_NV specifies that all components are multiplied by the

2787

modulation factor.

To dynamically set the coverageModulationMode state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_framebuffer_mixed_samples,
VK_EXT_shader_object with VK_NV_framebuffer_mixed_samples
void vkCmdSetCoverageModulationModeNV(
 VkCommandBuffer commandBuffer,
 VkCoverageModulationModeNV coverageModulationMode);

• commandBuffer is the command buffer into which the command will be recorded.

• coverageModulationMode specifies the coverageModulationMode state.

This command sets the coverageModulationMode state for subsequent drawing commands when
drawing using shader objects, or the graphics pipeline is created with
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineCoverageModulationStateCreateInfoNV::coverageModulationMode value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetCoverageModulationModeNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3CoverageModulationMode feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetCoverageModulationModeNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCoverageModulationModeNV-coverageModulationMode-parameter
coverageModulationMode must be a valid VkCoverageModulationModeNV value

• VUID-vkCmdSetCoverageModulationModeNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCoverageModulationModeNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetCoverageModulationModeNV-videocoding
This command must only be called outside of a video coding scope

2788

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the coverageModulationTableEnable state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_framebuffer_mixed_samples,
VK_EXT_shader_object with VK_NV_framebuffer_mixed_samples
void vkCmdSetCoverageModulationTableEnableNV(
 VkCommandBuffer commandBuffer,
 VkBool32 coverageModulationTableEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• coverageModulationTableEnable specifies the coverageModulationTableEnable state.

This command sets the coverageModulationTableEnable state for subsequent drawing commands
when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineCoverageModulationStateCreateInfoNV::coverageModulationTableEnable value used to
create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetCoverageModulationTableEnableNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3CoverageModulationTableEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetCoverageModulationTableEnableNV-commandBuffer-parameter

2789

commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCoverageModulationTableEnableNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCoverageModulationTableEnableNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetCoverageModulationTableEnableNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the pCoverageModulationTable state, call:

// Provided by VK_EXT_extended_dynamic_state3 with VK_NV_framebuffer_mixed_samples,
VK_EXT_shader_object with VK_NV_framebuffer_mixed_samples
void vkCmdSetCoverageModulationTableNV(
 VkCommandBuffer commandBuffer,
 uint32_t coverageModulationTableCount,
 const float* pCoverageModulationTable);

• commandBuffer is the command buffer into which the command will be recorded.

• coverageModulationTableCount specifies the number of elements in pCoverageModulationTable.

• pCoverageModulationTable specifies the table of modulation factors containing a value for each
number of covered samples.

This command sets the table of modulation factors for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the
VkPipelineCoverageModulationStateCreateInfoNV::coverageModulationTableCount, and
VkPipelineCoverageModulationStateCreateInfoNV::pCoverageModulationTable values used to create

2790

the currently active pipeline.

Valid Usage

• VUID-vkCmdSetCoverageModulationTableNV-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3CoverageModulationTable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetCoverageModulationTableNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCoverageModulationTableNV-pCoverageModulationTable-parameter
pCoverageModulationTable must be a valid pointer to an array of
coverageModulationTableCount float values

• VUID-vkCmdSetCoverageModulationTableNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCoverageModulationTableNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetCoverageModulationTableNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetCoverageModulationTableNV-coverageModulationTableCount-
arraylength
coverageModulationTableCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2791

Chapter 30. The Framebuffer

30.1. Blending
Blending combines the incoming source fragment’s R, G, B, and A values with the destination R, G, B,
and A values of each sample stored in the framebuffer at the fragment’s (xf,yf) location. Blending is
performed for each color sample covered by the fragment, rather than just once for each fragment.

Source and destination values are combined according to the blend operation, quadruplets of
source and destination weighting factors determined by the blend factors, and a blend constant, to
obtain a new set of R, G, B, and A values, as described below.

Blending is computed and applied separately to each color attachment used by the subpass, with
separate controls for each attachment.

Prior to performing the blend operation, signed and unsigned normalized fixed-point color
components undergo an implied conversion to floating-point as specified by Conversion from
Normalized Fixed-Point to Floating-Point. Blending computations are treated as if carried out in
floating-point, and basic blend operations are performed with a precision and dynamic range no
lower than that used to represent destination components. Advanced blending operations are
performed with a precision and dynamic range no lower than the smaller of that used to represent
destination components or that used to represent 16-bit floating-point values.

Note

Blending is only defined for floating-point, UNORM, SNORM, and sRGB formats.
Within those formats, the implementation may only support blending on some
subset of them. Which formats support blending is indicated by
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT.

The pipeline blend state is included in the VkPipelineColorBlendStateCreateInfo structure during
graphics pipeline creation:

The VkPipelineColorBlendStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineColorBlendStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineColorBlendStateCreateFlags flags;
 VkBool32 logicOpEnable;
 VkLogicOp logicOp;
 uint32_t attachmentCount;
 const VkPipelineColorBlendAttachmentState* pAttachments;
 float blendConstants[4];
} VkPipelineColorBlendStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

2792

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineColorBlendStateCreateFlagBits specifying additional color
blending information.

• logicOpEnable controls whether to apply Logical Operations.

• logicOp selects which logical operation to apply.

• attachmentCount is the number of VkPipelineColorBlendAttachmentState elements in
pAttachments. It is ignored if the pipeline is created with
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT, VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT, and
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic states set, and either
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT set or advancedBlendCoherentOperations is not
enabled on the device.

• pAttachments is a pointer to an array of VkPipelineColorBlendAttachmentState structures
defining blend state for each color attachment. It is ignored if the pipeline is created with
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT, VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT, and
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic states set, and either
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT set or advancedBlendCoherentOperations is not
enabled on the device.

• blendConstants is a pointer to an array of four values used as the R, G, B, and A components of
the blend constant that are used in blending, depending on the blend factor.

Valid Usage

• VUID-VkPipelineColorBlendStateCreateInfo-pAttachments-00605
If the independentBlend feature is not enabled, all elements of pAttachments must be
identical

• VUID-VkPipelineColorBlendStateCreateInfo-logicOpEnable-00606
If the logicOp feature is not enabled, logicOpEnable must be VK_FALSE

• VUID-VkPipelineColorBlendStateCreateInfo-logicOpEnable-00607
If logicOpEnable is VK_TRUE, logicOp must be a valid VkLogicOp value

• VUID-VkPipelineColorBlendStateCreateInfo-rasterizationOrderColorAttachmentAccess-
06465
If the rasterizationOrderColorAttachmentAccess feature is not enabled, flags must not
include
VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT

• VUID-VkPipelineColorBlendStateCreateInfo-pAttachments-07353
If attachmentCount is not 0 , and any of VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT,
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT, VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT, or
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT are not set, pAttachments must be a valid pointer to
an array of attachmentCount valid VkPipelineColorBlendAttachmentState structures

2793

Valid Usage (Implicit)

• VUID-VkPipelineColorBlendStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO

• VUID-VkPipelineColorBlendStateCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkPipelineColorBlendAdvancedStateCreateInfoEXT
or VkPipelineColorWriteCreateInfoEXT

• VUID-VkPipelineColorBlendStateCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineColorBlendStateCreateInfo-flags-parameter
flags must be a valid combination of VkPipelineColorBlendStateCreateFlagBits values

• VUID-VkPipelineColorBlendStateCreateInfo-pAttachments-parameter
If attachmentCount is not 0, and pAttachments is not NULL, pAttachments must be a valid
pointer to an array of attachmentCount valid VkPipelineColorBlendAttachmentState
structures

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineColorBlendStateCreateFlags;

VkPipelineColorBlendStateCreateFlags is a bitmask type for setting a mask of zero or more
VkPipelineColorBlendStateCreateFlagBits.

Bits which can be set in the VkPipelineColorBlendStateCreateInfo::flags parameter are:

// Provided by VK_EXT_rasterization_order_attachment_access
typedef enum VkPipelineColorBlendStateCreateFlagBits {
 // Provided by VK_EXT_rasterization_order_attachment_access
 VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT
= 0x00000001,
 // Provided by VK_ARM_rasterization_order_attachment_access
 VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_ARM
= VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT,
} VkPipelineColorBlendStateCreateFlagBits;

• VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT indicates
that access to color and input attachments will have implicit framebuffer-local memory
dependencies, allowing applications to express custom blending operations in a fragment
shader.

When VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT is
included in a pipeline, it forms a framebuffer-local memory dependency for each fragment
generated by draw commands for that pipeline with the following scopes:

2794

• The first synchronization scope includes the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
pipeline stage executed by all previous fragments (as defined by primitive order) in the
corresponding framebuffer regions including those generated by the same draw command.

• The second synchronization scope includes the VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT pipeline
stage executed by the generated fragment.

• The first access scope includes all writes to color attachments.

• The second access scope includes all reads from input attachments.

The VkPipelineColorBlendAttachmentState structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineColorBlendAttachmentState {
 VkBool32 blendEnable;
 VkBlendFactor srcColorBlendFactor;
 VkBlendFactor dstColorBlendFactor;
 VkBlendOp colorBlendOp;
 VkBlendFactor srcAlphaBlendFactor;
 VkBlendFactor dstAlphaBlendFactor;
 VkBlendOp alphaBlendOp;
 VkColorComponentFlags colorWriteMask;
} VkPipelineColorBlendAttachmentState;

• blendEnable controls whether blending is enabled for the corresponding color attachment. If
blending is not enabled, the source fragment’s color for that attachment is passed through
unmodified.

• srcColorBlendFactor selects which blend factor is used to determine the source factors (Sr,Sg,Sb).

• dstColorBlendFactor selects which blend factor is used to determine the destination factors (Dr

,Dg,Db).

• colorBlendOp selects which blend operation is used to calculate the RGB values to write to the
color attachment.

• srcAlphaBlendFactor selects which blend factor is used to determine the source factor Sa.

• dstAlphaBlendFactor selects which blend factor is used to determine the destination factor Da.

• alphaBlendOp selects which blend operation is used to calculate the alpha values to write to the
color attachment.

• colorWriteMask is a bitmask of VkColorComponentFlagBits specifying which of the R, G, B, and/or
A components are enabled for writing, as described for the Color Write Mask.

Valid Usage

• VUID-VkPipelineColorBlendAttachmentState-srcColorBlendFactor-00608
If the dualSrcBlend feature is not enabled, srcColorBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

2795

• VUID-VkPipelineColorBlendAttachmentState-dstColorBlendFactor-00609
If the dualSrcBlend feature is not enabled, dstColorBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkPipelineColorBlendAttachmentState-srcAlphaBlendFactor-00610
If the dualSrcBlend feature is not enabled, srcAlphaBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkPipelineColorBlendAttachmentState-dstAlphaBlendFactor-00611
If the dualSrcBlend feature is not enabled, dstAlphaBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkPipelineColorBlendAttachmentState-colorBlendOp-01406
If either of colorBlendOp or alphaBlendOp is an advanced blend operation, then
colorBlendOp must equal alphaBlendOp

• VUID-VkPipelineColorBlendAttachmentState-advancedBlendIndependentBlend-01407
If VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT
::advancedBlendIndependentBlend is VK_FALSE and colorBlendOp is an advanced blend
operation, then colorBlendOp must be the same for all attachments

• VUID-VkPipelineColorBlendAttachmentState-advancedBlendIndependentBlend-01408
If VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT
::advancedBlendIndependentBlend is VK_FALSE and alphaBlendOp is an advanced blend
operation, then alphaBlendOp must be the same for all attachments

• VUID-VkPipelineColorBlendAttachmentState-advancedBlendAllOperations-01409
If VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT::advancedBlendAllOperations
is VK_FALSE, then colorBlendOp must not be VK_BLEND_OP_ZERO_EXT, VK_BLEND_OP_SRC_EXT,
VK_BLEND_OP_DST_EXT, VK_BLEND_OP_SRC_OVER_EXT, VK_BLEND_OP_DST_OVER_EXT,
VK_BLEND_OP_SRC_IN_EXT, VK_BLEND_OP_DST_IN_EXT, VK_BLEND_OP_SRC_OUT_EXT,
VK_BLEND_OP_DST_OUT_EXT, VK_BLEND_OP_SRC_ATOP_EXT, VK_BLEND_OP_DST_ATOP_EXT,
VK_BLEND_OP_XOR_EXT, VK_BLEND_OP_INVERT_EXT, VK_BLEND_OP_INVERT_RGB_EXT,
VK_BLEND_OP_LINEARDODGE_EXT, VK_BLEND_OP_LINEARBURN_EXT, VK_BLEND_OP_VIVIDLIGHT_EXT,
VK_BLEND_OP_LINEARLIGHT_EXT, VK_BLEND_OP_PINLIGHT_EXT, VK_BLEND_OP_HARDMIX_EXT,
VK_BLEND_OP_PLUS_EXT, VK_BLEND_OP_PLUS_CLAMPED_EXT, VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT,
VK_BLEND_OP_PLUS_DARKER_EXT, VK_BLEND_OP_MINUS_EXT, VK_BLEND_OP_MINUS_CLAMPED_EXT,
VK_BLEND_OP_CONTRAST_EXT, VK_BLEND_OP_INVERT_OVG_EXT, VK_BLEND_OP_RED_EXT,
VK_BLEND_OP_GREEN_EXT, or VK_BLEND_OP_BLUE_EXT

• VUID-VkPipelineColorBlendAttachmentState-colorBlendOp-01410
If colorBlendOp or alphaBlendOp is an advanced blend operation, then colorAttachmentCount
of the subpass this pipeline is compiled against must be less than or equal to
VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT::advancedBlendMaxColorAttachme
nts

• VUID-VkPipelineColorBlendAttachmentState-constantAlphaColorBlendFactors-04454
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::constantAlphaColorBlendFactors is
VK_FALSE, srcColorBlendFactor must not be VK_BLEND_FACTOR_CONSTANT_ALPHA or

2796

VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA

• VUID-VkPipelineColorBlendAttachmentState-constantAlphaColorBlendFactors-04455
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::constantAlphaColorBlendFactors is
VK_FALSE, dstColorBlendFactor must not be VK_BLEND_FACTOR_CONSTANT_ALPHA or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA

Valid Usage (Implicit)

• VUID-VkPipelineColorBlendAttachmentState-srcColorBlendFactor-parameter
srcColorBlendFactor must be a valid VkBlendFactor value

• VUID-VkPipelineColorBlendAttachmentState-dstColorBlendFactor-parameter
dstColorBlendFactor must be a valid VkBlendFactor value

• VUID-VkPipelineColorBlendAttachmentState-colorBlendOp-parameter
colorBlendOp must be a valid VkBlendOp value

• VUID-VkPipelineColorBlendAttachmentState-srcAlphaBlendFactor-parameter
srcAlphaBlendFactor must be a valid VkBlendFactor value

• VUID-VkPipelineColorBlendAttachmentState-dstAlphaBlendFactor-parameter
dstAlphaBlendFactor must be a valid VkBlendFactor value

• VUID-VkPipelineColorBlendAttachmentState-alphaBlendOp-parameter
alphaBlendOp must be a valid VkBlendOp value

• VUID-VkPipelineColorBlendAttachmentState-colorWriteMask-parameter
colorWriteMask must be a valid combination of VkColorComponentFlagBits values

To dynamically set blendEnable, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetColorBlendEnableEXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstAttachment,
 uint32_t attachmentCount,
 const VkBool32* pColorBlendEnables);

• commandBuffer is the command buffer into which the command will be recorded.

• firstAttachment the first color attachment the color blending enable applies.

• attachmentCount the number of color blending enables in the pColorBlendEnables array.

• pColorBlendEnables an array of booleans to indicate whether color blending is enabled for the
corresponding attachment.

This command sets the color blending enable of the specified color attachments for subsequent
drawing commands when drawing using shader objects, or when the graphics pipeline is created
with VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo

2797

::pDynamicStates. Otherwise, this state is specified by the VkPipelineColorBlendAttachmentState
::blendEnable values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetColorBlendEnableEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ColorBlendEnable feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetColorBlendEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetColorBlendEnableEXT-pColorBlendEnables-parameter
pColorBlendEnables must be a valid pointer to an array of attachmentCount VkBool32
values

• VUID-vkCmdSetColorBlendEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetColorBlendEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetColorBlendEnableEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetColorBlendEnableEXT-attachmentCount-arraylength
attachmentCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2798

To dynamically set color blend factors and operations, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetColorBlendEquationEXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstAttachment,
 uint32_t attachmentCount,
 const VkColorBlendEquationEXT* pColorBlendEquations);

• commandBuffer is the command buffer into which the command will be recorded.

• firstAttachment the first color attachment the color blend factors and operations apply to.

• attachmentCount the number of VkColorBlendEquationEXT elements in the pColorBlendEquations
array.

• pColorBlendEquations an array of VkColorBlendEquationEXT structs that specify the color blend
factors and operations for the corresponding attachments.

This command sets the color blending factors and operations of the specified attachments for
subsequent drawing commands when drawing using shader objects, or when the graphics pipeline
is created with VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineColorBlendAttachmentState::srcColorBlendFactor,
VkPipelineColorBlendAttachmentState::dstColorBlendFactor,
VkPipelineColorBlendAttachmentState::colorBlendOp, VkPipelineColorBlendAttachmentState
::srcAlphaBlendFactor, VkPipelineColorBlendAttachmentState::dstAlphaBlendFactor, and
VkPipelineColorBlendAttachmentState::alphaBlendOp values used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetColorBlendEquationEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ColorBlendEquation feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetColorBlendEquationEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetColorBlendEquationEXT-pColorBlendEquations-parameter
pColorBlendEquations must be a valid pointer to an array of attachmentCount valid
VkColorBlendEquationEXT structures

• VUID-vkCmdSetColorBlendEquationEXT-commandBuffer-recording
commandBuffer must be in the recording state

2799

• VUID-vkCmdSetColorBlendEquationEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetColorBlendEquationEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetColorBlendEquationEXT-attachmentCount-arraylength
attachmentCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

The VkColorBlendEquationEXT structure is defined as:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
typedef struct VkColorBlendEquationEXT {
 VkBlendFactor srcColorBlendFactor;
 VkBlendFactor dstColorBlendFactor;
 VkBlendOp colorBlendOp;
 VkBlendFactor srcAlphaBlendFactor;
 VkBlendFactor dstAlphaBlendFactor;
 VkBlendOp alphaBlendOp;
} VkColorBlendEquationEXT;

• srcColorBlendFactor selects which blend factor is used to determine the source factors (Sr,Sg,Sb).

• dstColorBlendFactor selects which blend factor is used to determine the destination factors (Dr

,Dg,Db).

• colorBlendOp selects which blend operation is used to calculate the RGB values to write to the
color attachment.

• srcAlphaBlendFactor selects which blend factor is used to determine the source factor Sa.

• dstAlphaBlendFactor selects which blend factor is used to determine the destination factor Da.

• alphaBlendOp selects which blend operation is use to calculate the alpha values to write to the

2800

color attachment.

Valid Usage

• VUID-VkColorBlendEquationEXT-dualSrcBlend-07357
If the dualSrcBlend feature is not enabled, srcColorBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkColorBlendEquationEXT-dualSrcBlend-07358
If the dualSrcBlend feature is not enabled, dstColorBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkColorBlendEquationEXT-dualSrcBlend-07359
If the dualSrcBlend feature is not enabled, srcAlphaBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkColorBlendEquationEXT-dualSrcBlend-07360
If the dualSrcBlend feature is not enabled, dstAlphaBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkColorBlendEquationEXT-colorBlendOp-07361
colorBlendOp and alphaBlendOp must not be VK_BLEND_OP_ZERO_EXT, VK_BLEND_OP_SRC_EXT,
VK_BLEND_OP_DST_EXT, VK_BLEND_OP_SRC_OVER_EXT, VK_BLEND_OP_DST_OVER_EXT,
VK_BLEND_OP_SRC_IN_EXT, VK_BLEND_OP_DST_IN_EXT, VK_BLEND_OP_SRC_OUT_EXT,
VK_BLEND_OP_DST_OUT_EXT, VK_BLEND_OP_SRC_ATOP_EXT, VK_BLEND_OP_DST_ATOP_EXT,
VK_BLEND_OP_XOR_EXT, VK_BLEND_OP_MULTIPLY_EXT, VK_BLEND_OP_SCREEN_EXT,
VK_BLEND_OP_OVERLAY_EXT, VK_BLEND_OP_DARKEN_EXT, VK_BLEND_OP_LIGHTEN_EXT,
VK_BLEND_OP_COLORDODGE_EXT, VK_BLEND_OP_COLORBURN_EXT, VK_BLEND_OP_HARDLIGHT_EXT,
VK_BLEND_OP_SOFTLIGHT_EXT, VK_BLEND_OP_DIFFERENCE_EXT, VK_BLEND_OP_EXCLUSION_EXT,
VK_BLEND_OP_INVERT_EXT, VK_BLEND_OP_INVERT_RGB_EXT, VK_BLEND_OP_LINEARDODGE_EXT,
VK_BLEND_OP_LINEARBURN_EXT, VK_BLEND_OP_VIVIDLIGHT_EXT, VK_BLEND_OP_LINEARLIGHT_EXT,
VK_BLEND_OP_PINLIGHT_EXT, VK_BLEND_OP_HARDMIX_EXT, VK_BLEND_OP_HSL_HUE_EXT,
VK_BLEND_OP_HSL_SATURATION_EXT, VK_BLEND_OP_HSL_COLOR_EXT,
VK_BLEND_OP_HSL_LUMINOSITY_EXT, VK_BLEND_OP_PLUS_EXT, VK_BLEND_OP_PLUS_CLAMPED_EXT,
VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT, VK_BLEND_OP_PLUS_DARKER_EXT, VK_BLEND_OP_MINUS_EXT,
VK_BLEND_OP_MINUS_CLAMPED_EXT, VK_BLEND_OP_CONTRAST_EXT, VK_BLEND_OP_INVERT_OVG_EXT,
VK_BLEND_OP_RED_EXT, VK_BLEND_OP_GREEN_EXT, or VK_BLEND_OP_BLUE_EXT

• VUID-VkColorBlendEquationEXT-constantAlphaColorBlendFactors-07362
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::constantAlphaColorBlendFactors is
VK_FALSE, srcColorBlendFactor must not be VK_BLEND_FACTOR_CONSTANT_ALPHA or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA

• VUID-VkColorBlendEquationEXT-constantAlphaColorBlendFactors-07363
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::constantAlphaColorBlendFactors is

2801

VK_FALSE, dstColorBlendFactor must not be VK_BLEND_FACTOR_CONSTANT_ALPHA or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA

Valid Usage (Implicit)

• VUID-VkColorBlendEquationEXT-srcColorBlendFactor-parameter
srcColorBlendFactor must be a valid VkBlendFactor value

• VUID-VkColorBlendEquationEXT-dstColorBlendFactor-parameter
dstColorBlendFactor must be a valid VkBlendFactor value

• VUID-VkColorBlendEquationEXT-colorBlendOp-parameter
colorBlendOp must be a valid VkBlendOp value

• VUID-VkColorBlendEquationEXT-srcAlphaBlendFactor-parameter
srcAlphaBlendFactor must be a valid VkBlendFactor value

• VUID-VkColorBlendEquationEXT-dstAlphaBlendFactor-parameter
dstAlphaBlendFactor must be a valid VkBlendFactor value

• VUID-VkColorBlendEquationEXT-alphaBlendOp-parameter
alphaBlendOp must be a valid VkBlendOp value

To dynamically set the color write masks, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetColorWriteMaskEXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstAttachment,
 uint32_t attachmentCount,
 const VkColorComponentFlags* pColorWriteMasks);

• commandBuffer is the command buffer into which the command will be recorded.

• firstAttachment the first color attachment the color write masks apply to.

• attachmentCount the number of VkColorComponentFlags values in the pColorWriteMasks array.

• pColorWriteMasks an array of VkColorComponentFlags values that specify the color write masks
of the corresponding attachments.

This command sets the color write masks of the specified attachments for subsequent drawing
commands when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineColorBlendAttachmentState::colorWriteMask
values used to create the currently active pipeline.

Note

Formats with bits that are shared between components specified by
VkColorComponentFlagBits, such as VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, cannot

2802

have their channels individually masked by this functionality; either all
components that share bits have to be enabled, or none of them.

Valid Usage

• VUID-vkCmdSetColorWriteMaskEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ColorWriteMask feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetColorWriteMaskEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetColorWriteMaskEXT-pColorWriteMasks-parameter
pColorWriteMasks must be a valid pointer to an array of attachmentCount valid
combinations of VkColorComponentFlagBits values

• VUID-vkCmdSetColorWriteMaskEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetColorWriteMaskEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetColorWriteMaskEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetColorWriteMaskEXT-attachmentCount-arraylength
attachmentCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

2803

30.1.1. Blend Factors

The source and destination color and alpha blending factors are selected from the enum:

// Provided by VK_VERSION_1_0
typedef enum VkBlendFactor {
 VK_BLEND_FACTOR_ZERO = 0,
 VK_BLEND_FACTOR_ONE = 1,
 VK_BLEND_FACTOR_SRC_COLOR = 2,
 VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR = 3,
 VK_BLEND_FACTOR_DST_COLOR = 4,
 VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR = 5,
 VK_BLEND_FACTOR_SRC_ALPHA = 6,
 VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA = 7,
 VK_BLEND_FACTOR_DST_ALPHA = 8,
 VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA = 9,
 VK_BLEND_FACTOR_CONSTANT_COLOR = 10,
 VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR = 11,
 VK_BLEND_FACTOR_CONSTANT_ALPHA = 12,
 VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA = 13,
 VK_BLEND_FACTOR_SRC_ALPHA_SATURATE = 14,
 VK_BLEND_FACTOR_SRC1_COLOR = 15,
 VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR = 16,
 VK_BLEND_FACTOR_SRC1_ALPHA = 17,
 VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA = 18,
} VkBlendFactor;

The semantics of the enum values are described in the table below:

Table 39. Blend Factors

VkBlendFactor RGB Blend Factors (Sr,S

g,Sb) or (Dr,Dg,Db)
Alpha
Blend
Factor (Sa

or Da)

VK_BLEND_FACTOR_ZERO (0,0,0) 0

VK_BLEND_FACTOR_ONE (1,1,1) 1

VK_BLEND_FACTOR_SRC_COLOR (Rs0,Gs0,Bs0) As0

VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR (1-Rs0,1-Gs0,1-Bs0) 1-As0

VK_BLEND_FACTOR_DST_COLOR (Rd,Gd,Bd) Ad

VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR (1-Rd,1-Gd,1-Bd) 1-Ad

VK_BLEND_FACTOR_SRC_ALPHA (As0,As0,As0) As0

VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA (1-As0,1-As0,1-As0) 1-As0

VK_BLEND_FACTOR_DST_ALPHA (Ad,Ad,Ad) Ad

VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA (1-Ad,1-Ad,1-Ad) 1-Ad

2804

VkBlendFactor RGB Blend Factors (Sr,S

g,Sb) or (Dr,Dg,Db)
Alpha
Blend
Factor (Sa

or Da)

VK_BLEND_FACTOR_CONSTANT_COLOR (Rc,Gc,Bc) Ac

VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR (1-Rc,1-Gc,1-Bc) 1-Ac

VK_BLEND_FACTOR_CONSTANT_ALPHA (Ac,Ac,Ac) Ac

VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA (1-Ac,1-Ac,1-Ac) 1-Ac

VK_BLEND_FACTOR_SRC_ALPHA_SATURATE (f,f,f); f = min(As0,1-Ad) 1

VK_BLEND_FACTOR_SRC1_COLOR (Rs1,Gs1,Bs1) As1

VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR (1-Rs1,1-Gs1,1-Bs1) 1-As1

VK_BLEND_FACTOR_SRC1_ALPHA (As1,As1,As1) As1

VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA (1-As1,1-As1,1-As1) 1-As1

In this table, the following conventions are used:

• Rs0,Gs0,Bs0 and As0 represent the first source color R, G, B, and A components, respectively, for the
fragment output location corresponding to the color attachment being blended.

• Rs1,Gs1,Bs1 and As1 represent the second source color R, G, B, and A components, respectively,
used in dual source blending modes, for the fragment output location corresponding to the
color attachment being blended.

• Rd,Gd,Bd and Ad represent the R, G, B, and A components of the destination color. That is, the
color currently in the corresponding color attachment for this fragment/sample.

• Rc,Gc,Bc and Ac represent the blend constant R, G, B, and A components, respectively.

To dynamically set and change the blend constants, call:

// Provided by VK_VERSION_1_0
void vkCmdSetBlendConstants(
 VkCommandBuffer commandBuffer,
 const float blendConstants[4]);

• commandBuffer is the command buffer into which the command will be recorded.

• blendConstants is a pointer to an array of four values specifying the Rc, Gc, Bc, and Ac components
of the blend constant color used in blending, depending on the blend factor.

This command sets blend constants for subsequent drawing commands when when drawing using
shader objects, or the graphics pipeline is created with VK_DYNAMIC_STATE_BLEND_CONSTANTS set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineColorBlendStateCreateInfo::blendConstants values used to create the currently active
pipeline.

2805

Valid Usage (Implicit)

• VUID-vkCmdSetBlendConstants-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetBlendConstants-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetBlendConstants-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetBlendConstants-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

30.1.2. Dual-Source Blending

Blend factors that use the secondary color input (Rs1,Gs1,Bs1,As1) (VK_BLEND_FACTOR_SRC1_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, and
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA) may consume implementation resources that could
otherwise be used for rendering to multiple color attachments. Therefore, the number of color
attachments that can be used in a framebuffer may be lower when using dual-source blending.

Dual-source blending is only supported if the dualSrcBlend feature is enabled.

The maximum number of color attachments that can be used in a subpass when using dual-source
blending functions is implementation-dependent and is reported as the
maxFragmentDualSrcAttachments member of VkPhysicalDeviceLimits.

Color outputs can be bound to the first and second inputs of the blender using the Index decoration,
as described in Fragment Output Interface. If the second color input to the blender is not written in
the shader, or if no output is bound to the second input of a blender, the value of the second input
is undefined.

2806

30.1.3. Blend Operations

Once the source and destination blend factors have been selected, they along with the source and
destination components are passed to the blending operations. RGB and alpha components can use
different operations. Possible values of VkBlendOp, specifying the operations, are:

// Provided by VK_VERSION_1_0
typedef enum VkBlendOp {
 VK_BLEND_OP_ADD = 0,
 VK_BLEND_OP_SUBTRACT = 1,
 VK_BLEND_OP_REVERSE_SUBTRACT = 2,
 VK_BLEND_OP_MIN = 3,
 VK_BLEND_OP_MAX = 4,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_ZERO_EXT = 1000148000,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_SRC_EXT = 1000148001,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_DST_EXT = 1000148002,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_SRC_OVER_EXT = 1000148003,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_DST_OVER_EXT = 1000148004,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_SRC_IN_EXT = 1000148005,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_DST_IN_EXT = 1000148006,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_SRC_OUT_EXT = 1000148007,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_DST_OUT_EXT = 1000148008,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_SRC_ATOP_EXT = 1000148009,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_DST_ATOP_EXT = 1000148010,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_XOR_EXT = 1000148011,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_MULTIPLY_EXT = 1000148012,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_SCREEN_EXT = 1000148013,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_OVERLAY_EXT = 1000148014,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_DARKEN_EXT = 1000148015,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_LIGHTEN_EXT = 1000148016,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_COLORDODGE_EXT = 1000148017,
 // Provided by VK_EXT_blend_operation_advanced

2807

 VK_BLEND_OP_COLORBURN_EXT = 1000148018,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_HARDLIGHT_EXT = 1000148019,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_SOFTLIGHT_EXT = 1000148020,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_DIFFERENCE_EXT = 1000148021,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_EXCLUSION_EXT = 1000148022,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_INVERT_EXT = 1000148023,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_INVERT_RGB_EXT = 1000148024,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_LINEARDODGE_EXT = 1000148025,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_LINEARBURN_EXT = 1000148026,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_VIVIDLIGHT_EXT = 1000148027,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_LINEARLIGHT_EXT = 1000148028,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_PINLIGHT_EXT = 1000148029,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_HARDMIX_EXT = 1000148030,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_HSL_HUE_EXT = 1000148031,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_HSL_SATURATION_EXT = 1000148032,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_HSL_COLOR_EXT = 1000148033,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_HSL_LUMINOSITY_EXT = 1000148034,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_PLUS_EXT = 1000148035,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_PLUS_CLAMPED_EXT = 1000148036,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT = 1000148037,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_PLUS_DARKER_EXT = 1000148038,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_MINUS_EXT = 1000148039,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_MINUS_CLAMPED_EXT = 1000148040,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_CONTRAST_EXT = 1000148041,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_INVERT_OVG_EXT = 1000148042,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_RED_EXT = 1000148043,

2808

 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_GREEN_EXT = 1000148044,
 // Provided by VK_EXT_blend_operation_advanced
 VK_BLEND_OP_BLUE_EXT = 1000148045,
} VkBlendOp;

2809

The semantics of the basic blend operations are described in the table below:

Table 40. Basic Blend Operations

VkBlendOp RGB Components Alpha Component

VK_BLEND_OP_ADD R = Rs0 × Sr + Rd × Dr

G = Gs0 × Sg + Gd × Dg

B = Bs0 × Sb + Bd × Db

A = As0 × Sa + Ad × Da

VK_BLEND_OP_SUBTRACT R = Rs0 × Sr - Rd × Dr

G = Gs0 × Sg - Gd × Dg

B = Bs0 × Sb - Bd × Db

A = As0 × Sa - Ad × Da

VK_BLEND_OP_REVERSE_SUBTRACT R = Rd × Dr - Rs0 × Sr

G = Gd × Dg - Gs0 × Sg

B = Bd × Db - Bs0 × Sb

A = Ad × Da - As0 × Sa

VK_BLEND_OP_MIN R = min(Rs0,Rd)
G = min(Gs0,Gd)
B = min(Bs0,Bd)

A = min(As0,Ad)

VK_BLEND_OP_MAX R = max(Rs0,Rd)
G = max(Gs0,Gd)
B = max(Bs0,Bd)

A = max(As0,Ad)

In this table, the following conventions are used:

• Rs0, Gs0, Bs0 and As0 represent the first source color R, G, B, and A components, respectively.

• Rd, Gd, Bd and Ad represent the R, G, B, and A components of the destination color. That is, the
color currently in the corresponding color attachment for this fragment/sample.

• Sr, Sg, Sb and Sa represent the source blend factor R, G, B, and A components, respectively.

• Dr, Dg, Db and Da represent the destination blend factor R, G, B, and A components, respectively.

The blending operation produces a new set of values R, G, B and A, which are written to the
framebuffer attachment. If blending is not enabled for this attachment, then R, G, B and A are
assigned Rs0, Gs0, Bs0 and As0, respectively.

If the color attachment is fixed-point, the components of the source and destination values and
blend factors are each clamped to [0,1] or [-1,1] respectively for an unsigned normalized or signed
normalized color attachment prior to evaluating the blend operations. If the color attachment is
floating-point, no clamping occurs.

If the numeric format of a framebuffer attachment uses sRGB encoding, the R, G, and B destination
color values (after conversion from fixed-point to floating-point) are considered to be encoded for
the sRGB color space and hence are linearized prior to their use in blending. Each R, G, and B
component is converted from nonlinear to linear as described in the “sRGB EOTF” section of the
Khronos Data Format Specification. If the format is not sRGB, no linearization is performed.

If the numeric format of a framebuffer attachment uses sRGB encoding, then the final R, G and B
values are converted into the nonlinear sRGB representation before being written to the
framebuffer attachment as described in the “sRGB EOTF -1” section of the Khronos Data Format

2810

Specification.

If the numeric format of a framebuffer color attachment is not sRGB encoded then the resulting cs

values for R, G and B are unmodified. The value of A is never sRGB encoded. That is, the alpha
component is always stored in memory as linear.

If the framebuffer color attachment is VK_ATTACHMENT_UNUSED, no writes are performed through that
attachment. Writes are not performed to framebuffer color attachments greater than or equal to
the VkSubpassDescription::colorAttachmentCount or VkSubpassDescription2::colorAttachmentCount
value.

30.1.4. Advanced Blend Operations

The advanced blend operations are those listed in tables f/X/Y/Z Advanced Blend Operations, Hue-
Saturation-Luminosity Advanced Blend Operations, and Additional RGB Blend Operations.

If the pNext chain of VkPipelineColorBlendStateCreateInfo includes a
VkPipelineColorBlendAdvancedStateCreateInfoEXT structure, then that structure includes parameters
that affect advanced blend operations.

The VkPipelineColorBlendAdvancedStateCreateInfoEXT structure is defined as:

// Provided by VK_EXT_blend_operation_advanced
typedef struct VkPipelineColorBlendAdvancedStateCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkBool32 srcPremultiplied;
 VkBool32 dstPremultiplied;
 VkBlendOverlapEXT blendOverlap;
} VkPipelineColorBlendAdvancedStateCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcPremultiplied specifies whether the source color of the blend operation is treated as
premultiplied.

• dstPremultiplied specifies whether the destination color of the blend operation is treated as
premultiplied.

• blendOverlap is a VkBlendOverlapEXT value specifying how the source and destination sample’s
coverage is correlated.

If this structure is not present, srcPremultiplied and dstPremultiplied are both considered to be
VK_TRUE, and blendOverlap is considered to be VK_BLEND_OVERLAP_UNCORRELATED_EXT.

Valid Usage

• VUID-VkPipelineColorBlendAdvancedStateCreateInfoEXT-srcPremultiplied-01424
If the non-premultiplied source color property is not supported, srcPremultiplied must be

2811

VK_TRUE

• VUID-VkPipelineColorBlendAdvancedStateCreateInfoEXT-dstPremultiplied-01425
If the non-premultiplied destination color property is not supported, dstPremultiplied
must be VK_TRUE

• VUID-VkPipelineColorBlendAdvancedStateCreateInfoEXT-blendOverlap-01426
If the correlated overlap property is not supported, blendOverlap must be
VK_BLEND_OVERLAP_UNCORRELATED_EXT

Valid Usage (Implicit)

• VUID-VkPipelineColorBlendAdvancedStateCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_ADVANCED_STATE_CREATE_INFO_EXT

• VUID-VkPipelineColorBlendAdvancedStateCreateInfoEXT-blendOverlap-parameter
blendOverlap must be a valid VkBlendOverlapEXT value

To dynamically set the advanced blend state, call:

// Provided by VK_EXT_blend_operation_advanced with VK_EXT_extended_dynamic_state3,
VK_EXT_blend_operation_advanced with VK_EXT_shader_object
void vkCmdSetColorBlendAdvancedEXT(
 VkCommandBuffer commandBuffer,
 uint32_t firstAttachment,
 uint32_t attachmentCount,
 const VkColorBlendAdvancedEXT* pColorBlendAdvanced);

• commandBuffer is the command buffer into which the command will be recorded.

• firstAttachment the first color attachment the advanced blend parameters apply to.

• attachmentCount the number of VkColorBlendAdvancedEXT elements in the pColorBlendAdvanced
array.

• pColorBlendAdvanced an array of VkColorBlendAdvancedEXT structs that specify the advanced
color blend parameters for the corresponding attachments.

This command sets the advanced blend operation parameters of the specified attachments for
subsequent drawing commands when drawing using shader objects, or when the graphics pipeline
is created with VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineColorBlendAdvancedStateCreateInfoEXT::srcPremultiplied,
VkPipelineColorBlendAdvancedStateCreateInfoEXT::dstPremultiplied, and
VkPipelineColorBlendAdvancedStateCreateInfoEXT::blendOverlap values used to create the
currently active pipeline.

2812

Valid Usage

• VUID-vkCmdSetColorBlendAdvancedEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3ColorBlendAdvanced feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetColorBlendAdvancedEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetColorBlendAdvancedEXT-pColorBlendAdvanced-parameter
pColorBlendAdvanced must be a valid pointer to an array of attachmentCount valid
VkColorBlendAdvancedEXT structures

• VUID-vkCmdSetColorBlendAdvancedEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetColorBlendAdvancedEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetColorBlendAdvancedEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetColorBlendAdvancedEXT-attachmentCount-arraylength
attachmentCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

The VkColorBlendAdvancedEXT structure is defined as:

2813

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
typedef struct VkColorBlendAdvancedEXT {
 VkBlendOp advancedBlendOp;
 VkBool32 srcPremultiplied;
 VkBool32 dstPremultiplied;
 VkBlendOverlapEXT blendOverlap;
 VkBool32 clampResults;
} VkColorBlendAdvancedEXT;

• advancedBlendOp selects which blend operation is used to calculate the RGB values to write to the
color attachment.

• srcPremultiplied specifies whether the source color of the blend operation is treated as
premultiplied.

• dstPremultiplied specifies whether the destination color of the blend operation is treated as
premultiplied.

• blendOverlap is a VkBlendOverlapEXT value specifying how the source and destination sample’s
coverage is correlated.

• clampResults specifies the results must be clamped to the [0,1] range before writing to the
attachment, which is useful when the attachment format is not normalized fixed-point.

Valid Usage

• VUID-VkColorBlendAdvancedEXT-srcPremultiplied-07505
If the non-premultiplied source color property is not supported, srcPremultiplied must be
VK_TRUE

• VUID-VkColorBlendAdvancedEXT-dstPremultiplied-07506
If the non-premultiplied destination color property is not supported, dstPremultiplied
must be VK_TRUE

• VUID-VkColorBlendAdvancedEXT-blendOverlap-07507
If the correlated overlap property is not supported, blendOverlap must be
VK_BLEND_OVERLAP_UNCORRELATED_EXT

Valid Usage (Implicit)

• VUID-VkColorBlendAdvancedEXT-advancedBlendOp-parameter
advancedBlendOp must be a valid VkBlendOp value

• VUID-VkColorBlendAdvancedEXT-blendOverlap-parameter
blendOverlap must be a valid VkBlendOverlapEXT value

When using one of the operations in table f/X/Y/Z Advanced Blend Operations or Hue-Saturation-
Luminosity Advanced Blend Operations, blending is performed according to the following
equations:

2814

where the function f and terms X, Y, and Z are specified in the table. The R, G, and B components of
the source color used for blending are derived according to srcPremultiplied. If srcPremultiplied is
set to VK_TRUE, the fragment color components are considered to have been premultiplied by the A
component prior to blending. The base source color (Rs',Gs',Bs') is obtained by dividing through by
the A component:

If srcPremultiplied is VK_FALSE, the fragment color components are used as the base color:

The R, G, and B components of the destination color used for blending are derived according to
dstPremultiplied. If dstPremultiplied is set to VK_TRUE, the destination components are considered to
have been premultiplied by the A component prior to blending. The base destination color (Rd',Gd

',Bd') is obtained by dividing through by the A component:

If dstPremultiplied is VK_FALSE, the destination color components are used as the base color:

When blending using advanced blend operations, we expect that the R, G, and B components of
premultiplied source and destination color inputs be stored as the product of non-premultiplied R,
G, and B component values and the A component of the color. If any R, G, or B component of a
premultiplied input color is non-zero and the A component is zero, the color is considered ill-
formed, and the corresponding component of the blend result is undefined.

All of the advanced blend operation formulas in this chapter compute the result as a premultiplied
color. If dstPremultiplied is VK_FALSE, that result color’s R, G, and B components are divided by the A
component before being written to the framebuffer. If any R, G, or B component of the color is non-
zero and the A component is zero, the result is considered ill-formed, and the corresponding
component of the blend result is undefined. If all components are zero, that value is unchanged.

If the A component of any input or result color is less than zero, the color is considered ill-formed,
and all components of the blend result are undefined.

The weighting functions p0, p1, and p2 are defined in table Advanced Blend Overlap Modes. In these

2815

functions, the A components of the source and destination colors are taken to indicate the portion
of the pixel covered by the fragment (source) and the fragments previously accumulated in the
pixel (destination). The functions p0, p1, and p2 approximate the relative portion of the pixel covered
by the intersection of the source and destination, covered only by the source, and covered only by
the destination, respectively.

Possible values of VkPipelineColorBlendAdvancedStateCreateInfoEXT::blendOverlap, specifying the
blend overlap functions, are:

// Provided by VK_EXT_blend_operation_advanced
typedef enum VkBlendOverlapEXT {
 VK_BLEND_OVERLAP_UNCORRELATED_EXT = 0,
 VK_BLEND_OVERLAP_DISJOINT_EXT = 1,
 VK_BLEND_OVERLAP_CONJOINT_EXT = 2,
} VkBlendOverlapEXT;

• VK_BLEND_OVERLAP_UNCORRELATED_EXT specifies that there is no correlation between the source and
destination coverage.

• VK_BLEND_OVERLAP_CONJOINT_EXT specifies that the source and destination coverage are considered
to have maximal overlap.

• VK_BLEND_OVERLAP_DISJOINT_EXT specifies that the source and destination coverage are considered
to have minimal overlap.

Table 41. Advanced Blend Overlap Modes

Overlap Mode Weighting Equations

VK_BLEND_OVERLAP_UNCORRELATED_EXT

VK_BLEND_OVERLAP_CONJOINT_EXT

VK_BLEND_OVERLAP_DISJOINT_EXT

Table 42. f/X/Y/Z Advanced Blend Operations

Mode Blend Coefficients

VK_BLEND_OP_ZERO_EXT

VK_BLEND_OP_SRC_EXT

2816

Mode Blend Coefficients

VK_BLEND_OP_DST_EXT

VK_BLEND_OP_SRC_OVER_EXT

VK_BLEND_OP_DST_OVER_EXT

VK_BLEND_OP_SRC_IN_EXT

VK_BLEND_OP_DST_IN_EXT

VK_BLEND_OP_SRC_OUT_EXT

VK_BLEND_OP_DST_OUT_EXT

VK_BLEND_OP_SRC_ATOP_EXT

VK_BLEND_OP_DST_ATOP_EXT

VK_BLEND_OP_XOR_EXT

VK_BLEND_OP_MULTIPLY_EXT

VK_BLEND_OP_SCREEN_EXT

VK_BLEND_OP_OVERLAY_EXT

VK_BLEND_OP_DARKEN_EXT

VK_BLEND_OP_LIGHTEN_EXT

VK_BLEND_OP_COLORDODGE_EXT

2817

Mode Blend Coefficients

VK_BLEND_OP_COLORBURN_EXT

VK_BLEND_OP_HARDLIGHT_EXT

VK_BLEND_OP_SOFTLIGHT_EXT

VK_BLEND_OP_DIFFERENCE_EXT

VK_BLEND_OP_EXCLUSION_EXT

VK_BLEND_OP_INVERT_EXT

VK_BLEND_OP_INVERT_RGB_EXT

VK_BLEND_OP_LINEARDODGE_EXT

VK_BLEND_OP_LINEARBURN_EXT

VK_BLEND_OP_VIVIDLIGHT_EXT

VK_BLEND_OP_LINEARLIGHT_EXT

VK_BLEND_OP_PINLIGHT_EXT

VK_BLEND_OP_HARDMIX_EXT

When using one of the HSL blend operations in table Hue-Saturation-Luminosity Advanced Blend

2818

Operations as the blend operation, the RGB color components produced by the function f are
effectively obtained by converting both the non-premultiplied source and destination colors to the
HSL (hue, saturation, luminosity) color space, generating a new HSL color by selecting H, S, and L
components from the source or destination according to the blend operation, and then converting
the result back to RGB. In the equations below, a blended RGB color is produced according to the
following pseudocode:

 float minv3(vec3 c) {
 return min(min(c.r, c.g), c.b);
 }
 float maxv3(vec3 c) {
 return max(max(c.r, c.g), c.b);
 }
 float lumv3(vec3 c) {
 return dot(c, vec3(0.30, 0.59, 0.11));
 }
 float satv3(vec3 c) {
 return maxv3(c) - minv3(c);
 }

 // If any color components are outside [0,1], adjust the color to
 // get the components in range.
 vec3 ClipColor(vec3 color) {
 float lum = lumv3(color);
 float mincol = minv3(color);
 float maxcol = maxv3(color);
 if (mincol < 0.0) {
 color = lum + ((color-lum)*lum) / (lum-mincol);
 }
 if (maxcol > 1.0) {
 color = lum + ((color-lum)*(1-lum)) / (maxcol-lum);
 }
 return color;
 }

 // Take the base RGB color <cbase> and override its luminosity
 // with that of the RGB color <clum>.
 vec3 SetLum(vec3 cbase, vec3 clum) {
 float lbase = lumv3(cbase);
 float llum = lumv3(clum);
 float ldiff = llum - lbase;
 vec3 color = cbase + vec3(ldiff);
 return ClipColor(color);
 }

 // Take the base RGB color <cbase> and override its saturation with
 // that of the RGB color <csat>. The override the luminosity of the
 // result with that of the RGB color <clum>.
 vec3 SetLumSat(vec3 cbase, vec3 csat, vec3 clum)
 {

2819

 float minbase = minv3(cbase);
 float sbase = satv3(cbase);
 float ssat = satv3(csat);
 vec3 color;
 if (sbase > 0) {
 // Equivalent (modulo rounding errors) to setting the
 // smallest (R,G,B) component to 0, the largest to <ssat>,
 // and interpolating the "middle" component based on its
 // original value relative to the smallest/largest.
 color = (cbase - minbase) * ssat / sbase;
 } else {
 color = vec3(0.0);
 }
 return SetLum(color, clum);
 }

Table 43. Hue-Saturation-Luminosity Advanced Blend Operations

Mode Result

VK_BLEND_OP_HSL_HUE_EXT

VK_BLEND_OP_HSL_SATURATION_EXT

VK_BLEND_OP_HSL_COLOR_EXT

VK_BLEND_OP_HSL_LUMINOSITY_EXT

When using one of the operations in table Additional RGB Blend Operations as the blend operation,
the source and destination colors used by these blending operations are interpreted according to
srcPremultiplied and dstPremultiplied. The blending operations below are evaluated where the
RGB source and destination color components are both considered to have been premultiplied by
the corresponding A component.

Table 44. Additional RGB Blend Operations

2820

Mode Result

VK_BLEND_OP_PLUS_EXT

VK_BLEND_OP_PLUS_CLAMPED_EXT

VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT

VK_BLEND_OP_PLUS_DARKER_EXT

VK_BLEND_OP_MINUS_EXT

VK_BLEND_OP_MINUS_CLAMPED_EXT

VK_BLEND_OP_CONTRAST_EXT

VK_BLEND_OP_INVERT_OVG_EXT

VK_BLEND_OP_RED_EXT

VK_BLEND_OP_GREEN_EXT

VK_BLEND_OP_BLUE_EXT

30.2. Logical Operations
The application can enable a logical operation between the fragment’s color values and the existing
value in the framebuffer attachment. This logical operation is applied prior to updating the
framebuffer attachment. Logical operations are applied only for signed and unsigned integer and
normalized integer framebuffers. Logical operations are not applied to floating-point or sRGB
format color attachments.

2821

Logical operations are controlled by the logicOpEnable and logicOp members of
VkPipelineColorBlendStateCreateInfo. The logicOpEnable state can also be controlled by
vkCmdSetLogicOpEnableEXT if graphics pipeline is created with
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
The logicOp state can also be controlled by vkCmdSetLogicOpEXT if graphics pipeline is created
with VK_DYNAMIC_STATE_LOGIC_OP_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates. If
logicOpEnable is VK_TRUE, then a logical operation selected by logicOp is applied between each color
attachment and the fragment’s corresponding output value, and blending of all attachments is
treated as if it were disabled. Any attachments using color formats for which logical operations are
not supported simply pass through the color values unmodified. The logical operation is applied
independently for each of the red, green, blue, and alpha components. The logicOp is selected from
the following operations:

// Provided by VK_VERSION_1_0
typedef enum VkLogicOp {
 VK_LOGIC_OP_CLEAR = 0,
 VK_LOGIC_OP_AND = 1,
 VK_LOGIC_OP_AND_REVERSE = 2,
 VK_LOGIC_OP_COPY = 3,
 VK_LOGIC_OP_AND_INVERTED = 4,
 VK_LOGIC_OP_NO_OP = 5,
 VK_LOGIC_OP_XOR = 6,
 VK_LOGIC_OP_OR = 7,
 VK_LOGIC_OP_NOR = 8,
 VK_LOGIC_OP_EQUIVALENT = 9,
 VK_LOGIC_OP_INVERT = 10,
 VK_LOGIC_OP_OR_REVERSE = 11,
 VK_LOGIC_OP_COPY_INVERTED = 12,
 VK_LOGIC_OP_OR_INVERTED = 13,
 VK_LOGIC_OP_NAND = 14,
 VK_LOGIC_OP_SET = 15,
} VkLogicOp;

2822

The logical operations supported by Vulkan are summarized in the following table in which

• ¬ is bitwise invert,

• ∧ is bitwise and,

• ∨ is bitwise or,

• ⊕ is bitwise exclusive or,

• s is the fragment’s Rs0, Gs0, Bs0 or As0 component value for the fragment output corresponding to
the color attachment being updated, and

• d is the color attachment’s R, G, B or A component value:

Table 45. Logical Operations

Mode Operation

VK_LOGIC_OP_CLEAR 0

VK_LOGIC_OP_AND s ∧ d

VK_LOGIC_OP_AND_REVERSE s ∧ ¬ d

VK_LOGIC_OP_COPY s

VK_LOGIC_OP_AND_INVERTED ¬ s ∧ d

VK_LOGIC_OP_NO_OP d

VK_LOGIC_OP_XOR s ⊕ d

VK_LOGIC_OP_OR s ∨ d

VK_LOGIC_OP_NOR ¬ (s ∨ d)

VK_LOGIC_OP_EQUIVALENT ¬ (s ⊕ d)

VK_LOGIC_OP_INVERT ¬ d

VK_LOGIC_OP_OR_REVERSE s ∨ ¬ d

VK_LOGIC_OP_COPY_INVERTED ¬ s

VK_LOGIC_OP_OR_INVERTED ¬ s ∨ d

VK_LOGIC_OP_NAND ¬ (s ∧ d)

VK_LOGIC_OP_SET all 1s

The result of the logical operation is then written to the color attachment as controlled by the
component write mask, described in Blend Operations.

To dynamically set whether logical operations are enabled, call:

// Provided by VK_EXT_extended_dynamic_state3, VK_EXT_shader_object
void vkCmdSetLogicOpEnableEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 logicOpEnable);

2823

• commandBuffer is the command buffer into which the command will be recorded.

• logicOpEnable specifies whether logical operations are enabled.

This command sets whether logical operations are enabled for subsequent drawing commands
when drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineColorBlendStateCreateInfo::logicOpEnable value
used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetLogicOpEnableEXT-None-09423
At least one of the following must be true:

◦ The extendedDynamicState3LogicOpEnable feature is enabled

◦ The shaderObject feature is enabled

• VUID-vkCmdSetLogicOpEnableEXT-logicOp-07366
If the logicOp feature is not enabled, logicOpEnable must be VK_FALSE

Valid Usage (Implicit)

• VUID-vkCmdSetLogicOpEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetLogicOpEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetLogicOpEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetLogicOpEnableEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2824

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

To dynamically set the logical operation to apply for blend state, call:

// Provided by VK_EXT_extended_dynamic_state2, VK_EXT_shader_object
void vkCmdSetLogicOpEXT(
 VkCommandBuffer commandBuffer,
 VkLogicOp logicOp);

• commandBuffer is the command buffer into which the command will be recorded.

• logicOp specifies the logical operation to apply for blend state.

This command sets the logical operation for blend state for subsequent drawing commands when
drawing using shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_LOGIC_OP_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineColorBlendStateCreateInfo::logicOp value used to
create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetLogicOpEXT-None-09422
At least one of the following must be true:

◦ The extendedDynamicState2LogicOp feature is enabled

◦ The shaderObject feature is enabled

Valid Usage (Implicit)

• VUID-vkCmdSetLogicOpEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetLogicOpEXT-logicOp-parameter
logicOp must be a valid VkLogicOp value

• VUID-vkCmdSetLogicOpEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetLogicOpEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

2825

• VUID-vkCmdSetLogicOpEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

30.3. Color Write Mask
Bits which can be set in VkPipelineColorBlendAttachmentState::colorWriteMask, determining
whether the final color values R, G, B and A are written to the framebuffer attachment, are:

// Provided by VK_VERSION_1_0
typedef enum VkColorComponentFlagBits {
 VK_COLOR_COMPONENT_R_BIT = 0x00000001,
 VK_COLOR_COMPONENT_G_BIT = 0x00000002,
 VK_COLOR_COMPONENT_B_BIT = 0x00000004,
 VK_COLOR_COMPONENT_A_BIT = 0x00000008,
} VkColorComponentFlagBits;

• VK_COLOR_COMPONENT_R_BIT specifies that the R value is written to the color attachment for the
appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_G_BIT specifies that the G value is written to the color attachment for the
appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_B_BIT specifies that the B value is written to the color attachment for the
appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_A_BIT specifies that the A value is written to the color attachment for the
appropriate sample. Otherwise, the value in memory is unmodified.

The color write mask operation is applied regardless of whether blending is enabled.

The color write mask operation is applied only if Color Write Enable is enabled for the respective
attachment. Otherwise the color write mask is ignored and writes to all components of the

2826

attachment are disabled.

// Provided by VK_VERSION_1_0
typedef VkFlags VkColorComponentFlags;

VkColorComponentFlags is a bitmask type for setting a mask of zero or more
VkColorComponentFlagBits.

30.4. Color Write Enable
The VkPipelineColorWriteCreateInfoEXT structure is defined as:

// Provided by VK_EXT_color_write_enable
typedef struct VkPipelineColorWriteCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t attachmentCount;
 const VkBool32* pColorWriteEnables;
} VkPipelineColorWriteCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachmentCount is the number of VkBool32 elements in pColorWriteEnables.

• pColorWriteEnables is a pointer to an array of per target attachment boolean values specifying
whether color writes are enabled for the given attachment.

When this structure is included in the pNext chain of VkPipelineColorBlendStateCreateInfo, it
defines per-attachment color write state. If this structure is not included in the pNext chain, it is
equivalent to specifying this structure with attachmentCount equal to the attachmentCount member of
VkPipelineColorBlendStateCreateInfo, and pColorWriteEnables pointing to an array of as many
VK_TRUE values.

If the colorWriteEnable feature is not enabled on the device, all VkBool32 elements in the
pColorWriteEnables array must be VK_TRUE.

Color Write Enable interacts with the Color Write Mask as follows:

• If colorWriteEnable is VK_TRUE, writes to the attachment are determined by the colorWriteMask.

• If colorWriteEnable is VK_FALSE, the colorWriteMask is ignored and writes to all components of the
attachment are disabled. This is equivalent to specifying a colorWriteMask of 0.

Valid Usage

• VUID-VkPipelineColorWriteCreateInfoEXT-pAttachments-04801
If the colorWriteEnable feature is not enabled, all elements of pColorWriteEnables must be

2827

VK_TRUE

• VUID-VkPipelineColorWriteCreateInfoEXT-attachmentCount-07608
If the pipeline is being created with VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT,
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT, VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT, or
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic states not set, attachmentCount must be
equal to the attachmentCount member of the VkPipelineColorBlendStateCreateInfo
structure specified during pipeline creation

• VUID-VkPipelineColorWriteCreateInfoEXT-attachmentCount-06655
attachmentCount must be less than or equal to the maxColorAttachments member of
VkPhysicalDeviceLimits

Valid Usage (Implicit)

• VUID-VkPipelineColorWriteCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_COLOR_WRITE_CREATE_INFO_EXT

• VUID-VkPipelineColorWriteCreateInfoEXT-pColorWriteEnables-parameter
If attachmentCount is not 0, pColorWriteEnables must be a valid pointer to an array of
attachmentCount VkBool32 values

To dynamically enable or disable writes to a color attachment, call:

// Provided by VK_EXT_color_write_enable
void vkCmdSetColorWriteEnableEXT(
 VkCommandBuffer commandBuffer,
 uint32_t attachmentCount,
 const VkBool32* pColorWriteEnables);

• commandBuffer is the command buffer into which the command will be recorded.

• attachmentCount is the number of VkBool32 elements in pColorWriteEnables.

• pColorWriteEnables is a pointer to an array of per target attachment boolean values specifying
whether color writes are enabled for the given attachment.

This command sets the color write enables for subsequent drawing commands when drawing using
shader objects, or when the graphics pipeline is created with
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineColorWriteCreateInfoEXT::pColorWriteEnables
values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetColorWriteEnableEXT-None-04803
The colorWriteEnable feature must be enabled

• VUID-vkCmdSetColorWriteEnableEXT-attachmentCount-06656

2828

attachmentCount must be less than or equal to the maxColorAttachments member of
VkPhysicalDeviceLimits

Valid Usage (Implicit)

• VUID-vkCmdSetColorWriteEnableEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetColorWriteEnableEXT-pColorWriteEnables-parameter
pColorWriteEnables must be a valid pointer to an array of attachmentCount VkBool32
values

• VUID-vkCmdSetColorWriteEnableEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetColorWriteEnableEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetColorWriteEnableEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdSetColorWriteEnableEXT-attachmentCount-arraylength
attachmentCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics State

30.5. Framebuffer Query Instructions
To query the tile properties from the attachments in framebuffer, call:

// Provided by VK_QCOM_tile_properties
VkResult vkGetFramebufferTilePropertiesQCOM(
 VkDevice device,

2829

 VkFramebuffer framebuffer,
 uint32_t* pPropertiesCount,
 VkTilePropertiesQCOM* pProperties);

• device is a logical device associated with the framebuffer.

• framebuffer is a handle of the framebuffer to query.

• pPropertiesCount is a pointer to an integer related to the number of tile properties available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkTilePropertiesQCOM structures.

If pProperties is NULL, then the number of tile properties available is returned in pPropertiesCount.
Otherwise, pPropertiesCount must point to a variable set by the user to the number of elements in
the pProperties array, and on return the variable is overwritten with the number of properties
actually written to pProperties. If pPropertiesCount is less than the number of tile properties
available, at most pPropertiesCount structures will be written, and VK_INCOMPLETE will be returned
instead of VK_SUCCESS, to indicate that not all the available properties were returned.

The number of tile properties available is determined by the number of merged subpasses, and
each tile property is associated with a merged subpass. There will be at most as many properties as
there are subpasses within the render pass. To obtain the tile properties for a given merged
subpass, the pProperties array can be indexed using the postMergeIndex value provided in
VkRenderPassSubpassFeedbackInfoEXT.

Valid Usage (Implicit)

• VUID-vkGetFramebufferTilePropertiesQCOM-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetFramebufferTilePropertiesQCOM-framebuffer-parameter
framebuffer must be a valid VkFramebuffer handle

• VUID-vkGetFramebufferTilePropertiesQCOM-pPropertiesCount-parameter
pPropertiesCount must be a valid pointer to a uint32_t value

• VUID-vkGetFramebufferTilePropertiesQCOM-pProperties-parameter
If the value referenced by pPropertiesCount is not 0, and pProperties is not NULL,
pProperties must be a valid pointer to an array of pPropertiesCount
VkTilePropertiesQCOM structures

• VUID-vkGetFramebufferTilePropertiesQCOM-framebuffer-parent
framebuffer must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

2830

Chapter 31. Dispatching Commands
Dispatching commands (commands with Dispatch in the name) provoke work in a compute pipeline.
Dispatching commands are recorded into a command buffer and when executed by a queue, will
produce work which executes according to the bound compute pipeline. A compute pipeline must
be bound to a command buffer before any dispatching commands are recorded in that command
buffer.

To record a dispatch, call:

// Provided by VK_VERSION_1_0
void vkCmdDispatch(
 VkCommandBuffer commandBuffer,
 uint32_t groupCountX,
 uint32_t groupCountY,
 uint32_t groupCountZ);

• commandBuffer is the command buffer into which the command will be recorded.

• groupCountX is the number of local workgroups to dispatch in the X dimension.

• groupCountY is the number of local workgroups to dispatch in the Y dimension.

• groupCountZ is the number of local workgroups to dispatch in the Z dimension.

When the command is executed, a global workgroup consisting of groupCountX × groupCountY ×
groupCountZ local workgroups is assembled.

Valid Usage

• VUID-vkCmdDispatch-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatch-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatch-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

2831

• VUID-vkCmdDispatch-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatch-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatch-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatch-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatch-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDispatch-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDispatch-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatch-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatch-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDispatch-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo

2832

::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDispatch-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDispatch-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDispatch-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatch-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatch-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatch-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatch-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatch-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatch-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and

2833

VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatch-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatch-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatch-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatch-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDispatch-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatch-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDispatch-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDispatch-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDispatch-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDispatch-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this

2834

command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatch-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatch-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDispatch-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDispatch-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatch-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatch-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatch-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,

2835

it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDispatch-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatch-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatch-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDispatch-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDispatch-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatch-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDispatch-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDispatch-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDispatch-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatch-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatch-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

2836

• VUID-vkCmdDispatch-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatch-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatch-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatch-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDispatch-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDispatch-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDispatch-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatch-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatch-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDispatch-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatch-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,

2837

OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatch-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatch-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDispatch-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDispatch-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatch-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatch-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDispatch-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDispatch-commandBuffer-04617
If any of the shader stages of the VkPipeline bound to the pipeline bind point used by this
command uses the RayQueryKHR capability, then commandBuffer must not be a protected
command buffer

• VUID-vkCmdDispatch-groupCountX-00386
groupCountX must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[0]

• VUID-vkCmdDispatch-groupCountY-00387
groupCountY must be less than or equal to VkPhysicalDeviceLimits

2838

::maxComputeWorkGroupCount[1]

• VUID-vkCmdDispatch-groupCountZ-00388
groupCountZ must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[2]

Valid Usage (Implicit)

• VUID-vkCmdDispatch-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatch-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDispatch-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdDispatch-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDispatch-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

To record an indirect dispatching command, call:

// Provided by VK_VERSION_1_0
void vkCmdDispatchIndirect(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset);

2839

• commandBuffer is the command buffer into which the command will be recorded.

• buffer is the buffer containing dispatch parameters.

• offset is the byte offset into buffer where parameters begin.

vkCmdDispatchIndirect behaves similarly to vkCmdDispatch except that the parameters are read by
the device from a buffer during execution. The parameters of the dispatch are encoded in a
VkDispatchIndirectCommand structure taken from buffer starting at offset.

Valid Usage

• VUID-vkCmdDispatchIndirect-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchIndirect-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchIndirect-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchIndirect-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchIndirect-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatchIndirect-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatchIndirect-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features

2840

must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatchIndirect-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDispatchIndirect-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDispatchIndirect-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchIndirect-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchIndirect-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDispatchIndirect-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDispatchIndirect-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDispatchIndirect-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDispatchIndirect-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchIndirect-OpTypeImage-07028

2841

For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchIndirect-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchIndirect-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchIndirect-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchIndirect-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatchIndirect-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchIndirect-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchIndirect-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchIndirect-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

2842

• VUID-vkCmdDispatchIndirect-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDispatchIndirect-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchIndirect-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDispatchIndirect-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDispatchIndirect-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDispatchIndirect-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDispatchIndirect-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatchIndirect-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatchIndirect-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

2843

• VUID-vkCmdDispatchIndirect-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDispatchIndirect-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchIndirect-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchIndirect-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchIndirect-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDispatchIndirect-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatchIndirect-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatchIndirect-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDispatchIndirect-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

2844

• VUID-vkCmdDispatchIndirect-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatchIndirect-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDispatchIndirect-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDispatchIndirect-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDispatchIndirect-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchIndirect-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchIndirect-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchIndirect-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchIndirect-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchIndirect-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchIndirect-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

2845

• VUID-vkCmdDispatchIndirect-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchIndirect-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDispatchIndirect-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchIndirect-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchIndirect-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDispatchIndirect-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchIndirect-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchIndirect-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchIndirect-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDispatchIndirect-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail

2846

integer texel coordinate validation

• VUID-vkCmdDispatchIndirect-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatchIndirect-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatchIndirect-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDispatchIndirect-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDispatchIndirect-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDispatchIndirect-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDispatchIndirect-offset-00407
The sum of offset and the size of VkDispatchIndirectCommand must be less than or equal to
the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDispatchIndirect-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatchIndirect-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDispatchIndirect-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDispatchIndirect-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdDispatchIndirect-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDispatchIndirect-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDispatchIndirect-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

2847

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

The VkDispatchIndirectCommand structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDispatchIndirectCommand {
 uint32_t x;
 uint32_t y;
 uint32_t z;
} VkDispatchIndirectCommand;

• x is the number of local workgroups to dispatch in the X dimension.

• y is the number of local workgroups to dispatch in the Y dimension.

• z is the number of local workgroups to dispatch in the Z dimension.

The members of VkDispatchIndirectCommand have the same meaning as the corresponding
parameters of vkCmdDispatch.

Valid Usage

• VUID-VkDispatchIndirectCommand-x-00417
x must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• VUID-VkDispatchIndirectCommand-y-00418
y must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• VUID-VkDispatchIndirectCommand-z-00419
z must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

To record a dispatch using non-zero base values for the components of WorkgroupId, call:

// Provided by VK_VERSION_1_1

2848

void vkCmdDispatchBase(
 VkCommandBuffer commandBuffer,
 uint32_t baseGroupX,
 uint32_t baseGroupY,
 uint32_t baseGroupZ,
 uint32_t groupCountX,
 uint32_t groupCountY,
 uint32_t groupCountZ);

or the equivalent command

// Provided by VK_KHR_device_group
void vkCmdDispatchBaseKHR(
 VkCommandBuffer commandBuffer,
 uint32_t baseGroupX,
 uint32_t baseGroupY,
 uint32_t baseGroupZ,
 uint32_t groupCountX,
 uint32_t groupCountY,
 uint32_t groupCountZ);

• commandBuffer is the command buffer into which the command will be recorded.

• baseGroupX is the start value for the X component of WorkgroupId.

• baseGroupY is the start value for the Y component of WorkgroupId.

• baseGroupZ is the start value for the Z component of WorkgroupId.

• groupCountX is the number of local workgroups to dispatch in the X dimension.

• groupCountY is the number of local workgroups to dispatch in the Y dimension.

• groupCountZ is the number of local workgroups to dispatch in the Z dimension.

When the command is executed, a global workgroup consisting of groupCountX × groupCountY ×
groupCountZ local workgroups is assembled, with WorkgroupId values ranging from [baseGroup*,
baseGroup* + groupCount*) in each component. vkCmdDispatch is equivalent to
vkCmdDispatchBase(0,0,0,groupCountX,groupCountY,groupCountZ).

Valid Usage

• VUID-vkCmdDispatchBase-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchBase-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or

2849

VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchBase-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchBase-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchBase-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatchBase-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatchBase-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatchBase-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDispatchBase-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDispatchBase-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchBase-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by

2850

VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchBase-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDispatchBase-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDispatchBase-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDispatchBase-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDispatchBase-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchBase-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchBase-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchBase-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchBase-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchBase-None-08601
For each push constant that is statically used by a bound shader, a push constant value

2851

must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatchBase-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchBase-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchBase-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchBase-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchBase-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDispatchBase-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchBase-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDispatchBase-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDispatchBase-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline

2852

bind point used by this command

• VUID-vkCmdDispatchBase-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDispatchBase-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatchBase-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatchBase-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDispatchBase-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDispatchBase-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchBase-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchBase-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this

2853

command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchBase-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDispatchBase-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatchBase-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatchBase-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDispatchBase-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDispatchBase-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatchBase-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDispatchBase-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDispatchBase-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDispatchBase-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

2854

• VUID-vkCmdDispatchBase-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchBase-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchBase-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchBase-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchBase-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchBase-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchBase-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchBase-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDispatchBase-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchBase-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchBase-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

2855

• VUID-vkCmdDispatchBase-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchBase-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchBase-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchBase-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDispatchBase-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDispatchBase-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatchBase-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatchBase-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDispatchBase-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDispatchBase-commandBuffer-04617
If any of the shader stages of the VkPipeline bound to the pipeline bind point used by this

2856

command uses the RayQueryKHR capability, then commandBuffer must not be a protected
command buffer

• VUID-vkCmdDispatchBase-baseGroupX-00421
baseGroupX must be less than VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• VUID-vkCmdDispatchBase-baseGroupX-00422
baseGroupY must be less than VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• VUID-vkCmdDispatchBase-baseGroupZ-00423
baseGroupZ must be less than VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

• VUID-vkCmdDispatchBase-groupCountX-00424
groupCountX must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[0] minus baseGroupX

• VUID-vkCmdDispatchBase-groupCountY-00425
groupCountY must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[1] minus baseGroupY

• VUID-vkCmdDispatchBase-groupCountZ-00426
groupCountZ must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[2] minus baseGroupZ

• VUID-vkCmdDispatchBase-baseGroupX-00427
If any of baseGroupX, baseGroupY, or baseGroupZ are not zero, then the bound compute
pipeline must have been created with the VK_PIPELINE_CREATE_DISPATCH_BASE flag

Valid Usage (Implicit)

• VUID-vkCmdDispatchBase-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatchBase-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDispatchBase-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdDispatchBase-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDispatchBase-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2857

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

A subpass shading dispatches a compute pipeline work with the work dimension of render area of
the calling subpass and work groups are partitioned by specified work group size. Subpass
operations like subpassLoad are allowed to be used.

To record a subpass shading, call:

// Provided by VK_HUAWEI_subpass_shading
void vkCmdSubpassShadingHUAWEI(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer into which the command will be recorded.

When the command is executed, a global workgroup consisting of ceil (render area size / local
workgroup size) local workgroups is assembled.

Valid Usage

• VUID-vkCmdSubpassShadingHUAWEI-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdSubpassShadingHUAWEI-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdSubpassShadingHUAWEI-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdSubpassShadingHUAWEI-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and

2858

reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdSubpassShadingHUAWEI-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdSubpassShadingHUAWEI-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdSubpassShadingHUAWEI-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdSubpassShadingHUAWEI-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdSubpassShadingHUAWEI-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdSubpassShadingHUAWEI-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdSubpassShadingHUAWEI-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdSubpassShadingHUAWEI-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

2859

• VUID-vkCmdSubpassShadingHUAWEI-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdSubpassShadingHUAWEI-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdSubpassShadingHUAWEI-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdSubpassShadingHUAWEI-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdSubpassShadingHUAWEI-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdSubpassShadingHUAWEI-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdSubpassShadingHUAWEI-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdSubpassShadingHUAWEI-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

2860

• VUID-vkCmdSubpassShadingHUAWEI-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdSubpassShadingHUAWEI-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdSubpassShadingHUAWEI-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdSubpassShadingHUAWEI-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdSubpassShadingHUAWEI-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdSubpassShadingHUAWEI-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdSubpassShadingHUAWEI-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdSubpassShadingHUAWEI-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdSubpassShadingHUAWEI-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdSubpassShadingHUAWEI-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type

2861

VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdSubpassShadingHUAWEI-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdSubpassShadingHUAWEI-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdSubpassShadingHUAWEI-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdSubpassShadingHUAWEI-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdSubpassShadingHUAWEI-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdSubpassShadingHUAWEI-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdSubpassShadingHUAWEI-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

2862

• VUID-vkCmdSubpassShadingHUAWEI-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdSubpassShadingHUAWEI-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdSubpassShadingHUAWEI-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdSubpassShadingHUAWEI-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdSubpassShadingHUAWEI-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdSubpassShadingHUAWEI-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdSubpassShadingHUAWEI-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdSubpassShadingHUAWEI-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdSubpassShadingHUAWEI-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdSubpassShadingHUAWEI-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdSubpassShadingHUAWEI-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdSubpassShadingHUAWEI-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is

2863

accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdSubpassShadingHUAWEI-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdSubpassShadingHUAWEI-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdSubpassShadingHUAWEI-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdSubpassShadingHUAWEI-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,

2864

OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdSubpassShadingHUAWEI-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdSubpassShadingHUAWEI-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdSubpassShadingHUAWEI-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdSubpassShadingHUAWEI-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdSubpassShadingHUAWEI-None-04931
This command must be called in a subpass with bind point
VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI. No draw commands can be called in the
same subpass. Only one vkCmdSubpassShadingHUAWEI command can be called in a
subpass

Valid Usage (Implicit)

• VUID-vkCmdSubpassShadingHUAWEI-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSubpassShadingHUAWEI-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSubpassShadingHUAWEI-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSubpassShadingHUAWEI-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdSubpassShadingHUAWEI-videocoding
This command must only be called outside of a video coding scope

2865

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics Action

31.1. Dispatch Command for CUDA PTX Kernels
Compute kernels can be provided in SPIR-V or PTX code. When using PTX kernels the dispatch
mechanism is different than with regular compute pipelines.

The way to create a PTX assembly file is beyond the scope of this documentation. For mode
information, please refer to the CUDA toolkit documentation at https://docs.nvidia.com/cuda/.

Prior to using this command, you must initialize a CUDA module, and create a function handle that
will serve as the entry point of the kernel to dispatch. See CUDA Modules.

The dispatching of a CUDA kernel is recorded into a command buffer, and when executed by a
queue submit, will produce work which executes according to the bound compute pipeline.

To record a CUDA kernel launch, call:

// Provided by VK_NV_cuda_kernel_launch
void vkCmdCudaLaunchKernelNV(
 VkCommandBuffer commandBuffer,
 const VkCudaLaunchInfoNV* pLaunchInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pLaunchInfo is a pointer to a VkCudaLaunchInfoNV structure in which the grid (similar to
workgroup) dimension, function handle and related arguments are defined.

When the command is executed, a global workgroup consisting of gridDimX × gridDimY × gridDimZ
local workgroups is assembled.

Valid Usage (Implicit)

• VUID-vkCmdCudaLaunchKernelNV-commandBuffer-parameter

2866

https://docs.nvidia.com/cuda/

commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCudaLaunchKernelNV-pLaunchInfo-parameter
pLaunchInfo must be a valid pointer to a valid VkCudaLaunchInfoNV structure

• VUID-vkCmdCudaLaunchKernelNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCudaLaunchKernelNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdCudaLaunchKernelNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action

31.1.1. Passing Dispatch Parameters and Arguments

The VkCudaLaunchInfoNV structure is very close to the parameters of the CUDA-Driver function
cuLaunchKernel documented in section 6.19 Execution Control of CUDA Driver API.

The structure is defined as:

// Provided by VK_NV_cuda_kernel_launch
typedef struct VkCudaLaunchInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkCudaFunctionNV function;
 uint32_t gridDimX;
 uint32_t gridDimY;
 uint32_t gridDimZ;
 uint32_t blockDimX;
 uint32_t blockDimY;
 uint32_t blockDimZ;
 uint32_t sharedMemBytes;
 size_t paramCount;

2867

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXEC.html#group__CUDA__EXEC_1gb8f3dc3031b40da29d5f9a7139e52e15
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXEC.html#group__CUDA__EXEC

 const void* const * pParams;
 size_t extraCount;
 const void* const * pExtras;
} VkCudaLaunchInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• function is the CUDA-Driver handle to the function being launched.

• gridDimX is the number of local workgroups to dispatch in the X dimension. It must be less than
or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• gridDimY is the number of local workgroups to dispatch in the Y dimension. It must be less than
or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• gridDimZ is the number of local workgroups to dispatch in the Z dimension. It must be less than
or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

• blockDimX is block size in the X dimension.

• blockDimY is block size in the Y dimension.

• blockDimZ is block size in the Z dimension.

• sharedMemBytes is the dynamic shared-memory size per thread block in bytes.

• paramCount is the length of the pParams table.

• pParams is a pointer to an array of paramCount pointers, corresponding to the arguments of
function.

• extraCount is reserved for future use.

• pExtras is reserved for future use.

Kernel parameters of function are specified via pParams, very much the same way as described in
cuLaunchKernel

If function has N parameters, then pParams must be an array of N pointers and paramCount must be
set to N. Each of kernelParams[0] through kernelParams[N-1] must point to a region of memory from
which the actual kernel parameter will be copied. The number of kernel parameters and their
offsets and sizes are not specified here as that information is stored in the VkCudaFunctionNV
object.

The application-owned memory pointed to by pParams and kernelParams[0] through kernelParams[N-
1] are consumed immediately, and may be altered or freed after vkCmdCudaLaunchKernelNV has
returned.

Valid Usage

• VUID-VkCudaLaunchInfoNV-gridDimX-09406
gridDimX must be less than or equal to VkPhysicalDeviceLimits::
maxComputeWorkGroupCount[0]

2868

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXEC.html#group__CUDA__EXEC_1gb8f3dc3031b40da29d5f9a7139e52e15

• VUID-VkCudaLaunchInfoNV-gridDimY-09407
gridDimY must be less than or equal to VkPhysicalDeviceLimits::
maxComputeWorkGroupCount[1]

• VUID-VkCudaLaunchInfoNV-gridDimZ-09408
gridDimZ must be less than or equal to VkPhysicalDeviceLimits::
maxComputeWorkGroupCount[2]

• VUID-VkCudaLaunchInfoNV-paramCount-09409
paramCount must be the total amount of parameters listed in the pParams table.

• VUID-VkCudaLaunchInfoNV-pParams-09410
pParams must be a pointer to a table of paramCount parameters, corresponding to the
arguments of function.

• VUID-VkCudaLaunchInfoNV-extraCount-09411
extraCount must be 0

• VUID-VkCudaLaunchInfoNV-pExtras-09412
pExtras must be NULL

Valid Usage (Implicit)

• VUID-VkCudaLaunchInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_CUDA_LAUNCH_INFO_NV

• VUID-VkCudaLaunchInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkCudaLaunchInfoNV-function-parameter
function must be a valid VkCudaFunctionNV handle

31.1.2. Resource Sharing from Vulkan to the CUDA Kernel

Given that one key limitation of this extension is that Vulkan cannot access, nor bind any global
resource of CUDA modules, the only way to exchange data with the kernel must be to pass
resources via the arguments of the function.

You can use VK_KHR_buffer_device_address to write/read to/from a VkBuffer object.
VK_KHR_buffer_device_address allows you to get the device address of the buffer to pass it as an
argument into pParams. Application-side pointer arithmetic on the device address is legal, but will
not be bounds-checked on the device.

The corresponding argument of the CUDA function should be declared as a pointer of the same
type as the referenced buffer. CUDA code may simply read or write to this buffer in the typical C
way.

You may also use VK_NVX_image_view_handle as another convenient way to read/write from/to a
VkImage.

The corresponding argument of the CUDA function must be typed as cudaSurfaceObject_t.

2869

• You may read from it by using CUDA surface-read functions such as surf3Dread, surf2Dread, and
surf1Dread

• You may write to it by using CUDA surface-write functions such as surf3Dwrite, surf2Dwrite, and
surf1Dwrite

Please refer to CUDA surface object documentation for more details

On Vulkan side, here is an example on how to setup VkImageViewHandleInfoNVX to query the
handle for cudaSurfaceObject_t:

VkImageViewHandleInfoNVX imageViewHandleInfo =
{VK_STRUCTURE_TYPE_IMAGE_VIEW_HANDLE_INFO_NVX};
imageViewHandleInfo.sampler = VK_NULL_HANDLE;
imageViewHandleInfo.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
imageViewHandleInfo.imageView = imageViewIn; // the VkImageView we want to access
uint32_t myViewHandleIn = vkGetImageViewHandleNVX(m_device, &imageViewHandleInfo);
imageViewHandleInfo.imageView = imageViewOut; // the VkImageView we want to access
uint32_t myViewHandleOut = vkGetImageViewHandleNVX(m_device, &imageViewHandleInfo);

Here is an example of how to declare parameters for pParams

VkCudaLaunchInfoNV launchInfo = { VK_STRUCTURE_TYPE_CUDA_LAUNCH_INFO_NV };

int block_size = 8;
float dt = 1.0f / 60.0f;

const void* params[] =
{
 &dt,
 &uint32_t myViewHandleIn,
 &uint32_t myViewHandleOut
};

launchInfo.function = cudaFunction; // CUDA function previously created
launchInfo.gridDimX = (volumeTexDimensionNonBoundary / block_size);
launchInfo.gridDimY = (volumeTexDimensionNonBoundary / block_size);
launchInfo.gridDimZ = (volumeTexDimensionNonBoundary / block_size);
launchInfo.blockDimX = block_size;
launchInfo.blockDimY = block_size;
launchInfo.blockDimZ = block_size;
launchInfo.sharedMemBytes = 0;
launchInfo.paramCount = 3;
launchInfo.pParams = ¶ms[0];
launchInfo.extraCount = 0;
launchInfo.pExtras = nullptr;

vkCmdCudaLaunchKernelNV(commandBuffer, &launchInfo);

2870

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html%23surface-object-api-appendix

In the CUDA kernel source code, here is an example on how arguments match pParams and how we
can use Surface object:

extern "C" __global__ void cudaFunction(
 float dt,
 cudaSurfaceObject_t volumeTexIn,
 cudaSurfaceObject_t volumeTexOut
)
{
 int i = 1 + blockIdx.x * blockDim.x + threadIdx.x;
 int j = 1 + blockIdx.y * blockDim.y + threadIdx.y;
 int k = 1 + blockIdx.z * blockDim.z + threadIdx.z;

 float val;
 surf3Dread(&val, volumeTexIn, i * sizeof(float), j, k);
 ...
 float result = ...;
 // write result
 surf3Dwrite(result, volumeTexOut, i * sizeof(float), j, k);
}

2871

Chapter 32. Device-Generated Commands
This chapter discusses the generation of command buffer content on the device, for which these
principle steps are to be taken:

• Define via VkIndirectCommandsLayoutNV the sequence of commands which should be generated.

• Optionally make use of device-bindable Shader Groups for graphics pipelines.

• Retrieve device addresses by vkGetBufferDeviceAddressEXT for setting buffers on the device.

• Retrieve device addresses of compute pipelines by vkGetPipelineIndirectDeviceAddressNV to be
able to bind it in device generated rendering.

• Fill one or more VkBuffer with the appropriate content that gets interpreted by
VkIndirectCommandsLayoutNV.

• Create a preprocess VkBuffer using the allocation information from
vkGetGeneratedCommandsMemoryRequirementsNV.

• Optionally preprocess the input data using vkCmdPreprocessGeneratedCommandsNV in a
separate action.

• Generate and execute the actual commands via vkCmdExecuteGeneratedCommandsNV passing
all required data.

vkCmdPreprocessGeneratedCommandsNV executes in a separate logical pipeline from either
graphics or compute. When preprocessing commands in a separate step they must be explicitly
synchronized against the command execution. When not preprocessing, the preprocessing is
automatically synchronized against the command execution.

32.1. Indirect Commands Layout
The device-side command generation happens through an iterative processing of an atomic
sequence comprised of command tokens, which are represented by:

// Provided by VK_NV_device_generated_commands
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkIndirectCommandsLayoutNV)

Each indirect command layout must have exactly one action command token and it must be the
last token in the sequence.

32.1.1. Creation and Deletion

Indirect command layouts are created by:

// Provided by VK_NV_device_generated_commands
VkResult vkCreateIndirectCommandsLayoutNV(
 VkDevice device,
 const VkIndirectCommandsLayoutCreateInfoNV* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,

2872

 VkIndirectCommandsLayoutNV* pIndirectCommandsLayout);

• device is the logical device that creates the indirect command layout.

• pCreateInfo is a pointer to a VkIndirectCommandsLayoutCreateInfoNV structure containing
parameters affecting creation of the indirect command layout.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pIndirectCommandsLayout is a pointer to a VkIndirectCommandsLayoutNV handle in which the
resulting indirect command layout is returned.

Valid Usage

• VUID-vkCreateIndirectCommandsLayoutNV-deviceGeneratedCommands-02929
The VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV::deviceGeneratedCommands feature
must be enabled

Valid Usage (Implicit)

• VUID-vkCreateIndirectCommandsLayoutNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateIndirectCommandsLayoutNV-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkIndirectCommandsLayoutCreateInfoNV
structure

• VUID-vkCreateIndirectCommandsLayoutNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateIndirectCommandsLayoutNV-pIndirectCommandsLayout-parameter
pIndirectCommandsLayout must be a valid pointer to a VkIndirectCommandsLayoutNV
handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkIndirectCommandsLayoutCreateInfoNV structure is defined as:

// Provided by VK_NV_device_generated_commands

2873

typedef struct VkIndirectCommandsLayoutCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkIndirectCommandsLayoutUsageFlagsNV flags;
 VkPipelineBindPoint pipelineBindPoint;
 uint32_t tokenCount;
 const VkIndirectCommandsLayoutTokenNV* pTokens;
 uint32_t streamCount;
 const uint32_t* pStreamStrides;
} VkIndirectCommandsLayoutCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineBindPoint is the VkPipelineBindPoint that this layout targets.

• flags is a bitmask of VkIndirectCommandsLayoutUsageFlagBitsNV specifying usage hints of this
layout.

• tokenCount is the length of the individual command sequence.

• pTokens is an array describing each command token in detail. See
VkIndirectCommandsTokenTypeNV and VkIndirectCommandsLayoutTokenNV below for
details.

• streamCount is the number of streams used to provide the token inputs.

• pStreamStrides is an array defining the byte stride for each input stream.

The following code illustrates some of the flags:

void cmdProcessAllSequences(cmd, pipeline, indirectCommandsLayout,
pIndirectCommandsTokens, sequencesCount, indexbuffer, indexbufferOffset)
{
 for (s = 0; s < sequencesCount; s++)
 {
 sUsed = s;

 if (indirectCommandsLayout.flags &
VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NV) {
 sUsed = indexbuffer.load_uint32(sUsed * sizeof(uint32_t) + indexbufferOffset);
 }

 if (indirectCommandsLayout.flags &
VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NV) {
 sUsed = incoherent_implementation_dependent_permutation[sUsed];
 }

 cmdProcessSequence(cmd, pipeline, indirectCommandsLayout,
pIndirectCommandsTokens, sUsed);
 }
}

2874

When tokens are consumed, an offset is computed based on token offset and stream stride. The
resulting offset is required to be aligned. The alignment for a specific token is equal to the scalar
alignment of the data type as defined in Alignment Requirements, or
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::minIndirectCommandsBufferOffsetAlignment,
whichever is lower.

Note

A minIndirectCommandsBufferOffsetAlignment of 4 allows VkDeviceAddress to be
packed as uvec2 with scalar layout instead of uint64_t with 8 byte alignment. This
enables direct compatibility with D3D12 command signature layouts.

Valid Usage

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pipelineBindPoint-02930
The pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS or
VK_PIPELINE_BIND_POINT_COMPUTE

• VUID-VkIndirectCommandsLayoutCreateInfoNV-tokenCount-02931
tokenCount must be greater than 0 and less than or equal to
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::maxIndirectCommandsTokenCount

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pTokens-02932
If pTokens contains an entry of VK_INDIRECT_COMMANDS_TOKEN_TYPE_SHADER_GROUP_NV it must
be the first element of the array and there must be only a single element of such token
type

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pTokens-09585
If pTokens contains an entry of VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV it must be
the first element of the array and there must be only a single element of such token type

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pTokens-02933
If pTokens contains an entry of VK_INDIRECT_COMMANDS_TOKEN_TYPE_STATE_FLAGS_NV there
must be only a single element of such token type

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pTokens-02934
All state tokens in pTokens must occur before any action command tokens
(VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NV,
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NV,
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_TASKS_NV,
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_NV ,
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NV)

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pTokens-02935
The content of pTokens must include one single action command token that is compatible
with the pipelineBindPoint

• VUID-VkIndirectCommandsLayoutCreateInfoNV-streamCount-02936
streamCount must be greater than 0 and less or equal to
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::maxIndirectCommandsStreamCount

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pStreamStrides-02937
each element of pStreamStrides must be greater than 0 and less than or equal to

2875

VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::maxIndirectCommandsStreamStride.
Furthermore the alignment of each token input must be ensured

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pipelineBindPoint-09088
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE then the
VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV::deviceGeneratedCompute
feature must be enabled

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pipelineBindPoint-09089
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE then the state tokens in pTokens
must only include VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NV,
VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV, or
VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pipelineBindPoint-09090
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE and pTokens includes
VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV, then the
VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV::deviceGeneratedComputePipeli
nes feature must be enabled

Valid Usage (Implicit)

• VUID-VkIndirectCommandsLayoutCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NV

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkIndirectCommandsLayoutCreateInfoNV-flags-parameter
flags must be a valid combination of VkIndirectCommandsLayoutUsageFlagBitsNV
values

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pTokens-parameter
pTokens must be a valid pointer to an array of tokenCount valid
VkIndirectCommandsLayoutTokenNV structures

• VUID-VkIndirectCommandsLayoutCreateInfoNV-pStreamStrides-parameter
pStreamStrides must be a valid pointer to an array of streamCount uint32_t values

• VUID-VkIndirectCommandsLayoutCreateInfoNV-tokenCount-arraylength
tokenCount must be greater than 0

• VUID-VkIndirectCommandsLayoutCreateInfoNV-streamCount-arraylength
streamCount must be greater than 0

Bits which can be set in VkIndirectCommandsLayoutCreateInfoNV::flags, specifying usage hints of
an indirect command layout, are:

// Provided by VK_NV_device_generated_commands

2876

typedef enum VkIndirectCommandsLayoutUsageFlagBitsNV {
 VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_NV = 0x00000001,
 VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NV = 0x00000002,
 VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NV = 0x00000004,
} VkIndirectCommandsLayoutUsageFlagBitsNV;

• VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_NV specifies that the layout is
always used with the manual preprocessing step through calling
vkCmdPreprocessGeneratedCommandsNV and executed by
vkCmdExecuteGeneratedCommandsNV with isPreprocessed set to VK_TRUE.

• VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NV specifies that the input data for
the sequences is not implicitly indexed from 0..sequencesUsed but a user provided VkBuffer
encoding the index is provided.

• VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NV specifies that the processing of
sequences can happen at an implementation-dependent order, which is not: guaranteed to be
coherent using the same input data. This flag is ignored when the pipelineBindPoint is
VK_PIPELINE_BIND_POINT_COMPUTE as it is implied that the dispatch sequence is always unordered.

// Provided by VK_NV_device_generated_commands
typedef VkFlags VkIndirectCommandsLayoutUsageFlagsNV;

VkIndirectCommandsLayoutUsageFlagsNV is a bitmask type for setting a mask of zero or more
VkIndirectCommandsLayoutUsageFlagBitsNV.

Indirect command layouts are destroyed by:

// Provided by VK_NV_device_generated_commands
void vkDestroyIndirectCommandsLayoutNV(
 VkDevice device,
 VkIndirectCommandsLayoutNV indirectCommandsLayout,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the layout.

• indirectCommandsLayout is the layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyIndirectCommandsLayoutNV-indirectCommandsLayout-02938
All submitted commands that refer to indirectCommandsLayout must have completed
execution

• VUID-vkDestroyIndirectCommandsLayoutNV-indirectCommandsLayout-02939
If VkAllocationCallbacks were provided when indirectCommandsLayout was created, a
compatible set of callbacks must be provided here

2877

• VUID-vkDestroyIndirectCommandsLayoutNV-indirectCommandsLayout-02940
If no VkAllocationCallbacks were provided when indirectCommandsLayout was created,
pAllocator must be NULL

• VUID-vkDestroyIndirectCommandsLayoutNV-deviceGeneratedCommands-02941
The VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV::deviceGeneratedCommands feature
must be enabled

Valid Usage (Implicit)

• VUID-vkDestroyIndirectCommandsLayoutNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyIndirectCommandsLayoutNV-indirectCommandsLayout-parameter
If indirectCommandsLayout is not VK_NULL_HANDLE, indirectCommandsLayout must be a
valid VkIndirectCommandsLayoutNV handle

• VUID-vkDestroyIndirectCommandsLayoutNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyIndirectCommandsLayoutNV-indirectCommandsLayout-parent
If indirectCommandsLayout is a valid handle, it must have been created, allocated, or
retrieved from device

Host Synchronization

• Host access to indirectCommandsLayout must be externally synchronized

32.1.2. Token Input Streams

The VkIndirectCommandsStreamNV structure specifies the input data for one or more tokens at
processing time.

// Provided by VK_NV_device_generated_commands
typedef struct VkIndirectCommandsStreamNV {
 VkBuffer buffer;
 VkDeviceSize offset;
} VkIndirectCommandsStreamNV;

• buffer specifies the VkBuffer storing the functional arguments for each sequence. These
arguments can be written by the device.

• offset specified an offset into buffer where the arguments start.

2878

Valid Usage

• VUID-VkIndirectCommandsStreamNV-buffer-02942
The buffer’s usage flag must have the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-VkIndirectCommandsStreamNV-offset-02943
The offset must be aligned to VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV
::minIndirectCommandsBufferOffsetAlignment

• VUID-VkIndirectCommandsStreamNV-buffer-02975
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

Valid Usage (Implicit)

• VUID-VkIndirectCommandsStreamNV-buffer-parameter
buffer must be a valid VkBuffer handle

The input streams can contain raw uint32_t values, existing indirect commands such as:

• VkDrawIndirectCommand

• VkDrawIndexedIndirectCommand

• VkDrawMeshTasksIndirectCommandNV

• VkDrawMeshTasksIndirectCommandEXT

• VkDispatchIndirectCommand

or additional commands as listed below. How the data is used is described in the next section.

The VkBindShaderGroupIndirectCommandNV structure specifies the input data for the
VK_INDIRECT_COMMANDS_TOKEN_TYPE_SHADER_GROUP_NV token.

// Provided by VK_NV_device_generated_commands
typedef struct VkBindShaderGroupIndirectCommandNV {
 uint32_t groupIndex;
} VkBindShaderGroupIndirectCommandNV;

• groupIndex specifies which shader group of the current bound graphics pipeline is used.

Valid Usage

• VUID-VkBindShaderGroupIndirectCommandNV-None-02944
The current bound graphics pipeline, as well as the pipelines it may reference, must have
been created with VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• VUID-VkBindShaderGroupIndirectCommandNV-index-02945

2879

The index must be within range of the accessible shader groups of the current bound
graphics pipeline. See vkCmdBindPipelineShaderGroupNV for further details

The VkBindIndexBufferIndirectCommandNV structure specifies the input data for the
VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NV token.

// Provided by VK_NV_device_generated_commands
typedef struct VkBindIndexBufferIndirectCommandNV {
 VkDeviceAddress bufferAddress;
 uint32_t size;
 VkIndexType indexType;
} VkBindIndexBufferIndirectCommandNV;

• bufferAddress specifies a physical address of the VkBuffer used as index buffer.

• size is the byte size range which is available for this operation from the provided address.

• indexType is a VkIndexType value specifying how indices are treated. Instead of the Vulkan
enum values, a custom uint32_t value can be mapped to an VkIndexType by specifying the
VkIndirectCommandsLayoutTokenNV::pIndexTypes and VkIndirectCommandsLayoutTokenNV
::pIndexTypeValues arrays.

Valid Usage

• VUID-VkBindIndexBufferIndirectCommandNV-None-02946
The buffer’s usage flag from which the address was acquired must have the
VK_BUFFER_USAGE_INDEX_BUFFER_BIT bit set

• VUID-VkBindIndexBufferIndirectCommandNV-bufferAddress-02947
The bufferAddress must be aligned to the indexType used

• VUID-VkBindIndexBufferIndirectCommandNV-None-02948
Each element of the buffer from which the address was acquired and that is non-sparse
must be bound completely and contiguously to a single VkDeviceMemory object

Valid Usage (Implicit)

• VUID-VkBindIndexBufferIndirectCommandNV-indexType-parameter
indexType must be a valid VkIndexType value

The VkBindVertexBufferIndirectCommandNV structure specifies the input data for the
VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NV token.

// Provided by VK_NV_device_generated_commands
typedef struct VkBindVertexBufferIndirectCommandNV {
 VkDeviceAddress bufferAddress;
 uint32_t size;

2880

 uint32_t stride;
} VkBindVertexBufferIndirectCommandNV;

• bufferAddress specifies a physical address of the VkBuffer used as vertex input binding.

• size is the byte size range which is available for this operation from the provided address.

• stride is the byte size stride for this vertex input binding as in VkVertexInputBindingDescription
::stride. It is only used if VkIndirectCommandsLayoutTokenNV::vertexDynamicStride was set,
otherwise the stride is inherited from the current bound graphics pipeline.

Valid Usage

• VUID-VkBindVertexBufferIndirectCommandNV-None-02949
The buffer’s usage flag from which the address was acquired must have the
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT bit set

• VUID-VkBindVertexBufferIndirectCommandNV-None-02950
Each element of the buffer from which the address was acquired and that is non-sparse
must be bound completely and contiguously to a single VkDeviceMemory object

The VkSetStateFlagsIndirectCommandNV structure specifies the input data for the
VK_INDIRECT_COMMANDS_TOKEN_TYPE_STATE_FLAGS_NV token. Which state is changed depends on the
VkIndirectStateFlagBitsNV specified at VkIndirectCommandsLayoutNV creation time.

// Provided by VK_NV_device_generated_commands
typedef struct VkSetStateFlagsIndirectCommandNV {
 uint32_t data;
} VkSetStateFlagsIndirectCommandNV;

• data encodes packed state that this command alters.

◦ Bit 0: If set represents VK_FRONT_FACE_CLOCKWISE, otherwise VK_FRONT_FACE_COUNTER_CLOCKWISE

A subset of the graphics pipeline state can be altered using indirect state flags:

// Provided by VK_NV_device_generated_commands
typedef enum VkIndirectStateFlagBitsNV {
 VK_INDIRECT_STATE_FLAG_FRONTFACE_BIT_NV = 0x00000001,
} VkIndirectStateFlagBitsNV;

• VK_INDIRECT_STATE_FLAG_FRONTFACE_BIT_NV allows to toggle the VkFrontFace rasterization state for
subsequent drawing commands.

// Provided by VK_NV_device_generated_commands
typedef VkFlags VkIndirectStateFlagsNV;

2881

VkIndirectStateFlagsNV is a bitmask type for setting a mask of zero or more
VkIndirectStateFlagBitsNV.

The VkBindPipelineIndirectCommandNV structure specifies the input data for the
VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV token.

// Provided by VK_NV_device_generated_commands_compute
typedef struct VkBindPipelineIndirectCommandNV {
 VkDeviceAddress pipelineAddress;
} VkBindPipelineIndirectCommandNV;

• pipelineAddress specifies the pipeline address of the compute pipeline that will be used in
device generated rendering.

Valid Usage

• VUID-VkBindPipelineIndirectCommandNV-deviceGeneratedComputePipelines-09091
The VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV
::deviceGeneratedComputePipelines feature must be enabled

• VUID-VkBindPipelineIndirectCommandNV-None-09092
The referenced pipeline must have been created with
VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• VUID-VkBindPipelineIndirectCommandNV-None-09093
The referenced pipeline must have been updated with
vkCmdUpdatePipelineIndirectBufferNV

• VUID-VkBindPipelineIndirectCommandNV-None-09094
The referenced pipeline’s address must have been queried with
vkGetPipelineIndirectDeviceAddressNV

32.1.3. Tokenized Command Processing

The processing is in principle illustrated below:

void cmdProcessSequence(cmd, pipeline, indirectCommandsLayout,
pIndirectCommandsStreams, s)
{
 for (t = 0; t < indirectCommandsLayout.tokenCount; t++)
 {
 uint32_t stream = indirectCommandsLayout.pTokens[t].stream;
 uint32_t offset = indirectCommandsLayout.pTokens[t].offset;
 uint32_t stride = indirectCommandsLayout.pStreamStrides[stream];
 stream = pIndirectCommandsStreams[stream];
 const void* input = stream.buffer.pointer(stream.offset + stride * s + offset)

 // further details later

2882

 indirectCommandsLayout.pTokens[t].command (cmd, pipeline, input, s);
 }
}

void cmdProcessAllSequences(cmd, pipeline, indirectCommandsLayout,
pIndirectCommandsStreams, sequencesCount)
{
 for (s = 0; s < sequencesCount; s++)
 {
 cmdProcessSequence(cmd, pipeline, indirectCommandsLayout,
pIndirectCommandsStreams, s);
 }
}

The processing of each sequence is considered stateless, therefore all state changes must occur
before any action command tokens within the sequence. A single sequence is strictly targeting the
VkPipelineBindPoint it was created with.

The primary input data for each token is provided through VkBuffer content at preprocessing using
vkCmdPreprocessGeneratedCommandsNV or execution time using
vkCmdExecuteGeneratedCommandsNV, however some functional arguments, for example binding
sets, are specified at layout creation time. The input size is different for each token.

Possible values of those elements of the VkIndirectCommandsLayoutCreateInfoNV::pTokens array
specifying command tokens (other elements of the array specify command parameters) are:

// Provided by VK_NV_device_generated_commands
typedef enum VkIndirectCommandsTokenTypeNV {
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_SHADER_GROUP_NV = 0,
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_STATE_FLAGS_NV = 1,
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NV = 2,
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NV = 3,
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV = 4,
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NV = 5,
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NV = 6,
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_TASKS_NV = 7,
 // Provided by VK_EXT_mesh_shader with VK_NV_device_generated_commands
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_NV = 1000328000,
 // Provided by VK_NV_device_generated_commands_compute
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV = 1000428003,
 // Provided by VK_NV_device_generated_commands_compute
 VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NV = 1000428004,
} VkIndirectCommandsTokenTypeNV;

Table 46. Supported indirect command tokens

Token type Equivalent command

VK_INDIRECT_COMMANDS_TOKEN_TYPE_SHADER_GROUP_NV vkCmdBindPipelineShad
erGroupNV

2883

Token type Equivalent command

VK_INDIRECT_COMMANDS_TOKEN_TYPE_STATE_FLAGS_NV -

VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NV vkCmdBindIndexBuffer

VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NV vkCmdBindVertexBuffer
s

VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV vkCmdPushConstants

VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NV vkCmdDrawIndexedIndi
rect

VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NV vkCmdDrawIndirect

VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_TASKS_NV vkCmdDrawMeshTasksI
ndirectNV

VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_N
V

vkCmdDrawMeshTasksI
ndirectEXT

VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV vkCmdBindPipeline

VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NV vkCmdDispatchIndirect

The VkIndirectCommandsLayoutTokenNV structure specifies details to the function arguments that need
to be known at layout creation time:

// Provided by VK_NV_device_generated_commands
typedef struct VkIndirectCommandsLayoutTokenNV {
 VkStructureType sType;
 const void* pNext;
 VkIndirectCommandsTokenTypeNV tokenType;
 uint32_t stream;
 uint32_t offset;
 uint32_t vertexBindingUnit;
 VkBool32 vertexDynamicStride;
 VkPipelineLayout pushconstantPipelineLayout;
 VkShaderStageFlags pushconstantShaderStageFlags;
 uint32_t pushconstantOffset;
 uint32_t pushconstantSize;
 VkIndirectStateFlagsNV indirectStateFlags;
 uint32_t indexTypeCount;
 const VkIndexType* pIndexTypes;
 const uint32_t* pIndexTypeValues;
} VkIndirectCommandsLayoutTokenNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• tokenType is a VkIndirectCommandsTokenTypeNV specifying the token command type.

• stream is the index of the input stream containing the token argument data.

2884

• offset is a relative starting offset within the input stream memory for the token argument data.

• vertexBindingUnit is used for the vertex buffer binding command.

• vertexDynamicStride sets if the vertex buffer stride is provided by the binding command rather
than the current bound graphics pipeline state.

• pushconstantPipelineLayout is the VkPipelineLayout used for the push constant command.

• pushconstantShaderStageFlags are the shader stage flags used for the push constant command.

• pushconstantOffset is the offset used for the push constant command.

• pushconstantSize is the size used for the push constant command.

• indirectStateFlags is a VkIndirectStateFlagsNV bitfield indicating the active states for the state
flag command.

• indexTypeCount is the optional size of the pIndexTypes and pIndexTypeValues array pairings. If not
zero, it allows to register a custom uint32_t value to be treated as specific VkIndexType.

• pIndexTypes is the used VkIndexType for the corresponding uint32_t value entry in
pIndexTypeValues.

Valid Usage

• VUID-VkIndirectCommandsLayoutTokenNV-stream-02951
stream must be smaller than VkIndirectCommandsLayoutCreateInfoNV::streamCount

• VUID-VkIndirectCommandsLayoutTokenNV-offset-02952
offset must be less than or equal to
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::maxIndirectCommandsTokenOffset

• VUID-VkIndirectCommandsLayoutTokenNV-offset-06888
offset must be aligned to the scalar alignment of tokenType or
minIndirectCommandsBufferOffsetAlignment, whichever is lower

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02976
If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NV, vertexBindingUnit must
stay within device supported limits for the appropriate commands

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02977
If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV,
pushconstantPipelineLayout must be valid

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02978
If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV, pushconstantOffset
must be a multiple of 4

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02979
If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV, pushconstantSize must
be a multiple of 4

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02980
If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV, pushconstantOffset
must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02981

2885

If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV, pushconstantSize must
be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus
pushconstantOffset

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02982
If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV, for each byte in the
range specified by pushconstantOffset and pushconstantSize and for each shader stage in
pushconstantShaderStageFlags, there must be a push constant range in
pushconstantPipelineLayout that includes that byte and that stage

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02983
If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV, for each byte in the
range specified by pushconstantOffset and pushconstantSize and for each push constant
range that overlaps that byte, pushconstantShaderStageFlags must include all stages in that
push constant range’s VkPushConstantRange::stageFlags

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-02984
If tokenType is VK_INDIRECT_COMMANDS_TOKEN_TYPE_STATE_FLAGS_NV, indirectStateFlags must
not be 0

Valid Usage (Implicit)

• VUID-VkIndirectCommandsLayoutTokenNV-sType-sType
sType must be VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_TOKEN_NV

• VUID-VkIndirectCommandsLayoutTokenNV-pNext-pNext
pNext must be NULL

• VUID-VkIndirectCommandsLayoutTokenNV-tokenType-parameter
tokenType must be a valid VkIndirectCommandsTokenTypeNV value

• VUID-VkIndirectCommandsLayoutTokenNV-pushconstantPipelineLayout-parameter
If pushconstantPipelineLayout is not VK_NULL_HANDLE, pushconstantPipelineLayout must
be a valid VkPipelineLayout handle

• VUID-VkIndirectCommandsLayoutTokenNV-pushconstantShaderStageFlags-parameter
pushconstantShaderStageFlags must be a valid combination of VkShaderStageFlagBits
values

• VUID-VkIndirectCommandsLayoutTokenNV-indirectStateFlags-parameter
indirectStateFlags must be a valid combination of VkIndirectStateFlagBitsNV values

• VUID-VkIndirectCommandsLayoutTokenNV-pIndexTypes-parameter
If indexTypeCount is not 0, pIndexTypes must be a valid pointer to an array of
indexTypeCount valid VkIndexType values

• VUID-VkIndirectCommandsLayoutTokenNV-pIndexTypeValues-parameter
If indexTypeCount is not 0, pIndexTypeValues must be a valid pointer to an array of
indexTypeCount uint32_t values

The following code provides detailed information on how an individual sequence is processed. For
valid usage, all restrictions from the regular commands apply.

2886

void cmdProcessSequence(cmd, pipeline, indirectCommandsLayout,
pIndirectCommandsStreams, s)
{
 for (uint32_t t = 0; t < indirectCommandsLayout.tokenCount; t++){
 token = indirectCommandsLayout.pTokens[t];

 uint32_t stride = indirectCommandsLayout.pStreamStrides[token.stream];
 stream = pIndirectCommandsStreams[token.stream];
 uint32_t offset = stream.offset + stride * s + token.offset;
 const void* input = stream.buffer.pointer(offset)

 switch(input.type){
 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_SHADER_GROUP_NV:
 VkBindShaderGroupIndirectCommandNV* bind = input;

 vkCmdBindPipelineShaderGroupNV(cmd, indirectCommandsLayout.pipelineBindPoint,
 pipeline, bind->groupIndex);
 break;

 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_STATE_FLAGS_NV:
 VkSetStateFlagsIndirectCommandNV* state = input;

 if (token.indirectStateFlags & VK_INDIRECT_STATE_FLAG_FRONTFACE_BIT_NV){
 if (state.data & (1 << 0)){
 set VK_FRONT_FACE_CLOCKWISE;
 } else {
 set VK_FRONT_FACE_COUNTER_CLOCKWISE;
 }
 }
 break;

 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV:
 uint32_t* data = input;

 vkCmdPushConstants(cmd,
 token.pushconstantPipelineLayout
 token.pushconstantStageFlags,
 token.pushconstantOffset,
 token.pushconstantSize, data);
 break;

 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NV:
 VkBindIndexBufferIndirectCommandNV* data = input;

 // the indexType may optionally be remapped
 // from a custom uint32_t value, via
 // VkIndirectCommandsLayoutTokenNV::pIndexTypeValues

 vkCmdBindIndexBuffer(cmd,
 deriveBuffer(data->bufferAddress),

2887

 deriveOffset(data->bufferAddress),
 data->indexType);
 break;

 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NV:
 VkBindVertexBufferIndirectCommandNV* data = input;

 // if token.vertexDynamicStride is VK_TRUE
 // then the stride for this binding is set
 // using data->stride as well

 vkCmdBindVertexBuffers(cmd,
 token.vertexBindingUnit, 1,
 &deriveBuffer(data->bufferAddress),
 &deriveOffset(data->bufferAddress));
 break;

 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NV:
 vkCmdDrawIndexedIndirect(cmd,
 stream.buffer, offset, 1, 0);
 break;

 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NV:
 vkCmdDrawIndirect(cmd,
 stream.buffer,
 offset, 1, 0);
 break;

 // only available if VK_NV_mesh_shader is supported
 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_TASKS_NV:
 vkCmdDrawMeshTasksIndirectNV(cmd,
 stream.buffer, offset, 1, 0);
 break;

 // only available if VK_EXT_mesh_shader is supported
 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_NV:
 vkCmdDrawMeshTasksIndirectEXT(cmd,
 stream.buffer, offset, 1, 0);
 break;

 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV:
 VkBindPipelineIndirectCommandNV *data = input;
 VkPipeline computePipeline = deriveFromDeviceAddress(data->pipelineAddress);
 vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_COMPUTE, computePipeline);
 break;

 case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NV:
 vkCmdDispatchIndirect(cmd, stream.buffer, offset);
 break;
 }
 }

2888

}

32.2. Indirect Commands Generation and Execution
The generation of commands on the device requires a preprocess buffer. To retrieve the memory
size and alignment requirements of a particular execution state call:

// Provided by VK_NV_device_generated_commands
void vkGetGeneratedCommandsMemoryRequirementsNV(
 VkDevice device,
 const VkGeneratedCommandsMemoryRequirementsInfoNV* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device that owns the buffer.

• pInfo is a pointer to a VkGeneratedCommandsMemoryRequirementsInfoNV structure
containing parameters required for the memory requirements query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the buffer object are returned.

Valid Usage

• VUID-vkGetGeneratedCommandsMemoryRequirementsNV-deviceGeneratedCommands-
02906
The VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV::deviceGeneratedCommands feature
must be enabled

• VUID-vkGetGeneratedCommandsMemoryRequirementsNV-pInfo-09074
If pInfo->pipelineBindPoint is of type VK_PIPELINE_BIND_POINT_COMPUTE, then the
VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV::deviceGeneratedCompute
feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetGeneratedCommandsMemoryRequirementsNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetGeneratedCommandsMemoryRequirementsNV-pInfo-parameter
pInfo must be a valid pointer to a valid
VkGeneratedCommandsMemoryRequirementsInfoNV structure

• VUID-vkGetGeneratedCommandsMemoryRequirementsNV-pMemoryRequirements-
parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

// Provided by VK_NV_device_generated_commands

2889

typedef struct VkGeneratedCommandsMemoryRequirementsInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkPipelineBindPoint pipelineBindPoint;
 VkPipeline pipeline;
 VkIndirectCommandsLayoutNV indirectCommandsLayout;
 uint32_t maxSequencesCount;
} VkGeneratedCommandsMemoryRequirementsInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineBindPoint is the VkPipelineBindPoint of the pipeline that this buffer memory is
intended to be used with during the execution.

• pipeline is the VkPipeline that this buffer memory is intended to be used with during the
execution.

• indirectCommandsLayout is the VkIndirectCommandsLayoutNV that this buffer memory is
intended to be used with.

• maxSequencesCount is the maximum number of sequences that this buffer memory in
combination with the other state provided can be used with.

Valid Usage

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-maxSequencesCount-02907
maxSequencesCount must be less or equal to
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::maxIndirectSequenceCount

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-pipelineBindPoint-09075
If pipelineBindPoint is of type VK_PIPELINE_BIND_POINT_GRAPHICS, then pipeline must be a
valid VkPipeline handle

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-pipelineBindPoint-09076
If pipelineBindPoint is of type VK_PIPELINE_BIND_POINT_COMPUTE, and the
indirectCommandsLayout was not created with a
VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV token, then the pipeline must be a valid
VkPipeline handle

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-pipelineBindPoint-09077
If pipelineBindPoint is of type VK_PIPELINE_BIND_POINT_COMPUTE, and the
indirectCommandsLayout contains a VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV token,
then the pipeline must be VK_NULL_HANDLE

Valid Usage (Implicit)

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_GENERATED_COMMANDS_MEMORY_REQUIREMENTS_INFO_NV

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-pNext-pNext

2890

pNext must be NULL

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-pipeline-parameter
If pipeline is not VK_NULL_HANDLE, pipeline must be a valid VkPipeline handle

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-indirectCommandsLayout-
parameter
indirectCommandsLayout must be a valid VkIndirectCommandsLayoutNV handle

• VUID-VkGeneratedCommandsMemoryRequirementsInfoNV-commonparent
Both of indirectCommandsLayout, and pipeline that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

To bind a compute pipeline in Device-Generated Commands, an application must query the
pipeline’s device address.

To query a compute pipeline’s 64-bit device address, call:

// Provided by VK_NV_device_generated_commands_compute
VkDeviceAddress vkGetPipelineIndirectDeviceAddressNV(
 VkDevice device,
 const VkPipelineIndirectDeviceAddressInfoNV* pInfo);

• device is the logical device on which the pipeline was created.

• pInfo is a pointer to a VkPipelineIndirectDeviceAddressInfoNV structure specifying the pipeline
to retrieve the address for.

Valid Usage

• VUID-vkGetPipelineIndirectDeviceAddressNV-deviceGeneratedComputePipelines-09078
The VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV
::deviceGeneratedComputePipelines feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetPipelineIndirectDeviceAddressNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPipelineIndirectDeviceAddressNV-pInfo-parameter
pInfo must be a valid pointer to a valid VkPipelineIndirectDeviceAddressInfoNV structure

The VkPipelineIndirectDeviceAddressInfoNV structure is defined as:

// Provided by VK_NV_device_generated_commands_compute

2891

typedef struct VkPipelineIndirectDeviceAddressInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkPipelineBindPoint pipelineBindPoint;
 VkPipeline pipeline;
} VkPipelineIndirectDeviceAddressInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineBindPoint is a VkPipelineBindPoint value specifying the type of pipeline whose device
address is being queried.

• pipeline specifies the pipeline whose device address is being queried.

Valid Usage

• VUID-VkPipelineIndirectDeviceAddressInfoNV-pipelineBindPoint-09079
The provided pipelineBindPoint must be of type VK_PIPELINE_BIND_POINT_COMPUTE

• VUID-VkPipelineIndirectDeviceAddressInfoNV-pipeline-09080
pipeline must have been created with flag VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV
set

• VUID-VkPipelineIndirectDeviceAddressInfoNV-pipeline-09081
pipeline must have been created with a VkComputePipelineIndirectBufferInfoNV
structure specifying a valid address where its metadata will be saved

Valid Usage (Implicit)

• VUID-VkPipelineIndirectDeviceAddressInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_INDIRECT_DEVICE_ADDRESS_INFO_NV

• VUID-VkPipelineIndirectDeviceAddressInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkPipelineIndirectDeviceAddressInfoNV-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkPipelineIndirectDeviceAddressInfoNV-pipeline-parameter
pipeline must be a valid VkPipeline handle

To determine the memory requirements for a compute pipeline’s metadata, call:

// Provided by VK_NV_device_generated_commands_compute
void vkGetPipelineIndirectMemoryRequirementsNV(
 VkDevice device,
 const VkComputePipelineCreateInfo* pCreateInfo,
 VkMemoryRequirements2* pMemoryRequirements);

2892

• device is the logical device that owns the buffer.

• pCreateInfo is a VkComputePipelineCreateInfo structure specifying the creation parameters of
the compute pipeline whose memory requirements are being queried.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the requested
pipeline’s memory requirements are returned.

If pCreateInfo->pNext chain includes a pointer to a VkComputePipelineIndirectBufferInfoNV
structure, then the contents of that structure are ignored.

Valid Usage

• VUID-vkGetPipelineIndirectMemoryRequirementsNV-deviceGeneratedComputePipelines-
09082
The VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV
::deviceGeneratedComputePipelines feature must be enabled

• VUID-vkGetPipelineIndirectMemoryRequirementsNV-pCreateInfo-09083
pCreateInfo->flags must include VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

Valid Usage (Implicit)

• VUID-vkGetPipelineIndirectMemoryRequirementsNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPipelineIndirectMemoryRequirementsNV-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkComputePipelineCreateInfo structure

• VUID-vkGetPipelineIndirectMemoryRequirementsNV-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

The actual generation of commands as well as their execution on the device is handled as single
action with:

// Provided by VK_NV_device_generated_commands
void vkCmdExecuteGeneratedCommandsNV(
 VkCommandBuffer commandBuffer,
 VkBool32 isPreprocessed,
 const VkGeneratedCommandsInfoNV* pGeneratedCommandsInfo);

• commandBuffer is the command buffer into which the command is recorded.

• isPreprocessed represents whether the input data has already been preprocessed on the device.
If it is VK_FALSE this command will implicitly trigger the preprocessing step, otherwise not.

• pGeneratedCommandsInfo is a pointer to a VkGeneratedCommandsInfoNV structure containing
parameters affecting the generation of commands.

If the VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NV flag was used to create the

2893

VkGeneratedCommandsInfoNV::indirectCommandsLayout then the order of execution of individual
draws through this command may execute in any order, and may not necessarily be in the same
order as specified in VkGeneratedCommandsInfoNV::pStreams.

The order of execution of individual dispatches through this command may execute in any order
and may not necessarily be in the same order as specified in VkGeneratedCommandsInfoNV
::pStreams.

Valid Usage

• VUID-vkCmdExecuteGeneratedCommandsNV-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

2894

• VUID-vkCmdExecuteGeneratedCommandsNV-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdExecuteGeneratedCommandsNV-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdExecuteGeneratedCommandsNV-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdExecuteGeneratedCommandsNV-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdExecuteGeneratedCommandsNV-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the

2895

OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdExecuteGeneratedCommandsNV-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08604

2896

Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08607

2897

If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdExecuteGeneratedCommandsNV-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdExecuteGeneratedCommandsNV-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdExecuteGeneratedCommandsNV-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdExecuteGeneratedCommandsNV-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdExecuteGeneratedCommandsNV-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdExecuteGeneratedCommandsNV-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

2898

• VUID-vkCmdExecuteGeneratedCommandsNV-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdExecuteGeneratedCommandsNV-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdExecuteGeneratedCommandsNV-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdExecuteGeneratedCommandsNV-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdExecuteGeneratedCommandsNV-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdExecuteGeneratedCommandsNV-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdExecuteGeneratedCommandsNV-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

2899

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdExecuteGeneratedCommandsNV-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail

2900

integer texel coordinate validation

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdExecuteGeneratedCommandsNV-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdExecuteGeneratedCommandsNV-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdExecuteGeneratedCommandsNV-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdExecuteGeneratedCommandsNV-pDepthInputAttachmentIndex-09595
Input attachment views accessed in a dynamic render pass with a InputAttachmentIndex
referenced by VkRenderingInputAttachmentIndexInfoKHR, or no InputAttachmentIndex if
VkRenderingInputAttachmentIndexInfoKHR:pDepthInputAttachmentIndex or
VkRenderingInputAttachmentIndexInfoKHR:pStencilInputAttachmentIndex are NULL, must
be created with a VkImageView that is compatible with the corresponding color, depth, or
stencil attachment in VkRenderingInfo.

• VUID-vkCmdExecuteGeneratedCommandsNV-pDepthInputAttachmentIndex-09596
Input attachment views accessed in a dynamic render pass via a shader object must have
an InputAttachmentIndex if both VkRenderingInputAttachmentIndexInfoKHR
:pDepthInputAttachmentIndex and VkRenderingInputAttachmentIndexInfoKHR
:pStencilInputAttachmentIndex are non-NULL.

• VUID-vkCmdExecuteGeneratedCommandsNV-InputAttachmentIndex-09597
If an input attachment view accessed in a dynamic render pass via a shader object has an

2901

InputAttachmentIndex, the InputAttachmentIndex must match an index in
VkRenderingInputAttachmentIndexInfoKHR.

• VUID-vkCmdExecuteGeneratedCommandsNV-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the currently
bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_COLOR_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_DEPTH_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it is not in the
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout, and either:

◦ the VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT is set on the
currently bound pipeline or

◦ the last call to vkCmdSetAttachmentFeedbackLoopEnableEXT included
VK_IMAGE_ASPECT_STENCIL_BIT and

▪ there is no currently bound graphics pipeline or

▪ the currently bound graphics pipeline was created with
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT it must not be accessed in
any way other than as an attachment by this command

2902

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09003
If an attachment is written by any prior command in this subpass or by the load, store, or
resolve operations for this subpass, it must not be accessed in any way other than as an
attachment, storage image, or sampled image by this command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdExecuteGeneratedCommandsNV-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdExecuteGeneratedCommandsNV-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08617
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08618
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, vkCmdSetLineWidth must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08619
If a shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and

2903

the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, vkCmdSetLineWidth must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08620
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBiasEnable in the current command buffer set depthBiasEnable to VK_TRUE,
vkCmdSetDepthBias or vkCmdSetDepthBias2EXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08621
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT in the current command buffer set any element of
pColorBlendEnables to VK_TRUE, and the most recent call to
vkCmdSetColorBlendEquationEXT in the current command buffer set the same element of
pColorBlendEquations to a VkColorBlendEquationEXT structure with any VkBlendFactor
member with a value of VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, vkCmdSetBlendConstants must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08622
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthBoundsTestEnable in the current command buffer set
depthBoundsTestEnable to VK_TRUE, then vkCmdSetDepthBounds must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current

2904

stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08623
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilCompareMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08624
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilWriteMask must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08625
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, vkCmdSetStencilReference must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsEnable-02689
If the bound graphics pipeline was created with
VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable set to VK_TRUE and
the current subpass has a depth/stencil attachment, then that attachment must have been
created with the VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdExecuteGeneratedCommandsNV-None-06666
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT dynamic state enabled then

2905

vkCmdSetSampleLocationsEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08626
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetSampleLocationsEnableEXT in the current command buffer set
sampleLocationsEnable to VK_TRUE, then vkCmdSetSampleLocationsEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08627
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCullMode must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08628
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFrontFace must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08629
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08630
If a shader object is bound to any graphics stage, and the most recent call to

2906

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthWriteEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08631
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetDepthTestEnable in the current command buffer set depthTestEnable to VK_TRUE,
then vkCmdSetDepthCompareOp must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08632
If a shader object is bound to any graphics stage, and the depthBounds feature is enabled,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then the vkCmdSetDepthBoundsTestEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08633
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetStencilTestEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08634
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetStencilTestEnable in the current command buffer set stencilTestEnable to
VK_TRUE, then vkCmdSetStencilOp must have been called in the current command buffer

2907

prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08635
If a shader object is bound to any graphics stage, then both vkCmdSetViewportWithCount
and vkCmdSetScissorWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the scissorCount parameter of
vkCmdSetScissorWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-04137
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportWScalingStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-04138
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV
dynamic states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportWScalingNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09232
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in

2908

the current command buffer set viewportWScalingEnable to VK_TRUE, then
vkCmdSetViewportWScalingNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08636
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, and the most recent call to vkCmdSetViewportWScalingEnableNV in
the current command buffer set viewportWScalingEnable to VK_TRUE, then the viewportCount
parameter in the last call to vkCmdSetViewportWScalingNV must be greater than or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-04139
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic state enabled, then the
bound graphics pipeline must have been created with
VkPipelineViewportShadingRateImageStateCreateInfoNV::viewportCount greater or equal
to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-04140
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and
VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV dynamic states enabled then the
viewportCount parameter in the last call to vkCmdSetViewportShadingRatePaletteNV must
be greater than or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-shadingRateImage-09233
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoarseSampleOrderNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-shadingRateImage-09234
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then vkCmdSetViewportShadingRatePaletteNV must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08637
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetShadingRateImageEnableNV in the current command buffer set
shadingRateImageEnable to VK_TRUE, then the viewportCount parameter in the last call to
vkCmdSetViewportShadingRatePaletteNV must be greater than or equal to the
viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-VkPipelineVieportCreateInfo-04141

2909

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportSwizzleStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportSwizzleStateCreateInfoNV::viewportCount greater or
equal to the viewportCount parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-VkPipelineVieportCreateInfo-04142
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled and a
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure chained from
VkPipelineViewportStateCreateInfo, then the bound graphics pipeline must have been
created with VkPipelineViewportExclusiveScissorStateCreateInfoNV
::exclusiveScissorCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07878
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV dynamic state enabled then
vkCmdSetExclusiveScissorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07879
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV dynamic state enabled then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-exclusiveScissor-09235
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetExclusiveScissorEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08638
If the exclusiveScissor feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetExclusiveScissorEnableNV in the current
command buffer set any element of pExclusiveScissorEnables to VK_TRUE, then
vkCmdSetExclusiveScissorNV must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08639
If a shader object is bound to any graphics stage, then vkCmdSetRasterizerDiscardEnable
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then

2910

vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08640
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthBiasEnable must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-logicOp-04878
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LOGIC_OP_EXT
dynamic state enabled then vkCmdSetLogicOpEXT must have been called in the current
command buffer prior to this drawing command and the logicOp must be a valid
VkLogicOp value

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08641
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLogicOpEnableEXT set logicOpEnable to VK_TRUE, then vkCmdSetLogicOpEXT
must have been called in the current command buffer prior to this drawing command
and the logicOp must be a valid VkLogicOp value

• VUID-vkCmdExecuteGeneratedCommandsNV-
primitiveFragmentShadingRateWithMultipleViewports-04552
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, the
bound graphics pipeline was created with the VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT
dynamic state enabled, and any of the shader stages of the bound graphics pipeline write
to the PrimitiveShadingRateKHR built-in, then vkCmdSetViewportWithCount must have
been called in the current command buffer prior to this drawing command, and the
viewportCount parameter of vkCmdSetViewportWithCount must be 1

• VUID-vkCmdExecuteGeneratedCommandsNV-
primitiveFragmentShadingRateWithMultipleViewports-08642
If the primitiveFragmentShadingRateWithMultipleViewports limit is not supported, and any
shader object bound to a graphics stage writes to the PrimitiveShadingRateKHR built-in,
then vkCmdSetViewportWithCount must have been called in the current command
buffer prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must be 1

• VUID-vkCmdExecuteGeneratedCommandsNV-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08643
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then for each color attachment in the render pass, if
the corresponding image view’s format features do not contain

2911

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the corresponding member of
pColorBlendEnables in the most recent call to vkCmdSetColorBlendEnableEXT in the current
command buffer that affected that attachment index must have been VK_FALSE

• VUID-vkCmdExecuteGeneratedCommandsNV-multisampledRenderToSingleSampled-
07284
If rasterization is not disabled in the bound graphics pipeline, and none of the following is
enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08644
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and none of the following is enabled:

◦ the VK_AMD_mixed_attachment_samples extension

◦ the VK_NV_framebuffer_mixed_samples extension

◦ the multisampledRenderToSingleSampled feature

then the most recent call to vkCmdSetRasterizationSamplesEXT in the current command
buffer must have set rasterizationSamples to be the same as the number of samples for
the current render pass color and/or depth/stencil attachments

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08876
If a shader object is bound to any graphics stage, the current render pass instance must
have been begun with vkCmdBeginRendering

• VUID-vkCmdExecuteGeneratedCommandsNV-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdExecuteGeneratedCommandsNV-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdExecuteGeneratedCommandsNV-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

2912

• VUID-vkCmdExecuteGeneratedCommandsNV-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdExecuteGeneratedCommandsNV-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdExecuteGeneratedCommandsNV-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdExecuteGeneratedCommandsNV-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdExecuteGeneratedCommandsNV-colorAttachmentCount-06179
If the dynamicRenderingUnusedAttachments feature is not enabled and the current render
pass instance was begun with vkCmdBeginRendering, the currently bound graphics
pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08910
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08912
If the dynamicRenderingUnusedAttachments feature is not enabled, and the current render
pass instance was begun with vkCmdBeginRendering and VkRenderingInfo
::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView equal to VK_NULL_HANDLE must have the
corresponding element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used
to create the currently bound pipeline equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08911
If the dynamicRenderingUnusedAttachments feature is enabled, and the current render pass
instance was begun with vkCmdBeginRendering and VkRenderingInfo

2913

::colorAttachmentCount greater than 0, then each element of the VkRenderingInfo
::pColorAttachments array with an imageView not equal to VK_NULL_HANDLE must have
been created with a VkFormat equal to the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the currently
bound graphics pipeline, or the corresponding element of
VkPipelineRenderingCreateInfo::pColorAttachmentFormats, if it exists, must be
VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-colorAttachmentCount-09362
If the current render pass instance was begun with vkCmdBeginRendering, with a
VkRenderingInfo::colorAttachmentCount equal to 1, there is no shader object bound to any
graphics stage, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a resolveImageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09363
If there is no shader object bound to any graphics stage, the current render pass instance
was begun with vkCmdBeginRendering and a VkRenderingInfo::colorAttachmentCount
equal to 1, and a color attachment with a resolve mode of
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with an image created with a
VkExternalFormatANDROID::externalFormat value equal to the
VkExternalFormatANDROID::externalFormat value used to create the currently bound
graphics pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09364
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled, then
vkCmdSetColorBlendEnableEXT must have set the blend enable to VK_FALSE prior to this
drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09365
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09366
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetColorBlendEnableEXT must have set blend enable to VK_FALSE prior to this

2914

drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizationSamples-09367
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetRasterizationSamplesEXT must have set rasterizationSamples to
VK_SAMPLE_COUNT_1_BIT prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09368
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09369
If the current render pass instance was begun with vkCmdBeginRendering, there is no
shader object bound to any graphics stage, and the currently bound graphics pipeline was
created with a non-zero VkExternalFormatANDROID::externalFormat value and with the
VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR dynamic state enabled, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-pFragmentSize-09370
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->width to 1 prior to this
drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-pFragmentSize-09371
If there is a shader object bound to any graphics stage, and the current render pass
includes a color attachment that uses the
VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID resolve mode, then
vkCmdSetFragmentShadingRateKHR must have set pFragmentSize->height to 1 prior to
this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07749
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then
vkCmdSetColorWriteEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08646
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-attachmentCount-07750

2915

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT dynamic state enabled then the attachmentCount
parameter of vkCmdSetColorWriteEnableEXT must be greater than or equal to the
VkPipelineColorBlendStateCreateInfo::attachmentCount of the currently bound graphics
pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08647
If the colorWriteEnable feature is enabled on the device, and a shader object is bound to
the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then the attachmentCount parameter of most recent
call to vkCmdSetColorWriteEnableEXT in the current command buffer must be greater than
or equal to the number of color attachments in the current render pass instance

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07751
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEXT must have been called in the current command buffer
prior to this drawing command for each discard rectangle in
VkPipelineDiscardRectangleStateCreateInfoEXT::discardRectangleCount

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07880
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizerDiscardEnable-09236
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08648
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetDiscardRectangleEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07881
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT dynamic state enabled then
vkCmdSetDiscardRectangleModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08649
If the VK_EXT_discard_rectangles extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call

2916

to vkCmdSetDiscardRectangleEnableEXT in the current command buffer set
discardRectangleEnable to VK_TRUE, then vkCmdSetDiscardRectangleModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08913
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08914
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08915
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08916
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08917
If current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicRenderingUnusedAttachments-
08918
If the current render pass instance was begun with vkCmdBeginRendering, the
dynamicRenderingUnusedAttachments feature is enabled, VkRenderingInfo

2917

::pStencilAttachment->imageView was not VK_NULL_HANDLE, and the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline was not equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView, the value of the format must be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-imageView-06183
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentShadingRateAttachmentInfoKHR::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• VUID-vkCmdExecuteGeneratedCommandsNV-imageView-06184
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingFragmentDensityMapAttachmentInfoEXT::imageView was not
VK_NULL_HANDLE, the currently bound graphics pipeline must have been created with
VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-colorAttachmentCount-06185
If the currently bound pipeline was created with a VkAttachmentSampleCountInfoAMD
or VkAttachmentSampleCountInfoNV structure, and the current render pass instance was
begun with vkCmdBeginRendering with a VkRenderingInfo::colorAttachmentCount
parameter greater than 0, then each element of the VkRenderingInfo::pColorAttachments
array with a imageView not equal to VK_NULL_HANDLE must have been created with a
sample count equal to the corresponding element of the pColorAttachmentSamples member
of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV used to
create the currently bound graphics pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-pDepthAttachment-06186
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pDepthAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdExecuteGeneratedCommandsNV-pStencilAttachment-06187
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline was created with a VkAttachmentSampleCountInfoAMD or
VkAttachmentSampleCountInfoNV structure, and VkRenderingInfo::pStencilAttachment-
>imageView was not VK_NULL_HANDLE, the value of the depthStencilAttachmentSamples
member of VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV
used to create the currently bound graphics pipeline must be equal to the sample count
used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdExecuteGeneratedCommandsNV-multisampledRenderToSingleSampled-
07285
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and the current render pass
instance was begun with vkCmdBeginRendering with a VkRenderingInfo

2918

::colorAttachmentCount parameter greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-multisampledRenderToSingleSampled-
07286
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdExecuteGeneratedCommandsNV-multisampledRenderToSingleSampled-
07287
If the currently bound pipeline was created without a
VkAttachmentSampleCountInfoAMD or VkAttachmentSampleCountInfoNV structure, and
the multisampledRenderToSingleSampled feature is not enabled, and VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdExecuteGeneratedCommandsNV-pNext-07935
If this command has been called inside a render pass instance started with
vkCmdBeginRendering, and the pNext chain of VkRenderingInfo includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to
VkMultisampledRenderToSingleSampledInfoEXT::rasterizationSamples

• VUID-vkCmdExecuteGeneratedCommandsNV-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdExecuteGeneratedCommandsNV-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-pStencilAttachment-08965

2919

If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteGeneratedCommandsNV-
primitivesGeneratedQueryWithRasterizerDiscard-06708
If the primitivesGeneratedQueryWithRasterizerDiscard feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, rasterization discard must not be
enabled

• VUID-vkCmdExecuteGeneratedCommandsNV-
primitivesGeneratedQueryWithNonZeroStreams-06709
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, the bound graphics pipeline must
not have been created with a non-zero value in
VkPipelineRasterizationStateStreamCreateInfoEXT::rasterizationStream

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07619
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT dynamic state enabled then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07620
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClampEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09237
If a shader object is bound to the VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT stage, then
vkCmdSetTessellationDomainOriginEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08650
If the depthClamp feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetDepthClampEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07621
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_POLYGON_MODE_EXT dynamic state enabled then
vkCmdSetPolygonModeEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08651
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetPolygonModeEXT must have been
called in the current command buffer prior to this drawing command

2920

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07622
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT dynamic state enabled then
vkCmdSetRasterizationSamplesEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08652
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetRasterizationSamplesEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07623
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT dynamic state enabled then vkCmdSetSampleMaskEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08653
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetSampleMaskEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07624
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToCoverageEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-alphaToCoverageEnable-08919
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT dynamic state enabled, and
alphaToCoverageEnable was VK_TRUE in the last call to
vkCmdSetAlphaToCoverageEnableEXT, then the Fragment Output Interface must contain
a variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08654
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToCoverageEnableEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-alphaToCoverageEnable-08920
If a shader object is bound to any graphics stage, and the most recent call to
vkCmdSetAlphaToCoverageEnableEXT in the current command buffer set
alphaToCoverageEnable to VK_TRUE, then the Fragment Output Interface must contain a
variable for the alpha Component word in Location 0 at Index 0

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07625
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT dynamic state enabled then
vkCmdSetAlphaToOneEnableEXT must have been called in the current command buffer
prior to this drawing command

2921

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08655
If the alphaToOne feature is enabled, and a shader object is bound to any graphics stage,
and the most recent call to vkCmdSetRasterizerDiscardEnable in the current command
buffer set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAlphaToOneEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07626
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT dynamic state enabled then
vkCmdSetLogicOpEnableEXT must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08656
If the logicOp feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLogicOpEnableEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07627
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08657
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07628
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08658
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetColorBlendEnableEXT for any attachment set that attachment’s value in
pColorBlendEnables to VK_TRUE, then vkCmdSetColorBlendEquationEXT must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07629
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08659

2922

If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07630
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT dynamic state enabled then
vkCmdSetRasterizationStreamEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08660
If the geometryStreams feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_GEOMETRY_BIT stage, then vkCmdSetRasterizationStreamEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07631
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetConservativeRasterizationModeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08661
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetConservativeRasterizationModeEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07632
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT dynamic state enabled then
vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08662
If the VK_EXT_conservative_rasterization extension is enabled, and a shader object is
bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetConservativeRasterizationModeEXT in the current command buffer set
conservativeRasterizationMode to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT,
then vkCmdSetExtraPrimitiveOverestimationSizeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07633
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT dynamic state enabled then
vkCmdSetDepthClipEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08663

2923

If the depthClipEnable feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07634
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT dynamic state enabled then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08664
If the VK_EXT_sample_locations extension is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetSampleLocationsEnableEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07635
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizerDiscardEnable-09416
If the VK_EXT_blend_operation_advanced extension is enabled, and a shader object is bound
to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then at least one of
vkCmdSetColorBlendEquationEXT and vkCmdSetColorBlendAdvancedEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07636
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT dynamic state enabled then
vkCmdSetProvokingVertexModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08665
If the VK_EXT_provoking_vertex extension is enabled, and a shader object is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetProvokingVertexModeEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07637
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic state enabled then
vkCmdSetLineRasterizationModeEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08666
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to

2924

vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineRasterizationModeEXT must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08667
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineRasterizationModeEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08668
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and
the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineRasterizationModeEXT must
have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07638
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT dynamic state enabled then
vkCmdSetLineStippleEnableEXT must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08669
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPolygonModeEXT in the current command buffer set polygonMode to
VK_POLYGON_MODE_LINE, then vkCmdSetLineStippleEnableEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08670
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to the VK_SHADER_STAGE_VERTEX_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetPrimitiveTopology in the current command buffer set primitiveTopology to any
line topology, then vkCmdSetLineStippleEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08671
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object that outputs line primitives is bound to the
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT stage, and

2925

the most recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer
set rasterizerDiscardEnable to VK_FALSE, then vkCmdSetLineStippleEnableEXT must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07849
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_KHR dynamic state enabled then vkCmdSetLineStippleKHR
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08672
If the VK_KHR_line_rasterization or VK_EXT_line_rasterization extension is enabled, and a
shader object is bound to any graphics stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetLineStippleEnableEXT in the current command buffer set stippledLineEnable to
VK_TRUE, then vkCmdSetLineStippleEXT must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07639
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT dynamic state enabled then
vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08673
If the depthClipControl feature is enabled, and a shader object is bound to any graphics
stage, then vkCmdSetDepthClipNegativeOneToOneEXT must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07640
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV dynamic state enabled then
vkCmdSetViewportWScalingEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08674
If the VK_NV_clip_space_w_scaling extension is enabled, and a shader object is bound to
any graphics stage, then vkCmdSetViewportWScalingEnableNV must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07641
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled then
vkCmdSetViewportSwizzleNV must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08675
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then vkCmdSetViewportSwizzleNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07642
If the bound graphics pipeline state was created with the

2926

VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageToColorEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08676
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetCoverageToColorEnableNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07643
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV dynamic state enabled then
vkCmdSetCoverageToColorLocationNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08677
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the most recent call to
vkCmdSetCoverageToColorEnableNV in the current command buffer set
coverageToColorEnable to VK_TRUE, then vkCmdSetCoverageToColorLocationNV must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07644
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV dynamic state enabled then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08678
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageModulationModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07645
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08679
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationModeNV in the current command buffer set
coverageModulationMode to any value other than VK_COVERAGE_MODULATION_MODE_NONE_NV,
then vkCmdSetCoverageModulationTableEnableNV must have been called in the current

2927

command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07646
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV dynamic state enabled then
vkCmdSetCoverageModulationTableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08680
If the VK_NV_framebuffer_mixed_samples extension is enabled, and a shader object is bound
to any graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, and the most recent call
to vkCmdSetCoverageModulationTableEnableNV in the current command buffer set
coverageModulationTableEnable to VK_TRUE, then vkCmdSetCoverageModulationTableNV
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07647
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV dynamic state enabled then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-pipelineFragmentShadingRate-09238
If the pipelineFragmentShadingRate feature is enabled, and a shader object is bound to the
VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetFragmentShadingRateKHR must have
been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08681
If the shadingRateImage feature is enabled, and a shader object is bound to any graphics
stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the current
command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetShadingRateImageEnableNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07648
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV dynamic state enabled then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08682
If the representativeFragmentTest feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetRepresentativeFragmentTestEnableNV must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07649
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV dynamic state enabled then
vkCmdSetCoverageReductionModeNV must have been called in the current command

2928

buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08683
If the coverageReductionMode feature is enabled, and a shader object is bound to any
graphics stage, and the most recent call to vkCmdSetRasterizerDiscardEnable in the
current command buffer set rasterizerDiscardEnable to VK_FALSE, then
vkCmdSetCoverageReductionModeNV must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-pColorBlendEnables-07470
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT state enabled and the last call to
vkCmdSetColorBlendEnableEXT set pColorBlendEnables for any attachment to VK_TRUE,
then for those attachments in the subpass the corresponding image view’s format features
must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizationSamples-07471
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and the current subpass does
not use any color and/or depth/stencil attachments, then the rasterizationSamples in the
last call to vkCmdSetRasterizationSamplesEXT must follow the rules for a zero-
attachment subpass

• VUID-vkCmdExecuteGeneratedCommandsNV-samples-07472
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the samples parameter in
the last call to vkCmdSetSampleMaskEXT must be greater or equal to the
VkPipelineMultisampleStateCreateInfo::rasterizationSamples parameter used to create
the bound graphics pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-samples-07473
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT state and VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT
states enabled, then the samples parameter in the last call to vkCmdSetSampleMaskEXT
must be greater or equal to the rasterizationSamples parameter in the last call to
vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizationSamples-07474
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, and neither the
VK_AMD_mixed_attachment_samples nor the VK_NV_framebuffer_mixed_samples extensions are
enabled, then the rasterizationSamples in the last call to
vkCmdSetRasterizationSamplesEXT must be the same as the current subpass color and/or
depth/stencil attachments

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09211
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, or a shader object is bound to
any graphics stage, and the current render pass instance includes a
VkMultisampledRenderToSingleSampledInfoEXT structure with
multisampledRenderToSingleSampledEnable equal to VK_TRUE, then the rasterizationSamples

2929

in the last call to vkCmdSetRasterizationSamplesEXT must be the same as the
rasterizationSamples member of that structure

• VUID-vkCmdExecuteGeneratedCommandsNV-firstAttachment-07476
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT dynamic state enabled then
vkCmdSetColorBlendEnableEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEnableEXT calls must specify an enable
for all active color attachments in the current subpass

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizerDiscardEnable-09417
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorBlendEnableEXT must have
been called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorBlendEnableEXT calls must specify an enable for all active color attachments
in the current subpass

• VUID-vkCmdExecuteGeneratedCommandsNV-firstAttachment-07477
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT dynamic state enabled then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizerDiscardEnable-09418
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and both the most
recent call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE and there are color attachments bound, then
vkCmdSetColorBlendEquationEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendEquationEXT calls must specify the blend
equations for all active color attachments in the current subpass where blending is
enabled

• VUID-vkCmdExecuteGeneratedCommandsNV-firstAttachment-07478
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT dynamic state enabled then
vkCmdSetColorWriteMaskEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorWriteMaskEXT calls must specify the color
write mask for all active color attachments in the current subpass

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizerDiscardEnable-09419
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent
call to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetColorWriteMaskEXT must have been

2930

called in the current command buffer prior to this drawing command, and the
attachments specified by the firstAttachment and attachmentCount parameters of
vkCmdSetColorWriteMaskEXT calls must specify the color write mask for all active color
attachments in the current subpass

• VUID-vkCmdExecuteGeneratedCommandsNV-firstAttachment-07479
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT dynamic state enabled then
vkCmdSetColorBlendAdvancedEXT must have been called in the current command buffer
prior to this drawing command, and the attachments specified by the firstAttachment and
attachmentCount parameters of vkCmdSetColorBlendAdvancedEXT calls must specify the
advanced blend equations for all active color attachments in the current subpass where
blending is enabled

• VUID-vkCmdExecuteGeneratedCommandsNV-advancedBlendMaxColorAttachments-
07480
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT and VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT
dynamic states enabled and the last calls to vkCmdSetColorBlendEnableEXT and
vkCmdSetColorBlendAdvancedEXT have enabled advanced blending, then the number of
active color attachments in the current subpass must not exceed
advancedBlendMaxColorAttachments

• VUID-vkCmdExecuteGeneratedCommandsNV-
primitivesGeneratedQueryWithNonZeroStreams-07481
If the primitivesGeneratedQueryWithNonZeroStreams feature is not enabled and the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query is active, and the bound graphics pipeline
was created with VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT state enabled, the last call to
vkCmdSetRasterizationStreamEXT must have set the rasterizationStream to zero

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsPerPixel-07482
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state disabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples member of the
VkPipelineMultisampleStateCreateInfo structure the bound graphics pipeline has been
created with

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsPerPixel-07483
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state enabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, then the
sampleLocationsPerPixel member of pSampleLocationsInfo in the last call to
vkCmdSetSampleLocationsEXT must equal the rasterizationSamples parameter of the last
call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsEnable-07484
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT
state enabled, and sampleLocationsEnable was VK_TRUE in the last call to

2931

vkCmdSetSampleLocationsEnableEXT, and the current subpass has a depth/stencil
attachment, then that attachment must have been created with the
VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT bit set

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsEnable-07485
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.width in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsEnable-07486
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state
enabled and the VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if
sampleLocationsEnable was VK_TRUE in the last call to
vkCmdSetSampleLocationsEnableEXT, then the
sampleLocationsInfo.sampleLocationGridSize.height in the last call to
vkCmdSetSampleLocationsEXT must evenly divide VkMultisamplePropertiesEXT
::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling
rasterizationSamples

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsEnable-07487
If a shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, or the bound
graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state enabled, and if sampleLocationsEnable
was VK_TRUE in the last call to vkCmdSetSampleLocationsEnableEXT, the fragment shader
code must not statically use the extended instruction InterpolateAtSample

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsEnable-07936
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.width must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.width as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsEnable-07937
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the

2932

bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationGridSize.height must evenly divide
VkMultisamplePropertiesEXT::sampleLocationGridSize.height as returned by
vkGetPhysicalDeviceMultisamplePropertiesEXT with a samples parameter equaling the
value of rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdExecuteGeneratedCommandsNV-sampleLocationsEnable-07938
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT state disabled and the
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT state enabled, the sampleLocationsEnable
member of a VkPipelineSampleLocationsStateCreateInfoEXT::sampleLocationsEnable in the
bound graphics pipeline is VK_TRUE or VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT state
enabled, then, sampleLocationsInfo.sampleLocationsPerPixel must equal
rasterizationSamples in the last call to vkCmdSetRasterizationSamplesEXT

• VUID-vkCmdExecuteGeneratedCommandsNV-coverageModulationTableEnable-07488
If a shader object is bound to any graphics stage or the bound graphics pipeline state was
created with the VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV state enabled,
and the last call to vkCmdSetCoverageModulationTableEnableNV set
coverageModulationTableEnable to VK_TRUE, then the coverageModulationTableCount
parameter in the last call to vkCmdSetCoverageModulationTableNV must equal the
current rasterizationSamples divided by the number of color samples in the current
subpass

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizationSamples-07489
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if current subpass has a
depth/stencil attachment and depth test, stencil test, or depth bounds test are enabled in
the currently bound pipeline state, then the current rasterizationSamples must be the
same as the sample count of the depth/stencil attachment

• VUID-vkCmdExecuteGeneratedCommandsNV-coverageToColorEnable-07490
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV state enabled and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizerDiscardEnable-09420
If the VK_NV_fragment_coverage_to_color extension is enabled, and a shader object is
bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call to
vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, and the last call to
vkCmdSetCoverageToColorEnableNV set the coverageToColorEnable to VK_TRUE, then the
current subpass must have a color attachment at the location selected by the last call to
vkCmdSetCoverageToColorLocationNV coverageToColorLocation, with a VkFormat of
VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT,
VK_FORMAT_R32_UINT, or VK_FORMAT_R32_SINT

• VUID-vkCmdExecuteGeneratedCommandsNV-coverageReductionMode-07491

2933

If this VK_NV_coverage_reduction_mode extension is enabled, the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV and
VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT states enabled, the current coverage
reduction mode coverageReductionMode, then the current rasterizationSamples, and the
sample counts for the color and depth/stencil attachments (if the subpass has them) must
be a valid combination returned by
vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-07492
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic state enabled, then the bound graphics
pipeline must have been created with VkPipelineViewportSwizzleStateCreateInfoNV
::viewportCount greater or equal to the viewportCount parameter in the last call to
vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-07493
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV dynamic
states enabled then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-viewportCount-09421
If the VK_NV_viewport_swizzle extension is enabled, and a shader object is bound to any
graphics stage, then the viewportCount parameter in the last call to
vkCmdSetViewportSwizzleNV must be greater than or equal to the viewportCount
parameter in the last call to vkCmdSetViewportWithCount

• VUID-vkCmdExecuteGeneratedCommandsNV-rasterizationSamples-07494
If the VK_NV_framebuffer_mixed_samples extension is enabled, and if the current subpass
has any color attachments and rasterizationSamples of the last call to
vkCmdSetRasterizationSamplesEXT is greater than the number of color samples, then the
pipeline sampleShadingEnable must be VK_FALSE

• VUID-vkCmdExecuteGeneratedCommandsNV-stippledLineEnable-07495
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR, then the stippledRectangularLines feature
must be enabled

• VUID-vkCmdExecuteGeneratedCommandsNV-stippledLineEnable-07496
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR, then the stippledBresenhamLines feature must
be enabled

• VUID-vkCmdExecuteGeneratedCommandsNV-stippledLineEnable-07497

2934

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR, then the stippledSmoothLines feature
must be enabled

• VUID-vkCmdExecuteGeneratedCommandsNV-stippledLineEnable-07498
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT or
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT dynamic states enabled, and if the current
stippledLineEnable state is VK_TRUE and the current lineRasterizationMode state is
VK_LINE_RASTERIZATION_MODE_DEFAULT_KHR, then the stippledRectangularLines feature must
be enabled and VkPhysicalDeviceLimits::strictLines must be VK_TRUE

• VUID-vkCmdExecuteGeneratedCommandsNV-conservativePointAndLineRasterization-
07499
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT dynamic state enabled,
conservativePointAndLineRasterization is not supported, and the effective primitive
topology output by the last pre-rasterization shader stage is a line or point, then the
conservativeRasterizationMode set by the last call to
vkCmdSetConservativeRasterizationModeEXT must be
VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-stage-07073
If the currently bound pipeline was created with the VkPipelineShaderStageCreateInfo
::stage member of an element of VkGraphicsPipelineCreateInfo::pStages set to
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT or VK_SHADER_STAGE_GEOMETRY_BIT, then Mesh
Shader Queries must not be active

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT dynamic state
vkCmdSetAttachmentFeedbackLoopEnableEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07850
If dynamic state was inherited from
VkCommandBufferInheritanceViewportScissorInfoNV, it must be set in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08684
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_VERTEX_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08685
If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08686

2935

If there is no bound graphics pipeline, and the tessellationShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08687
If there is no bound graphics pipeline, and the geometryShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08688
If there is no bound graphics pipeline, vkCmdBindShadersEXT must have been called in the
current command buffer with pStages with an element of VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08689
If there is no bound graphics pipeline, and the taskShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_TASK_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08690
If there is no bound graphics pipeline, and the meshShader feature is enabled,
vkCmdBindShadersEXT must have been called in the current command buffer with pStages
with an element of VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08693
If there is no bound graphics pipeline, and at least one of the taskShader and meshShader
features is enabled, one of the VK_SHADER_STAGE_VERTEX_BIT or
VK_SHADER_STAGE_MESH_BIT_EXT stages must have a valid VkShaderEXT bound, and the other
must have no VkShaderEXT bound

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08694
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created without the
VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT flag, a valid VkShaderEXT must be bound to the
VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08695
If there is no bound graphics pipeline, and both the taskShader and meshShader features
are enabled, and a valid VkShaderEXT is bound the to the VK_SHADER_STAGE_MESH_BIT_EXT
stage, and that VkShaderEXT was created with the VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT
flag, there must be no VkShaderEXT bound to the VK_SHADER_STAGE_TASK_BIT_EXT stage

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08696
If there is no bound graphics pipeline, and a valid VkShaderEXT is bound to the
VK_SHADER_STAGE_VERTEX_BIT stage, there must be no VkShaderEXT bound to either the
VK_SHADER_STAGE_TASK_BIT_EXT stage or the VK_SHADER_STAGE_MESH_BIT_EXT stage

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08698
If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, then all shaders created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag in the same vkCreateShadersEXT call must also
be bound

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08699

2936

If any graphics shader is bound which was created with the
VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag, any stages in between stages whose shaders
which did not create a shader with the VK_SHADER_CREATE_LINK_STAGE_BIT_EXT flag as part of
the same vkCreateShadersEXT call must not have any VkShaderEXT bound

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08878
All bound graphics shader objects must have been created with identical or identically
defined push constant ranges

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08879
All bound graphics shader objects must have been created with identical or identically
defined arrays of descriptor set layouts

• VUID-vkCmdExecuteGeneratedCommandsNV-colorAttachmentCount-09372
If the current render pass instance was begun with vkCmdBeginRendering and a
VkRenderingInfo::colorAttachmentCount equal to 1, a color attachment with a resolve
mode of VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID, and a fragment shader is
bound, it must not declare the DepthReplacing or StencilRefReplacingEXT execution modes

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08880
If the attachmentFeedbackLoopDynamicState feature is enabled on the device, and a
shader object is bound to the VK_SHADER_STAGE_FRAGMENT_BIT stage, and the most recent call
to vkCmdSetRasterizerDiscardEnable in the current command buffer set
rasterizerDiscardEnable to VK_FALSE, then vkCmdSetAttachmentFeedbackLoopEnableEXT
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-pDynamicStates-08715
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpDepthAttachmentReadEXT, the depthWriteEnable parameter in the last call
to vkCmdSetDepthWriteEnable must be VK_FALSE

• VUID-vkCmdExecuteGeneratedCommandsNV-pDynamicStates-08716
If the bound graphics pipeline state includes a fragment shader stage, was created with
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in VkPipelineDynamicStateCreateInfo
::pDynamicStates, and the fragment shader declares the EarlyFragmentTests execution
mode and uses OpStencilAttachmentReadEXT, the writeMask parameter in the last call to
vkCmdSetStencilWriteMask must be 0

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09116
If a shader object is bound to any graphics stage or the currently bound graphics pipeline
was created with VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT, and the format of any color
attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the corresponding element of the
pColorWriteMasks parameter of vkCmdSetColorWriteMaskEXT must either include all of
VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and VK_COLOR_COMPONENT_B_BIT, or
none of them

• VUID-vkCmdExecuteGeneratedCommandsNV-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

2937

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09548
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, the value of each element of
VkRenderingAttachmentLocationInfoKHR::pColorAttachmentLocations set by
vkCmdSetRenderingAttachmentLocationsKHR must match the value set for the
corresponding element in the currently bound pipeline

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09549
If the current render pass was begun with vkCmdBeginRendering, and there is no shader
object bound to any graphics stage, input attachment index mappings in the currently
bound pipeline must match those set for the current render pass instance via
VkRenderingInputAttachmentIndexInfoKHR

• VUID-vkCmdExecuteGeneratedCommandsNV-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdExecuteGeneratedCommandsNV-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdExecuteGeneratedCommandsNV-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdExecuteGeneratedCommandsNV-None-07842
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY
dynamic state enabled then vkCmdSetPrimitiveTopology must have been called in the
current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-dynamicPrimitiveTopologyUnrestricted-
07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled and the
dynamicPrimitiveTopologyUnrestricted is VK_FALSE, then the primitiveTopology parameter
of vkCmdSetPrimitiveTopology must be of the same topology class as the pipeline
VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdExecuteGeneratedCommandsNV-None-04912
If the bound graphics pipeline was created with both the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT and VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT
dynamic states enabled, then vkCmdSetVertexInputEXT must have been called in the
current command buffer prior to this draw command

• VUID-vkCmdExecuteGeneratedCommandsNV-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, but without the
VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer

2938

prior to this draw command, and the pStrides parameter of
vkCmdBindVertexBuffers2EXT must not be NULL

• VUID-vkCmdExecuteGeneratedCommandsNV-None-04914
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then vkCmdSetVertexInputEXT must have been called in the current
command buffer prior to this draw command

• VUID-vkCmdExecuteGeneratedCommandsNV-Input-07939
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription2EXT::location

• VUID-vkCmdExecuteGeneratedCommandsNV-Input-08734
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled then the numeric type associated with all Input variables of the
corresponding Location in the Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription2EXT::format

• VUID-vkCmdExecuteGeneratedCommandsNV-format-08936
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then the scalar width associated with all Input variables of the corresponding
Location in the Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-vkCmdExecuteGeneratedCommandsNV-format-08937
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and the scalar width associated with a Location decorated Input variable in
the Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription2EXT::format must have a 64-bit component

• VUID-vkCmdExecuteGeneratedCommandsNV-None-09203
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_VERTEX_INPUT_EXT dynamic
state enabled and VkVertexInputAttributeDescription2EXT::format has a 64-bit
component, then all Input variables at the corresponding Location in the Vertex Execution
Model OpEntryPoint must not use components that are not present in the format

• VUID-vkCmdExecuteGeneratedCommandsNV-None-04875
If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage and the most
recent call to vkCmdSetPrimitiveTopology in the current command buffer set
primitiveTopology to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, or the bound graphics pipeline
state was created with the VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT dynamic state
enabled then vkCmdSetPatchControlPointsEXT must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-None-04879

2939

If there is a shader object bound to the VK_SHADER_STAGE_VERTEX_BIT stage or the bound
graphics pipeline state was created with the VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE
dynamic state enabled then vkCmdSetPrimitiveRestartEnable must have been called in
the current command buffer prior to this drawing command

• VUID-vkCmdExecuteGeneratedCommandsNV-stage-06481
The bound graphics pipeline must not have been created with the
VkPipelineShaderStageCreateInfo::stage member of an element of
VkGraphicsPipelineCreateInfo::pStages set to VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT

• VUID-vkCmdExecuteGeneratedCommandsNV-None-08885
There must be no shader object bound to either of the VK_SHADER_STAGE_TASK_BIT_EXT or
VK_SHADER_STAGE_MESH_BIT_EXT stages

• VUID-vkCmdExecuteGeneratedCommandsNV-commandBuffer-02970
commandBuffer must not be a protected command buffer

• VUID-vkCmdExecuteGeneratedCommandsNV-isPreprocessed-02908
If isPreprocessed is VK_TRUE then vkCmdPreprocessGeneratedCommandsNV must have
already been executed on the device, using the same pGeneratedCommandsInfo content as
well as the content of the input buffers it references (all except
VkGeneratedCommandsInfoNV::preprocessBuffer). Furthermore pGeneratedCommandsInfo`s
indirectCommandsLayout must have been created with the
VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_NV bit set

• VUID-vkCmdExecuteGeneratedCommandsNV-pipeline-02909
VkGeneratedCommandsInfoNV::pipeline must match the current bound pipeline at
VkGeneratedCommandsInfoNV::pipelineBindPoint

• VUID-vkCmdExecuteGeneratedCommandsNV-None-02910
Transform feedback must not be active

• VUID-vkCmdExecuteGeneratedCommandsNV-deviceGeneratedCommands-02911
The VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV::deviceGeneratedCommands feature
must be enabled

Valid Usage (Implicit)

• VUID-vkCmdExecuteGeneratedCommandsNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdExecuteGeneratedCommandsNV-pGeneratedCommandsInfo-parameter
pGeneratedCommandsInfo must be a valid pointer to a valid VkGeneratedCommandsInfoNV
structure

• VUID-vkCmdExecuteGeneratedCommandsNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdExecuteGeneratedCommandsNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

2940

• VUID-vkCmdExecuteGeneratedCommandsNV-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdExecuteGeneratedCommandsNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Inside Outside Graphics
Compute

Action
Indirection

The VkGeneratedCommandsInfoNV is defined as:

// Provided by VK_NV_device_generated_commands
typedef struct VkGeneratedCommandsInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkPipelineBindPoint pipelineBindPoint;
 VkPipeline pipeline;
 VkIndirectCommandsLayoutNV indirectCommandsLayout;
 uint32_t streamCount;
 const VkIndirectCommandsStreamNV* pStreams;
 uint32_t sequencesCount;
 VkBuffer preprocessBuffer;
 VkDeviceSize preprocessOffset;
 VkDeviceSize preprocessSize;
 VkBuffer sequencesCountBuffer;
 VkDeviceSize sequencesCountOffset;
 VkBuffer sequencesIndexBuffer;
 VkDeviceSize sequencesIndexOffset;
} VkGeneratedCommandsInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineBindPoint is the VkPipelineBindPoint used for the pipeline.

2941

• pipeline is the VkPipeline used in the generation and execution process.

• indirectCommandsLayout is the VkIndirectCommandsLayoutNV that provides the command
sequence to generate.

• streamCount defines the number of input streams

• pStreams is a pointer to an array of streamCount VkIndirectCommandsStreamNV structures
providing the input data for the tokens used in indirectCommandsLayout.

• sequencesCount is the maximum number of sequences to reserve. If sequencesCountBuffer is
VK_NULL_HANDLE, this is also the actual number of sequences generated.

• preprocessBuffer is the VkBuffer that is used for preprocessing the input data for execution. If
this structure is used with vkCmdExecuteGeneratedCommandsNV with its isPreprocessed set to
VK_TRUE, then the preprocessing step is skipped and data in this buffer will not be modified. The
contents and the layout of this buffer are opaque to applications and must not be modified
outside functions related to device-generated commands or copied to another buffer for reuse.

• preprocessOffset is the byte offset into preprocessBuffer where the preprocessed data is stored.

• preprocessSize is the maximum byte size within the preprocessBuffer after the preprocessOffset
that is available for preprocessing.

• sequencesCountBuffer is a VkBuffer in which the actual number of sequences is provided as
single uint32_t value.

• sequencesCountOffset is the byte offset into sequencesCountBuffer where the count value is
stored.

• sequencesIndexBuffer is a VkBuffer that encodes the used sequence indices as uint32_t array.

• sequencesIndexOffset is the byte offset into sequencesIndexBuffer where the index values start.

Valid Usage

• VUID-VkGeneratedCommandsInfoNV-pipeline-02912
The provided pipeline must match the pipeline bound at execution time

• VUID-VkGeneratedCommandsInfoNV-indirectCommandsLayout-02913
If the indirectCommandsLayout uses a token of
VK_INDIRECT_COMMANDS_TOKEN_TYPE_SHADER_GROUP_NV, then the pipeline must have been
created with multiple shader groups

• VUID-VkGeneratedCommandsInfoNV-indirectCommandsLayout-02914
If the indirectCommandsLayout uses a token of
VK_INDIRECT_COMMANDS_TOKEN_TYPE_SHADER_GROUP_NV, then the pipeline must have been
created with VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV set in
VkGraphicsPipelineCreateInfo::flags

• VUID-VkGeneratedCommandsInfoNV-indirectCommandsLayout-02915
If the indirectCommandsLayout uses a token of
VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV, then the pipeline’s VkPipelineLayout
must match the VkIndirectCommandsLayoutTokenNV::pushconstantPipelineLayout

• VUID-VkGeneratedCommandsInfoNV-streamCount-02916
streamCount must match the indirectCommandsLayout’s streamCount

2942

• VUID-VkGeneratedCommandsInfoNV-pipelineBindPoint-09084
If pipelineBindPoint is of type VK_PIPELINE_BIND_POINT_COMPUTE, then the pipeline must
have been created with the flag VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• VUID-VkGeneratedCommandsInfoNV-pipelineBindPoint-09085
If pipelineBindPoint is of type VK_PIPELINE_BIND_POINT_COMPUTE, then the pipeline must
have been created with a VkComputePipelineIndirectBufferInfoNV structure specifying a
valid address where its metadata will be saved

• VUID-VkGeneratedCommandsInfoNV-pipelineBindPoint-09086
If pipelineBindPoint is of type VK_PIPELINE_BIND_POINT_COMPUTE, then
vkCmdUpdatePipelineIndirectBufferNV must have been called on that pipeline to save its
metadata to a device address

• VUID-VkGeneratedCommandsInfoNV-pipelineBindPoint-09087
If pipelineBindPoint is of type VK_PIPELINE_BIND_POINT_COMPUTE, and if
VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV is used, then pipeline must be
VK_NULL_HANDLE

• VUID-VkGeneratedCommandsInfoNV-sequencesCount-02917
sequencesCount must be less or equal to
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::maxIndirectSequenceCount and
VkGeneratedCommandsMemoryRequirementsInfoNV::maxSequencesCount that was used to
determine the preprocessSize

• VUID-VkGeneratedCommandsInfoNV-preprocessBuffer-02918
preprocessBuffer must have the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set in its usage
flag

• VUID-VkGeneratedCommandsInfoNV-preprocessOffset-02919
preprocessOffset must be aligned to
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV::minIndirectCommandsBufferOff
setAlignment

• VUID-VkGeneratedCommandsInfoNV-preprocessBuffer-02971
If preprocessBuffer is non-sparse then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-VkGeneratedCommandsInfoNV-preprocessSize-02920
preprocessSize must be at least equal to the memory requirement`s size returned by
vkGetGeneratedCommandsMemoryRequirementsNV using the matching inputs
(indirectCommandsLayout, …) as within this structure

• VUID-VkGeneratedCommandsInfoNV-sequencesCountBuffer-02921
sequencesCountBuffer can be set if the actual used count of sequences is sourced from the
provided buffer. In that case the sequencesCount serves as upper bound

• VUID-VkGeneratedCommandsInfoNV-sequencesCountBuffer-02922
If sequencesCountBuffer is not VK_NULL_HANDLE, its usage flag must have the
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-VkGeneratedCommandsInfoNV-sequencesCountBuffer-02923
If sequencesCountBuffer is not VK_NULL_HANDLE, sequencesCountOffset must be aligned
to VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV

2943

::minSequencesCountBufferOffsetAlignment

• VUID-VkGeneratedCommandsInfoNV-sequencesCountBuffer-02972
If sequencesCountBuffer is not VK_NULL_HANDLE and is non-sparse then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkGeneratedCommandsInfoNV-sequencesIndexBuffer-02924
If indirectCommandsLayout’s VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NV
is set, sequencesIndexBuffer must be set otherwise it must be VK_NULL_HANDLE

• VUID-VkGeneratedCommandsInfoNV-sequencesIndexBuffer-02925
If sequencesIndexBuffer is not VK_NULL_HANDLE, its usage flag must have the
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-VkGeneratedCommandsInfoNV-sequencesIndexBuffer-02926
If sequencesIndexBuffer is not VK_NULL_HANDLE, sequencesIndexOffset must be aligned
to VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV
::minSequencesIndexBufferOffsetAlignment

• VUID-VkGeneratedCommandsInfoNV-sequencesIndexBuffer-02973
If sequencesIndexBuffer is not VK_NULL_HANDLE and is non-sparse then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkGeneratedCommandsInfoNV-indirectCommandsLayout-07078
If the indirectCommandsLayout uses a token of
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_TASKS_NV, then the pipeline must contain a shader
stage using the MeshNV Execution Model

• VUID-VkGeneratedCommandsInfoNV-indirectCommandsLayout-07079
If the indirectCommandsLayout uses a token of
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_NV, then the pipeline must contain a
shader stage using the MeshEXT Execution Model

Valid Usage (Implicit)

• VUID-VkGeneratedCommandsInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_GENERATED_COMMANDS_INFO_NV

• VUID-VkGeneratedCommandsInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkGeneratedCommandsInfoNV-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkGeneratedCommandsInfoNV-pipeline-parameter
If pipeline is not VK_NULL_HANDLE, pipeline must be a valid VkPipeline handle

• VUID-VkGeneratedCommandsInfoNV-indirectCommandsLayout-parameter
indirectCommandsLayout must be a valid VkIndirectCommandsLayoutNV handle

• VUID-VkGeneratedCommandsInfoNV-pStreams-parameter
pStreams must be a valid pointer to an array of streamCount valid
VkIndirectCommandsStreamNV structures

• VUID-VkGeneratedCommandsInfoNV-preprocessBuffer-parameter

2944

preprocessBuffer must be a valid VkBuffer handle

• VUID-VkGeneratedCommandsInfoNV-sequencesCountBuffer-parameter
If sequencesCountBuffer is not VK_NULL_HANDLE, sequencesCountBuffer must be a valid
VkBuffer handle

• VUID-VkGeneratedCommandsInfoNV-sequencesIndexBuffer-parameter
If sequencesIndexBuffer is not VK_NULL_HANDLE, sequencesIndexBuffer must be a valid
VkBuffer handle

• VUID-VkGeneratedCommandsInfoNV-streamCount-arraylength
streamCount must be greater than 0

• VUID-VkGeneratedCommandsInfoNV-commonparent
Each of indirectCommandsLayout, pipeline, preprocessBuffer, sequencesCountBuffer, and
sequencesIndexBuffer that are valid handles of non-ignored parameters must have been
created, allocated, or retrieved from the same VkDevice

Referencing the functions defined in Indirect Commands Layout, vkCmdExecuteGeneratedCommandsNV
behaves as:

uint32_t sequencesCount = sequencesCountBuffer ?
 min(maxSequencesCount, sequencesCountBuffer.load_uint32(sequencesCountOffset) :
 maxSequencesCount;

cmdProcessAllSequences(commandBuffer, pipeline,
 indirectCommandsLayout, pIndirectCommandsStreams,
 sequencesCount,
 sequencesIndexBuffer, sequencesIndexOffset);

// The stateful commands within indirectCommandsLayout will not
// affect the state of subsequent commands in the target
// command buffer (cmd)

Note

It is important to note that the values of all state related to the pipelineBindPoint
used are undefined after this command.

Commands can be preprocessed prior execution using the following command:

// Provided by VK_NV_device_generated_commands
void vkCmdPreprocessGeneratedCommandsNV(
 VkCommandBuffer commandBuffer,
 const VkGeneratedCommandsInfoNV* pGeneratedCommandsInfo);

• commandBuffer is the command buffer which does the preprocessing.

• pGeneratedCommandsInfo is a pointer to a VkGeneratedCommandsInfoNV structure containing

2945

parameters affecting the preprocessing step.

Valid Usage

• VUID-vkCmdPreprocessGeneratedCommandsNV-commandBuffer-02974
commandBuffer must not be a protected command buffer

• VUID-vkCmdPreprocessGeneratedCommandsNV-pGeneratedCommandsInfo-02927
pGeneratedCommandsInfo`s indirectCommandsLayout must have been created with the
VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_NV bit set

• VUID-vkCmdPreprocessGeneratedCommandsNV-deviceGeneratedCommands-02928
The VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV::deviceGeneratedCommands feature
must be enabled

Valid Usage (Implicit)

• VUID-vkCmdPreprocessGeneratedCommandsNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPreprocessGeneratedCommandsNV-pGeneratedCommandsInfo-parameter
pGeneratedCommandsInfo must be a valid pointer to a valid VkGeneratedCommandsInfoNV
structure

• VUID-vkCmdPreprocessGeneratedCommandsNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdPreprocessGeneratedCommandsNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdPreprocessGeneratedCommandsNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdPreprocessGeneratedCommandsNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

2946

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics
Compute

Action

The bound descriptor sets and push constants that will be used with indirect command generation
for the compute pipelines must already be specified at the time of preprocessing commands with
vkCmdPreprocessGeneratedCommandsNV. They must not change until the execution of indirect
commands is submitted with vkCmdExecuteGeneratedCommandsNV.

If push constants for the compute pipeline are also specified in the VkGeneratedCommandsInfoNV
::indirectCommandsLayout with VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NV token, then those
values override the push constants that were previously pushed for the compute pipeline.

2947

Chapter 33. Sparse Resources
As documented in Resource Memory Association, VkBuffer and VkImage resources in Vulkan must
be bound completely and contiguously to a single VkDeviceMemory object. This binding must be done
before the resource is used, and the binding is immutable for the lifetime of the resource.

Sparse resources relax these restrictions and provide these additional features:

• Sparse resources can be bound non-contiguously to one or more VkDeviceMemory allocations.

• Sparse resources can be re-bound to different memory allocations over the lifetime of the
resource.

• Sparse resources can have descriptors generated and used orthogonally with memory binding
commands.

33.1. Sparse Resource Features
Sparse resources have several features that must be enabled explicitly at resource creation time.
The features are enabled by including bits in the flags parameter of VkImageCreateInfo or
VkBufferCreateInfo. Each feature also has one or more corresponding feature enables specified in
VkPhysicalDeviceFeatures.

• The sparseBinding feature is the base, and provides the following capabilities:

◦ Resources can be bound at some defined (sparse block) granularity.

◦ The entire resource must be bound to memory before use regardless of regions actually
accessed.

◦ No specific mapping of image region to memory offset is defined, i.e. the location that each
texel corresponds to in memory is implementation-dependent.

◦ Sparse buffers have a well-defined mapping of buffer range to memory range, where an
offset into a range of the buffer that is bound to a single contiguous range of memory
corresponds to an identical offset within that range of memory.

◦ Requested via the VK_IMAGE_CREATE_SPARSE_BINDING_BIT and
VK_BUFFER_CREATE_SPARSE_BINDING_BIT bits.

◦ A sparse image created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (but not
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) supports all formats that non-sparse usage supports,
and supports both VK_IMAGE_TILING_OPTIMAL and VK_IMAGE_TILING_LINEAR tiling.

• Sparse Residency builds on (and requires) the sparseBinding feature. It includes the following
capabilities:

◦ Resources do not have to be completely bound to memory before use on the device.

◦ Images have a prescribed sparse image block layout, allowing specific rectangular regions of
the image to be bound to specific offsets in memory allocations.

◦ Consistency of access to unbound regions of the resource is defined by the absence or
presence of VkPhysicalDeviceSparseProperties::residencyNonResidentStrict. If this property is
present, accesses to unbound regions of the resource are well defined and behave as if the

2948

data bound is populated with all zeros; writes are discarded. When this property is absent,
accesses are considered safe, but reads will return undefined values.

◦ Requested via the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT and
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT bits.

◦ Sparse residency support is advertised on a finer grain via the following features:

▪ The sparseResidencyBuffer feature provides support for creating VkBuffer objects with
the VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidencyImage2D feature provides support for creating 2D single-sampled
VkImage objects with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidencyImage3D feature provides support for creating 3D VkImage objects with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidency2Samples feature provides support for creating 2D VkImage objects
with 2 samples and VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidency4Samples feature provides support for creating 2D VkImage objects
with 4 samples and VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidency8Samples feature provides support for creating 2D VkImage objects
with 8 samples and VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidency16Samples feature provides support for creating 2D VkImage objects
with 16 samples and VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

Implementations supporting sparseResidencyImage2D are only required to support sparse
2D, single-sampled images. Support for sparse 3D and MSAA images is optional and can be
enabled via sparseResidencyImage3D, sparseResidency2Samples, sparseResidency4Samples,
sparseResidency8Samples, and sparseResidency16Samples.

◦ A sparse image created using VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT supports all non-
compressed color formats with power-of-two element size that non-sparse usage supports.
Additional formats may also be supported and can be queried via
vkGetPhysicalDeviceSparseImageFormatProperties. VK_IMAGE_TILING_LINEAR tiling is not
supported.

• The sparseResidencyAliased feature provides the following capability that can be enabled per
resource:

Allows physical memory ranges to be shared between multiple locations in the same sparse
resource or between multiple sparse resources, with each binding of a memory location
observing a consistent interpretation of the memory contents.

See Sparse Memory Aliasing for more information.

33.2. Sparse Buffers and Fully-Resident Images
Both VkBuffer and VkImage objects created with the VK_IMAGE_CREATE_SPARSE_BINDING_BIT or
VK_BUFFER_CREATE_SPARSE_BINDING_BIT bits can be thought of as a linear region of address space. In
the VkImage case if VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT is not used, this linear region is entirely

2949

opaque, meaning that there is no application-visible mapping between texel location and memory
offset.

Unless VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT are also
used, the entire resource must be bound to one or more VkDeviceMemory objects before use.

33.2.1. Sparse Buffer and Fully-Resident Image Block Size

The sparse block size in bytes for sparse buffers and fully-resident images is reported as
VkMemoryRequirements::alignment. alignment represents both the memory alignment requirement and
the binding granularity (in bytes) for sparse resources.

33.3. Sparse Partially-Resident Buffers
VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT bit allow the buffer to be
made only partially resident. Partially resident VkBuffer objects are allocated and bound identically
to VkBuffer objects using only the VK_BUFFER_CREATE_SPARSE_BINDING_BIT feature. The only difference
is the ability for some regions of the buffer to be unbound during device use.

33.4. Sparse Partially-Resident Images
VkImage objects created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT bit allow specific rectangular
regions of the image called sparse image blocks to be bound to specific ranges of memory. This
allows the application to manage residency at either image subresource or sparse image block
granularity. Each image subresource (outside of the mip tail) starts on a sparse block boundary and
has dimensions that are integer multiples of the corresponding dimensions of the sparse image
block.

Note

Applications can use these types of images to control LOD based on total memory
consumption. If memory pressure becomes an issue the application can unbind
and disable specific mipmap levels of images without having to recreate resources
or modify texel data of unaffected levels.

The application can also use this functionality to access subregions of the image in
a “megatexture” fashion. The application can create a large image and only
populate the region of the image that is currently being used in the scene.

33.4.1. Accessing Unbound Regions

The following member of VkPhysicalDeviceSparseProperties affects how data in unbound regions of
sparse resources are handled by the implementation:

• residencyNonResidentStrict

If this property is not present, reads of unbound regions of the image will return undefined values.
Both reads and writes are still considered safe and will not affect other resources or populated
regions of the image.

2950

If this property is present, all reads of unbound regions of the image will behave as if the region
was bound to memory populated with all zeros; writes will be discarded.

Image operations performed on unbound memory may still alter some component values in the
natural way for those accesses, e.g. substituting a value of one for alpha in formats that do not have
an alpha component.

Example: Reading the alpha component of an unbacked VK_FORMAT_R8_UNORM image will return a
value of 1.0f.

See Physical Device Enumeration for instructions for retrieving physical device properties.

Implementor’s Note

For implementations that cannot natively handle access to unbound regions of a resource,
the implementation may allocate and bind memory to the unbound regions. Reads and
writes to unbound regions will access the implementation-managed memory instead.

Given that the values resulting from reads of unbound regions are undefined in this scenario,
implementations may use the same physical memory for all unbound regions of multiple
resources within the same process.

33.4.2. Mip Tail Regions

Sparse images created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (without also using
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) have no specific mapping of image region or image
subresource to memory offset defined, so the entire image can be thought of as a linear opaque
address region. However, images created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT do have a
prescribed sparse image block layout, and hence each image subresource must start on a sparse
block boundary. Within each array layer, the set of mip levels that have a smaller size than the
sparse block size in bytes are grouped together into a mip tail region.

If the VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT flag is present in the flags member of
VkSparseImageFormatProperties, for the image’s format, then any mip level which has dimensions
that are not integer multiples of the corresponding dimensions of the sparse image block, and all
subsequent mip levels, are also included in the mip tail region.

The following member of VkPhysicalDeviceSparseProperties may affect how the implementation
places mip levels in the mip tail region:

• residencyAlignedMipSize

Each mip tail region is bound to memory as an opaque region (i.e. must be bound using a
VkSparseImageOpaqueMemoryBindInfo structure) and may be of a size greater than or equal to
the sparse block size in bytes. This size is guaranteed to be an integer multiple of the sparse block
size in bytes.

2951

An implementation may choose to allow each array-layer’s mip tail region to be bound to memory
independently or require that all array-layer’s mip tail regions be treated as one. This is dictated by
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT in VkSparseImageMemoryRequirements::flags.

The following diagrams depict how VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT alter memory usage and requirements.

Array Layer 0 Array Layer 1 Array Layer 2

Mip
Level 0

Mip
Level 1

Mip
Level 3

Mip
Level 2

Mip Tail

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 22. Sparse Image

In the absence of VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, each array layer contains a mip tail region containing
texel data for all mip levels smaller than the sparse image block in any dimension.

Mip levels that are as large or larger than a sparse image block in all dimensions can be bound
individually. Right-edges and bottom-edges of each level are allowed to have partially used sparse
blocks. Any bound partially-used-sparse-blocks must still have their full sparse block size in bytes
allocated in memory.

2952

Array Layer 0 Array Layer 1 Array Layer 2

Mip
Level 0

Mip
Level 1

Mip
Level 3

Mip
Level 2

Mip Tail

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 23. Sparse Image with Single Mip Tail

When VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT is present all array layers will share a single mip
tail region.

Array Layer 0 Array Layer 1 Array Layer 2

Mip
Level 0

Mip
Level 1

Mip Tail

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 24. Sparse Image with Aligned Mip Size

 Note

2953

The mip tail regions are presented here in 2D arrays simply for figure size reasons.
Each mip tail is logically a single array of sparse blocks with an implementation-
dependent mapping of texels or compressed texel blocks to sparse blocks.

When VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT is present the first mip level that would contain
partially used sparse blocks begins the mip tail region. This level and all subsequent levels are
placed in the mip tail. Only the first N mip levels whose dimensions are an exact multiple of the
sparse image block dimensions can be bound and unbound on a sparse block basis.

Array Layer 0 Array Layer 1 Array Layer 2

Mip
Level 0

Mip
Level 1

Mip Tail

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 25. Sparse Image with Aligned Mip Size and Single Mip Tail

Note

The mip tail region is presented here in a 2D array simply for figure size reasons. It
is logically a single array of sparse blocks with an implementation-dependent
mapping of texels or compressed texel blocks to sparse blocks.

When both VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT are present the constraints from each of these flags are
in effect.

33.4.3. Standard Sparse Image Block Shapes

Standard sparse image block shapes define a standard set of dimensions for sparse image blocks
that depend on the format of the image. Layout of texels or compressed texel blocks within a sparse
image block is implementation-dependent. All currently defined standard sparse image block
shapes are 64 KB in size.

For block-compressed formats (e.g. VK_FORMAT_BC5_UNORM_BLOCK), the texel size is the size of the
compressed texel block (e.g. 128-bit for BC5) thus the dimensions of the standard sparse image block

2954

shapes apply in terms of compressed texel blocks.

Note

For block-compressed formats, the dimensions of a sparse image block in terms of
texels can be calculated by multiplying the sparse image block dimensions by the
compressed texel block dimensions.

2955

Table 47. Standard Sparse Image Block Shapes (Single Sample)

TEXEL SIZE (bits) Block Shape (2D) Block Shape (3D)

8-Bit 256 × 256 × 1 64 × 32 × 32

16-Bit 256 × 128 × 1 32 × 32 × 32

32-Bit 128 × 128 × 1 32 × 32 × 16

64-Bit 128 × 64 × 1 32 × 16 × 16

128-Bit 64 × 64 × 1 16 × 16 × 16

Table 48. Standard Sparse Image Block Shapes (MSAA)

TEXEL SIZE (bits) Block Shape (2X) Block Shape (4X) Block Shape (8X) Block Shape
(16X)

8-Bit 128 × 256 × 1 128 × 128 × 1 64 × 128 × 1 64 × 64 × 1

16-Bit 128 × 128 × 1 128 × 64 × 1 64 × 64 × 1 64 × 32 × 1

32-Bit 64 × 128 × 1 64 × 64 × 1 32 × 64 × 1 32 × 32 × 1

64-Bit 64 × 64 × 1 64 × 32 × 1 32 × 32 × 1 32 × 16 × 1

128-Bit 32 × 64 × 1 32 × 32 × 1 16 × 32 × 1 16 × 16 × 1

Implementations that support the standard sparse image block shape for all formats listed in the
Standard Sparse Image Block Shapes (Single Sample) and Standard Sparse Image Block Shapes
(MSAA) tables may advertise the following VkPhysicalDeviceSparseProperties:

• residencyStandard2DBlockShape

• residencyStandard2DMultisampleBlockShape

• residencyStandard3DBlockShape

Reporting each of these features does not imply that all possible image types are supported as
sparse. Instead, this indicates that no supported sparse image of the corresponding type will use
custom sparse image block dimensions for any formats that have a corresponding standard sparse
image block shape.

33.4.4. Custom Sparse Image Block Shapes

An implementation that does not support a standard image block shape for a particular sparse
partially-resident image may choose to support a custom sparse image block shape for it instead.
The dimensions of such a custom sparse image block shape are reported in
VkSparseImageFormatProperties::imageGranularity. As with standard sparse image block shapes, the
size in bytes of the custom sparse image block shape will be reported in VkMemoryRequirements
::alignment.

Custom sparse image block dimensions are reported through
vkGetPhysicalDeviceSparseImageFormatProperties and vkGetImageSparseMemoryRequirements.

An implementation must not support both the standard sparse image block shape and a custom

2956

sparse image block shape for the same image. The standard sparse image block shape must be used
if it is supported.

33.4.5. Multiple Aspects

Partially resident images are allowed to report separate sparse properties for different aspects of
the image. One example is for depth/stencil images where the implementation separates the depth
and stencil data into separate planes. Another reason for multiple aspects is to allow the application
to manage memory allocation for implementation-private metadata associated with the image. See
the figure below:

Depth Stencil

Mip
Level 0

Mip
Level 1

Mip
Level 3

Mip
Level 2

Mip Tail

Mip Tail

Metadata

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 26. Multiple Aspect Sparse Image

Note

The mip tail regions are presented here in 2D arrays simply for figure size reasons.
Each mip tail is logically a single array of sparse blocks with an implementation-
dependent mapping of texels or compressed texel blocks to sparse blocks.

In the figure above the depth, stencil, and metadata aspects all have unique sparse properties. The

2957

per-texel stencil data is ¼ the size of the depth data, hence the stencil sparse blocks include 4 × the
number of texels. The sparse block size in bytes for all of the aspects is identical and defined by
VkMemoryRequirements::alignment.

Metadata

The metadata aspect of an image has the following constraints:

• All metadata is reported in the mip tail region of the metadata aspect.

• All metadata must be bound prior to device use of the sparse image.

33.5. Sparse Memory Aliasing
By default sparse resources have the same aliasing rules as non-sparse resources. See Memory
Aliasing for more information.

VkDevice objects that have the sparseResidencyAliased feature enabled are able to use the
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags for resource
creation. These flags allow resources to access physical memory bound into multiple locations
within one or more sparse resources in a data consistent fashion. This means that reading physical
memory from multiple aliased locations will return the same value.

Care must be taken when performing a write operation to aliased physical memory. Memory
dependencies must be used to separate writes to one alias from reads or writes to another alias.
Writes to aliased memory that are not properly guarded against accesses to different aliases will
have undefined results for all accesses to the aliased memory.

Applications that wish to make use of data consistent sparse memory aliasing must abide by the
following guidelines:

• All sparse resources that are bound to aliased physical memory must be created with the
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT / VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flag.

• All resources that access aliased physical memory must interpret the memory in the same way.
This implies the following:

◦ Buffers and images cannot alias the same physical memory in a data consistent fashion. The
physical memory ranges must be used exclusively by buffers or used exclusively by images
for data consistency to be guaranteed.

◦ Memory in sparse image mip tail regions cannot access aliased memory in a data consistent
fashion.

◦ Sparse images that alias the same physical memory must have compatible formats and be
using the same sparse image block shape in order to access aliased memory in a data
consistent fashion.

Failure to follow any of the above guidelines will require the application to abide by the normal,
non-sparse resource aliasing rules. In this case memory cannot be accessed in a data consistent
fashion.

2958

Note

Enabling sparse resource memory aliasing can be a way to lower physical memory
use, but it may reduce performance on some implementations. An application
developer can test on their target HW and balance the memory / performance
trade-offs measured.

33.6. Sparse Resource Implementation Guidelines
(Informative)

This section is Informative. It is included to aid in implementors’ understanding of sparse
resources.

Device Virtual Address

The basic sparseBinding feature allows the resource to reserve its own device virtual address
range at resource creation time rather than relying on a bind operation to set this. Without
any other creation flags, no other constraints are relaxed compared to normal resources. All
pages must be bound to physical memory before the device accesses the resource.

The sparseResidency features allow sparse resources to be used even when not all pages are
bound to memory. Implementations that support access to unbound pages without causing a
fault may support residencyNonResidentStrict.

Not faulting on access to unbound pages is not enough to support residencyNonResidentStrict.
An implementation must also guarantee that reads after writes to unbound regions of the
resource always return data for the read as if the memory contains zeros. Depending on any
caching hierarchy of the implementation this may not always be possible.

Any implementation that does not fault, but does not guarantee correct read values must not
support residencyNonResidentStrict.

Any implementation that cannot access unbound pages without causing a fault will require
the implementation to bind the entire device virtual address range to physical memory. Any
pages that the application does not bind to memory may be bound to one (or more)
"`placeholder" physical page(s) allocated by the implementation. Given the following
properties:

• A process must not access memory from another process

• Reads return undefined values

It is sufficient for each host process to allocate these placeholder pages and use them for all
resources in that process. Implementations may allocate more often (per instance, per device,
or per resource).

Binding Memory

The byte size reported in VkMemoryRequirements::size must be greater than or equal to the
amount of physical memory required to fully populate the resource. Some implementations

2959

require “holes” in the device virtual address range that are never accessed. These holes may
be included in the size reported for the resource.

Including or not including the device virtual address holes in the resource size will alter how
the implementation provides support for VkSparseImageOpaqueMemoryBindInfo. This operation
must be supported for all sparse images, even ones created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• If the holes are included in the size, this bind function becomes very easy. In most cases
the resourceOffset is simply a device virtual address offset and the implementation can
easily determine what device virtual address to bind. The cost is that the application may
allocate more physical memory for the resource than it needs.

• If the holes are not included in the size, the application can allocate less physical memory
than otherwise for the resource. However, in this case the implementation must account
for the holes when mapping resourceOffset to the actual device virtual address intended
to be mapped.

Note

If the application always uses VkSparseImageMemoryBindInfo to bind memory
for the non-tail mip levels, any holes that are present in the resource size
may never be bound.

Since VkSparseImageMemoryBindInfo uses texel locations to determine which
device virtual addresses to bind, it is impossible to bind device virtual
address holes with this operation.

Binding Metadata Memory

All metadata for sparse images have their own sparse properties and are embedded in the
mip tail region for said properties. See the Multiaspect section for details.

Given that metadata is in a mip tail region, and the mip tail region must be reported as
contiguous (either globally or per-array-layer), some implementations will have to resort to
complicated offset → device virtual address mapping for handling
VkSparseImageOpaqueMemoryBindInfo.

To make this easier on the implementation, the VK_SPARSE_MEMORY_BIND_METADATA_BIT explicitly
specifies when metadata is bound with VkSparseImageOpaqueMemoryBindInfo. When this flag is
not present, the resourceOffset may be treated as a strict device virtual address offset.

When VK_SPARSE_MEMORY_BIND_METADATA_BIT is present, the resourceOffset must have been
derived explicitly from the imageMipTailOffset in the sparse resource properties returned for
the metadata aspect. By manipulating the value returned for imageMipTailOffset, the
resourceOffset does not have to correlate directly to a device virtual address offset, and may
instead be whatever value makes it easiest for the implementation to derive the correct
device virtual address.

2960

33.7. Sparse Resource API
The APIs related to sparse resources are grouped into the following categories:

• Physical Device Features

• Physical Device Sparse Properties

• Sparse Image Format Properties

• Sparse Resource Creation

• Sparse Resource Memory Requirements

• Binding Resource Memory

33.7.1. Physical Device Features

Some sparse-resource related features are reported and enabled in VkPhysicalDeviceFeatures. These
features must be supported and enabled on the VkDevice object before applications can use them.
See Physical Device Features for information on how to get and set enabled device features, and for
more detailed explanations of these features.

Sparse Physical Device Features

• sparseBinding: Support for creating VkBuffer and VkImage objects with the
VK_BUFFER_CREATE_SPARSE_BINDING_BIT and VK_IMAGE_CREATE_SPARSE_BINDING_BIT flags, respectively.

• sparseResidencyBuffer: Support for creating VkBuffer objects with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag.

• sparseResidencyImage2D: Support for creating 2D single-sampled VkImage objects with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidencyImage3D: Support for creating 3D VkImage objects with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency2Samples: Support for creating 2D VkImage objects with 2 samples and
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency4Samples: Support for creating 2D VkImage objects with 4 samples and
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency8Samples: Support for creating 2D VkImage objects with 8 samples and
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency16Samples: Support for creating 2D VkImage objects with 16 samples and
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidencyAliased: Support for creating VkBuffer and VkImage objects with the
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags, respectively.

33.7.2. Physical Device Sparse Properties

Some features of the implementation are not possible to disable, and are reported to allow
applications to alter their sparse resource usage accordingly. These read-only capabilities are

2961

reported in the VkPhysicalDeviceProperties::sparseProperties member, which is a
VkPhysicalDeviceSparseProperties structure.

The VkPhysicalDeviceSparseProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceSparseProperties {
 VkBool32 residencyStandard2DBlockShape;
 VkBool32 residencyStandard2DMultisampleBlockShape;
 VkBool32 residencyStandard3DBlockShape;
 VkBool32 residencyAlignedMipSize;
 VkBool32 residencyNonResidentStrict;
} VkPhysicalDeviceSparseProperties;

• residencyStandard2DBlockShape is VK_TRUE if the physical device will access all single-sample 2D
sparse resources using the standard sparse image block shapes (based on image format), as
described in the Standard Sparse Image Block Shapes (Single Sample) table. If this property is
not supported the value returned in the imageGranularity member of the
VkSparseImageFormatProperties structure for single-sample 2D images is not required to match
the standard sparse image block dimensions listed in the table.

• residencyStandard2DMultisampleBlockShape is VK_TRUE if the physical device will access all
multisample 2D sparse resources using the standard sparse image block shapes (based on image
format), as described in the Standard Sparse Image Block Shapes (MSAA) table. If this property
is not supported, the value returned in the imageGranularity member of the
VkSparseImageFormatProperties structure for multisample 2D images is not required to match
the standard sparse image block dimensions listed in the table.

• residencyStandard3DBlockShape is VK_TRUE if the physical device will access all 3D sparse
resources using the standard sparse image block shapes (based on image format), as described
in the Standard Sparse Image Block Shapes (Single Sample) table. If this property is not
supported, the value returned in the imageGranularity member of the
VkSparseImageFormatProperties structure for 3D images is not required to match the standard
sparse image block dimensions listed in the table.

• residencyAlignedMipSize is VK_TRUE if images with mip level dimensions that are not integer
multiples of the corresponding dimensions of the sparse image block may be placed in the mip
tail. If this property is not reported, only mip levels with dimensions smaller than the
imageGranularity member of the VkSparseImageFormatProperties structure will be placed in the
mip tail. If this property is reported the implementation is allowed to return
VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT in the flags member of
VkSparseImageFormatProperties, indicating that mip level dimensions that are not integer
multiples of the corresponding dimensions of the sparse image block will be placed in the mip
tail.

• residencyNonResidentStrict specifies whether the physical device can consistently access non-
resident regions of a resource. If this property is VK_TRUE, access to non-resident regions of
resources will be guaranteed to return values as if the resource was populated with 0; writes to
non-resident regions will be discarded.

2962

33.7.3. Sparse Image Format Properties

Given that certain aspects of sparse image support, including the sparse image block dimensions,
may be implementation-dependent, vkGetPhysicalDeviceSparseImageFormatProperties can be
used to query for sparse image format properties prior to resource creation. This command is used
to check whether a given set of sparse image parameters is supported and what the sparse image
block shape will be.

Sparse Image Format Properties API

The VkSparseImageFormatProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageFormatProperties {
 VkImageAspectFlags aspectMask;
 VkExtent3D imageGranularity;
 VkSparseImageFormatFlags flags;
} VkSparseImageFormatProperties;

• aspectMask is a bitmask VkImageAspectFlagBits specifying which aspects of the image the
properties apply to.

• imageGranularity is the width, height, and depth of the sparse image block in texels or
compressed texel blocks.

• flags is a bitmask of VkSparseImageFormatFlagBits specifying additional information about the
sparse resource.

Bits which may be set in VkSparseImageFormatProperties::flags, specifying additional information
about the sparse resource, are:

// Provided by VK_VERSION_1_0
typedef enum VkSparseImageFormatFlagBits {
 VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT = 0x00000001,
 VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT = 0x00000002,
 VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT = 0x00000004,
} VkSparseImageFormatFlagBits;

• VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT specifies that the image uses a single mip tail region
for all array layers.

• VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT specifies that the first mip level whose dimensions
are not integer multiples of the corresponding dimensions of the sparse image block begins the
mip tail region.

• VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT specifies that the image uses non-standard
sparse image block dimensions, and the imageGranularity values do not match the standard
sparse image block dimensions for the given format.

2963

// Provided by VK_VERSION_1_0
typedef VkFlags VkSparseImageFormatFlags;

VkSparseImageFormatFlags is a bitmask type for setting a mask of zero or more
VkSparseImageFormatFlagBits.

vkGetPhysicalDeviceSparseImageFormatProperties returns an array of
VkSparseImageFormatProperties. Each element describes properties for one set of image aspects
that are bound simultaneously for a VkImage created with the provided image creation parameters.
This is usually one element for each aspect in the image, but for interleaved depth/stencil images
there is only one element describing the combined aspects.

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceSparseImageFormatProperties(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkImageType type,
 VkSampleCountFlagBits samples,
 VkImageUsageFlags usage,
 VkImageTiling tiling,
 uint32_t* pPropertyCount,
 VkSparseImageFormatProperties* pProperties);

• physicalDevice is the physical device from which to query the sparse image format properties.

• format is the image format.

• type is the dimensionality of the image.

• samples is a VkSampleCountFlagBits value specifying the number of samples per texel.

• usage is a bitmask describing the intended usage of the image.

• tiling is the tiling arrangement of the texel blocks in memory.

• pPropertyCount is a pointer to an integer related to the number of sparse format properties
available or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkSparseImageFormatProperties
structures.

If pProperties is NULL, then the number of sparse format properties available is returned in
pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of
elements in the pProperties array, and on return the variable is overwritten with the number of
structures actually written to pProperties. If pPropertyCount is less than the number of sparse
format properties available, at most pPropertyCount structures will be written.

If VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT is not supported for the given arguments, pPropertyCount
will be set to zero upon return, and no data will be written to pProperties.

Multiple aspects are returned for depth/stencil images that are implemented as separate planes by
the implementation. The depth and stencil data planes each have unique

2964

VkSparseImageFormatProperties data.

Depth/stencil images with depth and stencil data interleaved into a single plane will return a single
VkSparseImageFormatProperties structure with the aspectMask set to VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT.

Valid Usage

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-samples-01094
samples must be a valid VkSampleCountFlagBits value that is set in
VkImageFormatProperties::sampleCounts returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, and usage equal to
those in this command

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-type-parameter
type must be a valid VkImageType value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-usage-requiredbitmask
usage must not be 0

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkSparseImageFormatProperties
structures

vkGetPhysicalDeviceSparseImageFormatProperties2 returns an array of
VkSparseImageFormatProperties2. Each element describes properties for one set of image aspects
that are bound simultaneously for a VkImage created with the provided image creation parameters.
This is usually one element for each aspect in the image, but for interleaved depth/stencil images
there is only one element describing the combined aspects.

2965

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceSparseImageFormatProperties2(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo,
 uint32_t* pPropertyCount,
 VkSparseImageFormatProperties2* pProperties);

or the equivalent command

// Provided by VK_KHR_get_physical_device_properties2
void vkGetPhysicalDeviceSparseImageFormatProperties2KHR(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo,
 uint32_t* pPropertyCount,
 VkSparseImageFormatProperties2* pProperties);

• physicalDevice is the physical device from which to query the sparse image format properties.

• pFormatInfo is a pointer to a VkPhysicalDeviceSparseImageFormatInfo2 structure containing
input parameters to the command.

• pPropertyCount is a pointer to an integer related to the number of sparse format properties
available or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkSparseImageFormatProperties2
structures.

vkGetPhysicalDeviceSparseImageFormatProperties2 behaves identically to
vkGetPhysicalDeviceSparseImageFormatProperties, with the ability to return extended information
by adding extending structures to the pNext chain of its pProperties parameter.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties2-pFormatInfo-parameter
pFormatInfo must be a valid pointer to a valid VkPhysicalDeviceSparseImageFormatInfo2
structure

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties2-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties2-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkSparseImageFormatProperties2
structures

The VkPhysicalDeviceSparseImageFormatInfo2 structure is defined as:

2966

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceSparseImageFormatInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkFormat format;
 VkImageType type;
 VkSampleCountFlagBits samples;
 VkImageUsageFlags usage;
 VkImageTiling tiling;
} VkPhysicalDeviceSparseImageFormatInfo2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkPhysicalDeviceSparseImageFormatInfo2
VkPhysicalDeviceSparseImageFormatInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• format is the image format.

• type is the dimensionality of the image.

• samples is a VkSampleCountFlagBits value specifying the number of samples per texel.

• usage is a bitmask describing the intended usage of the image.

• tiling is the tiling arrangement of the texel blocks in memory.

Valid Usage

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-samples-01095
samples must be a valid VkSampleCountFlagBits value that is set in
VkImageFormatProperties::sampleCounts returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, and usage equal to
those in this command

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-pNext-pNext
pNext must be NULL

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-format-parameter
format must be a valid VkFormat value

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-type-parameter

2967

type must be a valid VkImageType value

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-usage-requiredbitmask
usage must not be 0

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-tiling-parameter
tiling must be a valid VkImageTiling value

The VkSparseImageFormatProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkSparseImageFormatProperties2 {
 VkStructureType sType;
 void* pNext;
 VkSparseImageFormatProperties properties;
} VkSparseImageFormatProperties2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkSparseImageFormatProperties2 VkSparseImageFormatProperties2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• properties is a VkSparseImageFormatProperties structure which is populated with the same
values as in vkGetPhysicalDeviceSparseImageFormatProperties.

Valid Usage (Implicit)

• VUID-VkSparseImageFormatProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2

• VUID-VkSparseImageFormatProperties2-pNext-pNext
pNext must be NULL

33.7.4. Sparse Resource Creation

Sparse resources require that one or more sparse feature flags be specified (as part of the
VkPhysicalDeviceFeatures structure described previously in the Physical Device Features section)
when calling vkCreateDevice. When the appropriate device features are enabled, the
VK_BUFFER_CREATE_SPARSE_* and VK_IMAGE_CREATE_SPARSE_* flags can be used. See vkCreateBuffer and

2968

vkCreateImage for details of the resource creation APIs.

Note

Specifying VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT requires specifying
VK_BUFFER_CREATE_SPARSE_BINDING_BIT or VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
respectively, as well. This means that resources must be created with the
appropriate *_SPARSE_BINDING_BIT to be used with the sparse binding command
(vkQueueBindSparse).

33.7.5. Sparse Resource Memory Requirements

Sparse resources have specific memory requirements related to binding sparse memory. These
memory requirements are reported differently for VkBuffer objects and VkImage objects.

Buffer and Fully-Resident Images

Buffers (both fully and partially resident) and fully-resident images can be bound to memory using
only the data from VkMemoryRequirements. For all sparse resources the VkMemoryRequirements
::alignment member specifies both the bindable sparse block size in bytes and required alignment
of VkDeviceMemory.

Partially Resident Images

Partially resident images have a different method for binding memory. As with buffers and fully
resident images, the VkMemoryRequirements::alignment field specifies the bindable sparse block size in
bytes for the image.

Requesting sparse memory requirements for VkImage objects using
vkGetImageSparseMemoryRequirements will return an array of one or more
VkSparseImageMemoryRequirements structures. Each structure describes the sparse memory
requirements for a group of aspects of the image.

The sparse image must have been created using the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag to
retrieve valid sparse image memory requirements.

Sparse Image Memory Requirements

The VkSparseImageMemoryRequirements structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageMemoryRequirements {
 VkSparseImageFormatProperties formatProperties;
 uint32_t imageMipTailFirstLod;
 VkDeviceSize imageMipTailSize;
 VkDeviceSize imageMipTailOffset;
 VkDeviceSize imageMipTailStride;
} VkSparseImageMemoryRequirements;

2969

• formatProperties is a VkSparseImageFormatProperties structure specifying properties of the
image format.

• imageMipTailFirstLod is the first mip level at which image subresources are included in the mip
tail region.

• imageMipTailSize is the memory size (in bytes) of the mip tail region. If formatProperties.flags
contains VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, this is the size of the whole mip tail,
otherwise this is the size of the mip tail of a single array layer. This value is guaranteed to be a
multiple of the sparse block size in bytes.

• imageMipTailOffset is the opaque memory offset used with
VkSparseImageOpaqueMemoryBindInfo to bind the mip tail region(s).

• imageMipTailStride is the offset stride between each array-layer’s mip tail, if
formatProperties.flags does not contain VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT (otherwise
the value is undefined).

To query sparse memory requirements for an image, call:

// Provided by VK_VERSION_1_0
void vkGetImageSparseMemoryRequirements(
 VkDevice device,
 VkImage image,
 uint32_t* pSparseMemoryRequirementCount,
 VkSparseImageMemoryRequirements* pSparseMemoryRequirements);

• device is the logical device that owns the image.

• image is the VkImage object to get the memory requirements for.

• pSparseMemoryRequirementCount is a pointer to an integer related to the number of sparse
memory requirements available or queried, as described below.

• pSparseMemoryRequirements is either NULL or a pointer to an array of
VkSparseImageMemoryRequirements structures.

If pSparseMemoryRequirements is NULL, then the number of sparse memory requirements available is
returned in pSparseMemoryRequirementCount. Otherwise, pSparseMemoryRequirementCount must point to
a variable set by the user to the number of elements in the pSparseMemoryRequirements array, and on
return the variable is overwritten with the number of structures actually written to
pSparseMemoryRequirements. If pSparseMemoryRequirementCount is less than the number of sparse
memory requirements available, at most pSparseMemoryRequirementCount structures will be written.

If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then
pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written
to.

Note

It is legal for an implementation to report a larger value in VkMemoryRequirements
::size than would be obtained by adding together memory sizes for all
VkSparseImageMemoryRequirements returned by vkGetImageSparseMemoryRequirements.

2970

This may occur when the implementation requires unused padding in the address
range describing the resource.

Valid Usage (Implicit)

• VUID-vkGetImageSparseMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageSparseMemoryRequirements-image-parameter
image must be a valid VkImage handle

• VUID-vkGetImageSparseMemoryRequirements-pSparseMemoryRequirementCount-
parameter
pSparseMemoryRequirementCount must be a valid pointer to a uint32_t value

• VUID-vkGetImageSparseMemoryRequirements-pSparseMemoryRequirements-parameter
If the value referenced by pSparseMemoryRequirementCount is not 0, and
pSparseMemoryRequirements is not NULL, pSparseMemoryRequirements must be a valid pointer
to an array of pSparseMemoryRequirementCount VkSparseImageMemoryRequirements
structures

• VUID-vkGetImageSparseMemoryRequirements-image-parent
image must have been created, allocated, or retrieved from device

To query sparse memory requirements for an image, call:

// Provided by VK_VERSION_1_1
void vkGetImageSparseMemoryRequirements2(
 VkDevice device,
 const VkImageSparseMemoryRequirementsInfo2* pInfo,
 uint32_t* pSparseMemoryRequirementCount,
 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements);

or the equivalent command

// Provided by VK_KHR_get_memory_requirements2
void vkGetImageSparseMemoryRequirements2KHR(
 VkDevice device,
 const VkImageSparseMemoryRequirementsInfo2* pInfo,
 uint32_t* pSparseMemoryRequirementCount,
 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements);

• device is the logical device that owns the image.

• pInfo is a pointer to a VkImageSparseMemoryRequirementsInfo2 structure containing parameters
required for the memory requirements query.

• pSparseMemoryRequirementCount is a pointer to an integer related to the number of sparse
memory requirements available or queried, as described below.

2971

• pSparseMemoryRequirements is either NULL or a pointer to an array of
VkSparseImageMemoryRequirements2 structures.

Valid Usage (Implicit)

• VUID-vkGetImageSparseMemoryRequirements2-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageSparseMemoryRequirements2-pInfo-parameter
pInfo must be a valid pointer to a valid VkImageSparseMemoryRequirementsInfo2
structure

• VUID-vkGetImageSparseMemoryRequirements2-pSparseMemoryRequirementCount-
parameter
pSparseMemoryRequirementCount must be a valid pointer to a uint32_t value

• VUID-vkGetImageSparseMemoryRequirements2-pSparseMemoryRequirements-
parameter
If the value referenced by pSparseMemoryRequirementCount is not 0, and
pSparseMemoryRequirements is not NULL, pSparseMemoryRequirements must be a valid pointer
to an array of pSparseMemoryRequirementCount VkSparseImageMemoryRequirements2
structures

To determine the sparse memory requirements for an image resource without creating an object,
call:

// Provided by VK_VERSION_1_3
void vkGetDeviceImageSparseMemoryRequirements(
 VkDevice device,
 const VkDeviceImageMemoryRequirements* pInfo,
 uint32_t* pSparseMemoryRequirementCount,
 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements);

or the equivalent command

// Provided by VK_KHR_maintenance4
void vkGetDeviceImageSparseMemoryRequirementsKHR(
 VkDevice device,
 const VkDeviceImageMemoryRequirements* pInfo,
 uint32_t* pSparseMemoryRequirementCount,
 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements);

• device is the logical device intended to own the image.

• pInfo is a pointer to a VkDeviceImageMemoryRequirements structure containing parameters
required for the memory requirements query.

• pSparseMemoryRequirementCount is a pointer to an integer related to the number of sparse
memory requirements available or queried, as described below.

2972

• pSparseMemoryRequirements is either NULL or a pointer to an array of
VkSparseImageMemoryRequirements2 structures.

Valid Usage (Implicit)

• VUID-vkGetDeviceImageSparseMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceImageSparseMemoryRequirements-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceImageMemoryRequirements structure

• VUID-vkGetDeviceImageSparseMemoryRequirements-
pSparseMemoryRequirementCount-parameter
pSparseMemoryRequirementCount must be a valid pointer to a uint32_t value

• VUID-vkGetDeviceImageSparseMemoryRequirements-pSparseMemoryRequirements-
parameter
If the value referenced by pSparseMemoryRequirementCount is not 0, and
pSparseMemoryRequirements is not NULL, pSparseMemoryRequirements must be a valid pointer
to an array of pSparseMemoryRequirementCount VkSparseImageMemoryRequirements2
structures

The VkImageSparseMemoryRequirementsInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImageSparseMemoryRequirementsInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
} VkImageSparseMemoryRequirementsInfo2;

or the equivalent

// Provided by VK_KHR_get_memory_requirements2
typedef VkImageSparseMemoryRequirementsInfo2 VkImageSparseMemoryRequirementsInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is the image to query.

Valid Usage (Implicit)

• VUID-VkImageSparseMemoryRequirementsInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2

• VUID-VkImageSparseMemoryRequirementsInfo2-pNext-pNext
pNext must be NULL

2973

• VUID-VkImageSparseMemoryRequirementsInfo2-image-parameter
image must be a valid VkImage handle

The VkSparseImageMemoryRequirements2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkSparseImageMemoryRequirements2 {
 VkStructureType sType;
 void* pNext;
 VkSparseImageMemoryRequirements memoryRequirements;
} VkSparseImageMemoryRequirements2;

or the equivalent

// Provided by VK_KHR_get_memory_requirements2
typedef VkSparseImageMemoryRequirements2 VkSparseImageMemoryRequirements2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryRequirements is a VkSparseImageMemoryRequirements structure describing the memory
requirements of the sparse image.

Valid Usage (Implicit)

• VUID-VkSparseImageMemoryRequirements2-sType-sType
sType must be VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2

• VUID-VkSparseImageMemoryRequirements2-pNext-pNext
pNext must be NULL

33.7.6. Binding Resource Memory

Non-sparse resources are backed by a single physical allocation prior to device use (via
vkBindImageMemory or vkBindBufferMemory), and their backing must not be changed. On the other
hand, sparse resources can be bound to memory non-contiguously and these bindings can be
altered during the lifetime of the resource.

Note

It is important to note that freeing a VkDeviceMemory object with vkFreeMemory will
not cause resources (or resource regions) bound to the memory object to become
unbound. Applications must not access resources bound to memory that has been
freed.

Sparse memory bindings execute on a queue that includes the VK_QUEUE_SPARSE_BINDING_BIT bit.

2974

Applications must use synchronization primitives to guarantee that other queues do not access
ranges of memory concurrently with a binding change. Applications can access other ranges of the
same resource while a bind operation is executing.

Note

Implementations must provide a guarantee that simultaneously binding sparse
blocks while another queue accesses those same sparse blocks via a sparse
resource must not access memory owned by another process or otherwise corrupt
the system.

While some implementations may include VK_QUEUE_SPARSE_BINDING_BIT support in queue families
that also include graphics and compute support, other implementations may only expose a
VK_QUEUE_SPARSE_BINDING_BIT-only queue family. In either case, applications must use
synchronization primitives to explicitly request any ordering dependencies between sparse
memory binding operations and other graphics/compute/transfer operations, as sparse binding
operations are not automatically ordered against command buffer execution, even within a single
queue.

When binding memory explicitly for the VK_IMAGE_ASPECT_METADATA_BIT the application must use the
VK_SPARSE_MEMORY_BIND_METADATA_BIT in the VkSparseMemoryBind::flags field when binding memory.
Binding memory for metadata is done the same way as binding memory for the mip tail, with the
addition of the VK_SPARSE_MEMORY_BIND_METADATA_BIT flag.

Binding the mip tail for any aspect must only be performed using
VkSparseImageOpaqueMemoryBindInfo. If formatProperties.flags contains
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, then it can be bound with a single
VkSparseMemoryBind structure, with resourceOffset = imageMipTailOffset and size =
imageMipTailSize.

If formatProperties.flags does not contain VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT then the
offset for the mip tail in each array layer is given as:

arrayMipTailOffset = imageMipTailOffset + arrayLayer * imageMipTailStride;

and the mip tail can be bound with layerCount VkSparseMemoryBind structures, each using size =
imageMipTailSize and resourceOffset = arrayMipTailOffset as defined above.

Sparse memory binding is handled by the following APIs and related data structures.

Sparse Memory Binding Functions

The VkSparseMemoryBind structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSparseMemoryBind {
 VkDeviceSize resourceOffset;
 VkDeviceSize size;
 VkDeviceMemory memory;

2975

 VkDeviceSize memoryOffset;
 VkSparseMemoryBindFlags flags;
} VkSparseMemoryBind;

• resourceOffset is the offset into the resource.

• size is the size of the memory region to be bound.

• memory is the VkDeviceMemory object that the range of the resource is bound to. If memory is
VK_NULL_HANDLE, the range is unbound.

• memoryOffset is the offset into the VkDeviceMemory object to bind the resource range to. If
memory is VK_NULL_HANDLE, this value is ignored.

• flags is a bitmask of VkSparseMemoryBindFlagBits specifying usage of the binding operation.

The binding range [resourceOffset, resourceOffset + size) has different constraints based on flags. If
flags contains VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range must be within the mip tail
region of the metadata aspect. This metadata region is defined by:

metadataRegion = [base, base + imageMipTailSize)

base = imageMipTailOffset + imageMipTailStride × n

and imageMipTailOffset, imageMipTailSize, and imageMipTailStride values are from the
VkSparseImageMemoryRequirements corresponding to the metadata aspect of the image, and n is a
valid array layer index for the image,

imageMipTailStride is considered to be zero for aspects where VkSparseImageMemoryRequirements
::formatProperties.flags contains VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT.

If flags does not contain VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range must be within the
range [0,VkMemoryRequirements::size).

Valid Usage

• VUID-VkSparseMemoryBind-memory-01096
If memory is not VK_NULL_HANDLE, memory and memoryOffset must match the memory
requirements of the resource, as described in section Resource Memory Association

• VUID-VkSparseMemoryBind-resourceOffset-09491
If the resource being bound is a VkBuffer, resourceOffset and memoryOffset must be an
integer multiple of the alignment of the VkMemoryRequirements structure returned from
a call to vkGetBufferMemoryRequirements with the buffer resource

• VUID-VkSparseMemoryBind-resourceOffset-09492
If the resource being bound is a VkImage, resourceOffset and memoryOffset must be an
integer multiple of the alignment of the VkMemoryRequirements structure returned from
a call to vkGetImageMemoryRequirements with the image resource

2976

• VUID-VkSparseMemoryBind-memory-01097
If memory is not VK_NULL_HANDLE, memory must not have been created with a memory
type that reports VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set

• VUID-VkSparseMemoryBind-size-01098
size must be greater than 0

• VUID-VkSparseMemoryBind-resourceOffset-01099
resourceOffset must be less than the size of the resource

• VUID-VkSparseMemoryBind-size-01100
size must be less than or equal to the size of the resource minus resourceOffset

• VUID-VkSparseMemoryBind-memoryOffset-01101
memoryOffset must be less than the size of memory

• VUID-VkSparseMemoryBind-size-01102
size must be less than or equal to the size of memory minus memoryOffset

• VUID-VkSparseMemoryBind-memory-02730
If memory was created with VkExportMemoryAllocateInfo::handleTypes not equal to 0, at
least one handle type it contained must also have been set in
VkExternalMemoryBufferCreateInfo::handleTypes or
VkExternalMemoryImageCreateInfo::handleTypes when the resource was created

• VUID-VkSparseMemoryBind-memory-02731
If memory was created by a memory import operation, the external handle type of the
imported memory must also have been set in VkExternalMemoryBufferCreateInfo
::handleTypes or VkExternalMemoryImageCreateInfo::handleTypes when the resource was
created

Valid Usage (Implicit)

• VUID-VkSparseMemoryBind-memory-parameter
If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• VUID-VkSparseMemoryBind-flags-parameter
flags must be a valid combination of VkSparseMemoryBindFlagBits values

Bits which can be set in VkSparseMemoryBind::flags, specifying usage of a sparse memory binding
operation, are:

// Provided by VK_VERSION_1_0
typedef enum VkSparseMemoryBindFlagBits {
 VK_SPARSE_MEMORY_BIND_METADATA_BIT = 0x00000001,
} VkSparseMemoryBindFlagBits;

• VK_SPARSE_MEMORY_BIND_METADATA_BIT specifies that the memory being bound is only for the
metadata aspect.

2977

// Provided by VK_VERSION_1_0
typedef VkFlags VkSparseMemoryBindFlags;

VkSparseMemoryBindFlags is a bitmask type for setting a mask of zero or more
VkSparseMemoryBindFlagBits.

Memory is bound to VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag
using the following structure:

// Provided by VK_VERSION_1_0
typedef struct VkSparseBufferMemoryBindInfo {
 VkBuffer buffer;
 uint32_t bindCount;
 const VkSparseMemoryBind* pBinds;
} VkSparseBufferMemoryBindInfo;

• buffer is the VkBuffer object to be bound.

• bindCount is the number of VkSparseMemoryBind structures in the pBinds array.

• pBinds is a pointer to an array of VkSparseMemoryBind structures.

Valid Usage (Implicit)

• VUID-VkSparseBufferMemoryBindInfo-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-VkSparseBufferMemoryBindInfo-pBinds-parameter
pBinds must be a valid pointer to an array of bindCount valid VkSparseMemoryBind
structures

• VUID-VkSparseBufferMemoryBindInfo-bindCount-arraylength
bindCount must be greater than 0

Memory is bound to opaque regions of VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag using the following structure:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageOpaqueMemoryBindInfo {
 VkImage image;
 uint32_t bindCount;
 const VkSparseMemoryBind* pBinds;
} VkSparseImageOpaqueMemoryBindInfo;

• image is the VkImage object to be bound.

• bindCount is the number of VkSparseMemoryBind structures in the pBinds array.

• pBinds is a pointer to an array of VkSparseMemoryBind structures.

2978

Valid Usage

• VUID-VkSparseImageOpaqueMemoryBindInfo-pBinds-01103
If the flags member of any element of pBinds contains
VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range defined must be within the mip
tail region of the metadata aspect of image

Valid Usage (Implicit)

• VUID-VkSparseImageOpaqueMemoryBindInfo-image-parameter
image must be a valid VkImage handle

• VUID-VkSparseImageOpaqueMemoryBindInfo-pBinds-parameter
pBinds must be a valid pointer to an array of bindCount valid VkSparseMemoryBind
structures

• VUID-VkSparseImageOpaqueMemoryBindInfo-bindCount-arraylength
bindCount must be greater than 0

Note

This operation is normally used to bind memory to fully-resident sparse images or
for mip tail regions of partially resident images. However, it can also be used to
bind memory for the entire binding range of partially resident images.

In case flags does not contain VK_SPARSE_MEMORY_BIND_METADATA_BIT, the
resourceOffset is in the range [0, VkMemoryRequirements::size), This range
includes data from all aspects of the image, including metadata. For most
implementations this will probably mean that the resourceOffset is a simple
device address offset within the resource. It is possible for an application to bind a
range of memory that includes both resource data and metadata. However, the
application would not know what part of the image the memory is used for, or if
any range is being used for metadata.

When flags contains VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range
specified must be within the mip tail region of the metadata aspect. In this case
the resourceOffset is not required to be a simple device address offset within the
resource. However, it is defined to be within [imageMipTailOffset,
imageMipTailOffset + imageMipTailSize) for the metadata aspect. See
VkSparseMemoryBind for the full constraints on binding region with this flag
present.

Memory can be bound to sparse image blocks of VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag using the following structure:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageMemoryBindInfo {

2979

 VkImage image;
 uint32_t bindCount;
 const VkSparseImageMemoryBind* pBinds;
} VkSparseImageMemoryBindInfo;

• image is the VkImage object to be bound

• bindCount is the number of VkSparseImageMemoryBind structures in pBinds array

• pBinds is a pointer to an array of VkSparseImageMemoryBind structures

Valid Usage

• VUID-VkSparseImageMemoryBindInfo-subresource-01722
The subresource.mipLevel member of each element of pBinds must be less than the
mipLevels specified in VkImageCreateInfo when image was created

• VUID-VkSparseImageMemoryBindInfo-subresource-01723
The subresource.arrayLayer member of each element of pBinds must be less than the
arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkSparseImageMemoryBindInfo-subresource-01106
The subresource.aspectMask member of each element of pBinds must be valid for the
format specified in VkImageCreateInfo when image was created

• VUID-VkSparseImageMemoryBindInfo-image-02901
image must have been created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set

Valid Usage (Implicit)

• VUID-VkSparseImageMemoryBindInfo-image-parameter
image must be a valid VkImage handle

• VUID-VkSparseImageMemoryBindInfo-pBinds-parameter
pBinds must be a valid pointer to an array of bindCount valid VkSparseImageMemoryBind
structures

• VUID-VkSparseImageMemoryBindInfo-bindCount-arraylength
bindCount must be greater than 0

The VkSparseImageMemoryBind structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageMemoryBind {
 VkImageSubresource subresource;
 VkOffset3D offset;
 VkExtent3D extent;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
 VkSparseMemoryBindFlags flags;

2980

} VkSparseImageMemoryBind;

• subresource is the image aspect and region of interest in the image.

• offset are the coordinates of the first texel within the image subresource to bind.

• extent is the size in texels of the region within the image subresource to bind. The extent must
be a multiple of the sparse image block dimensions, except when binding sparse image blocks
along the edge of an image subresource it can instead be such that any coordinate of offset +
extent equals the corresponding dimensions of the image subresource.

• memory is the VkDeviceMemory object that the sparse image blocks of the image are bound to. If
memory is VK_NULL_HANDLE, the sparse image blocks are unbound.

• memoryOffset is an offset into VkDeviceMemory object. If memory is VK_NULL_HANDLE, this value
is ignored.

• flags are sparse memory binding flags.

Valid Usage

• VUID-VkSparseImageMemoryBind-memory-01104
If the sparseResidencyAliased feature is not enabled, and if any other resources are bound
to ranges of memory, the range of memory being bound must not overlap with those bound
ranges

• VUID-VkSparseImageMemoryBind-memory-01105
memory and memoryOffset must match the memory requirements of the calling command’s
image, as described in section Resource Memory Association

• VUID-VkSparseImageMemoryBind-offset-01107
offset.x must be a multiple of the sparse image block width
(VkSparseImageFormatProperties::imageGranularity.width) of the image

• VUID-VkSparseImageMemoryBind-extent-09388
extent.width must be greater than 0

• VUID-VkSparseImageMemoryBind-extent-01108
extent.width must either be a multiple of the sparse image block width of the image, or
else (extent.width + offset.x) must equal the width of the image subresource

• VUID-VkSparseImageMemoryBind-offset-01109
offset.y must be a multiple of the sparse image block height
(VkSparseImageFormatProperties::imageGranularity.height) of the image

• VUID-VkSparseImageMemoryBind-extent-09389
extent.height must be greater than 0

• VUID-VkSparseImageMemoryBind-extent-01110
extent.height must either be a multiple of the sparse image block height of the image, or
else (extent.height + offset.y) must equal the height of the image subresource

• VUID-VkSparseImageMemoryBind-offset-01111
offset.z must be a multiple of the sparse image block depth
(VkSparseImageFormatProperties::imageGranularity.depth) of the image

2981

• VUID-VkSparseImageMemoryBind-extent-09390
extent.depth must be greater than 0

• VUID-VkSparseImageMemoryBind-extent-01112
extent.depth must either be a multiple of the sparse image block depth of the image, or
else (extent.depth + offset.z) must equal the depth of the image subresource

• VUID-VkSparseImageMemoryBind-memory-02732
If memory was created with VkExportMemoryAllocateInfo::handleTypes not equal to 0, at
least one handle type it contained must also have been set in
VkExternalMemoryImageCreateInfo::handleTypes when the image was created

• VUID-VkSparseImageMemoryBind-memory-02733
If memory was created by a memory import operation, the external handle type of the
imported memory must also have been set in VkExternalMemoryImageCreateInfo
::handleTypes when image was created

Valid Usage (Implicit)

• VUID-VkSparseImageMemoryBind-subresource-parameter
subresource must be a valid VkImageSubresource structure

• VUID-VkSparseImageMemoryBind-memory-parameter
If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• VUID-VkSparseImageMemoryBind-flags-parameter
flags must be a valid combination of VkSparseMemoryBindFlagBits values

To submit sparse binding operations to a queue, call:

// Provided by VK_VERSION_1_0
VkResult vkQueueBindSparse(
 VkQueue queue,
 uint32_t bindInfoCount,
 const VkBindSparseInfo* pBindInfo,
 VkFence fence);

• queue is the queue that the sparse binding operations will be submitted to.

• bindInfoCount is the number of elements in the pBindInfo array.

• pBindInfo is a pointer to an array of VkBindSparseInfo structures, each specifying a sparse
binding submission batch.

• fence is an optional handle to a fence to be signaled. If fence is not VK_NULL_HANDLE, it
defines a fence signal operation.

vkQueueBindSparse is a queue submission command, with each batch defined by an element of
pBindInfo as a VkBindSparseInfo structure. Batches begin execution in the order they appear in
pBindInfo, but may complete out of order.

2982

Within a batch, a given range of a resource must not be bound more than once. Across batches, if a
range is to be bound to one allocation and offset and then to another allocation and offset, then the
application must guarantee (usually using semaphores) that the binding operations are executed in
the correct order, as well as to order binding operations against the execution of command buffer
submissions.

As no operation to vkQueueBindSparse causes any pipeline stage to access memory,
synchronization primitives used in this command effectively only define execution dependencies.

Additional information about fence and semaphore operation is described in the synchronization
chapter.

Valid Usage

• VUID-vkQueueBindSparse-fence-01113
If fence is not VK_NULL_HANDLE, fence must be unsignaled

• VUID-vkQueueBindSparse-fence-01114
If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue
command that has not yet completed execution on that queue

• VUID-vkQueueBindSparse-pSignalSemaphores-01115
Each element of the pSignalSemaphores member of each element of pBindInfo must be
unsignaled when the semaphore signal operation it defines is executed on the device

• VUID-vkQueueBindSparse-pWaitSemaphores-01116
When a semaphore wait operation referring to a binary semaphore defined by any
element of the pWaitSemaphores member of any element of pBindInfo executes on queue,
there must be no other queues waiting on the same semaphore

• VUID-vkQueueBindSparse-pWaitSemaphores-03245
All elements of the pWaitSemaphores member of all elements of pBindInfo referring to a
semaphore created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY must reference
a semaphore signal operation that has been submitted for execution and any semaphore
signal operations on which it depends must have also been submitted for execution

Valid Usage (Implicit)

• VUID-vkQueueBindSparse-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueBindSparse-pBindInfo-parameter
If bindInfoCount is not 0, pBindInfo must be a valid pointer to an array of bindInfoCount
valid VkBindSparseInfo structures

• VUID-vkQueueBindSparse-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkQueueBindSparse-queuetype
The queue must support sparse binding operations

• VUID-vkQueueBindSparse-commonparent

2983

Both of fence, and queue that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - SPARSE_BINDING -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkBindSparseInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBindSparseInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 uint32_t bufferBindCount;
 const VkSparseBufferMemoryBindInfo* pBufferBinds;
 uint32_t imageOpaqueBindCount;
 const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
 uint32_t imageBindCount;
 const VkSparseImageMemoryBindInfo* pImageBinds;
 uint32_t signalSemaphoreCount;
 const VkSemaphore* pSignalSemaphores;
} VkBindSparseInfo;

2984

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreCount is the number of semaphores upon which to wait before executing the
sparse binding operations for the batch.

• pWaitSemaphores is a pointer to an array of semaphores upon which to wait on before the sparse
binding operations for this batch begin execution. If semaphores to wait on are provided, they
define a semaphore wait operation.

• bufferBindCount is the number of sparse buffer bindings to perform in the batch.

• pBufferBinds is a pointer to an array of VkSparseBufferMemoryBindInfo structures.

• imageOpaqueBindCount is the number of opaque sparse image bindings to perform.

• pImageOpaqueBinds is a pointer to an array of VkSparseImageOpaqueMemoryBindInfo structures,
indicating opaque sparse image bindings to perform.

• imageBindCount is the number of sparse image bindings to perform.

• pImageBinds is a pointer to an array of VkSparseImageMemoryBindInfo structures, indicating
sparse image bindings to perform.

• signalSemaphoreCount is the number of semaphores to be signaled once the sparse binding
operations specified by the structure have completed execution.

• pSignalSemaphores is a pointer to an array of semaphores which will be signaled when the
sparse binding operations for this batch have completed execution. If semaphores to be
signaled are provided, they define a semaphore signal operation.

Valid Usage

• VUID-VkBindSparseInfo-pWaitSemaphores-03246
If any element of pWaitSemaphores or pSignalSemaphores was created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE then the pNext chain must include a
VkTimelineSemaphoreSubmitInfo structure

• VUID-VkBindSparseInfo-pNext-03247
If the pNext chain of this structure includes a VkTimelineSemaphoreSubmitInfo structure
and any element of pWaitSemaphores was created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE then its waitSemaphoreValueCount member must equal
waitSemaphoreCount

• VUID-VkBindSparseInfo-pNext-03248
If the pNext chain of this structure includes a VkTimelineSemaphoreSubmitInfo structure
and any element of pSignalSemaphores was created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE then its signalSemaphoreValueCount member must equal
signalSemaphoreCount

• VUID-VkBindSparseInfo-pSignalSemaphores-03249
For each element of pSignalSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pSignalSemaphoreValues must have a value greater
than the current value of the semaphore when the semaphore signal operation is

2985

executed

• VUID-VkBindSparseInfo-pWaitSemaphores-03250
For each element of pWaitSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pWaitSemaphoreValues must have a value which does
not differ from the current value of the semaphore or from the value of any outstanding
semaphore wait or signal operation on that semaphore by more than
maxTimelineSemaphoreValueDifference

• VUID-VkBindSparseInfo-pSignalSemaphores-03251
For each element of pSignalSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pSignalSemaphoreValues must have a value which does
not differ from the current value of the semaphore or from the value of any outstanding
semaphore wait or signal operation on that semaphore by more than
maxTimelineSemaphoreValueDifference

Valid Usage (Implicit)

• VUID-VkBindSparseInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_SPARSE_INFO

• VUID-VkBindSparseInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupBindSparseInfo,
VkFrameBoundaryEXT, or VkTimelineSemaphoreSubmitInfo

• VUID-VkBindSparseInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBindSparseInfo-pWaitSemaphores-parameter
If waitSemaphoreCount is not 0, pWaitSemaphores must be a valid pointer to an array of
waitSemaphoreCount valid VkSemaphore handles

• VUID-VkBindSparseInfo-pBufferBinds-parameter
If bufferBindCount is not 0, pBufferBinds must be a valid pointer to an array of
bufferBindCount valid VkSparseBufferMemoryBindInfo structures

• VUID-VkBindSparseInfo-pImageOpaqueBinds-parameter
If imageOpaqueBindCount is not 0, pImageOpaqueBinds must be a valid pointer to an array of
imageOpaqueBindCount valid VkSparseImageOpaqueMemoryBindInfo structures

• VUID-VkBindSparseInfo-pImageBinds-parameter
If imageBindCount is not 0, pImageBinds must be a valid pointer to an array of
imageBindCount valid VkSparseImageMemoryBindInfo structures

• VUID-VkBindSparseInfo-pSignalSemaphores-parameter
If signalSemaphoreCount is not 0, pSignalSemaphores must be a valid pointer to an array of
signalSemaphoreCount valid VkSemaphore handles

• VUID-VkBindSparseInfo-commonparent
Both of the elements of pSignalSemaphores, and the elements of pWaitSemaphores that are

2986

valid handles of non-ignored parameters must have been created, allocated, or retrieved
from the same VkDevice

To specify the values to use when waiting for and signaling semaphores created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE, add a VkTimelineSemaphoreSubmitInfo
structure to the pNext chain of the VkBindSparseInfo structure.

If the pNext chain of VkBindSparseInfo includes a VkDeviceGroupBindSparseInfo structure, then that
structure includes device indices specifying which instance of the resources and memory are
bound.

The VkDeviceGroupBindSparseInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupBindSparseInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t resourceDeviceIndex;
 uint32_t memoryDeviceIndex;
} VkDeviceGroupBindSparseInfo;

or the equivalent

// Provided by VK_KHR_device_group
typedef VkDeviceGroupBindSparseInfo VkDeviceGroupBindSparseInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• resourceDeviceIndex is a device index indicating which instance of the resource is bound.

• memoryDeviceIndex is a device index indicating which instance of the memory the resource
instance is bound to.

These device indices apply to all buffer and image memory binds included in the batch pointing to
this structure. The semaphore waits and signals for the batch are executed only by the physical
device specified by the resourceDeviceIndex.

If this structure is not present, resourceDeviceIndex and memoryDeviceIndex are assumed to be zero.

Valid Usage

• VUID-VkDeviceGroupBindSparseInfo-resourceDeviceIndex-01118
resourceDeviceIndex and memoryDeviceIndex must both be valid device indices

• VUID-VkDeviceGroupBindSparseInfo-memoryDeviceIndex-01119
Each memory allocation bound in this batch must have allocated an instance for
memoryDeviceIndex

2987

Valid Usage (Implicit)

• VUID-VkDeviceGroupBindSparseInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO

2988

Chapter 34. Window System Integration
(WSI)
This chapter discusses the window system integration (WSI) between the Vulkan API and the
various forms of displaying the results of rendering to a user. Since the Vulkan API can be used
without displaying results, WSI is provided through the use of optional Vulkan extensions. This
chapter provides an overview of WSI. See the appendix for additional details of each WSI
extension, including which extensions must be enabled in order to use each of the functions
described in this chapter.

34.1. WSI Platform
A platform is an abstraction for a window system, OS, etc. Some examples include MS Windows,
Android, and Wayland. The Vulkan API may be integrated in a unique manner for each platform.

The Vulkan API does not define any type of platform object. Platform-specific WSI extensions are
defined, each containing platform-specific functions for using WSI. Use of these extensions is
guarded by preprocessor symbols as defined in the Window System-Specific Header Control
appendix.

In order for an application to be compiled to use WSI with a given platform, it must either:

• #define the appropriate preprocessor symbol prior to including the vulkan.h header file, or

• include vulkan_core.h and any native platform headers, followed by the appropriate platform-
specific header.

The preprocessor symbols and platform-specific headers are defined in the Window System
Extensions and Headers table.

Each platform-specific extension is an instance extension. The application must enable instance
extensions with vkCreateInstance before using them.

34.2. WSI Surface
Native platform surface or window objects are abstracted by surface objects, which are represented
by VkSurfaceKHR handles:

// Provided by VK_KHR_surface
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSurfaceKHR)

The VK_KHR_surface extension declares the VkSurfaceKHR object, and provides a function for
destroying VkSurfaceKHR objects. Separate platform-specific extensions each provide a function for
creating a VkSurfaceKHR object for the respective platform. From the application’s perspective this is
an opaque handle, just like the handles of other Vulkan objects.

 Note

2989

On certain platforms, the Vulkan loader and ICDs may have conventions that treat
the handle as a pointer to a structure containing the platform-specific information
about the surface. This will be described in the documentation for the loader-ICD
interface, and in the vk_icd.h header file of the LoaderAndTools source-code
repository. This does not affect the loader-layer interface; layers may wrap
VkSurfaceKHR objects.

34.2.1. Android Platform

To create a VkSurfaceKHR object for an Android native window, call:

// Provided by VK_KHR_android_surface
VkResult vkCreateAndroidSurfaceKHR(
 VkInstance instance,
 const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate the surface with.

• pCreateInfo is a pointer to a VkAndroidSurfaceCreateInfoKHR structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

During the lifetime of a surface created using a particular ANativeWindow handle any attempts to
create another surface for the same ANativeWindow and any attempts to connect to the same
ANativeWindow through other platform mechanisms will fail.

Note

In particular, only one VkSurfaceKHR can exist at a time for a given window.
Similarly, a native window cannot be used by both a VkSurfaceKHR and EGLSurface
simultaneously.

If successful, vkCreateAndroidSurfaceKHR increments the ANativeWindow’s reference count, and
vkDestroySurfaceKHR will decrement it.

On Android, when a swapchain’s imageExtent does not match the surface’s currentExtent, the
presentable images will be scaled to the surface’s dimensions during presentation. minImageExtent is
(1,1), and maxImageExtent is the maximum image size supported by the consumer. For the system
compositor, currentExtent is the window size (i.e. the consumer’s preferred size).

Valid Usage (Implicit)

• VUID-vkCreateAndroidSurfaceKHR-instance-parameter
instance must be a valid VkInstance handle

2990

• VUID-vkCreateAndroidSurfaceKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkAndroidSurfaceCreateInfoKHR structure

• VUID-vkCreateAndroidSurfaceKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateAndroidSurfaceKHR-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR

The VkAndroidSurfaceCreateInfoKHR structure is defined as:

// Provided by VK_KHR_android_surface
typedef struct VkAndroidSurfaceCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkAndroidSurfaceCreateFlagsKHR flags;
 struct ANativeWindow* window;
} VkAndroidSurfaceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• window is a pointer to the ANativeWindow to associate the surface with.

Valid Usage

• VUID-VkAndroidSurfaceCreateInfoKHR-window-01248
window must point to a valid Android ANativeWindow

Valid Usage (Implicit)

• VUID-VkAndroidSurfaceCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR

2991

• VUID-VkAndroidSurfaceCreateInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkAndroidSurfaceCreateInfoKHR-flags-zerobitmask
flags must be 0

To remove an unnecessary compile time dependency, an incomplete type definition of
ANativeWindow is provided in the Vulkan headers:

// Provided by VK_KHR_android_surface
struct ANativeWindow;

The actual ANativeWindow type is defined in Android NDK headers.

// Provided by VK_KHR_android_surface
typedef VkFlags VkAndroidSurfaceCreateFlagsKHR;

VkAndroidSurfaceCreateFlagsKHR is a bitmask type for setting a mask, but is currently reserved for
future use.

34.2.2. Wayland Platform

To create a VkSurfaceKHR object for a Wayland surface, call:

// Provided by VK_KHR_wayland_surface
VkResult vkCreateWaylandSurfaceKHR(
 VkInstance instance,
 const VkWaylandSurfaceCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate the surface with.

• pCreateInfo is a pointer to a VkWaylandSurfaceCreateInfoKHR structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateWaylandSurfaceKHR-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateWaylandSurfaceKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkWaylandSurfaceCreateInfoKHR structure

2992

• VUID-vkCreateWaylandSurfaceKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateWaylandSurfaceKHR-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkWaylandSurfaceCreateInfoKHR structure is defined as:

// Provided by VK_KHR_wayland_surface
typedef struct VkWaylandSurfaceCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkWaylandSurfaceCreateFlagsKHR flags;
 struct wl_display* display;
 struct wl_surface* surface;
} VkWaylandSurfaceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• display and surface are pointers to the Wayland wl_display and wl_surface to associate the
surface with.

Valid Usage

• VUID-VkWaylandSurfaceCreateInfoKHR-display-01304
display must point to a valid Wayland wl_display

• VUID-VkWaylandSurfaceCreateInfoKHR-surface-01305
surface must point to a valid Wayland wl_surface

Valid Usage (Implicit)

• VUID-VkWaylandSurfaceCreateInfoKHR-sType-sType

2993

sType must be VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR

• VUID-VkWaylandSurfaceCreateInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkWaylandSurfaceCreateInfoKHR-flags-zerobitmask
flags must be 0

On Wayland, currentExtent is the special value (0xFFFFFFFF, 0xFFFFFFFF), indicating that the
surface size will be determined by the extent of a swapchain targeting the surface. Whatever the
application sets a swapchain’s imageExtent to will be the size of the window, after the first image is
presented. minImageExtent is (1,1), and maxImageExtent is the maximum supported surface size. Any
calls to vkGetPhysicalDeviceSurfacePresentModesKHR on a surface created with
vkCreateWaylandSurfaceKHR are required to return VK_PRESENT_MODE_MAILBOX_KHR as one of the valid
present modes.

Some Vulkan functions may send protocol over the specified wl_display connection when using a
swapchain or presentable images created from a VkSurfaceKHR referring to a wl_surface.
Applications must therefore ensure that both the wl_display and the wl_surface remain valid for
the lifetime of any VkSwapchainKHR objects created from a particular wl_display and wl_surface. Also,
calling vkQueuePresentKHR will result in Vulkan sending wl_surface.commit requests to the
underlying wl_surface of each The wl_surface.attach, wl_surface.damage, and wl_surface.commit
requests must be issued by the implementation during the call to vkQueuePresentKHR and must
not be issued by the implementation outside of vkQueuePresentKHR. This ensures that any
Wayland requests sent by the client after the call to vkQueuePresentKHR returns will be received
by the compositor after the wl_surface.commit. Regardless of the mode of swapchain creation, a new
wl_event_queue must be created for each successful vkCreateWaylandSurfaceKHR call, and every
Wayland object created by the implementation must be assigned to this event queue. If the
platform provides Wayland 1.11 or greater, this must be implemented by the use of Wayland proxy
object wrappers, to avoid race conditions.

If the application wishes to synchronize any window changes with a particular frame, such
requests must be sent to the Wayland display server prior to calling vkQueuePresentKHR.

// Provided by VK_KHR_wayland_surface
typedef VkFlags VkWaylandSurfaceCreateFlagsKHR;

VkWaylandSurfaceCreateFlagsKHR is a bitmask type for setting a mask, but is currently reserved for
future use.

34.2.3. Win32 Platform

To create a VkSurfaceKHR object for a Win32 window, call:

// Provided by VK_KHR_win32_surface
VkResult vkCreateWin32SurfaceKHR(
 VkInstance instance,
 const VkWin32SurfaceCreateInfoKHR* pCreateInfo,

2994

 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate the surface with.

• pCreateInfo is a pointer to a VkWin32SurfaceCreateInfoKHR structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateWin32SurfaceKHR-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateWin32SurfaceKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkWin32SurfaceCreateInfoKHR structure

• VUID-vkCreateWin32SurfaceKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateWin32SurfaceKHR-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Some Vulkan functions may call the SendMessage system API when interacting with a VkSurfaceKHR
through a VkSwapchainKHR. In a multithreaded environment, calling SendMessage from a thread that is
not the thread associated with pCreateInfo::hwnd will block until the application has processed the
window message. Thus, applications should either call these Vulkan functions on the message
pump thread, or make sure their message pump is actively running. Failing to do so may result in
deadlocks.

The functions subject to this requirement are:

• vkCreateSwapchainKHR

• vkDestroySwapchainKHR

• vkAcquireNextImageKHR and vkAcquireNextImage2KHR

2995

• vkQueuePresentKHR

• vkReleaseSwapchainImagesEXT

• vkAcquireFullScreenExclusiveModeEXT

• vkReleaseFullScreenExclusiveModeEXT

• vkSetHdrMetadataEXT

The VkWin32SurfaceCreateInfoKHR structure is defined as:

// Provided by VK_KHR_win32_surface
typedef struct VkWin32SurfaceCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkWin32SurfaceCreateFlagsKHR flags;
 HINSTANCE hinstance;
 HWND hwnd;
} VkWin32SurfaceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• hinstance is the Win32 HINSTANCE for the window to associate the surface with.

• hwnd is the Win32 HWND for the window to associate the surface with.

Valid Usage

• VUID-VkWin32SurfaceCreateInfoKHR-hinstance-01307
hinstance must be a valid Win32 HINSTANCE

• VUID-VkWin32SurfaceCreateInfoKHR-hwnd-01308
hwnd must be a valid Win32 HWND

Valid Usage (Implicit)

• VUID-VkWin32SurfaceCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR

• VUID-VkWin32SurfaceCreateInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkWin32SurfaceCreateInfoKHR-flags-zerobitmask
flags must be 0

With Win32, minImageExtent, maxImageExtent, and currentExtent must always equal the window size.

The currentExtent of a Win32 surface must have both width and height greater than 0, or both of

2996

them 0.

Note

Due to above restrictions, unless VkSwapchainPresentScalingCreateInfoEXT is
used to specify handling of disparities between surface and swapchain
dimensions, it is only possible to create a new swapchain on this platform with
imageExtent being equal to the current size of the window, as reported in
VkSurfaceCapabilitiesKHR::currentExtent.

The window size may become (0, 0) on this platform (e.g. when the window is
minimized), and so a swapchain cannot be created until the size changes.

// Provided by VK_KHR_win32_surface
typedef VkFlags VkWin32SurfaceCreateFlagsKHR;

VkWin32SurfaceCreateFlagsKHR is a bitmask type for setting a mask, but is currently reserved for
future use.

34.2.4. XCB Platform

To create a VkSurfaceKHR object for an X11 window, using the XCB client-side library, call:

// Provided by VK_KHR_xcb_surface
VkResult vkCreateXcbSurfaceKHR(
 VkInstance instance,
 const VkXcbSurfaceCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate the surface with.

• pCreateInfo is a pointer to a VkXcbSurfaceCreateInfoKHR structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateXcbSurfaceKHR-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateXcbSurfaceKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkXcbSurfaceCreateInfoKHR structure

• VUID-vkCreateXcbSurfaceKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid

2997

VkAllocationCallbacks structure

• VUID-vkCreateXcbSurfaceKHR-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkXcbSurfaceCreateInfoKHR structure is defined as:

// Provided by VK_KHR_xcb_surface
typedef struct VkXcbSurfaceCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkXcbSurfaceCreateFlagsKHR flags;
 xcb_connection_t* connection;
 xcb_window_t window;
} VkXcbSurfaceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• connection is a pointer to an xcb_connection_t to the X server.

• window is the xcb_window_t for the X11 window to associate the surface with.

Valid Usage

• VUID-VkXcbSurfaceCreateInfoKHR-connection-01310
connection must point to a valid X11 xcb_connection_t

• VUID-VkXcbSurfaceCreateInfoKHR-window-01311
window must be a valid X11 xcb_window_t

Valid Usage (Implicit)

• VUID-VkXcbSurfaceCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR

2998

• VUID-VkXcbSurfaceCreateInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkXcbSurfaceCreateInfoKHR-flags-zerobitmask
flags must be 0

With Xcb, minImageExtent, maxImageExtent, and currentExtent must always equal the window size.

The currentExtent of an Xcb surface must have both width and height greater than 0, or both of
them 0.

Note

Due to above restrictions, unless VkSwapchainPresentScalingCreateInfoEXT is
used to specify handling of disparities between surface and swapchain
dimensions, it is only possible to create a new swapchain on this platform with
imageExtent being equal to the current size of the window, as reported in
VkSurfaceCapabilitiesKHR::currentExtent.

The window size may become (0, 0) on this platform (e.g. when the window is
minimized), and so a swapchain cannot be created until the size changes.

Some Vulkan functions may send protocol over the specified xcb connection when using a
swapchain or presentable images created from a VkSurfaceKHR referring to an xcb window.
Applications must therefore ensure the xcb connection is available to Vulkan for the duration of
any functions that manipulate such swapchains or their presentable images, and any functions that
build or queue command buffers that operate on such presentable images. Specifically, applications
using Vulkan with xcb-based swapchains must

• Avoid holding a server grab on an xcb connection while waiting for Vulkan operations to
complete using a swapchain derived from a different xcb connection referring to the same X
server instance. Failing to do so may result in deadlock.

// Provided by VK_KHR_xcb_surface
typedef VkFlags VkXcbSurfaceCreateFlagsKHR;

VkXcbSurfaceCreateFlagsKHR is a bitmask type for setting a mask, but is currently reserved for future
use.

34.2.5. Xlib Platform

To create a VkSurfaceKHR object for an X11 window, using the Xlib client-side library, call:

// Provided by VK_KHR_xlib_surface
VkResult vkCreateXlibSurfaceKHR(
 VkInstance instance,
 const VkXlibSurfaceCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,

2999

 VkSurfaceKHR* pSurface);

• instance is the instance to associate the surface with.

• pCreateInfo is a pointer to a VkXlibSurfaceCreateInfoKHR structure containing the parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateXlibSurfaceKHR-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateXlibSurfaceKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkXlibSurfaceCreateInfoKHR structure

• VUID-vkCreateXlibSurfaceKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateXlibSurfaceKHR-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkXlibSurfaceCreateInfoKHR structure is defined as:

// Provided by VK_KHR_xlib_surface
typedef struct VkXlibSurfaceCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkXlibSurfaceCreateFlagsKHR flags;
 Display* dpy;
 Window window;
} VkXlibSurfaceCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

3000

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• dpy is a pointer to an Xlib Display connection to the X server.

• window is an Xlib Window to associate the surface with.

Valid Usage

• VUID-VkXlibSurfaceCreateInfoKHR-dpy-01313
dpy must point to a valid Xlib Display

• VUID-VkXlibSurfaceCreateInfoKHR-window-01314
window must be a valid Xlib Window

Valid Usage (Implicit)

• VUID-VkXlibSurfaceCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR

• VUID-VkXlibSurfaceCreateInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkXlibSurfaceCreateInfoKHR-flags-zerobitmask
flags must be 0

With Xlib, minImageExtent, maxImageExtent, and currentExtent must always equal the window size.

The currentExtent of an Xlib surface must have both width and height greater than 0, or both of
them 0.

Note

Due to above restrictions, unless VkSwapchainPresentScalingCreateInfoEXT is
used to specify handling of disparities between surface and swapchain
dimensions, it is only possible to create a new swapchain on this platform with
imageExtent being equal to the current size of the window, as reported in
VkSurfaceCapabilitiesKHR::currentExtent.

The window size may become (0, 0) on this platform (e.g. when the window is
minimized), and so a swapchain cannot be created until the size changes.

Some Vulkan functions may send protocol over the specified Xlib Display connection when using a
swapchain or presentable images created from a VkSurfaceKHR referring to an Xlib window.
Applications must therefore ensure the display connection is available to Vulkan for the duration
of any functions that manipulate such swapchains or their presentable images, and any functions
that build or queue command buffers that operate on such presentable images. Specifically,
applications using Vulkan with Xlib-based swapchains must

• Avoid holding a server grab on a display connection while waiting for Vulkan operations to

3001

complete using a swapchain derived from a different display connection referring to the same X
server instance. Failing to do so may result in deadlock.

Some implementations may require threads to implement some presentation modes so applications
must call XInitThreads() before calling any other Xlib functions.

// Provided by VK_KHR_xlib_surface
typedef VkFlags VkXlibSurfaceCreateFlagsKHR;

VkXlibSurfaceCreateFlagsKHR is a bitmask type for setting a mask, but is currently reserved for
future use.

34.2.6. DirectFB Platform

To create a VkSurfaceKHR object for a DirectFB surface, call:

// Provided by VK_EXT_directfb_surface
VkResult vkCreateDirectFBSurfaceEXT(
 VkInstance instance,
 const VkDirectFBSurfaceCreateInfoEXT* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate the surface with.

• pCreateInfo is a pointer to a VkDirectFBSurfaceCreateInfoEXT structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateDirectFBSurfaceEXT-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateDirectFBSurfaceEXT-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDirectFBSurfaceCreateInfoEXT structure

• VUID-vkCreateDirectFBSurfaceEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDirectFBSurfaceEXT-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

3002

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDirectFBSurfaceCreateInfoEXT structure is defined as:

// Provided by VK_EXT_directfb_surface
typedef struct VkDirectFBSurfaceCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDirectFBSurfaceCreateFlagsEXT flags;
 IDirectFB* dfb;
 IDirectFBSurface* surface;
} VkDirectFBSurfaceCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• dfb is a pointer to the IDirectFB main interface of DirectFB.

• surface is a pointer to a IDirectFBSurface surface interface.

Valid Usage

• VUID-VkDirectFBSurfaceCreateInfoEXT-dfb-04117
dfb must point to a valid DirectFB IDirectFB

• VUID-VkDirectFBSurfaceCreateInfoEXT-surface-04118
surface must point to a valid DirectFB IDirectFBSurface

Valid Usage (Implicit)

• VUID-VkDirectFBSurfaceCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DIRECTFB_SURFACE_CREATE_INFO_EXT

• VUID-VkDirectFBSurfaceCreateInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDirectFBSurfaceCreateInfoEXT-flags-zerobitmask
flags must be 0

3003

With DirectFB, minImageExtent, maxImageExtent, and currentExtent must always equal the surface
size.

// Provided by VK_EXT_directfb_surface
typedef VkFlags VkDirectFBSurfaceCreateFlagsEXT;

VkDirectFBSurfaceCreateFlagsEXT is a bitmask type for setting a mask, but is currently reserved for
future use.

34.2.7. Fuchsia Platform

To create a VkSurfaceKHR object for a Fuchsia ImagePipe, call:

// Provided by VK_FUCHSIA_imagepipe_surface
VkResult vkCreateImagePipeSurfaceFUCHSIA(
 VkInstance instance,
 const VkImagePipeSurfaceCreateInfoFUCHSIA* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate with the surface.

• pCreateInfo is a pointer to a VkImagePipeSurfaceCreateInfoFUCHSIA structure containing
parameters affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateImagePipeSurfaceFUCHSIA-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateImagePipeSurfaceFUCHSIA-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkImagePipeSurfaceCreateInfoFUCHSIA
structure

• VUID-vkCreateImagePipeSurfaceFUCHSIA-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateImagePipeSurfaceFUCHSIA-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

3004

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkImagePipeSurfaceCreateInfoFUCHSIA structure is defined as:

// Provided by VK_FUCHSIA_imagepipe_surface
typedef struct VkImagePipeSurfaceCreateInfoFUCHSIA {
 VkStructureType sType;
 const void* pNext;
 VkImagePipeSurfaceCreateFlagsFUCHSIA flags;
 zx_handle_t imagePipeHandle;
} VkImagePipeSurfaceCreateInfoFUCHSIA;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• imagePipeHandle is a zx_handle_t referring to the ImagePipe to associate with the surface.

Valid Usage

• VUID-VkImagePipeSurfaceCreateInfoFUCHSIA-imagePipeHandle-04863
imagePipeHandle must be a valid zx_handle_t

Valid Usage (Implicit)

• VUID-VkImagePipeSurfaceCreateInfoFUCHSIA-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGEPIPE_SURFACE_CREATE_INFO_FUCHSIA

• VUID-VkImagePipeSurfaceCreateInfoFUCHSIA-pNext-pNext
pNext must be NULL

• VUID-VkImagePipeSurfaceCreateInfoFUCHSIA-flags-zerobitmask
flags must be 0

On Fuchsia, the surface currentExtent is the special value (0xFFFFFFFF, 0xFFFFFFFF), indicating
that the surface size will be determined by the extent of a swapchain targeting the surface.

// Provided by VK_FUCHSIA_imagepipe_surface

3005

typedef VkFlags VkImagePipeSurfaceCreateFlagsFUCHSIA;

VkImagePipeSurfaceCreateFlagsFUCHSIA is a bitmask type for setting a mask, but is currently reserved
for future use.

34.2.8. Google Games Platform

To create a VkSurfaceKHR object for a Google Games Platform stream descriptor, call:

// Provided by VK_GGP_stream_descriptor_surface
VkResult vkCreateStreamDescriptorSurfaceGGP(
 VkInstance instance,
 const VkStreamDescriptorSurfaceCreateInfoGGP* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate with the surface.

• pCreateInfo is a pointer to a VkStreamDescriptorSurfaceCreateInfoGGP structure containing
parameters that affect the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateStreamDescriptorSurfaceGGP-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateStreamDescriptorSurfaceGGP-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkStreamDescriptorSurfaceCreateInfoGGP
structure

• VUID-vkCreateStreamDescriptorSurfaceGGP-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateStreamDescriptorSurfaceGGP-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

3006

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR

The VkStreamDescriptorSurfaceCreateInfoGGP structure is defined as:

// Provided by VK_GGP_stream_descriptor_surface
typedef struct VkStreamDescriptorSurfaceCreateInfoGGP {
 VkStructureType sType;
 const void* pNext;
 VkStreamDescriptorSurfaceCreateFlagsGGP flags;
 GgpStreamDescriptor streamDescriptor;
} VkStreamDescriptorSurfaceCreateInfoGGP;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• streamDescriptor is a GgpStreamDescriptor referring to the GGP stream descriptor to associate
with the surface.

Valid Usage

• VUID-VkStreamDescriptorSurfaceCreateInfoGGP-streamDescriptor-02681
streamDescriptor must be a valid GgpStreamDescriptor

Valid Usage (Implicit)

• VUID-VkStreamDescriptorSurfaceCreateInfoGGP-sType-sType
sType must be VK_STRUCTURE_TYPE_STREAM_DESCRIPTOR_SURFACE_CREATE_INFO_GGP

• VUID-VkStreamDescriptorSurfaceCreateInfoGGP-pNext-pNext
pNext must be NULL

• VUID-VkStreamDescriptorSurfaceCreateInfoGGP-flags-zerobitmask
flags must be 0

On Google Games Platform, the surface extents are dynamic. The minImageExtent will never be
greater than 1080p and the maxImageExtent will never be less than 1080p. The currentExtent will
reflect the current optimal resolution.

Applications are expected to choose an appropriate size for the swapchain’s imageExtent, within the
bounds of the surface. Using the surface’s currentExtent will offer the best performance and quality.
When a swapchain’s imageExtent does not match the surface’s currentExtent, the presentable
images are scaled to the surface’s dimensions during presentation if possible and VK_SUBOPTIMAL_KHR
is returned, otherwise presentation fails with VK_ERROR_OUT_OF_DATE_KHR.

3007

// Provided by VK_GGP_stream_descriptor_surface
typedef VkFlags VkStreamDescriptorSurfaceCreateFlagsGGP;

VkStreamDescriptorSurfaceCreateFlagsGGP is a bitmask type for setting a mask, but is currently
reserved for future use.

34.2.9. iOS Platform

To create a VkSurfaceKHR object for an iOS UIView or CAMetalLayer, call:

// Provided by VK_MVK_ios_surface
VkResult vkCreateIOSSurfaceMVK(
 VkInstance instance,
 const VkIOSSurfaceCreateInfoMVK* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance with which to associate the surface.

• pCreateInfo is a pointer to a VkIOSSurfaceCreateInfoMVK structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Note

The vkCreateIOSSurfaceMVK function is considered deprecated and has been
superseded by vkCreateMetalSurfaceEXT from the VK_EXT_metal_surface extension.

Valid Usage (Implicit)

• VUID-vkCreateIOSSurfaceMVK-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateIOSSurfaceMVK-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkIOSSurfaceCreateInfoMVK structure

• VUID-vkCreateIOSSurfaceMVK-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateIOSSurfaceMVK-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

3008

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR

The VkIOSSurfaceCreateInfoMVK structure is defined as:

// Provided by VK_MVK_ios_surface
typedef struct VkIOSSurfaceCreateInfoMVK {
 VkStructureType sType;
 const void* pNext;
 VkIOSSurfaceCreateFlagsMVK flags;
 const void* pView;
} VkIOSSurfaceCreateInfoMVK;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• pView is a reference to either a CAMetalLayer object or a UIView object.

Valid Usage

• VUID-VkIOSSurfaceCreateInfoMVK-pView-04143
If pView is a CAMetalLayer object, it must be a valid CAMetalLayer

• VUID-VkIOSSurfaceCreateInfoMVK-pView-01316
If pView is a UIView object, it must be a valid UIView, must be backed by a CALayer object of
type CAMetalLayer, and vkCreateIOSSurfaceMVK must be called on the main thread

Valid Usage (Implicit)

• VUID-VkIOSSurfaceCreateInfoMVK-sType-sType
sType must be VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK

• VUID-VkIOSSurfaceCreateInfoMVK-pNext-pNext
pNext must be NULL

• VUID-VkIOSSurfaceCreateInfoMVK-flags-zerobitmask
flags must be 0

3009

// Provided by VK_MVK_ios_surface
typedef VkFlags VkIOSSurfaceCreateFlagsMVK;

VkIOSSurfaceCreateFlagsMVK is a bitmask type for setting a mask, but is currently reserved for future
use.

34.2.10. macOS Platform

To create a VkSurfaceKHR object for a macOS NSView or CAMetalLayer, call:

// Provided by VK_MVK_macos_surface
VkResult vkCreateMacOSSurfaceMVK(
 VkInstance instance,
 const VkMacOSSurfaceCreateInfoMVK* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance with which to associate the surface.

• pCreateInfo is a pointer to a VkMacOSSurfaceCreateInfoMVK structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Note

The vkCreateMacOSSurfaceMVK function is considered deprecated and has been
superseded by vkCreateMetalSurfaceEXT from the VK_EXT_metal_surface extension.

Valid Usage (Implicit)

• VUID-vkCreateMacOSSurfaceMVK-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateMacOSSurfaceMVK-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkMacOSSurfaceCreateInfoMVK structure

• VUID-vkCreateMacOSSurfaceMVK-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateMacOSSurfaceMVK-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

3010

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR

The VkMacOSSurfaceCreateInfoMVK structure is defined as:

// Provided by VK_MVK_macos_surface
typedef struct VkMacOSSurfaceCreateInfoMVK {
 VkStructureType sType;
 const void* pNext;
 VkMacOSSurfaceCreateFlagsMVK flags;
 const void* pView;
} VkMacOSSurfaceCreateInfoMVK;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• pView is a reference to either a CAMetalLayer object or an NSView object.

Valid Usage

• VUID-VkMacOSSurfaceCreateInfoMVK-pView-04144
If pView is a CAMetalLayer object, it must be a valid CAMetalLayer

• VUID-VkMacOSSurfaceCreateInfoMVK-pView-01317
If pView is an NSView object, it must be a valid NSView, must be backed by a CALayer object of
type CAMetalLayer, and vkCreateMacOSSurfaceMVK must be called on the main thread

Valid Usage (Implicit)

• VUID-VkMacOSSurfaceCreateInfoMVK-sType-sType
sType must be VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK

• VUID-VkMacOSSurfaceCreateInfoMVK-pNext-pNext
pNext must be NULL

• VUID-VkMacOSSurfaceCreateInfoMVK-flags-zerobitmask
flags must be 0

3011

// Provided by VK_MVK_macos_surface
typedef VkFlags VkMacOSSurfaceCreateFlagsMVK;

VkMacOSSurfaceCreateFlagsMVK is a bitmask type for setting a mask, but is currently reserved for
future use.

34.2.11. VI Platform

To create a VkSurfaceKHR object for an nn::vi::Layer, query the layer’s native handle using nn::vi
::GetNativeWindow, and then call:

// Provided by VK_NN_vi_surface
VkResult vkCreateViSurfaceNN(
 VkInstance instance,
 const VkViSurfaceCreateInfoNN* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance with which to associate the surface.

• pCreateInfo is a pointer to a VkViSurfaceCreateInfoNN structure containing parameters affecting
the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

During the lifetime of a surface created using a particular nn::vi::NativeWindowHandle, applications
must not attempt to create another surface for the same nn::vi::Layer or attempt to connect to the
same nn::vi::Layer through other platform mechanisms.

If the native window is created with a specified size, currentExtent will reflect that size. In this case,
applications should use the same size for the swapchain’s imageExtent. Otherwise, the currentExtent
will have the special value (0xFFFFFFFF, 0xFFFFFFFF), indicating that applications are expected to
choose an appropriate size for the swapchain’s imageExtent (e.g., by matching the result of a call to
nn::vi::GetDisplayResolution).

Valid Usage (Implicit)

• VUID-vkCreateViSurfaceNN-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateViSurfaceNN-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkViSurfaceCreateInfoNN structure

• VUID-vkCreateViSurfaceNN-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

3012

• VUID-vkCreateViSurfaceNN-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR

The VkViSurfaceCreateInfoNN structure is defined as:

// Provided by VK_NN_vi_surface
typedef struct VkViSurfaceCreateInfoNN {
 VkStructureType sType;
 const void* pNext;
 VkViSurfaceCreateFlagsNN flags;
 void* window;
} VkViSurfaceCreateInfoNN;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• window is the nn::vi::NativeWindowHandle for the nn::vi::Layer with which to associate the surface.

Valid Usage

• VUID-VkViSurfaceCreateInfoNN-window-01318
window must be a valid nn::vi::NativeWindowHandle

Valid Usage (Implicit)

• VUID-VkViSurfaceCreateInfoNN-sType-sType
sType must be VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN

• VUID-VkViSurfaceCreateInfoNN-pNext-pNext
pNext must be NULL

• VUID-VkViSurfaceCreateInfoNN-flags-zerobitmask
flags must be 0

3013

// Provided by VK_NN_vi_surface
typedef VkFlags VkViSurfaceCreateFlagsNN;

VkViSurfaceCreateFlagsNN is a bitmask type for setting a mask, but is currently reserved for future
use.

34.2.12. Metal Platform

To create a VkSurfaceKHR object for a CAMetalLayer, call:

// Provided by VK_EXT_metal_surface
VkResult vkCreateMetalSurfaceEXT(
 VkInstance instance,
 const VkMetalSurfaceCreateInfoEXT* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance with which to associate the surface.

• pCreateInfo is a pointer to a VkMetalSurfaceCreateInfoEXT structure specifying parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateMetalSurfaceEXT-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateMetalSurfaceEXT-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkMetalSurfaceCreateInfoEXT structure

• VUID-vkCreateMetalSurfaceEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateMetalSurfaceEXT-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

3014

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR

The VkMetalSurfaceCreateInfoEXT structure is defined as:

// Provided by VK_EXT_metal_surface
typedef struct VkMetalSurfaceCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkMetalSurfaceCreateFlagsEXT flags;
 const CAMetalLayer* pLayer;
} VkMetalSurfaceCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• pLayer is a reference to a CAMetalLayer object representing a renderable surface.

Valid Usage (Implicit)

• VUID-VkMetalSurfaceCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT

• VUID-VkMetalSurfaceCreateInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkMetalSurfaceCreateInfoEXT-flags-zerobitmask
flags must be 0

To remove an unnecessary compile time dependency, an incomplete type definition of
CAMetalLayer is provided in the Vulkan headers:

// Provided by VK_EXT_metal_surface
#ifdef __OBJC__
@class CAMetalLayer;
#else
typedef void CAMetalLayer;
#endif

The actual CAMetalLayer type is defined in the QuartzCore framework.

// Provided by VK_EXT_metal_surface
typedef VkFlags VkMetalSurfaceCreateFlagsEXT;

3015

VkMetalSurfaceCreateFlagsEXT is a bitmask type for setting a mask, but is currently reserved for
future use.

34.2.13. QNX Screen Platform

To create a VkSurfaceKHR object for a QNX Screen surface, call:

// Provided by VK_QNX_screen_surface
VkResult vkCreateScreenSurfaceQNX(
 VkInstance instance,
 const VkScreenSurfaceCreateInfoQNX* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate the surface with.

• pCreateInfo is a pointer to a VkScreenSurfaceCreateInfoQNX structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

Valid Usage (Implicit)

• VUID-vkCreateScreenSurfaceQNX-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateScreenSurfaceQNX-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkScreenSurfaceCreateInfoQNX structure

• VUID-vkCreateScreenSurfaceQNX-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateScreenSurfaceQNX-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkScreenSurfaceCreateInfoQNX structure is defined as:

3016

// Provided by VK_QNX_screen_surface
typedef struct VkScreenSurfaceCreateInfoQNX {
 VkStructureType sType;
 const void* pNext;
 VkScreenSurfaceCreateFlagsQNX flags;
 struct _screen_context* context;
 struct _screen_window* window;
} VkScreenSurfaceCreateInfoQNX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• context and window are QNX Screen context and window to associate the surface with.

Valid Usage

• VUID-VkScreenSurfaceCreateInfoQNX-context-04741
context must point to a valid QNX Screen struct _screen_context

• VUID-VkScreenSurfaceCreateInfoQNX-window-04742
window must point to a valid QNX Screen struct _screen_window

Valid Usage (Implicit)

• VUID-VkScreenSurfaceCreateInfoQNX-sType-sType
sType must be VK_STRUCTURE_TYPE_SCREEN_SURFACE_CREATE_INFO_QNX

• VUID-VkScreenSurfaceCreateInfoQNX-pNext-pNext
pNext must be NULL

• VUID-VkScreenSurfaceCreateInfoQNX-flags-zerobitmask
flags must be 0

// Provided by VK_QNX_screen_surface
typedef VkFlags VkScreenSurfaceCreateFlagsQNX;

VkScreenSurfaceCreateFlagsQNX is a bitmask type for setting a mask, but is currently reserved for
future use.

34.2.14. Platform-Independent Information

Once created, VkSurfaceKHR objects can be used in this and other extensions, in particular the
VK_KHR_swapchain extension.

Several WSI functions return VK_ERROR_SURFACE_LOST_KHR if the surface becomes no longer available.

3017

After such an error, the surface (and any child swapchain, if one exists) should be destroyed, as
there is no way to restore them to a not-lost state. Applications may attempt to create a new
VkSurfaceKHR using the same native platform window object, but whether such re-creation will
succeed is platform-dependent and may depend on the reason the surface became unavailable. A
lost surface does not otherwise cause devices to be lost.

To destroy a VkSurfaceKHR object, call:

// Provided by VK_KHR_surface
void vkDestroySurfaceKHR(
 VkInstance instance,
 VkSurfaceKHR surface,
 const VkAllocationCallbacks* pAllocator);

• instance is the instance used to create the surface.

• surface is the surface to destroy.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

Destroying a VkSurfaceKHR merely severs the connection between Vulkan and the native surface,
and does not imply destroying the native surface, closing a window, or similar behavior.

Valid Usage

• VUID-vkDestroySurfaceKHR-surface-01266
All VkSwapchainKHR objects created for surface must have been destroyed prior to
destroying surface

• VUID-vkDestroySurfaceKHR-surface-01267
If VkAllocationCallbacks were provided when surface was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroySurfaceKHR-surface-01268
If no VkAllocationCallbacks were provided when surface was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroySurfaceKHR-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkDestroySurfaceKHR-surface-parameter
If surface is not VK_NULL_HANDLE, surface must be a valid VkSurfaceKHR handle

• VUID-vkDestroySurfaceKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

3018

• VUID-vkDestroySurfaceKHR-surface-parent
If surface is a valid handle, it must have been created, allocated, or retrieved from
instance

Host Synchronization

• Host access to surface must be externally synchronized

34.3. Presenting Directly to Display Devices
In some environments applications can also present Vulkan rendering directly to display devices
without using an intermediate windowing system. This can be useful for embedded applications, or
implementing the rendering/presentation backend of a windowing system using Vulkan. The
VK_KHR_display extension provides the functionality necessary to enumerate display devices and
create VkSurfaceKHR objects that target displays.

34.3.1. Display Enumeration

Displays are represented by VkDisplayKHR handles:

// Provided by VK_KHR_display
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDisplayKHR)

Various functions are provided for enumerating the available display devices present on a Vulkan
physical device. To query information about the available displays, call:

// Provided by VK_KHR_display
VkResult vkGetPhysicalDeviceDisplayPropertiesKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t* pPropertyCount,
 VkDisplayPropertiesKHR* pProperties);

• physicalDevice is a physical device.

• pPropertyCount is a pointer to an integer related to the number of display devices available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkDisplayPropertiesKHR structures.

If pProperties is NULL, then the number of display devices available for physicalDevice is returned in
pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of
elements in the pProperties array, and on return the variable is overwritten with the number of
structures actually written to pProperties. If the value of pPropertyCount is less than the number of
display devices for physicalDevice, at most pPropertyCount structures will be written, and
VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the available properties
were returned.

3019

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceDisplayPropertiesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceDisplayPropertiesKHR-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceDisplayPropertiesKHR-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkDisplayPropertiesKHR structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplayPropertiesKHR structure is defined as:

// Provided by VK_KHR_display
typedef struct VkDisplayPropertiesKHR {
 VkDisplayKHR display;
 const char* displayName;
 VkExtent2D physicalDimensions;
 VkExtent2D physicalResolution;
 VkSurfaceTransformFlagsKHR supportedTransforms;
 VkBool32 planeReorderPossible;
 VkBool32 persistentContent;
} VkDisplayPropertiesKHR;

• display is a handle that is used to refer to the display described here. This handle will be valid
for the lifetime of the Vulkan instance.

• displayName is NULL or a pointer to a null-terminated UTF-8 string containing the name of the
display. Generally, this will be the name provided by the display’s EDID. If NULL, no suitable
name is available. If not NULL, the string pointed to must remain accessible and unmodified as
long as display is valid.

• physicalDimensions describes the physical width and height of the visible portion of the display,
in millimeters.

• physicalResolution describes the physical, native, or preferred resolution of the display.

3020

Note

For devices which have no natural value to return here, implementations should
return the maximum resolution supported.

• supportedTransforms is a bitmask of VkSurfaceTransformFlagBitsKHR describing which
transforms are supported by this display.

• planeReorderPossible tells whether the planes on this display can have their z order changed. If
this is VK_TRUE, the application can re-arrange the planes on this display in any order relative to
each other.

• persistentContent tells whether the display supports self-refresh/internal buffering. If this is
true, the application can submit persistent present operations on swapchains created against
this display.

Note

Persistent presents may have higher latency, and may use less power when the
screen content is updated infrequently, or when only a portion of the screen needs
to be updated in most frames.

To query information about the available displays, call:

// Provided by VK_KHR_get_display_properties2
VkResult vkGetPhysicalDeviceDisplayProperties2KHR(
 VkPhysicalDevice physicalDevice,
 uint32_t* pPropertyCount,
 VkDisplayProperties2KHR* pProperties);

• physicalDevice is a physical device.

• pPropertyCount is a pointer to an integer related to the number of display devices available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkDisplayProperties2KHR structures.

vkGetPhysicalDeviceDisplayProperties2KHR behaves similarly to
vkGetPhysicalDeviceDisplayPropertiesKHR, with the ability to return extended information via
chained output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceDisplayProperties2KHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceDisplayProperties2KHR-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceDisplayProperties2KHR-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkDisplayProperties2KHR structures

3021

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplayProperties2KHR structure is defined as:

// Provided by VK_KHR_get_display_properties2
typedef struct VkDisplayProperties2KHR {
 VkStructureType sType;
 void* pNext;
 VkDisplayPropertiesKHR displayProperties;
} VkDisplayProperties2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• displayProperties is a VkDisplayPropertiesKHR structure.

Valid Usage (Implicit)

• VUID-VkDisplayProperties2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_PROPERTIES_2_KHR

• VUID-VkDisplayProperties2KHR-pNext-pNext
pNext must be NULL

Acquiring and Releasing Displays

On some platforms, access to displays is limited to a single process or native driver instance. On
such platforms, some or all of the displays may not be available to Vulkan if they are already in use
by a native windowing system or other application.

To acquire permission to directly access a display in Vulkan from an X11 server, call:

// Provided by VK_EXT_acquire_xlib_display
VkResult vkAcquireXlibDisplayEXT(
 VkPhysicalDevice physicalDevice,
 Display* dpy,
 VkDisplayKHR display);

3022

• physicalDevice The physical device the display is on.

• dpy A connection to the X11 server that currently owns display.

• display The display the caller wishes to control in Vulkan.

All permissions necessary to control the display are granted to the Vulkan instance associated with
physicalDevice until the display is released or the X11 connection specified by dpy is terminated.
Permission to access the display may be temporarily revoked during periods when the X11 server
from which control was acquired itself loses access to display. During such periods, operations
which require access to the display must fail with an appropriate error code. If the X11 server
associated with dpy does not own display, or if permission to access it has already been acquired by
another entity, the call must return the error code VK_ERROR_INITIALIZATION_FAILED.

Note

One example of when an X11 server loses access to a display is when it loses
ownership of its virtual terminal.

Valid Usage (Implicit)

• VUID-vkAcquireXlibDisplayEXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkAcquireXlibDisplayEXT-dpy-parameter
dpy must be a valid pointer to a Display value

• VUID-vkAcquireXlibDisplayEXT-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkAcquireXlibDisplayEXT-display-parent
display must have been created, allocated, or retrieved from physicalDevice

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

When acquiring displays from an X11 server, an application may also wish to enumerate and
identify them using a native handle rather than a VkDisplayKHR handle. To determine the
VkDisplayKHR handle corresponding to an X11 RandR Output, call:

// Provided by VK_EXT_acquire_xlib_display
VkResult vkGetRandROutputDisplayEXT(
 VkPhysicalDevice physicalDevice,

3023

 Display* dpy,
 RROutput rrOutput,
 VkDisplayKHR* pDisplay);

• physicalDevice The physical device to query the display handle on.

• dpy A connection to the X11 server from which rrOutput was queried.

• rrOutput An X11 RandR output ID.

• pDisplay The corresponding VkDisplayKHR handle will be returned here.

If there is no VkDisplayKHR corresponding to rrOutput on physicalDevice, VK_NULL_HANDLE must
be returned in pDisplay.

Valid Usage (Implicit)

• VUID-vkGetRandROutputDisplayEXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetRandROutputDisplayEXT-dpy-parameter
dpy must be a valid pointer to a Display value

• VUID-vkGetRandROutputDisplayEXT-pDisplay-parameter
pDisplay must be a valid pointer to a VkDisplayKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

To acquire permission to directly access a display in Vulkan on Windows 10, call:

// Provided by VK_NV_acquire_winrt_display
VkResult vkAcquireWinrtDisplayNV(
 VkPhysicalDevice physicalDevice,
 VkDisplayKHR display);

• physicalDevice The physical device the display is on.

• display The display the caller wishes to control in Vulkan.

All permissions necessary to control the display are granted to the Vulkan instance associated with
physicalDevice until the display is released or the application is terminated. Permission to access
the display may be revoked by events that cause Windows 10 itself to lose access to display. If this
has happened, operations which require access to the display must fail with an appropriate error

3024

code. If permission to access display has already been acquired by another entity, the call must
return the error code VK_ERROR_INITIALIZATION_FAILED.

Note

The Vulkan instance acquires control of a
“winrt::Windows::Devices::Display::Core::DisplayTarget” by performing an
operation equivalent to
“winrt::Windows::Devices::Display::Core::DisplayManager.TryAcquireTarget()” on
the “DisplayTarget”.

Note

One example of when Windows 10 loses access to a display is when the display is
hot-unplugged.

Note

One example of when a display has already been acquired by another entity is
when the Windows desktop compositor (DWM) is in control of the display.
Beginning with Windows 10 version 2004 it is possible to cause DWM to release a
display by using the “Advanced display settings” sub-page of the “Display settings”
control panel. vkAcquireWinrtDisplayNV does not itself cause DWM to release a
display; this action must be performed outside of Vulkan.

Valid Usage (Implicit)

• VUID-vkAcquireWinrtDisplayNV-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkAcquireWinrtDisplayNV-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkAcquireWinrtDisplayNV-display-parent
display must have been created, allocated, or retrieved from physicalDevice

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_INITIALIZATION_FAILED

When acquiring displays on Windows 10, an application may also wish to enumerate and identify
them using a native handle rather than a VkDisplayKHR handle.

3025

https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displaytarget
https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displaymanager.tryacquiretarget

To determine the VkDisplayKHR handle corresponding to a
“winrt::Windows::Devices::Display::Core::DisplayTarget”, call:

// Provided by VK_NV_acquire_winrt_display
VkResult vkGetWinrtDisplayNV(
 VkPhysicalDevice physicalDevice,
 uint32_t deviceRelativeId,
 VkDisplayKHR* pDisplay);

• physicalDevice The physical device on which to query the display handle.

• deviceRelativeId The value of the “AdapterRelativeId” property of a “DisplayTarget” that is
enumerated by a “DisplayAdapter” with an “Id” property matching the deviceLUID property of a
VkPhysicalDeviceIDProperties for physicalDevice.

• pDisplay The corresponding VkDisplayKHR handle will be returned here.

If there is no VkDisplayKHR corresponding to deviceRelativeId on physicalDevice,
VK_NULL_HANDLE must be returned in pDisplay.

Valid Usage (Implicit)

• VUID-vkGetWinrtDisplayNV-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetWinrtDisplayNV-pDisplay-parameter
pDisplay must be a valid pointer to a VkDisplayKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_INITIALIZATION_FAILED

To acquire permission to directly a display in Vulkan from the Direct Rendering Manager (DRM)
interface, call:

// Provided by VK_EXT_acquire_drm_display
VkResult vkAcquireDrmDisplayEXT(
 VkPhysicalDevice physicalDevice,
 int32_t drmFd,
 VkDisplayKHR display);

3026

https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displaytarget
https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displaytarget.adapterrelativeid
https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displaytarget
https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displayadapter
https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displayadapter.id

• physicalDevice The physical device the display is on.

• drmFd DRM primary file descriptor.

• display The display the caller wishes Vulkan to control.

All permissions necessary to control the display are granted to the Vulkan instance associated with
the provided physicalDevice until the display is either released or the connector is unplugged. The
provided drmFd must correspond to the one owned by the physicalDevice. If not, the error code
VK_ERROR_UNKNOWN must be returned. The DRM FD must have DRM master permissions. If any error is
encountered during the acquisition of the display, the call must return the error code
VK_ERROR_INITIALIZATION_FAILED.

The provided DRM fd should not be closed before the display is released, attempting to do it may
result in undefined behaviour.

Valid Usage (Implicit)

• VUID-vkAcquireDrmDisplayEXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkAcquireDrmDisplayEXT-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkAcquireDrmDisplayEXT-display-parent
display must have been created, allocated, or retrieved from physicalDevice

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

Before acquiring a display from the DRM interface, the caller may want to select a specific
VkDisplayKHR handle by identifying it using a connectorId. To do so, call:

// Provided by VK_EXT_acquire_drm_display
VkResult vkGetDrmDisplayEXT(
 VkPhysicalDevice physicalDevice,
 int32_t drmFd,
 uint32_t connectorId,
 VkDisplayKHR* display);

• physicalDevice The physical device to query the display from.

• drmFd DRM primary file descriptor.

• connectorId Identifier of the specified DRM connector.

3027

• display The corresponding VkDisplayKHR handle will be returned here.

If there is no VkDisplayKHR corresponding to the connectorId on the physicalDevice, the returning
display must be set to VK_NULL_HANDLE. The provided drmFd must correspond to the one owned
by the physicalDevice. If not, the error code VK_ERROR_UNKNOWN must be returned. Master permissions
are not required, because the file descriptor is just used for information gathering purposes. The
given connectorId must be a resource owned by the provided drmFd. If not, the error code
VK_ERROR_UNKNOWN must be returned. If any error is encountered during the identification of the
display, the call must return the error code VK_ERROR_INITIALIZATION_FAILED.

Valid Usage (Implicit)

• VUID-vkGetDrmDisplayEXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetDrmDisplayEXT-display-parameter
display must be a valid pointer to a VkDisplayKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_OUT_OF_HOST_MEMORY

To release a previously acquired display, call:

// Provided by VK_EXT_direct_mode_display
VkResult vkReleaseDisplayEXT(
 VkPhysicalDevice physicalDevice,
 VkDisplayKHR display);

• physicalDevice The physical device the display is on.

• display The display to release control of.

Valid Usage (Implicit)

• VUID-vkReleaseDisplayEXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkReleaseDisplayEXT-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkReleaseDisplayEXT-display-parent

3028

display must have been created, allocated, or retrieved from physicalDevice

Return Codes

Success

• VK_SUCCESS

Display Planes

Images are presented to individual planes on a display. Devices must support at least one plane on
each display. Planes can be stacked and blended to composite multiple images on one display.
Devices may support only a fixed stacking order and fixed mapping between planes and displays,
or they may allow arbitrary application specified stacking orders and mappings between planes
and displays. To query the properties of device display planes, call:

// Provided by VK_KHR_display
VkResult vkGetPhysicalDeviceDisplayPlanePropertiesKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t* pPropertyCount,
 VkDisplayPlanePropertiesKHR* pProperties);

• physicalDevice is a physical device.

• pPropertyCount is a pointer to an integer related to the number of display planes available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkDisplayPlanePropertiesKHR structures.

If pProperties is NULL, then the number of display planes available for physicalDevice is returned in
pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of
elements in the pProperties array, and on return the variable is overwritten with the number of
structures actually written to pProperties. If the value of pPropertyCount is less than the number of
display planes for physicalDevice, at most pPropertyCount structures will be written.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceDisplayPlanePropertiesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceDisplayPlanePropertiesKHR-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceDisplayPlanePropertiesKHR-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkDisplayPlanePropertiesKHR
structures

3029

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplayPlanePropertiesKHR structure is defined as:

// Provided by VK_KHR_display
typedef struct VkDisplayPlanePropertiesKHR {
 VkDisplayKHR currentDisplay;
 uint32_t currentStackIndex;
} VkDisplayPlanePropertiesKHR;

• currentDisplay is the handle of the display the plane is currently associated with. If the plane is
not currently attached to any displays, this will be VK_NULL_HANDLE.

• currentStackIndex is the current z-order of the plane. This will be between 0 and the value
returned by vkGetPhysicalDeviceDisplayPlanePropertiesKHR in pPropertyCount.

To query the properties of a device’s display planes, call:

// Provided by VK_KHR_get_display_properties2
VkResult vkGetPhysicalDeviceDisplayPlaneProperties2KHR(
 VkPhysicalDevice physicalDevice,
 uint32_t* pPropertyCount,
 VkDisplayPlaneProperties2KHR* pProperties);

• physicalDevice is a physical device.

• pPropertyCount is a pointer to an integer related to the number of display planes available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkDisplayPlaneProperties2KHR structures.

vkGetPhysicalDeviceDisplayPlaneProperties2KHR behaves similarly to
vkGetPhysicalDeviceDisplayPlanePropertiesKHR, with the ability to return extended information
via chained output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceDisplayPlaneProperties2KHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

3030

• VUID-vkGetPhysicalDeviceDisplayPlaneProperties2KHR-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceDisplayPlaneProperties2KHR-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkDisplayPlaneProperties2KHR
structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplayPlaneProperties2KHR structure is defined as:

// Provided by VK_KHR_get_display_properties2
typedef struct VkDisplayPlaneProperties2KHR {
 VkStructureType sType;
 void* pNext;
 VkDisplayPlanePropertiesKHR displayPlaneProperties;
} VkDisplayPlaneProperties2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• displayPlaneProperties is a VkDisplayPlanePropertiesKHR structure.

Valid Usage (Implicit)

• VUID-VkDisplayPlaneProperties2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_PLANE_PROPERTIES_2_KHR

• VUID-VkDisplayPlaneProperties2KHR-pNext-pNext
pNext must be NULL

To determine which displays a plane is usable with, call

// Provided by VK_KHR_display
VkResult vkGetDisplayPlaneSupportedDisplaysKHR(
 VkPhysicalDevice physicalDevice,

3031

 uint32_t planeIndex,
 uint32_t* pDisplayCount,
 VkDisplayKHR* pDisplays);

• physicalDevice is a physical device.

• planeIndex is the plane which the application wishes to use, and must be in the range [0,
physical device plane count - 1].

• pDisplayCount is a pointer to an integer related to the number of displays available or queried,
as described below.

• pDisplays is either NULL or a pointer to an array of VkDisplayKHR handles.

If pDisplays is NULL, then the number of displays usable with the specified planeIndex for
physicalDevice is returned in pDisplayCount. Otherwise, pDisplayCount must point to a variable set
by the user to the number of elements in the pDisplays array, and on return the variable is
overwritten with the number of handles actually written to pDisplays. If the value of pDisplayCount
is less than the number of usable display-plane pairs for physicalDevice, at most pDisplayCount
handles will be written, and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that
not all the available pairs were returned.

Valid Usage

• VUID-vkGetDisplayPlaneSupportedDisplaysKHR-planeIndex-01249
planeIndex must be less than the number of display planes supported by the device as
determined by calling vkGetPhysicalDeviceDisplayPlanePropertiesKHR

Valid Usage (Implicit)

• VUID-vkGetDisplayPlaneSupportedDisplaysKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetDisplayPlaneSupportedDisplaysKHR-pDisplayCount-parameter
pDisplayCount must be a valid pointer to a uint32_t value

• VUID-vkGetDisplayPlaneSupportedDisplaysKHR-pDisplays-parameter
If the value referenced by pDisplayCount is not 0, and pDisplays is not NULL, pDisplays must
be a valid pointer to an array of pDisplayCount VkDisplayKHR handles

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

3032

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Additional properties of displays are queried using specialized query functions.

Display Modes

Display modes are represented by VkDisplayModeKHR handles:

// Provided by VK_KHR_display
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDisplayModeKHR)

Each display has one or more supported modes associated with it by default. These built-in modes
are queried by calling:

// Provided by VK_KHR_display
VkResult vkGetDisplayModePropertiesKHR(
 VkPhysicalDevice physicalDevice,
 VkDisplayKHR display,
 uint32_t* pPropertyCount,
 VkDisplayModePropertiesKHR* pProperties);

• physicalDevice is the physical device associated with display.

• display is the display to query.

• pPropertyCount is a pointer to an integer related to the number of display modes available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkDisplayModePropertiesKHR structures.

If pProperties is NULL, then the number of display modes available on the specified display for
physicalDevice is returned in pPropertyCount. Otherwise, pPropertyCount must point to a variable set
by the user to the number of elements in the pProperties array, and on return the variable is
overwritten with the number of structures actually written to pProperties. If the value of
pPropertyCount is less than the number of display modes for physicalDevice, at most pPropertyCount
structures will be written, and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that
not all the available display modes were returned.

Valid Usage (Implicit)

• VUID-vkGetDisplayModePropertiesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetDisplayModePropertiesKHR-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkGetDisplayModePropertiesKHR-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetDisplayModePropertiesKHR-pProperties-parameter

3033

If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkDisplayModePropertiesKHR
structures

• VUID-vkGetDisplayModePropertiesKHR-display-parent
display must have been created, allocated, or retrieved from physicalDevice

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplayModePropertiesKHR structure is defined as:

// Provided by VK_KHR_display
typedef struct VkDisplayModePropertiesKHR {
 VkDisplayModeKHR displayMode;
 VkDisplayModeParametersKHR parameters;
} VkDisplayModePropertiesKHR;

• displayMode is a handle to the display mode described in this structure. This handle will be valid
for the lifetime of the Vulkan instance.

• parameters is a VkDisplayModeParametersKHR structure describing the display parameters
associated with displayMode.

// Provided by VK_KHR_display
typedef VkFlags VkDisplayModeCreateFlagsKHR;

VkDisplayModeCreateFlagsKHR is a bitmask type for setting a mask, but is currently reserved for
future use.

To query the properties of a device’s built-in display modes, call:

// Provided by VK_KHR_get_display_properties2
VkResult vkGetDisplayModeProperties2KHR(
 VkPhysicalDevice physicalDevice,
 VkDisplayKHR display,
 uint32_t* pPropertyCount,
 VkDisplayModeProperties2KHR* pProperties);

3034

• physicalDevice is the physical device associated with display.

• display is the display to query.

• pPropertyCount is a pointer to an integer related to the number of display modes available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkDisplayModeProperties2KHR structures.

vkGetDisplayModeProperties2KHR behaves similarly to vkGetDisplayModePropertiesKHR, with the
ability to return extended information via chained output structures.

Valid Usage (Implicit)

• VUID-vkGetDisplayModeProperties2KHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetDisplayModeProperties2KHR-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkGetDisplayModeProperties2KHR-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetDisplayModeProperties2KHR-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkDisplayModeProperties2KHR
structures

• VUID-vkGetDisplayModeProperties2KHR-display-parent
display must have been created, allocated, or retrieved from physicalDevice

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplayModeProperties2KHR structure is defined as:

// Provided by VK_KHR_get_display_properties2
typedef struct VkDisplayModeProperties2KHR {
 VkStructureType sType;
 void* pNext;
 VkDisplayModePropertiesKHR displayModeProperties;
} VkDisplayModeProperties2KHR;

3035

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• displayModeProperties is a VkDisplayModePropertiesKHR structure.

Valid Usage (Implicit)

• VUID-VkDisplayModeProperties2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_MODE_PROPERTIES_2_KHR

• VUID-VkDisplayModeProperties2KHR-pNext-pNext
pNext must be NULL

The VkDisplayModeParametersKHR structure is defined as:

// Provided by VK_KHR_display
typedef struct VkDisplayModeParametersKHR {
 VkExtent2D visibleRegion;
 uint32_t refreshRate;
} VkDisplayModeParametersKHR;

• visibleRegion is the 2D extents of the visible region.

• refreshRate is a uint32_t that is the number of times the display is refreshed each second
multiplied by 1000.

Note

For example, a 60Hz display mode would report a refreshRate of 60,000.

Valid Usage

• VUID-VkDisplayModeParametersKHR-width-01990
The width member of visibleRegion must be greater than 0

• VUID-VkDisplayModeParametersKHR-height-01991
The height member of visibleRegion must be greater than 0

• VUID-VkDisplayModeParametersKHR-refreshRate-01992
refreshRate must be greater than 0

Additional modes may also be created by calling:

// Provided by VK_KHR_display
VkResult vkCreateDisplayModeKHR(
 VkPhysicalDevice physicalDevice,
 VkDisplayKHR display,
 const VkDisplayModeCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,

3036

 VkDisplayModeKHR* pMode);

• physicalDevice is the physical device associated with display.

• display is the display to create an additional mode for.

• pCreateInfo is a pointer to a VkDisplayModeCreateInfoKHR structure describing the new mode
to create.

• pAllocator is the allocator used for host memory allocated for the display mode object when
there is no more specific allocator available (see Memory Allocation).

• pMode is a pointer to a VkDisplayModeKHR handle in which the mode created is returned.

Valid Usage (Implicit)

• VUID-vkCreateDisplayModeKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkCreateDisplayModeKHR-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkCreateDisplayModeKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDisplayModeCreateInfoKHR structure

• VUID-vkCreateDisplayModeKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDisplayModeKHR-pMode-parameter
pMode must be a valid pointer to a VkDisplayModeKHR handle

• VUID-vkCreateDisplayModeKHR-display-parent
display must have been created, allocated, or retrieved from physicalDevice

Host Synchronization

• Host access to display must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

3037

The VkDisplayModeCreateInfoKHR structure is defined as:

// Provided by VK_KHR_display
typedef struct VkDisplayModeCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkDisplayModeCreateFlagsKHR flags;
 VkDisplayModeParametersKHR parameters;
} VkDisplayModeCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use, and must be zero.

• parameters is a VkDisplayModeParametersKHR structure describing the display parameters to
use in creating the new mode. If the parameters are not compatible with the specified display,
the implementation must return VK_ERROR_INITIALIZATION_FAILED.

Valid Usage (Implicit)

• VUID-VkDisplayModeCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR

• VUID-VkDisplayModeCreateInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkDisplayModeCreateInfoKHR-flags-zerobitmask
flags must be 0

• VUID-VkDisplayModeCreateInfoKHR-parameters-parameter
parameters must be a valid VkDisplayModeParametersKHR structure

Applications that wish to present directly to a display must select which layer, or “plane” of the
display they wish to target, and a mode to use with the display. Each display supports at least one
plane. The capabilities of a given mode and plane combination are determined by calling:

// Provided by VK_KHR_display
VkResult vkGetDisplayPlaneCapabilitiesKHR(
 VkPhysicalDevice physicalDevice,
 VkDisplayModeKHR mode,
 uint32_t planeIndex,
 VkDisplayPlaneCapabilitiesKHR* pCapabilities);

• physicalDevice is the physical device associated with the display specified by mode

• mode is the display mode the application intends to program when using the specified plane.
Note this parameter also implicitly specifies a display.

• planeIndex is the plane which the application intends to use with the display, and is less than the

3038

number of display planes supported by the device.

• pCapabilities is a pointer to a VkDisplayPlaneCapabilitiesKHR structure in which the
capabilities are returned.

Valid Usage (Implicit)

• VUID-vkGetDisplayPlaneCapabilitiesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetDisplayPlaneCapabilitiesKHR-mode-parameter
mode must be a valid VkDisplayModeKHR handle

• VUID-vkGetDisplayPlaneCapabilitiesKHR-pCapabilities-parameter
pCapabilities must be a valid pointer to a VkDisplayPlaneCapabilitiesKHR structure

• VUID-vkGetDisplayPlaneCapabilitiesKHR-mode-parent
mode must have been created, allocated, or retrieved from physicalDevice

Host Synchronization

• Host access to mode must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplayPlaneCapabilitiesKHR structure is defined as:

// Provided by VK_KHR_display
typedef struct VkDisplayPlaneCapabilitiesKHR {
 VkDisplayPlaneAlphaFlagsKHR supportedAlpha;
 VkOffset2D minSrcPosition;
 VkOffset2D maxSrcPosition;
 VkExtent2D minSrcExtent;
 VkExtent2D maxSrcExtent;
 VkOffset2D minDstPosition;
 VkOffset2D maxDstPosition;
 VkExtent2D minDstExtent;
 VkExtent2D maxDstExtent;
} VkDisplayPlaneCapabilitiesKHR;

3039

• supportedAlpha is a bitmask of VkDisplayPlaneAlphaFlagBitsKHR describing the supported alpha
blending modes.

• minSrcPosition is the minimum source rectangle offset supported by this plane using the
specified mode.

• maxSrcPosition is the maximum source rectangle offset supported by this plane using the
specified mode. The x and y components of maxSrcPosition must each be greater than or equal
to the x and y components of minSrcPosition, respectively.

• minSrcExtent is the minimum source rectangle size supported by this plane using the specified
mode.

• maxSrcExtent is the maximum source rectangle size supported by this plane using the specified
mode.

• minDstPosition, maxDstPosition, minDstExtent, maxDstExtent all have similar semantics to their
corresponding *Src* equivalents, but apply to the output region within the mode rather than
the input region within the source image. Unlike the *Src* offsets, minDstPosition and
maxDstPosition may contain negative values.

The minimum and maximum position and extent fields describe the implementation limits, if any,
as they apply to the specified display mode and plane. Vendors may support displaying a subset of a
swapchain’s presentable images on the specified display plane. This is expressed by returning
minSrcPosition, maxSrcPosition, minSrcExtent, and maxSrcExtent values that indicate a range of
possible positions and sizes which may be used to specify the region within the presentable images
that source pixels will be read from when creating a swapchain on the specified display mode and
plane.

Vendors may also support mapping the presentable images’ content to a subset or superset of the
visible region in the specified display mode. This is expressed by returning minDstPosition,
maxDstPosition, minDstExtent and maxDstExtent values that indicate a range of possible positions and
sizes which may be used to describe the region within the display mode that the source pixels will
be mapped to.

Other vendors may support only a 1-1 mapping between pixels in the presentable images and the
display mode. This may be indicated by returning (0,0) for minSrcPosition, maxSrcPosition,
minDstPosition, and maxDstPosition, and (display mode width, display mode height) for
minSrcExtent, maxSrcExtent, minDstExtent, and maxDstExtent.

The value supportedAlpha must contain at least one valid VkDisplayPlaneAlphaFlagBitsKHR bit.

These values indicate the limits of the implementation’s individual fields. Not all combinations of
values within the offset and extent ranges returned in VkDisplayPlaneCapabilitiesKHR are
guaranteed to be supported. Presentation requests specifying unsupported combinations may fail.

To query the capabilities of a given mode and plane combination, call:

// Provided by VK_KHR_get_display_properties2
VkResult vkGetDisplayPlaneCapabilities2KHR(
 VkPhysicalDevice physicalDevice,
 const VkDisplayPlaneInfo2KHR* pDisplayPlaneInfo,

3040

 VkDisplayPlaneCapabilities2KHR* pCapabilities);

• physicalDevice is the physical device associated with pDisplayPlaneInfo.

• pDisplayPlaneInfo is a pointer to a VkDisplayPlaneInfo2KHR structure describing the plane and
mode.

• pCapabilities is a pointer to a VkDisplayPlaneCapabilities2KHR structure in which the
capabilities are returned.

vkGetDisplayPlaneCapabilities2KHR behaves similarly to vkGetDisplayPlaneCapabilitiesKHR, with
the ability to specify extended inputs via chained input structures, and to return extended
information via chained output structures.

Valid Usage (Implicit)

• VUID-vkGetDisplayPlaneCapabilities2KHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetDisplayPlaneCapabilities2KHR-pDisplayPlaneInfo-parameter
pDisplayPlaneInfo must be a valid pointer to a valid VkDisplayPlaneInfo2KHR structure

• VUID-vkGetDisplayPlaneCapabilities2KHR-pCapabilities-parameter
pCapabilities must be a valid pointer to a VkDisplayPlaneCapabilities2KHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplayPlaneInfo2KHR structure is defined as:

// Provided by VK_KHR_get_display_properties2
typedef struct VkDisplayPlaneInfo2KHR {
 VkStructureType sType;
 const void* pNext;
 VkDisplayModeKHR mode;
 uint32_t planeIndex;
} VkDisplayPlaneInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• mode is the display mode the application intends to program when using the specified plane.

3041

Note

This parameter also implicitly specifies a display.

• planeIndex is the plane which the application intends to use with the display.

The members of VkDisplayPlaneInfo2KHR correspond to the arguments to
vkGetDisplayPlaneCapabilitiesKHR, with sType and pNext added for extensibility.

Valid Usage (Implicit)

• VUID-VkDisplayPlaneInfo2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_PLANE_INFO_2_KHR

• VUID-VkDisplayPlaneInfo2KHR-pNext-pNext
pNext must be NULL

• VUID-VkDisplayPlaneInfo2KHR-mode-parameter
mode must be a valid VkDisplayModeKHR handle

Host Synchronization

• Host access to mode must be externally synchronized

The VkDisplayPlaneCapabilities2KHR structure is defined as:

// Provided by VK_KHR_get_display_properties2
typedef struct VkDisplayPlaneCapabilities2KHR {
 VkStructureType sType;
 void* pNext;
 VkDisplayPlaneCapabilitiesKHR capabilities;
} VkDisplayPlaneCapabilities2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• capabilities is a VkDisplayPlaneCapabilitiesKHR structure.

Valid Usage (Implicit)

• VUID-VkDisplayPlaneCapabilities2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_PLANE_CAPABILITIES_2_KHR

• VUID-VkDisplayPlaneCapabilities2KHR-pNext-pNext
pNext must be NULL

3042

34.3.2. Display Control

To set the power state of a display, call:

// Provided by VK_EXT_display_control
VkResult vkDisplayPowerControlEXT(
 VkDevice device,
 VkDisplayKHR display,
 const VkDisplayPowerInfoEXT* pDisplayPowerInfo);

• device is a logical device associated with display.

• display is the display whose power state is modified.

• pDisplayPowerInfo is a pointer to a VkDisplayPowerInfoEXT structure specifying the new power
state of display.

Valid Usage (Implicit)

• VUID-vkDisplayPowerControlEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkDisplayPowerControlEXT-display-parameter
display must be a valid VkDisplayKHR handle

• VUID-vkDisplayPowerControlEXT-pDisplayPowerInfo-parameter
pDisplayPowerInfo must be a valid pointer to a valid VkDisplayPowerInfoEXT structure

• VUID-vkDisplayPowerControlEXT-commonparent
Both of device, and display must have been created, allocated, or retrieved from the same
VkPhysicalDevice

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkDisplayPowerInfoEXT structure is defined as:

// Provided by VK_EXT_display_control
typedef struct VkDisplayPowerInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDisplayPowerStateEXT powerState;
} VkDisplayPowerInfoEXT;

3043

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• powerState is a VkDisplayPowerStateEXT value specifying the new power state of the display.

Valid Usage (Implicit)

• VUID-VkDisplayPowerInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT

• VUID-VkDisplayPowerInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDisplayPowerInfoEXT-powerState-parameter
powerState must be a valid VkDisplayPowerStateEXT value

Possible values of VkDisplayPowerInfoEXT::powerState, specifying the new power state of a display,
are:

// Provided by VK_EXT_display_control
typedef enum VkDisplayPowerStateEXT {
 VK_DISPLAY_POWER_STATE_OFF_EXT = 0,
 VK_DISPLAY_POWER_STATE_SUSPEND_EXT = 1,
 VK_DISPLAY_POWER_STATE_ON_EXT = 2,
} VkDisplayPowerStateEXT;

• VK_DISPLAY_POWER_STATE_OFF_EXT specifies that the display is powered down.

• VK_DISPLAY_POWER_STATE_SUSPEND_EXT specifies that the display is put into a low power mode,
from which it may be able to transition back to VK_DISPLAY_POWER_STATE_ON_EXT more quickly
than if it were in VK_DISPLAY_POWER_STATE_OFF_EXT. This state may be the same as
VK_DISPLAY_POWER_STATE_OFF_EXT.

• VK_DISPLAY_POWER_STATE_ON_EXT specifies that the display is powered on.

34.3.3. Display Surfaces

A complete display configuration includes a mode, one or more display planes and any parameters
describing their behavior, and parameters describing some aspects of the images associated with
those planes. Display surfaces describe the configuration of a single plane within a complete display
configuration. To create a VkSurfaceKHR object for a display plane, call:

// Provided by VK_KHR_display
VkResult vkCreateDisplayPlaneSurfaceKHR(
 VkInstance instance,
 const VkDisplaySurfaceCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

3044

• instance is the instance corresponding to the physical device the targeted display is on.

• pCreateInfo is a pointer to a VkDisplaySurfaceCreateInfoKHR structure specifying which mode,
plane, and other parameters to use, as described below.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface is returned.

Valid Usage (Implicit)

• VUID-vkCreateDisplayPlaneSurfaceKHR-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateDisplayPlaneSurfaceKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDisplaySurfaceCreateInfoKHR structure

• VUID-vkCreateDisplayPlaneSurfaceKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDisplayPlaneSurfaceKHR-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDisplaySurfaceCreateInfoKHR structure is defined as:

// Provided by VK_KHR_display
typedef struct VkDisplaySurfaceCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkDisplaySurfaceCreateFlagsKHR flags;
 VkDisplayModeKHR displayMode;
 uint32_t planeIndex;
 uint32_t planeStackIndex;
 VkSurfaceTransformFlagBitsKHR transform;
 float globalAlpha;
 VkDisplayPlaneAlphaFlagBitsKHR alphaMode;
 VkExtent2D imageExtent;
} VkDisplaySurfaceCreateInfoKHR;

3045

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use, and must be zero.

• displayMode is a VkDisplayModeKHR handle specifying the mode to use when displaying this
surface.

• planeIndex is the plane on which this surface appears.

• planeStackIndex is the z-order of the plane.

• transform is a VkSurfaceTransformFlagBitsKHR value specifying the transformation to apply to
images as part of the scanout operation.

• globalAlpha is the global alpha value. This value is ignored if alphaMode is not
VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR.

• alphaMode is a VkDisplayPlaneAlphaFlagBitsKHR value specifying the type of alpha blending to
use.

• imageExtent is the size of the presentable images to use with the surface.

Note

Creating a display surface must not modify the state of the displays, planes, or
other resources it names. For example, it must not apply the specified mode to be
set on the associated display. Application of display configuration occurs as a side
effect of presenting to a display surface.

Valid Usage

• VUID-VkDisplaySurfaceCreateInfoKHR-planeIndex-01252
planeIndex must be less than the number of display planes supported by the device as
determined by calling vkGetPhysicalDeviceDisplayPlanePropertiesKHR

• VUID-VkDisplaySurfaceCreateInfoKHR-planeReorderPossible-01253
If the planeReorderPossible member of the VkDisplayPropertiesKHR structure returned by
vkGetPhysicalDeviceDisplayPropertiesKHR for the display corresponding to displayMode is
VK_TRUE then planeStackIndex must be less than the number of display planes supported
by the device as determined by calling vkGetPhysicalDeviceDisplayPlanePropertiesKHR;
otherwise planeStackIndex must equal the currentStackIndex member of
VkDisplayPlanePropertiesKHR returned by vkGetPhysicalDeviceDisplayPlanePropertiesKHR
for the display plane corresponding to displayMode

• VUID-VkDisplaySurfaceCreateInfoKHR-alphaMode-01254
If alphaMode is VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR then globalAlpha must be between 0
and 1, inclusive

• VUID-VkDisplaySurfaceCreateInfoKHR-alphaMode-01255
alphaMode must be one of the bits present in the supportedAlpha member of
VkDisplayPlaneCapabilitiesKHR for the display plane corresponding to displayMode

• VUID-VkDisplaySurfaceCreateInfoKHR-transform-06740
transform must be one of the bits present in the supportedTransforms member of

3046

VkDisplayPropertiesKHR for the display corresponding to displayMode

• VUID-VkDisplaySurfaceCreateInfoKHR-width-01256
The width and height members of imageExtent must be less than or equal to
VkPhysicalDeviceLimits::maxImageDimension2D

Valid Usage (Implicit)

• VUID-VkDisplaySurfaceCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR

• VUID-VkDisplaySurfaceCreateInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkDisplaySurfaceCreateInfoKHR-flags-zerobitmask
flags must be 0

• VUID-VkDisplaySurfaceCreateInfoKHR-displayMode-parameter
displayMode must be a valid VkDisplayModeKHR handle

• VUID-VkDisplaySurfaceCreateInfoKHR-transform-parameter
transform must be a valid VkSurfaceTransformFlagBitsKHR value

• VUID-VkDisplaySurfaceCreateInfoKHR-alphaMode-parameter
alphaMode must be a valid VkDisplayPlaneAlphaFlagBitsKHR value

// Provided by VK_KHR_display
typedef VkFlags VkDisplaySurfaceCreateFlagsKHR;

VkDisplaySurfaceCreateFlagsKHR is a bitmask type for setting a mask, but is currently reserved for
future use.

Bits which can be set in VkDisplaySurfaceCreateInfoKHR::alphaMode, specifying the type of alpha
blending to use on a display, are:

// Provided by VK_KHR_display
typedef enum VkDisplayPlaneAlphaFlagBitsKHR {
 VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR = 0x00000001,
 VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR = 0x00000002,
 VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR = 0x00000004,
 VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR = 0x00000008,
} VkDisplayPlaneAlphaFlagBitsKHR;

• VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR specifies that the source image will be treated as
opaque.

• VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR specifies that a global alpha value must be specified that
will be applied to all pixels in the source image.

• VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR specifies that the alpha value will be determined by

3047

the alpha component of the source image’s pixels. If the source format contains no alpha values,
no blending will be applied. The source alpha values are not premultiplied into the source
image’s other color components.

• VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR is equivalent to
VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR, except the source alpha values are assumed to be
premultiplied into the source image’s other color components.

// Provided by VK_KHR_display
typedef VkFlags VkDisplayPlaneAlphaFlagsKHR;

VkDisplayPlaneAlphaFlagsKHR is a bitmask type for setting a mask of zero or more
VkDisplayPlaneAlphaFlagBitsKHR.

34.3.4. Presenting to Headless Surfaces

Vulkan rendering can be presented to a headless surface, where the presentation operation is a no-
op producing no externally-visible result.

Note

Because there is no real presentation target, the headless presentation engine may
be extended to impose an arbitrary or customisable set of restrictions and
features. This makes it a useful portable test target for applications targeting a
wide range of presentation engines where the actual target presentation engines
might be scarce, unavailable or otherwise undesirable or inconvenient to use for
general Vulkan application development.

The usual surface query mechanisms must be used to determine the actual
restrictions and features of the implementation.

To create a headless VkSurfaceKHR object, call:

// Provided by VK_EXT_headless_surface
VkResult vkCreateHeadlessSurfaceEXT(
 VkInstance instance,
 const VkHeadlessSurfaceCreateInfoEXT* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* pSurface);

• instance is the instance to associate the surface with.

• pCreateInfo is a pointer to a VkHeadlessSurfaceCreateInfoEXT structure containing parameters
affecting the creation of the surface object.

• pAllocator is the allocator used for host memory allocated for the surface object when there is
no more specific allocator available (see Memory Allocation).

• pSurface is a pointer to a VkSurfaceKHR handle in which the created surface object is returned.

3048

Valid Usage (Implicit)

• VUID-vkCreateHeadlessSurfaceEXT-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateHeadlessSurfaceEXT-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkHeadlessSurfaceCreateInfoEXT structure

• VUID-vkCreateHeadlessSurfaceEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateHeadlessSurfaceEXT-pSurface-parameter
pSurface must be a valid pointer to a VkSurfaceKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkHeadlessSurfaceCreateInfoEXT structure is defined as:

// Provided by VK_EXT_headless_surface
typedef struct VkHeadlessSurfaceCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkHeadlessSurfaceCreateFlagsEXT flags;
} VkHeadlessSurfaceCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

Valid Usage (Implicit)

• VUID-VkHeadlessSurfaceCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_HEADLESS_SURFACE_CREATE_INFO_EXT

• VUID-VkHeadlessSurfaceCreateInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkHeadlessSurfaceCreateInfoEXT-flags-zerobitmask
flags must be 0

3049

For headless surfaces, currentExtent is the reserved value (0xFFFFFFFF, 0xFFFFFFFF). Whatever the
application sets a swapchain’s imageExtent to will be the size of the surface, after the first image is
presented.

// Provided by VK_EXT_headless_surface
typedef VkFlags VkHeadlessSurfaceCreateFlagsEXT;

VkHeadlessSurfaceCreateFlagsEXT is a bitmask type for setting a mask, but is currently reserved for
future use.

34.4. Querying for WSI Support
Not all physical devices will include WSI support. Within a physical device, not all queue families
will support presentation. WSI support and compatibility can be determined in a platform-neutral
manner (which determines support for presentation to a particular surface object) and additionally
may be determined in platform-specific manners (which determine support for presentation on the
specified physical device but do not guarantee support for presentation to a particular surface
object).

To determine whether a queue family of a physical device supports presentation to a given surface,
call:

// Provided by VK_KHR_surface
VkResult vkGetPhysicalDeviceSurfaceSupportKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t queueFamilyIndex,
 VkSurfaceKHR surface,
 VkBool32* pSupported);

• physicalDevice is the physical device.

• queueFamilyIndex is the queue family.

• surface is the surface.

• pSupported is a pointer to a VkBool32, which is set to VK_TRUE to indicate support, and VK_FALSE
otherwise.

Valid Usage

• VUID-vkGetPhysicalDeviceSurfaceSupportKHR-queueFamilyIndex-01269
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the given physicalDevice

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSurfaceSupportKHR-physicalDevice-parameter

3050

physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSurfaceSupportKHR-surface-parameter
surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceSupportKHR-pSupported-parameter
pSupported must be a valid pointer to a VkBool32 value

• VUID-vkGetPhysicalDeviceSurfaceSupportKHR-commonparent
Both of physicalDevice, and surface must have been created, allocated, or retrieved from
the same VkInstance

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

34.4.1. Android Platform

On Android, all physical devices and queue families must be capable of presentation with any
native window. As a result there is no Android-specific query for these capabilities.

34.4.2. Wayland Platform

To determine whether a queue family of a physical device supports presentation to a Wayland
compositor, call:

// Provided by VK_KHR_wayland_surface
VkBool32 vkGetPhysicalDeviceWaylandPresentationSupportKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t queueFamilyIndex,
 struct wl_display* display);

• physicalDevice is the physical device.

• queueFamilyIndex is the queue family index.

• display is a pointer to the wl_display associated with a Wayland compositor.

This platform-specific function can be called prior to creating a surface.

3051

Valid Usage

• VUID-vkGetPhysicalDeviceWaylandPresentationSupportKHR-queueFamilyIndex-01306
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the given physicalDevice

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceWaylandPresentationSupportKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceWaylandPresentationSupportKHR-display-parameter
display must be a valid pointer to a wl_display value

34.4.3. Win32 Platform

To determine whether a queue family of a physical device supports presentation to the Microsoft
Windows desktop, call:

// Provided by VK_KHR_win32_surface
VkBool32 vkGetPhysicalDeviceWin32PresentationSupportKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t queueFamilyIndex);

• physicalDevice is the physical device.

• queueFamilyIndex is the queue family index.

This platform-specific function can be called prior to creating a surface.

Valid Usage

• VUID-vkGetPhysicalDeviceWin32PresentationSupportKHR-queueFamilyIndex-01309
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the given physicalDevice

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceWin32PresentationSupportKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

34.4.4. XCB Platform

To determine whether a queue family of a physical device supports presentation to an X11 server,

3052

using the XCB client-side library, call:

// Provided by VK_KHR_xcb_surface
VkBool32 vkGetPhysicalDeviceXcbPresentationSupportKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t queueFamilyIndex,
 xcb_connection_t* connection,
 xcb_visualid_t visual_id);

• physicalDevice is the physical device.

• queueFamilyIndex is the queue family index.

• connection is a pointer to an xcb_connection_t to the X server.

• visual_id is an X11 visual (xcb_visualid_t).

This platform-specific function can be called prior to creating a surface.

Valid Usage

• VUID-vkGetPhysicalDeviceXcbPresentationSupportKHR-queueFamilyIndex-01312
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the given physicalDevice

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceXcbPresentationSupportKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceXcbPresentationSupportKHR-connection-parameter
connection must be a valid pointer to an xcb_connection_t value

34.4.5. Xlib Platform

To determine whether a queue family of a physical device supports presentation to an X11 server,
using the Xlib client-side library, call:

// Provided by VK_KHR_xlib_surface
VkBool32 vkGetPhysicalDeviceXlibPresentationSupportKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t queueFamilyIndex,
 Display* dpy,
 VisualID visualID);

• physicalDevice is the physical device.

• queueFamilyIndex is the queue family index.

3053

• dpy is a pointer to an Xlib Display connection to the server.

• visualId is an X11 visual (VisualID).

This platform-specific function can be called prior to creating a surface.

Valid Usage

• VUID-vkGetPhysicalDeviceXlibPresentationSupportKHR-queueFamilyIndex-01315
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the given physicalDevice

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceXlibPresentationSupportKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceXlibPresentationSupportKHR-dpy-parameter
dpy must be a valid pointer to a Display value

34.4.6. DirectFB Platform

To determine whether a queue family of a physical device supports presentation with DirectFB
library, call:

// Provided by VK_EXT_directfb_surface
VkBool32 vkGetPhysicalDeviceDirectFBPresentationSupportEXT(
 VkPhysicalDevice physicalDevice,
 uint32_t queueFamilyIndex,
 IDirectFB* dfb);

• physicalDevice is the physical device.

• queueFamilyIndex is the queue family index.

• dfb is a pointer to the IDirectFB main interface of DirectFB.

This platform-specific function can be called prior to creating a surface.

Valid Usage

• VUID-vkGetPhysicalDeviceDirectFBPresentationSupportEXT-queueFamilyIndex-04119
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the given physicalDevice

3054

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceDirectFBPresentationSupportEXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceDirectFBPresentationSupportEXT-dfb-parameter
dfb must be a valid pointer to an IDirectFB value

34.4.7. Fuchsia Platform

On Fuchsia, all physical devices and queue families must be capable of presentation with any
ImagePipe. As a result there is no Fuchsia-specific query for these capabilities.

34.4.8. Google Games Platform

On Google Games Platform, all physical devices and queue families with the VK_QUEUE_GRAPHICS_BIT
or VK_QUEUE_COMPUTE_BIT capabilities must be capable of presentation with any Google Games
Platform stream descriptor. As a result, there is no query specific to Google Games Platform for
these capabilities.

34.4.9. iOS Platform

On iOS, all physical devices and queue families must be capable of presentation with any layer. As
a result there is no iOS-specific query for these capabilities.

34.4.10. macOS Platform

On macOS, all physical devices and queue families must be capable of presentation with any layer.
As a result there is no macOS-specific query for these capabilities.

34.4.11. VI Platform

On VI, all physical devices and queue families must be capable of presentation with any layer. As a
result there is no VI-specific query for these capabilities.

34.4.12. QNX Screen Platform

To determine whether a queue family of a physical device supports presentation to a QNX Screen
compositor, call:

// Provided by VK_QNX_screen_surface
VkBool32 vkGetPhysicalDeviceScreenPresentationSupportQNX(
 VkPhysicalDevice physicalDevice,
 uint32_t queueFamilyIndex,
 struct _screen_window* window);

• physicalDevice is the physical device.

3055

• queueFamilyIndex is the queue family index.

• window is the QNX Screen window object.

This platform-specific function can be called prior to creating a surface.

Valid Usage

• VUID-vkGetPhysicalDeviceScreenPresentationSupportQNX-queueFamilyIndex-04743
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the given physicalDevice

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceScreenPresentationSupportQNX-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceScreenPresentationSupportQNX-window-parameter
window must be a valid pointer to a _screen_window value

34.5. Surface Queries
The capabilities of a swapchain targeting a surface are the intersection of the capabilities of the
WSI platform, the native window or display, and the physical device. The resulting capabilities can
be obtained with the queries listed below in this section.

Note

In addition to the surface capabilities as obtained by surface queries below,
swapchain images are also subject to ordinary image creation limits as reported by
vkGetPhysicalDeviceImageFormatProperties. As an application is instructed by the
appropriate Valid Usage sections, both the surface capabilities and the image
creation limits have to be satisfied whenever swapchain images are created.

34.5.1. Surface Capabilities

To query the basic capabilities of a surface, needed in order to create a swapchain, call:

// Provided by VK_KHR_surface
VkResult vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 VkSurfaceCapabilitiesKHR* pSurfaceCapabilities);

• physicalDevice is the physical device that will be associated with the swapchain to be created, as
described for vkCreateSwapchainKHR.

3056

• surface is the surface that will be associated with the swapchain.

• pSurfaceCapabilities is a pointer to a VkSurfaceCapabilitiesKHR structure in which the
capabilities are returned.

Valid Usage

• VUID-vkGetPhysicalDeviceSurfaceCapabilitiesKHR-surface-06523
surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilitiesKHR-surface-06211
surface must be supported by physicalDevice, as reported by
vkGetPhysicalDeviceSurfaceSupportKHR or an equivalent platform-specific mechanism

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSurfaceCapabilitiesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilitiesKHR-surface-parameter
surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilitiesKHR-pSurfaceCapabilities-parameter
pSurfaceCapabilities must be a valid pointer to a VkSurfaceCapabilitiesKHR structure

• VUID-vkGetPhysicalDeviceSurfaceCapabilitiesKHR-commonparent
Both of physicalDevice, and surface must have been created, allocated, or retrieved from
the same VkInstance

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

The VkSurfaceCapabilitiesKHR structure is defined as:

// Provided by VK_KHR_surface
typedef struct VkSurfaceCapabilitiesKHR {
 uint32_t minImageCount;
 uint32_t maxImageCount;
 VkExtent2D currentExtent;
 VkExtent2D minImageExtent;

3057

 VkExtent2D maxImageExtent;
 uint32_t maxImageArrayLayers;
 VkSurfaceTransformFlagsKHR supportedTransforms;
 VkSurfaceTransformFlagBitsKHR currentTransform;
 VkCompositeAlphaFlagsKHR supportedCompositeAlpha;
 VkImageUsageFlags supportedUsageFlags;
} VkSurfaceCapabilitiesKHR;

• minImageCount is the minimum number of images the specified device supports for a swapchain
created for the surface, and will be at least one.

• maxImageCount is the maximum number of images the specified device supports for a swapchain
created for the surface, and will be either 0, or greater than or equal to minImageCount. A value of
0 means that there is no limit on the number of images, though there may be limits related to
the total amount of memory used by presentable images.

• currentExtent is the current width and height of the surface, or the special value (0xFFFFFFFF,
0xFFFFFFFF) indicating that the surface size will be determined by the extent of a swapchain
targeting the surface.

• minImageExtent contains the smallest valid swapchain extent for the surface on the specified
device. The width and height of the extent will each be less than or equal to the corresponding
width and height of currentExtent, unless currentExtent has the special value described above.

• maxImageExtent contains the largest valid swapchain extent for the surface on the specified
device. The width and height of the extent will each be greater than or equal to the
corresponding width and height of minImageExtent. The width and height of the extent will each
be greater than or equal to the corresponding width and height of currentExtent, unless
currentExtent has the special value described above.

• maxImageArrayLayers is the maximum number of layers presentable images can have for a
swapchain created for this device and surface, and will be at least one.

• supportedTransforms is a bitmask of VkSurfaceTransformFlagBitsKHR indicating the
presentation transforms supported for the surface on the specified device. At least one bit will
be set.

• currentTransform is VkSurfaceTransformFlagBitsKHR value indicating the surface’s current
transform relative to the presentation engine’s natural orientation.

• supportedCompositeAlpha is a bitmask of VkCompositeAlphaFlagBitsKHR, representing the alpha
compositing modes supported by the presentation engine for the surface on the specified
device, and at least one bit will be set. Opaque composition can be achieved in any alpha
compositing mode by either using an image format that has no alpha component, or by
ensuring that all pixels in the presentable images have an alpha value of 1.0.

• supportedUsageFlags is a bitmask of VkImageUsageFlagBits representing the ways the
application can use the presentable images of a swapchain created with VkPresentModeKHR set
to VK_PRESENT_MODE_IMMEDIATE_KHR, VK_PRESENT_MODE_MAILBOX_KHR, VK_PRESENT_MODE_FIFO_KHR or
VK_PRESENT_MODE_FIFO_RELAXED_KHR for the surface on the specified device.
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT must be included in the set. Implementations may support
additional usages.

3058

Note

Supported usage flags of a presentable image when using
VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR or
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR presentation mode are provided
by VkSharedPresentSurfaceCapabilitiesKHR::sharedPresentSupportedUsageFlags.

Note

Formulas such as min(N, maxImageCount) are not correct, since maxImageCount may
be zero.

To query the basic capabilities of a surface defined by the core or extensions, call:

// Provided by VK_KHR_get_surface_capabilities2
VkResult vkGetPhysicalDeviceSurfaceCapabilities2KHR(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
 VkSurfaceCapabilities2KHR* pSurfaceCapabilities);

• physicalDevice is the physical device that will be associated with the swapchain to be created, as
described for vkCreateSwapchainKHR.

• pSurfaceInfo is a pointer to a VkPhysicalDeviceSurfaceInfo2KHR structure describing the
surface and other fixed parameters that would be consumed by vkCreateSwapchainKHR.

• pSurfaceCapabilities is a pointer to a VkSurfaceCapabilities2KHR structure in which the
capabilities are returned.

vkGetPhysicalDeviceSurfaceCapabilities2KHR behaves similarly to
vkGetPhysicalDeviceSurfaceCapabilitiesKHR, with the ability to specify extended inputs via chained
input structures, and to return extended information via chained output structures.

Valid Usage

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pSurfaceInfo-06521
If the VK_GOOGLE_surfaceless_query extension is not enabled, pSurfaceInfo->surface must
be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pSurfaceInfo-06522
If pSurfaceInfo->surface is not VK_NULL_HANDLE, pSurfaceInfo->surface must be
supported by physicalDevice, as reported by vkGetPhysicalDeviceSurfaceSupportKHR or
an equivalent platform-specific mechanism

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pNext-02671
If a VkSurfaceCapabilitiesFullScreenExclusiveEXT structure is included in the pNext chain
of pSurfaceCapabilities, a VkSurfaceFullScreenExclusiveWin32InfoEXT structure must be
included in the pNext chain of pSurfaceInfo

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pNext-07776
If a VkSurfacePresentModeCompatibilityEXT structure is included in the pNext chain of

3059

pSurfaceCapabilities, a VkSurfacePresentModeEXT structure must be included in the
pNext chain of pSurfaceInfo

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pNext-07777
If a VkSurfacePresentScalingCapabilitiesEXT structure is included in the pNext chain of
pSurfaceCapabilities, a VkSurfacePresentModeEXT structure must be included in the
pNext chain of pSurfaceInfo

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pNext-07778
If a VkSurfacePresentModeCompatibilityEXT structure is included in the pNext chain of
pSurfaceCapabilities, pSurfaceInfo->surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pNext-07779
If a VkSurfacePresentScalingCapabilitiesEXT structure is included in the pNext chain of
pSurfaceCapabilities, pSurfaceInfo->surface must be a valid VkSurfaceKHR handle

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pSurfaceInfo-parameter
pSurfaceInfo must be a valid pointer to a valid VkPhysicalDeviceSurfaceInfo2KHR
structure

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2KHR-pSurfaceCapabilities-parameter
pSurfaceCapabilities must be a valid pointer to a VkSurfaceCapabilities2KHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

The VkPhysicalDeviceSurfaceInfo2KHR structure is defined as:

// Provided by VK_KHR_get_surface_capabilities2
typedef struct VkPhysicalDeviceSurfaceInfo2KHR {
 VkStructureType sType;
 const void* pNext;
 VkSurfaceKHR surface;
} VkPhysicalDeviceSurfaceInfo2KHR;

3060

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• surface is the surface that will be associated with the swapchain.

The members of VkPhysicalDeviceSurfaceInfo2KHR correspond to the arguments to
vkGetPhysicalDeviceSurfaceCapabilitiesKHR, with sType and pNext added for extensibility.

Additional capabilities of a surface may be available to swapchains created with different full-
screen exclusive settings - particularly if exclusive full-screen access is application controlled. These
additional capabilities can be queried by adding a VkSurfaceFullScreenExclusiveInfoEXT structure
to the pNext chain of this structure when used to query surface properties. Additionally, for Win32
surfaces with application controlled exclusive full-screen access, chaining a
VkSurfaceFullScreenExclusiveWin32InfoEXT structure may also report additional surface
capabilities. These additional capabilities only apply to swapchains created with the same
parameters included in the pNext chain of VkSwapchainCreateInfoKHR.

Valid Usage

• VUID-VkPhysicalDeviceSurfaceInfo2KHR-pNext-02672
If the pNext chain includes a VkSurfaceFullScreenExclusiveInfoEXT structure with its
fullScreenExclusive member set to VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT,
and surface was created using vkCreateWin32SurfaceKHR, a
VkSurfaceFullScreenExclusiveWin32InfoEXT structure must be included in the pNext
chain

• VUID-VkPhysicalDeviceSurfaceInfo2KHR-surface-07919
If surface is not VK_NULL_HANDLE, and the VK_GOOGLE_surfaceless_query extension is not
enabled, surface must be a valid VkSurfaceKHR handle

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSurfaceInfo2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR

• VUID-VkPhysicalDeviceSurfaceInfo2KHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkSurfaceFullScreenExclusiveInfoEXT,
VkSurfaceFullScreenExclusiveWin32InfoEXT, or VkSurfacePresentModeEXT

• VUID-VkPhysicalDeviceSurfaceInfo2KHR-sType-unique
The sType value of each struct in the pNext chain must be unique

If the pNext chain of VkSwapchainCreateInfoKHR includes a VkSurfaceFullScreenExclusiveInfoEXT
structure, then that structure specifies the application’s preferred full-screen transition behavior.

The VkSurfaceFullScreenExclusiveInfoEXT structure is defined as:

3061

// Provided by VK_EXT_full_screen_exclusive
typedef struct VkSurfaceFullScreenExclusiveInfoEXT {
 VkStructureType sType;
 void* pNext;
 VkFullScreenExclusiveEXT fullScreenExclusive;
} VkSurfaceFullScreenExclusiveInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fullScreenExclusive is a VkFullScreenExclusiveEXT value specifying the preferred full-screen
transition behavior.

If this structure is not present, fullScreenExclusive is considered to be
VK_FULL_SCREEN_EXCLUSIVE_DEFAULT_EXT.

Valid Usage (Implicit)

• VUID-VkSurfaceFullScreenExclusiveInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_INFO_EXT

• VUID-VkSurfaceFullScreenExclusiveInfoEXT-fullScreenExclusive-parameter
fullScreenExclusive must be a valid VkFullScreenExclusiveEXT value

Possible values of VkSurfaceFullScreenExclusiveInfoEXT::fullScreenExclusive are:

// Provided by VK_EXT_full_screen_exclusive
typedef enum VkFullScreenExclusiveEXT {
 VK_FULL_SCREEN_EXCLUSIVE_DEFAULT_EXT = 0,
 VK_FULL_SCREEN_EXCLUSIVE_ALLOWED_EXT = 1,
 VK_FULL_SCREEN_EXCLUSIVE_DISALLOWED_EXT = 2,
 VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT = 3,
} VkFullScreenExclusiveEXT;

• VK_FULL_SCREEN_EXCLUSIVE_DEFAULT_EXT indicates the implementation should determine the
appropriate full-screen method by whatever means it deems appropriate.

• VK_FULL_SCREEN_EXCLUSIVE_ALLOWED_EXT indicates the implementation may use full-screen
exclusive mechanisms when available. Such mechanisms may result in better performance
and/or the availability of different presentation capabilities, but may require a more disruptive
transition during swapchain initialization, first presentation and/or destruction.

• VK_FULL_SCREEN_EXCLUSIVE_DISALLOWED_EXT indicates the implementation should avoid using full-
screen mechanisms which rely on disruptive transitions.

• VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT indicates the application will manage full-
screen exclusive mode by using the vkAcquireFullScreenExclusiveModeEXT and
vkReleaseFullScreenExclusiveModeEXT commands.

3062

The VkSurfaceFullScreenExclusiveWin32InfoEXT structure is defined as:

// Provided by VK_KHR_win32_surface with VK_EXT_full_screen_exclusive
typedef struct VkSurfaceFullScreenExclusiveWin32InfoEXT {
 VkStructureType sType;
 const void* pNext;
 HMONITOR hmonitor;
} VkSurfaceFullScreenExclusiveWin32InfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• hmonitor is the Win32 HMONITOR handle identifying the display to create the surface with.

Note

If hmonitor is invalidated (e.g. the monitor is unplugged) during the lifetime of a
swapchain created with this structure, operations on that swapchain will return
VK_ERROR_OUT_OF_DATE_KHR.

Note

It is the responsibility of the application to change the display settings of the
targeted Win32 display using the appropriate platform APIs. Such changes may
alter the surface capabilities reported for the created surface.

Valid Usage

• VUID-VkSurfaceFullScreenExclusiveWin32InfoEXT-hmonitor-02673
hmonitor must be a valid HMONITOR

Valid Usage (Implicit)

• VUID-VkSurfaceFullScreenExclusiveWin32InfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT

The VkSurfaceCapabilities2KHR structure is defined as:

// Provided by VK_KHR_get_surface_capabilities2
typedef struct VkSurfaceCapabilities2KHR {
 VkStructureType sType;
 void* pNext;
 VkSurfaceCapabilitiesKHR surfaceCapabilities;
} VkSurfaceCapabilities2KHR;

• sType is a VkStructureType value identifying this structure.

3063

• pNext is NULL or a pointer to a structure extending this structure.

• surfaceCapabilities is a VkSurfaceCapabilitiesKHR structure describing the capabilities of the
specified surface.

If the VK_GOOGLE_surfaceless_query extension is enabled and VkPhysicalDeviceSurfaceInfo2KHR
::surface in the vkGetPhysicalDeviceSurfaceCapabilities2KHR call is VK_NULL_HANDLE, the values
returned in minImageCount, maxImageCount, currentExtent, and currentTransform will not reflect that of
any surface and will instead be as such:

• minImageCount and maxImageCount will be 0xFFFFFFFF

• currentExtent will be (0xFFFFFFFF, 0xFFFFFFFF)

• currentTransform will be VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR

Valid Usage (Implicit)

• VUID-VkSurfaceCapabilities2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR

• VUID-VkSurfaceCapabilities2KHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDisplayNativeHdrSurfaceCapabilitiesAMD,
VkLatencySurfaceCapabilitiesNV, VkSharedPresentSurfaceCapabilitiesKHR,
VkSurfaceCapabilitiesFullScreenExclusiveEXT, VkSurfaceCapabilitiesPresentBarrierNV,
VkSurfacePresentModeCompatibilityEXT, VkSurfacePresentScalingCapabilitiesEXT, or
VkSurfaceProtectedCapabilitiesKHR

• VUID-VkSurfaceCapabilities2KHR-sType-unique
The sType value of each struct in the pNext chain must be unique

An application queries if a protected VkSurfaceKHR is displayable on a specific windowing system
using VkSurfaceProtectedCapabilitiesKHR, which can be passed in pNext parameter of
VkSurfaceCapabilities2KHR.

The VkSurfaceProtectedCapabilitiesKHR structure is defined as:

// Provided by VK_KHR_surface_protected_capabilities
typedef struct VkSurfaceProtectedCapabilitiesKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 supportsProtected;
} VkSurfaceProtectedCapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• supportsProtected specifies whether a protected swapchain created from
VkPhysicalDeviceSurfaceInfo2KHR::surface for a particular windowing system can be displayed

3064

on screen or not. If supportsProtected is VK_TRUE, then creation of swapchains with the
VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR flag set must be supported for surface.

If the VK_GOOGLE_surfaceless_query extension is enabled, the value returned in supportsProtected
will be identical for every valid surface created on this physical device, and so in the
vkGetPhysicalDeviceSurfaceCapabilities2KHR call, VkPhysicalDeviceSurfaceInfo2KHR::surface can
be VK_NULL_HANDLE. In that case, the contents of VkSurfaceCapabilities2KHR
::surfaceCapabilities as well as any other struct chained to it will be undefined.

Valid Usage (Implicit)

• VUID-VkSurfaceProtectedCapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR

The VkSurfacePresentScalingCapabilitiesEXT structure is defined as:

// Provided by VK_EXT_surface_maintenance1
typedef struct VkSurfacePresentScalingCapabilitiesEXT {
 VkStructureType sType;
 void* pNext;
 VkPresentScalingFlagsEXT supportedPresentScaling;
 VkPresentGravityFlagsEXT supportedPresentGravityX;
 VkPresentGravityFlagsEXT supportedPresentGravityY;
 VkExtent2D minScaledImageExtent;
 VkExtent2D maxScaledImageExtent;
} VkSurfacePresentScalingCapabilitiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• supportedPresentScaling is a bitmask of VkPresentScalingFlagBitsEXT representing the scaling
methods supported by the surface, or 0 if application-defined scaling is not supported.

• supportedPresentGravityX is a bitmask of VkPresentGravityFlagBitsEXT representing the X-axis
pixel gravity supported by the surface, or 0 if Vulkan-defined pixel gravity is not supported for
the X axis.

• supportedPresentGravityY is a bitmask of VkPresentGravityFlagBitsEXT representing the Y-axis
pixel gravity supported by the surface, or 0 if Vulkan-defined pixel gravity is not supported for
the Y axis.

• minScaledImageExtent contains the smallest valid swapchain extent for the surface on the
specified device when one of the scaling methods specified in supportedPresentScaling is used,
or the special value (0xFFFFFFFF, 0xFFFFFFFF) indicating that the surface size will be
determined by the extent of a swapchain targeting the surface. The width and height of the
extent will each be smaller than or equal to the corresponding width and height of
VkSurfaceCapabilitiesKHR::minImageExtent.

• maxScaledImageExtent contains the largest valid swapchain extent for the surface on the

3065

specified device when one of the scaling methods specified in supportedPresentScaling is used,
or the special value described above for minScaledImageExtent. The width and height of the
extent will each be greater than or equal to the corresponding width and height of
VkSurfaceCapabilitiesKHR::maxImageExtent.

Before creating a swapchain whose scaling mode can be specified through the use of
VkSwapchainPresentScalingCreateInfoEXT, obtain the set of supported scaling modes by including
a VkSurfacePresentModeEXT structure in the pNext chain of VkPhysicalDeviceSurfaceInfo2KHR
when calling vkGetPhysicalDeviceSurfaceCapabilities2KHR. The implementation must return the
same values in VkSurfacePresentScalingCapabilitiesEXT for any of the compatible present modes as
obtained through VkSurfacePresentModeCompatibilityEXT.

Valid Usage (Implicit)

• VUID-VkSurfacePresentScalingCapabilitiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_PRESENT_SCALING_CAPABILITIES_EXT

• VUID-VkSurfacePresentScalingCapabilitiesEXT-supportedPresentScaling-parameter
supportedPresentScaling must be a valid combination of VkPresentScalingFlagBitsEXT
values

• VUID-VkSurfacePresentScalingCapabilitiesEXT-supportedPresentGravityX-parameter
supportedPresentGravityX must be a valid combination of VkPresentGravityFlagBitsEXT
values

• VUID-VkSurfacePresentScalingCapabilitiesEXT-supportedPresentGravityY-parameter
supportedPresentGravityY must be a valid combination of VkPresentGravityFlagBitsEXT
values

Bits which may be set in VkSurfacePresentScalingCapabilitiesEXT::supportedPresentScaling,
specifying scaling modes supported by the surface, are:

// Provided by VK_EXT_surface_maintenance1
typedef enum VkPresentScalingFlagBitsEXT {
 VK_PRESENT_SCALING_ONE_TO_ONE_BIT_EXT = 0x00000001,
 VK_PRESENT_SCALING_ASPECT_RATIO_STRETCH_BIT_EXT = 0x00000002,
 VK_PRESENT_SCALING_STRETCH_BIT_EXT = 0x00000004,
} VkPresentScalingFlagBitsEXT;

• VK_PRESENT_SCALING_ONE_TO_ONE_BIT_EXT specifies that no scaling occurs, and pixels in the
swapchain image are mapped to one and only one pixel in the surface. The mapping between
pixels is defined by the chosen presentation gravity.

• VK_PRESENT_SCALING_ASPECT_RATIO_STRETCH_BIT_EXT specifies that the swapchain image will be
minified or magnified such that at least one of the resulting width or height is equal to the
corresponding surface dimension, and the other resulting dimension is less than or equal to the
corresponding surface dimension, with the aspect ratio of the resulting image being identical to
that of the original swapchain image.

• VK_PRESENT_SCALING_STRETCH_BIT_EXT specifies that the swapchain image will be minified or

3066

magnified such that the resulting image dimensions are equal to those of the surface.

// Provided by VK_EXT_surface_maintenance1
typedef VkFlags VkPresentScalingFlagsEXT;

VkPresentScalingFlagsEXT is a bitmask type for setting a mask of zero or more
VkPresentScalingFlagBitsEXT.

Bits which may be set in the VkSurfacePresentScalingCapabilitiesEXT::supportedPresentGravityX or
supportedPresentGravityY fields, specifying the gravity of presented pixels supported by the surface,
are:

// Provided by VK_EXT_surface_maintenance1
typedef enum VkPresentGravityFlagBitsEXT {
 VK_PRESENT_GRAVITY_MIN_BIT_EXT = 0x00000001,
 VK_PRESENT_GRAVITY_MAX_BIT_EXT = 0x00000002,
 VK_PRESENT_GRAVITY_CENTERED_BIT_EXT = 0x00000004,
} VkPresentGravityFlagBitsEXT;

• VK_PRESENT_GRAVITY_MIN_BIT_EXT means that the pixels will gravitate towards the top or left side
of the surface.

• VK_PRESENT_GRAVITY_MAX_BIT_EXT means that the pixels will gravitate towards the bottom or right
side of the surface.

• VK_PRESENT_GRAVITY_CENTERED_BIT_EXT means that the pixels will be centered in the surface.

If the value in VkSurfaceCapabilitiesKHR::currentTransform is not
VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR, it is implementation-defined whether the gravity
configuration applies to the presented image before or after transformation.

// Provided by VK_EXT_surface_maintenance1
typedef VkFlags VkPresentGravityFlagsEXT;

VkPresentGravityFlagsEXT is a bitmask type for setting a mask of zero or more
VkPresentGravityFlagBitsEXT.

The VkSurfacePresentModeEXT structure is defined as:

// Provided by VK_EXT_surface_maintenance1
typedef struct VkSurfacePresentModeEXT {
 VkStructureType sType;
 void* pNext;
 VkPresentModeKHR presentMode;
} VkSurfacePresentModeEXT;

• sType is a VkStructureType value identifying this structure.

3067

• pNext is NULL or a pointer to a structure extending this structure.

• presentMode is the presentation mode the swapchain will use.

If the VkSurfacePresentModeEXT structure is included in the pNext chain of
VkPhysicalDeviceSurfaceInfo2KHR, the values returned in VkSurfaceCapabilitiesKHR
::minImageCount, VkSurfaceCapabilitiesKHR::maxImageCount,
VkSurfacePresentScalingCapabilitiesEXT::minScaledImageExtent, and
VkSurfacePresentScalingCapabilitiesEXT::maxScaledImageExtent are valid only for the specified
presentMode. If presentMode is VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR or
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR, the per-present mode image counts must both be
one. The per-present mode image counts may be less-than or greater-than the image counts
returned when VkSurfacePresentModeEXT is not provided.

Note

If VkSwapchainPresentModesCreateInfoEXT is provided to swapchain creation,
the requirements for forward progress may be less strict. For example, a FIFO
swapchain might only require 2 images to guarantee forward progress, but a
MAILBOX one might require 4. Without the per-present image counts, such an
implementation would have to return 4 in VkSurfaceCapabilitiesKHR
::minImageCount, which pessimizes FIFO. Conversely, an implementation may return
a low number for minImageCount, but internally bump the image count when
application queries vkGetSwapchainImagesKHR, which can surprise applications,
and is not discoverable until swapchain creation. Using VkSurfacePresentModeEXT
and VkSwapchainPresentModesCreateInfoEXT together effectively removes this
problem.

VkSwapchainPresentModesCreateInfoEXT is required for the specification to be
backwards compatible with applications that do not know about, or make use of
this feature.

Valid Usage

• VUID-VkSurfacePresentModeEXT-presentMode-07780
presentMode must be a value reported by vkGetPhysicalDeviceSurfacePresentModesKHR
for the specified surface.

Valid Usage (Implicit)

• VUID-VkSurfacePresentModeEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT

• VUID-VkSurfacePresentModeEXT-presentMode-parameter
presentMode must be a valid VkPresentModeKHR value

The VkSurfacePresentModeCompatibilityEXT structure is defined as:

3068

// Provided by VK_EXT_surface_maintenance1
typedef struct VkSurfacePresentModeCompatibilityEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t presentModeCount;
 VkPresentModeKHR* pPresentModes;
} VkSurfacePresentModeCompatibilityEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentModeCount is an integer related to the number of present modes available or queried, as
described below.

• pPresentModes is a pointer to an array of VkPresentModeKHR in which present modes
compatible with a given present mode are returned.

If pPresentModes is NULL, then the number of present modes that are compatible with the one
specified in VkSurfacePresentModeEXT is returned in presentModeCount. Otherwise,
presentModeCount must be set by the user to the number of elements in the pPresentModes array, and
on return the variable is overwritten with the number of values actually written to pPresentModes. If
the value of presentModeCount is less than the number of compatible present modes that are
supported, at most presentModeCount values will be written to pPresentModes. The implementation
must include the present mode passed to VkSurfacePresentModeEXT in pPresentModes, unless
presentModeCount is zero.

Before creating a swapchain whose present modes can be modified through the use of
VkSwapchainPresentModesCreateInfoEXT, obtain the set of present modes compatible with a given
initial present mode by including a VkSurfacePresentModeEXT structure in the pNext chain of
VkPhysicalDeviceSurfaceInfo2KHR when calling vkGetPhysicalDeviceSurfaceCapabilities2KHR.

Valid Usage (Implicit)

• VUID-VkSurfacePresentModeCompatibilityEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_COMPATIBILITY_EXT

• VUID-VkSurfacePresentModeCompatibilityEXT-pPresentModes-parameter
If presentModeCount is not 0, and pPresentModes is not NULL, pPresentModes must be a valid
pointer to an array of presentModeCount VkPresentModeKHR values

The VkSharedPresentSurfaceCapabilitiesKHR structure is defined as:

// Provided by VK_KHR_shared_presentable_image
typedef struct VkSharedPresentSurfaceCapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 VkImageUsageFlags sharedPresentSupportedUsageFlags;

3069

} VkSharedPresentSurfaceCapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• sharedPresentSupportedUsageFlags is a bitmask of VkImageUsageFlagBits representing the ways
the application can use the shared presentable image from a swapchain created with
VkPresentModeKHR set to VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR or
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR for the surface on the specified device.
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT must be included in the set but implementations may
support additional usages.

Valid Usage (Implicit)

• VUID-VkSharedPresentSurfaceCapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR

The VkDisplayNativeHdrSurfaceCapabilitiesAMD structure is defined as:

// Provided by VK_AMD_display_native_hdr
typedef struct VkDisplayNativeHdrSurfaceCapabilitiesAMD {
 VkStructureType sType;
 void* pNext;
 VkBool32 localDimmingSupport;
} VkDisplayNativeHdrSurfaceCapabilitiesAMD;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• localDimmingSupport specifies whether the surface supports local dimming. If this is VK_TRUE,
VkSwapchainDisplayNativeHdrCreateInfoAMD can be used to explicitly enable or disable local
dimming for the surface. Local dimming may also be overridden by vkSetLocalDimmingAMD
during the lifetime of the swapchain.

Valid Usage (Implicit)

• VUID-VkDisplayNativeHdrSurfaceCapabilitiesAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_NATIVE_HDR_SURFACE_CAPABILITIES_AMD

The VkSurfaceCapabilitiesFullScreenExclusiveEXT structure is defined as:

// Provided by VK_EXT_full_screen_exclusive
typedef struct VkSurfaceCapabilitiesFullScreenExclusiveEXT {
 VkStructureType sType;
 void* pNext;

3070

 VkBool32 fullScreenExclusiveSupported;
} VkSurfaceCapabilitiesFullScreenExclusiveEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fullScreenExclusiveControlSupported is a boolean describing whether the surface is able to
make use of exclusive full-screen access.

This structure can be included in the pNext chain of VkSurfaceCapabilities2KHR to determine
support for exclusive full-screen access. If fullScreenExclusiveSupported is VK_FALSE, it indicates that
exclusive full-screen access is not obtainable for this surface.

Applications must not attempt to create swapchains with
VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT set if fullScreenExclusiveSupported is
VK_FALSE.

Valid Usage (Implicit)

• VUID-VkSurfaceCapabilitiesFullScreenExclusiveEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT

The VkSurfaceCapabilitiesPresentBarrierNV structure is defined as:

// Provided by VK_NV_present_barrier
typedef struct VkSurfaceCapabilitiesPresentBarrierNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 presentBarrierSupported;
} VkSurfaceCapabilitiesPresentBarrierNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentBarrierSupported is a boolean describing whether the surface is able to make use of the
present barrier feature.

This structure can be included in the pNext chain of VkSurfaceCapabilities2KHR to determine
support for present barrier access. If presentBarrierSupported is VK_FALSE, it indicates that the
present barrier feature is not obtainable for this surface.

Valid Usage (Implicit)

• VUID-VkSurfaceCapabilitiesPresentBarrierNV-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_PRESENT_BARRIER_NV

3071

To query the basic capabilities of a surface, needed in order to create a swapchain, call:

// Provided by VK_EXT_display_surface_counter
VkResult vkGetPhysicalDeviceSurfaceCapabilities2EXT(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 VkSurfaceCapabilities2EXT* pSurfaceCapabilities);

• physicalDevice is the physical device that will be associated with the swapchain to be created, as
described for vkCreateSwapchainKHR.

• surface is the surface that will be associated with the swapchain.

• pSurfaceCapabilities is a pointer to a VkSurfaceCapabilities2EXT structure in which the
capabilities are returned.

vkGetPhysicalDeviceSurfaceCapabilities2EXT behaves similarly to
vkGetPhysicalDeviceSurfaceCapabilitiesKHR, with the ability to return extended information by
adding extending structures to the pNext chain of its pSurfaceCapabilities parameter.

Valid Usage

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2EXT-surface-06523
surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2EXT-surface-06211
surface must be supported by physicalDevice, as reported by
vkGetPhysicalDeviceSurfaceSupportKHR or an equivalent platform-specific mechanism

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2EXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2EXT-surface-parameter
surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2EXT-pSurfaceCapabilities-parameter
pSurfaceCapabilities must be a valid pointer to a VkSurfaceCapabilities2EXT structure

• VUID-vkGetPhysicalDeviceSurfaceCapabilities2EXT-commonparent
Both of physicalDevice, and surface must have been created, allocated, or retrieved from
the same VkInstance

Return Codes

Success

• VK_SUCCESS

3072

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

The VkSurfaceCapabilities2EXT structure is defined as:

// Provided by VK_EXT_display_surface_counter
typedef struct VkSurfaceCapabilities2EXT {
 VkStructureType sType;
 void* pNext;
 uint32_t minImageCount;
 uint32_t maxImageCount;
 VkExtent2D currentExtent;
 VkExtent2D minImageExtent;
 VkExtent2D maxImageExtent;
 uint32_t maxImageArrayLayers;
 VkSurfaceTransformFlagsKHR supportedTransforms;
 VkSurfaceTransformFlagBitsKHR currentTransform;
 VkCompositeAlphaFlagsKHR supportedCompositeAlpha;
 VkImageUsageFlags supportedUsageFlags;
 VkSurfaceCounterFlagsEXT supportedSurfaceCounters;
} VkSurfaceCapabilities2EXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minImageCount is the minimum number of images the specified device supports for a swapchain
created for the surface, and will be at least one.

• maxImageCount is the maximum number of images the specified device supports for a swapchain
created for the surface, and will be either 0, or greater than or equal to minImageCount. A value of
0 means that there is no limit on the number of images, though there may be limits related to
the total amount of memory used by presentable images.

• currentExtent is the current width and height of the surface, or the special value (0xFFFFFFFF,
0xFFFFFFFF) indicating that the surface size will be determined by the extent of a swapchain
targeting the surface.

• minImageExtent contains the smallest valid swapchain extent for the surface on the specified
device. The width and height of the extent will each be less than or equal to the corresponding
width and height of currentExtent, unless currentExtent has the special value described above.

• maxImageExtent contains the largest valid swapchain extent for the surface on the specified
device. The width and height of the extent will each be greater than or equal to the
corresponding width and height of minImageExtent. The width and height of the extent will each
be greater than or equal to the corresponding width and height of currentExtent, unless
currentExtent has the special value described above.

• maxImageArrayLayers is the maximum number of layers presentable images can have for a

3073

swapchain created for this device and surface, and will be at least one.

• supportedTransforms is a bitmask of VkSurfaceTransformFlagBitsKHR indicating the
presentation transforms supported for the surface on the specified device. At least one bit will
be set.

• currentTransform is VkSurfaceTransformFlagBitsKHR value indicating the surface’s current
transform relative to the presentation engine’s natural orientation.

• supportedCompositeAlpha is a bitmask of VkCompositeAlphaFlagBitsKHR, representing the alpha
compositing modes supported by the presentation engine for the surface on the specified
device, and at least one bit will be set. Opaque composition can be achieved in any alpha
compositing mode by either using an image format that has no alpha component, or by
ensuring that all pixels in the presentable images have an alpha value of 1.0.

• supportedUsageFlags is a bitmask of VkImageUsageFlagBits representing the ways the
application can use the presentable images of a swapchain created with VkPresentModeKHR set
to VK_PRESENT_MODE_IMMEDIATE_KHR, VK_PRESENT_MODE_MAILBOX_KHR, VK_PRESENT_MODE_FIFO_KHR or
VK_PRESENT_MODE_FIFO_RELAXED_KHR for the surface on the specified device.
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT must be included in the set. Implementations may support
additional usages.

• supportedSurfaceCounters is a bitmask of VkSurfaceCounterFlagBitsEXT indicating the supported
surface counter types.

Valid Usage

• VUID-VkSurfaceCapabilities2EXT-supportedSurfaceCounters-01246
supportedSurfaceCounters must not include VK_SURFACE_COUNTER_VBLANK_BIT_EXT unless the
surface queried is a display surface

Valid Usage (Implicit)

• VUID-VkSurfaceCapabilities2EXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT

• VUID-VkSurfaceCapabilities2EXT-pNext-pNext
pNext must be NULL

Bits which can be set in VkSurfaceCapabilities2EXT::supportedSurfaceCounters, indicating supported
surface counter types, are:

// Provided by VK_EXT_display_surface_counter
typedef enum VkSurfaceCounterFlagBitsEXT {
 VK_SURFACE_COUNTER_VBLANK_BIT_EXT = 0x00000001,
 VK_SURFACE_COUNTER_VBLANK_EXT = VK_SURFACE_COUNTER_VBLANK_BIT_EXT,
} VkSurfaceCounterFlagBitsEXT;

• VK_SURFACE_COUNTER_VBLANK_BIT_EXT specifies a counter incrementing once every time a vertical

3074

blanking period occurs on the display associated with the surface.

// Provided by VK_EXT_display_surface_counter
typedef VkFlags VkSurfaceCounterFlagsEXT;

VkSurfaceCounterFlagsEXT is a bitmask type for setting a mask of zero or more
VkSurfaceCounterFlagBitsEXT.

Bits which may be set in VkSurfaceCapabilitiesKHR::supportedTransforms indicating the
presentation transforms supported for the surface on the specified device, and possible values of
VkSurfaceCapabilitiesKHR::currentTransform indicating the surface’s current transform relative to
the presentation engine’s natural orientation, are:

// Provided by VK_KHR_surface
typedef enum VkSurfaceTransformFlagBitsKHR {
 VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR = 0x00000001,
 VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR = 0x00000002,
 VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR = 0x00000004,
 VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR = 0x00000008,
 VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR = 0x00000010,
 VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR = 0x00000020,
 VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR = 0x00000040,
 VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR = 0x00000080,
 VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR = 0x00000100,
} VkSurfaceTransformFlagBitsKHR;

• VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR specifies that image content is presented without being
transformed.

• VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR specifies that image content is rotated 90 degrees
clockwise.

• VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR specifies that image content is rotated 180 degrees
clockwise.

• VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR specifies that image content is rotated 270 degrees
clockwise.

• VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR specifies that image content is mirrored
horizontally.

• VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR specifies that image content is
mirrored horizontally, then rotated 90 degrees clockwise.

• VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR specifies that image content is
mirrored horizontally, then rotated 180 degrees clockwise.

• VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR specifies that image content is
mirrored horizontally, then rotated 270 degrees clockwise.

• VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR specifies that the presentation transform is not specified,
and is instead determined by platform-specific considerations and mechanisms outside Vulkan.

3075

// Provided by VK_KHR_display
typedef VkFlags VkSurfaceTransformFlagsKHR;

VkSurfaceTransformFlagsKHR is a bitmask type for setting a mask of zero or more
VkSurfaceTransformFlagBitsKHR.

The supportedCompositeAlpha member is of type VkCompositeAlphaFlagBitsKHR, containing the
following values:

// Provided by VK_KHR_surface
typedef enum VkCompositeAlphaFlagBitsKHR {
 VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR = 0x00000001,
 VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR = 0x00000002,
 VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR = 0x00000004,
 VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR = 0x00000008,
} VkCompositeAlphaFlagBitsKHR;

These values are described as follows:

• VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR: The alpha component, if it exists, of the images is ignored in
the compositing process. Instead, the image is treated as if it has a constant alpha of 1.0.

• VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR: The alpha component, if it exists, of the images is
respected in the compositing process. The non-alpha components of the image are expected to
already be multiplied by the alpha component by the application.

• VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR: The alpha component, if it exists, of the images is
respected in the compositing process. The non-alpha components of the image are not expected
to already be multiplied by the alpha component by the application; instead, the compositor will
multiply the non-alpha components of the image by the alpha component during compositing.

• VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR: The way in which the presentation engine treats the alpha
component in the images is unknown to the Vulkan API. Instead, the application is responsible
for setting the composite alpha blending mode using native window system commands. If the
application does not set the blending mode using native window system commands, then a
platform-specific default will be used.

// Provided by VK_KHR_surface
typedef VkFlags VkCompositeAlphaFlagsKHR;

VkCompositeAlphaFlagsKHR is a bitmask type for setting a mask of zero or more
VkCompositeAlphaFlagBitsKHR.

34.5.2. Surface Format Support

To query the supported swapchain format-color space pairs for a surface, call:

3076

// Provided by VK_KHR_surface
VkResult vkGetPhysicalDeviceSurfaceFormatsKHR(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 uint32_t* pSurfaceFormatCount,
 VkSurfaceFormatKHR* pSurfaceFormats);

• physicalDevice is the physical device that will be associated with the swapchain to be created, as
described for vkCreateSwapchainKHR.

• surface is the surface that will be associated with the swapchain.

• pSurfaceFormatCount is a pointer to an integer related to the number of format pairs available or
queried, as described below.

• pSurfaceFormats is either NULL or a pointer to an array of VkSurfaceFormatKHR structures.

If pSurfaceFormats is NULL, then the number of format pairs supported for the given surface is
returned in pSurfaceFormatCount. Otherwise, pSurfaceFormatCount must point to a variable set by the
user to the number of elements in the pSurfaceFormats array, and on return the variable is
overwritten with the number of structures actually written to pSurfaceFormats. If the value of
pSurfaceFormatCount is less than the number of format pairs supported, at most pSurfaceFormatCount
structures will be written, and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that
not all the available format pairs were returned.

The number of format pairs supported must be greater than or equal to 1. pSurfaceFormats must
not contain an entry whose value for format is VK_FORMAT_UNDEFINED.

If pSurfaceFormats includes an entry whose value for colorSpace is
VK_COLOR_SPACE_SRGB_NONLINEAR_KHR and whose value for format is a UNORM (or SRGB) format and
the corresponding SRGB (or UNORM) format is a color renderable format for
VK_IMAGE_TILING_OPTIMAL, then pSurfaceFormats must also contain an entry with the same value for
colorSpace and format equal to the corresponding SRGB (or UNORM) format.

If the VK_GOOGLE_surfaceless_query extension is enabled, the values returned in pSurfaceFormats will
be identical for every valid surface created on this physical device, and so surface can be
VK_NULL_HANDLE.

Valid Usage

• VUID-vkGetPhysicalDeviceSurfaceFormatsKHR-surface-06524
If the VK_GOOGLE_surfaceless_query extension is not enabled, surface must be a valid
VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceFormatsKHR-surface-06525
If surface is not VK_NULL_HANDLE, surface must be supported by physicalDevice, as
reported by vkGetPhysicalDeviceSurfaceSupportKHR or an equivalent platform-specific
mechanism

3077

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSurfaceFormatsKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSurfaceFormatsKHR-surface-parameter
If surface is not VK_NULL_HANDLE, surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceFormatsKHR-pSurfaceFormatCount-parameter
pSurfaceFormatCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSurfaceFormatsKHR-pSurfaceFormats-parameter
If the value referenced by pSurfaceFormatCount is not 0, and pSurfaceFormats is not NULL,
pSurfaceFormats must be a valid pointer to an array of pSurfaceFormatCount
VkSurfaceFormatKHR structures

• VUID-vkGetPhysicalDeviceSurfaceFormatsKHR-commonparent
Both of physicalDevice, and surface that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkInstance

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

The VkSurfaceFormatKHR structure is defined as:

// Provided by VK_KHR_surface
typedef struct VkSurfaceFormatKHR {
 VkFormat format;
 VkColorSpaceKHR colorSpace;
} VkSurfaceFormatKHR;

• format is a VkFormat that is compatible with the specified surface.

• colorSpace is a presentation VkColorSpaceKHR that is compatible with the surface.

To query the supported swapchain format tuples for a surface, call:

// Provided by VK_KHR_get_surface_capabilities2
VkResult vkGetPhysicalDeviceSurfaceFormats2KHR(

3078

 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
 uint32_t* pSurfaceFormatCount,
 VkSurfaceFormat2KHR* pSurfaceFormats);

• physicalDevice is the physical device that will be associated with the swapchain to be created, as
described for vkCreateSwapchainKHR.

• pSurfaceInfo is a pointer to a VkPhysicalDeviceSurfaceInfo2KHR structure describing the
surface and other fixed parameters that would be consumed by vkCreateSwapchainKHR.

• pSurfaceFormatCount is a pointer to an integer related to the number of format tuples available
or queried, as described below.

• pSurfaceFormats is either NULL or a pointer to an array of VkSurfaceFormat2KHR structures.

vkGetPhysicalDeviceSurfaceFormats2KHR behaves similarly to
vkGetPhysicalDeviceSurfaceFormatsKHR, with the ability to be extended via pNext chains.

If pSurfaceFormats is NULL, then the number of format tuples supported for the given surface is
returned in pSurfaceFormatCount. Otherwise, pSurfaceFormatCount must point to a variable set by the
user to the number of elements in the pSurfaceFormats array, and on return the variable is
overwritten with the number of structures actually written to pSurfaceFormats. If the value of
pSurfaceFormatCount is less than the number of format tuples supported, at most
pSurfaceFormatCount structures will be written, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available values were returned.

Valid Usage

• VUID-vkGetPhysicalDeviceSurfaceFormats2KHR-pSurfaceInfo-06521
If the VK_GOOGLE_surfaceless_query extension is not enabled, pSurfaceInfo->surface must
be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfaceFormats2KHR-pSurfaceInfo-06522
If pSurfaceInfo->surface is not VK_NULL_HANDLE, pSurfaceInfo->surface must be
supported by physicalDevice, as reported by vkGetPhysicalDeviceSurfaceSupportKHR or
an equivalent platform-specific mechanism

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSurfaceFormats2KHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSurfaceFormats2KHR-pSurfaceInfo-parameter
pSurfaceInfo must be a valid pointer to a valid VkPhysicalDeviceSurfaceInfo2KHR
structure

• VUID-vkGetPhysicalDeviceSurfaceFormats2KHR-pSurfaceFormatCount-parameter
pSurfaceFormatCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSurfaceFormats2KHR-pSurfaceFormats-parameter

3079

If the value referenced by pSurfaceFormatCount is not 0, and pSurfaceFormats is not NULL,
pSurfaceFormats must be a valid pointer to an array of pSurfaceFormatCount
VkSurfaceFormat2KHR structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

The VkSurfaceFormat2KHR structure is defined as:

// Provided by VK_KHR_get_surface_capabilities2
typedef struct VkSurfaceFormat2KHR {
 VkStructureType sType;
 void* pNext;
 VkSurfaceFormatKHR surfaceFormat;
} VkSurfaceFormat2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• surfaceFormat is a VkSurfaceFormatKHR structure describing a format-color space pair that is
compatible with the specified surface.

If the imageCompressionControlSwapchain feature is supported and a
VkImageCompressionPropertiesEXT structure is included in the pNext chain of this structure, then it
will be filled with the compression properties that are supported for the surfaceFormat.

Valid Usage

• VUID-VkSurfaceFormat2KHR-pNext-06750
If the imageCompressionControlSwapchain feature is not enabled, the pNext chain must not
include an VkImageCompressionPropertiesEXT structure

Valid Usage (Implicit)

• VUID-VkSurfaceFormat2KHR-sType-sType
sType must be VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR

3080

• VUID-VkSurfaceFormat2KHR-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkImageCompressionPropertiesEXT

• VUID-VkSurfaceFormat2KHR-sType-unique
The sType value of each struct in the pNext chain must be unique

While the format of a presentable image refers to the encoding of each pixel, the colorSpace
determines how the presentation engine interprets the pixel values. A color space in this document
refers to a specific color space (defined by the chromaticities of its primaries and a white point in
CIE Lab), and a transfer function that is applied before storing or transmitting color data in the
given color space.

Possible values of VkSurfaceFormatKHR::colorSpace, specifying supported color spaces of a
presentation engine, are:

// Provided by VK_KHR_surface
typedef enum VkColorSpaceKHR {
 VK_COLOR_SPACE_SRGB_NONLINEAR_KHR = 0,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT = 1000104001,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT = 1000104002,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_DISPLAY_P3_LINEAR_EXT = 1000104003,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT = 1000104004,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_BT709_LINEAR_EXT = 1000104005,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_BT709_NONLINEAR_EXT = 1000104006,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_BT2020_LINEAR_EXT = 1000104007,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_HDR10_ST2084_EXT = 1000104008,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_DOLBYVISION_EXT = 1000104009,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_HDR10_HLG_EXT = 1000104010,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT = 1000104011,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT = 1000104012,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_PASS_THROUGH_EXT = 1000104013,
 // Provided by VK_EXT_swapchain_colorspace
 VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT = 1000104014,
 // Provided by VK_AMD_display_native_hdr
 VK_COLOR_SPACE_DISPLAY_NATIVE_AMD = 1000213000,
 VK_COLORSPACE_SRGB_NONLINEAR_KHR = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR,
 // Provided by VK_EXT_swapchain_colorspace

3081

 VK_COLOR_SPACE_DCI_P3_LINEAR_EXT = VK_COLOR_SPACE_DISPLAY_P3_LINEAR_EXT,
} VkColorSpaceKHR;

• VK_COLOR_SPACE_SRGB_NONLINEAR_KHR specifies support for the sRGB color space.

• VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT specifies support for the Display-P3 color space to be
displayed using an sRGB-like EOTF (defined below).

• VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT specifies support for the extended sRGB color space to
be displayed using a linear EOTF.

• VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT specifies support for the extended sRGB color space
to be displayed using an sRGB EOTF.

• VK_COLOR_SPACE_DISPLAY_P3_LINEAR_EXT specifies support for the Display-P3 color space to be
displayed using a linear EOTF.

• VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT specifies support for the DCI-P3 color space to be displayed
using the DCI-P3 EOTF. Note that values in such an image are interpreted as XYZ encoded color
data by the presentation engine.

• VK_COLOR_SPACE_BT709_LINEAR_EXT specifies support for the BT709 color space to be displayed
using a linear EOTF.

• VK_COLOR_SPACE_BT709_NONLINEAR_EXT specifies support for the BT709 color space to be displayed
using the SMPTE 170M EOTF.

• VK_COLOR_SPACE_BT2020_LINEAR_EXT specifies support for the BT2020 color space to be displayed
using a linear EOTF.

• VK_COLOR_SPACE_HDR10_ST2084_EXT specifies support for the HDR10 (BT2020 color) space to be
displayed using the SMPTE ST2084 Perceptual Quantizer (PQ) EOTF.

• VK_COLOR_SPACE_DOLBYVISION_EXT specifies support for the Dolby Vision (BT2020 color space),
proprietary encoding, to be displayed using the SMPTE ST2084 EOTF.

• VK_COLOR_SPACE_HDR10_HLG_EXT specifies support for the HDR10 (BT2020 color space) to be
displayed using the Hybrid Log Gamma (HLG) EOTF.

• VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT specifies support for the AdobeRGB color space to be
displayed using a linear EOTF.

• VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT specifies support for the AdobeRGB color space to be
displayed using the Gamma 2.2 EOTF.

• VK_COLOR_SPACE_PASS_THROUGH_EXT specifies that color components are used “as is”. This is
intended to allow applications to supply data for color spaces not described here.

• VK_COLOR_SPACE_DISPLAY_NATIVE_AMD specifies support for the display’s native color space. This
matches the color space expectations of AMD’s FreeSync2 standard, for displays supporting it.

Note

In the initial release of the VK_KHR_surface and VK_KHR_swapchain extensions, the
token VK_COLORSPACE_SRGB_NONLINEAR_KHR was used. Starting in the 2016-05-13
updates to the extension branches, matching release 1.0.13 of the core API
specification, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR is used instead for consistency

3082

with Vulkan naming rules. The older enum is still available for backwards
compatibility.

Note

In older versions of this extension VK_COLOR_SPACE_DISPLAY_P3_LINEAR_EXT was
misnamed VK_COLOR_SPACE_DCI_P3_LINEAR_EXT. This has been updated to indicate
that it uses RGB color encoding, not XYZ. The old name is deprecated but is
maintained for backwards compatibility.

Note

For a traditional “Linear” or non-gamma transfer function color space use
VK_COLOR_SPACE_PASS_THROUGH_EXT.

The color components of non-linear color space swapchain images must have had the appropriate
transfer function applied. The color space selected for the swapchain image will not affect the
processing of data written into the image by the implementation. Vulkan requires that all
implementations support the sRGB transfer function by use of an SRGB pixel format. Other transfer
functions, such as SMPTE 170M or SMPTE2084, can be performed by the application shader. This
extension defines enums for VkColorSpaceKHR that correspond to the following color spaces:

Table 49. Color Spaces and Attributes

Name Red Primary Green
Primary

Blue Primary White-point Transfer
function

DCI-P3 1.000, 0.000 0.000, 1.000 0.000, 0.000 0.3333, 0.3333 DCI P3

Display-P3 0.680, 0.320 0.265, 0.690 0.150, 0.060 0.3127, 0.3290
(D65)

Display-P3

BT709 0.640, 0.330 0.300, 0.600 0.150, 0.060 0.3127, 0.3290
(D65)

ITU (SMPTE
170M)

sRGB 0.640, 0.330 0.300, 0.600 0.150, 0.060 0.3127, 0.3290
(D65)

sRGB

extended sRGB 0.640, 0.330 0.300, 0.600 0.150, 0.060 0.3127, 0.3290
(D65)

extended sRGB

HDR10_ST2084 0.708, 0.292 0.170, 0.797 0.131, 0.046 0.3127, 0.3290
(D65)

ST2084 PQ

DOLBYVISION 0.708, 0.292 0.170, 0.797 0.131, 0.046 0.3127, 0.3290
(D65)

ST2084 PQ

HDR10_HLG 0.708, 0.292 0.170, 0.797 0.131, 0.046 0.3127, 0.3290
(D65)

HLG

AdobeRGB 0.640, 0.330 0.210, 0.710 0.150, 0.060 0.3127, 0.3290
(D65)

AdobeRGB

The transfer functions are described in the “Transfer Functions” chapter of the Khronos Data
Format Specification.

3083

Except Display-P3 OETF, which is:

where L is the linear value of a color component and E is the encoded value (as stored in the image
in memory).

Note

For most uses, the sRGB OETF is equivalent.

34.5.3. Surface Presentation Mode Support

To query the supported presentation modes for a surface, call:

// Provided by VK_KHR_surface
VkResult vkGetPhysicalDeviceSurfacePresentModesKHR(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 uint32_t* pPresentModeCount,
 VkPresentModeKHR* pPresentModes);

• physicalDevice is the physical device that will be associated with the swapchain to be created, as
described for vkCreateSwapchainKHR.

• surface is the surface that will be associated with the swapchain.

• pPresentModeCount is a pointer to an integer related to the number of presentation modes
available or queried, as described below.

• pPresentModes is either NULL or a pointer to an array of VkPresentModeKHR values, indicating
the supported presentation modes.

If pPresentModes is NULL, then the number of presentation modes supported for the given surface is
returned in pPresentModeCount. Otherwise, pPresentModeCount must point to a variable set by the
user to the number of elements in the pPresentModes array, and on return the variable is
overwritten with the number of values actually written to pPresentModes. If the value of
pPresentModeCount is less than the number of presentation modes supported, at most
pPresentModeCount values will be written, and VK_INCOMPLETE will be returned instead of VK_SUCCESS,
to indicate that not all the available modes were returned.

If the VK_GOOGLE_surfaceless_query extension is enabled and surface is VK_NULL_HANDLE, the
values returned in pPresentModes will only indicate support for VK_PRESENT_MODE_FIFO_KHR,
VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR, and VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR. To
query support for any other present mode, a valid handle must be provided in surface.

3084

Valid Usage

• VUID-vkGetPhysicalDeviceSurfacePresentModesKHR-surface-06524
If the VK_GOOGLE_surfaceless_query extension is not enabled, surface must be a valid
VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfacePresentModesKHR-surface-06525
If surface is not VK_NULL_HANDLE, surface must be supported by physicalDevice, as
reported by vkGetPhysicalDeviceSurfaceSupportKHR or an equivalent platform-specific
mechanism

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSurfacePresentModesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSurfacePresentModesKHR-surface-parameter
If surface is not VK_NULL_HANDLE, surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfacePresentModesKHR-pPresentModeCount-parameter
pPresentModeCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSurfacePresentModesKHR-pPresentModes-parameter
If the value referenced by pPresentModeCount is not 0, and pPresentModes is not NULL,
pPresentModes must be a valid pointer to an array of pPresentModeCount
VkPresentModeKHR values

• VUID-vkGetPhysicalDeviceSurfacePresentModesKHR-commonparent
Both of physicalDevice, and surface that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkInstance

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

Alternatively, to query the supported presentation modes for a surface combined with select other
fixed swapchain creation parameters, call:

// Provided by VK_EXT_full_screen_exclusive

3085

VkResult vkGetPhysicalDeviceSurfacePresentModes2EXT(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
 uint32_t* pPresentModeCount,
 VkPresentModeKHR* pPresentModes);

• physicalDevice is the physical device that will be associated with the swapchain to be created, as
described for vkCreateSwapchainKHR.

• pSurfaceInfo is a pointer to a VkPhysicalDeviceSurfaceInfo2KHR structure describing the
surface and other fixed parameters that would be consumed by vkCreateSwapchainKHR.

• pPresentModeCount is a pointer to an integer related to the number of presentation modes
available or queried, as described below.

• pPresentModes is either NULL or a pointer to an array of VkPresentModeKHR values, indicating
the supported presentation modes.

vkGetPhysicalDeviceSurfacePresentModes2EXT behaves similarly to
vkGetPhysicalDeviceSurfacePresentModesKHR, with the ability to specify extended inputs via
chained input structures.

Valid Usage

• VUID-vkGetPhysicalDeviceSurfacePresentModes2EXT-pSurfaceInfo-06521
If the VK_GOOGLE_surfaceless_query extension is not enabled, pSurfaceInfo->surface must
be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDeviceSurfacePresentModes2EXT-pSurfaceInfo-06522
If pSurfaceInfo->surface is not VK_NULL_HANDLE, pSurfaceInfo->surface must be
supported by physicalDevice, as reported by vkGetPhysicalDeviceSurfaceSupportKHR or
an equivalent platform-specific mechanism

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSurfacePresentModes2EXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSurfacePresentModes2EXT-pSurfaceInfo-parameter
pSurfaceInfo must be a valid pointer to a valid VkPhysicalDeviceSurfaceInfo2KHR
structure

• VUID-vkGetPhysicalDeviceSurfacePresentModes2EXT-pPresentModeCount-parameter
pPresentModeCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSurfacePresentModes2EXT-pPresentModes-parameter
If the value referenced by pPresentModeCount is not 0, and pPresentModes is not NULL,
pPresentModes must be a valid pointer to an array of pPresentModeCount
VkPresentModeKHR values

3086

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

Possible values of elements of the vkGetPhysicalDeviceSurfacePresentModesKHR::pPresentModes
array, indicating the supported presentation modes for a surface, are:

// Provided by VK_KHR_surface
typedef enum VkPresentModeKHR {
 VK_PRESENT_MODE_IMMEDIATE_KHR = 0,
 VK_PRESENT_MODE_MAILBOX_KHR = 1,
 VK_PRESENT_MODE_FIFO_KHR = 2,
 VK_PRESENT_MODE_FIFO_RELAXED_KHR = 3,
 // Provided by VK_KHR_shared_presentable_image
 VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR = 1000111000,
 // Provided by VK_KHR_shared_presentable_image
 VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR = 1000111001,
} VkPresentModeKHR;

• VK_PRESENT_MODE_IMMEDIATE_KHR specifies that the presentation engine does not wait for a vertical
blanking period to update the current image, meaning this mode may result in visible tearing.
No internal queuing of presentation requests is needed, as the requests are applied
immediately.

• VK_PRESENT_MODE_MAILBOX_KHR specifies that the presentation engine waits for the next vertical
blanking period to update the current image. Tearing cannot be observed. An internal single-
entry queue is used to hold pending presentation requests. If the queue is full when a new
presentation request is received, the new request replaces the existing entry, and any images
associated with the prior entry become available for reuse by the application. One request is
removed from the queue and processed during each vertical blanking period in which the
queue is non-empty.

• VK_PRESENT_MODE_FIFO_KHR specifies that the presentation engine waits for the next vertical
blanking period to update the current image. Tearing cannot be observed. An internal queue is
used to hold pending presentation requests. New requests are appended to the end of the
queue, and one request is removed from the beginning of the queue and processed during each
vertical blanking period in which the queue is non-empty. This is the only value of presentMode
that is required to be supported.

• VK_PRESENT_MODE_FIFO_RELAXED_KHR specifies that the presentation engine generally waits for the

3087

next vertical blanking period to update the current image. If a vertical blanking period has
already passed since the last update of the current image then the presentation engine does not
wait for another vertical blanking period for the update, meaning this mode may result in
visible tearing in this case. This mode is useful for reducing visual stutter with an application
that will mostly present a new image before the next vertical blanking period, but may
occasionally be late, and present a new image just after the next vertical blanking period. An
internal queue is used to hold pending presentation requests. New requests are appended to the
end of the queue, and one request is removed from the beginning of the queue and processed
during or after each vertical blanking period in which the queue is non-empty.

• VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR specifies that the presentation engine and
application have concurrent access to a single image, which is referred to as a shared
presentable image. The presentation engine is only required to update the current image after a
new presentation request is received. Therefore the application must make a presentation
request whenever an update is required. However, the presentation engine may update the
current image at any point, meaning this mode may result in visible tearing.

• VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR specifies that the presentation engine and
application have concurrent access to a single image, which is referred to as a shared
presentable image. The presentation engine periodically updates the current image on its
regular refresh cycle. The application is only required to make one initial presentation request,
after which the presentation engine must update the current image without any need for
further presentation requests. The application can indicate the image contents have been
updated by making a presentation request, but this does not guarantee the timing of when it
will be updated. This mode may result in visible tearing if rendering to the image is not timed
correctly.

The supported VkImageUsageFlagBits of the presentable images of a swapchain created for a
surface may differ depending on the presentation mode, and can be determined as per the table
below:

Table 50. Presentable image usage queries

Presentation mode Image usage flags

VK_PRESENT_MODE_IMMEDIATE_KHR VkSurfaceCapabilitiesKHR::supportedUsageFlags

VK_PRESENT_MODE_MAILBOX_KHR VkSurfaceCapabilitiesKHR::supportedUsageFlags

VK_PRESENT_MODE_FIFO_KHR VkSurfaceCapabilitiesKHR::supportedUsageFlags

VK_PRESENT_MODE_FIFO_RELAXED_KHR VkSurfaceCapabilitiesKHR::supportedUsageFlags

VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR VkSharedPresentSurfaceCapabilitiesKHR::shared
PresentSupportedUsageFlags

VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR VkSharedPresentSurfaceCapabilitiesKHR::shared
PresentSupportedUsageFlags

Note

For reference, the mode indicated by VK_PRESENT_MODE_FIFO_KHR is equivalent to the
behavior of {wgl|glX|egl}SwapBuffers with a swap interval of 1, while the mode
indicated by VK_PRESENT_MODE_FIFO_RELAXED_KHR is equivalent to the behavior of
{wgl|glX}SwapBuffers with a swap interval of -1 (from the

3088

{WGL|GLX}_EXT_swap_control_tear extensions).

34.6. Full Screen Exclusive Control
Swapchains created with fullScreenExclusive set to
VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT must acquire and release exclusive full-
screen access explicitly, using the following commands.

To acquire exclusive full-screen access for a swapchain, call:

// Provided by VK_EXT_full_screen_exclusive
VkResult vkAcquireFullScreenExclusiveModeEXT(
 VkDevice device,
 VkSwapchainKHR swapchain);

• device is the device associated with swapchain.

• swapchain is the swapchain to acquire exclusive full-screen access for.

Valid Usage

• VUID-vkAcquireFullScreenExclusiveModeEXT-swapchain-02674
swapchain must not be in the retired state

• VUID-vkAcquireFullScreenExclusiveModeEXT-swapchain-02675
swapchain must be a swapchain created with a VkSurfaceFullScreenExclusiveInfoEXT
structure, with fullScreenExclusive set to
VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT

• VUID-vkAcquireFullScreenExclusiveModeEXT-swapchain-02676
swapchain must not currently have exclusive full-screen access

A return value of VK_SUCCESS indicates that the swapchain successfully acquired exclusive full-screen
access. The swapchain will retain this exclusivity until either the application releases exclusive full-
screen access with vkReleaseFullScreenExclusiveModeEXT, destroys the swapchain, or if any of the
swapchain commands return VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT indicating that the
mode was lost because of platform-specific changes.

If the swapchain was unable to acquire exclusive full-screen access to the display then
VK_ERROR_INITIALIZATION_FAILED is returned. An application can attempt to acquire exclusive full-
screen access again for the same swapchain even if this command fails, or if
VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT has been returned by a swapchain command.

Valid Usage (Implicit)

• VUID-vkAcquireFullScreenExclusiveModeEXT-device-parameter
device must be a valid VkDevice handle

3089

• VUID-vkAcquireFullScreenExclusiveModeEXT-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkAcquireFullScreenExclusiveModeEXT-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_SURFACE_LOST_KHR

To release exclusive full-screen access from a swapchain, call:

// Provided by VK_EXT_full_screen_exclusive
VkResult vkReleaseFullScreenExclusiveModeEXT(
 VkDevice device,
 VkSwapchainKHR swapchain);

• device is the device associated with swapchain.

• swapchain is the swapchain to release exclusive full-screen access from.

Note

Applications will not be able to present to swapchain after this call until exclusive
full-screen access is reacquired. This is usually useful to handle when an
application is minimised or otherwise intends to stop presenting for a time.

Valid Usage

• VUID-vkReleaseFullScreenExclusiveModeEXT-swapchain-02677
swapchain must not be in the retired state

• VUID-vkReleaseFullScreenExclusiveModeEXT-swapchain-02678
swapchain must be a swapchain created with a VkSurfaceFullScreenExclusiveInfoEXT
structure, with fullScreenExclusive set to
VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT

3090

Valid Usage (Implicit)

• VUID-vkReleaseFullScreenExclusiveModeEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkReleaseFullScreenExclusiveModeEXT-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkReleaseFullScreenExclusiveModeEXT-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

34.7. Device Group Queries
A logical device that represents multiple physical devices may support presenting from images on
more than one physical device, or combining images from multiple physical devices.

To query these capabilities, call:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_surface
VkResult vkGetDeviceGroupPresentCapabilitiesKHR(
 VkDevice device,
 VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities);

• device is the logical device.

• pDeviceGroupPresentCapabilities is a pointer to a VkDeviceGroupPresentCapabilitiesKHR
structure in which the device’s capabilities are returned.

Valid Usage (Implicit)

• VUID-vkGetDeviceGroupPresentCapabilitiesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceGroupPresentCapabilitiesKHR-pDeviceGroupPresentCapabilities-
parameter

3091

pDeviceGroupPresentCapabilities must be a valid pointer to a
VkDeviceGroupPresentCapabilitiesKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDeviceGroupPresentCapabilitiesKHR structure is defined as:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_surface
typedef struct VkDeviceGroupPresentCapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t presentMask[VK_MAX_DEVICE_GROUP_SIZE];
 VkDeviceGroupPresentModeFlagsKHR modes;
} VkDeviceGroupPresentCapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentMask is an array of VK_MAX_DEVICE_GROUP_SIZE uint32_t masks, where the mask at element
i is non-zero if physical device i has a presentation engine, and where bit j is set in element i if
physical device i can present swapchain images from physical device j. If element i is non-zero,
then bit i must be set.

• modes is a bitmask of VkDeviceGroupPresentModeFlagBitsKHR indicating which device group
presentation modes are supported.

modes always has VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR set.

The present mode flags are also used when presenting an image, in
VkDeviceGroupPresentInfoKHR::mode.

If a device group only includes a single physical device, then modes must equal
VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR.

Valid Usage (Implicit)

• VUID-VkDeviceGroupPresentCapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR

3092

• VUID-VkDeviceGroupPresentCapabilitiesKHR-pNext-pNext
pNext must be NULL

Bits which may be set in VkDeviceGroupPresentCapabilitiesKHR::modes, indicating which device
group presentation modes are supported, are:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_surface
typedef enum VkDeviceGroupPresentModeFlagBitsKHR {
 VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR = 0x00000001,
 VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHR = 0x00000002,
 VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHR = 0x00000004,
 VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR = 0x00000008,
} VkDeviceGroupPresentModeFlagBitsKHR;

• VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR specifies that any physical device with a
presentation engine can present its own swapchain images.

• VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHR specifies that any physical device with a
presentation engine can present swapchain images from any physical device in its presentMask.

• VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHR specifies that any physical device with a presentation
engine can present the sum of swapchain images from any physical devices in its presentMask.

• VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR specifies that multiple physical
devices with a presentation engine can each present their own swapchain images.

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_surface
typedef VkFlags VkDeviceGroupPresentModeFlagsKHR;

VkDeviceGroupPresentModeFlagsKHR is a bitmask type for setting a mask of zero or more
VkDeviceGroupPresentModeFlagBitsKHR.

Some surfaces may not be capable of using all the device group present modes.

To query the supported device group present modes for a particular surface, call:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_surface
VkResult vkGetDeviceGroupSurfacePresentModesKHR(
 VkDevice device,
 VkSurfaceKHR surface,
 VkDeviceGroupPresentModeFlagsKHR* pModes);

• device is the logical device.

• surface is the surface.

3093

• pModes is a pointer to a VkDeviceGroupPresentModeFlagsKHR in which the supported device
group present modes for the surface are returned.

The modes returned by this command are not invariant, and may change in response to the surface
being moved, resized, or occluded. These modes must be a subset of the modes returned by
vkGetDeviceGroupPresentCapabilitiesKHR.

Valid Usage

• VUID-vkGetDeviceGroupSurfacePresentModesKHR-surface-06212
surface must be supported by all physical devices associated with device, as reported by
vkGetPhysicalDeviceSurfaceSupportKHR or an equivalent platform-specific mechanism

Valid Usage (Implicit)

• VUID-vkGetDeviceGroupSurfacePresentModesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceGroupSurfacePresentModesKHR-surface-parameter
surface must be a valid VkSurfaceKHR handle

• VUID-vkGetDeviceGroupSurfacePresentModesKHR-pModes-parameter
pModes must be a valid pointer to a VkDeviceGroupPresentModeFlagsKHR value

• VUID-vkGetDeviceGroupSurfacePresentModesKHR-commonparent
Both of device, and surface must have been created, allocated, or retrieved from the same
VkInstance

Host Synchronization

• Host access to surface must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

Alternatively, to query the supported device group presentation modes for a surface combined with
select other fixed swapchain creation parameters, call:

3094

// Provided by VK_VERSION_1_1 with VK_EXT_full_screen_exclusive, VK_KHR_device_group
with VK_EXT_full_screen_exclusive
VkResult vkGetDeviceGroupSurfacePresentModes2EXT(
 VkDevice device,
 const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
 VkDeviceGroupPresentModeFlagsKHR* pModes);

• device is the logical device.

• pSurfaceInfo is a pointer to a VkPhysicalDeviceSurfaceInfo2KHR structure describing the
surface and other fixed parameters that would be consumed by vkCreateSwapchainKHR.

• pModes is a pointer to a VkDeviceGroupPresentModeFlagsKHR in which the supported device
group present modes for the surface are returned.

vkGetDeviceGroupSurfacePresentModes2EXT behaves similarly to
vkGetDeviceGroupSurfacePresentModesKHR, with the ability to specify extended inputs via
chained input structures.

Valid Usage

• VUID-vkGetDeviceGroupSurfacePresentModes2EXT-pSurfaceInfo-06213
pSurfaceInfo->surface must be supported by all physical devices associated with device,
as reported by vkGetPhysicalDeviceSurfaceSupportKHR or an equivalent platform-
specific mechanism

Valid Usage (Implicit)

• VUID-vkGetDeviceGroupSurfacePresentModes2EXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceGroupSurfacePresentModes2EXT-pSurfaceInfo-parameter
pSurfaceInfo must be a valid pointer to a valid VkPhysicalDeviceSurfaceInfo2KHR
structure

• VUID-vkGetDeviceGroupSurfacePresentModes2EXT-pModes-parameter
pModes must be a valid pointer to a VkDeviceGroupPresentModeFlagsKHR value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_SURFACE_LOST_KHR

3095

When using VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR, the application may need to
know which regions of the surface are used when presenting locally on each physical device.
Presentation of swapchain images to this surface need only have valid contents in the regions
returned by this command.

To query a set of rectangles used in presentation on the physical device, call:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_surface
VkResult vkGetPhysicalDevicePresentRectanglesKHR(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 uint32_t* pRectCount,
 VkRect2D* pRects);

• physicalDevice is the physical device.

• surface is the surface.

• pRectCount is a pointer to an integer related to the number of rectangles available or queried, as
described below.

• pRects is either NULL or a pointer to an array of VkRect2D structures.

If pRects is NULL, then the number of rectangles used when presenting the given surface is returned
in pRectCount. Otherwise, pRectCount must point to a variable set by the user to the number of
elements in the pRects array, and on return the variable is overwritten with the number of
structures actually written to pRects. If the value of pRectCount is less than the number of rectangles,
at most pRectCount structures will be written, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available rectangles were returned.

The values returned by this command are not invariant, and may change in response to the surface
being moved, resized, or occluded.

The rectangles returned by this command must not overlap.

Valid Usage

• VUID-vkGetPhysicalDevicePresentRectanglesKHR-surface-06523
surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDevicePresentRectanglesKHR-surface-06211
surface must be supported by physicalDevice, as reported by
vkGetPhysicalDeviceSurfaceSupportKHR or an equivalent platform-specific mechanism

Valid Usage (Implicit)

• VUID-vkGetPhysicalDevicePresentRectanglesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

3096

• VUID-vkGetPhysicalDevicePresentRectanglesKHR-surface-parameter
surface must be a valid VkSurfaceKHR handle

• VUID-vkGetPhysicalDevicePresentRectanglesKHR-pRectCount-parameter
pRectCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDevicePresentRectanglesKHR-pRects-parameter
If the value referenced by pRectCount is not 0, and pRects is not NULL, pRects must be a
valid pointer to an array of pRectCount VkRect2D structures

• VUID-vkGetPhysicalDevicePresentRectanglesKHR-commonparent
Both of physicalDevice, and surface must have been created, allocated, or retrieved from
the same VkInstance

Host Synchronization

• Host access to surface must be externally synchronized

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

34.8. Display Timing Queries
Traditional game and real-time-animation applications frequently use VK_PRESENT_MODE_FIFO_KHR so
that presentable images are updated during the vertical blanking period of a given refresh cycle
(RC) of the presentation engine’s display. This avoids the visual anomaly known as tearing.

However, synchronizing the presentation of images with the RC does not prevent all forms of visual
anomalies. Stuttering occurs when the geometry for each presentable image is not accurately
positioned for when that image will be displayed. The geometry may appear to move too little some
RCs, and too much for others. Sometimes the animation appears to freeze, when the same image is
used for more than one RC.

In order to minimize stuttering, an application needs to correctly position their geometry for when
the presentable image will be displayed to the user. To accomplish this, applications need various
timing information about the presentation engine’s display. They need to know when presentable
images were actually presented, and when they could have been presented. Applications also need
to tell the presentation engine to display an image no sooner than a given time. This can allow the
application’s animation to look smooth to the user, with no stuttering. The VK_GOOGLE_display_timing

3097

extension allows an application to satisfy these needs.

The presentation engine’s display typically refreshes the pixels that are displayed to the user on a
periodic basis. The period may be fixed or variable. In many cases, the presentation engine is
associated with fixed refresh rate (FRR) display technology, with a fixed refresh rate (RR, e.g. 60Hz).
In some cases, the presentation engine is associated with variable refresh rate (VRR) display
technology, where each refresh cycle (RC) can vary in length. This extension treats VRR displays as
if they are FRR.

To query the duration of a refresh cycle (RC) for the presentation engine’s display, call:

// Provided by VK_GOOGLE_display_timing
VkResult vkGetRefreshCycleDurationGOOGLE(
 VkDevice device,
 VkSwapchainKHR swapchain,
 VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties);

• device is the device associated with swapchain.

• swapchain is the swapchain to obtain the refresh duration for.

• pDisplayTimingProperties is a pointer to a VkRefreshCycleDurationGOOGLE structure.

Valid Usage (Implicit)

• VUID-vkGetRefreshCycleDurationGOOGLE-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetRefreshCycleDurationGOOGLE-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkGetRefreshCycleDurationGOOGLE-pDisplayTimingProperties-parameter
pDisplayTimingProperties must be a valid pointer to a VkRefreshCycleDurationGOOGLE
structure

• VUID-vkGetRefreshCycleDurationGOOGLE-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to swapchain must be externally synchronized

Return Codes

Success

• VK_SUCCESS

3098

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_SURFACE_LOST_KHR

The VkRefreshCycleDurationGOOGLE structure is defined as:

// Provided by VK_GOOGLE_display_timing
typedef struct VkRefreshCycleDurationGOOGLE {
 uint64_t refreshDuration;
} VkRefreshCycleDurationGOOGLE;

• refreshDuration is the number of nanoseconds from the start of one refresh cycle to the next.

Note

The rate at which an application renders and presents new images is known as the
image present rate (IPR, aka frame rate). The inverse of IPR, or the duration
between each image present, is the image present duration (IPD). In order to
provide a smooth, stutter-free animation, an application will want its IPD to be a
multiple of refreshDuration. For example, if a display has a 60Hz refresh rate,
refreshDuration will be a value in nanoseconds that is approximately equal to
16.67ms. In such a case, an application will want an IPD of 16.67ms (1X multiplier
of refreshDuration), or 33.33ms (2X multiplier of refreshDuration), or 50.0ms (3X
multiplier of refreshDuration), etc.

In order to determine a target IPD for a display (i.e. a multiple of refreshDuration),
an application needs to determine when its images are actually displayed. Suppose
an application has an initial target IPD of 16.67ms (1X multiplier of
refreshDuration). It will therefore position the geometry of a new image 16.67ms
later than the previous image. But suppose this application is running on slower
hardware, so that it actually takes 20ms to render each new image. This will create
visual anomalies, because the images will not be displayed to the user every
16.67ms, nor every 20ms. In this case, it is better for the application to adjust its
target IPD to 33.33ms (i.e. a 2X multiplier of refreshDuration), and tell the
presentation engine to not present images any sooner than every 33.33ms. This
will allow the geometry to be correctly positioned for each presentable image.

Adjustments to an application’s IPD may be needed because different views of an
application’s geometry can take different amounts of time to render. For example,
looking at the sky may take less time to render than looking at multiple, complex
items in a room. In general, it is good to not frequently change IPD, as that can
cause visual anomalies. Adjustments to a larger IPD because of late images should
happen quickly, but adjustments to a smaller IPD should only happen if the
actualPresentTime and earliestPresentTime members of the
VkPastPresentationTimingGOOGLE structure are consistently different, and if

3099

presentMargin is consistently large, over multiple images.

The implementation will maintain a limited amount of history of timing information about
previous presents. Because of the asynchronous nature of the presentation engine, the timing
information for a given vkQueuePresentKHR command will become available some time later.
These time values can be asynchronously queried, and will be returned if available. All time values
are in nanoseconds, relative to a monotonically-increasing clock (e.g. CLOCK_MONOTONIC (see
clock_gettime(2)) on Android and Linux).

To asynchronously query the presentation engine, for newly-available timing information about
one or more previous presents to a given swapchain, call:

// Provided by VK_GOOGLE_display_timing
VkResult vkGetPastPresentationTimingGOOGLE(
 VkDevice device,
 VkSwapchainKHR swapchain,
 uint32_t* pPresentationTimingCount,
 VkPastPresentationTimingGOOGLE* pPresentationTimings);

• device is the device associated with swapchain.

• swapchain is the swapchain to obtain presentation timing information duration for.

• pPresentationTimingCount is a pointer to an integer related to the number of
VkPastPresentationTimingGOOGLE structures to query, as described below.

• pPresentationTimings is either NULL or a pointer to an array of VkPastPresentationTimingGOOGLE
structures.

If pPresentationTimings is NULL, then the number of newly-available timing records for the given
swapchain is returned in pPresentationTimingCount. Otherwise, pPresentationTimingCount must point
to a variable set by the user to the number of elements in the pPresentationTimings array, and on
return the variable is overwritten with the number of structures actually written to
pPresentationTimings. If the value of pPresentationTimingCount is less than the number of newly-
available timing records, at most pPresentationTimingCount structures will be written, and
VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the available timing
records were returned.

Valid Usage (Implicit)

• VUID-vkGetPastPresentationTimingGOOGLE-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPastPresentationTimingGOOGLE-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkGetPastPresentationTimingGOOGLE-pPresentationTimingCount-parameter
pPresentationTimingCount must be a valid pointer to a uint32_t value

• VUID-vkGetPastPresentationTimingGOOGLE-pPresentationTimings-parameter
If the value referenced by pPresentationTimingCount is not 0, and pPresentationTimings is

3100

not NULL, pPresentationTimings must be a valid pointer to an array of
pPresentationTimingCount VkPastPresentationTimingGOOGLE structures

• VUID-vkGetPastPresentationTimingGOOGLE-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to swapchain must be externally synchronized

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_OUT_OF_DATE_KHR

• VK_ERROR_SURFACE_LOST_KHR

The VkPastPresentationTimingGOOGLE structure is defined as:

// Provided by VK_GOOGLE_display_timing
typedef struct VkPastPresentationTimingGOOGLE {
 uint32_t presentID;
 uint64_t desiredPresentTime;
 uint64_t actualPresentTime;
 uint64_t earliestPresentTime;
 uint64_t presentMargin;
} VkPastPresentationTimingGOOGLE;

• presentID is an application-provided value that was given to a previous vkQueuePresentKHR
command via VkPresentTimeGOOGLE::presentID (see below). It can be used to uniquely identify
a previous present with the vkQueuePresentKHR command.

• desiredPresentTime is an application-provided value that was given to a previous
vkQueuePresentKHR command via VkPresentTimeGOOGLE::desiredPresentTime. If non-zero, it
was used by the application to indicate that an image not be presented any sooner than
desiredPresentTime.

• actualPresentTime is the time when the image of the swapchain was actually displayed.

• earliestPresentTime is the time when the image of the swapchain could have been displayed. This
may differ from actualPresentTime if the application requested that the image be presented no

3101

sooner than VkPresentTimeGOOGLE::desiredPresentTime.

• presentMargin is an indication of how early the vkQueuePresentKHR command was processed
compared to how soon it needed to be processed, and still be presented at earliestPresentTime.

The results for a given swapchain and presentID are only returned once from
vkGetPastPresentationTimingGOOGLE.

The application can use the VkPastPresentationTimingGOOGLE values to occasionally adjust its timing.
For example, if actualPresentTime is later than expected (e.g. one refreshDuration late), the
application may increase its target IPD to a higher multiple of refreshDuration (e.g. decrease its
frame rate from 60Hz to 30Hz). If actualPresentTime and earliestPresentTime are consistently
different, and if presentMargin is consistently large enough, the application may decrease its target
IPD to a smaller multiple of refreshDuration (e.g. increase its frame rate from 30Hz to 60Hz). If
actualPresentTime and earliestPresentTime are same, and if presentMargin is consistently high, the
application may delay the start of its input-render-present loop in order to decrease the latency
between user input and the corresponding present (always leaving some margin in case a new
image takes longer to render than the previous image). An application that desires its target IPD to
always be the same as refreshDuration, can also adjust features until actualPresentTime is never late
and presentMargin is satisfactory.

The full VK_GOOGLE_display_timing extension semantics are described for swapchains created with
VK_PRESENT_MODE_FIFO_KHR. For example, non-zero values of VkPresentTimeGOOGLE::desiredPresentTime
must be honored, and vkGetPastPresentationTimingGOOGLE should return a
VkPastPresentationTimingGOOGLE structure with valid values for all images presented with
vkQueuePresentKHR. The semantics for other present modes are as follows:

• VK_PRESENT_MODE_IMMEDIATE_KHR. The presentation engine may ignore non-zero values of
VkPresentTimeGOOGLE::desiredPresentTime in favor of presenting immediately. The value of
VkPastPresentationTimingGOOGLE::earliestPresentTime must be the same as
VkPastPresentationTimingGOOGLE::actualPresentTime, which should be when the presentation
engine displayed the image.

• VK_PRESENT_MODE_MAILBOX_KHR. The intention of using this present mode with this extension is to
handle cases where an image is presented late, and the next image is presented soon enough to
replace it at the next vertical blanking period. For images that are displayed to the user, the
value of VkPastPresentationTimingGOOGLE::actualPresentTime must be when the image was
displayed. For images that are not displayed to the user, vkGetPastPresentationTimingGOOGLE may
not return a VkPastPresentationTimingGOOGLE structure, or it may return a
VkPastPresentationTimingGOOGLE structure with the value of zero for both
VkPastPresentationTimingGOOGLE::actualPresentTime and VkPastPresentationTimingGOOGLE
::earliestPresentTime. It is possible that an application can submit images with
VkPresentTimeGOOGLE::desiredPresentTime values such that new images may not be displayed. For
example, if VkPresentTimeGOOGLE::desiredPresentTime is far enough in the future that an image is
not presented before vkQueuePresentKHR is called to present another image, the first image will
not be displayed to the user. If the application continues to do that, the presentation may not
display new images.

• VK_PRESENT_MODE_FIFO_RELAXED_KHR. For images that are presented in time to be displayed at the
next vertical blanking period, the semantics are identical as for

3102

VK_PRESENT_MODE_FIFO_RELAXED_KHR. For images that are presented late, and are displayed after
the start of the vertical blanking period (i.e. with tearing), the values of
VkPastPresentationTimingGOOGLE may be treated as if the image was displayed at the start of the
vertical blanking period, or may be treated the same as for VK_PRESENT_MODE_IMMEDIATE_KHR.

34.9. Present Wait
Applications wanting to control the pacing of the application by monitoring when presentation
processes have completed to limit the number of outstanding images queued for presentation, need
to have a method of being signaled during the presentation process.

Using the VK_GOOGLE_display_timing extension applications can discover when images were
presented, but only asynchronously.

Providing a mechanism which allows applications to block, waiting for a specific step of the
presentation process to complete allows them to control the amount of outstanding work (and
hence the potential lag in responding to user input or changes in the rendering environment).

The VK_KHR_present_wait extension allows applications to tell the presentation engine at the
vkQueuePresentKHR call that it plans on waiting for presentation by passing a VkPresentIdKHR
structure. The presentId passed in that structure may then be passed to a future
vkWaitForPresentKHR call to cause the application to block until that presentation is finished.

34.10. WSI Swapchain
A swapchain object (a.k.a. swapchain) provides the ability to present rendering results to a surface.
Swapchain objects are represented by VkSwapchainKHR handles:

// Provided by VK_KHR_swapchain
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSwapchainKHR)

A swapchain is an abstraction for an array of presentable images that are associated with a surface.
The presentable images are represented by VkImage objects created by the platform. One image
(which can be an array image for multiview/stereoscopic-3D surfaces) is displayed at a time, but
multiple images can be queued for presentation. An application renders to the image, and then
queues the image for presentation to the surface.

A native window cannot be associated with more than one non-retired swapchain at a time.
Further, swapchains cannot be created for native windows that have a non-Vulkan graphics API
surface associated with them.

Note

The presentation engine is an abstraction for the platform’s compositor or display
engine.

The presentation engine may be synchronous or asynchronous with respect to the
application and/or logical device.

3103

Some implementations may use the device’s graphics queue or dedicated
presentation hardware to perform presentation.

The presentable images of a swapchain are owned by the presentation engine. An application can
acquire use of a presentable image from the presentation engine. Use of a presentable image must
occur only after the image is returned by vkAcquireNextImageKHR, and before it is released by
vkQueuePresentKHR. This includes transitioning the image layout and rendering commands.

An application can acquire use of a presentable image with vkAcquireNextImageKHR. After
acquiring a presentable image and before modifying it, the application must use a synchronization
primitive to ensure that the presentation engine has finished reading from the image. The
application can then transition the image’s layout, queue rendering commands to it, etc. Finally, the
application presents the image with vkQueuePresentKHR, which releases the acquisition of the
image. The application can also release the acquisition of the image through
vkReleaseSwapchainImagesEXT, if the image is not in use by the device, and skip the present
operation.

The presentation engine controls the order in which presentable images are acquired for use by the
application.

Note

This allows the platform to handle situations which require out-of-order return of
images after presentation. At the same time, it allows the application to generate
command buffers referencing all of the images in the swapchain at initialization
time, rather than in its main loop.

How this all works is described below.

If a swapchain is created with presentMode set to either VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR
or VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR, a single presentable image can be acquired,
referred to as a shared presentable image. A shared presentable image may be concurrently
accessed by the application and the presentation engine, without transitioning the image’s layout
after it is initially presented.

• With VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR, the presentation engine is only required to
update to the latest contents of a shared presentable image after a present. The application
must call vkQueuePresentKHR to guarantee an update. However, the presentation engine may
update from it at any time.

• With VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR, the presentation engine will automatically
present the latest contents of a shared presentable image during every refresh cycle. The
application is only required to make one initial call to vkQueuePresentKHR, after which the
presentation engine will update from it without any need for further present calls. The
application can indicate the image contents have been updated by calling vkQueuePresentKHR,
but this does not guarantee the timing of when updates will occur.

The presentation engine may access a shared presentable image at any time after it is first
presented. To avoid tearing, an application should coordinate access with the presentation engine.
This requires presentation engine timing information through platform-specific mechanisms and

3104

ensuring that color attachment writes are made available during the portion of the presentation
engine’s refresh cycle they are intended for.

Note

The VK_KHR_shared_presentable_image extension does not provide functionality for
determining the timing of the presentation engine’s refresh cycles.

In order to query a swapchain’s status when rendering to a shared presentable image, call:

// Provided by VK_KHR_shared_presentable_image
VkResult vkGetSwapchainStatusKHR(
 VkDevice device,
 VkSwapchainKHR swapchain);

• device is the device associated with swapchain.

• swapchain is the swapchain to query.

Valid Usage (Implicit)

• VUID-vkGetSwapchainStatusKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSwapchainStatusKHR-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkGetSwapchainStatusKHR-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to swapchain must be externally synchronized

Return Codes

Success

• VK_SUCCESS

• VK_SUBOPTIMAL_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_OUT_OF_DATE_KHR

3105

• VK_ERROR_SURFACE_LOST_KHR

• VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT

The possible return values for vkGetSwapchainStatusKHR should be interpreted as follows:

• VK_SUCCESS specifies the presentation engine is presenting the contents of the shared presentable
image, as per the swapchain’s VkPresentModeKHR.

• VK_SUBOPTIMAL_KHR the swapchain no longer matches the surface properties exactly, but the
presentation engine is presenting the contents of the shared presentable image, as per the
swapchain’s VkPresentModeKHR.

• VK_ERROR_OUT_OF_DATE_KHR the surface has changed in such a way that it is no longer compatible
with the swapchain.

• VK_ERROR_SURFACE_LOST_KHR the surface is no longer available.

Note

The swapchain state may be cached by implementations, so applications should
regularly call vkGetSwapchainStatusKHR when using a swapchain with
VkPresentModeKHR set to VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR.

To create a swapchain, call:

// Provided by VK_KHR_swapchain
VkResult vkCreateSwapchainKHR(
 VkDevice device,
 const VkSwapchainCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSwapchainKHR* pSwapchain);

• device is the device to create the swapchain for.

• pCreateInfo is a pointer to a VkSwapchainCreateInfoKHR structure specifying the parameters of
the created swapchain.

• pAllocator is the allocator used for host memory allocated for the swapchain object when there
is no more specific allocator available (see Memory Allocation).

• pSwapchain is a pointer to a VkSwapchainKHR handle in which the created swapchain object will
be returned.

As mentioned above, if vkCreateSwapchainKHR succeeds, it will return a handle to a swapchain
containing an array of at least pCreateInfo->minImageCount presentable images.

While acquired by the application, presentable images can be used in any way that equivalent non-
presentable images can be used. A presentable image is equivalent to a non-presentable image
created with the following VkImageCreateInfo parameters:

3106

VkImageCreateInfo Field Value

flags VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BI
T is set if
VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGION
S_BIT_KHR is set

VK_IMAGE_CREATE_PROTECTED_BIT is set if
VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR is set

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT and
VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR are both
set if
VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR is
set

all other bits are unset

imageType VK_IMAGE_TYPE_2D

format pCreateInfo->imageFormat

extent {pCreateInfo->imageExtent.width, pCreateInfo-
>imageExtent.height, 1}

mipLevels 1

arrayLayers pCreateInfo->imageArrayLayers

samples VK_SAMPLE_COUNT_1_BIT

tiling VK_IMAGE_TILING_OPTIMAL

usage pCreateInfo->imageUsage

sharingMode pCreateInfo->imageSharingMode

queueFamilyIndexCount pCreateInfo->queueFamilyIndexCount

pQueueFamilyIndices pCreateInfo->pQueueFamilyIndices

initialLayout VK_IMAGE_LAYOUT_UNDEFINED

The pCreateInfo->surface must not be destroyed until after the swapchain is destroyed.

If oldSwapchain is VK_NULL_HANDLE, and the native window referred to by pCreateInfo->surface is
already associated with a Vulkan swapchain, VK_ERROR_NATIVE_WINDOW_IN_USE_KHR must be returned.

If the native window referred to by pCreateInfo->surface is already associated with a non-Vulkan
graphics API surface, VK_ERROR_NATIVE_WINDOW_IN_USE_KHR must be returned.

The native window referred to by pCreateInfo->surface must not become associated with a non-
Vulkan graphics API surface before all associated Vulkan swapchains have been destroyed.

vkCreateSwapchainKHR will return VK_ERROR_DEVICE_LOST if the logical device was lost. The
VkSwapchainKHR is a child of the device, and must be destroyed before the device. However,
VkSurfaceKHR is not a child of any VkDevice and is not affected by the lost device. After successfully
recreating a VkDevice, the same VkSurfaceKHR can be used to create a new VkSwapchainKHR, provided
the previous one was destroyed.

3107

If the oldSwapchain parameter of pCreateInfo is a valid swapchain, which has exclusive full-screen
access, that access is released from pCreateInfo->oldSwapchain. If the command succeeds in this
case, the newly created swapchain will automatically acquire exclusive full-screen access from
pCreateInfo->oldSwapchain.

Note

This implicit transfer is intended to avoid exiting and entering full-screen
exclusive mode, which may otherwise cause unwanted visual updates to the
display.

In some cases, swapchain creation may fail if exclusive full-screen mode is requested for
application control, but for some implementation-specific reason exclusive full-screen access is
unavailable for the particular combination of parameters provided. If this occurs,
VK_ERROR_INITIALIZATION_FAILED will be returned.

Note

In particular, it will fail if the imageExtent member of pCreateInfo does not match
the extents of the monitor. Other reasons for failure may include the app not being
set as high-dpi aware, or if the physical device and monitor are not compatible in
this mode.

If the pNext chain of VkSwapchainCreateInfoKHR includes a
VkSwapchainPresentBarrierCreateInfoNV structure, then that structure includes additional
swapchain creation parameters specific to the present barrier. Swapchain creation may fail if the
state of the current system restricts the usage of the present barrier feature
VkSurfaceCapabilitiesPresentBarrierNV, or a swapchain itself does not satisfy all the required
conditions. In this scenario VK_ERROR_INITIALIZATION_FAILED is returned.

When the VkSurfaceKHR in VkSwapchainCreateInfoKHR is a display surface, then the
VkDisplayModeKHR in display surface’s VkDisplaySurfaceCreateInfoKHR is associated with a
particular VkDisplayKHR. Swapchain creation may fail if that VkDisplayKHR is not acquired by the
application. In this scenario VK_ERROR_INITIALIZATION_FAILED is returned.

Valid Usage (Implicit)

• VUID-vkCreateSwapchainKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateSwapchainKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkSwapchainCreateInfoKHR structure

• VUID-vkCreateSwapchainKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateSwapchainKHR-pSwapchain-parameter
pSwapchain must be a valid pointer to a VkSwapchainKHR handle

3108

Host Synchronization

• Host access to pCreateInfo->surface must be externally synchronized

• Host access to pCreateInfo->oldSwapchain must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_SURFACE_LOST_KHR

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_COMPRESSION_EXHAUSTED_EXT

The VkSwapchainCreateInfoKHR structure is defined as:

// Provided by VK_KHR_swapchain
typedef struct VkSwapchainCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSwapchainCreateFlagsKHR flags;
 VkSurfaceKHR surface;
 uint32_t minImageCount;
 VkFormat imageFormat;
 VkColorSpaceKHR imageColorSpace;
 VkExtent2D imageExtent;
 uint32_t imageArrayLayers;
 VkImageUsageFlags imageUsage;
 VkSharingMode imageSharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
 VkSurfaceTransformFlagBitsKHR preTransform;
 VkCompositeAlphaFlagBitsKHR compositeAlpha;
 VkPresentModeKHR presentMode;
 VkBool32 clipped;
 VkSwapchainKHR oldSwapchain;
} VkSwapchainCreateInfoKHR;

3109

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSwapchainCreateFlagBitsKHR indicating parameters of the swapchain
creation.

• surface is the surface onto which the swapchain will present images. If the creation succeeds,
the swapchain becomes associated with surface.

• minImageCount is the minimum number of presentable images that the application needs. The
implementation will either create the swapchain with at least that many images, or it will fail to
create the swapchain.

• imageFormat is a VkFormat value specifying the format the swapchain image(s) will be created
with.

• imageColorSpace is a VkColorSpaceKHR value specifying the way the swapchain interprets image
data.

• imageExtent is the size (in pixels) of the swapchain image(s). The behavior is platform-dependent
if the image extent does not match the surface’s currentExtent as returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR.

Note

On some platforms, it is normal that maxImageExtent may become (0, 0), for
example when the window is minimized. In such a case, it is not possible to
create a swapchain due to the Valid Usage requirements , unless scaling is
selected through VkSwapchainPresentScalingCreateInfoEXT, if supported .

• imageArrayLayers is the number of views in a multiview/stereo surface. For non-stereoscopic-3D
applications, this value is 1.

• imageUsage is a bitmask of VkImageUsageFlagBits describing the intended usage of the
(acquired) swapchain images.

• imageSharingMode is the sharing mode used for the image(s) of the swapchain.

• queueFamilyIndexCount is the number of queue families having access to the image(s) of the
swapchain when imageSharingMode is VK_SHARING_MODE_CONCURRENT.

• pQueueFamilyIndices is a pointer to an array of queue family indices having access to the
images(s) of the swapchain when imageSharingMode is VK_SHARING_MODE_CONCURRENT.

• preTransform is a VkSurfaceTransformFlagBitsKHR value describing the transform, relative to
the presentation engine’s natural orientation, applied to the image content prior to
presentation. If it does not match the currentTransform value returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR, the presentation engine will transform the image
content as part of the presentation operation.

• compositeAlpha is a VkCompositeAlphaFlagBitsKHR value indicating the alpha compositing mode
to use when this surface is composited together with other surfaces on certain window systems.

• presentMode is the presentation mode the swapchain will use. A swapchain’s present mode
determines how incoming present requests will be processed and queued internally.

• clipped specifies whether the Vulkan implementation is allowed to discard rendering

3110

operations that affect regions of the surface that are not visible.

◦ If set to VK_TRUE, the presentable images associated with the swapchain may not own all of
their pixels. Pixels in the presentable images that correspond to regions of the target surface
obscured by another window on the desktop, or subject to some other clipping mechanism
will have undefined content when read back. Fragment shaders may not execute for these
pixels, and thus any side effects they would have had will not occur. Setting VK_TRUE does not
guarantee any clipping will occur, but allows more efficient presentation methods to be
used on some platforms.

◦ If set to VK_FALSE, presentable images associated with the swapchain will own all of the
pixels they contain.

Note

Applications should set this value to VK_TRUE if they do not expect to read
back the content of presentable images before presenting them or after
reacquiring them, and if their fragment shaders do not have any side
effects that require them to run for all pixels in the presentable image.

• oldSwapchain is VK_NULL_HANDLE, or the existing non-retired swapchain currently associated
with surface. Providing a valid oldSwapchain may aid in the resource reuse, and also allows the
application to still present any images that are already acquired from it.

Upon calling vkCreateSwapchainKHR with an oldSwapchain that is not VK_NULL_HANDLE, oldSwapchain
is retired — even if creation of the new swapchain fails. The new swapchain is created in the non-
retired state whether or not oldSwapchain is VK_NULL_HANDLE.

Upon calling vkCreateSwapchainKHR with an oldSwapchain that is not VK_NULL_HANDLE, any images
from oldSwapchain that are not acquired by the application may be freed by the implementation,
which may occur even if creation of the new swapchain fails. The application can destroy
oldSwapchain to free all memory associated with oldSwapchain.

Note

Multiple retired swapchains can be associated with the same VkSurfaceKHR through
multiple uses of oldSwapchain that outnumber calls to vkDestroySwapchainKHR.

After oldSwapchain is retired, the application can pass to vkQueuePresentKHR any
images it had already acquired from oldSwapchain. E.g., an application may present
an image from the old swapchain before an image from the new swapchain is
ready to be presented. As usual, vkQueuePresentKHR may fail if oldSwapchain has
entered a state that causes VK_ERROR_OUT_OF_DATE_KHR to be returned.

The application can continue to use a shared presentable image obtained from
oldSwapchain until a presentable image is acquired from the new swapchain, as
long as it has not entered a state that causes it to return VK_ERROR_OUT_OF_DATE_KHR.

Valid Usage

• VUID-VkSwapchainCreateInfoKHR-surface-01270

3111

surface must be a surface that is supported by the device as determined using
vkGetPhysicalDeviceSurfaceSupportKHR

• VUID-VkSwapchainCreateInfoKHR-minImageCount-01272
minImageCount must be less than or equal to the value returned in the maxImageCount
member of the VkSurfaceCapabilitiesKHR structure returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface if the returned maxImageCount is
not zero

• VUID-VkSwapchainCreateInfoKHR-presentMode-02839
If presentMode is not VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR nor
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR, then minImageCount must be greater than
or equal to the value returned in the minImageCount member of the
VkSurfaceCapabilitiesKHR structure returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface

• VUID-VkSwapchainCreateInfoKHR-minImageCount-01383
minImageCount must be 1 if presentMode is either
VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR or
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR

• VUID-VkSwapchainCreateInfoKHR-imageFormat-01273
imageFormat and imageColorSpace must match the format and colorSpace members,
respectively, of one of the VkSurfaceFormatKHR structures returned by
vkGetPhysicalDeviceSurfaceFormatsKHR for the surface

• VUID-VkSwapchainCreateInfoKHR-pNext-07781
If a VkSwapchainPresentScalingCreateInfoEXT structure was not included in the pNext
chain, or it is included and VkSwapchainPresentScalingCreateInfoEXT::scalingBehavior is
zero then imageExtent must be between minImageExtent and maxImageExtent, inclusive,
where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR
structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface

• VUID-VkSwapchainCreateInfoKHR-pNext-07782
If a VkSwapchainPresentScalingCreateInfoEXT structure was included in the pNext chain
and VkSwapchainPresentScalingCreateInfoEXT::scalingBehavior is not zero then
imageExtent must be between minScaledImageExtent and maxScaledImageExtent, inclusive,
where minScaledImageExtent and maxScaledImageExtent are members of the
VkSurfacePresentScalingCapabilitiesEXT structure returned by
vkGetPhysicalDeviceSurfaceCapabilities2KHR for the surface and presentMode

• VUID-VkSwapchainCreateInfoKHR-imageExtent-01689
imageExtent members width and height must both be non-zero

• VUID-VkSwapchainCreateInfoKHR-imageArrayLayers-01275
imageArrayLayers must be greater than 0 and less than or equal to the maxImageArrayLayers
member of the VkSurfaceCapabilitiesKHR structure returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface

• VUID-VkSwapchainCreateInfoKHR-presentMode-01427
If presentMode is VK_PRESENT_MODE_IMMEDIATE_KHR, VK_PRESENT_MODE_MAILBOX_KHR,
VK_PRESENT_MODE_FIFO_KHR or VK_PRESENT_MODE_FIFO_RELAXED_KHR, imageUsage must be a
subset of the supported usage flags present in the supportedUsageFlags member of the

3112

VkSurfaceCapabilitiesKHR structure returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR for surface

• VUID-VkSwapchainCreateInfoKHR-imageUsage-01384
If presentMode is VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR or
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR, imageUsage must be a subset of the
supported usage flags present in the sharedPresentSupportedUsageFlags member of the
VkSharedPresentSurfaceCapabilitiesKHR structure returned by
vkGetPhysicalDeviceSurfaceCapabilities2KHR for surface

• VUID-VkSwapchainCreateInfoKHR-imageSharingMode-01277
If imageSharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a valid
pointer to an array of queueFamilyIndexCount uint32_t values

• VUID-VkSwapchainCreateInfoKHR-imageSharingMode-01278
If imageSharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater
than 1

• VUID-VkSwapchainCreateInfoKHR-imageSharingMode-01428
If imageSharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices
must be unique and must be less than pQueueFamilyPropertyCount returned by either
vkGetPhysicalDeviceQueueFamilyProperties or
vkGetPhysicalDeviceQueueFamilyProperties2 for the physicalDevice that was used to
create device

• VUID-VkSwapchainCreateInfoKHR-preTransform-01279
preTransform must be one of the bits present in the supportedTransforms member of the
VkSurfaceCapabilitiesKHR structure returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface

• VUID-VkSwapchainCreateInfoKHR-compositeAlpha-01280
compositeAlpha must be one of the bits present in the supportedCompositeAlpha member of
the VkSurfaceCapabilitiesKHR structure returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface

• VUID-VkSwapchainCreateInfoKHR-presentMode-01281
presentMode must be one of the VkPresentModeKHR values returned by
vkGetPhysicalDeviceSurfacePresentModesKHR for the surface

• VUID-VkSwapchainCreateInfoKHR-physicalDeviceCount-01429
If the logical device was created with VkDeviceGroupDeviceCreateInfo
::physicalDeviceCount equal to 1, flags must not contain
VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR

• VUID-VkSwapchainCreateInfoKHR-oldSwapchain-01933
If oldSwapchain is not VK_NULL_HANDLE, oldSwapchain must be a non-retired swapchain
associated with native window referred to by surface

• VUID-VkSwapchainCreateInfoKHR-imageFormat-01778
The implied image creation parameters of the swapchain must be supported as reported
by vkGetPhysicalDeviceImageFormatProperties

• VUID-VkSwapchainCreateInfoKHR-flags-03168
If flags contains VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR then the pNext chain must

3113

include a VkImageFormatListCreateInfo structure with a viewFormatCount greater than
zero and pViewFormats must have an element equal to imageFormat

• VUID-VkSwapchainCreateInfoKHR-pNext-04099
If a VkImageFormatListCreateInfo structure was included in the pNext chain and
VkImageFormatListCreateInfo::viewFormatCount is not zero then all of the formats in
VkImageFormatListCreateInfo::pViewFormats must be compatible with the format as
described in the compatibility table

• VUID-VkSwapchainCreateInfoKHR-flags-04100
If flags does not contain VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR and the pNext chain
include a VkImageFormatListCreateInfo structure then VkImageFormatListCreateInfo
::viewFormatCount must be 0 or 1

• VUID-VkSwapchainCreateInfoKHR-flags-03187
If flags contains VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR, then
VkSurfaceProtectedCapabilitiesKHR::supportsProtected must be VK_TRUE in the
VkSurfaceProtectedCapabilitiesKHR structure returned by
vkGetPhysicalDeviceSurfaceCapabilities2KHR for surface

• VUID-VkSwapchainCreateInfoKHR-pNext-02679
If the pNext chain includes a VkSurfaceFullScreenExclusiveInfoEXT structure with its
fullScreenExclusive member set to VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT,
and surface was created using vkCreateWin32SurfaceKHR, a
VkSurfaceFullScreenExclusiveWin32InfoEXT structure must be included in the pNext
chain

• VUID-VkSwapchainCreateInfoKHR-pNext-06752
If the imageCompressionControlSwapchain feature is not enabled, the pNext chain must not
include an VkImageCompressionControlEXT structure

Valid Usage (Implicit)

• VUID-VkSwapchainCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR

• VUID-VkSwapchainCreateInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupSwapchainCreateInfoKHR,
VkImageCompressionControlEXT, VkImageFormatListCreateInfo,
VkSurfaceFullScreenExclusiveInfoEXT, VkSurfaceFullScreenExclusiveWin32InfoEXT,
VkSwapchainCounterCreateInfoEXT, VkSwapchainDisplayNativeHdrCreateInfoAMD,
VkSwapchainLatencyCreateInfoNV, VkSwapchainPresentBarrierCreateInfoNV,
VkSwapchainPresentModesCreateInfoEXT, or VkSwapchainPresentScalingCreateInfoEXT

• VUID-VkSwapchainCreateInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSwapchainCreateInfoKHR-flags-parameter
flags must be a valid combination of VkSwapchainCreateFlagBitsKHR values

• VUID-VkSwapchainCreateInfoKHR-surface-parameter

3114

surface must be a valid VkSurfaceKHR handle

• VUID-VkSwapchainCreateInfoKHR-imageFormat-parameter
imageFormat must be a valid VkFormat value

• VUID-VkSwapchainCreateInfoKHR-imageColorSpace-parameter
imageColorSpace must be a valid VkColorSpaceKHR value

• VUID-VkSwapchainCreateInfoKHR-imageUsage-parameter
imageUsage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkSwapchainCreateInfoKHR-imageUsage-requiredbitmask
imageUsage must not be 0

• VUID-VkSwapchainCreateInfoKHR-imageSharingMode-parameter
imageSharingMode must be a valid VkSharingMode value

• VUID-VkSwapchainCreateInfoKHR-preTransform-parameter
preTransform must be a valid VkSurfaceTransformFlagBitsKHR value

• VUID-VkSwapchainCreateInfoKHR-compositeAlpha-parameter
compositeAlpha must be a valid VkCompositeAlphaFlagBitsKHR value

• VUID-VkSwapchainCreateInfoKHR-presentMode-parameter
presentMode must be a valid VkPresentModeKHR value

• VUID-VkSwapchainCreateInfoKHR-oldSwapchain-parameter
If oldSwapchain is not VK_NULL_HANDLE, oldSwapchain must be a valid VkSwapchainKHR
handle

• VUID-VkSwapchainCreateInfoKHR-commonparent
Both of oldSwapchain, and surface that are valid handles of non-ignored parameters must
have been created, allocated, or retrieved from the same VkInstance

Bits which can be set in VkSwapchainCreateInfoKHR::flags, specifying parameters of swapchain
creation, are:

// Provided by VK_KHR_swapchain
typedef enum VkSwapchainCreateFlagBitsKHR {
 // Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
 VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR = 0x00000001,
 // Provided by VK_VERSION_1_1 with VK_KHR_swapchain
 VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR = 0x00000002,
 // Provided by VK_KHR_swapchain_mutable_format
 VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR = 0x00000004,
 // Provided by VK_EXT_swapchain_maintenance1
 VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT = 0x00000008,
} VkSwapchainCreateFlagBitsKHR;

• VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR specifies that images created from
the swapchain (i.e. with the swapchain member of VkImageSwapchainCreateInfoKHR set to this
swapchain’s handle) must use VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT.

3115

• VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR specifies that images created from the swapchain are
protected images.

• VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR specifies that the images of the swapchain can be
used to create a VkImageView with a different format than what the swapchain was created with.
The list of allowed image view formats is specified by adding a VkImageFormatListCreateInfo
structure to the pNext chain of VkSwapchainCreateInfoKHR. In addition, this flag also specifies
that the swapchain can be created with usage flags that are not supported for the format the
swapchain is created with but are supported for at least one of the allowed image view formats.

• VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT specifies that the implementation may
defer allocation of memory associated with each swapchain image until its index is to be
returned from vkAcquireNextImageKHR or vkAcquireNextImage2KHR for the first time.

// Provided by VK_KHR_swapchain
typedef VkFlags VkSwapchainCreateFlagsKHR;

VkSwapchainCreateFlagsKHR is a bitmask type for setting a mask of zero or more
VkSwapchainCreateFlagBitsKHR.

If the pNext chain of VkSwapchainCreateInfoKHR includes a VkDeviceGroupSwapchainCreateInfoKHR
structure, then that structure includes a set of device group present modes that the swapchain can
be used with.

The VkDeviceGroupSwapchainCreateInfoKHR structure is defined as:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
typedef struct VkDeviceGroupSwapchainCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkDeviceGroupPresentModeFlagsKHR modes;
} VkDeviceGroupSwapchainCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• modes is a bitfield of modes that the swapchain can be used with.

If this structure is not present, modes is considered to be
VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR.

Valid Usage (Implicit)

• VUID-VkDeviceGroupSwapchainCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR

• VUID-VkDeviceGroupSwapchainCreateInfoKHR-modes-parameter
modes must be a valid combination of VkDeviceGroupPresentModeFlagBitsKHR values

3116

• VUID-VkDeviceGroupSwapchainCreateInfoKHR-modes-requiredbitmask
modes must not be 0

If the pNext chain of VkSwapchainCreateInfoKHR includes a
VkSwapchainDisplayNativeHdrCreateInfoAMD structure, then that structure includes additional
swapchain creation parameters specific to display native HDR support.

The VkSwapchainDisplayNativeHdrCreateInfoAMD structure is defined as:

// Provided by VK_AMD_display_native_hdr
typedef struct VkSwapchainDisplayNativeHdrCreateInfoAMD {
 VkStructureType sType;
 const void* pNext;
 VkBool32 localDimmingEnable;
} VkSwapchainDisplayNativeHdrCreateInfoAMD;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• localDimmingEnable specifies whether local dimming is enabled for the swapchain.

If the pNext chain of VkSwapchainCreateInfoKHR does not include this structure, the default value
for localDimmingEnable is VK_TRUE, meaning local dimming is initially enabled for the swapchain.

Valid Usage (Implicit)

• VUID-VkSwapchainDisplayNativeHdrCreateInfoAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_DISPLAY_NATIVE_HDR_CREATE_INFO_AMD

Valid Usage

• VUID-VkSwapchainDisplayNativeHdrCreateInfoAMD-localDimmingEnable-04449
It is only valid to set localDimmingEnable to VK_TRUE if
VkDisplayNativeHdrSurfaceCapabilitiesAMD::localDimmingSupport is supported

The local dimming HDR setting may also be changed over the life of a swapchain by calling:

// Provided by VK_AMD_display_native_hdr
void vkSetLocalDimmingAMD(
 VkDevice device,
 VkSwapchainKHR swapChain,
 VkBool32 localDimmingEnable);

• device is the device associated with swapChain.

3117

• swapChain handle to enable local dimming.

• localDimmingEnable specifies whether local dimming is enabled for the swapchain.

Valid Usage (Implicit)

• VUID-vkSetLocalDimmingAMD-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetLocalDimmingAMD-swapChain-parameter
swapChain must be a valid VkSwapchainKHR handle

• VUID-vkSetLocalDimmingAMD-swapChain-parent
swapChain must have been created, allocated, or retrieved from device

Valid Usage

• VUID-vkSetLocalDimmingAMD-localDimmingSupport-04618
VkDisplayNativeHdrSurfaceCapabilitiesAMD::localDimmingSupport must be supported

If the pNext chain of VkSwapchainCreateInfoKHR includes a VkSurfaceFullScreenExclusiveInfoEXT
structure, then that structure specifies the application’s preferred full-screen presentation
behavior. If this structure is not present, fullScreenExclusive is considered to be
VK_FULL_SCREEN_EXCLUSIVE_DEFAULT_EXT.

To enable surface counters when creating a swapchain, add a VkSwapchainCounterCreateInfoEXT
structure to the pNext chain of VkSwapchainCreateInfoKHR. VkSwapchainCounterCreateInfoEXT is
defined as:

// Provided by VK_EXT_display_control
typedef struct VkSwapchainCounterCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkSurfaceCounterFlagsEXT surfaceCounters;
} VkSwapchainCounterCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• surfaceCounters is a bitmask of VkSurfaceCounterFlagBitsEXT specifying surface counters to
enable for the swapchain.

Valid Usage

• VUID-VkSwapchainCounterCreateInfoEXT-surfaceCounters-01244
The bits in surfaceCounters must be supported by VkSwapchainCreateInfoKHR::surface,
as reported by vkGetPhysicalDeviceSurfaceCapabilities2EXT

3118

Valid Usage (Implicit)

• VUID-VkSwapchainCounterCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT

• VUID-VkSwapchainCounterCreateInfoEXT-surfaceCounters-parameter
surfaceCounters must be a valid combination of VkSurfaceCounterFlagBitsEXT values

The requested counters become active when the first presentation command for the associated
swapchain is processed by the presentation engine. To query the value of an active counter, use:

// Provided by VK_EXT_display_control
VkResult vkGetSwapchainCounterEXT(
 VkDevice device,
 VkSwapchainKHR swapchain,
 VkSurfaceCounterFlagBitsEXT counter,
 uint64_t* pCounterValue);

• device is the VkDevice associated with swapchain.

• swapchain is the swapchain from which to query the counter value.

• counter is a VkSurfaceCounterFlagBitsEXT value specifying the counter to query.

• pCounterValue will return the current value of the counter.

If a counter is not available because the swapchain is out of date, the implementation may return
VK_ERROR_OUT_OF_DATE_KHR.

Valid Usage

• VUID-vkGetSwapchainCounterEXT-swapchain-01245
One or more present commands on swapchain must have been processed by the
presentation engine

Valid Usage (Implicit)

• VUID-vkGetSwapchainCounterEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSwapchainCounterEXT-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkGetSwapchainCounterEXT-counter-parameter
counter must be a valid VkSurfaceCounterFlagBitsEXT value

• VUID-vkGetSwapchainCounterEXT-pCounterValue-parameter
pCounterValue must be a valid pointer to a uint64_t value

• VUID-vkGetSwapchainCounterEXT-swapchain-parent

3119

swapchain must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_OUT_OF_DATE_KHR

To specify compression properties for the swapchain images in this swapchain, add a
VkImageCompressionControlEXT structure to the pNext chain of the VkSwapchainCreateInfoKHR
structure.

Applications can modify the presentation mode used by the swapchain on a per-presentation basis.
However, all presentation modes the application intends to use with the swapchain must be
specified at swapchain creation time. To specify more than one presentation mode when creating a
swapchain, include the VkSwapchainPresentModesCreateInfoEXT structure in the pNext chain of the
VkSwapchainCreateInfoKHR structure.

The VkSwapchainPresentModesCreateInfoEXT structure is defined as:

// Provided by VK_EXT_swapchain_maintenance1
typedef struct VkSwapchainPresentModesCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t presentModeCount;
 const VkPresentModeKHR* pPresentModes;
} VkSwapchainPresentModesCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentModeCount is the number of presentation modes provided.

• pPresentModes is a list of presentation modes with presentModeCount entries

Valid Usage

• VUID-VkSwapchainPresentModesCreateInfoEXT-None-07762
Each entry in pPresentModes must be one of the VkPresentModeKHR values returned by
vkGetPhysicalDeviceSurfacePresentModesKHR for the surface

• VUID-VkSwapchainPresentModesCreateInfoEXT-pPresentModes-07763
The entries in pPresentModes must be a subset of the present modes returned in

3120

VkSurfacePresentModeCompatibilityEXT::pPresentModes, given
VkSwapchainCreateInfoKHR::presentMode in VkSurfacePresentModeEXT

• VUID-VkSwapchainPresentModesCreateInfoEXT-presentMode-07764
VkSwapchainCreateInfoKHR::presentMode must be included in pPresentModes

Valid Usage (Implicit)

• VUID-VkSwapchainPresentModesCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODES_CREATE_INFO_EXT

• VUID-VkSwapchainPresentModesCreateInfoEXT-pPresentModes-parameter
pPresentModes must be a valid pointer to an array of presentModeCount valid
VkPresentModeKHR values

• VUID-VkSwapchainPresentModesCreateInfoEXT-presentModeCount-arraylength
presentModeCount must be greater than 0

When an application presents a swapchain image with dimensions different than those of the
target surface, different behavior is possible on different platforms per their respective
specifications:

• Presentation fails and VK_ERROR_OUT_OF_DATE_KHR is returned

• Scaling is done and VK_SUCCESS or VK_SUBOPTIMAL_KHR is returned

• Unspecified scaling using an arbitrary combination of stretching, centering and/or clipping.

Applications can define specific behavior when creating a swapchain by including the
VkSwapchainPresentScalingCreateInfoEXT structure in the pNext chain of the
VkSwapchainCreateInfoKHR structure.

The VkSwapchainPresentScalingCreateInfoEXT structure is defined as:

// Provided by VK_EXT_swapchain_maintenance1
typedef struct VkSwapchainPresentScalingCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkPresentScalingFlagsEXT scalingBehavior;
 VkPresentGravityFlagsEXT presentGravityX;
 VkPresentGravityFlagsEXT presentGravityY;
} VkSwapchainPresentScalingCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• scalingBehavior is 0 or the scaling method to use when the dimensions of the surface and
swapchain images differ.

• presentGravityX is 0 or the x-axis direction in which swapchain image pixels gravitate relative to

3121

the surface when scalingBehavior does not result in a one-to-one pixel mapping between the
scaled swapchain image and the surface.

• presentGravityY is 0 or the y-axis direction in which swapchain image pixels gravitate relative to
the surface when scalingBehavior does not result in a one-to-one pixel mapping between the
scaled swapchain image and the surface.

If scalingBehavior is 0, the result of presenting a swapchain image with dimensions that do not
match the surface dimensions is implementation and platform-dependent. If presentGravityX or
presentGravityY are 0, the presentation gravity must match that defined by the native platform
surface on platforms which define surface gravity.

Valid Usage

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityX-07765
If presentGravityX is 0, presentGravityY must be 0

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityX-07766
If presentGravityX is not 0, presentGravityY must not be 0

• VUID-VkSwapchainPresentScalingCreateInfoEXT-scalingBehavior-07767
scalingBehavior must not have more than one bit set

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityX-07768
presentGravityX must not have more than one bit set

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityY-07769
presentGravityY must not have more than one bit set

• VUID-VkSwapchainPresentScalingCreateInfoEXT-scalingBehavior-07770
scalingBehavior must be a valid scaling method for the surface as returned in
VkSurfacePresentScalingCapabilitiesEXT::supportedPresentScaling, given
VkSwapchainCreateInfoKHR::presentMode in VkSurfacePresentModeEXT

• VUID-VkSwapchainPresentScalingCreateInfoEXT-scalingBehavior-07771
If the swapchain is created with VkSwapchainPresentModesCreateInfoEXT,
scalingBehavior must be a valid scaling method for the surface as returned in
VkSurfacePresentScalingCapabilitiesEXT::supportedPresentScaling, given each present
mode in VkSwapchainPresentModesCreateInfoEXT::pPresentModes in
VkSurfacePresentModeEXT

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityX-07772
presentGravityX must be a valid x-axis present gravity for the surface as returned in
VkSurfacePresentScalingCapabilitiesEXT::supportedPresentGravityX, given
VkSwapchainCreateInfoKHR::presentMode in VkSurfacePresentModeEXT

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityX-07773
If the swapchain is created with VkSwapchainPresentModesCreateInfoEXT,
presentGravityX must be a valid x-axis present gravity for the surface as returned in
VkSurfacePresentScalingCapabilitiesEXT::supportedPresentGravityX, given each present
mode in VkSwapchainPresentModesCreateInfoEXT::pPresentModes in
VkSurfacePresentModeEXT

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityY-07774

3122

presentGravityY must be a valid y-axis present gravity for the surface as returned in
VkSurfacePresentScalingCapabilitiesEXT::supportedPresentGravityY, given
VkSwapchainCreateInfoKHR::presentMode in VkSurfacePresentModeEXT

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityY-07775
If the swapchain is created with VkSwapchainPresentModesCreateInfoEXT,
presentGravityY must be a valid y-axis present gravity for the surface as returned in
VkSurfacePresentScalingCapabilitiesEXT::supportedPresentGravityY, given each present
mode in VkSwapchainPresentModesCreateInfoEXT::pPresentModes in
VkSurfacePresentModeEXT

Valid Usage (Implicit)

• VUID-VkSwapchainPresentScalingCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_SCALING_CREATE_INFO_EXT

• VUID-VkSwapchainPresentScalingCreateInfoEXT-scalingBehavior-parameter
scalingBehavior must be a valid combination of VkPresentScalingFlagBitsEXT values

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityX-parameter
presentGravityX must be a valid combination of VkPresentGravityFlagBitsEXT values

• VUID-VkSwapchainPresentScalingCreateInfoEXT-presentGravityY-parameter
presentGravityY must be a valid combination of VkPresentGravityFlagBitsEXT values

To destroy a swapchain object call:

// Provided by VK_KHR_swapchain
void vkDestroySwapchainKHR(
 VkDevice device,
 VkSwapchainKHR swapchain,
 const VkAllocationCallbacks* pAllocator);

• device is the VkDevice associated with swapchain.

• swapchain is the swapchain to destroy.

• pAllocator is the allocator used for host memory allocated for the swapchain object when there
is no more specific allocator available (see Memory Allocation).

The application must not destroy a swapchain until after completion of all outstanding operations
on images that were acquired from the swapchain. swapchain and all associated VkImage handles are
destroyed, and must not be acquired or used any more by the application. The memory of each
VkImage will only be freed after that image is no longer used by the presentation engine. For
example, if one image of the swapchain is being displayed in a window, the memory for that image
may not be freed until the window is destroyed, or another swapchain is created for the window.
Destroying the swapchain does not invalidate the parent VkSurfaceKHR, and a new swapchain can be
created with it.

When a swapchain associated with a display surface is destroyed, if the image most recently

3123

presented to the display surface is from the swapchain being destroyed, then either any display
resources modified by presenting images from any swapchain associated with the display surface
must be reverted by the implementation to their state prior to the first present performed on one
of these swapchains, or such resources must be left in their current state.

If swapchain has exclusive full-screen access, it is released before the swapchain is destroyed.

Valid Usage

• VUID-vkDestroySwapchainKHR-swapchain-01282
All uses of presentable images acquired from swapchain must have completed execution

• VUID-vkDestroySwapchainKHR-swapchain-01283
If VkAllocationCallbacks were provided when swapchain was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroySwapchainKHR-swapchain-01284
If no VkAllocationCallbacks were provided when swapchain was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroySwapchainKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroySwapchainKHR-swapchain-parameter
If swapchain is not VK_NULL_HANDLE, swapchain must be a valid VkSwapchainKHR
handle

• VUID-vkDestroySwapchainKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroySwapchainKHR-swapchain-parent
If swapchain is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to swapchain must be externally synchronized

When the VK_KHR_display_swapchain extension is enabled, multiple swapchains that share
presentable images are created by calling:

// Provided by VK_KHR_display_swapchain
VkResult vkCreateSharedSwapchainsKHR(
 VkDevice device,
 uint32_t swapchainCount,

3124

 const VkSwapchainCreateInfoKHR* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkSwapchainKHR* pSwapchains);

• device is the device to create the swapchains for.

• swapchainCount is the number of swapchains to create.

• pCreateInfos is a pointer to an array of VkSwapchainCreateInfoKHR structures specifying the
parameters of the created swapchains.

• pAllocator is the allocator used for host memory allocated for the swapchain objects when there
is no more specific allocator available (see Memory Allocation).

• pSwapchains is a pointer to an array of VkSwapchainKHR handles in which the created
swapchain objects will be returned.

vkCreateSharedSwapchainsKHR is similar to vkCreateSwapchainKHR, except that it takes an array of
VkSwapchainCreateInfoKHR structures, and returns an array of swapchain objects.

The swapchain creation parameters that affect the properties and number of presentable images
must match between all the swapchains. If the displays used by any of the swapchains do not use
the same presentable image layout or are incompatible in a way that prevents sharing images,
swapchain creation will fail with the result code VK_ERROR_INCOMPATIBLE_DISPLAY_KHR. If any error
occurs, no swapchains will be created. Images presented to multiple swapchains must be re-
acquired from all of them before being modified. After destroying one or more of the swapchains,
the remaining swapchains and the presentable images can continue to be used.

Valid Usage (Implicit)

• VUID-vkCreateSharedSwapchainsKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateSharedSwapchainsKHR-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of swapchainCount valid
VkSwapchainCreateInfoKHR structures

• VUID-vkCreateSharedSwapchainsKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateSharedSwapchainsKHR-pSwapchains-parameter
pSwapchains must be a valid pointer to an array of swapchainCount VkSwapchainKHR
handles

• VUID-vkCreateSharedSwapchainsKHR-swapchainCount-arraylength
swapchainCount must be greater than 0

Host Synchronization

• Host access to pCreateInfos[].surface must be externally synchronized

3125

• Host access to pCreateInfos[].oldSwapchain must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INCOMPATIBLE_DISPLAY_KHR

• VK_ERROR_DEVICE_LOST

• VK_ERROR_SURFACE_LOST_KHR

To obtain the array of presentable images associated with a swapchain, call:

// Provided by VK_KHR_swapchain
VkResult vkGetSwapchainImagesKHR(
 VkDevice device,
 VkSwapchainKHR swapchain,
 uint32_t* pSwapchainImageCount,
 VkImage* pSwapchainImages);

• device is the device associated with swapchain.

• swapchain is the swapchain to query.

• pSwapchainImageCount is a pointer to an integer related to the number of presentable images
available or queried, as described below.

• pSwapchainImages is either NULL or a pointer to an array of VkImage handles.

If pSwapchainImages is NULL, then the number of presentable images for swapchain is returned in
pSwapchainImageCount. Otherwise, pSwapchainImageCount must point to a variable set by the user to
the number of elements in the pSwapchainImages array, and on return the variable is overwritten
with the number of structures actually written to pSwapchainImages. If the value of
pSwapchainImageCount is less than the number of presentable images for swapchain, at most
pSwapchainImageCount structures will be written, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available presentable images were returned.

Valid Usage (Implicit)

• VUID-vkGetSwapchainImagesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSwapchainImagesKHR-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

3126

• VUID-vkGetSwapchainImagesKHR-pSwapchainImageCount-parameter
pSwapchainImageCount must be a valid pointer to a uint32_t value

• VUID-vkGetSwapchainImagesKHR-pSwapchainImages-parameter
If the value referenced by pSwapchainImageCount is not 0, and pSwapchainImages is not NULL,
pSwapchainImages must be a valid pointer to an array of pSwapchainImageCount VkImage
handles

• VUID-vkGetSwapchainImagesKHR-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Note

By knowing all presentable images used in the swapchain, the application can
create command buffers that reference these images prior to entering its main
rendering loop. However, command buffers are not allowed to reference
presentable images created with
VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT until their indices have
been returned from vkAcquireNextImageKHR at least once.

Images returned by vkGetSwapchainImagesKHR are fully backed by memory before they are
passed to the application, as if they are each bound completely and contiguously to a single
VkDeviceMemory object , unless the swapchain is created with the
VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT flag . All presentable images are initially
in the VK_IMAGE_LAYOUT_UNDEFINED layout, thus before using presentable images, the application must
transition them to a valid layout for the intended use.

Further, the lifetime of presentable images is controlled by the implementation, so applications
must not destroy a presentable image. See vkDestroySwapchainKHR for further details on the
lifetime of presentable images.

Images can also be created by using vkCreateImage with VkImageSwapchainCreateInfoKHR and
bound to swapchain memory using vkBindImageMemory2 with
VkBindImageMemorySwapchainInfoKHR. These images can be used anywhere swapchain images
are used, and are useful in logical devices with multiple physical devices to create peer memory
bindings of swapchain memory. These images and bindings have no effect on what memory is
presented. Unlike images retrieved from vkGetSwapchainImagesKHR, these images must be destroyed
with vkDestroyImage.

3127

To acquire an available presentable image to use, and retrieve the index of that image, call:

// Provided by VK_KHR_swapchain
VkResult vkAcquireNextImageKHR(
 VkDevice device,
 VkSwapchainKHR swapchain,
 uint64_t timeout,
 VkSemaphore semaphore,
 VkFence fence,
 uint32_t* pImageIndex);

• device is the device associated with swapchain.

• swapchain is the non-retired swapchain from which an image is being acquired.

• timeout specifies how long the function waits, in nanoseconds, if no image is available.

• semaphore is VK_NULL_HANDLE or a semaphore to signal.

• fence is VK_NULL_HANDLE or a fence to signal.

• pImageIndex is a pointer to a uint32_t in which the index of the next image to use (i.e. an index
into the array of images returned by vkGetSwapchainImagesKHR) is returned.

If the swapchain has been created with the VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT
flag, the image whose index is returned in pImageIndex will be fully backed by memory before this
call returns to the application, as if it is bound completely and contiguously to a single
VkDeviceMemory object.

Valid Usage

• VUID-vkAcquireNextImageKHR-swapchain-01285
swapchain must not be in the retired state

• VUID-vkAcquireNextImageKHR-semaphore-01286
If semaphore is not VK_NULL_HANDLE it must be unsignaled

• VUID-vkAcquireNextImageKHR-semaphore-01779
If semaphore is not VK_NULL_HANDLE it must not have any uncompleted signal or wait
operations pending

• VUID-vkAcquireNextImageKHR-fence-01287
If fence is not VK_NULL_HANDLE it must be unsignaled and must not be associated with
any other queue command that has not yet completed execution on that queue

• VUID-vkAcquireNextImageKHR-semaphore-01780
semaphore and fence must not both be equal to VK_NULL_HANDLE

• VUID-vkAcquireNextImageKHR-surface-07783
If forward progress cannot be guaranteed for the surface used to create the swapchain
member of pAcquireInfo, the timeout member of pAcquireInfo must not be UINT64_MAX

• VUID-vkAcquireNextImageKHR-semaphore-03265
semaphore must have a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY

3128

Valid Usage (Implicit)

• VUID-vkAcquireNextImageKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkAcquireNextImageKHR-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkAcquireNextImageKHR-semaphore-parameter
If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

• VUID-vkAcquireNextImageKHR-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkAcquireNextImageKHR-pImageIndex-parameter
pImageIndex must be a valid pointer to a uint32_t value

• VUID-vkAcquireNextImageKHR-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

• VUID-vkAcquireNextImageKHR-semaphore-parent
If semaphore is a valid handle, it must have been created, allocated, or retrieved from
device

• VUID-vkAcquireNextImageKHR-fence-parent
If fence is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to swapchain must be externally synchronized

• Host access to semaphore must be externally synchronized

• Host access to fence must be externally synchronized

Return Codes

Success

• VK_SUCCESS

• VK_TIMEOUT

• VK_NOT_READY

• VK_SUBOPTIMAL_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_OUT_OF_DATE_KHR

3129

• VK_ERROR_SURFACE_LOST_KHR

• VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT

If an image is acquired successfully, vkAcquireNextImageKHR must either return VK_SUCCESS or
VK_SUBOPTIMAL_KHR. The implementation may return VK_SUBOPTIMAL_KHR if the swapchain no longer
matches the surface properties exactly, but can still be used for presentation.

When successful, vkAcquireNextImageKHR acquires a presentable image from swapchain that an
application can use, and sets pImageIndex to the index of that image within the swapchain. The
presentation engine may not have finished reading from the image at the time it is acquired, so the
application must use semaphore and/or fence to ensure that the image layout and contents are not
modified until the presentation engine reads have completed. Once vkAcquireNextImageKHR
successfully acquires an image, the semaphore signal operation referenced by semaphore, if not
VK_NULL_HANDLE, and the fence signal operation referenced by fence, if not VK_NULL_HANDLE,
are submitted for execution. If vkAcquireNextImageKHR does not successfully acquire an image,
semaphore and fence are unaffected. The order in which images are acquired is implementation-
dependent, and may be different than the order the images were presented.

If timeout is zero, then vkAcquireNextImageKHR does not wait, and will either successfully acquire an
image, or fail and return VK_NOT_READY if no image is available.

If the specified timeout period expires before an image is acquired, vkAcquireNextImageKHR returns
VK_TIMEOUT. If timeout is UINT64_MAX, the timeout period is treated as infinite, and
vkAcquireNextImageKHR will block until an image is acquired or an error occurs.

Let S be the number of images in swapchain. If swapchain is created with
VkSwapchainPresentModesCreateInfoEXT, let M be the maximum of the values in
VkSurfaceCapabilitiesKHR::minImageCount when queried with each present mode in
VkSwapchainPresentModesCreateInfoEXT::pPresentModes in VkSurfacePresentModeEXT. Otherwise,
let M be the value of VkSurfaceCapabilitiesKHR::minImageCount without a
VkSurfacePresentModeEXT as part of the query input.

vkAcquireNextImageKHR should not be called if the number of images that the application has
currently acquired is greater than S-M. If vkAcquireNextImageKHR is called when the number of
images that the application has currently acquired is less than or equal to S-M,
vkAcquireNextImageKHR must return in finite time with an allowed VkResult code.

Note

Returning a result in finite time guarantees that the implementation cannot
deadlock an application, or suspend its execution indefinitely with correct API
usage. Acquiring too many images at once may block indefinitely, which is covered
by valid usage when attempting to use UINT64_MAX. For example, a scenario here is
when a compositor holds on to images which are currently being presented, and
there are not any vacant images left to be acquired.

Note

VK_SUBOPTIMAL_KHR may happen, for example, if the platform surface has been

3130

resized but the platform is able to scale the presented images to the new size to
produce valid surface updates. It is up to the application to decide whether it
prefers to continue using the current swapchain in this state, or to re-create the
swapchain to better match the platform surface properties.

If the swapchain images no longer match native surface properties, either VK_SUBOPTIMAL_KHR or
VK_ERROR_OUT_OF_DATE_KHR must be returned. If VK_ERROR_OUT_OF_DATE_KHR is returned, no image is
acquired and attempts to present previously acquired images to the swapchain will also fail with
VK_ERROR_OUT_OF_DATE_KHR. Applications need to create a new swapchain for the surface to continue
presenting if VK_ERROR_OUT_OF_DATE_KHR is returned.

If device loss occurs (see Lost Device) before the timeout has expired, vkAcquireNextImageKHR must
return in finite time with either one of the allowed success codes, or VK_ERROR_DEVICE_LOST.

If semaphore is not VK_NULL_HANDLE, the semaphore must be unsignaled, with no signal or wait
operations pending. It will become signaled when the application can use the image.

Note

Use of semaphore allows rendering operations to be recorded and submitted before
the presentation engine has completed its use of the image.

If fence is not equal to VK_NULL_HANDLE, the fence must be unsignaled, with no signal operations
pending. It will become signaled when the application can use the image.

Note

Applications should not rely on vkAcquireNextImageKHR blocking in order to meter
their rendering speed. The implementation may return from this function
immediately regardless of how many presentation requests are queued, and
regardless of when queued presentation requests will complete relative to the call.
Instead, applications can use fence to meter their frame generation work to match
the presentation rate.

An application must wait until either the semaphore or fence is signaled before accessing the image’s
data.

Note

When the presentable image will be accessed by some stage S, the recommended
idiom for ensuring correct synchronization is:

• The VkSubmitInfo used to submit the image layout transition for execution
includes vkAcquireNextImageKHR::semaphore in its pWaitSemaphores member, with
the corresponding element of pWaitDstStageMask including S.

• The synchronization command that performs any necessary image layout
transition includes S in both the srcStageMask and dstStageMask.

After a successful return, the image indicated by pImageIndex and its data will be unmodified
compared to when it was presented.

3131

Note

Exclusive ownership of presentable images corresponding to a swapchain created
with VK_SHARING_MODE_EXCLUSIVE as defined in Resource Sharing is not altered by a
call to vkAcquireNextImageKHR. That means upon the first acquisition from such a
swapchain presentable images are not owned by any queue family, while at
subsequent acquisitions the presentable images remain owned by the queue
family the image was previously presented on.

The possible return values for vkAcquireNextImageKHR depend on the timeout provided:

• VK_SUCCESS is returned if an image became available.

• VK_ERROR_SURFACE_LOST_KHR is returned if the surface becomes no longer available.

• VK_NOT_READY is returned if timeout is zero and no image was available.

• VK_TIMEOUT is returned if timeout is greater than zero and less than UINT64_MAX, and no image
became available within the time allowed.

• VK_SUBOPTIMAL_KHR is returned if an image became available, and the swapchain no longer
matches the surface properties exactly, but can still be used to present to the surface
successfully.

Note

This may happen, for example, if the platform surface has been resized but the
platform is able to scale the presented images to the new size to produce valid
surface updates. It is up to the application to decide whether it prefers to continue
using the current swapchain indefinitely or temporarily in this state, or to re-
create the swapchain to better match the platform surface properties.

• VK_ERROR_OUT_OF_DATE_KHR is returned if the surface has changed in such a way that it is no
longer compatible with the swapchain, and further presentation requests using the swapchain
will fail. Applications must query the new surface properties and recreate their swapchain if
they wish to continue presenting to the surface.

If the native surface and presented image sizes no longer match, presentation may fail unless the
swapchain is created with a non-zero value in VkSwapchainPresentScalingCreateInfoEXT
::scalingBehavior . If presentation does succeed, the mapping from the presented image to the
native surface is defined by the VkSwapchainPresentScalingCreateInfoEXT structure if provided.
Otherwise it is implementation-defined. It is the application’s responsibility to detect surface size
changes and react appropriately. If presentation fails because of a mismatch in the surface and
presented image sizes, a VK_ERROR_OUT_OF_DATE_KHR error will be returned.

Note

For example, consider a 4x3 window/surface that gets resized to be 3x4 (taller than
wider). On some window systems, the portion of the window/surface that was
previously and still is visible (the 3x3 part) will contain the same contents as
before, while the remaining parts of the window will have undefined contents.
Other window systems may squash/stretch the image to fill the new window size

3132

without any undefined contents, or apply some other mapping.

To acquire an available presentable image to use, and retrieve the index of that image, call:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
VkResult vkAcquireNextImage2KHR(
 VkDevice device,
 const VkAcquireNextImageInfoKHR* pAcquireInfo,
 uint32_t* pImageIndex);

• device is the device associated with swapchain.

• pAcquireInfo is a pointer to a VkAcquireNextImageInfoKHR structure containing parameters of
the acquire.

• pImageIndex is a pointer to a uint32_t that is set to the index of the next image to use.

If the swapchain has been created with the VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT
flag, the image whose index is returned in pImageIndex will be fully backed by memory before this
call returns to the application.

Valid Usage

• VUID-vkAcquireNextImage2KHR-surface-07784
If forward progress cannot be guaranteed for the surface used to create swapchain, the
timeout member of pAcquireInfo must not be UINT64_MAX

Valid Usage (Implicit)

• VUID-vkAcquireNextImage2KHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkAcquireNextImage2KHR-pAcquireInfo-parameter
pAcquireInfo must be a valid pointer to a valid VkAcquireNextImageInfoKHR structure

• VUID-vkAcquireNextImage2KHR-pImageIndex-parameter
pImageIndex must be a valid pointer to a uint32_t value

Return Codes

Success

• VK_SUCCESS

• VK_TIMEOUT

• VK_NOT_READY

• VK_SUBOPTIMAL_KHR

3133

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_OUT_OF_DATE_KHR

• VK_ERROR_SURFACE_LOST_KHR

• VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT

The VkAcquireNextImageInfoKHR structure is defined as:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
typedef struct VkAcquireNextImageInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSwapchainKHR swapchain;
 uint64_t timeout;
 VkSemaphore semaphore;
 VkFence fence;
 uint32_t deviceMask;
} VkAcquireNextImageInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchain is a non-retired swapchain from which an image is acquired.

• timeout specifies how long the function waits, in nanoseconds, if no image is available.

• semaphore is VK_NULL_HANDLE or a semaphore to signal.

• fence is VK_NULL_HANDLE or a fence to signal.

• deviceMask is a mask of physical devices for which the swapchain image will be ready to use
when the semaphore or fence is signaled.

If vkAcquireNextImageKHR is used, the device mask is considered to include all physical devices in
the logical device.

Note

vkAcquireNextImage2KHR signals at most one semaphore, even if the application
requests waiting for multiple physical devices to be ready via the deviceMask.
However, only a single physical device can wait on that semaphore, since the
semaphore becomes unsignaled when the wait succeeds. For other physical
devices to wait for the image to be ready, it is necessary for the application to
submit semaphore signal operation(s) to that first physical device to signal
additional semaphore(s) after the wait succeeds, which the other physical device(s)

3134

can wait upon.

Valid Usage

• VUID-VkAcquireNextImageInfoKHR-swapchain-01675
swapchain must not be in the retired state

• VUID-VkAcquireNextImageInfoKHR-semaphore-01288
If semaphore is not VK_NULL_HANDLE it must be unsignaled

• VUID-VkAcquireNextImageInfoKHR-semaphore-01781
If semaphore is not VK_NULL_HANDLE it must not have any uncompleted signal or wait
operations pending

• VUID-VkAcquireNextImageInfoKHR-fence-01289
If fence is not VK_NULL_HANDLE it must be unsignaled and must not be associated with
any other queue command that has not yet completed execution on that queue

• VUID-VkAcquireNextImageInfoKHR-semaphore-01782
semaphore and fence must not both be equal to VK_NULL_HANDLE

• VUID-VkAcquireNextImageInfoKHR-deviceMask-01290
deviceMask must be a valid device mask

• VUID-VkAcquireNextImageInfoKHR-deviceMask-01291
deviceMask must not be zero

• VUID-VkAcquireNextImageInfoKHR-semaphore-03266
semaphore must have a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY

Valid Usage (Implicit)

• VUID-VkAcquireNextImageInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR

• VUID-VkAcquireNextImageInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkAcquireNextImageInfoKHR-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-VkAcquireNextImageInfoKHR-semaphore-parameter
If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

• VUID-VkAcquireNextImageInfoKHR-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-VkAcquireNextImageInfoKHR-commonparent
Each of fence, semaphore, and swapchain that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

3135

Host Synchronization

• Host access to swapchain must be externally synchronized

• Host access to semaphore must be externally synchronized

• Host access to fence must be externally synchronized

After queueing all rendering commands and transitioning the image to the correct layout, to queue
an image for presentation, call:

// Provided by VK_KHR_swapchain
VkResult vkQueuePresentKHR(
 VkQueue queue,
 const VkPresentInfoKHR* pPresentInfo);

• queue is a queue that is capable of presentation to the target surface’s platform on the same
device as the image’s swapchain.

• pPresentInfo is a pointer to a VkPresentInfoKHR structure specifying parameters of the
presentation.

Note

There is no requirement for an application to present images in the same order
that they were acquired - applications can arbitrarily present any image that is
currently acquired.

Note

The origin of the native orientation of the surface coordinate system is not
specified in the Vulkan specification; it depends on the platform. For most
platforms the origin is by default upper-left, meaning the pixel of the presented
VkImage at coordinates (0,0) would appear at the upper left pixel of the platform
surface (assuming VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR, and the display
standing the right way up).

The result codes VK_ERROR_OUT_OF_DATE_KHR and VK_SUBOPTIMAL_KHR have the same meaning when
returned by vkQueuePresentKHR as they do when returned by vkAcquireNextImageKHR. If any swapchain
member of pPresentInfo was created with VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT,
VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT will be returned if that swapchain does not have
exclusive full-screen access, possibly for implementation-specific reasons outside of the
application’s control. If multiple swapchains are presented, the result code is determined by
applying the following rules in order:

• If the device is lost, VK_ERROR_DEVICE_LOST is returned.

• If any of the target surfaces are no longer available the error VK_ERROR_SURFACE_LOST_KHR is
returned.

3136

• If any of the presents would have a result of VK_ERROR_OUT_OF_DATE_KHR if issued separately then
VK_ERROR_OUT_OF_DATE_KHR is returned.

• If any of the presents would have a result of VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT if
issued separately then VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT is returned.

• If any of the presents would have a result of VK_SUBOPTIMAL_KHR if issued separately then
VK_SUBOPTIMAL_KHR is returned.

• Otherwise VK_SUCCESS is returned.

Any writes to memory backing the images referenced by the pImageIndices and pSwapchains
members of pPresentInfo, that are available before vkQueuePresentKHR is executed, are
automatically made visible to the read access performed by the presentation engine. This automatic
visibility operation for an image happens-after the semaphore signal operation, and happens-
before the presentation engine accesses the image.

Presentation is a read-only operation that will not affect the content of the presentable images.
Upon reacquiring the image and transitioning it away from the VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
layout, the contents will be the same as they were prior to transitioning the image to the present
source layout and presenting it. However, if a mechanism other than Vulkan is used to modify the
platform window associated with the swapchain, the content of all presentable images in the
swapchain becomes undefined.

Calls to vkQueuePresentKHR may block, but must return in finite time. The processing of the
presentation happens in issue order with other queue operations, but semaphores must be used to
ensure that prior rendering and other commands in the specified queue complete before the
presentation begins. The presentation command itself does not delay processing of subsequent
commands on the queue. However, presentation requests sent to a particular queue are always
performed in order. Exact presentation timing is controlled by the semantics of the presentation
engine and native platform in use.

If an image is presented to a swapchain created from a display surface, the mode of the associated
display will be updated, if necessary, to match the mode specified when creating the display
surface. The mode switch and presentation of the specified image will be performed as one atomic
operation.

Queueing an image for presentation defines a set of queue operations, including waiting on the
semaphores and submitting a presentation request to the presentation engine. However, the scope
of this set of queue operations does not include the actual processing of the image by the
presentation engine.

If vkQueuePresentKHR fails to enqueue the corresponding set of queue operations, it may return
VK_ERROR_OUT_OF_HOST_MEMORY or VK_ERROR_OUT_OF_DEVICE_MEMORY. If it does, the implementation must
ensure that the state and contents of any resources or synchronization primitives referenced is
unaffected by the call or its failure.

If vkQueuePresentKHR fails in such a way that the implementation is unable to make that guarantee,
the implementation must return VK_ERROR_DEVICE_LOST.

However, if the presentation request is rejected by the presentation engine with an error

3137

VK_ERROR_OUT_OF_DATE_KHR, VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT, or
VK_ERROR_SURFACE_LOST_KHR, the set of queue operations are still considered to be enqueued and thus
any semaphore wait operation specified in VkPresentInfoKHR will execute when the corresponding
queue operation is complete.

vkQueuePresentKHR releases the acquisition of the images referenced by imageIndices. The queue
family corresponding to the queue vkQueuePresentKHR is executed on must have ownership of the
presented images as defined in Resource Sharing. vkQueuePresentKHR does not alter the queue family
ownership, but the presented images must not be used again before they have been reacquired
using vkAcquireNextImageKHR.

Note

The application can continue to present any acquired images from a retired
swapchain as long as the swapchain has not entered a state that causes
vkQueuePresentKHR to return VK_ERROR_OUT_OF_DATE_KHR.

Valid Usage

• VUID-vkQueuePresentKHR-pSwapchains-01292
Each element of pSwapchains member of pPresentInfo must be a swapchain that is created
for a surface for which presentation is supported from queue as determined using a call to
vkGetPhysicalDeviceSurfaceSupportKHR

• VUID-vkQueuePresentKHR-pSwapchains-01293
If more than one member of pSwapchains was created from a display surface, all display
surfaces referenced that refer to the same display must use the same display mode

• VUID-vkQueuePresentKHR-pWaitSemaphores-01294
When a semaphore wait operation referring to a binary semaphore defined by the
elements of the pWaitSemaphores member of pPresentInfo executes on queue, there must be
no other queues waiting on the same semaphore

• VUID-vkQueuePresentKHR-pWaitSemaphores-03267
All elements of the pWaitSemaphores member of pPresentInfo must be created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY

• VUID-vkQueuePresentKHR-pWaitSemaphores-03268
All elements of the pWaitSemaphores member of pPresentInfo must reference a semaphore
signal operation that has been submitted for execution and any semaphore signal
operations on which it depends must have also been submitted for execution

Valid Usage (Implicit)

• VUID-vkQueuePresentKHR-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueuePresentKHR-pPresentInfo-parameter
pPresentInfo must be a valid pointer to a valid VkPresentInfoKHR structure

3138

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to pPresentInfo->pWaitSemaphores[] must be externally synchronized

• Host access to pPresentInfo->pSwapchains[] must be externally synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

Return Codes

Success

• VK_SUCCESS

• VK_SUBOPTIMAL_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_OUT_OF_DATE_KHR

• VK_ERROR_SURFACE_LOST_KHR

• VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT

The VkPresentInfoKHR structure is defined as:

// Provided by VK_KHR_swapchain
typedef struct VkPresentInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 uint32_t swapchainCount;
 const VkSwapchainKHR* pSwapchains;
 const uint32_t* pImageIndices;
 VkResult* pResults;
} VkPresentInfoKHR;

• sType is a VkStructureType value identifying this structure.

3139

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreCount is the number of semaphores to wait for before issuing the present request.
The number may be zero.

• pWaitSemaphores is NULL or a pointer to an array of VkSemaphore objects with waitSemaphoreCount
entries, and specifies the semaphores to wait for before issuing the present request.

• swapchainCount is the number of swapchains being presented to by this command.

• pSwapchains is a pointer to an array of VkSwapchainKHR objects with swapchainCount entries.

• pImageIndices is a pointer to an array of indices into the array of each swapchain’s presentable
images, with swapchainCount entries. Each entry in this array identifies the image to present on
the corresponding entry in the pSwapchains array.

• pResults is a pointer to an array of VkResult typed elements with swapchainCount entries.
Applications that do not need per-swapchain results can use NULL for pResults. If non-NULL, each
entry in pResults will be set to the VkResult for presenting the swapchain corresponding to the
same index in pSwapchains.

Before an application can present an image, the image’s layout must be transitioned to the
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR layout, or for a shared presentable image the
VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR layout.

Note

When transitioning the image to VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR or
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, there is no need to delay subsequent processing,
or perform any visibility operations (as vkQueuePresentKHR performs automatic
visibility operations). To achieve this, the dstAccessMask member of the
VkImageMemoryBarrier should be set to 0, and the dstStageMask parameter
should be set to VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT.

Valid Usage

• VUID-VkPresentInfoKHR-pSwapchain-09231
Elements of pSwapchain must be unique

• VUID-VkPresentInfoKHR-pImageIndices-01430
Each element of pImageIndices must be the index of a presentable image acquired from
the swapchain specified by the corresponding element of the pSwapchains array, and the
presented image subresource must be in the VK_IMAGE_LAYOUT_PRESENT_SRC_KHR or
VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR layout at the time the operation is executed on a
VkDevice

• VUID-VkPresentInfoKHR-pNext-06235
If a VkPresentIdKHR structure is included in the pNext chain, and the presentId feature is
not enabled, each presentIds entry in that structure must be NULL

• VUID-VkPresentInfoKHR-pSwapchains-09199
If any element of the pSwapchains array has been created with
VkSwapchainPresentModesCreateInfoEXT, all of the elements of this array must be
created with VkSwapchainPresentModesCreateInfoEXT

3140

Valid Usage (Implicit)

• VUID-VkPresentInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PRESENT_INFO_KHR

• VUID-VkPresentInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupPresentInfoKHR,
VkDisplayPresentInfoKHR, VkFrameBoundaryEXT, VkPresentFrameTokenGGP,
VkPresentIdKHR, VkPresentRegionsKHR, VkPresentTimesInfoGOOGLE,
VkSwapchainPresentFenceInfoEXT, or VkSwapchainPresentModeInfoEXT

• VUID-VkPresentInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPresentInfoKHR-pWaitSemaphores-parameter
If waitSemaphoreCount is not 0, pWaitSemaphores must be a valid pointer to an array of
waitSemaphoreCount valid VkSemaphore handles

• VUID-VkPresentInfoKHR-pSwapchains-parameter
pSwapchains must be a valid pointer to an array of swapchainCount valid VkSwapchainKHR
handles

• VUID-VkPresentInfoKHR-pImageIndices-parameter
pImageIndices must be a valid pointer to an array of swapchainCount uint32_t values

• VUID-VkPresentInfoKHR-pResults-parameter
If pResults is not NULL, pResults must be a valid pointer to an array of swapchainCount
VkResult values

• VUID-VkPresentInfoKHR-swapchainCount-arraylength
swapchainCount must be greater than 0

• VUID-VkPresentInfoKHR-commonparent
Both of the elements of pSwapchains, and the elements of pWaitSemaphores that are valid
handles of non-ignored parameters must have been created, allocated, or retrieved from
the same VkDevice

When the VK_KHR_incremental_present extension is enabled, additional fields can be specified that
allow an application to specify that only certain rectangular regions of the presentable images of a
swapchain are changed. This is an optimization hint that a presentation engine may use to only
update the region of a surface that is actually changing. The application still must ensure that all
pixels of a presented image contain the desired values, in case the presentation engine ignores this
hint. An application can provide this hint by adding a VkPresentRegionsKHR structure to the pNext
chain of the VkPresentInfoKHR structure.

The VkPresentRegionsKHR structure is defined as:

// Provided by VK_KHR_incremental_present
typedef struct VkPresentRegionsKHR {
 VkStructureType sType;
 const void* pNext;

3141

 uint32_t swapchainCount;
 const VkPresentRegionKHR* pRegions;
} VkPresentRegionsKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchainCount is the number of swapchains being presented to by this command.

• pRegions is NULL or a pointer to an array of VkPresentRegionKHR elements with swapchainCount
entries. If not NULL, each element of pRegions contains the region that has changed since the last
present to the swapchain in the corresponding entry in the VkPresentInfoKHR::pSwapchains array.

Valid Usage

• VUID-VkPresentRegionsKHR-swapchainCount-01260
swapchainCount must be the same value as VkPresentInfoKHR::swapchainCount, where
VkPresentInfoKHR is included in the pNext chain of this VkPresentRegionsKHR structure

Valid Usage (Implicit)

• VUID-VkPresentRegionsKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR

• VUID-VkPresentRegionsKHR-pRegions-parameter
If pRegions is not NULL, pRegions must be a valid pointer to an array of swapchainCount valid
VkPresentRegionKHR structures

• VUID-VkPresentRegionsKHR-swapchainCount-arraylength
swapchainCount must be greater than 0

For a given image and swapchain, the region to present is specified by the VkPresentRegionKHR
structure, which is defined as:

// Provided by VK_KHR_incremental_present
typedef struct VkPresentRegionKHR {
 uint32_t rectangleCount;
 const VkRectLayerKHR* pRectangles;
} VkPresentRegionKHR;

• rectangleCount is the number of rectangles in pRectangles, or zero if the entire image has
changed and should be presented.

• pRectangles is either NULL or a pointer to an array of VkRectLayerKHR structures. The
VkRectLayerKHR structure is the framebuffer coordinates, plus layer, of a portion of a presentable
image that has changed and must be presented. If non-NULL, each entry in pRectangles is a
rectangle of the given image that has changed since the last image was presented to the given
swapchain. The rectangles must be specified relative to VkSurfaceCapabilitiesKHR

3142

::currentTransform, regardless of the swapchain’s preTransform. The presentation engine will
apply the preTransform transformation to the rectangles, along with any further transformation
it applies to the image content.

Valid Usage (Implicit)

• VUID-VkPresentRegionKHR-pRectangles-parameter
If rectangleCount is not 0, and pRectangles is not NULL, pRectangles must be a valid pointer
to an array of rectangleCount valid VkRectLayerKHR structures

The VkRectLayerKHR structure is defined as:

// Provided by VK_KHR_incremental_present
typedef struct VkRectLayerKHR {
 VkOffset2D offset;
 VkExtent2D extent;
 uint32_t layer;
} VkRectLayerKHR;

• offset is the origin of the rectangle, in pixels.

• extent is the size of the rectangle, in pixels.

• layer is the layer of the image. For images with only one layer, the value of layer must be 0.

Some platforms allow the size of a surface to change, and then scale the pixels of the image to fit
the surface. VkRectLayerKHR specifies pixels of the swapchain’s image(s), which will be constant for
the life of the swapchain.

Valid Usage

• VUID-VkRectLayerKHR-offset-04864
The sum of offset and extent, after being transformed according to the preTransform
member of the VkSwapchainCreateInfoKHR structure, must be no greater than the
imageExtent member of the VkSwapchainCreateInfoKHR structure passed to
vkCreateSwapchainKHR

• VUID-VkRectLayerKHR-layer-01262
layer must be less than the imageArrayLayers member of the VkSwapchainCreateInfoKHR
structure passed to vkCreateSwapchainKHR

When the VK_KHR_display_swapchain extension is enabled, additional fields can be specified when
presenting an image to a swapchain by setting VkPresentInfoKHR::pNext to point to a
VkDisplayPresentInfoKHR structure.

The VkDisplayPresentInfoKHR structure is defined as:

3143

// Provided by VK_KHR_display_swapchain
typedef struct VkDisplayPresentInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkRect2D srcRect;
 VkRect2D dstRect;
 VkBool32 persistent;
} VkDisplayPresentInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcRect is a rectangular region of pixels to present. It must be a subset of the image being
presented. If VkDisplayPresentInfoKHR is not specified, this region will be assumed to be the
entire presentable image.

• dstRect is a rectangular region within the visible region of the swapchain’s display mode. If
VkDisplayPresentInfoKHR is not specified, this region will be assumed to be the entire visible
region of the swapchain’s mode. If the specified rectangle is a subset of the display mode’s
visible region, content from display planes below the swapchain’s plane will be visible outside
the rectangle. If there are no planes below the swapchain’s, the area outside the specified
rectangle will be black. If portions of the specified rectangle are outside of the display’s visible
region, pixels mapping only to those portions of the rectangle will be discarded.

• persistent: If this is VK_TRUE, the display engine will enable buffered mode on displays that
support it. This allows the display engine to stop sending content to the display until a new
image is presented. The display will instead maintain a copy of the last presented image. This
allows less power to be used, but may increase presentation latency. If VkDisplayPresentInfoKHR
is not specified, persistent mode will not be used.

If the extent of the srcRect and dstRect are not equal, the presented pixels will be scaled
accordingly.

Valid Usage

• VUID-VkDisplayPresentInfoKHR-srcRect-01257
srcRect must specify a rectangular region that is a subset of the image being presented

• VUID-VkDisplayPresentInfoKHR-dstRect-01258
dstRect must specify a rectangular region that is a subset of the visibleRegion parameter
of the display mode the swapchain being presented uses

• VUID-VkDisplayPresentInfoKHR-persistentContent-01259
If the persistentContent member of the VkDisplayPropertiesKHR structure returned by
vkGetPhysicalDeviceDisplayPropertiesKHR for the display the present operation targets is
VK_FALSE, then persistent must be VK_FALSE

3144

Valid Usage (Implicit)

• VUID-VkDisplayPresentInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR

If the pNext chain of VkPresentInfoKHR includes a VkDeviceGroupPresentInfoKHR structure, then that
structure includes an array of device masks and a device group present mode.

The VkDeviceGroupPresentInfoKHR structure is defined as:

// Provided by VK_VERSION_1_1 with VK_KHR_swapchain, VK_KHR_device_group with
VK_KHR_swapchain
typedef struct VkDeviceGroupPresentInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t swapchainCount;
 const uint32_t* pDeviceMasks;
 VkDeviceGroupPresentModeFlagBitsKHR mode;
} VkDeviceGroupPresentInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchainCount is zero or the number of elements in pDeviceMasks.

• pDeviceMasks is a pointer to an array of device masks, one for each element of
VkPresentInfoKHR::pSwapchains.

• mode is a VkDeviceGroupPresentModeFlagBitsKHR value specifying the device group present
mode that will be used for this present.

If mode is VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR, then each element of pDeviceMasks selects
which instance of the swapchain image is presented. Each element of pDeviceMasks must have
exactly one bit set, and the corresponding physical device must have a presentation engine as
reported by VkDeviceGroupPresentCapabilitiesKHR.

If mode is VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHR, then each element of pDeviceMasks selects
which instance of the swapchain image is presented. Each element of pDeviceMasks must have
exactly one bit set, and some physical device in the logical device must include that bit in its
VkDeviceGroupPresentCapabilitiesKHR::presentMask.

If mode is VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHR, then each element of pDeviceMasks selects
which instances of the swapchain image are component-wise summed and the sum of those images
is presented. If the sum in any component is outside the representable range, the value of that
component is undefined. Each element of pDeviceMasks must have a value for which all set bits are
set in one of the elements of VkDeviceGroupPresentCapabilitiesKHR::presentMask.

If mode is VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR, then each element of
pDeviceMasks selects which instance(s) of the swapchain images are presented. For each bit set in

3145

each element of pDeviceMasks, the corresponding physical device must have a presentation engine
as reported by VkDeviceGroupPresentCapabilitiesKHR.

If VkDeviceGroupPresentInfoKHR is not provided or swapchainCount is zero then the masks are
considered to be 1. If VkDeviceGroupPresentInfoKHR is not provided, mode is considered to be
VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR.

Valid Usage

• VUID-VkDeviceGroupPresentInfoKHR-swapchainCount-01297
swapchainCount must equal 0 or VkPresentInfoKHR::swapchainCount

• VUID-VkDeviceGroupPresentInfoKHR-mode-01298
If mode is VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR, then each element of pDeviceMasks
must have exactly one bit set, and the corresponding element of
VkDeviceGroupPresentCapabilitiesKHR::presentMask must be non-zero

• VUID-VkDeviceGroupPresentInfoKHR-mode-01299
If mode is VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHR, then each element of pDeviceMasks
must have exactly one bit set, and some physical device in the logical device must include
that bit in its VkDeviceGroupPresentCapabilitiesKHR::presentMask

• VUID-VkDeviceGroupPresentInfoKHR-mode-01300
If mode is VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHR, then each element of pDeviceMasks
must have a value for which all set bits are set in one of the elements of
VkDeviceGroupPresentCapabilitiesKHR::presentMask

• VUID-VkDeviceGroupPresentInfoKHR-mode-01301
If mode is VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR, then for each bit set
in each element of pDeviceMasks, the corresponding element of
VkDeviceGroupPresentCapabilitiesKHR::presentMask must be non-zero

• VUID-VkDeviceGroupPresentInfoKHR-pDeviceMasks-01302
The value of each element of pDeviceMasks must be equal to the device mask passed in
VkAcquireNextImageInfoKHR::deviceMask when the image index was last acquired

• VUID-VkDeviceGroupPresentInfoKHR-mode-01303
mode must have exactly one bit set, and that bit must have been included in
VkDeviceGroupSwapchainCreateInfoKHR::modes

Valid Usage (Implicit)

• VUID-VkDeviceGroupPresentInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR

• VUID-VkDeviceGroupPresentInfoKHR-pDeviceMasks-parameter
If swapchainCount is not 0, pDeviceMasks must be a valid pointer to an array of
swapchainCount uint32_t values

• VUID-VkDeviceGroupPresentInfoKHR-mode-parameter
mode must be a valid VkDeviceGroupPresentModeFlagBitsKHR value

3146

When the VK_GOOGLE_display_timing extension is enabled, additional fields can be specified that
allow an application to specify the earliest time that an image should be displayed. This allows an
application to avoid stutter that is caused by an image being displayed earlier than planned. Such
stuttering can occur with both fixed and variable-refresh-rate displays, because stuttering occurs
when the geometry is not correctly positioned for when the image is displayed. An application can
instruct the presentation engine that an image should not be displayed earlier than a specified time
by adding a VkPresentTimesInfoGOOGLE structure to the pNext chain of the VkPresentInfoKHR structure.

The VkPresentTimesInfoGOOGLE structure is defined as:

// Provided by VK_GOOGLE_display_timing
typedef struct VkPresentTimesInfoGOOGLE {
 VkStructureType sType;
 const void* pNext;
 uint32_t swapchainCount;
 const VkPresentTimeGOOGLE* pTimes;
} VkPresentTimesInfoGOOGLE;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchainCount is the number of swapchains being presented to by this command.

• pTimes is NULL or a pointer to an array of VkPresentTimeGOOGLE elements with swapchainCount
entries. If not NULL, each element of pTimes contains the earliest time to present the image
corresponding to the entry in the VkPresentInfoKHR::pImageIndices array.

Valid Usage

• VUID-VkPresentTimesInfoGOOGLE-swapchainCount-01247
swapchainCount must be the same value as VkPresentInfoKHR::swapchainCount, where
VkPresentInfoKHR is included in the pNext chain of this VkPresentTimesInfoGOOGLE structure

Valid Usage (Implicit)

• VUID-VkPresentTimesInfoGOOGLE-sType-sType
sType must be VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE

• VUID-VkPresentTimesInfoGOOGLE-pTimes-parameter
If pTimes is not NULL, pTimes must be a valid pointer to an array of swapchainCount
VkPresentTimeGOOGLE structures

• VUID-VkPresentTimesInfoGOOGLE-swapchainCount-arraylength
swapchainCount must be greater than 0

The VkPresentTimeGOOGLE structure is defined as:

3147

// Provided by VK_GOOGLE_display_timing
typedef struct VkPresentTimeGOOGLE {
 uint32_t presentID;
 uint64_t desiredPresentTime;
} VkPresentTimeGOOGLE;

• presentID is an application-provided identification value, that can be used with the results of
vkGetPastPresentationTimingGOOGLE, in order to uniquely identify this present. In order to be
useful to the application, it should be unique within some period of time that is meaningful to
the application.

• desiredPresentTime specifies that the image given should not be displayed to the user any
earlier than this time. desiredPresentTime is a time in nanoseconds, relative to a monotonically-
increasing clock (e.g. CLOCK_MONOTONIC (see clock_gettime(2)) on Android and Linux). A value of
zero specifies that the presentation engine may display the image at any time. This is useful
when the application desires to provide presentID, but does not need a specific
desiredPresentTime.

The VkPresentIdKHR structure is defined as:

// Provided by VK_KHR_present_id
typedef struct VkPresentIdKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t swapchainCount;
 const uint64_t* pPresentIds;
} VkPresentIdKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchainCount is the number of swapchains being presented to the vkQueuePresentKHR
command.

• pPresentIds is NULL or a pointer to an array of uint64_t with swapchainCount entries. If not NULL,
each non-zero value in pPresentIds specifies the present id to be associated with the
presentation of the swapchain with the same index in the vkQueuePresentKHR call.

For applications to be able to reference specific presentation events queued by a call to
vkQueuePresentKHR, an identifier needs to be associated with them. When the presentId feature is
enabled, applications can include the VkPresentIdKHR structure in the pNext chain of the
VkPresentInfoKHR structure to supply identifiers.

Each VkSwapchainKHR has a presentId associated with it. This value is initially set to zero when the
VkSwapchainKHR is created.

When a VkPresentIdKHR structure with a non-NULL pPresentIds is included in the pNext chain of a
VkPresentInfoKHR structure, each pSwapchains entry has a presentId associated in the pPresentIds
array at the same index as the swapchain in the pSwapchains array. If this presentId is non-zero,

3148

then the application can later use this value to refer to that image presentation. A value of zero
indicates that this presentation has no associated presentId. A non-zero presentId must be greater
than any non-zero presentId passed previously by the application for the same swapchain.

There is no requirement for any precise timing relationship between the presentation of the image
to the user and the update of the presentId value, but implementations should make this as close as
possible to the presentation of the first pixel in the new image to the user.

Valid Usage

• VUID-VkPresentIdKHR-swapchainCount-04998
swapchainCount must be the same value as VkPresentInfoKHR::swapchainCount, where this
VkPresentIdKHR is in the pNext chain of the VkPresentInfoKHR structure

• VUID-VkPresentIdKHR-presentIds-04999
Each presentIds entry must be greater than any previous presentIds entry passed for the
associated pSwapchains entry

Valid Usage (Implicit)

• VUID-VkPresentIdKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PRESENT_ID_KHR

• VUID-VkPresentIdKHR-pPresentIds-parameter
If pPresentIds is not NULL, pPresentIds must be a valid pointer to an array of
swapchainCount uint64_t values

• VUID-VkPresentIdKHR-swapchainCount-arraylength
swapchainCount must be greater than 0

When the presentWait feature is enabled, an application can wait for an image to be presented to
the user by first specifying a presentId for the target presentation by adding a VkPresentIdKHR
structure to the pNext chain of the VkPresentInfoKHR structure and then waiting for that
presentation to complete by calling:

// Provided by VK_KHR_present_wait
VkResult vkWaitForPresentKHR(
 VkDevice device,
 VkSwapchainKHR swapchain,
 uint64_t presentId,
 uint64_t timeout);

• device is the device associated with swapchain.

• swapchain is the non-retired swapchain on which an image was queued for presentation.

• presentId is the presentation presentId to wait for.

• timeout is the timeout period in units of nanoseconds. timeout is adjusted to the closest value

3149

allowed by the implementation-dependent timeout accuracy, which may be substantially longer
than one nanosecond, and may be longer than the requested period.

vkWaitForPresentKHR waits for the presentId associated with swapchain to be increased in value so
that it is at least equal to presentId.

For VK_PRESENT_MODE_MAILBOX_KHR (or other present mode where images may be replaced in the
presentation queue) any wait of this type associated with such an image must be signaled no later
than a wait associated with the replacing image would be signaled.

When the presentation has completed, the presentId associated with the related pSwapchains entry
will be increased in value so that it is at least equal to the value provided in the VkPresentIdKHR
structure.

There is no requirement for any precise timing relationship between the presentation of the image
to the user and the update of the presentId value, but implementations should make this as close as
possible to the presentation of the first pixel in the next image being presented to the user.

The call to vkWaitForPresentKHR will block until either the presentId associated with swapchain is
greater than or equal to presentId, or timeout nanoseconds passes. When the swapchain becomes
OUT_OF_DATE, the call will either return VK_SUCCESS (if the image was delivered to the presentation
engine and may have been presented to the user) or will return early with status
VK_ERROR_OUT_OF_DATE_KHR (if the image was not presented to the user).

As an exception to the normal rules for objects which are externally synchronized, the swapchain
passed to vkWaitForPresentKHR may be simultaneously used by other threads in calls to functions
other than vkDestroySwapchainKHR. Access to the swapchain data associated with this extension
must be atomic within the implementation.

Valid Usage

• VUID-vkWaitForPresentKHR-swapchain-04997
swapchain must not be in the retired state

• VUID-vkWaitForPresentKHR-presentWait-06234
The presentWait feature must be enabled

Valid Usage (Implicit)

• VUID-vkWaitForPresentKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkWaitForPresentKHR-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkWaitForPresentKHR-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

3150

Host Synchronization

• Host access to swapchain must be externally synchronized

Return Codes

Success

• VK_SUCCESS

• VK_TIMEOUT

• VK_SUBOPTIMAL_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

• VK_ERROR_OUT_OF_DATE_KHR

• VK_ERROR_SURFACE_LOST_KHR

• VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT

When the VK_GGP_frame_token extension is enabled, a Google Games Platform frame token can be
specified when presenting an image to a swapchain by adding a VkPresentFrameTokenGGP structure to
the pNext chain of the VkPresentInfoKHR structure.

The VkPresentFrameTokenGGP structure is defined as:

// Provided by VK_GGP_frame_token
typedef struct VkPresentFrameTokenGGP {
 VkStructureType sType;
 const void* pNext;
 GgpFrameToken frameToken;
} VkPresentFrameTokenGGP;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• frameToken is the Google Games Platform frame token.

Valid Usage

• VUID-VkPresentFrameTokenGGP-frameToken-02680
frameToken must be a valid GgpFrameToken

3151

Valid Usage (Implicit)

• VUID-VkPresentFrameTokenGGP-sType-sType
sType must be VK_STRUCTURE_TYPE_PRESENT_FRAME_TOKEN_GGP

The VkSwapchainPresentModeInfoEXT structure is defined as:

// Provided by VK_EXT_swapchain_maintenance1
typedef struct VkSwapchainPresentModeInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t swapchainCount;
 const VkPresentModeKHR* pPresentModes;
} VkSwapchainPresentModeInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchainCount is the number of swapchains being presented to by this command.

• pPresentModes is a list of presentation modes with swapchainCount entries.

If the pNext chain of VkPresentInfoKHR includes a VkSwapchainPresentModeInfoEXT structure, then
that structure defines the presentation modes used for the current and subsequent presentation
operations.

When the application changes present modes with VkSwapchainPresentModeInfoEXT, images that
have already been queued for presentation will continue to be presented according to the previous
present mode. The current image being queued for presentation and subsequent images will be
presented according to the new present mode. The behavior during the transition between the two
modes is defined as follows.

• Transition from VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR to
VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR: the presentation engine updates the shared
presentable image according to the behavior of VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR.

• Transition from VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR to
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR: the presentation engine may update the shared
presentable image or defer that to its regular refresh cycle, according to the behavior of
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR.

• Transition between VK_PRESENT_MODE_FIFO_KHR and VK_PRESENT_MODE_FIFO_RELAXED_KHR: Images
continue to be appended to the same FIFO queue, and the behavior with respect to waiting for
vertical blanking period will follow the new mode for current and subsequent images.

• Transition from VK_PRESENT_MODE_IMMEDIATE_KHR to VK_PRESENT_MODE_FIFO_KHR or
VK_PRESENT_MODE_FIFO_RELAXED_KHR: As all prior present requests in the
VK_PRESENT_MODE_IMMEDIATE_KHR mode are applied immediately, there are no outstanding present
operations in this mode, and current and subsequent images are appended to the FIFO queue

3152

and presented according to the new mode.

• Transition from VK_PRESENT_MODE_MAILBOX_KHR to VK_PRESENT_MODE_FIFO_KHR or
VK_PRESENT_MODE_FIFO_RELAXED_KHR: Presentation in both modes require waiting for the next
vertical blanking period, with VK_PRESENT_MODE_MAILBOX_KHR allowing the pending present
operation to be replaced by a new one. In this case, the current present operation will replace
the pending present operation and is applied according to the new mode.

• Transition from VK_PRESENT_MODE_FIFO_KHR or VK_PRESENT_MODE_FIFO_RELAXED_KHR to
VK_PRESENT_MODE_IMMEDIATE_KHR or VK_PRESENT_MODE_MAILBOX_KHR: If the FIFO queue is empty,
presentation is done according to the behavior of the new mode. If there are present operations
in the FIFO queue, once the last present operation is performed based on the respective vertical
blanking period, the current and subsequent updates are applied according to the new mode.

• The behavior during transition between any other present modes, if possible, is implementation
defined.

Valid Usage

• VUID-VkSwapchainPresentModeInfoEXT-swapchainCount-07760
swapchainCount must be equal to VkPresentInfoKHR::swapchainCount

• VUID-VkSwapchainPresentModeInfoEXT-pPresentModes-07761
Each entry in pPresentModes must be a presentation mode specified in
VkSwapchainPresentModesCreateInfoEXT::pPresentModes when creating the entry’s
corresponding swapchain

Valid Usage (Implicit)

• VUID-VkSwapchainPresentModeInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODE_INFO_EXT

• VUID-VkSwapchainPresentModeInfoEXT-pPresentModes-parameter
pPresentModes must be a valid pointer to an array of swapchainCount valid
VkPresentModeKHR values

• VUID-VkSwapchainPresentModeInfoEXT-swapchainCount-arraylength
swapchainCount must be greater than 0

The VkSwapchainPresentFenceInfoEXT structure is defined as:

// Provided by VK_EXT_swapchain_maintenance1
typedef struct VkSwapchainPresentFenceInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint32_t swapchainCount;
 const VkFence* pFences;
} VkSwapchainPresentFenceInfoEXT;

3153

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchainCount is the number of swapchains being presented to by this command.

• pFences is a list of fences with swapchainCount entries. Each entry must be VK_NULL_HANDLE or
the handle of a fence to signal when the relevant operations on the associated swapchain have
completed.

The set of queue operations defined by queuing an image for presentation, as well as operations
performed by the presentation engine access the payloads of objects associated with the
presentation operation. The associated objects include:

• The swapchain image, its implicitly bound memory, and any other resources bound to that
memory.

• The wait semaphores specified when queuing the image for presentation.

The application can provide a fence that the implementation will signal when all such queue
operations have completed and the presentation engine has taken a reference to the payload of any
objects it accesses as part of the present operation. For all binary wait semaphores imported by the
presentation engine using the equivalent of reference transference, as described in Importing
Semaphore Payloads, this fence must not signal until all such semaphore payloads have been reset
by the presentation engine.

The application can destroy the wait semaphores associated with a given presentation operation
when at least one of the associated fences is signaled, and can destroy the swapchain when the
fences associated with all past presentation requests referring to that swapchain have signaled.

Fences associated with presentations to the same swapchain on the same VkQueue must be
signaled in the same order as the present operations.

To specify a fence for each swapchain in a present operation, include the
VkSwapchainPresentFenceInfoEXT structure in the pNext chain of the VkPresentInfoKHR structure.

Valid Usage

• VUID-VkSwapchainPresentFenceInfoEXT-swapchainCount-07757
swapchainCount must be equal to VkPresentInfoKHR::swapchainCount

• VUID-VkSwapchainPresentFenceInfoEXT-pFences-07758
Each element of pFences must be unsignaled

• VUID-VkSwapchainPresentFenceInfoEXT-pFences-07759
Each element of pFences must not be associated with any other queue command that has
not yet completed execution on that queue

Valid Usage (Implicit)

• VUID-VkSwapchainPresentFenceInfoEXT-sType-sType

3154

sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_FENCE_INFO_EXT

• VUID-VkSwapchainPresentFenceInfoEXT-pFences-parameter
pFences must be a valid pointer to an array of swapchainCount valid VkFence handles

• VUID-VkSwapchainPresentFenceInfoEXT-swapchainCount-arraylength
swapchainCount must be greater than 0

To release images previously acquired through vkAcquireNextImage2KHR or
vkAcquireNextImageKHR, call:

// Provided by VK_EXT_swapchain_maintenance1
VkResult vkReleaseSwapchainImagesEXT(
 VkDevice device,
 const VkReleaseSwapchainImagesInfoEXT* pReleaseInfo);

• device is the device associated with VkReleaseSwapchainImagesInfoEXT::swapchain.

• pReleaseInfo is a pointer to a VkReleaseSwapchainImagesInfoEXT structure containing
parameters of the release.

Only images that are not in use by the device can be released.

Releasing images is a read-only operation that will not affect the content of the released images.
Upon reacquiring the image, the image contents and its layout will be the same as they were prior
to releasing it. However, if a mechanism other than Vulkan is used to modify the platform window
associated with the swapchain, the content of all presentable images in the swapchain becomes
undefined.

Note

This functionality is useful during swapchain recreation, where acquired images
from the old swapchain can be released instead of presented.

Valid Usage (Implicit)

• VUID-vkReleaseSwapchainImagesEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkReleaseSwapchainImagesEXT-pReleaseInfo-parameter
pReleaseInfo must be a valid pointer to a valid VkReleaseSwapchainImagesInfoEXT
structure

Return Codes

Success

• VK_SUCCESS

3155

Failure

• VK_ERROR_SURFACE_LOST_KHR

The VkReleaseSwapchainImagesInfoEXT structure is defined as:

// Provided by VK_EXT_swapchain_maintenance1
typedef struct VkReleaseSwapchainImagesInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkSwapchainKHR swapchain;
 uint32_t imageIndexCount;
 const uint32_t* pImageIndices;
} VkReleaseSwapchainImagesInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchain is a swapchain to which images are being released.

• imageIndexCount is the number of image indices to be released.

• pImageIndices is a pointer to an array of indices into the array of swapchain’s presentable images,
with imageIndexCount entries.

Valid Usage

• VUID-VkReleaseSwapchainImagesInfoEXT-pImageIndices-07785
Each element of pImageIndices must be the index of a presentable image acquired from
the swapchain specified by swapchain

• VUID-VkReleaseSwapchainImagesInfoEXT-pImageIndices-07786
All uses of presentable images identified by elements of pImageIndices must have
completed execution

Valid Usage (Implicit)

• VUID-VkReleaseSwapchainImagesInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_RELEASE_SWAPCHAIN_IMAGES_INFO_EXT

• VUID-VkReleaseSwapchainImagesInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkReleaseSwapchainImagesInfoEXT-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-VkReleaseSwapchainImagesInfoEXT-pImageIndices-parameter
pImageIndices must be a valid pointer to an array of imageIndexCount uint32_t values

• VUID-VkReleaseSwapchainImagesInfoEXT-imageIndexCount-arraylength
imageIndexCount must be greater than 0

3156

Host Synchronization

• Host access to swapchain must be externally synchronized

34.11. Hdr Metadata
This section describes how to improve color reproduction of content to better reproduce colors as
seen on the reference monitor. Definitions below are from the associated SMPTE 2086, CTA 861.3
and CIE 15:2004 specifications.

To provide Hdr metadata to an implementation, call:

// Provided by VK_EXT_hdr_metadata
void vkSetHdrMetadataEXT(
 VkDevice device,
 uint32_t swapchainCount,
 const VkSwapchainKHR* pSwapchains,
 const VkHdrMetadataEXT* pMetadata);

• device is the logical device where the swapchain(s) were created.

• swapchainCount is the number of swapchains included in pSwapchains.

• pSwapchains is a pointer to an array of swapchainCount VkSwapchainKHR handles.

• pMetadata is a pointer to an array of swapchainCount VkHdrMetadataEXT structures.

The metadata will be applied to the specified VkSwapchainKHR objects at the next
vkQueuePresentKHR call using that VkSwapchainKHR object. The metadata will persist until a
subsequent vkSetHdrMetadataEXT changes it.

Valid Usage (Implicit)

• VUID-vkSetHdrMetadataEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetHdrMetadataEXT-pSwapchains-parameter
pSwapchains must be a valid pointer to an array of swapchainCount valid VkSwapchainKHR
handles

• VUID-vkSetHdrMetadataEXT-pMetadata-parameter
pMetadata must be a valid pointer to an array of swapchainCount valid VkHdrMetadataEXT
structures

• VUID-vkSetHdrMetadataEXT-swapchainCount-arraylength
swapchainCount must be greater than 0

• VUID-vkSetHdrMetadataEXT-pSwapchains-parent
Each element of pSwapchains must have been created, allocated, or retrieved from device

3157

The VkHdrMetadataEXT structure is defined as:

// Provided by VK_EXT_hdr_metadata
typedef struct VkHdrMetadataEXT {
 VkStructureType sType;
 const void* pNext;
 VkXYColorEXT displayPrimaryRed;
 VkXYColorEXT displayPrimaryGreen;
 VkXYColorEXT displayPrimaryBlue;
 VkXYColorEXT whitePoint;
 float maxLuminance;
 float minLuminance;
 float maxContentLightLevel;
 float maxFrameAverageLightLevel;
} VkHdrMetadataEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• displayPrimaryRed is a VkXYColorEXT structure specifying the reference monitor’s red primary
in chromaticity coordinates

• displayPrimaryGreen is a VkXYColorEXT structure specifying the reference monitor’s green
primary in chromaticity coordinates

• displayPrimaryBlue is a VkXYColorEXT structure specifying the reference monitor’s blue
primary in chromaticity coordinates

• whitePoint is a VkXYColorEXT structure specifying the reference monitor’s white-point in
chromaticity coordinates

• maxLuminance is the maximum luminance of the reference monitor in nits

• minLuminance is the minimum luminance of the reference monitor in nits

• maxContentLightLevel is content’s maximum luminance in nits

• maxFrameAverageLightLevel is the maximum frame average light level in nits

Valid Usage (Implicit)

• VUID-VkHdrMetadataEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_HDR_METADATA_EXT

• VUID-VkHdrMetadataEXT-pNext-pNext
pNext must be NULL

Note

The validity and use of this data is outside the scope of Vulkan.

The VkXYColorEXT structure is defined as:

3158

// Provided by VK_EXT_hdr_metadata
typedef struct VkXYColorEXT {
 float x;
 float y;
} VkXYColorEXT;

• x is the x chromaticity coordinate.

• y is the y chromaticity coordinate.

Chromaticity coordinates are as specified in CIE 15:2004 “Calculation of chromaticity coordinates”
(Section 7.3) and are limited to between 0 and 1 for real colors for the reference monitor.

34.12. Present Barrier
The VK_NV_present_barrier extension allows applications to synchronize corresponding
presentation requests across multiple swapchains using the present barrier. A swapchain is said to
be using the present barrier if the swapchain is created by adding a
VkSwapchainPresentBarrierCreateInfoNV structure to the pNext chain of the
VkSwapchainCreateInfoKHR structure, and setting VkSwapchainPresentBarrierCreateInfoNV
::presentBarrierEnable to true.

A set of corresponding presentation requests is defined as exactly one queued presentation request
associated with each swapchain using the present barrier, whether or not that queued request has
executed. A given presentation request is added, when created by calling vkQueuePresentKHR and
specifying a swapchain using the present barrier, either to the oldest existing set of corresponding
requests for which there is no existing member associated with the request’s swapchain, or to a
new set of corresponding requests if no such set exists.

A set of corresponding requests is said to be full when it contains one request from each swapchain
using the present barrier. Queued presentation of an image to a swapchain using the present
barrier is deferred by the implementation until the set of corresponding requests is full, and the
visibility operations associated with all requests in that set, as described by vkQueuePresentKHR,
have completed.

Additionally, the set of swapchains using the present barrier can be in the same process, or
different processes running under the same operating system. And if the required synchronization
hardware is connected and correctly configured, this extension also supports applications to
synchronize corresponding presentation requests using the present barrier across distributed
systems. However, the configuration mechanism of the required hardware is outside the scope of
the Vulkan specification and this extension.

The VkSwapchainPresentBarrierCreateInfoNV structure is defined as:

// Provided by VK_NV_present_barrier
typedef struct VkSwapchainPresentBarrierCreateInfoNV {
 VkStructureType sType;
 void* pNext;

3159

 VkBool32 presentBarrierEnable;
} VkSwapchainPresentBarrierCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentBarrierEnable is a boolean value indicating a request for using the present barrier.

If the pNext chain of VkSwapchainCreateInfoKHR does not include this structure, the default value
for presentBarrierEnable is VK_FALSE, meaning the swapchain does not request to use the present
barrier. Additionally, when recreating a swapchain that was using the present barrier, and the
pNext chain of VkSwapchainCreateInfoKHR does not include this structure, it means the swapchain
will stop using the present barrier.

Valid Usage (Implicit)

• VUID-VkSwapchainPresentBarrierCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_BARRIER_CREATE_INFO_NV

3160

Chapter 35. Deferred Host Operations
Certain Vulkan commands are inherently expensive for the host CPU to execute. It is often desirable
to offload such work onto background threads, and to parallelize the work across multiple CPUs.
The concept of deferred operations allows applications and drivers to coordinate the execution of
expensive host commands using an application-managed thread pool.

The VK_KHR_deferred_host_operations extension defines the infrastructure and usage patterns for
deferrable commands, but does not specify any commands as deferrable. This is left to additional
dependent extensions. Commands must not be deferred unless the deferral is specifically allowed
by another extension which depends on VK_KHR_deferred_host_operations. This specification will
refer to such extensions as deferral extensions.

35.1. Requesting Deferral
When an application requests an operation deferral, the implementation may defer the operation.
When deferral is requested and the implementation defers any operation, the implementation
must return VK_OPERATION_DEFERRED_KHR as the success code if no errors occurred. When deferral is
requested, the implementation should defer the operation when the workload is significant,
however if the implementation chooses not to defer any of the requested operations and instead
executes all of them immediately, the implementation must return VK_OPERATION_NOT_DEFERRED_KHR
as the success code if no errors occurred.

A deferred operation is created complete with an initial result value of VK_SUCCESS. The deferred
operation becomes pending when an operation has been successfully deferred with that deferred
operation object.

A deferred operation is considered pending until the deferred operation completes. A pending
deferred operation becomes complete when it has been fully executed by one or more threads.
Pending deferred operations will never complete until they are joined by an application thread,
using vkDeferredOperationJoinKHR. Applications can join multiple threads to the same deferred
operation, enabling concurrent execution of subtasks within that operation.

The application can query the status of a VkDeferredOperationKHR using the
vkGetDeferredOperationMaxConcurrencyKHR or vkGetDeferredOperationResultKHR commands.

Parameters to the command requesting a deferred operation may be accessed by the
implementation at any time until the deferred operation enters the complete state. The application
must obey the following rules while a deferred operation is pending:

• Externally synchronized parameters must not be accessed.

• Pointer parameters must not be modified (e.g. reallocated/freed).

• The contents of pointer parameters which may be read by the command must not be modified.

• The contents of pointer parameters which may be written by the command must not be read.

• Vulkan object parameters must not be passed as externally synchronized parameters to any
other command.

3161

When the deferred operation is complete, the application should call
vkGetDeferredOperationResultKHR to obtain the VkResult indicating success or failure of the
operation. The VkResult value returned will be one of the values that the command requesting the
deferred operation is able to return. Writes to output parameters of the requesting command will
happen-before the deferred operation is complete.

When a deferral is requested for a command, the implementation may perform memory
management operations on the allocator supplied to vkCreateDeferredOperationKHR for the
deferred operation object, as described in the Memory Allocation chapter. Such allocations must
occur on the thread which requests deferral.

If an allocator was supplied for the deferred command at the time of the deferral request, then the
implementation may perform memory management operations on this allocator during the
execution of vkDeferredOperationJoinKHR. These operations may occur concurrently and may be
performed by any joined thread. The application must ensure that the supplied allocator is able to
operate correctly under these conditions.

35.2. Deferred Host Operations API
The VkDeferredOperationKHR handle is defined as:

// Provided by VK_KHR_deferred_host_operations
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDeferredOperationKHR)

This handle refers to a tracking structure which manages the execution state for a deferred
command.

To construct the tracking object for a deferred command, call:

// Provided by VK_KHR_deferred_host_operations
VkResult vkCreateDeferredOperationKHR(
 VkDevice device,
 const VkAllocationCallbacks* pAllocator,
 VkDeferredOperationKHR* pDeferredOperation);

• device is the device which owns operation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDeferredOperation is a pointer to a handle in which the created VkDeferredOperationKHR is
returned.

Valid Usage (Implicit)

• VUID-vkCreateDeferredOperationKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateDeferredOperationKHR-pAllocator-parameter

3162

If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDeferredOperationKHR-pDeferredOperation-parameter
pDeferredOperation must be a valid pointer to a VkDeferredOperationKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

To assign a thread to a deferred operation, call:

// Provided by VK_KHR_deferred_host_operations
VkResult vkDeferredOperationJoinKHR(
 VkDevice device,
 VkDeferredOperationKHR operation);

• device is the device which owns operation.

• operation is the deferred operation that the calling thread should work on.

The vkDeferredOperationJoinKHR command will execute a portion of the deferred operation on the
calling thread.

The return value will be one of the following:

• A return value of VK_SUCCESS indicates that operation is complete. The application should use
vkGetDeferredOperationResultKHR to retrieve the result of operation.

• A return value of VK_THREAD_DONE_KHR indicates that the deferred operation is not complete, but
there is no work remaining to assign to threads. Future calls to vkDeferredOperationJoinKHR
are not necessary and will simply harm performance. This situation may occur when other
threads executing vkDeferredOperationJoinKHR are about to complete operation, and the
implementation is unable to partition the workload any further.

• A return value of VK_THREAD_IDLE_KHR indicates that the deferred operation is not complete, and
there is no work for the thread to do at the time of the call. This situation may occur if the
operation encounters a temporary reduction in parallelism. By returning VK_THREAD_IDLE_KHR,
the implementation is signaling that it expects that more opportunities for parallelism will
emerge as execution progresses, and that future calls to vkDeferredOperationJoinKHR can be
beneficial. In the meantime, the application can perform other work on the calling thread.

Implementations must guarantee forward progress by enforcing the following invariants:

1. If only one thread has invoked vkDeferredOperationJoinKHR on a given operation, that thread

3163

must execute the operation to completion and return VK_SUCCESS.

2. If multiple threads have concurrently invoked vkDeferredOperationJoinKHR on the same
operation, then at least one of them must complete the operation and return VK_SUCCESS.

Valid Usage (Implicit)

• VUID-vkDeferredOperationJoinKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkDeferredOperationJoinKHR-operation-parameter
operation must be a valid VkDeferredOperationKHR handle

• VUID-vkDeferredOperationJoinKHR-operation-parent
operation must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_THREAD_DONE_KHR

• VK_THREAD_IDLE_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

When a deferred operation is completed, the application can destroy the tracking object by calling:

// Provided by VK_KHR_deferred_host_operations
void vkDestroyDeferredOperationKHR(
 VkDevice device,
 VkDeferredOperationKHR operation,
 const VkAllocationCallbacks* pAllocator);

• device is the device which owns operation.

• operation is the completed operation to be destroyed.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyDeferredOperationKHR-operation-03434
If VkAllocationCallbacks were provided when operation was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyDeferredOperationKHR-operation-03435

3164

If no VkAllocationCallbacks were provided when operation was created, pAllocator must
be NULL

• VUID-vkDestroyDeferredOperationKHR-operation-03436
operation must be completed

Valid Usage (Implicit)

• VUID-vkDestroyDeferredOperationKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyDeferredOperationKHR-operation-parameter
If operation is not VK_NULL_HANDLE, operation must be a valid
VkDeferredOperationKHR handle

• VUID-vkDestroyDeferredOperationKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDeferredOperationKHR-operation-parent
If operation is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to operation must be externally synchronized

To query the number of additional threads that can usefully be joined to a deferred operation, call:

// Provided by VK_KHR_deferred_host_operations
uint32_t vkGetDeferredOperationMaxConcurrencyKHR(
 VkDevice device,
 VkDeferredOperationKHR operation);

• device is the device which owns operation.

• operation is the deferred operation to be queried.

The returned value is the maximum number of threads that can usefully execute a deferred
operation concurrently, reported for the state of the deferred operation at the point this command
is called. This value is intended to be used to better schedule work onto available threads.
Applications can join any number of threads to the deferred operation and expect it to eventually
complete, though excessive joins may return VK_THREAD_DONE_KHR immediately, performing no useful
work.

If operation is complete, vkGetDeferredOperationMaxConcurrencyKHR returns zero.

If operation is currently joined to any threads, the value returned by this command may

3165

immediately be out of date.

If operation is pending, implementations must not return zero unless at least one thread is
currently executing vkDeferredOperationJoinKHR on operation. If there are such threads, the
implementation should return an estimate of the number of additional threads which it could
profitably use.

Implementations may return 232-1 to indicate that the maximum concurrency is unknown and
cannot be easily derived. Implementations may return values larger than the maximum
concurrency available on the host CPU. In these situations, an application should clamp the return
value rather than oversubscribing the machine.

Note

The recommended usage pattern for applications is to query this value once, after
deferral, and schedule no more than the specified number of threads to join the
operation. Each time a joined thread receives VK_THREAD_IDLE_KHR, the application
should schedule an additional join at some point in the future, but is not required
to do so.

Valid Usage (Implicit)

• VUID-vkGetDeferredOperationMaxConcurrencyKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeferredOperationMaxConcurrencyKHR-operation-parameter
operation must be a valid VkDeferredOperationKHR handle

• VUID-vkGetDeferredOperationMaxConcurrencyKHR-operation-parent
operation must have been created, allocated, or retrieved from device

The vkGetDeferredOperationResultKHR function is defined as:

// Provided by VK_KHR_deferred_host_operations
VkResult vkGetDeferredOperationResultKHR(
 VkDevice device,
 VkDeferredOperationKHR operation);

• device is the device which owns operation.

• operation is the operation whose deferred result is being queried.

If no command has been deferred on operation, vkGetDeferredOperationResultKHR returns
VK_SUCCESS.

If the deferred operation is pending, vkGetDeferredOperationResultKHR returns VK_NOT_READY.

If the deferred operation is complete, it returns the appropriate return value from the original
command. This value must be one of the VkResult values which could have been returned by the
original command if the operation had not been deferred.

3166

Valid Usage (Implicit)

• VUID-vkGetDeferredOperationResultKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeferredOperationResultKHR-operation-parameter
operation must be a valid VkDeferredOperationKHR handle

• VUID-vkGetDeferredOperationResultKHR-operation-parent
operation must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

3167

Chapter 36. Private Data
The private data extension provides a way for users to associate arbitrary user defined data with
Vulkan objects. This association is accomplished by storing 64-bit unsigned integers of user defined
data in private data slots. A private data slot represents a storage allocation for one data item for
each child object of the device.

An application can reserve private data slots at device creation. To reserve private data slots, insert
a VkDevicePrivateDataCreateInfo in the pNext chain in VkDeviceCreateInfo before device creation.
Multiple VkDevicePrivateDataCreateInfo structures can be chained together, and the sum of the
requested slots will be reserved. This is an exception to the specified valid usage for structure
pointer chains. Reserving slots in this manner is not strictly necessary but it may improve
performance.

Private data slots are represented by VkPrivateDataSlot handles:

// Provided by VK_VERSION_1_3
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPrivateDataSlot)

or the equivalent

// Provided by VK_EXT_private_data
typedef VkPrivateDataSlot VkPrivateDataSlotEXT;

To create a private data slot, call:

// Provided by VK_VERSION_1_3
VkResult vkCreatePrivateDataSlot(
 VkDevice device,
 const VkPrivateDataSlotCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPrivateDataSlot* pPrivateDataSlot);

or the equivalent command

// Provided by VK_EXT_private_data
VkResult vkCreatePrivateDataSlotEXT(
 VkDevice device,
 const VkPrivateDataSlotCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPrivateDataSlot* pPrivateDataSlot);

• device is the logical device associated with the creation of the object(s) holding the private data
slot.

3168

• pCreateInfo is a pointer to a VkPrivateDataSlotCreateInfo

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPrivateDataSlot is a pointer to a VkPrivateDataSlot handle in which the resulting private data
slot is returned

Valid Usage

• VUID-vkCreatePrivateDataSlot-privateData-04564
The privateData feature must be enabled

Valid Usage (Implicit)

• VUID-vkCreatePrivateDataSlot-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreatePrivateDataSlot-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkPrivateDataSlotCreateInfo structure

• VUID-vkCreatePrivateDataSlot-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreatePrivateDataSlot-pPrivateDataSlot-parameter
pPrivateDataSlot must be a valid pointer to a VkPrivateDataSlot handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPrivateDataSlotCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPrivateDataSlotCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPrivateDataSlotCreateFlags flags;
} VkPrivateDataSlotCreateInfo;

or the equivalent

// Provided by VK_EXT_private_data

3169

typedef VkPrivateDataSlotCreateInfo VkPrivateDataSlotCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

Valid Usage (Implicit)

• VUID-VkPrivateDataSlotCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO

• VUID-VkPrivateDataSlotCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPrivateDataSlotCreateInfo-flags-zerobitmask
flags must be 0

// Provided by VK_VERSION_1_3
typedef VkFlags VkPrivateDataSlotCreateFlags;

or the equivalent

// Provided by VK_EXT_private_data
typedef VkPrivateDataSlotCreateFlags VkPrivateDataSlotCreateFlagsEXT;

VkPrivateDataSlotCreateFlags is a bitmask type for setting a mask, but is currently reserved for
future use.

To destroy a private data slot, call:

// Provided by VK_VERSION_1_3
void vkDestroyPrivateDataSlot(
 VkDevice device,
 VkPrivateDataSlot privateDataSlot,
 const VkAllocationCallbacks* pAllocator);

or the equivalent command

// Provided by VK_EXT_private_data
void vkDestroyPrivateDataSlotEXT(
 VkDevice device,
 VkPrivateDataSlot privateDataSlot,
 const VkAllocationCallbacks* pAllocator);

3170

• device is the logical device associated with the creation of the object(s) holding the private data
slot.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• privateDataSlot is the private data slot to destroy.

Valid Usage

• VUID-vkDestroyPrivateDataSlot-privateDataSlot-04062
If VkAllocationCallbacks were provided when privateDataSlot was created, a compatible
set of callbacks must be provided here

• VUID-vkDestroyPrivateDataSlot-privateDataSlot-04063
If no VkAllocationCallbacks were provided when privateDataSlot was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyPrivateDataSlot-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyPrivateDataSlot-privateDataSlot-parameter
If privateDataSlot is not VK_NULL_HANDLE, privateDataSlot must be a valid
VkPrivateDataSlot handle

• VUID-vkDestroyPrivateDataSlot-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyPrivateDataSlot-privateDataSlot-parent
If privateDataSlot is a valid handle, it must have been created, allocated, or retrieved
from device

Host Synchronization

• Host access to privateDataSlot must be externally synchronized

To store user defined data in a slot associated with a Vulkan object, call:

// Provided by VK_VERSION_1_3
VkResult vkSetPrivateData(
 VkDevice device,
 VkObjectType objectType,
 uint64_t objectHandle,
 VkPrivateDataSlot privateDataSlot,
 uint64_t data);

3171

or the equivalent command

// Provided by VK_EXT_private_data
VkResult vkSetPrivateDataEXT(
 VkDevice device,
 VkObjectType objectType,
 uint64_t objectHandle,
 VkPrivateDataSlot privateDataSlot,
 uint64_t data);

• device is the device that created the object.

• objectType is a VkObjectType specifying the type of object to associate data with.

• objectHandle is a handle to the object to associate data with.

• privateDataSlot is a handle to a VkPrivateDataSlot specifying location of private data storage.

• data is user defined data to associate the object with. This data will be stored at privateDataSlot.

Valid Usage

• VUID-vkSetPrivateData-objectHandle-04016
objectHandle must be device or a child of device

• VUID-vkSetPrivateData-objectHandle-04017
objectHandle must be a valid handle to an object of type objectType

Valid Usage (Implicit)

• VUID-vkSetPrivateData-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetPrivateData-objectType-parameter
objectType must be a valid VkObjectType value

• VUID-vkSetPrivateData-privateDataSlot-parameter
privateDataSlot must be a valid VkPrivateDataSlot handle

• VUID-vkSetPrivateData-privateDataSlot-parent
privateDataSlot must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

3172

To retrieve user defined data from a slot associated with a Vulkan object, call:

// Provided by VK_VERSION_1_3
void vkGetPrivateData(
 VkDevice device,
 VkObjectType objectType,
 uint64_t objectHandle,
 VkPrivateDataSlot privateDataSlot,
 uint64_t* pData);

or the equivalent command

// Provided by VK_EXT_private_data
void vkGetPrivateDataEXT(
 VkDevice device,
 VkObjectType objectType,
 uint64_t objectHandle,
 VkPrivateDataSlot privateDataSlot,
 uint64_t* pData);

• device is the device that created the object

• objectType is a VkObjectType specifying the type of object data is associated with.

• objectHandle is a handle to the object data is associated with.

• privateDataSlot is a handle to a VkPrivateDataSlot specifying location of private data pointer
storage.

• pData is a pointer to specify where user data is returned. 0 will be written in the absence of a
previous call to vkSetPrivateData using the object specified by objectHandle.

Note

Due to platform details on Android, implementations might not be able to reliably
return 0 from calls to vkGetPrivateData for VkSwapchainKHR objects on which
vkSetPrivateData has not previously been called. This erratum is exclusive to the
Android platform and objects of type VkSwapchainKHR.

Valid Usage

• VUID-vkGetPrivateData-objectType-04018
objectHandle must be device or a child of device

• VUID-vkGetPrivateData-objectHandle-09498
objectHandle must be a valid handle to an object of type objectType

3173

Valid Usage (Implicit)

• VUID-vkGetPrivateData-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPrivateData-objectType-parameter
objectType must be a valid VkObjectType value

• VUID-vkGetPrivateData-privateDataSlot-parameter
privateDataSlot must be a valid VkPrivateDataSlot handle

• VUID-vkGetPrivateData-pData-parameter
pData must be a valid pointer to a uint64_t value

• VUID-vkGetPrivateData-privateDataSlot-parent
privateDataSlot must have been created, allocated, or retrieved from device

3174

Chapter 37. Acceleration Structures

37.1. Acceleration Structures
Acceleration structures are data structures used by the implementation to efficiently manage scene
geometry as it is traversed during a ray tracing query. The application is responsible for managing
acceleration structure objects (see Acceleration Structures), including allocation, destruction,
executing builds or updates, and synchronizing resources used during ray tracing queries.

There are two types of acceleration structures, top level acceleration structures and bottom level
acceleration structures.

An acceleration structure is considered to be constructed if an acceleration structure build
command or copy command has been executed with the given acceleration structure as the
destination.

Top-Level Acceleration Structure

Bottom-Level

Acceleration

Structure

Bottom-Level

Acceleration

Structure

Transform
and shading
information

Transform
and shading
information

Transform
and shading
information

Figure 27. Acceleration Structure

Caption

The diagram shows the relationship between top and bottom level acceleration structures.

37.1.1. Geometry

Geometries refer to a triangle or axis-aligned bounding box.

3175

37.1.2. Top Level Acceleration Structures

Opaque acceleration structure for an array of instances. The descriptor or device address
referencing this is the starting point for traversal.

The top level acceleration structure takes a reference to any bottom level acceleration structure
referenced by its instances. Those bottom level acceleration structure objects must be valid when
the top level acceleration structure is accessed.

37.1.3. Bottom Level Acceleration Structures

Opaque acceleration structure for an array of geometries.

37.1.4. Acceleration Structure Update Rules

The API defines two types of operations to produce acceleration structures from geometry:

• A build operation is used to construct an acceleration structure.

• An update operation is used to modify an existing acceleration structure.

An update operation imposes certain constraints on the input, in exchange for considerably faster
execution. When performing an update, the application is required to provide a full description of
the acceleration structure, but is prohibited from changing anything other than instance
definitions, transform matrices, and vertex or AABB positions. All other aspects of the description
must exactly match the one from the original build.

More precisely, the application must not use an update operation to do any of the following:

• Change primitives or instances from active to inactive, or vice versa (as defined in Inactive
Primitives and Instances).

• Change the index or vertex formats of triangle geometry.

• Change triangle geometry transform pointers from null to non-null or vice versa.

• Change the number of geometries or instances in the structure.

• Change the geometry flags for any geometry in the structure.

• Change the number of vertices or primitives for any geometry in the structure.

If the original acceleration structure was built using opacity micromaps and
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_DATA_UPDATE_EXT was set in flags, the
application must provide the corresponding micromap information to the update operation. The
application is prohibited from changing anything other than the specific opacity values assigned to
the triangles.

More precisely, the application must not use an update operation to do any of the following:

• Remove micromaps or VkOpacityMicromapSpecialIndexEXT values from a geometry which
previously had them, or vice versa.

• Change between use of VkOpacityMicromapSpecialIndexEXT values and explicit micro-map

3176

triangles.

• Change the subdivision level or format of the micromap triangle associated with any
acceleration-structure triangle.

If the original acceleration structure was built using opacity micromaps and
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_UPDATE_EXT was set in flags, the
application must provide a micromap to the update operation.

If the original acceleration structure was built using opacity micromaps and neither opacity
micromap update flag is set the application must provide the original micromap to the update
operation.

If the original acceleration structure was built using displacement micromaps and
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISPLACEMENT_MICROMAP_UPDATE_NV was set in flags, the
application must provide a displacement micromap to the update operation.

If the original acceleration structure was built using displacement micromaps and the displacement
micromap update flag is not set the application must provide the original micromap to the update
operation.

37.1.5. Inactive Primitives and Instances

Acceleration structures allow the use of particular input values to signal inactive primitives or
instances.

An inactive triangle is one for which the first (X) component of any vertex is NaN. If any other
vertex component is NaN, and the first is not, the behavior is undefined. If the vertex format does
not have a NaN representation, then all triangles are considered active.

An inactive instance is one whose acceleration structure reference is 0.

An inactive AABB is one for which the minimum X coordinate is NaN. If any other component is
NaN, and the first is not, the behavior is undefined.

In the above definitions, “NaN” refers to any type of NaN. Signaling, non-signaling, quiet, loud, or
otherwise.

An inactive object is considered invisible to all rays, and should not be represented in the
acceleration structure. Implementations should ensure that the presence of inactive objects does
not seriously degrade traversal performance.

Inactive objects are counted in the auto-generated index sequences which are provided to shaders
via InstanceId and PrimitiveId SPIR-V decorations. This allows objects in the scene to change freely
between the active and inactive states, without affecting the layout of any arrays which are being
indexed using the ID values.

Any transition between the active and inactive states requires a full acceleration structure rebuild.
Applications must not perform an acceleration structure update where an object is active in the
source acceleration structure but would be inactive in the destination, or vice versa.

3177

37.1.6. Building Acceleration Structures

To build an acceleration structure call:

// Provided by VK_NV_ray_tracing
void vkCmdBuildAccelerationStructureNV(
 VkCommandBuffer commandBuffer,
 const VkAccelerationStructureInfoNV* pInfo,
 VkBuffer instanceData,
 VkDeviceSize instanceOffset,
 VkBool32 update,
 VkAccelerationStructureNV dst,
 VkAccelerationStructureNV src,
 VkBuffer scratch,
 VkDeviceSize scratchOffset);

• commandBuffer is the command buffer into which the command will be recorded.

• pInfo contains the shared information for the acceleration structure’s structure.

• instanceData is the buffer containing an array of VkAccelerationStructureInstanceKHR
structures defining acceleration structures. This parameter must be NULL for bottom level
acceleration structures.

• instanceOffset is the offset in bytes (relative to the start of instanceData) at which the instance
data is located.

• update specifies whether to update the dst acceleration structure with the data in src.

• dst is a pointer to the target acceleration structure for the build.

• src is a pointer to an existing acceleration structure that is to be used to update the dst
acceleration structure.

• scratch is the VkBuffer that will be used as scratch memory for the build.

• scratchOffset is the offset in bytes relative to the start of scratch that will be used as a scratch
memory.

Accesses to dst, src, and scratch must be synchronized with the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage and an access type of
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR or VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR.

Valid Usage

• VUID-vkCmdBuildAccelerationStructureNV-geometryCount-02241
geometryCount must be less than or equal to VkPhysicalDeviceRayTracingPropertiesNV
::maxGeometryCount

• VUID-vkCmdBuildAccelerationStructureNV-dst-02488
dst must have been created with compatible VkAccelerationStructureInfoNV where
VkAccelerationStructureInfoNV::type and VkAccelerationStructureInfoNV::flags are
identical, VkAccelerationStructureInfoNV::instanceCount and

3178

VkAccelerationStructureInfoNV::geometryCount for dst are greater than or equal to the
build size and each geometry in VkAccelerationStructureInfoNV::pGeometries for dst has
greater than or equal to the number of vertices, indices, and AABBs

• VUID-vkCmdBuildAccelerationStructureNV-update-02489
If update is VK_TRUE, src must not be VK_NULL_HANDLE

• VUID-vkCmdBuildAccelerationStructureNV-update-02490
If update is VK_TRUE, src must have previously been constructed with
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_NV set in
VkAccelerationStructureInfoNV::flags in the original build

• VUID-vkCmdBuildAccelerationStructureNV-update-02491
If update is VK_FALSE, the size member of the VkMemoryRequirements structure returned
from a call to vkGetAccelerationStructureMemoryRequirementsNV with
VkAccelerationStructureMemoryRequirementsInfoNV::accelerationStructure set to dst
and VkAccelerationStructureMemoryRequirementsInfoNV::type set to
VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_NV must be less than
or equal to the size of scratch minus scratchOffset

• VUID-vkCmdBuildAccelerationStructureNV-update-02492
If update is VK_TRUE, the size member of the VkMemoryRequirements structure returned
from a call to vkGetAccelerationStructureMemoryRequirementsNV with
VkAccelerationStructureMemoryRequirementsInfoNV::accelerationStructure set to dst
and VkAccelerationStructureMemoryRequirementsInfoNV::type set to
VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_UPDATE_SCRATCH_NV must be less than
or equal to the size of scratch minus scratchOffset

• VUID-vkCmdBuildAccelerationStructureNV-scratch-03522
scratch must have been created with VK_BUFFER_USAGE_RAY_TRACING_BIT_NV usage flag

• VUID-vkCmdBuildAccelerationStructureNV-instanceData-03523
If instanceData is not VK_NULL_HANDLE, instanceData must have been created with
VK_BUFFER_USAGE_RAY_TRACING_BIT_NV usage flag

• VUID-vkCmdBuildAccelerationStructureNV-accelerationStructureReference-03786
Each VkAccelerationStructureInstanceKHR::accelerationStructureReference value in
instanceData must be a valid device address containing a value obtained from
vkGetAccelerationStructureHandleNV

• VUID-vkCmdBuildAccelerationStructureNV-update-03524
If update is VK_TRUE, then objects that were previously active must not be made inactive as
per Inactive Primitives and Instances

• VUID-vkCmdBuildAccelerationStructureNV-update-03525
If update is VK_TRUE, then objects that were previously inactive must not be made active as
per Inactive Primitives and Instances

• VUID-vkCmdBuildAccelerationStructureNV-update-03526
If update is VK_TRUE, the src and dst objects must either be the same object or not have any
memory aliasing

• VUID-vkCmdBuildAccelerationStructureNV-dst-07787
dst must be bound completely and contiguously to a single VkDeviceMemory object via

3179

vkBindAccelerationStructureMemoryNV

Valid Usage (Implicit)

• VUID-vkCmdBuildAccelerationStructureNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBuildAccelerationStructureNV-pInfo-parameter
pInfo must be a valid pointer to a valid VkAccelerationStructureInfoNV structure

• VUID-vkCmdBuildAccelerationStructureNV-instanceData-parameter
If instanceData is not VK_NULL_HANDLE, instanceData must be a valid VkBuffer handle

• VUID-vkCmdBuildAccelerationStructureNV-dst-parameter
dst must be a valid VkAccelerationStructureNV handle

• VUID-vkCmdBuildAccelerationStructureNV-src-parameter
If src is not VK_NULL_HANDLE, src must be a valid VkAccelerationStructureNV handle

• VUID-vkCmdBuildAccelerationStructureNV-scratch-parameter
scratch must be a valid VkBuffer handle

• VUID-vkCmdBuildAccelerationStructureNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBuildAccelerationStructureNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdBuildAccelerationStructureNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBuildAccelerationStructureNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBuildAccelerationStructureNV-commonparent
Each of commandBuffer, dst, instanceData, scratch, and src that are valid handles of non-
ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

3180

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

To build acceleration structures call:

// Provided by VK_KHR_acceleration_structure
void vkCmdBuildAccelerationStructuresKHR(
 VkCommandBuffer commandBuffer,
 uint32_t infoCount,
 const VkAccelerationStructureBuildGeometryInfoKHR* pInfos,
 const VkAccelerationStructureBuildRangeInfoKHR* const* ppBuildRangeInfos);

• commandBuffer is the command buffer into which the command will be recorded.

• infoCount is the number of acceleration structures to build. It specifies the number of the pInfos
structures and ppBuildRangeInfos pointers that must be provided.

• pInfos is a pointer to an array of infoCount VkAccelerationStructureBuildGeometryInfoKHR
structures defining the geometry used to build each acceleration structure.

• ppBuildRangeInfos is a pointer to an array of infoCount pointers to arrays of
VkAccelerationStructureBuildRangeInfoKHR structures. Each ppBuildRangeInfos[i] is a pointer
to an array of pInfos[i].geometryCount VkAccelerationStructureBuildRangeInfoKHR structures
defining dynamic offsets to the addresses where geometry data is stored, as defined by pInfos[i].

The vkCmdBuildAccelerationStructuresKHR command provides the ability to initiate multiple
acceleration structures builds, however there is no ordering or synchronization implied between
any of the individual acceleration structure builds.

Note

This means that an application cannot build a top-level acceleration structure in
the same vkCmdBuildAccelerationStructuresKHR call as the associated bottom-
level or instance acceleration structures are being built. There also cannot be any
memory aliasing between any acceleration structure memories or scratch
memories being used by any of the builds.

Accesses to the acceleration structure scratch buffers as identified by the
VkAccelerationStructureBuildGeometryInfoKHR::scratchData buffer device addresses must be
synchronized with the VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage and
an access type of (VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR |
VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR). Accesses to each
VkAccelerationStructureBuildGeometryInfoKHR::srcAccelerationStructure and
VkAccelerationStructureBuildGeometryInfoKHR::dstAccelerationStructure must be synchronized

3181

with the VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage and an access type
of VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR or
VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, as appropriate.

Accesses to other input buffers as identified by any used values of
VkAccelerationStructureGeometryMotionTrianglesDataNV::vertexData,
VkAccelerationStructureGeometryTrianglesDataKHR::vertexData,
VkAccelerationStructureGeometryTrianglesDataKHR::indexData,
VkAccelerationStructureGeometryTrianglesDataKHR::transformData,
VkAccelerationStructureGeometryAabbsDataKHR::data, and
VkAccelerationStructureGeometryInstancesDataKHR::data must be synchronized with the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage and an access type of
VK_ACCESS_SHADER_READ_BIT.

Valid Usage

• VUID-vkCmdBuildAccelerationStructuresKHR-accelerationStructure-08923
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

• VUID-vkCmdBuildAccelerationStructuresKHR-mode-04628
The mode member of each element of pInfos must be a valid
VkBuildAccelerationStructureModeKHR value

• VUID-vkCmdBuildAccelerationStructuresKHR-srcAccelerationStructure-04629
If the srcAccelerationStructure member of any element of pInfos is not
VK_NULL_HANDLE, the srcAccelerationStructure member must be a valid
VkAccelerationStructureKHR handle

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-04630
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure member
must not be VK_NULL_HANDLE

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03403
The srcAccelerationStructure member of any element of pInfos must not be the same
acceleration structure as the dstAccelerationStructure member of any other element of
pInfos

• VUID-vkCmdBuildAccelerationStructuresKHR-dstAccelerationStructure-03698
The dstAccelerationStructure member of any element of pInfos must not be the same
acceleration structure as the dstAccelerationStructure member of any other element of
pInfos

• VUID-vkCmdBuildAccelerationStructuresKHR-dstAccelerationStructure-03800
The dstAccelerationStructure member of any element of pInfos must be a valid
VkAccelerationStructureKHR handle

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03699
For each element of pInfos, if its type member is
VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, its dstAccelerationStructure member

3182

must have been created with a value of VkAccelerationStructureCreateInfoKHR::type
equal to either VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR or
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03700
For each element of pInfos, if its type member is
VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, its dstAccelerationStructure member
must have been created with a value of VkAccelerationStructureCreateInfoKHR::type
equal to either VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR or
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03663
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, inactive primitives in its
srcAccelerationStructure member must not be made active

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03664
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, active primitives in its
srcAccelerationStructure member must not be made inactive

• VUID-vkCmdBuildAccelerationStructuresKHR-None-03407
The dstAccelerationStructure member of any element of pInfos must not be referenced
by the geometry.instances.data member of any element of pGeometries or ppGeometries
with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR in any other element of pInfos

• VUID-vkCmdBuildAccelerationStructuresKHR-dstAccelerationStructure-03701
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
srcAccelerationStructure member of any other element of pInfos with a mode equal to
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, which is accessed by this command

• VUID-vkCmdBuildAccelerationStructuresKHR-dstAccelerationStructure-03702
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
dstAccelerationStructure member of any other element of pInfos, which is accessed by
this command

• VUID-vkCmdBuildAccelerationStructuresKHR-dstAccelerationStructure-03703
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
scratchData member of any element of pInfos (including the same element), which is
accessed by this command

• VUID-vkCmdBuildAccelerationStructuresKHR-scratchData-03704
The range of memory backing the scratchData member of any element of pInfos that is
accessed by this command must not overlap the memory backing the scratchData
member of any other element of pInfos, which is accessed by this command

• VUID-vkCmdBuildAccelerationStructuresKHR-scratchData-03705
The range of memory backing the scratchData member of any element of pInfos that is
accessed by this command must not overlap the memory backing the
srcAccelerationStructure member of any element of pInfos with a mode equal to

3183

VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR (including the same element), which is
accessed by this command

• VUID-vkCmdBuildAccelerationStructuresKHR-dstAccelerationStructure-03706
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing any
acceleration structure referenced by the geometry.instances.data member of any element
of pGeometries or ppGeometries with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR in
any other element of pInfos, which is accessed by this command

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03667
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure member
must have previously been constructed with
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR set in
VkAccelerationStructureBuildGeometryInfoKHR::flags in the build

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03668
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure and
dstAccelerationStructure members must either be the same
VkAccelerationStructureKHR, or not have any memory aliasing

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03758
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its geometryCount member must have
the same value which was specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03759
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its flags member must have the same
value which was specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03760
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its type member must have the same
value which was specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03761
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, its geometryType member must have the same value which was
specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03762
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, its flags member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03763

3184

For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.vertexFormat member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03764
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.maxVertex member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03765
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.indexType member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03766
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, if its
geometry.triangles.transformData address was NULL when srcAccelerationStructure was
last built, then it must be NULL

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03767
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, if its
geometry.triangles.transformData address was not NULL when srcAccelerationStructure
was last built, then it must not be NULL

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03768
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, and
geometry.triangles.indexType is not VK_INDEX_TYPE_NONE_KHR, then the value of each index
referenced must be the same as the corresponding index value when
srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-primitiveCount-03769
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each

3185

VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, the primitiveCount member of its corresponding
VkAccelerationStructureBuildRangeInfoKHR structure must have the same value which was
specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-firstVertex-03770
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if the geometry uses indices, the firstVertex member of its
corresponding VkAccelerationStructureBuildRangeInfoKHR structure must have the same
value which was specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03801
For each element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, the corresponding ppBuildRangeInfos[i][j].primitiveCount
must be less than or equal to VkPhysicalDeviceAccelerationStructurePropertiesKHR
::maxInstanceCount

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03707
For each element of pInfos, the buffer used to create its dstAccelerationStructure member
must be bound to device memory

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03708
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR the buffer used to create its
srcAccelerationStructure member must be bound to device memory

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03709
For each element of pInfos, the buffer used to create each acceleration structure
referenced by the geometry.instances.data member of any element of pGeometries or
ppGeometries with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR must be bound to
device memory

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03671
If pInfos[i].mode is VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR, all addresses between
pInfos[i].scratchData.deviceAddress and pInfos[i].scratchData.deviceAddress + N - 1 must
be in the buffer device address range of the same buffer, where N is given by the
buildScratchSize member of the VkAccelerationStructureBuildSizesInfoKHR structure
returned from a call to vkGetAccelerationStructureBuildSizesKHR with an identical
VkAccelerationStructureBuildGeometryInfoKHR structure and primitive count

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03672
If pInfos[i].mode is VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, all addresses
between pInfos[i].scratchData.deviceAddress and pInfos[i].scratchData.deviceAddress + N -
1 must be in the buffer device address range of the same buffer, where N is given by the
updateScratchSize member of the VkAccelerationStructureBuildSizesInfoKHR structure
returned from a call to vkGetAccelerationStructureBuildSizesKHR with an identical
VkAccelerationStructureBuildGeometryInfoKHR structure and primitive count

• VUID-vkCmdBuildAccelerationStructuresKHR-geometry-03673
The buffers from which the buffer device addresses for all of the

3186

geometry.triangles.vertexData, geometry.triangles.indexData,
geometry.triangles.transformData, geometry.aabbs.data, and geometry.instances.data
members of all pInfos[i].pGeometries and pInfos[i].ppGeometries are queried must have
been created with the
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR usage flag

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03674
The buffer from which the buffer device address pInfos[i].scratchData.deviceAddress is
queried must have been created with VK_BUFFER_USAGE_STORAGE_BUFFER_BIT usage flag

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03802
For each element of pInfos, its scratchData.deviceAddress member must be a valid device
address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03803
For each element of pInfos, if scratchData.deviceAddress is the address of a non-sparse
buffer then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03710
For each element of pInfos, its scratchData.deviceAddress member must be a multiple of
VkPhysicalDeviceAccelerationStructurePropertiesKHR::minAccelerationStructureScratchO
ffsetAlignment

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03804
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, geometry.triangles.vertexData.deviceAddress must be a
valid device address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03805
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.vertexData.deviceAddress is the
address of a non-sparse buffer then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03711
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, geometry.triangles.vertexData.deviceAddress must be
aligned to the size in bytes of the smallest component of the format in vertexFormat

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03806
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.indexType is not
VK_INDEX_TYPE_NONE_KHR, geometry.triangles.indexData.deviceAddress must be a valid
device address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03807
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.indexType is not
VK_INDEX_TYPE_NONE_KHR, if geometry.triangles.indexData.deviceAddress is the address of a
non-sparse buffer then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03712

3187

For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, and with geometry.triangles.indexType not equal to
VK_INDEX_TYPE_NONE_KHR, geometry.triangles.indexData.deviceAddress must be aligned to
the size in bytes of the type in indexType

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03808
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.transformData.deviceAddress is not
0, it must be a valid device address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03809
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.transformData.deviceAddress is the
address of a non-sparse buffer then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03810
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.transformData.deviceAddress is not
0, it must be aligned to 16 bytes

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03811
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR, geometry.aabbs.data.deviceAddress must be a valid device
address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03812
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR, if geometry.aabbs.data.deviceAddress is the address of a non-
sparse buffer then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03714
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR, geometry.aabbs.data.deviceAddress must be aligned to 8 bytes

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03715
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, if geometry.arrayOfPointers is VK_FALSE,
geometry.instances.data.deviceAddress must be aligned to 16 bytes

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03716
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, if geometry.arrayOfPointers is VK_TRUE,
geometry.instances.data.deviceAddress must be aligned to 8 bytes

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03717
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, if geometry.arrayOfPointers is VK_TRUE, each element of
geometry.instances.data.deviceAddress in device memory must be aligned to 16 bytes

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03813
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, geometry.instances.data.deviceAddress must be a valid

3188

device address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03814
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, if geometry.instances.data.deviceAddress is the address of
a non-sparse buffer then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-06707
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, each VkAccelerationStructureInstanceKHR
::accelerationStructureReference value in geometry.instances.data.deviceAddress must be
a valid device address containing a value obtained from
vkGetAccelerationStructureDeviceAddressKHR or 0

• VUID-vkCmdBuildAccelerationStructuresKHR-commandBuffer-09547
commandBuffer must not be a protected command buffer

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03675
For each pInfos[i], dstAccelerationStructure must have been created with a value of
VkAccelerationStructureCreateInfoKHR::size greater than or equal to the memory size
required by the build operation, as returned by
vkGetAccelerationStructureBuildSizesKHR with pBuildInfo = pInfos[i] and with each
element of the pMaxPrimitiveCounts array greater than or equal to the equivalent
ppBuildRangeInfos[i][j].primitiveCount values for j in [0,pInfos[i].geometryCount)

• VUID-vkCmdBuildAccelerationStructuresKHR-ppBuildRangeInfos-03676
Each element of ppBuildRangeInfos[i] must be a valid pointer to an array of pInfos
[i].geometryCount VkAccelerationStructureBuildRangeInfoKHR structures

Valid Usage (Implicit)

• VUID-vkCmdBuildAccelerationStructuresKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-parameter
pInfos must be a valid pointer to an array of infoCount valid
VkAccelerationStructureBuildGeometryInfoKHR structures

• VUID-vkCmdBuildAccelerationStructuresKHR-ppBuildRangeInfos-parameter
ppBuildRangeInfos must be a valid pointer to an array of infoCount
VkAccelerationStructureBuildRangeInfoKHR structures

• VUID-vkCmdBuildAccelerationStructuresKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBuildAccelerationStructuresKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdBuildAccelerationStructuresKHR-renderpass
This command must only be called outside of a render pass instance

3189

• VUID-vkCmdBuildAccelerationStructuresKHR-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBuildAccelerationStructuresKHR-infoCount-arraylength
infoCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

To build acceleration structures with some parameters sourced on the device call:

// Provided by VK_KHR_acceleration_structure
void vkCmdBuildAccelerationStructuresIndirectKHR(
 VkCommandBuffer commandBuffer,
 uint32_t infoCount,
 const VkAccelerationStructureBuildGeometryInfoKHR* pInfos,
 const VkDeviceAddress* pIndirectDeviceAddresses,
 const uint32_t* pIndirectStrides,
 const uint32_t* const* ppMaxPrimitiveCounts);

• commandBuffer is the command buffer into which the command will be recorded.

• infoCount is the number of acceleration structures to build.

• pInfos is a pointer to an array of infoCount VkAccelerationStructureBuildGeometryInfoKHR
structures defining the geometry used to build each acceleration structure.

• pIndirectDeviceAddresses is a pointer to an array of infoCount buffer device addresses which
point to pInfos[i].geometryCount VkAccelerationStructureBuildRangeInfoKHR structures defining
dynamic offsets to the addresses where geometry data is stored, as defined by pInfos[i].

• pIndirectStrides is a pointer to an array of infoCount byte strides between elements of
pIndirectDeviceAddresses.

• ppMaxPrimitiveCounts is a pointer to an array of infoCount pointers to arrays of pInfos
[i].geometryCount values indicating the maximum number of primitives that will be built by this
command for each geometry.

3190

Accesses to acceleration structures, scratch buffers, vertex buffers, index buffers, and instance
buffers must be synchronized as with vkCmdBuildAccelerationStructuresKHR.

Accesses to any element of pIndirectDeviceAddresses must be synchronized with the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage and an access type of
VK_ACCESS_INDIRECT_COMMAND_READ_BIT.

Valid Usage

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-accelerationStructureIndirectBuild-
03650
The VkPhysicalDeviceAccelerationStructureFeaturesKHR
::accelerationStructureIndirectBuild feature must be enabled

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-mode-04628
The mode member of each element of pInfos must be a valid
VkBuildAccelerationStructureModeKHR value

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-srcAccelerationStructure-04629
If the srcAccelerationStructure member of any element of pInfos is not
VK_NULL_HANDLE, the srcAccelerationStructure member must be a valid
VkAccelerationStructureKHR handle

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-04630
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure member
must not be VK_NULL_HANDLE

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03403
The srcAccelerationStructure member of any element of pInfos must not be the same
acceleration structure as the dstAccelerationStructure member of any other element of
pInfos

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-dstAccelerationStructure-03698
The dstAccelerationStructure member of any element of pInfos must not be the same
acceleration structure as the dstAccelerationStructure member of any other element of
pInfos

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-dstAccelerationStructure-03800
The dstAccelerationStructure member of any element of pInfos must be a valid
VkAccelerationStructureKHR handle

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03699
For each element of pInfos, if its type member is
VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, its dstAccelerationStructure member
must have been created with a value of VkAccelerationStructureCreateInfoKHR::type
equal to either VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR or
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03700
For each element of pInfos, if its type member is
VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, its dstAccelerationStructure member

3191

must have been created with a value of VkAccelerationStructureCreateInfoKHR::type
equal to either VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR or
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03663
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, inactive primitives in its
srcAccelerationStructure member must not be made active

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03664
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, active primitives in its
srcAccelerationStructure member must not be made inactive

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-None-03407
The dstAccelerationStructure member of any element of pInfos must not be referenced
by the geometry.instances.data member of any element of pGeometries or ppGeometries
with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR in any other element of pInfos

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-dstAccelerationStructure-03701
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
srcAccelerationStructure member of any other element of pInfos with a mode equal to
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, which is accessed by this command

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-dstAccelerationStructure-03702
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
dstAccelerationStructure member of any other element of pInfos, which is accessed by
this command

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-dstAccelerationStructure-03703
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
scratchData member of any element of pInfos (including the same element), which is
accessed by this command

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-scratchData-03704
The range of memory backing the scratchData member of any element of pInfos that is
accessed by this command must not overlap the memory backing the scratchData
member of any other element of pInfos, which is accessed by this command

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-scratchData-03705
The range of memory backing the scratchData member of any element of pInfos that is
accessed by this command must not overlap the memory backing the
srcAccelerationStructure member of any element of pInfos with a mode equal to
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR (including the same element), which is
accessed by this command

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-dstAccelerationStructure-03706
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing any
acceleration structure referenced by the geometry.instances.data member of any element

3192

of pGeometries or ppGeometries with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR in
any other element of pInfos, which is accessed by this command

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03667
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure member
must have previously been constructed with
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR set in
VkAccelerationStructureBuildGeometryInfoKHR::flags in the build

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03668
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure and
dstAccelerationStructure members must either be the same
VkAccelerationStructureKHR, or not have any memory aliasing

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03758
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its geometryCount member must have
the same value which was specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03759
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its flags member must have the same
value which was specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03760
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its type member must have the same
value which was specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03761
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, its geometryType member must have the same value which was
specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03762
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, its flags member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03763
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.vertexFormat member must have the same value which was specified
when srcAccelerationStructure was last built

3193

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03764
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.maxVertex member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03765
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.indexType member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03766
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, if its
geometry.triangles.transformData address was NULL when srcAccelerationStructure was
last built, then it must be NULL

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03767
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, if its
geometry.triangles.transformData address was not NULL when srcAccelerationStructure
was last built, then it must not be NULL

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03768
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, and
geometry.triangles.indexType is not VK_INDEX_TYPE_NONE_KHR, then the value of each index
referenced must be the same as the corresponding index value when
srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-primitiveCount-03769
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, the primitiveCount member of its corresponding
VkAccelerationStructureBuildRangeInfoKHR structure must have the same value which was
specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-firstVertex-03770
For each element of pInfos, if its mode member is

3194

VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if the geometry uses indices, the firstVertex member of its
corresponding VkAccelerationStructureBuildRangeInfoKHR structure must have the same
value which was specified when srcAccelerationStructure was last built

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03801
For each element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, the corresponding ppMaxPrimitiveCounts[i][j] must be less
than or equal to VkPhysicalDeviceAccelerationStructurePropertiesKHR::maxInstanceCount

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03707
For each element of pInfos, the buffer used to create its dstAccelerationStructure member
must be bound to device memory

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03708
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR the buffer used to create its
srcAccelerationStructure member must be bound to device memory

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03709
For each element of pInfos, the buffer used to create each acceleration structure
referenced by the geometry.instances.data member of any element of pGeometries or
ppGeometries with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR must be bound to
device memory

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03671
If pInfos[i].mode is VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR, all addresses between
pInfos[i].scratchData.deviceAddress and pInfos[i].scratchData.deviceAddress + N - 1 must
be in the buffer device address range of the same buffer, where N is given by the
buildScratchSize member of the VkAccelerationStructureBuildSizesInfoKHR structure
returned from a call to vkGetAccelerationStructureBuildSizesKHR with an identical
VkAccelerationStructureBuildGeometryInfoKHR structure and primitive count

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03672
If pInfos[i].mode is VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, all addresses
between pInfos[i].scratchData.deviceAddress and pInfos[i].scratchData.deviceAddress + N -
1 must be in the buffer device address range of the same buffer, where N is given by the
updateScratchSize member of the VkAccelerationStructureBuildSizesInfoKHR structure
returned from a call to vkGetAccelerationStructureBuildSizesKHR with an identical
VkAccelerationStructureBuildGeometryInfoKHR structure and primitive count

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-geometry-03673
The buffers from which the buffer device addresses for all of the
geometry.triangles.vertexData, geometry.triangles.indexData,
geometry.triangles.transformData, geometry.aabbs.data, and geometry.instances.data
members of all pInfos[i].pGeometries and pInfos[i].ppGeometries are queried must have
been created with the
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR usage flag

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03674
The buffer from which the buffer device address pInfos[i].scratchData.deviceAddress is

3195

queried must have been created with VK_BUFFER_USAGE_STORAGE_BUFFER_BIT usage flag

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03802
For each element of pInfos, its scratchData.deviceAddress member must be a valid device
address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03803
For each element of pInfos, if scratchData.deviceAddress is the address of a non-sparse
buffer then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03710
For each element of pInfos, its scratchData.deviceAddress member must be a multiple of
VkPhysicalDeviceAccelerationStructurePropertiesKHR::minAccelerationStructureScratchO
ffsetAlignment

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03804
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, geometry.triangles.vertexData.deviceAddress must be a
valid device address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03805
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.vertexData.deviceAddress is the
address of a non-sparse buffer then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03711
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, geometry.triangles.vertexData.deviceAddress must be
aligned to the size in bytes of the smallest component of the format in vertexFormat

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03806
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.indexType is not
VK_INDEX_TYPE_NONE_KHR, geometry.triangles.indexData.deviceAddress must be a valid
device address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03807
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.indexType is not
VK_INDEX_TYPE_NONE_KHR, if geometry.triangles.indexData.deviceAddress is the address of a
non-sparse buffer then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03712
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, and with geometry.triangles.indexType not equal to
VK_INDEX_TYPE_NONE_KHR, geometry.triangles.indexData.deviceAddress must be aligned to
the size in bytes of the type in indexType

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03808
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.transformData.deviceAddress is not

3196

0, it must be a valid device address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03809
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.transformData.deviceAddress is the
address of a non-sparse buffer then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03810
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.transformData.deviceAddress is not
0, it must be aligned to 16 bytes

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03811
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR, geometry.aabbs.data.deviceAddress must be a valid device
address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03812
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR, if geometry.aabbs.data.deviceAddress is the address of a non-
sparse buffer then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03714
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR, geometry.aabbs.data.deviceAddress must be aligned to 8 bytes

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03715
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, if geometry.arrayOfPointers is VK_FALSE,
geometry.instances.data.deviceAddress must be aligned to 16 bytes

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03716
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, if geometry.arrayOfPointers is VK_TRUE,
geometry.instances.data.deviceAddress must be aligned to 8 bytes

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03717
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, if geometry.arrayOfPointers is VK_TRUE, each element of
geometry.instances.data.deviceAddress in device memory must be aligned to 16 bytes

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03813
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, geometry.instances.data.deviceAddress must be a valid
device address obtained from vkGetBufferDeviceAddress

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03814
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, if geometry.instances.data.deviceAddress is the address of
a non-sparse buffer then it must be bound completely and contiguously to a single
VkDeviceMemory object

3197

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-06707
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, each VkAccelerationStructureInstanceKHR
::accelerationStructureReference value in geometry.instances.data.deviceAddress must be
a valid device address containing a value obtained from
vkGetAccelerationStructureDeviceAddressKHR or 0

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-commandBuffer-09547
commandBuffer must not be a protected command buffer

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pIndirectDeviceAddresses-03645
For any element of pIndirectDeviceAddresses, if the buffer from which it was queried is
non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pIndirectDeviceAddresses-03646
For any element of pIndirectDeviceAddresses[i], all device addresses between
pIndirectDeviceAddresses[i] and pIndirectDeviceAddresses[i] + (pInfos[i].geometryCount ×
pIndirectStrides[i]) - 1 must be in the buffer device address range of the same buffer

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pIndirectDeviceAddresses-03647
For any element of pIndirectDeviceAddresses, the buffer from which it was queried must
have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pIndirectDeviceAddresses-03648
Each element of pIndirectDeviceAddresses must be a multiple of 4

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pIndirectStrides-03787
Each element of pIndirectStrides must be a multiple of 4

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pIndirectDeviceAddresses-03651
Each VkAccelerationStructureBuildRangeInfoKHR structure referenced by any element of
pIndirectDeviceAddresses must be a valid VkAccelerationStructureBuildRangeInfoKHR
structure

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-03652
pInfos[i].dstAccelerationStructure must have been created with a value of
VkAccelerationStructureCreateInfoKHR::size greater than or equal to the memory size
required by the build operation, as returned by
vkGetAccelerationStructureBuildSizesKHR with pBuildInfo = pInfos[i] and
pMaxPrimitiveCounts = ppMaxPrimitiveCounts[i]

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-ppMaxPrimitiveCounts-03653
Each ppMaxPrimitiveCounts[i][j] must be greater than or equal to the primitiveCount value
specified by the VkAccelerationStructureBuildRangeInfoKHR structure located at
pIndirectDeviceAddresses[i] + (j × pIndirectStrides[i])

Valid Usage (Implicit)

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pInfos-parameter

3198

pInfos must be a valid pointer to an array of infoCount valid
VkAccelerationStructureBuildGeometryInfoKHR structures

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pIndirectDeviceAddresses-
parameter
pIndirectDeviceAddresses must be a valid pointer to an array of infoCount
VkDeviceAddress values

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-pIndirectStrides-parameter
pIndirectStrides must be a valid pointer to an array of infoCount uint32_t values

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-ppMaxPrimitiveCounts-parameter
ppMaxPrimitiveCounts must be a valid pointer to an array of infoCount uint32_t values

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBuildAccelerationStructuresIndirectKHR-infoCount-arraylength
infoCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

The VkAccelerationStructureBuildGeometryInfoKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureBuildGeometryInfoKHR {
 VkStructureType sType;
 const void* pNext;

3199

 VkAccelerationStructureTypeKHR type;
 VkBuildAccelerationStructureFlagsKHR flags;
 VkBuildAccelerationStructureModeKHR mode;
 VkAccelerationStructureKHR srcAccelerationStructure;
 VkAccelerationStructureKHR dstAccelerationStructure;
 uint32_t geometryCount;
 const VkAccelerationStructureGeometryKHR* pGeometries;
 const VkAccelerationStructureGeometryKHR* const* ppGeometries;
 VkDeviceOrHostAddressKHR scratchData;
} VkAccelerationStructureBuildGeometryInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• type is a VkAccelerationStructureTypeKHR value specifying the type of acceleration structure
being built.

• flags is a bitmask of VkBuildAccelerationStructureFlagBitsKHR specifying additional
parameters of the acceleration structure.

• mode is a VkBuildAccelerationStructureModeKHR value specifying the type of operation to
perform.

• srcAccelerationStructure is a pointer to an existing acceleration structure that is to be used to
update the dst acceleration structure when mode is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR.

• dstAccelerationStructure is a pointer to the target acceleration structure for the build.

• geometryCount specifies the number of geometries that will be built into
dstAccelerationStructure.

• pGeometries is a pointer to an array of VkAccelerationStructureGeometryKHR structures.

• ppGeometries is a pointer to an array of pointers to VkAccelerationStructureGeometryKHR
structures.

• scratchData is the device or host address to memory that will be used as scratch memory for the
build.

Only one of pGeometries or ppGeometries can be a valid pointer, the other must be NULL. Each
element of the non-NULL array describes the data used to build each acceleration structure
geometry.

The index of each element of the pGeometries or ppGeometries members of
VkAccelerationStructureBuildGeometryInfoKHR is used as the geometry index during ray traversal.
The geometry index is available in ray shaders via the RayGeometryIndexKHR built-in, and is used to
determine hit and intersection shaders executed during traversal. The geometry index is available
to ray queries via the OpRayQueryGetIntersectionGeometryIndexKHR instruction.

Setting VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV in flags indicates that this build is a motion
top level acceleration structure. A motion top level uses instances of format
VkAccelerationStructureMotionInstanceNV if
VkAccelerationStructureGeometryInstancesDataKHR::arrayOfPointers is VK_FALSE.

3200

If VkAccelerationStructureGeometryInstancesDataKHR::arrayOfPointers is VK_TRUE, the pointer for
each element of the array of instance pointers consists of 4 bits of
VkAccelerationStructureMotionInstanceTypeNV in the low 4 bits of the pointer identifying the type of
structure at the pointer. The device address accessed is the value in the array with the low 4 bits set
to zero. The structure at the pointer is one of VkAccelerationStructureInstanceKHR,
VkAccelerationStructureMatrixMotionInstanceNV or
VkAccelerationStructureSRTMotionInstanceNV, depending on the type value encoded in the low 4
bits.

A top level acceleration structure with either motion instances or vertex motion in its instances
must set VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV in flags.

Members srcAccelerationStructure and dstAccelerationStructure may be the same or different for
an update operation (when mode is VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR). If they are
the same, the update happens in-place. Otherwise, the target acceleration structure is updated and
the source is not modified.

Valid Usage

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-03654
type must not be VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-pGeometries-03788
If geometryCount is not 0, exactly one of pGeometries or ppGeometries must be a valid
pointer, the other must be NULL

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-03789
If type is VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, the geometryType member of
elements of either pGeometries or ppGeometries must be VK_GEOMETRY_TYPE_INSTANCES_KHR

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-03790
If type is VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, geometryCount must be 1

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-03791
If type is VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR the geometryType member of
elements of either pGeometries or ppGeometries must not be
VK_GEOMETRY_TYPE_INSTANCES_KHR

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-03792
If type is VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR then the geometryType member
of each geometry in either pGeometries or ppGeometries must be the same

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-03793
If type is VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR then geometryCount must be
less than or equal to VkPhysicalDeviceAccelerationStructurePropertiesKHR
::maxGeometryCount

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-03794
If type is VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR and the geometryType member
of either pGeometries or ppGeometries is VK_GEOMETRY_TYPE_AABBS_KHR, the total number of
AABBs in all geometries must be less than or equal to
VkPhysicalDeviceAccelerationStructurePropertiesKHR::maxPrimitiveCount

3201

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-03795
If type is VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR and the geometryType member
of either pGeometries or ppGeometries is VK_GEOMETRY_TYPE_TRIANGLES_KHR, the total number
of triangles in all geometries must be less than or equal to
VkPhysicalDeviceAccelerationStructurePropertiesKHR::maxPrimitiveCount

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-flags-03796
If flags has the VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR bit set, then it
must not have the VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_KHR bit set

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-dstAccelerationStructure-04927
If dstAccelerationStructure was created with
VK_ACCELERATION_STRUCTURE_CREATE_MOTION_BIT_NV set in
VkAccelerationStructureCreateInfoKHR::flags,
VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV must be set in flags

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-flags-04928
If VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV is set in flags, dstAccelerationStructure
must have been created with VK_ACCELERATION_STRUCTURE_CREATE_MOTION_BIT_NV set in
VkAccelerationStructureCreateInfoKHR::flags

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-flags-04929
If VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV is set in flags, type must not be
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-flags-07334
If flags has the VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_UPDATE_EXT bit
set then it must not have the
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_DATA_UPDATE_EXT bit set

Valid Usage (Implicit)

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-type-parameter
type must be a valid VkAccelerationStructureTypeKHR value

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-flags-parameter
flags must be a valid combination of VkBuildAccelerationStructureFlagBitsKHR values

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-pGeometries-parameter
If geometryCount is not 0, and pGeometries is not NULL, pGeometries must be a valid pointer
to an array of geometryCount valid VkAccelerationStructureGeometryKHR structures

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-ppGeometries-parameter
If geometryCount is not 0, and ppGeometries is not NULL, ppGeometries must be a valid pointer
to an array of geometryCount valid pointers to valid VkAccelerationStructureGeometryKHR
structures

3202

• VUID-VkAccelerationStructureBuildGeometryInfoKHR-commonparent
Both of dstAccelerationStructure, and srcAccelerationStructure that are valid handles of
non-ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

The VkBuildAccelerationStructureModeKHR enumeration is defined as:

// Provided by VK_KHR_acceleration_structure
typedef enum VkBuildAccelerationStructureModeKHR {
 VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR = 0,
 VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR = 1,
} VkBuildAccelerationStructureModeKHR;

• VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR specifies that the destination acceleration
structure will be built using the specified geometries.

• VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR specifies that the destination acceleration
structure will be built using data in a source acceleration structure, updated by the specified
geometries.

The VkDeviceOrHostAddressKHR union is defined as:

// Provided by VK_KHR_acceleration_structure
typedef union VkDeviceOrHostAddressKHR {
 VkDeviceAddress deviceAddress;
 void* hostAddress;
} VkDeviceOrHostAddressKHR;

• deviceAddress is a buffer device address as returned by the vkGetBufferDeviceAddressKHR
command.

• hostAddress is a host memory address.

The VkDeviceOrHostAddressConstKHR union is defined as:

// Provided by VK_KHR_acceleration_structure
typedef union VkDeviceOrHostAddressConstKHR {
 VkDeviceAddress deviceAddress;
 const void* hostAddress;
} VkDeviceOrHostAddressConstKHR;

• deviceAddress is a buffer device address as returned by the vkGetBufferDeviceAddressKHR
command.

• hostAddress is a const host memory address.

The VkAccelerationStructureGeometryKHR structure is defined as:

3203

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureGeometryKHR {
 VkStructureType sType;
 const void* pNext;
 VkGeometryTypeKHR geometryType;
 VkAccelerationStructureGeometryDataKHR geometry;
 VkGeometryFlagsKHR flags;
} VkAccelerationStructureGeometryKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• geometryType describes which type of geometry this VkAccelerationStructureGeometryKHR refers
to.

• geometry is a VkAccelerationStructureGeometryDataKHR union describing the geometry data for
the relevant geometry type.

• flags is a bitmask of VkGeometryFlagBitsKHR values describing additional properties of how
the geometry should be built.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureGeometryKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR

• VUID-VkAccelerationStructureGeometryKHR-pNext-pNext
pNext must be NULL

• VUID-VkAccelerationStructureGeometryKHR-geometryType-parameter
geometryType must be a valid VkGeometryTypeKHR value

• VUID-VkAccelerationStructureGeometryKHR-triangles-parameter
If geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, the triangles member of geometry must
be a valid VkAccelerationStructureGeometryTrianglesDataKHR structure

• VUID-VkAccelerationStructureGeometryKHR-aabbs-parameter
If geometryType is VK_GEOMETRY_TYPE_AABBS_KHR, the aabbs member of geometry must be a
valid VkAccelerationStructureGeometryAabbsDataKHR structure

• VUID-VkAccelerationStructureGeometryKHR-instances-parameter
If geometryType is VK_GEOMETRY_TYPE_INSTANCES_KHR, the instances member of geometry must
be a valid VkAccelerationStructureGeometryInstancesDataKHR structure

• VUID-VkAccelerationStructureGeometryKHR-flags-parameter
flags must be a valid combination of VkGeometryFlagBitsKHR values

The VkAccelerationStructureGeometryDataKHR union is defined as:

// Provided by VK_KHR_acceleration_structure
typedef union VkAccelerationStructureGeometryDataKHR {

3204

 VkAccelerationStructureGeometryTrianglesDataKHR triangles;
 VkAccelerationStructureGeometryAabbsDataKHR aabbs;
 VkAccelerationStructureGeometryInstancesDataKHR instances;
} VkAccelerationStructureGeometryDataKHR;

• triangles is a VkAccelerationStructureGeometryTrianglesDataKHR structure.

• aabbs is a VkAccelerationStructureGeometryAabbsDataKHR structure.

• instances is a VkAccelerationStructureGeometryInstancesDataKHR structure.

The VkAccelerationStructureGeometryTrianglesDataKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureGeometryTrianglesDataKHR {
 VkStructureType sType;
 const void* pNext;
 VkFormat vertexFormat;
 VkDeviceOrHostAddressConstKHR vertexData;
 VkDeviceSize vertexStride;
 uint32_t maxVertex;
 VkIndexType indexType;
 VkDeviceOrHostAddressConstKHR indexData;
 VkDeviceOrHostAddressConstKHR transformData;
} VkAccelerationStructureGeometryTrianglesDataKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• vertexFormat is the VkFormat of each vertex element.

• vertexData is a device or host address to memory containing vertex data for this geometry.

• maxVertex is the highest index of a vertex that will be addressed by a build command using this
structure.

• vertexStride is the stride in bytes between each vertex.

• indexType is the VkIndexType of each index element.

• indexData is a device or host address to memory containing index data for this geometry.

• transformData is a device or host address to memory containing an optional reference to a
VkTransformMatrixKHR structure describing a transformation from the space in which the
vertices in this geometry are described to the space in which the acceleration structure is
defined.

Note

Unlike the stride for vertex buffers in VkVertexInputBindingDescription for
graphics pipelines which must not exceed maxVertexInputBindingStride,
vertexStride for acceleration structure geometry is instead restricted to being a 32-
bit value.

3205

Valid Usage

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-vertexStride-03735
vertexStride must be a multiple of the size in bytes of the smallest component of
vertexFormat

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-vertexStride-03819
vertexStride must be less than or equal to 232-1

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-vertexFormat-03797
The format features of vertexFormat must contain
VK_FORMAT_FEATURE_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-indexType-03798
indexType must be VK_INDEX_TYPE_UINT16, VK_INDEX_TYPE_UINT32, or VK_INDEX_TYPE_NONE_KHR

Valid Usage (Implicit)

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of
VkAccelerationStructureGeometryMotionTrianglesDataNV,
VkAccelerationStructureTrianglesDisplacementMicromapNV, or
VkAccelerationStructureTrianglesOpacityMicromapEXT

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-vertexFormat-parameter
vertexFormat must be a valid VkFormat value

• VUID-VkAccelerationStructureGeometryTrianglesDataKHR-indexType-parameter
indexType must be a valid VkIndexType value

The VkAccelerationStructureGeometryMotionTrianglesDataNV structure is defined as:

// Provided by VK_NV_ray_tracing_motion_blur
typedef struct VkAccelerationStructureGeometryMotionTrianglesDataNV {
 VkStructureType sType;
 const void* pNext;
 VkDeviceOrHostAddressConstKHR vertexData;
} VkAccelerationStructureGeometryMotionTrianglesDataNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3206

• vertexData is a pointer to vertex data for this geometry at time 1.0

If VkAccelerationStructureGeometryMotionTrianglesDataNV is included in the pNext chain of a
VkAccelerationStructureGeometryTrianglesDataKHR structure, the basic vertex positions are used
for the position of the triangles in the geometry at time 0.0 and the vertexData in
VkAccelerationStructureGeometryMotionTrianglesDataNV is used for the vertex positions at time 1.0,
with positions linearly interpolated at intermediate times.

Indexing for VkAccelerationStructureGeometryMotionTrianglesDataNV vertexData is equivalent to the
basic vertex position data.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureGeometryMotionTrianglesDataNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_MOTION_TRIANGLES_DATA_NV

The VkAccelerationStructureTrianglesOpacityMicromapEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkAccelerationStructureTrianglesOpacityMicromapEXT {
 VkStructureType sType;
 void* pNext;
 VkIndexType indexType;
 VkDeviceOrHostAddressConstKHR indexBuffer;
 VkDeviceSize indexStride;
 uint32_t baseTriangle;
 uint32_t usageCountsCount;
 const VkMicromapUsageEXT* pUsageCounts;
 const VkMicromapUsageEXT* const* ppUsageCounts;
 VkMicromapEXT micromap;
} VkAccelerationStructureTrianglesOpacityMicromapEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• indexType is the type of triangle indices used when indexing this micromap

• indexBuffer is the address containing the triangle indices

• indexStride is the byte stride between triangle indices

• baseTriangle is the base value added to the non-negative triangle indices

• usageCountsCount specifies the number of usage counts structures that will be used to determine
the size of this micromap.

• pUsageCounts is a pointer to an array of VkMicromapUsageEXT structures.

• ppUsageCounts is a pointer to an array of pointers to VkMicromapUsageEXT structures.

• micromap is the handle to the micromap object to include in this geometry

3207

If VkAccelerationStructureTrianglesOpacityMicromapEXT is included in the pNext chain of a
VkAccelerationStructureGeometryTrianglesDataKHR structure, that geometry will reference that
micromap.

For each triangle in the geometry, the acceleration structure build fetches an index from
indexBuffer using indexType and indexStride. If that value is the unsigned cast of one of the values
from VkOpacityMicromapSpecialIndexEXT then that triangle behaves as described for that special
value in Ray Opacity Micromap. Otherwise that triangle uses the opacity micromap information
from micromap at that index plus baseTriangle.

Only one of pUsageCounts or ppUsageCounts can be a valid pointer, the other must be NULL. The
elements of the non-NULL array describe the total count used to build this geometry. For a given
format and subdivisionLevel the number of triangles in this geometry matching those values after
indirection and special index handling must be equal to the sum of matching count provided.

If micromap is VK_NULL_HANDLE, then every value read from indexBuffer must be one of the values
in VkOpacityMicromapSpecialIndexEXT.

Valid Usage

• VUID-VkAccelerationStructureTrianglesOpacityMicromapEXT-pUsageCounts-07335
Only one of pUsageCounts or ppUsageCounts can be a valid pointer, the other must be NULL

Valid Usage (Implicit)

• VUID-VkAccelerationStructureTrianglesOpacityMicromapEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_TRIANGLES_OPACITY_MICROMAP_EXT

• VUID-VkAccelerationStructureTrianglesOpacityMicromapEXT-indexType-parameter
indexType must be a valid VkIndexType value

• VUID-VkAccelerationStructureTrianglesOpacityMicromapEXT-pUsageCounts-parameter
If usageCountsCount is not 0, and pUsageCounts is not NULL, pUsageCounts must be a valid
pointer to an array of usageCountsCount VkMicromapUsageEXT structures

• VUID-VkAccelerationStructureTrianglesOpacityMicromapEXT-ppUsageCounts-parameter
If usageCountsCount is not 0, and ppUsageCounts is not NULL, ppUsageCounts must be a valid
pointer to an array of usageCountsCount valid pointers to VkMicromapUsageEXT structures

• VUID-VkAccelerationStructureTrianglesOpacityMicromapEXT-micromap-parameter
If micromap is not VK_NULL_HANDLE, micromap must be a valid VkMicromapEXT handle

The VkOpacityMicromapSpecialIndexEXT enumeration is defined as:

// Provided by VK_EXT_opacity_micromap
typedef enum VkOpacityMicromapSpecialIndexEXT {
 VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT = -1,
 VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT = -2,
 VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_TRANSPARENT_EXT = -3,

3208

 VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT = -4,
} VkOpacityMicromapSpecialIndexEXT;

• VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT specifies that the entire triangle is
fully transparent.

• VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT specifies that the entire triangle is fully
opaque.

• VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_TRANSPARENT_EXT specifies that the entire
triangle is unknown-transparent.

• VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT specifies that the entire triangle is
unknown-opaque.

The VkAccelerationStructureTrianglesDisplacementMicromapNV structure is defined as:

// Provided by VK_NV_displacement_micromap
typedef struct VkAccelerationStructureTrianglesDisplacementMicromapNV {
 VkStructureType sType;
 void* pNext;
 VkFormat displacementBiasAndScaleFormat;
 VkFormat displacementVectorFormat;
 VkDeviceOrHostAddressConstKHR displacementBiasAndScaleBuffer;
 VkDeviceSize displacementBiasAndScaleStride;
 VkDeviceOrHostAddressConstKHR displacementVectorBuffer;
 VkDeviceSize displacementVectorStride;
 VkDeviceOrHostAddressConstKHR displacedMicromapPrimitiveFlags;
 VkDeviceSize displacedMicromapPrimitiveFlagsStride;
 VkIndexType indexType;
 VkDeviceOrHostAddressConstKHR indexBuffer;
 VkDeviceSize indexStride;
 uint32_t baseTriangle;
 uint32_t usageCountsCount;
 const VkMicromapUsageEXT* pUsageCounts;
 const VkMicromapUsageEXT* const* ppUsageCounts;
 VkMicromapEXT micromap;
} VkAccelerationStructureTrianglesDisplacementMicromapNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• displacementBiasAndScaleFormat is the format of displacement bias and scale used in this
displacement micromap reference.

• displacementVectorFormat is the format of displacement vector used in this displacement
micromap reference.

• displacementBiasAndScaleBuffer is the address containing the bias and scale.

• displacementBiasAndScaleStride is the byte stride between bias and scale values.

• displacementVectorBuffer is the address containing the displacement vector values.

3209

• displacementVectorStride is the byte stride between displacement vector values.

• displacedMicromapPrimitiveFlags is the address containing the primitive flags.

• displacedMicromapPrimitiveFlagsStride is the byte stride between primitive flag values.

• indexType is the type of triangle indices used when indexing this micromap.

• indexBuffer is the address containing the triangle indices.

• indexStride is the byte stride between triangle indices.

• baseTriangle is the base value added to the non-negative triangle indices.

• usageCountsCount specifies the number of usage counts structures that will be used to determine
the size of this micromap.

• pUsageCounts is a pointer to an array of VkMicromapUsageEXT structures.

• ppUsageCounts is a pointer to an array of pointers to VkMicromapUsageEXT structures.

• micromap is the handle to the micromap object to include in this geometry.

If VkAccelerationStructureTrianglesDisplacementMicromapNV is included in the pNext chain of a
VkAccelerationStructureGeometryTrianglesDataKHR structure, that geometry will reference that
micromap.

For each triangle in the geometry, the acceleration structure build fetches an index from
indexBuffer using indexType and indexStride. That triangle uses the displacement micromap
information from micromap at that index plus baseTriangle.

Only one of pUsageCounts or ppUsageCounts can be a valid pointer, the other must be NULL. The
elements of the non-NULL array describe the total count used to build this geometry. For a given
format and subdivisionLevel the number of triangles in this geometry matching those values after
indirection must be equal to the sum of matching count provided.

Valid Usage

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-
displacementBiasAndScaleFormat-09501
displacementBiasAndScaleFormat must not be VK_FORMAT_UNDEFINED

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-
displacementVectorFormat-09502
displacementVectorFormat must not be VK_FORMAT_UNDEFINED

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-pUsageCounts-07992
Only one of pUsageCounts or ppUsageCounts can be a valid pointer, the other must be NULL

Valid Usage (Implicit)

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_TRIANGLES_DISPLACEMENT_MICROMAP_NV

3210

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-
displacementBiasAndScaleFormat-parameter
displacementBiasAndScaleFormat must be a valid VkFormat value

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-
displacementVectorFormat-parameter
displacementVectorFormat must be a valid VkFormat value

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-indexType-parameter
indexType must be a valid VkIndexType value

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-pUsageCounts-
parameter
If usageCountsCount is not 0, and pUsageCounts is not NULL, pUsageCounts must be a valid
pointer to an array of usageCountsCount VkMicromapUsageEXT structures

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-ppUsageCounts-
parameter
If usageCountsCount is not 0, and ppUsageCounts is not NULL, ppUsageCounts must be a valid
pointer to an array of usageCountsCount valid pointers to VkMicromapUsageEXT structures

• VUID-VkAccelerationStructureTrianglesDisplacementMicromapNV-micromap-parameter
If micromap is not VK_NULL_HANDLE, micromap must be a valid VkMicromapEXT handle

The VkTransformMatrixKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkTransformMatrixKHR {
 float matrix[3][4];
} VkTransformMatrixKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkTransformMatrixKHR VkTransformMatrixNV;

• matrix is a 3x4 row-major affine transformation matrix.

Valid Usage

• VUID-VkTransformMatrixKHR-matrix-03799
The first three columns of matrix must define an invertible 3x3 matrix

The VkAccelerationStructureGeometryAabbsDataKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureGeometryAabbsDataKHR {
 VkStructureType sType;

3211

 const void* pNext;
 VkDeviceOrHostAddressConstKHR data;
 VkDeviceSize stride;
} VkAccelerationStructureGeometryAabbsDataKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• data is a device or host address to memory containing VkAabbPositionsKHR structures
containing position data for each axis-aligned bounding box in the geometry.

• stride is the stride in bytes between each entry in data. The stride must be a multiple of 8.

Valid Usage

• VUID-VkAccelerationStructureGeometryAabbsDataKHR-stride-03545
stride must be a multiple of 8

• VUID-VkAccelerationStructureGeometryAabbsDataKHR-stride-03820
stride must be less than or equal to 232-1

Valid Usage (Implicit)

• VUID-VkAccelerationStructureGeometryAabbsDataKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR

• VUID-VkAccelerationStructureGeometryAabbsDataKHR-pNext-pNext
pNext must be NULL

The VkAabbPositionsKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAabbPositionsKHR {
 float minX;
 float minY;
 float minZ;
 float maxX;
 float maxY;
 float maxZ;
} VkAabbPositionsKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkAabbPositionsKHR VkAabbPositionsNV;

3212

• minX is the x position of one opposing corner of a bounding box.

• minY is the y position of one opposing corner of a bounding box.

• minZ is the z position of one opposing corner of a bounding box.

• maxX is the x position of the other opposing corner of a bounding box.

• maxY is the y position of the other opposing corner of a bounding box.

• maxZ is the z position of the other opposing corner of a bounding box.

Valid Usage

• VUID-VkAabbPositionsKHR-minX-03546
minX must be less than or equal to maxX

• VUID-VkAabbPositionsKHR-minY-03547
minY must be less than or equal to maxY

• VUID-VkAabbPositionsKHR-minZ-03548
minZ must be less than or equal to maxZ

The VkAccelerationStructureGeometryInstancesDataKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureGeometryInstancesDataKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 arrayOfPointers;
 VkDeviceOrHostAddressConstKHR data;
} VkAccelerationStructureGeometryInstancesDataKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• arrayOfPointers specifies whether data is used as an array of addresses or just an array.

• data is either the address of an array of device or host addresses referencing individual
VkAccelerationStructureInstanceKHR structures or packed motion instance information as
described in motion instances if arrayOfPointers is VK_TRUE, or the address of an array of
VkAccelerationStructureInstanceKHR or VkAccelerationStructureMotionInstanceNV structures.
Addresses and VkAccelerationStructureInstanceKHR structures are tightly packed.
VkAccelerationStructureMotionInstanceNV structures have a stride of 160 bytes.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureGeometryInstancesDataKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR

• VUID-VkAccelerationStructureGeometryInstancesDataKHR-pNext-pNext
pNext must be NULL

3213

Acceleration structure instances can be built into top-level acceleration structures. Each
acceleration structure instance is a separate entry in the top-level acceleration structure which
includes all the geometry of a bottom-level acceleration structure at a transformed location.
Multiple instances can point to the same bottom level acceleration structure.

An acceleration structure instance is defined by the structure:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureInstanceKHR {
 VkTransformMatrixKHR transform;
 uint32_t instanceCustomIndex:24;
 uint32_t mask:8;
 uint32_t instanceShaderBindingTableRecordOffset:24;
 VkGeometryInstanceFlagsKHR flags:8;
 uint64_t accelerationStructureReference;
} VkAccelerationStructureInstanceKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkAccelerationStructureInstanceKHR VkAccelerationStructureInstanceNV;

• transform is a VkTransformMatrixKHR structure describing a transformation to be applied to
the acceleration structure.

• instanceCustomIndex is a 24-bit user-specified index value accessible to ray shaders in the
InstanceCustomIndexKHR built-in.

• mask is an 8-bit visibility mask for the geometry. The instance may only be hit if Cull Mask &
instance.mask != 0

• instanceShaderBindingTableRecordOffset is a 24-bit offset used in calculating the hit shader
binding table index.

• flags is an 8-bit mask of VkGeometryInstanceFlagBitsKHR values to apply to this instance.

• accelerationStructureReference is either:

◦ a device address containing the value obtained from
vkGetAccelerationStructureDeviceAddressKHR or vkGetAccelerationStructureHandleNV
(used by device operations which reference acceleration structures) or,

◦ a VkAccelerationStructureKHR object (used by host operations which reference acceleration
structures).

The C language specification does not define the ordering of bit-fields, but in practice, this struct
produces the correct layout with existing compilers. The intended bit pattern is for the following:

• instanceCustomIndex and mask occupy the same memory as if a single uint32_t was specified in
their place

◦ instanceCustomIndex occupies the 24 least significant bits of that memory

3214

◦ mask occupies the 8 most significant bits of that memory

• instanceShaderBindingTableRecordOffset and flags occupy the same memory as if a single
uint32_t was specified in their place

◦ instanceShaderBindingTableRecordOffset occupies the 24 least significant bits of that memory

◦ flags occupies the 8 most significant bits of that memory

If a compiler produces code that diverges from that pattern, applications must employ another
method to set values according to the correct bit pattern.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureInstanceKHR-flags-parameter
flags must be a valid combination of VkGeometryInstanceFlagBitsKHR values

Possible values of flags in the instance modifying the behavior of that instance are:

// Provided by VK_KHR_acceleration_structure
typedef enum VkGeometryInstanceFlagBitsKHR {
 VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR = 0x00000001,
 VK_GEOMETRY_INSTANCE_TRIANGLE_FLIP_FACING_BIT_KHR = 0x00000002,
 VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR = 0x00000004,
 VK_GEOMETRY_INSTANCE_FORCE_NO_OPAQUE_BIT_KHR = 0x00000008,
 // Provided by VK_EXT_opacity_micromap
 VK_GEOMETRY_INSTANCE_FORCE_OPACITY_MICROMAP_2_STATE_EXT = 0x00000010,
 // Provided by VK_EXT_opacity_micromap
 VK_GEOMETRY_INSTANCE_DISABLE_OPACITY_MICROMAPS_EXT = 0x00000020,
 VK_GEOMETRY_INSTANCE_TRIANGLE_FRONT_COUNTERCLOCKWISE_BIT_KHR =
VK_GEOMETRY_INSTANCE_TRIANGLE_FLIP_FACING_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_GEOMETRY_INSTANCE_TRIANGLE_CULL_DISABLE_BIT_NV =
VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_GEOMETRY_INSTANCE_TRIANGLE_FRONT_COUNTERCLOCKWISE_BIT_NV =
VK_GEOMETRY_INSTANCE_TRIANGLE_FRONT_COUNTERCLOCKWISE_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_NV =
VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR,
 // Provided by VK_NV_ray_tracing
 VK_GEOMETRY_INSTANCE_FORCE_NO_OPAQUE_BIT_NV =
VK_GEOMETRY_INSTANCE_FORCE_NO_OPAQUE_BIT_KHR,
} VkGeometryInstanceFlagBitsKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkGeometryInstanceFlagBitsKHR VkGeometryInstanceFlagBitsNV;

3215

• VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR disables face culling for this
instance.

• VK_GEOMETRY_INSTANCE_TRIANGLE_FLIP_FACING_BIT_KHR indicates that the facing determination for
geometry in this instance is inverted. Because the facing is determined in object space, an
instance transform does not change the winding, but a geometry transform does.

• VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR causes this instance to act as though
VK_GEOMETRY_OPAQUE_BIT_KHR were specified on all geometries referenced by this instance. This
behavior can be overridden by the SPIR-V NoOpaqueKHR ray flag.

• VK_GEOMETRY_INSTANCE_FORCE_NO_OPAQUE_BIT_KHR causes this instance to act as though
VK_GEOMETRY_OPAQUE_BIT_KHR were not specified on all geometries referenced by this instance.
This behavior can be overridden by the SPIR-V OpaqueKHR ray flag.

VK_GEOMETRY_INSTANCE_FORCE_NO_OPAQUE_BIT_KHR and VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR
must not be used in the same flag.

// Provided by VK_KHR_acceleration_structure
typedef VkFlags VkGeometryInstanceFlagsKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkGeometryInstanceFlagsKHR VkGeometryInstanceFlagsNV;

VkGeometryInstanceFlagsKHR is a bitmask type for setting a mask of zero or more
VkGeometryInstanceFlagBitsKHR.

Acceleration structure motion instances can be built into top-level acceleration structures. Each
acceleration structure instance is a separate entry in the top-level acceleration structure which
includes all the geometry of a bottom-level acceleration structure at a transformed location
including a type of motion and parameters to determine the motion of the instance over time.

An acceleration structure motion instance is defined by the structure:

// Provided by VK_NV_ray_tracing_motion_blur
typedef struct VkAccelerationStructureMotionInstanceNV {
 VkAccelerationStructureMotionInstanceTypeNV type;
 VkAccelerationStructureMotionInstanceFlagsNV flags;
 VkAccelerationStructureMotionInstanceDataNV data;
} VkAccelerationStructureMotionInstanceNV;

• type is a VkAccelerationStructureMotionInstanceTypeNV enumerant identifying which type of
motion instance this is and which type of the union is valid.

• flags is currently unused, but is required to keep natural alignment of data.

• data is a VkAccelerationStructureMotionInstanceDataNV containing motion instance data for

3216

this instance.

Note

If writing this other than with a standard C compiler, note that the final structure
should be 152 bytes in size.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureMotionInstanceNV-type-parameter
type must be a valid VkAccelerationStructureMotionInstanceTypeNV value

• VUID-VkAccelerationStructureMotionInstanceNV-flags-zerobitmask
flags must be 0

• VUID-VkAccelerationStructureMotionInstanceNV-staticInstance-parameter
If type is VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_STATIC_NV, the staticInstance
member of data must be a valid VkAccelerationStructureInstanceKHR structure

• VUID-VkAccelerationStructureMotionInstanceNV-matrixMotionInstance-parameter
If type is VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_MATRIX_MOTION_NV, the
matrixMotionInstance member of data must be a valid
VkAccelerationStructureMatrixMotionInstanceNV structure

• VUID-VkAccelerationStructureMotionInstanceNV-srtMotionInstance-parameter
If type is VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_SRT_MOTION_NV, the
srtMotionInstance member of data must be a valid
VkAccelerationStructureSRTMotionInstanceNV structure

Acceleration structure motion instance is defined by the union:

// Provided by VK_NV_ray_tracing_motion_blur
typedef union VkAccelerationStructureMotionInstanceDataNV {
 VkAccelerationStructureInstanceKHR staticInstance;
 VkAccelerationStructureMatrixMotionInstanceNV matrixMotionInstance;
 VkAccelerationStructureSRTMotionInstanceNV srtMotionInstance;
} VkAccelerationStructureMotionInstanceDataNV;

• staticInstance is a VkAccelerationStructureInstanceKHR structure containing data for a static
instance.

• matrixMotionInstance is a VkAccelerationStructureMatrixMotionInstanceNV structure
containing data for a matrix motion instance.

• srtMotionInstance is a VkAccelerationStructureSRTMotionInstanceNV structure containing data
for an SRT motion instance.

// Provided by VK_NV_ray_tracing_motion_blur
typedef VkFlags VkAccelerationStructureMotionInstanceFlagsNV;

3217

VkAccelerationStructureMotionInstanceFlagsNV is a bitmask type for setting a mask, but is currently
reserved for future use.

The VkAccelerationStructureMotionInstanceTypeNV enumeration is defined as:

// Provided by VK_NV_ray_tracing_motion_blur
typedef enum VkAccelerationStructureMotionInstanceTypeNV {
 VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_STATIC_NV = 0,
 VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_MATRIX_MOTION_NV = 1,
 VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_SRT_MOTION_NV = 2,
} VkAccelerationStructureMotionInstanceTypeNV;

• VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_STATIC_NV specifies that the instance is a static
instance with no instance motion.

• VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_MATRIX_MOTION_NV specifies that the instance is
a motion instance with motion specified by interpolation between two matrices.

• VK_ACCELERATION_STRUCTURE_MOTION_INSTANCE_TYPE_SRT_MOTION_NV specifies that the instance is a
motion instance with motion specified by interpolation in the SRT decomposition.

An acceleration structure matrix motion instance is defined by the structure:

// Provided by VK_NV_ray_tracing_motion_blur
typedef struct VkAccelerationStructureMatrixMotionInstanceNV {
 VkTransformMatrixKHR transformT0;
 VkTransformMatrixKHR transformT1;
 uint32_t instanceCustomIndex:24;
 uint32_t mask:8;
 uint32_t instanceShaderBindingTableRecordOffset:24;
 VkGeometryInstanceFlagsKHR flags:8;
 uint64_t accelerationStructureReference;
} VkAccelerationStructureMatrixMotionInstanceNV;

• transformT0 is a VkTransformMatrixKHR structure describing a transformation to be applied to
the acceleration structure at time 0.

• transformT1 is a VkTransformMatrixKHR structure describing a transformation to be applied to
the acceleration structure at time 1.

• instanceCustomIndex is a 24-bit user-specified index value accessible to ray shaders in the
InstanceCustomIndexKHR built-in.

• mask is an 8-bit visibility mask for the geometry. The instance may only be hit if Cull Mask &
instance.mask != 0

• instanceShaderBindingTableRecordOffset is a 24-bit offset used in calculating the hit shader
binding table index.

• flags is an 8-bit mask of VkGeometryInstanceFlagBitsKHR values to apply to this instance.

• accelerationStructureReference is either:

3218

◦ a device address containing the value obtained from
vkGetAccelerationStructureDeviceAddressKHR or vkGetAccelerationStructureHandleNV
(used by device operations which reference acceleration structures) or,

◦ a VkAccelerationStructureKHR object (used by host operations which reference acceleration
structures).

The C language specification does not define the ordering of bit-fields, but in practice, this struct
produces the correct layout with existing compilers. The intended bit pattern is for the following:

• instanceCustomIndex and mask occupy the same memory as if a single uint32_t was specified in
their place

◦ instanceCustomIndex occupies the 24 least significant bits of that memory

◦ mask occupies the 8 most significant bits of that memory

• instanceShaderBindingTableRecordOffset and flags occupy the same memory as if a single
uint32_t was specified in their place

◦ instanceShaderBindingTableRecordOffset occupies the 24 least significant bits of that memory

◦ flags occupies the 8 most significant bits of that memory

If a compiler produces code that diverges from that pattern, applications must employ another
method to set values according to the correct bit pattern.

The transform for a matrix motion instance at a point in time is derived by component-wise linear
interpolation of the two transforms. That is, for a time in [0,1] the resulting transform is

transformT0 × (1 - time) + transformT1 × time

Valid Usage (Implicit)

• VUID-VkAccelerationStructureMatrixMotionInstanceNV-flags-parameter
flags must be a valid combination of VkGeometryInstanceFlagBitsKHR values

An acceleration structure SRT motion instance is defined by the structure:

// Provided by VK_NV_ray_tracing_motion_blur
typedef struct VkAccelerationStructureSRTMotionInstanceNV {
 VkSRTDataNV transformT0;
 VkSRTDataNV transformT1;
 uint32_t instanceCustomIndex:24;
 uint32_t mask:8;
 uint32_t instanceShaderBindingTableRecordOffset:24;
 VkGeometryInstanceFlagsKHR flags:8;
 uint64_t accelerationStructureReference;
} VkAccelerationStructureSRTMotionInstanceNV;

3219

• transformT0 is a VkSRTDataNV structure describing a transformation to be applied to the
acceleration structure at time 0.

• transformT1 is a VkSRTDataNV structure describing a transformation to be applied to the
acceleration structure at time 1.

• instanceCustomIndex is a 24-bit user-specified index value accessible to ray shaders in the
InstanceCustomIndexKHR built-in.

• mask is an 8-bit visibility mask for the geometry. The instance may only be hit if Cull Mask &
instance.mask != 0

• instanceShaderBindingTableRecordOffset is a 24-bit offset used in calculating the hit shader
binding table index.

• flags is an 8-bit mask of VkGeometryInstanceFlagBitsKHR values to apply to this instance.

• accelerationStructureReference is either:

◦ a device address containing the value obtained from
vkGetAccelerationStructureDeviceAddressKHR or vkGetAccelerationStructureHandleNV
(used by device operations which reference acceleration structures) or,

◦ a VkAccelerationStructureKHR object (used by host operations which reference acceleration
structures).

The C language specification does not define the ordering of bit-fields, but in practice, this struct
produces the correct layout with existing compilers. The intended bit pattern is for the following:

• instanceCustomIndex and mask occupy the same memory as if a single uint32_t was specified in
their place

◦ instanceCustomIndex occupies the 24 least significant bits of that memory

◦ mask occupies the 8 most significant bits of that memory

• instanceShaderBindingTableRecordOffset and flags occupy the same memory as if a single
uint32_t was specified in their place

◦ instanceShaderBindingTableRecordOffset occupies the 24 least significant bits of that memory

◦ flags occupies the 8 most significant bits of that memory

If a compiler produces code that diverges from that pattern, applications must employ another
method to set values according to the correct bit pattern.

The transform for a SRT motion instance at a point in time is derived from component-wise linear
interpolation of the two SRT transforms. That is, for a time in [0,1] the resulting transform is

transformT0 × (1 - time) + transformT1 × time

Valid Usage (Implicit)

• VUID-VkAccelerationStructureSRTMotionInstanceNV-flags-parameter
flags must be a valid combination of VkGeometryInstanceFlagBitsKHR values

3220

An acceleration structure SRT transform is defined by the structure:

// Provided by VK_NV_ray_tracing_motion_blur
typedef struct VkSRTDataNV {
 float sx;
 float a;
 float b;
 float pvx;
 float sy;
 float c;
 float pvy;
 float sz;
 float pvz;
 float qx;
 float qy;
 float qz;
 float qw;
 float tx;
 float ty;
 float tz;
} VkSRTDataNV;

• sx is the x component of the scale of the transform

• a is one component of the shear for the transform

• b is one component of the shear for the transform

• pvx is the x component of the pivot point of the transform

• sy is the y component of the scale of the transform

• c is one component of the shear for the transform

• pvy is the y component of the pivot point of the transform

• sz is the z component of the scale of the transform

• pvz is the z component of the pivot point of the transform

• qx is the x component of the rotation quaternion

• qy is the y component of the rotation quaternion

• qz is the z component of the rotation quaternion

• qw is the w component of the rotation quaternion

• tx is the x component of the post-rotation translation

• ty is the y component of the post-rotation translation

• tz is the z component of the post-rotation translation

This transform decomposition consists of three elements. The first is a matrix S, consisting of a
scale, shear, and translation, usually used to define the pivot point of the following rotation. This
matrix is constructed from the parameters above by:

3221

The rotation quaternion is defined as:

R = [qx, qy, qz, qw]

This is a rotation around a conceptual normalized axis [ax, ay, az] of amount theta such that:

[qx, qy, qz] = sin(theta/2) × [ax, ay, az]

and

qw = cos(theta/2)

Finally, the transform has a translation T constructed from the parameters above by:

The effective derived transform is then given by

T × R × S

VkAccelerationStructureBuildRangeInfoKHR is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureBuildRangeInfoKHR {
 uint32_t primitiveCount;
 uint32_t primitiveOffset;
 uint32_t firstVertex;
 uint32_t transformOffset;
} VkAccelerationStructureBuildRangeInfoKHR;

• primitiveCount defines the number of primitives for a corresponding acceleration structure
geometry.

• primitiveOffset defines an offset in bytes into the memory where primitive data is defined.

• firstVertex is the index of the first vertex to build from for triangle geometry.

• transformOffset defines an offset in bytes into the memory where a transform matrix is defined.

The primitive count and primitive offset are interpreted differently depending on the
VkGeometryTypeKHR used:

3222

• For geometries of type VK_GEOMETRY_TYPE_TRIANGLES_KHR, primitiveCount is the number of
triangles to be built, where each triangle is treated as 3 vertices.

◦ If the geometry uses indices, primitiveCount × 3 indices are consumed from
VkAccelerationStructureGeometryTrianglesDataKHR::indexData, starting at an offset of
primitiveOffset. The value of firstVertex is added to the index values before fetching
vertices.

◦ If the geometry does not use indices, primitiveCount × 3 vertices are consumed from
VkAccelerationStructureGeometryTrianglesDataKHR::vertexData, starting at an offset of
primitiveOffset + VkAccelerationStructureGeometryTrianglesDataKHR::vertexStride ×
firstVertex.

◦ If VkAccelerationStructureGeometryTrianglesDataKHR::transformData is not NULL, a single
VkTransformMatrixKHR structure is consumed from
VkAccelerationStructureGeometryTrianglesDataKHR::transformData, at an offset of
transformOffset. This matrix describes a transformation from the space in which the
vertices for all triangles in this geometry are described to the space in which the
acceleration structure is defined.

• For geometries of type VK_GEOMETRY_TYPE_AABBS_KHR, primitiveCount is the number of axis-aligned
bounding boxes. primitiveCount VkAabbPositionsKHR structures are consumed from
VkAccelerationStructureGeometryAabbsDataKHR::data, starting at an offset of primitiveOffset.

• For geometries of type VK_GEOMETRY_TYPE_INSTANCES_KHR, primitiveCount is the number of
acceleration structures. primitiveCount VkAccelerationStructureInstanceKHR or
VkAccelerationStructureMotionInstanceNV structures are consumed from
VkAccelerationStructureGeometryInstancesDataKHR::data, starting at an offset of
primitiveOffset.

Valid Usage

• VUID-VkAccelerationStructureBuildRangeInfoKHR-primitiveOffset-03656
For geometries of type VK_GEOMETRY_TYPE_TRIANGLES_KHR, if the geometry uses indices, the
offset primitiveOffset from VkAccelerationStructureGeometryTrianglesDataKHR
::indexData must be a multiple of the element size of
VkAccelerationStructureGeometryTrianglesDataKHR::indexType

• VUID-VkAccelerationStructureBuildRangeInfoKHR-primitiveOffset-03657
For geometries of type VK_GEOMETRY_TYPE_TRIANGLES_KHR, if the geometry does not use
indices, the offset primitiveOffset from
VkAccelerationStructureGeometryTrianglesDataKHR::vertexData must be a multiple of
the component size of VkAccelerationStructureGeometryTrianglesDataKHR::vertexFormat

• VUID-VkAccelerationStructureBuildRangeInfoKHR-transformOffset-03658
For geometries of type VK_GEOMETRY_TYPE_TRIANGLES_KHR, the offset transformOffset from
VkAccelerationStructureGeometryTrianglesDataKHR::transformData must be a multiple of
16

• VUID-VkAccelerationStructureBuildRangeInfoKHR-primitiveOffset-03659
For geometries of type VK_GEOMETRY_TYPE_AABBS_KHR, the offset primitiveOffset from
VkAccelerationStructureGeometryAabbsDataKHR::data must be a multiple of 8

3223

• VUID-VkAccelerationStructureBuildRangeInfoKHR-primitiveOffset-03660
For geometries of type VK_GEOMETRY_TYPE_INSTANCES_KHR, the offset primitiveOffset from
VkAccelerationStructureGeometryInstancesDataKHR::data must be a multiple of 16

37.1.7. Copying Acceleration Structures

An additional command exists for copying acceleration structures without updating their contents.
The acceleration structure object can be compacted in order to improve performance. Before
copying, an application must query the size of the resulting acceleration structure.

To query acceleration structure size parameters call:

// Provided by VK_KHR_acceleration_structure
void vkCmdWriteAccelerationStructuresPropertiesKHR(
 VkCommandBuffer commandBuffer,
 uint32_t accelerationStructureCount,
 const VkAccelerationStructureKHR* pAccelerationStructures,
 VkQueryType queryType,
 VkQueryPool queryPool,
 uint32_t firstQuery);

• commandBuffer is the command buffer into which the command will be recorded.

• accelerationStructureCount is the count of acceleration structures for which to query the
property.

• pAccelerationStructures is a pointer to an array of existing previously built acceleration
structures.

• queryType is a VkQueryType value specifying the type of queries managed by the pool.

• queryPool is the query pool that will manage the results of the query.

• firstQuery is the first query index within the query pool that will contain the
accelerationStructureCount number of results.

Accesses to any of the acceleration structures listed in pAccelerationStructures must be
synchronized with the VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR pipeline stage or
the VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage, and an access type of
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR.

• If queryType is VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR, then the value written
out is the number of bytes required by a compacted acceleration structure.

• If queryType is VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR, then the value
written out is the number of bytes required by a serialized acceleration structure.

Valid Usage

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-accelerationStructure-08924
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature

3224

must be enabled

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-queryPool-02493
queryPool must have been created with a queryType matching queryType

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-queryPool-02494
The queries identified by queryPool and firstQuery must be unavailable

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-buffer-03736
The buffer used to create each acceleration structure in pAccelerationStructures must be
bound to device memory

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-query-04880
The sum of firstQuery plus accelerationStructureCount must be less than or equal to the
number of queries in queryPool

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-pAccelerationStructures-04964
All acceleration structures in pAccelerationStructures must have been built prior to the
execution of this command

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-accelerationStructures-03431
All acceleration structures in pAccelerationStructures must have been built with
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR if queryType is
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-queryType-06742
queryType must be VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR,
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR,
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR, or
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR

Valid Usage (Implicit)

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-pAccelerationStructures-
parameter
pAccelerationStructures must be a valid pointer to an array of accelerationStructureCount
valid VkAccelerationStructureKHR handles

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-queryType-parameter
queryType must be a valid VkQueryType value

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

3225

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-accelerationStructureCount-
arraylength
accelerationStructureCount must be greater than 0

• VUID-vkCmdWriteAccelerationStructuresPropertiesKHR-commonparent
Each of commandBuffer, queryPool, and the elements of pAccelerationStructures must have
been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

To query acceleration structure size parameters call:

// Provided by VK_NV_ray_tracing
void vkCmdWriteAccelerationStructuresPropertiesNV(
 VkCommandBuffer commandBuffer,
 uint32_t accelerationStructureCount,
 const VkAccelerationStructureNV* pAccelerationStructures,
 VkQueryType queryType,
 VkQueryPool queryPool,
 uint32_t firstQuery);

• commandBuffer is the command buffer into which the command will be recorded.

• accelerationStructureCount is the count of acceleration structures for which to query the
property.

• pAccelerationStructures is a pointer to an array of existing previously built acceleration
structures.

• queryType is a VkQueryType value specifying the type of queries managed by the pool.

3226

• queryPool is the query pool that will manage the results of the query.

• firstQuery is the first query index within the query pool that will contain the
accelerationStructureCount number of results.

Accesses to any of the acceleration structures listed in pAccelerationStructures must be
synchronized with the VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage and
an access type of VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR.

Valid Usage

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-queryPool-03755
queryPool must have been created with a queryType matching queryType

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-queryPool-03756
The queries identified by queryPool and firstQuery must be unavailable

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-accelerationStructure-03757
accelerationStructure must be bound completely and contiguously to a single
VkDeviceMemory object via vkBindAccelerationStructureMemoryNV

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-pAccelerationStructures-04958
All acceleration structures in pAccelerationStructures must have been built prior to the
execution of this command

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-pAccelerationStructures-06215
All acceleration structures in pAccelerationStructures must have been built with
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR if queryType is
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_NV

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-queryType-06216
queryType must be VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_NV

Valid Usage (Implicit)

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-pAccelerationStructures-
parameter
pAccelerationStructures must be a valid pointer to an array of accelerationStructureCount
valid VkAccelerationStructureNV handles

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-queryType-parameter
queryType must be a valid VkQueryType value

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-commandBuffer-cmdpool

3227

The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-accelerationStructureCount-
arraylength
accelerationStructureCount must be greater than 0

• VUID-vkCmdWriteAccelerationStructuresPropertiesNV-commonparent
Each of commandBuffer, queryPool, and the elements of pAccelerationStructures must have
been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

To copy an acceleration structure call:

// Provided by VK_NV_ray_tracing
void vkCmdCopyAccelerationStructureNV(
 VkCommandBuffer commandBuffer,
 VkAccelerationStructureNV dst,
 VkAccelerationStructureNV src,
 VkCopyAccelerationStructureModeKHR mode);

• commandBuffer is the command buffer into which the command will be recorded.

• dst is the target acceleration structure for the copy.

• src is the source acceleration structure for the copy.

• mode is a VkCopyAccelerationStructureModeKHR value specifying additional operations to
perform during the copy.

3228

Accesses to src and dst must be synchronized with the
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR pipeline stage or the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage, and an access type of
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR or VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR
as appropriate.

Valid Usage

• VUID-vkCmdCopyAccelerationStructureNV-mode-03410
mode must be VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR or
VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_KHR

• VUID-vkCmdCopyAccelerationStructureNV-src-04963
The source acceleration structure src must have been constructed prior to the execution
of this command

• VUID-vkCmdCopyAccelerationStructureNV-src-03411
If mode is VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR, src must have been
constructed with VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR in the build

• VUID-vkCmdCopyAccelerationStructureNV-buffer-03718
The buffer used to create src must be bound to device memory

• VUID-vkCmdCopyAccelerationStructureNV-buffer-03719
The buffer used to create dst must be bound to device memory

• VUID-vkCmdCopyAccelerationStructureNV-dst-07791
The range of memory backing dst that is accessed by this command must not overlap the
memory backing src that is accessed by this command

• VUID-vkCmdCopyAccelerationStructureNV-dst-07792
dst must be bound completely and contiguously to a single VkDeviceMemory object via
vkBindAccelerationStructureMemoryNV

Valid Usage (Implicit)

• VUID-vkCmdCopyAccelerationStructureNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyAccelerationStructureNV-dst-parameter
dst must be a valid VkAccelerationStructureNV handle

• VUID-vkCmdCopyAccelerationStructureNV-src-parameter
src must be a valid VkAccelerationStructureNV handle

• VUID-vkCmdCopyAccelerationStructureNV-mode-parameter
mode must be a valid VkCopyAccelerationStructureModeKHR value

• VUID-vkCmdCopyAccelerationStructureNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyAccelerationStructureNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute

3229

operations

• VUID-vkCmdCopyAccelerationStructureNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyAccelerationStructureNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdCopyAccelerationStructureNV-commonparent
Each of commandBuffer, dst, and src must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

To copy an acceleration structure call:

// Provided by VK_KHR_acceleration_structure
void vkCmdCopyAccelerationStructureKHR(
 VkCommandBuffer commandBuffer,
 const VkCopyAccelerationStructureInfoKHR* pInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pInfo is a pointer to a VkCopyAccelerationStructureInfoKHR structure defining the copy
operation.

This command copies the pInfo->src acceleration structure to the pInfo->dst acceleration structure
in the manner specified by pInfo->mode.

Accesses to pInfo->src and pInfo->dst must be synchronized with the
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR pipeline stage or the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage, and an access type of
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR or VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR
as appropriate.

3230

Valid Usage

• VUID-vkCmdCopyAccelerationStructureKHR-accelerationStructure-08925
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

• VUID-vkCmdCopyAccelerationStructureKHR-buffer-03737
The buffer used to create pInfo->src must be bound to device memory

• VUID-vkCmdCopyAccelerationStructureKHR-buffer-03738
The buffer used to create pInfo->dst must be bound to device memory

Valid Usage (Implicit)

• VUID-vkCmdCopyAccelerationStructureKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyAccelerationStructureKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyAccelerationStructureInfoKHR structure

• VUID-vkCmdCopyAccelerationStructureKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyAccelerationStructureKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdCopyAccelerationStructureKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyAccelerationStructureKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

3231

The VkCopyAccelerationStructureInfoKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkCopyAccelerationStructureInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkAccelerationStructureKHR src;
 VkAccelerationStructureKHR dst;
 VkCopyAccelerationStructureModeKHR mode;
} VkCopyAccelerationStructureInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• src is the source acceleration structure for the copy.

• dst is the target acceleration structure for the copy.

• mode is a VkCopyAccelerationStructureModeKHR value specifying additional operations to
perform during the copy.

Valid Usage

• VUID-VkCopyAccelerationStructureInfoKHR-mode-03410
mode must be VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR or
VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_KHR

• VUID-VkCopyAccelerationStructureInfoKHR-src-04963
The source acceleration structure src must have been constructed prior to the execution
of this command

• VUID-VkCopyAccelerationStructureInfoKHR-src-03411
If mode is VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR, src must have been
constructed with VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR in the build

• VUID-VkCopyAccelerationStructureInfoKHR-buffer-03718
The buffer used to create src must be bound to device memory

• VUID-VkCopyAccelerationStructureInfoKHR-buffer-03719
The buffer used to create dst must be bound to device memory

• VUID-VkCopyAccelerationStructureInfoKHR-dst-07791
The range of memory backing dst that is accessed by this command must not overlap the
memory backing src that is accessed by this command

• VUID-VkCopyAccelerationStructureInfoKHR-dst-07792
dst must be bound completely and contiguously to a single VkDeviceMemory object via
vkBindAccelerationStructureMemoryNV

3232

Valid Usage (Implicit)

• VUID-VkCopyAccelerationStructureInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_ACCELERATION_STRUCTURE_INFO_KHR

• VUID-VkCopyAccelerationStructureInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkCopyAccelerationStructureInfoKHR-src-parameter
src must be a valid VkAccelerationStructureKHR handle

• VUID-VkCopyAccelerationStructureInfoKHR-dst-parameter
dst must be a valid VkAccelerationStructureKHR handle

• VUID-VkCopyAccelerationStructureInfoKHR-mode-parameter
mode must be a valid VkCopyAccelerationStructureModeKHR value

• VUID-VkCopyAccelerationStructureInfoKHR-commonparent
Both of dst, and src must have been created, allocated, or retrieved from the same
VkDevice

Possible values of mode specifying additional operations to perform during the copy, are:

// Provided by VK_KHR_acceleration_structure
typedef enum VkCopyAccelerationStructureModeKHR {
 VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_KHR = 0,
 VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR = 1,
 VK_COPY_ACCELERATION_STRUCTURE_MODE_SERIALIZE_KHR = 2,
 VK_COPY_ACCELERATION_STRUCTURE_MODE_DESERIALIZE_KHR = 3,
 // Provided by VK_NV_ray_tracing
 VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_NV =
VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_KHR,
 // Provided by VK_NV_ray_tracing
 VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_NV =
VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR,
} VkCopyAccelerationStructureModeKHR;

or the equivalent

// Provided by VK_NV_ray_tracing
typedef VkCopyAccelerationStructureModeKHR VkCopyAccelerationStructureModeNV;

• VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_KHR creates a direct copy of the acceleration
structure specified in src into the one specified by dst. The dst acceleration structure must have
been created with the same parameters as src. If src contains references to other acceleration
structures, dst will reference the same acceleration structures.

• VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR creates a more compact version of an
acceleration structure src into dst. The acceleration structure dst must have been created with

3233

a size at least as large as that returned by vkCmdWriteAccelerationStructuresPropertiesKHR or
vkWriteAccelerationStructuresPropertiesKHR after the build of the acceleration structure
specified by src. If src contains references to other acceleration structures, dst will reference
the same acceleration structures.

• VK_COPY_ACCELERATION_STRUCTURE_MODE_SERIALIZE_KHR serializes the acceleration structure to a
semi-opaque format which can be reloaded on a compatible implementation.

• VK_COPY_ACCELERATION_STRUCTURE_MODE_DESERIALIZE_KHR deserializes the semi-opaque serialization
format in the buffer to the acceleration structure.

To copy an acceleration structure to device memory call:

// Provided by VK_KHR_acceleration_structure
void vkCmdCopyAccelerationStructureToMemoryKHR(
 VkCommandBuffer commandBuffer,
 const VkCopyAccelerationStructureToMemoryInfoKHR* pInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pInfo is an a pointer to a VkCopyAccelerationStructureToMemoryInfoKHR structure defining
the copy operation.

Accesses to pInfo->src must be synchronized with the
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR pipeline stage or the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage, and an access type of
VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR. Accesses to the buffer indicated by pInfo-
>dst.deviceAddress must be synchronized with the
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR pipeline stage or the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage, and an and an access type
of VK_ACCESS_TRANSFER_WRITE_BIT.

This command produces the same results as vkCopyAccelerationStructureToMemoryKHR, but
writes its result to a device address, and is executed on the device rather than the host. The output
may not necessarily be bit-for-bit identical, but it can be equally used by either
vkCmdCopyMemoryToAccelerationStructureKHR or vkCopyMemoryToAccelerationStructureKHR.

The defined header structure for the serialized data consists of:

• VK_UUID_SIZE bytes of data matching VkPhysicalDeviceIDProperties::driverUUID

• VK_UUID_SIZE bytes of data identifying the compatibility for comparison using
vkGetDeviceAccelerationStructureCompatibilityKHR

• A 64-bit integer of the total size matching the value queried using
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR

• A 64-bit integer of the deserialized size to be passed in to VkAccelerationStructureCreateInfoKHR
::size

• A 64-bit integer of the count of the number of acceleration structure handles following. This
value matches the value queried using

3234

VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR. This will be
zero for a bottom-level acceleration structure. For top-level acceleration structures this number
is implementation-dependent; the number of and ordering of the handles may not match the
instance descriptions which were used to build the acceleration structure.

The corresponding handles matching the values returned by
vkGetAccelerationStructureDeviceAddressKHR or vkGetAccelerationStructureHandleNV are tightly
packed in the buffer following the count. The application is expected to store a mapping between
those handles and the original application-generated bottom-level acceleration structures to
provide when deserializing. The serialized data is written to the buffer (or read from the buffer)
according to the host endianness.

Valid Usage

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-accelerationStructure-08926
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-pInfo-03739
pInfo->dst.deviceAddress must be a valid device address for a buffer bound to device
memory

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-pInfo-03740
pInfo->dst.deviceAddress must be aligned to 256 bytes

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-pInfo-03741
If the buffer pointed to by pInfo->dst.deviceAddress is non-sparse then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-None-03559
The buffer used to create pInfo->src must be bound to device memory

Valid Usage (Implicit)

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyAccelerationStructureToMemoryInfoKHR
structure

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyAccelerationStructureToMemoryKHR-videocoding

3235

This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

// Provided by VK_KHR_acceleration_structure
typedef struct VkCopyAccelerationStructureToMemoryInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkAccelerationStructureKHR src;
 VkDeviceOrHostAddressKHR dst;
 VkCopyAccelerationStructureModeKHR mode;
} VkCopyAccelerationStructureToMemoryInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• src is the source acceleration structure for the copy

• dst is the device or host address to memory which is the target for the copy

• mode is a VkCopyAccelerationStructureModeKHR value specifying additional operations to
perform during the copy.

Valid Usage

• VUID-VkCopyAccelerationStructureToMemoryInfoKHR-src-04959
The source acceleration structure src must have been constructed prior to the execution
of this command

• VUID-VkCopyAccelerationStructureToMemoryInfoKHR-dst-03561
The memory pointed to by dst must be at least as large as the serialization size of src, as
reported by vkWriteAccelerationStructuresPropertiesKHR or
vkCmdWriteAccelerationStructuresPropertiesKHR with a query type of
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR

3236

• VUID-VkCopyAccelerationStructureToMemoryInfoKHR-mode-03412
mode must be VK_COPY_ACCELERATION_STRUCTURE_MODE_SERIALIZE_KHR

Valid Usage (Implicit)

• VUID-VkCopyAccelerationStructureToMemoryInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_ACCELERATION_STRUCTURE_TO_MEMORY_INFO_KHR

• VUID-VkCopyAccelerationStructureToMemoryInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkCopyAccelerationStructureToMemoryInfoKHR-src-parameter
src must be a valid VkAccelerationStructureKHR handle

• VUID-VkCopyAccelerationStructureToMemoryInfoKHR-mode-parameter
mode must be a valid VkCopyAccelerationStructureModeKHR value

To copy device memory to an acceleration structure call:

// Provided by VK_KHR_acceleration_structure
void vkCmdCopyMemoryToAccelerationStructureKHR(
 VkCommandBuffer commandBuffer,
 const VkCopyMemoryToAccelerationStructureInfoKHR* pInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pInfo is a pointer to a VkCopyMemoryToAccelerationStructureInfoKHR structure defining the
copy operation.

Accesses to pInfo->dst must be synchronized with the
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR pipeline stage or the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage, and an access type of
VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR. Accesses to the buffer indicated by pInfo-
>src.deviceAddress must be synchronized with the
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR pipeline stage or the
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR pipeline stage, and an access type of
VK_ACCESS_TRANSFER_READ_BIT.

This command can accept acceleration structures produced by either
vkCmdCopyAccelerationStructureToMemoryKHR or vkCopyAccelerationStructureToMemoryKHR.

The structure provided as input to deserialize is as described in
vkCmdCopyAccelerationStructureToMemoryKHR, with any acceleration structure handles filled in
with the newly-queried handles to bottom level acceleration structures created before
deserialization. These do not need to be built at deserialize time, but must be created.

3237

Valid Usage

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-accelerationStructure-08927
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-pInfo-03742
pInfo->src.deviceAddress must be a valid device address for a buffer bound to device
memory

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-pInfo-03743
pInfo->src.deviceAddress must be aligned to 256 bytes

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-pInfo-03744
If the buffer pointed to by pInfo->src.deviceAddress is non-sparse then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-buffer-03745
The buffer used to create pInfo->dst must be bound to device memory

Valid Usage (Implicit)

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyMemoryToAccelerationStructureInfoKHR
structure

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyMemoryToAccelerationStructureKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

3238

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

The VkCopyMemoryToAccelerationStructureInfoKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkCopyMemoryToAccelerationStructureInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkDeviceOrHostAddressConstKHR src;
 VkAccelerationStructureKHR dst;
 VkCopyAccelerationStructureModeKHR mode;
} VkCopyMemoryToAccelerationStructureInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• src is the device or host address to memory containing the source data for the copy.

• dst is the target acceleration structure for the copy.

• mode is a VkCopyAccelerationStructureModeKHR value specifying additional operations to
perform during the copy.

Valid Usage

• VUID-VkCopyMemoryToAccelerationStructureInfoKHR-src-04960
The source memory pointed to by src must contain data previously serialized using
vkCmdCopyAccelerationStructureToMemoryKHR, potentially modified to relocate
acceleration structure references as described in that command

• VUID-VkCopyMemoryToAccelerationStructureInfoKHR-mode-03413
mode must be VK_COPY_ACCELERATION_STRUCTURE_MODE_DESERIALIZE_KHR

• VUID-VkCopyMemoryToAccelerationStructureInfoKHR-pInfo-03414
The data in src must have a format compatible with the destination physical device as
returned by vkGetDeviceAccelerationStructureCompatibilityKHR

• VUID-VkCopyMemoryToAccelerationStructureInfoKHR-dst-03746
dst must have been created with a size greater than or equal to that used to serialize the
data in src

3239

Valid Usage (Implicit)

• VUID-VkCopyMemoryToAccelerationStructureInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_MEMORY_TO_ACCELERATION_STRUCTURE_INFO_KHR

• VUID-VkCopyMemoryToAccelerationStructureInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkCopyMemoryToAccelerationStructureInfoKHR-dst-parameter
dst must be a valid VkAccelerationStructureKHR handle

• VUID-VkCopyMemoryToAccelerationStructureInfoKHR-mode-parameter
mode must be a valid VkCopyAccelerationStructureModeKHR value

To check if a serialized acceleration structure is compatible with the current device call:

// Provided by VK_KHR_acceleration_structure
void vkGetDeviceAccelerationStructureCompatibilityKHR(
 VkDevice device,
 const VkAccelerationStructureVersionInfoKHR* pVersionInfo,
 VkAccelerationStructureCompatibilityKHR* pCompatibility);

• device is the device to check the version against.

• pVersionInfo is a pointer to a VkAccelerationStructureVersionInfoKHR structure specifying
version information to check against the device.

• pCompatibility is a pointer to a VkAccelerationStructureCompatibilityKHR value in which
compatibility information is returned.

Valid Usage

• VUID-vkGetDeviceAccelerationStructureCompatibilityKHR-accelerationStructure-08928
The VkPhysicalDeviceAccelerationStructureFeaturesKHR::accelerationStructure feature
must be enabled

Valid Usage (Implicit)

• VUID-vkGetDeviceAccelerationStructureCompatibilityKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceAccelerationStructureCompatibilityKHR-pVersionInfo-parameter
pVersionInfo must be a valid pointer to a valid VkAccelerationStructureVersionInfoKHR
structure

• VUID-vkGetDeviceAccelerationStructureCompatibilityKHR-pCompatibility-parameter
pCompatibility must be a valid pointer to a VkAccelerationStructureCompatibilityKHR
value

3240

The VkAccelerationStructureVersionInfoKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkAccelerationStructureVersionInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const uint8_t* pVersionData;
} VkAccelerationStructureVersionInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pVersionData is a pointer to the version header of an acceleration structure as defined in
vkCmdCopyAccelerationStructureToMemoryKHR

Note

pVersionData is a pointer to an array of 2×VK_UUID_SIZE uint8_t values instead of
two VK_UUID_SIZE arrays as the expected use case for this member is to be pointed
at the header of a previously serialized acceleration structure (via
vkCmdCopyAccelerationStructureToMemoryKHR or
vkCopyAccelerationStructureToMemoryKHR) that is loaded in memory. Using
arrays would necessitate extra memory copies of the UUIDs.

Valid Usage (Implicit)

• VUID-VkAccelerationStructureVersionInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_VERSION_INFO_KHR

• VUID-VkAccelerationStructureVersionInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkAccelerationStructureVersionInfoKHR-pVersionData-parameter
pVersionData must be a valid pointer to an array of uint8_t values

Possible values of pCompatibility returned by vkGetDeviceAccelerationStructureCompatibilityKHR
are:

// Provided by VK_KHR_acceleration_structure
typedef enum VkAccelerationStructureCompatibilityKHR {
 VK_ACCELERATION_STRUCTURE_COMPATIBILITY_COMPATIBLE_KHR = 0,
 VK_ACCELERATION_STRUCTURE_COMPATIBILITY_INCOMPATIBLE_KHR = 1,
} VkAccelerationStructureCompatibilityKHR;

• VK_ACCELERATION_STRUCTURE_COMPATIBILITY_COMPATIBLE_KHR if the pVersionData version
acceleration structure is compatible with device.

• VK_ACCELERATION_STRUCTURE_COMPATIBILITY_INCOMPATIBLE_KHR if the pVersionData version

3241

acceleration structure is not compatible with device.

37.2. Host Acceleration Structure Operations
Implementations are also required to provide host implementations of the acceleration structure
operations if the accelerationStructureHostCommands feature is enabled:

• vkBuildAccelerationStructuresKHR corresponding to vkCmdBuildAccelerationStructuresKHR

• vkCopyAccelerationStructureKHR corresponding to vkCmdCopyAccelerationStructureKHR

• vkCopyAccelerationStructureToMemoryKHR corresponding to
vkCmdCopyAccelerationStructureToMemoryKHR

• vkCopyMemoryToAccelerationStructureKHR corresponding to
vkCmdCopyMemoryToAccelerationStructureKHR

• vkWriteAccelerationStructuresPropertiesKHR corresponding to
vkCmdWriteAccelerationStructuresPropertiesKHR

These commands are functionally equivalent to their device counterparts, except that they are
executed on the host timeline, rather than being enqueued into command buffers.

All acceleration structures used by the host commands must be bound to host-visible memory, and
all input data for acceleration structure builds must be referenced using host addresses instead of
device addresses. Applications are not required to map acceleration structure memory when using
the host commands.

Note

The vkBuildAccelerationStructuresKHR and
vkCmdBuildAccelerationStructuresKHR may use different algorithms, and thus
are not required to produce identical structures. The structures produced by these
two commands may exhibit different memory footprints or traversal
performance, but should strive to be similar where possible.

Apart from these details, the host and device operations are interchangeable. For
example, an application can use vkBuildAccelerationStructuresKHR to build a
structure, compact it on the device using vkCmdCopyAccelerationStructureKHR,
and serialize the result using vkCopyAccelerationStructureToMemoryKHR.

Note

For efficient execution, acceleration structures manipulated using these
commands should always be bound to host cached memory, as the implementation
may need to repeatedly read and write this memory during the execution of the
command.

To build acceleration structures on the host, call:

// Provided by VK_KHR_acceleration_structure
VkResult vkBuildAccelerationStructuresKHR(

3242

 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 uint32_t infoCount,
 const VkAccelerationStructureBuildGeometryInfoKHR* pInfos,
 const VkAccelerationStructureBuildRangeInfoKHR* const* ppBuildRangeInfos);

• device is the VkDevice for which the acceleration structures are being built.

• deferredOperation is an optional VkDeferredOperationKHR to request deferral for this
command.

• infoCount is the number of acceleration structures to build. It specifies the number of the pInfos
structures and ppBuildRangeInfos pointers that must be provided.

• pInfos is a pointer to an array of infoCount VkAccelerationStructureBuildGeometryInfoKHR
structures defining the geometry used to build each acceleration structure.

• ppBuildRangeInfos is a pointer to an array of infoCount pointers to arrays of
VkAccelerationStructureBuildRangeInfoKHR structures. Each ppBuildRangeInfos[i] is a pointer
to an array of pInfos[i].geometryCount VkAccelerationStructureBuildRangeInfoKHR structures
defining dynamic offsets to the addresses where geometry data is stored, as defined by pInfos[i].

This command fulfills the same task as vkCmdBuildAccelerationStructuresKHR but is executed by
the host.

The vkBuildAccelerationStructuresKHR command provides the ability to initiate multiple
acceleration structures builds, however there is no ordering or synchronization implied between
any of the individual acceleration structure builds.

Note

This means that an application cannot build a top-level acceleration structure in
the same vkBuildAccelerationStructuresKHR call as the associated bottom-level or
instance acceleration structures are being built. There also cannot be any memory
aliasing between any acceleration structure memories or scratch memories being
used by any of the builds.

Valid Usage

• VUID-vkBuildAccelerationStructuresKHR-accelerationStructureHostCommands-03581
The VkPhysicalDeviceAccelerationStructureFeaturesKHR
::accelerationStructureHostCommands feature must be enabled

• VUID-vkBuildAccelerationStructuresKHR-mode-04628
The mode member of each element of pInfos must be a valid
VkBuildAccelerationStructureModeKHR value

• VUID-vkBuildAccelerationStructuresKHR-srcAccelerationStructure-04629
If the srcAccelerationStructure member of any element of pInfos is not
VK_NULL_HANDLE, the srcAccelerationStructure member must be a valid
VkAccelerationStructureKHR handle

3243

• VUID-vkBuildAccelerationStructuresKHR-pInfos-04630
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure member
must not be VK_NULL_HANDLE

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03403
The srcAccelerationStructure member of any element of pInfos must not be the same
acceleration structure as the dstAccelerationStructure member of any other element of
pInfos

• VUID-vkBuildAccelerationStructuresKHR-dstAccelerationStructure-03698
The dstAccelerationStructure member of any element of pInfos must not be the same
acceleration structure as the dstAccelerationStructure member of any other element of
pInfos

• VUID-vkBuildAccelerationStructuresKHR-dstAccelerationStructure-03800
The dstAccelerationStructure member of any element of pInfos must be a valid
VkAccelerationStructureKHR handle

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03699
For each element of pInfos, if its type member is
VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, its dstAccelerationStructure member
must have been created with a value of VkAccelerationStructureCreateInfoKHR::type
equal to either VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR or
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03700
For each element of pInfos, if its type member is
VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, its dstAccelerationStructure member
must have been created with a value of VkAccelerationStructureCreateInfoKHR::type
equal to either VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR or
VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03663
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, inactive primitives in its
srcAccelerationStructure member must not be made active

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03664
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, active primitives in its
srcAccelerationStructure member must not be made inactive

• VUID-vkBuildAccelerationStructuresKHR-None-03407
The dstAccelerationStructure member of any element of pInfos must not be referenced
by the geometry.instances.data member of any element of pGeometries or ppGeometries
with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR in any other element of pInfos

• VUID-vkBuildAccelerationStructuresKHR-dstAccelerationStructure-03701
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
srcAccelerationStructure member of any other element of pInfos with a mode equal to
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, which is accessed by this command

3244

• VUID-vkBuildAccelerationStructuresKHR-dstAccelerationStructure-03702
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
dstAccelerationStructure member of any other element of pInfos, which is accessed by
this command

• VUID-vkBuildAccelerationStructuresKHR-dstAccelerationStructure-03703
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing the
scratchData member of any element of pInfos (including the same element), which is
accessed by this command

• VUID-vkBuildAccelerationStructuresKHR-scratchData-03704
The range of memory backing the scratchData member of any element of pInfos that is
accessed by this command must not overlap the memory backing the scratchData
member of any other element of pInfos, which is accessed by this command

• VUID-vkBuildAccelerationStructuresKHR-scratchData-03705
The range of memory backing the scratchData member of any element of pInfos that is
accessed by this command must not overlap the memory backing the
srcAccelerationStructure member of any element of pInfos with a mode equal to
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR (including the same element), which is
accessed by this command

• VUID-vkBuildAccelerationStructuresKHR-dstAccelerationStructure-03706
The range of memory backing the dstAccelerationStructure member of any element of
pInfos that is accessed by this command must not overlap the memory backing any
acceleration structure referenced by the geometry.instances.data member of any element
of pGeometries or ppGeometries with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR in
any other element of pInfos, which is accessed by this command

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03667
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure member
must have previously been constructed with
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR set in
VkAccelerationStructureBuildGeometryInfoKHR::flags in the build

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03668
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its srcAccelerationStructure and
dstAccelerationStructure members must either be the same
VkAccelerationStructureKHR, or not have any memory aliasing

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03758
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its geometryCount member must have
the same value which was specified when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03759
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its flags member must have the same
value which was specified when srcAccelerationStructure was last built

3245

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03760
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, its type member must have the same
value which was specified when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03761
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, its geometryType member must have the same value which was
specified when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03762
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, its flags member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03763
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.vertexFormat member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03764
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.maxVertex member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03765
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, its
geometry.triangles.indexType member must have the same value which was specified
when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03766
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, if its
geometry.triangles.transformData address was NULL when srcAccelerationStructure was
last built, then it must be NULL

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03767

3246

For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, if its
geometry.triangles.transformData address was not NULL when srcAccelerationStructure
was last built, then it must not be NULL

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03768
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if geometryType is VK_GEOMETRY_TYPE_TRIANGLES_KHR, and
geometry.triangles.indexType is not VK_INDEX_TYPE_NONE_KHR, then the value of each index
referenced must be the same as the corresponding index value when
srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-primitiveCount-03769
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, the primitiveCount member of its corresponding
VkAccelerationStructureBuildRangeInfoKHR structure must have the same value which was
specified when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-firstVertex-03770
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, then for each
VkAccelerationStructureGeometryKHR structure referred to by its pGeometries or
ppGeometries members, if the geometry uses indices, the firstVertex member of its
corresponding VkAccelerationStructureBuildRangeInfoKHR structure must have the same
value which was specified when srcAccelerationStructure was last built

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03801
For each element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, the corresponding ppBuildRangeInfos[i][j].primitiveCount
must be less than or equal to VkPhysicalDeviceAccelerationStructurePropertiesKHR
::maxInstanceCount

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03675
For each pInfos[i], dstAccelerationStructure must have been created with a value of
VkAccelerationStructureCreateInfoKHR::size greater than or equal to the memory size
required by the build operation, as returned by
vkGetAccelerationStructureBuildSizesKHR with pBuildInfo = pInfos[i] and with each
element of the pMaxPrimitiveCounts array greater than or equal to the equivalent
ppBuildRangeInfos[i][j].primitiveCount values for j in [0,pInfos[i].geometryCount)

• VUID-vkBuildAccelerationStructuresKHR-ppBuildRangeInfos-03676
Each element of ppBuildRangeInfos[i] must be a valid pointer to an array of pInfos
[i].geometryCount VkAccelerationStructureBuildRangeInfoKHR structures

• VUID-vkBuildAccelerationStructuresKHR-deferredOperation-03678

3247

Any previous deferred operation that was associated with deferredOperation must be
complete

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03722
For each element of pInfos, the buffer used to create its dstAccelerationStructure member
must be bound to host-visible device memory

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03723
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR the buffer used to create its
srcAccelerationStructure member must be bound to host-visible device memory

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03724
For each element of pInfos, the buffer used to create each acceleration structure
referenced by the geometry.instances.data member of any element of pGeometries or
ppGeometries with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR must be bound to
host-visible device memory

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03725
If pInfos[i].mode is VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR, all addresses between
pInfos[i].scratchData.hostAddress and pInfos[i].scratchData.hostAddress + N - 1 must be
valid host memory, where N is given by the buildScratchSize member of the
VkAccelerationStructureBuildSizesInfoKHR structure returned from a call to
vkGetAccelerationStructureBuildSizesKHR with an identical
VkAccelerationStructureBuildGeometryInfoKHR structure and primitive count

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03726
If pInfos[i].mode is VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR, all addresses
between pInfos[i].scratchData.hostAddress and pInfos[i].scratchData.hostAddress + N - 1
must be valid host memory, where N is given by the updateScratchSize member of the
VkAccelerationStructureBuildSizesInfoKHR structure returned from a call to
vkGetAccelerationStructureBuildSizesKHR with an identical
VkAccelerationStructureBuildGeometryInfoKHR structure and primitive count

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03771
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, geometry.triangles.vertexData.hostAddress must be a
valid host address

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03772
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.indexType is not
VK_INDEX_TYPE_NONE_KHR, geometry.triangles.indexData.hostAddress must be a valid host
address

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03773
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR, if geometry.triangles.transformData.hostAddress is not 0,
it must be a valid host address

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03774
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR, geometry.aabbs.data.hostAddress must be a valid host address

3248

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03775
For each element of pInfos, the buffer used to create its dstAccelerationStructure member
must be bound to memory that was not allocated with multiple instances

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03776
For each element of pInfos, if its mode member is
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR the buffer used to create its
srcAccelerationStructure member must be bound to memory that was not allocated with
multiple instances

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03777
For each element of pInfos, the buffer used to create each acceleration structure
referenced by the geometry.instances.data member of any element of pGeometries or
ppGeometries with a geometryType of VK_GEOMETRY_TYPE_INSTANCES_KHR must be bound to
memory that was not allocated with multiple instances

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03778
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, geometry.instances.data.hostAddress must be a valid
host address

• VUID-vkBuildAccelerationStructuresKHR-pInfos-03779
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR, each VkAccelerationStructureInstanceKHR
::accelerationStructureReference value in geometry.instances.data.hostAddress must be a
valid VkAccelerationStructureKHR object

• VUID-vkBuildAccelerationStructuresKHR-pInfos-04930
For any element of pInfos[i].pGeometries or pInfos[i].ppGeometries with a geometryType of
VK_GEOMETRY_TYPE_INSTANCES_KHR with VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV set,
each accelerationStructureReference in any structure in
VkAccelerationStructureMotionInstanceNV value in geometry.instances.data.hostAddress
must be a valid VkAccelerationStructureKHR object

Valid Usage (Implicit)

• VUID-vkBuildAccelerationStructuresKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkBuildAccelerationStructuresKHR-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkBuildAccelerationStructuresKHR-pInfos-parameter
pInfos must be a valid pointer to an array of infoCount valid
VkAccelerationStructureBuildGeometryInfoKHR structures

• VUID-vkBuildAccelerationStructuresKHR-ppBuildRangeInfos-parameter
ppBuildRangeInfos must be a valid pointer to an array of infoCount
VkAccelerationStructureBuildRangeInfoKHR structures

• VUID-vkBuildAccelerationStructuresKHR-infoCount-arraylength

3249

infoCount must be greater than 0

• VUID-vkBuildAccelerationStructuresKHR-deferredOperation-parent
If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To copy or compact an acceleration structure on the host, call:

// Provided by VK_KHR_acceleration_structure
VkResult vkCopyAccelerationStructureKHR(
 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 const VkCopyAccelerationStructureInfoKHR* pInfo);

• device is the device which owns the acceleration structures.

• deferredOperation is an optional VkDeferredOperationKHR to request deferral for this
command.

• pInfo is a pointer to a VkCopyAccelerationStructureInfoKHR structure defining the copy
operation.

This command fulfills the same task as vkCmdCopyAccelerationStructureKHR but is executed by
the host.

Valid Usage

• VUID-vkCopyAccelerationStructureKHR-accelerationStructureHostCommands-03582
The VkPhysicalDeviceAccelerationStructureFeaturesKHR
::accelerationStructureHostCommands feature must be enabled

• VUID-vkCopyAccelerationStructureKHR-deferredOperation-03678
Any previous deferred operation that was associated with deferredOperation must be
complete

• VUID-vkCopyAccelerationStructureKHR-buffer-03727

3250

The buffer used to create pInfo->src must be bound to host-visible device memory

• VUID-vkCopyAccelerationStructureKHR-buffer-03728
The buffer used to create pInfo->dst must be bound to host-visible device memory

• VUID-vkCopyAccelerationStructureKHR-buffer-03780
The buffer used to create pInfo->src must be bound to memory that was not allocated
with multiple instances

• VUID-vkCopyAccelerationStructureKHR-buffer-03781
The buffer used to create pInfo->dst must be bound to memory that was not allocated
with multiple instances

Valid Usage (Implicit)

• VUID-vkCopyAccelerationStructureKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyAccelerationStructureKHR-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkCopyAccelerationStructureKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyAccelerationStructureInfoKHR structure

• VUID-vkCopyAccelerationStructureKHR-deferredOperation-parent
If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To copy host accessible memory to an acceleration structure, call:

// Provided by VK_KHR_acceleration_structure
VkResult vkCopyMemoryToAccelerationStructureKHR(
 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 const VkCopyMemoryToAccelerationStructureInfoKHR* pInfo);

3251

• device is the device which owns pInfo->dst.

• deferredOperation is an optional VkDeferredOperationKHR to request deferral for this
command.

• pInfo is a pointer to a VkCopyMemoryToAccelerationStructureInfoKHR structure defining the
copy operation.

This command fulfills the same task as vkCmdCopyMemoryToAccelerationStructureKHR but is
executed by the host.

This command can accept acceleration structures produced by either
vkCmdCopyAccelerationStructureToMemoryKHR or vkCopyAccelerationStructureToMemoryKHR.

Valid Usage

• VUID-vkCopyMemoryToAccelerationStructureKHR-accelerationStructureHostCommands-
03583
The VkPhysicalDeviceAccelerationStructureFeaturesKHR
::accelerationStructureHostCommands feature must be enabled

• VUID-vkCopyMemoryToAccelerationStructureKHR-deferredOperation-03678
Any previous deferred operation that was associated with deferredOperation must be
complete

• VUID-vkCopyMemoryToAccelerationStructureKHR-pInfo-03729
pInfo->src.hostAddress must be a valid host pointer

• VUID-vkCopyMemoryToAccelerationStructureKHR-pInfo-03750
pInfo->src.hostAddress must be aligned to 16 bytes

• VUID-vkCopyMemoryToAccelerationStructureKHR-buffer-03730
The buffer used to create pInfo->dst must be bound to host-visible device memory

• VUID-vkCopyMemoryToAccelerationStructureKHR-buffer-03782
The buffer used to create pInfo->dst must be bound to memory that was not allocated
with multiple instances

Valid Usage (Implicit)

• VUID-vkCopyMemoryToAccelerationStructureKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyMemoryToAccelerationStructureKHR-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkCopyMemoryToAccelerationStructureKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyMemoryToAccelerationStructureInfoKHR
structure

• VUID-vkCopyMemoryToAccelerationStructureKHR-deferredOperation-parent

3252

If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To copy an acceleration structure to host accessible memory, call:

// Provided by VK_KHR_acceleration_structure
VkResult vkCopyAccelerationStructureToMemoryKHR(
 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 const VkCopyAccelerationStructureToMemoryInfoKHR* pInfo);

• device is the device which owns pInfo->src.

• deferredOperation is an optional VkDeferredOperationKHR to request deferral for this
command.

• pInfo is a pointer to a VkCopyAccelerationStructureToMemoryInfoKHR structure defining the
copy operation.

This command fulfills the same task as vkCmdCopyAccelerationStructureToMemoryKHR but is
executed by the host.

This command produces the same results as vkCmdCopyAccelerationStructureToMemoryKHR, but
writes its result directly to a host pointer, and is executed on the host rather than the device. The
output may not necessarily be bit-for-bit identical, but it can be equally used by either
vkCmdCopyMemoryToAccelerationStructureKHR or vkCopyMemoryToAccelerationStructureKHR.

Valid Usage

• VUID-vkCopyAccelerationStructureToMemoryKHR-accelerationStructureHostCommands-
03584
The VkPhysicalDeviceAccelerationStructureFeaturesKHR
::accelerationStructureHostCommands feature must be enabled

• VUID-vkCopyAccelerationStructureToMemoryKHR-deferredOperation-03678

3253

Any previous deferred operation that was associated with deferredOperation must be
complete

• VUID-vkCopyAccelerationStructureToMemoryKHR-buffer-03731
The buffer used to create pInfo->src must be bound to host-visible device memory

• VUID-vkCopyAccelerationStructureToMemoryKHR-pInfo-03732
pInfo->dst.hostAddress must be a valid host pointer

• VUID-vkCopyAccelerationStructureToMemoryKHR-pInfo-03751
pInfo->dst.hostAddress must be aligned to 16 bytes

• VUID-vkCopyAccelerationStructureToMemoryKHR-buffer-03783
The buffer used to create pInfo->src must be bound to memory that was not allocated
with multiple instances

Valid Usage (Implicit)

• VUID-vkCopyAccelerationStructureToMemoryKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyAccelerationStructureToMemoryKHR-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkCopyAccelerationStructureToMemoryKHR-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyAccelerationStructureToMemoryInfoKHR
structure

• VUID-vkCopyAccelerationStructureToMemoryKHR-deferredOperation-parent
If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To query acceleration structure size parameters on the host, call:

// Provided by VK_KHR_acceleration_structure
VkResult vkWriteAccelerationStructuresPropertiesKHR(

3254

 VkDevice device,
 uint32_t accelerationStructureCount,
 const VkAccelerationStructureKHR* pAccelerationStructures,
 VkQueryType queryType,
 size_t dataSize,
 void* pData,
 size_t stride);

• device is the device which owns the acceleration structures in pAccelerationStructures.

• accelerationStructureCount is the count of acceleration structures for which to query the
property.

• pAccelerationStructures is a pointer to an array of existing previously built acceleration
structures.

• queryType is a VkQueryType value specifying the property to be queried.

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written.

• stride is the stride in bytes between results for individual queries within pData.

This command fulfills the same task as vkCmdWriteAccelerationStructuresPropertiesKHR but is
executed by the host.

Valid Usage

• VUID-vkWriteAccelerationStructuresPropertiesKHR-
accelerationStructureHostCommands-03585
The VkPhysicalDeviceAccelerationStructureFeaturesKHR
::accelerationStructureHostCommands feature must be enabled

• VUID-vkWriteAccelerationStructuresPropertiesKHR-pAccelerationStructures-04964
All acceleration structures in pAccelerationStructures must have been built prior to the
execution of this command

• VUID-vkWriteAccelerationStructuresPropertiesKHR-accelerationStructures-03431
All acceleration structures in pAccelerationStructures must have been built with
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR if queryType is
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-06742
queryType must be VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR,
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR,
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR, or
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-03448
If queryType is VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR, then stride
must be a multiple of the size of VkDeviceSize

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-03449

3255

If queryType is VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR, then pData must
point to a VkDeviceSize

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-03450
If queryType is VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR, then stride
must be a multiple of the size of VkDeviceSize

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-03451
If queryType is VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR, then pData
must point to a VkDeviceSize

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-06731
If queryType is VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR, then stride must be a
multiple of the size of VkDeviceSize

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-06732
If queryType is VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR, then pData must point to a
VkDeviceSize

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-06733
If queryType is
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR, then
stride must be a multiple of the size of VkDeviceSize

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-06734
If queryType is
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR, then
pData must point to a VkDeviceSize

• VUID-vkWriteAccelerationStructuresPropertiesKHR-dataSize-03452
dataSize must be greater than or equal to accelerationStructureCount*stride

• VUID-vkWriteAccelerationStructuresPropertiesKHR-buffer-03733
The buffer used to create each acceleration structure in pAccelerationStructures must be
bound to host-visible device memory

• VUID-vkWriteAccelerationStructuresPropertiesKHR-buffer-03784
The buffer used to create each acceleration structure in pAccelerationStructures must be
bound to memory that was not allocated with multiple instances

Valid Usage (Implicit)

• VUID-vkWriteAccelerationStructuresPropertiesKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkWriteAccelerationStructuresPropertiesKHR-pAccelerationStructures-parameter
pAccelerationStructures must be a valid pointer to an array of accelerationStructureCount
valid VkAccelerationStructureKHR handles

• VUID-vkWriteAccelerationStructuresPropertiesKHR-queryType-parameter
queryType must be a valid VkQueryType value

• VUID-vkWriteAccelerationStructuresPropertiesKHR-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

3256

• VUID-vkWriteAccelerationStructuresPropertiesKHR-accelerationStructureCount-
arraylength
accelerationStructureCount must be greater than 0

• VUID-vkWriteAccelerationStructuresPropertiesKHR-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkWriteAccelerationStructuresPropertiesKHR-pAccelerationStructures-parent
Each element of pAccelerationStructures must have been created, allocated, or retrieved
from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

3257

Chapter 38. Micromap

38.1. Micromaps
Acceleration structures store and organize geometry for ray tracing, but in some cases it is
beneficial to include some information within the geometry, particularly for triangles. A micromap
organizes this data around a map of values corresponding to subdivided microtriangles which can
be added to a triangle geometry when building a bottom level acceleration structure.

An opacity micromap is a type of micromap which stores information to control intersection
opacity as described in Ray Opacity Micromap.

A displacement micromap is a type of micromap which stores information to displace sub-triangle
vertices as described in Displacement Micromap.

A micromap is considered to be constructed if a micromap build command or copy command has
been executed with the given acceleration structure as the destination.

38.1.1. Building Micromaps

To build micromaps call:

// Provided by VK_EXT_opacity_micromap
void vkCmdBuildMicromapsEXT(
 VkCommandBuffer commandBuffer,
 uint32_t infoCount,
 const VkMicromapBuildInfoEXT* pInfos);

• commandBuffer is the command buffer into which the command will be recorded.

• infoCount is the number of micromaps to build. It specifies the number of the pInfos structures
that must be provided.

• pInfos is a pointer to an array of infoCount VkMicromapBuildInfoEXT structures defining the
data used to build each micromap.

The vkCmdBuildMicromapsEXT command provides the ability to initiate multiple micromaps builds,
however there is no ordering or synchronization implied between any of the individual micromap
builds.

Note

This means that there cannot be any memory aliasing between any micromap
memories or scratch memories being used by any of the builds.

Accesses to the micromap scratch buffers as identified by the VkMicromapBuildInfoEXT
::scratchData buffer device addresses must be synchronized with the
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT pipeline stage and an access type of
(VK_ACCESS_2_MICROMAP_READ_BIT_EXT | VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT). Accesses to

3258

VkMicromapBuildInfoEXT::dstMicromap must be synchronized with the
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT pipeline stage and an access type of
VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT.

Accesses to other input buffers as identified by any used values of VkMicromapBuildInfoEXT::data
or VkMicromapBuildInfoEXT::triangleArray must be synchronized with the
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT pipeline stage and an access type of
VK_ACCESS_SHADER_READ_BIT.

Valid Usage

• VUID-vkCmdBuildMicromapsEXT-pInfos-07461
For each pInfos[i], dstMicromap must have been created with a value of
VkMicromapCreateInfoEXT::size greater than or equal to the memory size required by
the build operation, as returned by vkGetMicromapBuildSizesEXT with pBuildInfo =
pInfos[i]

• VUID-vkCmdBuildMicromapsEXT-mode-07462
The mode member of each element of pInfos must be a valid VkBuildMicromapModeEXT
value

• VUID-vkCmdBuildMicromapsEXT-dstMicromap-07463
The dstMicromap member of any element of pInfos must be a valid VkMicromapEXT
handle

• VUID-vkCmdBuildMicromapsEXT-pInfos-07464
For each element of pInfos its type member must match the value of
VkMicromapCreateInfoEXT::type when its dstMicromap was created

• VUID-vkCmdBuildMicromapsEXT-dstMicromap-07465
The range of memory backing the dstMicromap member of any element of pInfos that is
accessed by this command must not overlap the memory backing the dstMicromap
member of any other element of pInfos, which is accessed by this command

• VUID-vkCmdBuildMicromapsEXT-dstMicromap-07466
The range of memory backing the dstMicromap member of any element of pInfos that is
accessed by this command must not overlap the memory backing the scratchData
member of any element of pInfos (including the same element), which is accessed by this
command

• VUID-vkCmdBuildMicromapsEXT-scratchData-07467
The range of memory backing the scratchData member of any element of pInfos that is
accessed by this command must not overlap the memory backing the scratchData
member of any other element of pInfos, which is accessed by this command

• VUID-vkCmdBuildMicromapsEXT-pInfos-07508
For each element of pInfos, the buffer used to create its dstMicromap member must be
bound to device memory

• VUID-vkCmdBuildMicromapsEXT-pInfos-07509
If pInfos[i].mode is VK_BUILD_MICROMAP_MODE_BUILD_EXT, all addresses between pInfos
[i].scratchData.deviceAddress and pInfos[i].scratchData.deviceAddress + N - 1 must be in

3259

the buffer device address range of the same buffer, where N is given by the
buildScratchSize member of the VkMicromapBuildSizesInfoEXT structure returned from
a call to vkGetMicromapBuildSizesEXT with an identical VkMicromapBuildInfoEXT
structure and primitive count

• VUID-vkCmdBuildMicromapsEXT-data-07510
The buffers from which the buffer device addresses for all of the data and triangleArray
members of all pInfos[i] are queried must have been created with the
VK_BUFFER_USAGE_MICROMAP_BUILD_INPUT_READ_ONLY_BIT_EXT usage flag

• VUID-vkCmdBuildMicromapsEXT-pInfos-07511
For each element of pInfos[i] the buffer from which the buffer device address pInfos
[i].scratchData.deviceAddress is queried must have been created with
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT usage flag

• VUID-vkCmdBuildMicromapsEXT-pInfos-07512
For each element of pInfos, its scratchData.deviceAddress, data.deviceAddress, and
triangleArray.deviceAddress members must be valid device addresses obtained from
vkGetBufferDeviceAddress

• VUID-vkCmdBuildMicromapsEXT-pInfos-07513
For each element of pInfos, if scratchData.deviceAddress, data.deviceAddress, or
triangleArray.deviceAddress is the address of a non-sparse buffer then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdBuildMicromapsEXT-pInfos-07514
For each element of pInfos, its scratchData.deviceAddress member must be a multiple of
VkPhysicalDeviceAccelerationStructurePropertiesKHR::minAccelerationStructureScratchO
ffsetAlignment

• VUID-vkCmdBuildMicromapsEXT-pInfos-07515
For each element of pInfos, its triangleArray.deviceAddress and data.deviceAddress
members must be a multiple of 256

Valid Usage (Implicit)

• VUID-vkCmdBuildMicromapsEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBuildMicromapsEXT-pInfos-parameter
pInfos must be a valid pointer to an array of infoCount valid VkMicromapBuildInfoEXT
structures

• VUID-vkCmdBuildMicromapsEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBuildMicromapsEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdBuildMicromapsEXT-renderpass
This command must only be called outside of a render pass instance

3260

• VUID-vkCmdBuildMicromapsEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBuildMicromapsEXT-infoCount-arraylength
infoCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

Formats which can be set in VkMicromapUsageEXT::format and VkMicromapTriangleEXT::format
for micromap builds, are:

// Provided by VK_EXT_opacity_micromap
typedef enum VkOpacityMicromapFormatEXT {
 VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT = 1,
 VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT = 2,
} VkOpacityMicromapFormatEXT;

• VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT indicates that the given micromap format has one bit
per subtriangle encoding either fully opaque or fully transparent.

• VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT indicates that the given micromap format has two bits
per subtriangle encoding four modes which can be interpreted as described in ray traversal.

Note

For compactness, these values are stored as 16-bit in some structures.

Formats which can be set in VkMicromapUsageEXT::format and VkMicromapTriangleEXT::format
for micromap builds, are:

// Provided by VK_NV_displacement_micromap
typedef enum VkDisplacementMicromapFormatNV {
 VK_DISPLACEMENT_MICROMAP_FORMAT_64_TRIANGLES_64_BYTES_NV = 1,
 VK_DISPLACEMENT_MICROMAP_FORMAT_256_TRIANGLES_128_BYTES_NV = 2,

3261

 VK_DISPLACEMENT_MICROMAP_FORMAT_1024_TRIANGLES_128_BYTES_NV = 3,
} VkDisplacementMicromapFormatNV;

• VK_DISPLACEMENT_MICROMAP_FORMAT_64_TRIANGLES_64_BYTES_NV indicates that the given micromap
format encodes 64 micro-triangles worth of displacements in 64 bytes as described in
Displacement Micromap Encoding.

• VK_DISPLACEMENT_MICROMAP_FORMAT_256_TRIANGLES_128_BYTES_NV indicates that the given micromap
format encodes 256 micro-triangles worth of displacements in 128 bytes as described in
Displacement Micromap Encoding.

• VK_DISPLACEMENT_MICROMAP_FORMAT_1024_TRIANGLES_128_BYTES_NV indicates that the given
micromap format encodes 1024 micro-triangles worth of displacements in 128 bytes as
described in Displacement Micromap Encoding.

Note

For compactness, these values are stored as 16-bit in some structures.

The VkMicromapBuildInfoEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkMicromapBuildInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkMicromapTypeEXT type;
 VkBuildMicromapFlagsEXT flags;
 VkBuildMicromapModeEXT mode;
 VkMicromapEXT dstMicromap;
 uint32_t usageCountsCount;
 const VkMicromapUsageEXT* pUsageCounts;
 const VkMicromapUsageEXT* const* ppUsageCounts;
 VkDeviceOrHostAddressConstKHR data;
 VkDeviceOrHostAddressKHR scratchData;
 VkDeviceOrHostAddressConstKHR triangleArray;
 VkDeviceSize triangleArrayStride;
} VkMicromapBuildInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• type is a VkMicromapTypeEXT value specifying the type of micromap being built.

• flags is a bitmask of VkBuildMicromapFlagBitsEXT specifying additional parameters of the
micromap.

• mode is a VkBuildMicromapModeEXT value specifying the type of operation to perform.

• dstMicromap is a pointer to the target micromap for the build.

• usageCountsCount specifies the number of usage counts structures that will be used to determine
the size of this micromap.

3262

• pUsageCounts is a pointer to an array of VkMicromapUsageEXT structures.

• ppUsageCounts is a pointer to an array of pointers to VkMicromapUsageEXT structures.

• data is the device or host address to memory which contains the data for the micromap.

• scratchData is the device or host address to memory that will be used as scratch memory for the
build.

• triangleArray is the device or host address to memory containing the VkMicromapTriangleEXT
data

• triangleArrayStride is the stride in bytes between each element of triangleArray

Only one of pUsageCounts or ppUsageCounts can be a valid pointer, the other must be NULL. The
elements of the non-NULL array describe the total counts used to build each micromap. Each element
contains a count which is the number of micromap triangles of that format and subdivisionLevel
contained in the micromap. Multiple elements with the same format and subdivisionLevel are
allowed and the total count for that format and subdivisionLevel is the sum of the count for each
element.

Each micromap triangle refers to one element in triangleArray which contains the format and
subdivisionLevel for that particular triangle as well as a dataOffset in bytes which is the location
relative to data where that triangle’s micromap data begins. The data at triangleArray is laid out as
a 4 byte unsigned integer for the dataOffset followed by a 2 byte unsigned integer for the
subdivision level then a 2 byte unsigned integer for the format. In practice, compilers compile
VkMicromapTriangleEXT to match this pattern.

For opacity micromaps, the data at data is packed as either one bit per element for
VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT or two bits per element for
VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT and is packed from LSB to MSB in each byte. The data at
each index in those bytes is interpreted as discussed in Ray Opacity Micromap.

For displacement micromaps, the data at data is interpreted as discussed in Displacement
Micromap Encoding.

Valid Usage

• VUID-VkMicromapBuildInfoEXT-pUsageCounts-07516
Only one of pUsageCounts or ppUsageCounts can be a valid pointer, the other must be NULL

• VUID-VkMicromapBuildInfoEXT-type-07517
If type is VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT the format member of
VkMicromapUsageEXT must be a valid value from VkOpacityMicromapFormatEXT

• VUID-VkMicromapBuildInfoEXT-type-07518
If type is VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT the format member of
VkMicromapTriangleEXT must be a valid value from VkOpacityMicromapFormatEXT

• VUID-VkMicromapBuildInfoEXT-type-08704
If type is VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV the format member of
VkMicromapUsageEXT must be a valid value from VkDisplacementMicromapFormatNV

• VUID-VkMicromapBuildInfoEXT-type-08705

3263

If type is VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV the format member of
VkMicromapTriangleEXT must be a valid value from VkDisplacementMicromapFormatNV

Valid Usage (Implicit)

• VUID-VkMicromapBuildInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MICROMAP_BUILD_INFO_EXT

• VUID-VkMicromapBuildInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkMicromapBuildInfoEXT-type-parameter
type must be a valid VkMicromapTypeEXT value

• VUID-VkMicromapBuildInfoEXT-flags-parameter
flags must be a valid combination of VkBuildMicromapFlagBitsEXT values

• VUID-VkMicromapBuildInfoEXT-pUsageCounts-parameter
If usageCountsCount is not 0, and pUsageCounts is not NULL, pUsageCounts must be a valid
pointer to an array of usageCountsCount VkMicromapUsageEXT structures

• VUID-VkMicromapBuildInfoEXT-ppUsageCounts-parameter
If usageCountsCount is not 0, and ppUsageCounts is not NULL, ppUsageCounts must be a valid
pointer to an array of usageCountsCount valid pointers to VkMicromapUsageEXT structures

The VkBuildMicromapModeEXT enumeration is defined as:

// Provided by VK_EXT_opacity_micromap
typedef enum VkBuildMicromapModeEXT {
 VK_BUILD_MICROMAP_MODE_BUILD_EXT = 0,
} VkBuildMicromapModeEXT;

• VK_BUILD_MICROMAP_MODE_BUILD_EXT specifies that the destination micromap will be built using the
specified data.

The VkMicromapUsageEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkMicromapUsageEXT {
 uint32_t count;
 uint32_t subdivisionLevel;
 uint32_t format;
} VkMicromapUsageEXT;

• count is the number of triangles in the usage format defined by the subdivisionLevel and format
below in the micromap

• subdivisionLevel is the subdivision level of this usage format

3264

• format is the format of this usage format

Valid Usage

• VUID-VkMicromapUsageEXT-format-07519
If the VkMicromapTypeEXT of the micromap is VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT
then format must be VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT or
VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT

• VUID-VkMicromapUsageEXT-format-07520
If the VkMicromapTypeEXT of the micromap is VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT
and format is VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT then subdivisionLevel must be less
than or equal to VkPhysicalDeviceOpacityMicromapPropertiesEXT
::maxOpacity2StateSubdivisionLevel

• VUID-VkMicromapUsageEXT-format-07521
If the VkMicromapTypeEXT of the micromap is VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT
and format is VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT then subdivisionLevel must be less
than or equal to VkPhysicalDeviceOpacityMicromapPropertiesEXT
::maxOpacity4StateSubdivisionLevel

• VUID-VkMicromapUsageEXT-format-08706
If the VkMicromapTypeEXT of the micromap is
VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV then format must be
VK_DISPLACEMENT_MICROMAP_FORMAT_64_TRIANGLES_64_BYTES_NV,
VK_DISPLACEMENT_MICROMAP_FORMAT_256_TRIANGLES_128_BYTES_NV or
VK_DISPLACEMENT_MICROMAP_FORMAT_1024_TRIANGLES_128_BYTES_NV

• VUID-VkMicromapUsageEXT-subdivisionLevel-08707
If the VkMicromapTypeEXT of the micromap is
VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV then subdivisionLevel must be less than or
equal to VkPhysicalDeviceDisplacementMicromapPropertiesNV
::maxDisplacementMicromapSubdivisionLevel

The format is interpreted based on the type of the micromap using it.

The VkMicromapTriangleEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkMicromapTriangleEXT {
 uint32_t dataOffset;
 uint16_t subdivisionLevel;
 uint16_t format;
} VkMicromapTriangleEXT;

• dataOffset is the offset in bytes of the start of the data for this triangle. This is a byte aligned
value.

• subdivisionLevel is the subdivision level of this triangle

3265

• format is the format of this triangle

Valid Usage

• VUID-VkMicromapTriangleEXT-format-07522
If the VkMicromapTypeEXT of the micromap is VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT
then format must be VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT or
VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT

• VUID-VkMicromapTriangleEXT-format-07523
If the VkMicromapTypeEXT of the micromap is VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT
and format is VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT then subdivisionLevel must be less
than or equal to VkPhysicalDeviceOpacityMicromapPropertiesEXT
::maxOpacity2StateSubdivisionLevel

• VUID-VkMicromapTriangleEXT-format-07524
If the VkMicromapTypeEXT of the micromap is VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT
and format is VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT then subdivisionLevel must be less
than or equal to VkPhysicalDeviceOpacityMicromapPropertiesEXT
::maxOpacity4StateSubdivisionLevel

• VUID-VkMicromapTriangleEXT-format-08708
If the VkMicromapTypeEXT of the micromap is
VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV then format must be
VK_DISPLACEMENT_MICROMAP_FORMAT_64_TRIANGLES_64_BYTES_NV,
VK_DISPLACEMENT_MICROMAP_FORMAT_256_TRIANGLES_128_BYTES_NV or
VK_DISPLACEMENT_MICROMAP_FORMAT_1024_TRIANGLES_128_BYTES_NV

• VUID-VkMicromapTriangleEXT-subdivisionLevel-08709
If the VkMicromapTypeEXT of the micromap is
VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV then subdivisionLevel must be less than or
equal to VkPhysicalDeviceDisplacementMicromapPropertiesNV
::maxDisplacementMicromapSubdivisionLevel

The format is interpreted based on the type of the micromap using it.

38.1.2. Copying Micromaps

An additional command exists for copying micromaps without updating their contents. Before
copying, an application must query the size of the resulting micromap.

To query micromap size parameters call:

// Provided by VK_EXT_opacity_micromap
void vkCmdWriteMicromapsPropertiesEXT(
 VkCommandBuffer commandBuffer,
 uint32_t micromapCount,
 const VkMicromapEXT* pMicromaps,
 VkQueryType queryType,
 VkQueryPool queryPool,

3266

 uint32_t firstQuery);

• commandBuffer is the command buffer into which the command will be recorded.

• micromapCount is the count of micromaps for which to query the property.

• pMicromaps is a pointer to an array of existing previously built micromaps.

• queryType is a VkQueryType value specifying the type of queries managed by the pool.

• queryPool is the query pool that will manage the results of the query.

• firstQuery is the first query index within the query pool that will contain the micromapCount
number of results.

Accesses to any of the micromaps listed in pMicromaps must be synchronized with the
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT pipeline stage and an access type of
VK_ACCESS_2_MICROMAP_READ_BIT_EXT.

• If queryType is VK_QUERY_TYPE_MICROMAP_SERIALIZATION_SIZE_EXT, then the value written out is the
number of bytes required by a serialized micromap.

• If queryType is VK_QUERY_TYPE_MICROMAP_COMPACTED_SIZE_EXT, then the value written out is the
number of bytes required by a compacted micromap.

Valid Usage

• VUID-vkCmdWriteMicromapsPropertiesEXT-queryPool-07525
queryPool must have been created with a queryType matching queryType

• VUID-vkCmdWriteMicromapsPropertiesEXT-queryPool-07526
The queries identified by queryPool and firstQuery must be unavailable

• VUID-vkCmdWriteMicromapsPropertiesEXT-buffer-07527
The buffer used to create each micromap in pMicrmaps must be bound to device memory

• VUID-vkCmdWriteMicromapsPropertiesEXT-query-07528
The sum of query plus micromapCount must be less than or equal to the number of queries
in queryPool

• VUID-vkCmdWriteMicromapsPropertiesEXT-pMicromaps-07501
All micromaps in pMicromaps must have been constructed prior to the execution of this
command

• VUID-vkCmdWriteMicromapsPropertiesEXT-pMicromaps-07502
All micromaps in pMicromaps must have been constructed with
VK_BUILD_MICROMAP_ALLOW_COMPACTION_BIT_EXT if queryType is
VK_QUERY_TYPE_MICROMAP_COMPACTED_SIZE_EXT

• VUID-vkCmdWriteMicromapsPropertiesEXT-queryType-07503
queryType must be VK_QUERY_TYPE_MICROMAP_COMPACTED_SIZE_EXT or
VK_QUERY_TYPE_MICROMAP_SERIALIZATION_SIZE_EXT

3267

Valid Usage (Implicit)

• VUID-vkCmdWriteMicromapsPropertiesEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteMicromapsPropertiesEXT-pMicromaps-parameter
pMicromaps must be a valid pointer to an array of micromapCount valid VkMicromapEXT
handles

• VUID-vkCmdWriteMicromapsPropertiesEXT-queryType-parameter
queryType must be a valid VkQueryType value

• VUID-vkCmdWriteMicromapsPropertiesEXT-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdWriteMicromapsPropertiesEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteMicromapsPropertiesEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdWriteMicromapsPropertiesEXT-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdWriteMicromapsPropertiesEXT-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdWriteMicromapsPropertiesEXT-micromapCount-arraylength
micromapCount must be greater than 0

• VUID-vkCmdWriteMicromapsPropertiesEXT-commonparent
Each of commandBuffer, queryPool, and the elements of pMicromaps must have been created,
allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

To copy a micromap call:

3268

// Provided by VK_EXT_opacity_micromap
void vkCmdCopyMicromapEXT(
 VkCommandBuffer commandBuffer,
 const VkCopyMicromapInfoEXT* pInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pInfo is a pointer to a VkCopyMicromapInfoEXT structure defining the copy operation.

This command copies the pInfo->src micromap to the pInfo->dst micromap in the manner specified
by pInfo->mode.

Accesses to pInfo->src and pInfo->dst must be synchronized with the
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT pipeline stage and an access type of
VK_ACCESS_2_MICROMAP_READ_BIT_EXT or VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT as appropriate.

Valid Usage

• VUID-vkCmdCopyMicromapEXT-buffer-07529
The buffer used to create pInfo->src must be bound to device memory

• VUID-vkCmdCopyMicromapEXT-buffer-07530
The buffer used to create pInfo->dst must be bound to device memory

Valid Usage (Implicit)

• VUID-vkCmdCopyMicromapEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyMicromapEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyMicromapInfoEXT structure

• VUID-vkCmdCopyMicromapEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyMicromapEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdCopyMicromapEXT-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyMicromapEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

3269

synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

The VkCopyMicromapInfoEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkCopyMicromapInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkMicromapEXT src;
 VkMicromapEXT dst;
 VkCopyMicromapModeEXT mode;
} VkCopyMicromapInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• src is the source micromap for the copy.

• dst is the target micromap for the copy.

• mode is a VkCopyMicromapModeEXT value specifying additional operations to perform during
the copy.

Valid Usage

• VUID-VkCopyMicromapInfoEXT-mode-07531
mode must be VK_COPY_MICROMAP_MODE_COMPACT_EXT or VK_COPY_MICROMAP_MODE_CLONE_EXT

• VUID-VkCopyMicromapInfoEXT-src-07532
The source acceleration structure src must have been constructed prior to the execution
of this command

• VUID-VkCopyMicromapInfoEXT-mode-07533
If mode is VK_COPY_MICROMAP_MODE_COMPACT_EXT, src must have been constructed with
VK_BUILD_MICROMAP_ALLOW_COMPACTION_BIT_EXT in the build

• VUID-VkCopyMicromapInfoEXT-buffer-07534
The buffer used to create src must be bound to device memory

• VUID-VkCopyMicromapInfoEXT-buffer-07535
The buffer used to create dst must be bound to device memory

3270

Valid Usage (Implicit)

• VUID-VkCopyMicromapInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_MICROMAP_INFO_EXT

• VUID-VkCopyMicromapInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkCopyMicromapInfoEXT-src-parameter
src must be a valid VkMicromapEXT handle

• VUID-VkCopyMicromapInfoEXT-dst-parameter
dst must be a valid VkMicromapEXT handle

• VUID-VkCopyMicromapInfoEXT-mode-parameter
mode must be a valid VkCopyMicromapModeEXT value

• VUID-VkCopyMicromapInfoEXT-commonparent
Both of dst, and src must have been created, allocated, or retrieved from the same
VkDevice

Possible values of mode specifying additional operations to perform during the copy, are:

// Provided by VK_EXT_opacity_micromap
typedef enum VkCopyMicromapModeEXT {
 VK_COPY_MICROMAP_MODE_CLONE_EXT = 0,
 VK_COPY_MICROMAP_MODE_SERIALIZE_EXT = 1,
 VK_COPY_MICROMAP_MODE_DESERIALIZE_EXT = 2,
 VK_COPY_MICROMAP_MODE_COMPACT_EXT = 3,
} VkCopyMicromapModeEXT;

• VK_COPY_MICROMAP_MODE_CLONE_EXT creates a direct copy of the micromap specified in src into the
one specified by dst. The dst micromap must have been created with the same parameters as
src.

• VK_COPY_MICROMAP_MODE_SERIALIZE_EXT serializes the micromap to a semi-opaque format which
can be reloaded on a compatible implementation.

• VK_COPY_MICROMAP_MODE_DESERIALIZE_EXT deserializes the semi-opaque serialization format in the
buffer to the micromap.

• VK_COPY_MICROMAP_MODE_COMPACT_EXT creates a more compact version of a micromap src into dst.
The micromap dst must have been created with a size at least as large as that returned by
vkCmdWriteMicromapsPropertiesEXT after the build of the micromap specified by src.

To copy a micromap to device memory call:

// Provided by VK_EXT_opacity_micromap
void vkCmdCopyMicromapToMemoryEXT(
 VkCommandBuffer commandBuffer,

3271

 const VkCopyMicromapToMemoryInfoEXT* pInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pInfo is an a pointer to a VkCopyMicromapToMemoryInfoEXT structure defining the copy
operation.

Accesses to pInfo->src must be synchronized with the VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT
pipeline stage and an access type of VK_ACCESS_2_MICROMAP_READ_BIT_EXT. Accesses to the buffer
indicated by pInfo->dst.deviceAddress must be synchronized with the
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT pipeline stage and an access type of
VK_ACCESS_TRANSFER_WRITE_BIT.

This command produces the same results as vkCopyMicromapToMemoryEXT, but writes its result
to a device address, and is executed on the device rather than the host. The output may not
necessarily be bit-for-bit identical, but it can be equally used by either
vkCmdCopyMemoryToMicromapEXT or vkCopyMemoryToMicromapEXT.

The defined header structure for the serialized data consists of:

• VK_UUID_SIZE bytes of data matching VkPhysicalDeviceIDProperties::driverUUID

• VK_UUID_SIZE bytes of data identifying the compatibility for comparison using
vkGetDeviceMicromapCompatibilityEXT The serialized data is written to the buffer (or read
from the buffer) according to the host endianness.

Valid Usage

• VUID-vkCmdCopyMicromapToMemoryEXT-pInfo-07536
pInfo->dst.deviceAddress must be a valid device address for a buffer bound to device
memory

• VUID-vkCmdCopyMicromapToMemoryEXT-pInfo-07537
pInfo->dst.deviceAddress must be aligned to 256 bytes

• VUID-vkCmdCopyMicromapToMemoryEXT-pInfo-07538
If the buffer pointed to by pInfo->dst.deviceAddress is non-sparse then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyMicromapToMemoryEXT-buffer-07539
The buffer used to create pInfo->src must be bound to device memory

Valid Usage (Implicit)

• VUID-vkCmdCopyMicromapToMemoryEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyMicromapToMemoryEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyMicromapToMemoryInfoEXT structure

• VUID-vkCmdCopyMicromapToMemoryEXT-commandBuffer-recording

3272

commandBuffer must be in the recording state

• VUID-vkCmdCopyMicromapToMemoryEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdCopyMicromapToMemoryEXT-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyMicromapToMemoryEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

// Provided by VK_EXT_opacity_micromap
typedef struct VkCopyMicromapToMemoryInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkMicromapEXT src;
 VkDeviceOrHostAddressKHR dst;
 VkCopyMicromapModeEXT mode;
} VkCopyMicromapToMemoryInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• src is the source micromap for the copy

• dst is the device or host address to memory which is the target for the copy

• mode is a VkCopyMicromapModeEXT value specifying additional operations to perform during
the copy.

3273

Valid Usage

• VUID-VkCopyMicromapToMemoryInfoEXT-src-07540
The source micromap src must have been constructed prior to the execution of this
command

• VUID-VkCopyMicromapToMemoryInfoEXT-dst-07541
The memory pointed to by dst must be at least as large as the serialization size of src, as
reported by vkWriteMicromapsPropertiesEXT or vkCmdWriteMicromapsPropertiesEXT
with a query type of VK_QUERY_TYPE_MICROMAP_SERIALIZATION_SIZE_EXT

• VUID-VkCopyMicromapToMemoryInfoEXT-mode-07542
mode must be VK_COPY_MICROMAP_MODE_SERIALIZE_EXT

Valid Usage (Implicit)

• VUID-VkCopyMicromapToMemoryInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_MICROMAP_TO_MEMORY_INFO_EXT

• VUID-VkCopyMicromapToMemoryInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkCopyMicromapToMemoryInfoEXT-src-parameter
src must be a valid VkMicromapEXT handle

• VUID-VkCopyMicromapToMemoryInfoEXT-mode-parameter
mode must be a valid VkCopyMicromapModeEXT value

To copy device memory to a micromap call:

// Provided by VK_EXT_opacity_micromap
void vkCmdCopyMemoryToMicromapEXT(
 VkCommandBuffer commandBuffer,
 const VkCopyMemoryToMicromapInfoEXT* pInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pInfo is a pointer to a VkCopyMicromapToMemoryInfoEXT structure defining the copy
operation.

Accesses to pInfo->dst must be synchronized with the VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT
pipeline stage and an access type of VK_ACCESS_2_MICROMAP_READ_BIT_EXT. Accesses to the buffer
indicated by pInfo->src.deviceAddress must be synchronized with the
VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT pipeline stage and an access type of
VK_ACCESS_TRANSFER_READ_BIT.

This command can accept micromaps produced by either vkCmdCopyMicromapToMemoryEXT or
vkCopyMicromapToMemoryEXT.

3274

Valid Usage

• VUID-vkCmdCopyMemoryToMicromapEXT-pInfo-07543
pInfo->src.deviceAddress must be a valid device address for a buffer bound to device
memory

• VUID-vkCmdCopyMemoryToMicromapEXT-pInfo-07544
pInfo->src.deviceAddress must be aligned to 256 bytes

• VUID-vkCmdCopyMemoryToMicromapEXT-pInfo-07545
If the buffer pointed to by pInfo->src.deviceAddress is non-sparse then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyMemoryToMicromapEXT-buffer-07546
The buffer used to create pInfo->dst must be bound to device memory

Valid Usage (Implicit)

• VUID-vkCmdCopyMemoryToMicromapEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyMemoryToMicromapEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyMemoryToMicromapInfoEXT structure

• VUID-vkCmdCopyMemoryToMicromapEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyMemoryToMicromapEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdCopyMemoryToMicromapEXT-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyMemoryToMicromapEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

3275

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

The VkCopyMemoryToMicromapInfoEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkCopyMemoryToMicromapInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDeviceOrHostAddressConstKHR src;
 VkMicromapEXT dst;
 VkCopyMicromapModeEXT mode;
} VkCopyMemoryToMicromapInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• src is the device or host address to memory containing the source data for the copy.

• dst is the target micromap for the copy.

• mode is a VkCopyMicromapModeEXT value specifying additional operations to perform during
the copy.

Valid Usage

• VUID-VkCopyMemoryToMicromapInfoEXT-src-07547
The source memory pointed to by src must contain data previously serialized using
vkCmdCopyMicromapToMemoryEXT

• VUID-VkCopyMemoryToMicromapInfoEXT-mode-07548
mode must be VK_COPY_MICROMAP_MODE_DESERIALIZE_EXT

• VUID-VkCopyMemoryToMicromapInfoEXT-src-07549
The data in src must have a format compatible with the destination physical device as
returned by vkGetDeviceMicromapCompatibilityEXT

• VUID-VkCopyMemoryToMicromapInfoEXT-dst-07550
dst must have been created with a size greater than or equal to that used to serialize the
data in src

3276

Valid Usage (Implicit)

• VUID-VkCopyMemoryToMicromapInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_MEMORY_TO_MICROMAP_INFO_EXT

• VUID-VkCopyMemoryToMicromapInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkCopyMemoryToMicromapInfoEXT-dst-parameter
dst must be a valid VkMicromapEXT handle

• VUID-VkCopyMemoryToMicromapInfoEXT-mode-parameter
mode must be a valid VkCopyMicromapModeEXT value

To check if a serialized micromap is compatible with the current device call:

// Provided by VK_EXT_opacity_micromap
void vkGetDeviceMicromapCompatibilityEXT(
 VkDevice device,
 const VkMicromapVersionInfoEXT* pVersionInfo,
 VkAccelerationStructureCompatibilityKHR* pCompatibility);

• device is the device to check the version against.

• pVersionInfo is a pointer to a VkMicromapVersionInfoEXT structure specifying version
information to check against the device.

• pCompatibility is a pointer to a VkAccelerationStructureCompatibilityKHR value in which
compatibility information is returned.

Valid Usage

• VUID-vkGetDeviceMicromapCompatibilityEXT-micromap-07551
The micromap feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetDeviceMicromapCompatibilityEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceMicromapCompatibilityEXT-pVersionInfo-parameter
pVersionInfo must be a valid pointer to a valid VkMicromapVersionInfoEXT structure

• VUID-vkGetDeviceMicromapCompatibilityEXT-pCompatibility-parameter
pCompatibility must be a valid pointer to a VkAccelerationStructureCompatibilityKHR
value

The VkMicromapVersionInfoEXT structure is defined as:

3277

// Provided by VK_EXT_opacity_micromap
typedef struct VkMicromapVersionInfoEXT {
 VkStructureType sType;
 const void* pNext;
 const uint8_t* pVersionData;
} VkMicromapVersionInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pVersionData is a pointer to the version header of a micromap as defined in
vkCmdCopyMicromapToMemoryEXT

Note

pVersionData is a pointer to an array of 2×VK_UUID_SIZE uint8_t values instead of
two VK_UUID_SIZE arrays as the expected use case for this member is to be pointed
at the header of a previously serialized micromap (via
vkCmdCopyMicromapToMemoryEXT or vkCopyMicromapToMemoryEXT) that is
loaded in memory. Using arrays would necessitate extra memory copies of the
UUIDs.

Valid Usage (Implicit)

• VUID-VkMicromapVersionInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MICROMAP_VERSION_INFO_EXT

• VUID-VkMicromapVersionInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkMicromapVersionInfoEXT-pVersionData-parameter
pVersionData must be a valid pointer to an array of uint8_t values

38.2. Host Micromap Operations
Implementations are also required to provide host implementations of the micromap operations if
the micromapHostCommands feature is enabled:

• vkBuildMicromapsEXT corresponding to vkCmdBuildMicromapsEXT

• vkCopyMicromapEXT corresponding to vkCmdCopyMicromapEXT

• vkCopyMicromapToMemoryEXT corresponding to vkCmdCopyMicromapToMemoryEXT

• vkCopyMemoryToMicromapEXT corresponding to vkCmdCopyMemoryToMicromapEXT

• vkWriteMicromapsPropertiesEXT corresponding to vkCmdWriteMicromapsPropertiesEXT

These commands are functionally equivalent to their device counterparts, except that they are
executed on the host timeline, rather than being enqueued into command buffers.

3278

All micromaps used by the host commands must be bound to host-visible memory, and all input
data for micromap builds must be referenced using host addresses instead of device addresses.
Applications are not required to map micromap memory when using the host commands.

Note

The vkBuildMicromapsEXT and vkCmdBuildMicromapsEXT may use different
algorithms, and thus are not required to produce identical structures.

Apart from these details, the host and device operations are interchangeable.

Note

For efficient execution, micromaps manipulated using these commands should
always be bound to host cached memory, as the implementation may need to
repeatedly read and write this memory during the execution of the command.

To build micromaps on the host, call:

// Provided by VK_EXT_opacity_micromap
VkResult vkBuildMicromapsEXT(
 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 uint32_t infoCount,
 const VkMicromapBuildInfoEXT* pInfos);

• device is the VkDevice for which the micromaps are being built.

• deferredOperation is an optional VkDeferredOperationKHR to request deferral for this
command.

• infoCount is the number of micromaps to build. It specifies the number of the pInfos that must
be provided.

• pInfos is a pointer to an array of infoCount VkMicromapBuildInfoEXT structures defining the
geometry used to build each micromap.

This command fulfills the same task as vkCmdBuildMicromapsEXT but is executed by the host.

The vkBuildMicromapsEXT command provides the ability to initiate multiple micromaps builds,
however there is no ordering or synchronization implied between any of the individual micromap
builds.

Note

This means that there cannot be any memory aliasing between any micromap
memories or scratch memories being used by any of the builds.

Valid Usage

• VUID-vkBuildMicromapsEXT-pInfos-07461

3279

For each pInfos[i], dstMicromap must have been created with a value of
VkMicromapCreateInfoEXT::size greater than or equal to the memory size required by
the build operation, as returned by vkGetMicromapBuildSizesEXT with pBuildInfo =
pInfos[i]

• VUID-vkBuildMicromapsEXT-mode-07462
The mode member of each element of pInfos must be a valid VkBuildMicromapModeEXT
value

• VUID-vkBuildMicromapsEXT-dstMicromap-07463
The dstMicromap member of any element of pInfos must be a valid VkMicromapEXT
handle

• VUID-vkBuildMicromapsEXT-pInfos-07464
For each element of pInfos its type member must match the value of
VkMicromapCreateInfoEXT::type when its dstMicromap was created

• VUID-vkBuildMicromapsEXT-dstMicromap-07465
The range of memory backing the dstMicromap member of any element of pInfos that is
accessed by this command must not overlap the memory backing the dstMicromap
member of any other element of pInfos, which is accessed by this command

• VUID-vkBuildMicromapsEXT-dstMicromap-07466
The range of memory backing the dstMicromap member of any element of pInfos that is
accessed by this command must not overlap the memory backing the scratchData
member of any element of pInfos (including the same element), which is accessed by this
command

• VUID-vkBuildMicromapsEXT-scratchData-07467
The range of memory backing the scratchData member of any element of pInfos that is
accessed by this command must not overlap the memory backing the scratchData
member of any other element of pInfos, which is accessed by this command

• VUID-vkBuildMicromapsEXT-pInfos-07552
For each element of pInfos, the buffer used to create its dstMicromap member must be
bound to host-visible device memory

• VUID-vkBuildMicromapsEXT-pInfos-07553
For each element of pInfos, all referenced addresses of pInfos[i].data.hostAddress must be
valid host memory

• VUID-vkBuildMicromapsEXT-pInfos-07554
For each element of pInfos, all referenced addresses of pInfos
[i].triangleArray.hostAddress must be valid host memory

• VUID-vkBuildMicromapsEXT-micromapHostCommands-07555
The VkPhysicalDeviceOpacityMicromapFeaturesEXT::micromapHostCommands feature must be
enabled

• VUID-vkBuildMicromapsEXT-pInfos-07556
If pInfos[i].mode is VK_BUILD_MICROMAP_MODE_BUILD_EXT, all addresses between pInfos
[i].scratchData.hostAddress and pInfos[i].scratchData.hostAddress + N - 1 must be valid
host memory, where N is given by the buildScratchSize member of the
VkMicromapBuildSizesInfoEXT structure returned from a call to

3280

vkGetMicromapBuildSizesEXT with an identical VkMicromapBuildInfoEXT structure and
primitive count

• VUID-vkBuildMicromapsEXT-pInfos-07557
For each element of pInfos, the buffer used to create its dstMicromap member must be
bound to memory that was not allocated with multiple instances

Valid Usage (Implicit)

• VUID-vkBuildMicromapsEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkBuildMicromapsEXT-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkBuildMicromapsEXT-pInfos-parameter
pInfos must be a valid pointer to an array of infoCount valid VkMicromapBuildInfoEXT
structures

• VUID-vkBuildMicromapsEXT-infoCount-arraylength
infoCount must be greater than 0

• VUID-vkBuildMicromapsEXT-deferredOperation-parent
If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To copy or compact a micromap on the host, call:

// Provided by VK_EXT_opacity_micromap
VkResult vkCopyMicromapEXT(
 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 const VkCopyMicromapInfoEXT* pInfo);

3281

• device is the device which owns the micromaps.

• deferredOperation is an optional VkDeferredOperationKHR to request deferral for this
command.

• pInfo is a pointer to a VkCopyMicromapInfoEXT structure defining the copy operation.

This command fulfills the same task as vkCmdCopyMicromapEXT but is executed by the host.

Valid Usage

• VUID-vkCopyMicromapEXT-deferredOperation-03678
Any previous deferred operation that was associated with deferredOperation must be
complete

• VUID-vkCopyMicromapEXT-buffer-07558
The buffer used to create pInfo->src must be bound to host-visible device memory

• VUID-vkCopyMicromapEXT-buffer-07559
The buffer used to create pInfo->dst must be bound to host-visible device memory

• VUID-vkCopyMicromapEXT-micromapHostCommands-07560
The VkPhysicalDeviceOpacityMicromapFeaturesEXT::micromapHostCommands feature must be
enabled

• VUID-vkCopyMicromapEXT-buffer-07561
The buffer used to create pInfo->src must be bound to memory that was not allocated
with multiple instances

• VUID-vkCopyMicromapEXT-buffer-07562
The buffer used to create pInfo->dst must be bound to memory that was not allocated
with multiple instances

Valid Usage (Implicit)

• VUID-vkCopyMicromapEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyMicromapEXT-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkCopyMicromapEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyMicromapInfoEXT structure

• VUID-vkCopyMicromapEXT-deferredOperation-parent
If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

3282

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To copy host accessible memory to a micromap, call:

// Provided by VK_EXT_opacity_micromap
VkResult vkCopyMemoryToMicromapEXT(
 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 const VkCopyMemoryToMicromapInfoEXT* pInfo);

• device is the device which owns pInfo->dst.

• deferredOperation is an optional VkDeferredOperationKHR to request deferral for this
command.

• pInfo is a pointer to a VkCopyMemoryToMicromapInfoEXT structure defining the copy
operation.

This command fulfills the same task as vkCmdCopyMemoryToMicromapEXT but is executed by the
host.

This command can accept micromaps produced by either vkCmdCopyMicromapToMemoryEXT or
vkCopyMicromapToMemoryEXT.

Valid Usage

• VUID-vkCopyMemoryToMicromapEXT-deferredOperation-03678
Any previous deferred operation that was associated with deferredOperation must be
complete

• VUID-vkCopyMemoryToMicromapEXT-pInfo-07563
pInfo->src.hostAddress must be a valid host pointer

• VUID-vkCopyMemoryToMicromapEXT-pInfo-07564
pInfo->src.hostAddress must be aligned to 16 bytes

• VUID-vkCopyMemoryToMicromapEXT-buffer-07565
The buffer used to create pInfo->dst must be bound to host-visible device memory

• VUID-vkCopyMemoryToMicromapEXT-micromapHostCommands-07566

3283

The VkPhysicalDeviceOpacityMicromapFeaturesEXT::micromapHostCommands feature must be
enabled

• VUID-vkCopyMemoryToMicromapEXT-buffer-07567
The buffer used to create pInfo->dst must be bound to memory that was not allocated
with multiple instances

Valid Usage (Implicit)

• VUID-vkCopyMemoryToMicromapEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyMemoryToMicromapEXT-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkCopyMemoryToMicromapEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyMemoryToMicromapInfoEXT structure

• VUID-vkCopyMemoryToMicromapEXT-deferredOperation-parent
If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To copy a micromap to host accessible memory, call:

// Provided by VK_EXT_opacity_micromap
VkResult vkCopyMicromapToMemoryEXT(
 VkDevice device,
 VkDeferredOperationKHR deferredOperation,
 const VkCopyMicromapToMemoryInfoEXT* pInfo);

• device is the device which owns pInfo->src.

• deferredOperation is an optional VkDeferredOperationKHR to request deferral for this
command.

3284

• pInfo is a pointer to a VkCopyMicromapToMemoryInfoEXT structure defining the copy
operation.

This command fulfills the same task as vkCmdCopyMicromapToMemoryEXT but is executed by the
host.

This command produces the same results as vkCmdCopyMicromapToMemoryEXT, but writes its
result directly to a host pointer, and is executed on the host rather than the device. The output may
not necessarily be bit-for-bit identical, but it can be equally used by either
vkCmdCopyMemoryToMicromapEXT or vkCopyMemoryToMicromapEXT.

Valid Usage

• VUID-vkCopyMicromapToMemoryEXT-deferredOperation-03678
Any previous deferred operation that was associated with deferredOperation must be
complete

• VUID-vkCopyMicromapToMemoryEXT-buffer-07568
The buffer used to create pInfo->src must be bound to host-visible device memory

• VUID-vkCopyMicromapToMemoryEXT-pInfo-07569
pInfo->dst.hostAddress must be a valid host pointer

• VUID-vkCopyMicromapToMemoryEXT-pInfo-07570
pInfo->dst.hostAddress must be aligned to 16 bytes

• VUID-vkCopyMicromapToMemoryEXT-micromapHostCommands-07571
The VkPhysicalDeviceOpacityMicromapFeaturesEXT::micromapHostCommands feature must be
enabled

• VUID-vkCopyMicromapToMemoryEXT-buffer-07572
The buffer used to create pInfo->src must be bound to memory that was not allocated
with multiple instances

Valid Usage (Implicit)

• VUID-vkCopyMicromapToMemoryEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkCopyMicromapToMemoryEXT-deferredOperation-parameter
If deferredOperation is not VK_NULL_HANDLE, deferredOperation must be a valid
VkDeferredOperationKHR handle

• VUID-vkCopyMicromapToMemoryEXT-pInfo-parameter
pInfo must be a valid pointer to a valid VkCopyMicromapToMemoryInfoEXT structure

• VUID-vkCopyMicromapToMemoryEXT-deferredOperation-parent
If deferredOperation is a valid handle, it must have been created, allocated, or retrieved
from device

3285

Return Codes

Success

• VK_SUCCESS

• VK_OPERATION_DEFERRED_KHR

• VK_OPERATION_NOT_DEFERRED_KHR

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To query micromap size parameters on the host, call:

// Provided by VK_EXT_opacity_micromap
VkResult vkWriteMicromapsPropertiesEXT(
 VkDevice device,
 uint32_t micromapCount,
 const VkMicromapEXT* pMicromaps,
 VkQueryType queryType,
 size_t dataSize,
 void* pData,
 size_t stride);

• device is the device which owns the micromaps in pMicromaps.

• micromapCount is the count of micromaps for which to query the property.

• pMicromaps is a pointer to an array of existing previously built micromaps.

• queryType is a VkQueryType value specifying the property to be queried.

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written.

• stride is the stride in bytes between results for individual queries within pData.

This command fulfills the same task as vkCmdWriteMicromapsPropertiesEXT but is executed by
the host.

Valid Usage

• VUID-vkWriteMicromapsPropertiesEXT-pMicromaps-07501
All micromaps in pMicromaps must have been constructed prior to the execution of this
command

• VUID-vkWriteMicromapsPropertiesEXT-pMicromaps-07502
All micromaps in pMicromaps must have been constructed with
VK_BUILD_MICROMAP_ALLOW_COMPACTION_BIT_EXT if queryType is
VK_QUERY_TYPE_MICROMAP_COMPACTED_SIZE_EXT

3286

• VUID-vkWriteMicromapsPropertiesEXT-queryType-07503
queryType must be VK_QUERY_TYPE_MICROMAP_COMPACTED_SIZE_EXT or
VK_QUERY_TYPE_MICROMAP_SERIALIZATION_SIZE_EXT

• VUID-vkWriteMicromapsPropertiesEXT-queryType-07573
If queryType is VK_QUERY_TYPE_MICROMAP_SERIALIZATION_SIZE_EXT, then stride must be a
multiple of the size of VkDeviceSize

• VUID-vkWriteMicromapsPropertiesEXT-queryType-07574
If queryType is VK_QUERY_TYPE_MICROMAP_SERIALIZATION_SIZE_EXT, then pData must point to a
VkDeviceSize

• VUID-vkWriteMicromapsPropertiesEXT-queryType-07575
If queryType is

• VUID-vkWriteMicromapsPropertiesEXT-dataSize-07576
dataSize must be greater than or equal to micromapCount*stride

• VUID-vkWriteMicromapsPropertiesEXT-buffer-07577
The buffer used to create each micromap in pMicromaps must be bound to host-visible
device memory

• VUID-vkWriteMicromapsPropertiesEXT-micromapHostCommands-07578
The VkPhysicalDeviceOpacityMicromapFeaturesEXT::micromapHostCommands feature must be
enabled

• VUID-vkWriteMicromapsPropertiesEXT-buffer-07579
The buffer used to create each micromap in pMicromaps must be bound to memory that
was not allocated with multiple instances

Valid Usage (Implicit)

• VUID-vkWriteMicromapsPropertiesEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkWriteMicromapsPropertiesEXT-pMicromaps-parameter
pMicromaps must be a valid pointer to an array of micromapCount valid VkMicromapEXT
handles

• VUID-vkWriteMicromapsPropertiesEXT-queryType-parameter
queryType must be a valid VkQueryType value

• VUID-vkWriteMicromapsPropertiesEXT-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-vkWriteMicromapsPropertiesEXT-micromapCount-arraylength
micromapCount must be greater than 0

• VUID-vkWriteMicromapsPropertiesEXT-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkWriteMicromapsPropertiesEXT-pMicromaps-parent
Each element of pMicromaps must have been created, allocated, or retrieved from device

3287

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

38.2.1. Displacement Micromap

A displacement micromap in an acceleration structure includes information in the
VkAccelerationStructureTrianglesDisplacementMicromapNV to define a base triangle and
displacement directions then uses displacement information encoded in the micromap to apply to
those values to generate the final position.

Displacement Base Triangle

If displacementBiasAndScaleBuffer is provided the bias and scale are fetched from that buffer. If
displacementBiasAndScaleBuffer is zero the bias and scale are assumed to be 0.0 and 1.0,
respectively.

Given an input position from the geometry, the base position and displacement vector used by the
displacement are computed by:

basePosition = inputPosition + displacementVector × bias

baseDisplacementVector = displacementVector × scale

The parameters of each micro-vertex are derived from a combination of the base triangle
parameters extracted from the bottom-level acceleration structure, the barycentrics of that micro-
vertex, and the displacement value fetched from the displacement micromap corresponding to that
micro-vertex.

microVertexBasePosition = lerp(basePositions, microVertexBarycentrics)

microVertexDisplacementVector = lerp(displacementVectors, microVertexBarycentrics)

microVertexDisplacedPosition = microVertexBasePosition + microVertexDisplacementVector ×
micromapDisplacementValue

Displacement Micromap Encoding

Displacement amounts are stored in displacement blocks, each covering a triangular region of
microvertices. Depending on the subdivision level and encoding format, one or more displacement
blocks combine to store all displacement values for a given displacement micromap.

Displacement blocks are organized along a space filling curve within a displacement micromap if
more than one block is required, then micro-vertices are organized along the same space filling

3288

curve within a displacement micromap.

The space-filling curve is purely hierarchical with recursive splitting, similar to that for opacity
micromaps but operating on vertices instead of triangles. To maintain that the hierarchical
ordering is contiguous while keeping continuous winding, some triangles are flipped and wound
differently.

The VK_DISPLACEMENT_MICROMAP_FORMAT_64_TRIANGLES_64_BYTES_NV format is an uncompressed, packed
format which covers 64 microtriangles (subdivision level 3) in a block. The block contains 45
displacement values encoded as 11 bit unorm values and stored tightly packed in the vertex order
described above, occupying 495 bits. This is followed by 15 unused bits then 2 reserved bits which
must be 0. If this block is used to store displacement for a subdivision level below 3 the later
unused values are ignored.

Section Field Entries Bits per entry Starting bit offset

Displacement
amounts

Vertex 0 - 44 45 11 0

Unused 1 15 495

Reserved Must be 0 1 2 510

The VK_DISPLACEMENT_MICROMAP_FORMAT_256_TRIANGLES_128_BYTES_NV and
VK_DISPLACEMENT_MICROMAP_FORMAT_1024_TRIANGLES_128_BYTES_NV formats store displacements in a
compressed form to save space. Both formats use the same compression algorithm, differing in the
number of bits used in the different fields.

The compression algorithm works by starting with fully specified anchor vertices, then for each
level, predicting the value for the displacement and encoding the correction for that value, using
fewer bits for each level of subdivision.

When adding a vertex in the recursive subdivision process between two adjacent displacement
values, the predicted value is given by the rounded average of the two adjacent values as integers:

prediction = (A + B + 1) / 2

The decoded value after applying the correction is given by:

decoded = prediction + (SignExtend(correction) << shift)

where correction is given by the corrections field for a given level and micro vertex and shift is
given by the shifts field indexed from the level then by 4 values, selected from interior or the 3
edges in vertex order in that order.

The bit encoding for VK_DISPLACEMENT_MICROMAP_FORMAT_256_TRIANGLES_128_BYTES_NV

Section Field Entries Bits per entry Starting bit offset

Anchors Vertex 0 - 2 3 11 0

Corrections Level 1 3 11 33

3289

Section Field Entries Bits per entry Starting bit offset

Level 2 9 11 66

Level 3 30 10 165

Level 4 108 5 465

Unused 1 1 1005

Shifts Level 4 4 3 1006

Level 3 4 1 1018

Reserved Must be 0 1 2 1022

The bit encoding for VK_DISPLACEMENT_MICROMAP_FORMAT_1024_TRIANGLES_128_BYTES_NV

Section Field Entries Bits per entry Starting bit offset

Anchors Vertex 0 - 2 3 11 0

Corrections Level 1 3 11 33

Level 2 9 8 66

Level 3 30 4 138

Level 4 108 2 258

Level 5 408 1 474

Unused 1 88 882

Shifts Level 5 4 4 970

Level 4 4 4 986

Level 3 4 3 1002

Level 2 4 2 1014

Reserved Must be 0 1 2 1022

3290

Chapter 39. Ray Traversal
The ray traversal process identifies and handles intersections between a ray and geometries in an
acceleration structure.

Ray traversal cannot be started by a Vulkan API command directly - a shader must execute
OpRayQueryProceedKHR or a pipeline trace ray instruction . When the rayTracingPipeline feature is
enabled, OpTraceRayKHR can be used for ray tracing in a ray tracing pipeline. When the rayQuery
feature is enabled, OpRayQueryProceedKHR can be used in any shader stage.

39.1. Ray Intersection Candidate Determination
Once tracing begins, rays are first tested against instances in a top-level acceleration structure. A
ray that intersects an instance will be transformed into the space of the instance to continue
traversal within that instance; therefore the transform matrix stored in the instance must be
invertible.

In case multiple instances are intersected by a ray, the ray transformation into the space of the
instance is invariant under the order in which these instances are encountered in the top-level
acceleration structure.

Note

Applying multiple forward and reverse transforms to a ray to transition from one
instance to another could result in accumulated errors. Thus an implementation
should behave as if the ray is transformed from the origin for each instance
independently.

Next, rays are tested against geometries in a bottom-level acceleration structure to determine if a
hit occurred between them, initially based only on their geometric properties (i.e. their vertices).
The implementation performs similar operations to that of rasterization, but with the effective
viewport determined by the parameters of the ray, and the geometry transformed into a space
determined by that viewport.

The vertices of each primitive are transformed from acceleration structure space as to ray space r

according to the ray origin and direction as follows:

 is the axis of rotation from the unnormalized ray direction vector to the axis vector :

3291

 and are the sine and cosine of the angle of rotation about from to :

 is the unit vector:

 and are the ray origin and unnormalized direction, respectively; the vector described by xas, yas,
and zas is any position in acceleration structure space; and the vector described by xr, yr, and zr is
the same position in ray space.

An intersection candidate is a unique point of intersection between a ray and a geometric primitive.
For any primitive that has within its bounds a position such that

(where), an intersection candidate exists.

Triangle primitive bounds consist of all points on the plane formed by the three vertices and within
the bounds of the edges between the vertices, subject to the watertightness constraints below. AABB
primitive bounds consist of all points within an implementation-defined bound which includes the
specified box.

Note

The bounds of the AABB including all points internal to the bound implies that a
ray started within the AABB will hit that AABB.

3292

o d o + tmin d

o+ t d
o + tmax d

Figure 28. Ray intersection candidate

The determination of this condition is performed in an implementation specific manner, and may
be performed with floating point operations. Due to the complexity and number of operations
involved, inaccuracies are expected, particularly as the scale of values involved begins to diverge.
Implementations should take efforts to maintain as much precision as possible.

Note

One very common case is when geometries are close to each other at some
distance from the origin in acceleration structure space, where an effect similar to
“z-fighting” is likely to be observed. Applications can mitigate this by ensuring
their detailed geometries remain close to the origin.

Another likely case is when the origin of a ray is set to a position on a previously
intersected surface, and its tmin is zero or near zero; an intersection may be
detected on the emitting surface. This case can usually be mitigated by offsetting
tmin slightly.

For a motion primitive or a motion instance, the positions for intersection are evaluated at the time
specified in the time parameter to OpTraceRayMotionNV by interpolating between the two endpoints
as specified for the given motion type. If a motion acceleration structure is traced with
OpTraceRayKHR, it behaves as a OpTraceRayMotionNV with time of 0.0.

In the case of AABB geometries, implementations may increase their size in an acceleration
structure in order to mitigate precision issues. This may result in false positive intersections being
reported to the application.

For triangle intersection candidates, the b and c barycentric coordinates on the triangle where the
above condition is met are made available to future shading. If the ray was traced with a pipeline
trace ray instruction, these values are available as a vector of 2 32-bit floating point values in the
HitAttributeKHR storage class.

Once an intersection candidate is determined, it proceeds through the following operations, in
order:

1. Ray Intersection Culling

2. Ray Intersection Confirmation

3. Ray Closest Hit Determination

4. Ray Result Determination

The sections below describe the exact details of these tests. There is no ordering guarantee between

3293

operations performed on different intersection candidates.

39.1.1. Watertightness

For a set of triangles with identical transforms, within a single instance:

• Any set of two or more triangles where all triangles have one vertex with an identical position
value, that vertex is a shared vertex.

• Any set of two triangles with two shared vertices that were specified in the same winding order
in each triangle have a shared edge defined by those vertices.

A closed fan is a set of three or more triangles where:

• All triangles in the set have the same shared vertex as one of their vertices.

• All edges that include the above vertex are shared edges.

• All above shared edges are shared by exactly two triangles from the set.

• No two triangles in the set intersect, except at shared edges.

• Every triangle in the set is joined to every other triangle in the set by a series of the above
shared edges.

Implementations should not double-hit or miss when a ray intersects a shared edge, or a shared
vertex of a closed fan.

39.2. Ray Intersection Culling
Candidate intersections go through several phases of culling before confirmation as an actual hit.
There is no particular ordering dependency between the different culling operations.

39.2.1. Ray Primitive Culling

If the rayTraversalPrimitiveCulling or rayQuery features are enabled, the SkipTrianglesKHR and
SkipAABBsKHR ray flags can be specified when tracing a ray. SkipTrianglesKHR and SkipAABBsKHR are
mutually exclusive. SkipTrianglesKHR is also mutually exclusive with CullBackFacingTrianglesKHR
and CullFrontFacingTrianglesKHR.

If SkipTrianglesKHR was included in the Ray Flags operand of the ray trace instruction, and the
intersection is with a triangle primitive, the intersection is dropped, and no further processing of
this intersection occurs. If VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR was included in
the pipeline, traversal with pipeline trace ray instructions will all behave as if SkipTrianglesKHR was
included in their Ray Flags operand.

If SkipAABBsKHR was included in the Ray Flags operand of the ray trace instruction, and the
intersection is with an AABB primitive, the intersection is dropped, and no further processing of
this intersection occurs. If VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR was included in the
pipeline, traversal with pipeline trace ray instructions will all behave as if SkipAABBsKHR was
included in their Ray Flags operand.

3294

39.2.2. Ray Mask Culling

Instances can be made invisible to particular rays based on the value of
VkAccelerationStructureInstanceKHR::mask used to add that instance to a top-level acceleration
structure, and the Cull Mask parameter used to trace the ray.

For the instance which is intersected, if mask & Cull Mask == 0, the intersection is dropped, and no
further processing occurs.

39.2.3. Ray Face Culling

As in polygon rasterization, one of the stages of ray traversal is to determine if a triangle primitive
is back- or front-facing, and primitives can be culled based on that facing.

If the intersection candidate is with an AABB primitive, this operation is skipped.

Determination

When a ray intersects a triangle primitive, the order that vertices are specified for the polygon
affects whether the ray intersects the front or back face. Front or back facing is determined in the
same way as they are for rasterization, based on the sign of the polygon’s area but using the ray
space coordinates instead of framebuffer coordinates. One way to compute this area is:

where and are the x and y ray space coordinates of the ith vertex of the n-vertex polygon
(vertices are numbered starting at zero for the purposes of this computation) and i ⊕ 1 is (i + 1) mod
n.

By default, if a is negative then the intersection is with the front face of the triangle, otherwise it is
with the back face. If VK_GEOMETRY_INSTANCE_TRIANGLE_FLIP_FACING_BIT_KHR is included in
VkAccelerationStructureInstanceKHR::flags for the instance containing the intersected triangle,
this determination is reversed. Additionally, if a is 0, the intersection candidate is treated as not
intersecting with any face, irrespective of the sign.

Note

In a left-handed coordinate system, an intersection will be with the front face of a
triangle if the vertices of the triangle, as defined in index order, appear from the
ray’s perspective in a clockwise rotation order.
VK_GEOMETRY_INSTANCE_TRIANGLE_FLIP_FACING_BIT_KHR was previously annotated as
VK_GEOMETRY_INSTANCE_TRIANGLE_FRONT_COUNTERCLOCKWISE_BIT_KHR because of this.

If the ray was traced with a pipeline trace ray instruction, the HitKindKHR built-in is set to
HitKindFrontFacingTriangleKHR if the intersection is with front-facing geometry, and
HitKindBackFacingTriangleKHR if the intersection is with back-facing geometry, for shader stages
considering this intersection.

If the ray was traced with OpRayQueryProceedKHR, OpRayQueryGetIntersectionFrontFaceKHR will return
true for intersection candidates with front faces, or false for back faces.

3295

Culling

If CullBackFacingTrianglesKHR was included in the Ray Flags parameter of the ray trace instruction,
and the intersection is determined as with the back face of a triangle primitive, the intersection is
dropped, and no further processing of this intersection occurs.

If CullFrontFacingTrianglesKHR was included in the Ray Flags parameter of the ray trace instruction,
and the intersection is determined as with the front face of a triangle primitive, the intersection is
dropped, and no further processing of this intersection occurs.

This culling is disabled if VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR was included
in VkAccelerationStructureInstanceKHR::flags for the instance which the intersected geometry
belongs to.

Intersection candidates that have not intersected with any face (a == 0) are unconditionally culled,
irrespective of ray flags and geometry instance flags.

The CullBackFacingTrianglesKHR and CullFrontFacingTrianglesKHR Ray Flags are mutually exclusive.

39.2.4. Ray Opacity Culling

Each geometry in the acceleration structure may be considered either opaque or not. Opaque
geometries continue through traversal as normal, whereas non-opaque geometries need to be
either confirmed or discarded by shader code. Intersection candidates can also be culled based on
their opacity.

Determination

Each individual intersection candidate is initially determined as opaque if
VK_GEOMETRY_OPAQUE_BIT_KHR was included in the VkAccelerationStructureGeometryKHR::flags when
the geometry it intersected with was built, otherwise it is considered non-opaque.

If the geometry includes an opacity micromap, the opacity of the intersection at this point is instead
derived as described in Ray Opacity Micromap.

If the intersection candidate was generated by an intersection shader, the intersection is initially
considered to have opacity matching the AABB candidate that it was generated from.

However, this opacity can be overridden when it is built into an instance. Setting
VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR in VkAccelerationStructureInstanceKHR::flags will
force all geometries in the instance to be considered opaque. Similarly, setting
VK_GEOMETRY_INSTANCE_FORCE_NO_OPAQUE_BIT_KHR will force all geometries in the instance to be
considered non-opaque.

This can again be overridden by including OpaqueKHR or NoOpaqueKHR in the Ray Flags parameter
when tracing a ray. OpaqueKHR forces all geometries to behave as if they are opaque, regardless of
their build parameters. Similarly, NoOpaqueKHR forces all geometries to behave as if they are non-
opaque.

If the ray was traced with OpRayQueryProceedKHR, to determine the opacity of AABB intersection
candidates, OpRayQueryGetIntersectionCandidateAABBOpaqueKHR can be used. This instruction will
return true for opaque intersection candidates, and false for non-opaque intersection candidates.

3296

Culling

If CullOpaqueKHR is included in the Ray Flags parameter when tracing a ray, an intersection with a
geometry that is considered opaque is dropped, and no further processing occurs.

If CullNoOpaqueKHR is included in the Ray Flags parameter when tracing a ray, an intersection with a
geometry that is considered non-opaque is dropped, and no further processing occurs.

The OpaqueKHR, NoOpaqueKHR, CullOpaqueKHR, and CullNoOpaqueKHR Ray Flags are mutually exclusive.

39.2.5. Ray Opacity Micromap

A VK_GEOMETRY_TYPE_TRIANGLES_KHR geometry in the acceleration structure may have an opacity
micromap associated with it to give finer-grained opacity information.

If the intersection candidate is with a geometry with an associated opacity micromap and
VK_GEOMETRY_INSTANCE_DISABLE_OPACITY_MICROMAPS_EXT is not set in its instance then the micromap is
used to determine geometry opacity instead of the VK_GEOMETRY_OPAQUE_BIT_KHR flag in the geometry.

The opacity information in the micromap object is accessed using the candidate intersection u and
v coordinates. The integer u and v are computed from ⌊u⌋ + ⌊v⌋, clamping ⌊u⌋ as needed to keep
the sum less than or equal to 1 << subdivisionlevel. These values are mapped into a linear index
with a space filling curve which is defined recursively by traversing into the sub-triangle nearest
vertex 0, then the middle triangle with ordering flipped, then nearest vertex 1 then nearest vertex
2.

v0 v1

v2

0

1

2

3

v0 v1

v2

4
5

6

7
0

1
2

3

8
9

10

11

12
13

14

15

Level 1 Level 2

Figure 29. Example ordering for micromap data

Note

This encoding is spatially coherent, purely hierarchical, and allows a bit-parallel
conversion between barycentric address and index values.

See the appendix for reference code implementing this mapping.

The result of the opacity micromap lookup and operations is to treat the intersection as opaque,
non-opaque, or ignored. The interpretation of the values depends on

3297

VK_GEOMETRY_INSTANCE_FORCE_OPACITY_MICROMAP_2_STATE_EXT in the instance of the candidate
intersection or ForceOpacityMicromap2StateEXT ray flags on the ray. If either is set, the opacity
micromap information is interpreted in 2 state override mode. If the result of the micromap lookup
is to treat the intersection candidate as ignored, no further processing of that candidate is done.

If the associated opacity micromap has format VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT, each
element of the micromap is represented by a single bit at the index derived above.

If the associated opacity micromap has format VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT, each
element is represented by a two bit value at the index derived above.

4 State value 2 State value Special index
value

2 State override Result

0 0 VK_OPACITY_MICROMA
P_SPECIAL_INDEX_FU
LLY_TRANSPARENT_EX
T

Y Ignored

0 0 VK_OPACITY_MICROMA
P_SPECIAL_INDEX_FU
LLY_TRANSPARENT_EX
T

N Ignored

1 1 VK_OPACITY_MICROMA
P_SPECIAL_INDEX_FU
LLY_OPAQUE_EXT

Y Opaque

1 1 VK_OPACITY_MICROMA
P_SPECIAL_INDEX_FU
LLY_OPAQUE_EXT

N Opaque

2 VK_OPACITY_MICROMA
P_SPECIAL_INDEX_FU
LLY_UNKNOWN_TRANSP
ARENT_EXT

Y Ignored

2 VK_OPACITY_MICROMA
P_SPECIAL_INDEX_FU
LLY_UNKNOWN_TRANSP
ARENT_EXT

N Non-opaque

3 VK_OPACITY_MICROMA
P_SPECIAL_INDEX_FU
LLY_UNKNOWN_OPAQUE
_EXT

Y Opaque

3 VK_OPACITY_MICROMA
P_SPECIAL_INDEX_FU
LLY_UNKNOWN_OPAQUE
_EXT

N Non-opaque

39.3. Ray Intersection Confirmation
Depending on the opacity of intersected geometry and whether it is a triangle or an AABB,
candidate intersections are further processed to determine the eventual hit result. Candidates
generated from AABB intersections run through the same confirmation process as triangle hits.

3298

39.3.1. AABB Intersection Candidates

For an intersection candidate with an AABB geometry generated by Ray Intersection Candidate
Determination, shader code is executed to determine whether any hits should be reported to the
traversal infrastructure; no further processing of this intersection candidate occurs. The
occurrence of an AABB intersection candidate does not guarantee the ray intersects the primitive
bounds. To avoid propagating false intersections the application should verify the intersection
candidate before reporting any hits.

If the ray was traced with a pipeline trace ray instruction, an intersection shader is invoked from
the Shader Binding Table according to the specified indexing for the intersected geometry. If this
shader calls OpReportIntersectionKHR, a new intersection candidate is generated as described below.
If the intersection shader is VK_SHADER_UNUSED_KHR (which is only allowed for a zero shader group)
then no further processing of the intersection candidate occurs.

Each new candidate generated as a result of this processing is a generated intersection candidate
that intersects the AABB geometry, with a t value equal to the Hit parameter of the
OpReportIntersectionKHR instruction. The new generated candidate is then independently run
through Ray Intersection Confirmation as a generated intersection.

If the ray was traced with OpRayQueryProceedKHR, control is returned to the shader which executed
OpRayQueryProceedKHR, returning true. The resulting ray query has a candidate intersection type of
RayQueryCandidateIntersectionAABBKHR. OpRayQueryGenerateIntersectionKHR can be called to commit a
new intersection candidate with committed intersection type of
RayQueryCommittedIntersectionGeneratedKHR. Further ray query processing can be continued by
executing OpRayQueryProceedKHR with the same ray query, or intersection can be terminated with
OpRayQueryTerminateKHR. Unlike rays traced with a pipeline trace ray instruction, candidates
generated in this way skip generated intersection candidate confirmation; applications should
make this determination before generating the intersection.

This operation may be executed multiple times for the same intersection candidate.

39.3.2. Triangle and Generated Intersection Candidates

For triangle and generated intersection candidates, additional shader code may be executed based
on the intersection’s opacity.

If the intersection is opaque, the candidate is immediately confirmed as a valid hit and passes to the
next stage of processing.

For non-opaque intersection candidates, shader code is executed to determine whether a hit
occurred or not.

If the ray was traced with a pipeline trace ray instruction, an any-hit shader is invoked from the
Shader Binding Table according to the specified indexing. If this shader calls
OpIgnoreIntersectionKHR, the candidate is dropped and no further processing of the candidate
occurs. If the any-hit shader identified is VK_SHADER_UNUSED_KHR, the candidate is immediately
confirmed as a valid hit and passes to the next stage of processing.

If the ray was traced with OpRayQueryProceedKHR, control is returned to the shader which executed

3299

OpRayQueryProceedKHR, returning true. As only triangle candidates participate in this operation with
ray queries, the resulting candidate intersection type is always
RayQueryCandidateIntersectionTriangleKHR. OpRayQueryConfirmIntersectionKHR can be called on the
ray query to confirm the candidate as a hit with committed intersection type of
RayQueryCommittedIntersectionTriangleKHR. Further ray query processing can be continued by
executing OpRayQueryProceedKHR with the same ray query, or intersection can be terminated with
OpRayQueryTerminateKHR. If OpRayQueryConfirmIntersectionKHR has not been executed, the candidate is
dropped and no further processing of the candidate occurs.

This operation may be executed multiple times for the same intersection candidate unless
VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR was specified for the intersected geometry.

39.4. Ray Closest Hit Determination
Unless the ray was traced with the TerminateOnFirstHitKHR ray flag, the implementation must track
the closest confirmed hit until all geometries have been tested and either confirmed or dropped.

After an intersection candidate is confirmed, its t value is compared to tmax to determine which
intersection is closer, where t is the parametric distance along the ray at which the intersection
occurred.

• If t < tmax, tmax is set to t and the candidate is set as the current closest hit.

• If t > tmax, the candidate is dropped and no further processing of that candidate occurs.

• If t = tmax, the candidate may be set as the current closest hit or dropped.

If TerminateOnFirstHitKHR was included in the Ray Flags used to trace the ray, once the first hit is
confirmed, the ray trace is terminated.

39.5. Ray Result Determination
Once all candidates have finished processing the prior stages, or if the ray is forcibly terminated,
the final result of the ray trace is determined.

If a closest hit result was identified by Ray Closest Hit Determination, a closest hit has occurred,
otherwise the final result is a miss.

For rays traced with pipeline trace ray instructions which can invoke a closest hit shader, if a
closest hit result was identified, a closest hit shader is invoked from the Shader Binding Table
according to the specified indexing for the intersected geometry. Control returns to the shader that
executed the pipeline trace ray instruction once this shader returns. This shader is skipped if either
the ray flags included SkipClosestHitShaderKHR, or if the closest hit shader identified is
VK_SHADER_UNUSED_KHR.

For rays traced with a pipeline trace ray instruction where no hit result was identified, the miss
shader identified by the Miss Index parameter of the instruction is invoked. Control returns to the
shader that executed the pipeline trace ray instruction once this shader returns. This shader is
skipped if the miss shader identified is VK_SHADER_UNUSED_KHR.

3300

If the ray was traced with OpRayQueryProceedKHR, control is returned to the shader which executed
OpRayQueryProceedKHR, returning false. If a closest hit was identified by Ray Closest Hit
Determination, the ray query will now have a committed intersection type of
RayQueryCommittedIntersectionGeneratedKHR or RayQueryCommittedIntersectionTriangleKHR. If no
closest hit was identified, the committed intersection type will be
RayQueryCommittedIntersectionNoneKHR.

No further processing of a ray query occurs after this result is determined.

3301

Chapter 40. Ray Tracing
Ray tracing uses a separate rendering pipeline from both the graphics and compute pipelines (see
Ray Tracing Pipeline).

Any-HitIntersection

Hit?

Closest Hit

Miss

Y

N

Ray
Generation

Acceleration
Structure
Traversal

Figure 30. Ray tracing pipeline execution

Caption

Interaction between the different shader stages in the ray tracing pipeline

Within the ray tracing pipeline, a pipeline trace ray instruction can be called to perform a ray
traversal that invokes the various ray tracing shader stages during its execution. The relationship
between the ray tracing pipeline object and the geometries present in the acceleration structure
traversed is passed into the ray tracing command in a VkBuffer object known as a shader binding
table. OpExecuteCallableKHR can also be used in ray tracing pipelines to invoke a callable shader.

During execution, control alternates between scheduling and other operations. The scheduling
functionality is implementation-specific and is responsible for workload execution. The shader
stages are programmable. Traversal, which refers to the process of traversing acceleration
structures to find potential intersections of rays with geometry, is fixed function.

The programmable portions of the pipeline are exposed in a single-ray programming model, with
each invocation handling one ray at a time. Memory operations can be synchronized using
standard memory barriers. The Workgroup scope and variables with a storage class of Workgroup
must not be used in the ray tracing pipeline.

40.1. Shader Call Instructions
A shader call is an instruction which may cause execution to continue elsewhere by creating one or
more invocations that execute a different shader stage.

The shader call instructions are:

• OpTraceRayKHR which may invoke intersection, any-hit, closest hit, or miss shaders,

3302

• OpTraceRayMotionNV which may invoke intersection, any-hit, closest hit, or miss shaders,

• OpReportIntersectionKHR which may invoke any-hit shaders, and

• OpExecuteCallableKHR which will invoke a callable shader.

• OpHitObjectTraceRayNV, OpHitObjectTraceRayMotionNV, and OpHitObjectExecuteShaderNV which may
invoke intersection, any-hit, closest hit, miss, or callable shaders.

The invocations created by shader call instructions are grouped into subgroups by the
implementation. Those subgroups may be unrelated to the subgroup of the parent invocation.

Pipeline trace ray instructions can be used recursively; invoked shaders can themselves execute
pipeline trace ray instructions, to a maximum depth defined by the maxRecursionDepth or
maxRayRecursionDepth limit.

Shaders directly invoked from the API always have a recursion depth of 0; each shader executed by
a pipeline trace ray instruction has a recursion depth one higher than the recursion depth of the
shader which invoked it. Applications must not invoke a shader with a recursion depth greater
than the value of maxRecursionDepth or maxPipelineRayRecursionDepth specified in the pipeline.

There is no explicit recursion limit for other shader call instructions which may recurse (e.g.
OpExecuteCallableKHR) but there is an upper bound determined by the stack size.

An invocation repack instruction is a ray tracing instruction where the implementation may change
the set of invocations that are executing. When a repack instruction is encountered, the invocation
is suspended and a new invocation begins and executes the instruction. After executing the repack
instruction (which may result in other ray tracing shader stages executing) the new invocation
ends and the original invocation is resumed, but it may be resumed in a different subgroup or at a
different SubgroupLocalInvocationId within the same subgroup. When a subset of invocations in a
subgroup execute the invocation repack instruction, those that do not execute it remain in the same
subgroup at the same SubgroupLocalInvocationId.

The OpTraceRayKHR, OpTraceRayMotionNV, OpReorderThreadWithHintNV, OpReorderThreadWithHitObjectNV,
OpReportIntersectionKHR, and OpExecuteCallableKHR instructions are invocation repack instructions.

The invocations that are executing before a shader call instruction, after the instruction, or are
created by the instruction, are shader-call-related.

If the implementation changes the composition of subgroups, the values of SubgroupSize,
SubgroupLocalInvocationId, SMIDNV, WarpIDNV, and builtin variables that are derived from them
(SubgroupEqMask, SubgroupGeMask, SubgroupGtMask, SubgroupLeMask, SubgroupLtMask) must be changed
accordingly by the invocation repack instruction. The application must use Volatile semantics on
these BuiltIn variables when used in the ray generation, closest hit, miss, intersection, and callable
shaders. Similarly, the application must use Volatile semantics on any RayTmaxKHR decorated
Builtin used in an intersection shader.

Note

Subgroup operations are permitted in the programmable ray tracing shader
stages. However, shader call instructions place a bound on where results of
subgroup instructions or subgroup-scoped instructions that execute the dynamic

3303

instance of that instruction are potentially valid. For example, care must be taken
when using the result of a ballot operation that was computed before an
invocation repack instruction, after that repack instruction. The ballot may be
incorrect as the set of invocations could have changed.

While the SubgroupSize built-in is required to be declared Volatile, its value will
never change unless
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT is set on
pipeline creation, as without that bit set, its value is required to match that of
VkPhysicalDeviceSubgroupProperties::subgroupSize.

For clock operations, the value of a Subgroup scoped OpReadClockKHR read before the
dynamic instance of a repack instruction should not be compared to the result of
that clock instruction after the repack instruction.

When a ray tracing shader executes a dynamic instance of an invocation repack instruction which
results in another ray tracing shader being invoked, their instructions are related by shader-call-
order.

For ray tracing invocations that are shader-call-related:

• memory operations on StorageBuffer, Image, and ShaderRecordBufferKHR storage classes can be
synchronized using the ShaderCallKHR scope.

• the CallableDataKHR, IncomingCallableDataKHR, RayPayloadKHR, HitAttributeKHR, and
IncomingRayPayloadKHR storage classes are system-synchronized and no application availability
and visibility operations are required.

• memory operations within a single invocation before and after the shader call instruction are
ordered by program-order and do not require explicit synchronization.

40.2. Ray Tracing Commands
Ray tracing commands provoke work in the ray tracing pipeline. Ray tracing commands are
recorded into a command buffer and when executed by a queue will produce work that executes
according to the currently bound ray tracing pipeline. A ray tracing pipeline must be bound to a
command buffer before any ray tracing commands are recorded in that command buffer.

To dispatch ray tracing use:

// Provided by VK_NV_ray_tracing
void vkCmdTraceRaysNV(
 VkCommandBuffer commandBuffer,
 VkBuffer raygenShaderBindingTableBuffer,
 VkDeviceSize raygenShaderBindingOffset,
 VkBuffer missShaderBindingTableBuffer,
 VkDeviceSize missShaderBindingOffset,
 VkDeviceSize missShaderBindingStride,
 VkBuffer hitShaderBindingTableBuffer,
 VkDeviceSize hitShaderBindingOffset,

3304

 VkDeviceSize hitShaderBindingStride,
 VkBuffer callableShaderBindingTableBuffer,
 VkDeviceSize callableShaderBindingOffset,
 VkDeviceSize callableShaderBindingStride,
 uint32_t width,
 uint32_t height,
 uint32_t depth);

• commandBuffer is the command buffer into which the command will be recorded.

• raygenShaderBindingTableBuffer is the buffer object that holds the shader binding table data for
the ray generation shader stage.

• raygenShaderBindingOffset is the offset in bytes (relative to raygenShaderBindingTableBuffer) of
the ray generation shader being used for the trace.

• missShaderBindingTableBuffer is the buffer object that holds the shader binding table data for
the miss shader stage.

• missShaderBindingOffset is the offset in bytes (relative to missShaderBindingTableBuffer) of the
miss shader being used for the trace.

• missShaderBindingStride is the size in bytes of each shader binding table record in
missShaderBindingTableBuffer.

• hitShaderBindingTableBuffer is the buffer object that holds the shader binding table data for the
hit shader stages.

• hitShaderBindingOffset is the offset in bytes (relative to hitShaderBindingTableBuffer) of the hit
shader group being used for the trace.

• hitShaderBindingStride is the size in bytes of each shader binding table record in
hitShaderBindingTableBuffer.

• callableShaderBindingTableBuffer is the buffer object that holds the shader binding table data
for the callable shader stage.

• callableShaderBindingOffset is the offset in bytes (relative to callableShaderBindingTableBuffer)
of the callable shader being used for the trace.

• callableShaderBindingStride is the size in bytes of each shader binding table record in
callableShaderBindingTableBuffer.

• width is the width of the ray trace query dimensions.

• height is height of the ray trace query dimensions.

• depth is depth of the ray trace query dimensions.

When the command is executed, a ray generation group of width × height × depth rays is assembled.

Valid Usage

• VUID-vkCmdTraceRaysNV-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable

3305

equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdTraceRaysNV-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdTraceRaysNV-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdTraceRaysNV-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdTraceRaysNV-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdTraceRaysNV-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdTraceRaysNV-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdTraceRaysNV-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdTraceRaysNV-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdTraceRaysNV-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by

3306

vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdTraceRaysNV-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdTraceRaysNV-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdTraceRaysNV-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdTraceRaysNV-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdTraceRaysNV-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdTraceRaysNV-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysNV-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysNV-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysNV-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysNV-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been

3307

bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysNV-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysNV-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysNV-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysNV-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysNV-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysNV-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdTraceRaysNV-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysNV-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdTraceRaysNV-None-08605

3308

If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdTraceRaysNV-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdTraceRaysNV-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdTraceRaysNV-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdTraceRaysNV-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdTraceRaysNV-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdTraceRaysNV-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdTraceRaysNV-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdTraceRaysNV-None-08612

3309

If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdTraceRaysNV-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdTraceRaysNV-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdTraceRaysNV-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdTraceRaysNV-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdTraceRaysNV-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdTraceRaysNV-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdTraceRaysNV-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdTraceRaysNV-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdTraceRaysNV-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdTraceRaysNV-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the

3310

Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdTraceRaysNV-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdTraceRaysNV-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdTraceRaysNV-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdTraceRaysNV-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdTraceRaysNV-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdTraceRaysNV-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdTraceRaysNV-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdTraceRaysNV-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdTraceRaysNV-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdTraceRaysNV-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysNV-OpImageBlockMatchSADQCOM-06975

3311

If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysNV-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdTraceRaysNV-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdTraceRaysNV-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdTraceRaysNV-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysNV-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdTraceRaysNV-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdTraceRaysNV-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdTraceRaysNV-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdTraceRaysNV-None-03429
Any shader group handle referenced by this call must have been queried from the
currently bound ray tracing pipeline

• VUID-vkCmdTraceRaysNV-None-09458

3312

If the bound ray tracing pipeline state was created with the
VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR dynamic state enabled then
vkCmdSetRayTracingPipelineStackSizeKHR must have been called in the current
command buffer prior to this trace command

• VUID-vkCmdTraceRaysNV-commandBuffer-04624
commandBuffer must not be a protected command buffer

• VUID-vkCmdTraceRaysNV-maxRecursionDepth-03625
This command must not cause a pipeline trace ray instruction to be executed from a
shader invocation with a recursion depth greater than the value of maxRecursionDepth
used to create the bound ray tracing pipeline

• VUID-vkCmdTraceRaysNV-raygenShaderBindingTableBuffer-04042
If raygenShaderBindingTableBuffer is non-sparse then it must be bound completely and
contiguously to a single VkDeviceMemory object

• VUID-vkCmdTraceRaysNV-raygenShaderBindingOffset-02455
raygenShaderBindingOffset must be less than the size of raygenShaderBindingTableBuffer

• VUID-vkCmdTraceRaysNV-raygenShaderBindingOffset-02456
raygenShaderBindingOffset must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV
::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysNV-missShaderBindingTableBuffer-04043
If missShaderBindingTableBuffer is non-sparse then it must be bound completely and
contiguously to a single VkDeviceMemory object

• VUID-vkCmdTraceRaysNV-missShaderBindingOffset-02457
missShaderBindingOffset must be less than the size of missShaderBindingTableBuffer

• VUID-vkCmdTraceRaysNV-missShaderBindingOffset-02458
missShaderBindingOffset must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV
::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysNV-hitShaderBindingTableBuffer-04044
If hitShaderBindingTableBuffer is non-sparse then it must be bound completely and
contiguously to a single VkDeviceMemory object

• VUID-vkCmdTraceRaysNV-hitShaderBindingOffset-02459
hitShaderBindingOffset must be less than the size of hitShaderBindingTableBuffer

• VUID-vkCmdTraceRaysNV-hitShaderBindingOffset-02460
hitShaderBindingOffset must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV
::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysNV-callableShaderBindingTableBuffer-04045
If callableShaderBindingTableBuffer is non-sparse then it must be bound completely and
contiguously to a single VkDeviceMemory object

• VUID-vkCmdTraceRaysNV-callableShaderBindingOffset-02461
callableShaderBindingOffset must be less than the size of
callableShaderBindingTableBuffer

• VUID-vkCmdTraceRaysNV-callableShaderBindingOffset-02462
callableShaderBindingOffset must be a multiple of

3313

VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysNV-missShaderBindingStride-02463
missShaderBindingStride must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV
::shaderGroupHandleSize

• VUID-vkCmdTraceRaysNV-hitShaderBindingStride-02464
hitShaderBindingStride must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV
::shaderGroupHandleSize

• VUID-vkCmdTraceRaysNV-callableShaderBindingStride-02465
callableShaderBindingStride must be a multiple of
VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupHandleSize

• VUID-vkCmdTraceRaysNV-missShaderBindingStride-02466
missShaderBindingStride must be less than or equal to
VkPhysicalDeviceRayTracingPropertiesNV::maxShaderGroupStride

• VUID-vkCmdTraceRaysNV-hitShaderBindingStride-02467
hitShaderBindingStride must be less than or equal to
VkPhysicalDeviceRayTracingPropertiesNV::maxShaderGroupStride

• VUID-vkCmdTraceRaysNV-callableShaderBindingStride-02468
callableShaderBindingStride must be less than or equal to
VkPhysicalDeviceRayTracingPropertiesNV::maxShaderGroupStride

• VUID-vkCmdTraceRaysNV-width-02469
width must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• VUID-vkCmdTraceRaysNV-height-02470
height must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• VUID-vkCmdTraceRaysNV-depth-02471
depth must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

Valid Usage (Implicit)

• VUID-vkCmdTraceRaysNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdTraceRaysNV-raygenShaderBindingTableBuffer-parameter
raygenShaderBindingTableBuffer must be a valid VkBuffer handle

• VUID-vkCmdTraceRaysNV-missShaderBindingTableBuffer-parameter
If missShaderBindingTableBuffer is not VK_NULL_HANDLE, missShaderBindingTableBuffer
must be a valid VkBuffer handle

• VUID-vkCmdTraceRaysNV-hitShaderBindingTableBuffer-parameter
If hitShaderBindingTableBuffer is not VK_NULL_HANDLE, hitShaderBindingTableBuffer
must be a valid VkBuffer handle

• VUID-vkCmdTraceRaysNV-callableShaderBindingTableBuffer-parameter
If callableShaderBindingTableBuffer is not VK_NULL_HANDLE,
callableShaderBindingTableBuffer must be a valid VkBuffer handle

3314

• VUID-vkCmdTraceRaysNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdTraceRaysNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdTraceRaysNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdTraceRaysNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdTraceRaysNV-commonparent
Each of callableShaderBindingTableBuffer, commandBuffer, hitShaderBindingTableBuffer,
missShaderBindingTableBuffer, and raygenShaderBindingTableBuffer that are valid handles
of non-ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

To dispatch ray tracing use:

// Provided by VK_KHR_ray_tracing_pipeline
void vkCmdTraceRaysKHR(
 VkCommandBuffer commandBuffer,
 const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable,
 const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable,
 const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable,
 const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable,
 uint32_t width,
 uint32_t height,
 uint32_t depth);

• commandBuffer is the command buffer into which the command will be recorded.

3315

• pRaygenShaderBindingTable is a VkStridedDeviceAddressRegionKHR that holds the shader
binding table data for the ray generation shader stage.

• pMissShaderBindingTable is a VkStridedDeviceAddressRegionKHR that holds the shader binding
table data for the miss shader stage.

• pHitShaderBindingTable is a VkStridedDeviceAddressRegionKHR that holds the shader binding
table data for the hit shader stage.

• pCallableShaderBindingTable is a VkStridedDeviceAddressRegionKHR that holds the shader
binding table data for the callable shader stage.

• width is the width of the ray trace query dimensions.

• height is height of the ray trace query dimensions.

• depth is depth of the ray trace query dimensions.

When the command is executed, a ray generation group of width × height × depth rays is assembled.

Valid Usage

• VUID-vkCmdTraceRaysKHR-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdTraceRaysKHR-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdTraceRaysKHR-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdTraceRaysKHR-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdTraceRaysKHR-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

3316

• VUID-vkCmdTraceRaysKHR-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdTraceRaysKHR-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdTraceRaysKHR-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdTraceRaysKHR-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdTraceRaysKHR-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdTraceRaysKHR-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdTraceRaysKHR-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdTraceRaysKHR-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdTraceRaysKHR-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdTraceRaysKHR-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing

3317

VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdTraceRaysKHR-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysKHR-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysKHR-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysKHR-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysKHR-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysKHR-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysKHR-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysKHR-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysKHR-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified

3318

via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysKHR-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysKHR-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdTraceRaysKHR-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysKHR-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdTraceRaysKHR-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdTraceRaysKHR-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdTraceRaysKHR-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdTraceRaysKHR-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdTraceRaysKHR-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*

3319

instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdTraceRaysKHR-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdTraceRaysKHR-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdTraceRaysKHR-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdTraceRaysKHR-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdTraceRaysKHR-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdTraceRaysKHR-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdTraceRaysKHR-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdTraceRaysKHR-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

3320

• VUID-vkCmdTraceRaysKHR-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdTraceRaysKHR-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdTraceRaysKHR-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdTraceRaysKHR-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdTraceRaysKHR-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdTraceRaysKHR-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdTraceRaysKHR-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdTraceRaysKHR-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdTraceRaysKHR-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdTraceRaysKHR-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdTraceRaysKHR-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdTraceRaysKHR-sparseImageInt64Atomics-04475

3321

If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdTraceRaysKHR-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdTraceRaysKHR-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdTraceRaysKHR-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdTraceRaysKHR-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysKHR-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysKHR-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdTraceRaysKHR-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdTraceRaysKHR-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdTraceRaysKHR-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

3322

• VUID-vkCmdTraceRaysKHR-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdTraceRaysKHR-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdTraceRaysKHR-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdTraceRaysKHR-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdTraceRaysKHR-None-03429
Any shader group handle referenced by this call must have been queried from the
currently bound ray tracing pipeline

• VUID-vkCmdTraceRaysKHR-None-09458
If the bound ray tracing pipeline state was created with the
VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR dynamic state enabled then
vkCmdSetRayTracingPipelineStackSizeKHR must have been called in the current
command buffer prior to this trace command

• VUID-vkCmdTraceRaysKHR-maxPipelineRayRecursionDepth-03679
This command must not cause a shader call instruction to be executed from a shader
invocation with a recursion depth greater than the value of maxPipelineRayRecursionDepth
used to create the bound ray tracing pipeline

• VUID-vkCmdTraceRaysKHR-commandBuffer-03635
commandBuffer must not be a protected command buffer

• VUID-vkCmdTraceRaysKHR-size-04023
The size member of pRayGenShaderBindingTable must be equal to its stride member

• VUID-vkCmdTraceRaysKHR-pRayGenShaderBindingTable-03680
If the buffer from which pRayGenShaderBindingTable->deviceAddress was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdTraceRaysKHR-pRayGenShaderBindingTable-03681
The buffer from which the pRayGenShaderBindingTable->deviceAddress is queried must
have been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-vkCmdTraceRaysKHR-pRayGenShaderBindingTable-03682
pRayGenShaderBindingTable->deviceAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

3323

• VUID-vkCmdTraceRaysKHR-pMissShaderBindingTable-03683
If the buffer from which pMissShaderBindingTable->deviceAddress was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdTraceRaysKHR-pMissShaderBindingTable-03684
The buffer from which the pMissShaderBindingTable->deviceAddress is queried must have
been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-vkCmdTraceRaysKHR-pMissShaderBindingTable-03685
pMissShaderBindingTable->deviceAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysKHR-stride-03686
pMissShaderBindingTable->stride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-vkCmdTraceRaysKHR-stride-04029
pMissShaderBindingTable->stride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-vkCmdTraceRaysKHR-pHitShaderBindingTable-03687
If the buffer from which pHitShaderBindingTable->deviceAddress was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdTraceRaysKHR-pHitShaderBindingTable-03688
The buffer from which the pHitShaderBindingTable->deviceAddress is queried must have
been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-vkCmdTraceRaysKHR-pHitShaderBindingTable-03689
pHitShaderBindingTable->deviceAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysKHR-stride-03690
pHitShaderBindingTable->stride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-vkCmdTraceRaysKHR-stride-04035
pHitShaderBindingTable->stride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-vkCmdTraceRaysKHR-pCallableShaderBindingTable-03691
If the buffer from which pCallableShaderBindingTable->deviceAddress was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdTraceRaysKHR-pCallableShaderBindingTable-03692
The buffer from which the pCallableShaderBindingTable->deviceAddress is queried must
have been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-vkCmdTraceRaysKHR-pCallableShaderBindingTable-03693
pCallableShaderBindingTable->deviceAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysKHR-stride-03694

3324

pCallableShaderBindingTable->stride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-vkCmdTraceRaysKHR-stride-04041
pCallableShaderBindingTable->stride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-vkCmdTraceRaysKHR-flags-03696
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR,
pHitShaderBindingTable->deviceAddress must not be zero

• VUID-vkCmdTraceRaysKHR-flags-03697
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR,
pHitShaderBindingTable->deviceAddress must not be zero

• VUID-vkCmdTraceRaysKHR-flags-03511
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR, the shader group handle
identified by pMissShaderBindingTable->deviceAddress must not be set to zero

• VUID-vkCmdTraceRaysKHR-flags-03512
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR, entries in the table
identified by pHitShaderBindingTable->deviceAddress accessed as a result of this command
in order to execute an any-hit shader must not be set to zero

• VUID-vkCmdTraceRaysKHR-flags-03513
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR, entries in the table
identified by pHitShaderBindingTable->deviceAddress accessed as a result of this command
in order to execute a closest hit shader must not be set to zero

• VUID-vkCmdTraceRaysKHR-flags-03514
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR, entries in the
table identified by pHitShaderBindingTable->deviceAddress accessed as a result of this
command in order to execute an intersection shader must not be set to zero

• VUID-vkCmdTraceRaysKHR-pHitShaderBindingTable-04735
Any non-zero hit shader group entries in the table identified by pHitShaderBindingTable-
>deviceAddress accessed by this call from a geometry with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR must have been created with
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR

• VUID-vkCmdTraceRaysKHR-pHitShaderBindingTable-04736
Any non-zero hit shader group entries in the table identified by pHitShaderBindingTable-
>deviceAddress accessed by this call from a geometry with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR must have been created with
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR

• VUID-vkCmdTraceRaysKHR-width-03638

3325

width must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0] ×
VkPhysicalDeviceLimits::maxComputeWorkGroupSize[0]

• VUID-vkCmdTraceRaysKHR-height-03639
height must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]
× VkPhysicalDeviceLimits::maxComputeWorkGroupSize[1]

• VUID-vkCmdTraceRaysKHR-depth-03640
depth must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2] ×
VkPhysicalDeviceLimits::maxComputeWorkGroupSize[2]

• VUID-vkCmdTraceRaysKHR-width-03641
width × height × depth must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxRayDispatchInvocationCount

Valid Usage (Implicit)

• VUID-vkCmdTraceRaysKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdTraceRaysKHR-pRaygenShaderBindingTable-parameter
pRaygenShaderBindingTable must be a valid pointer to a valid
VkStridedDeviceAddressRegionKHR structure

• VUID-vkCmdTraceRaysKHR-pMissShaderBindingTable-parameter
pMissShaderBindingTable must be a valid pointer to a valid
VkStridedDeviceAddressRegionKHR structure

• VUID-vkCmdTraceRaysKHR-pHitShaderBindingTable-parameter
pHitShaderBindingTable must be a valid pointer to a valid
VkStridedDeviceAddressRegionKHR structure

• VUID-vkCmdTraceRaysKHR-pCallableShaderBindingTable-parameter
pCallableShaderBindingTable must be a valid pointer to a valid
VkStridedDeviceAddressRegionKHR structure

• VUID-vkCmdTraceRaysKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdTraceRaysKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdTraceRaysKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdTraceRaysKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

3326

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

The VkStridedDeviceAddressRegionKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_pipeline
typedef struct VkStridedDeviceAddressRegionKHR {
 VkDeviceAddress deviceAddress;
 VkDeviceSize stride;
 VkDeviceSize size;
} VkStridedDeviceAddressRegionKHR;

• deviceAddress is the device address (as returned by the vkGetBufferDeviceAddress command) at
which the region starts, or zero if the region is unused.

• stride is the byte stride between consecutive elements.

• size is the size in bytes of the region starting at deviceAddress.

Valid Usage

• VUID-VkStridedDeviceAddressRegionKHR-size-04631
If size is not zero, all addresses between deviceAddress and deviceAddress + size - 1 must
be in the buffer device address range of the same buffer

• VUID-VkStridedDeviceAddressRegionKHR-size-04632
If size is not zero, stride must be less than or equal to the size of the buffer from which
deviceAddress was queried

When invocation mask image usage is enabled in the bound ray tracing pipeline, the pipeline uses
an invocation mask image specified by the command:

// Provided by VK_HUAWEI_invocation_mask
void vkCmdBindInvocationMaskHUAWEI(
 VkCommandBuffer commandBuffer,
 VkImageView imageView,
 VkImageLayout imageLayout);

3327

• commandBuffer is the command buffer into which the command will be recorded

• imageView is an image view handle specifying the invocation mask image imageView may be set to
VK_NULL_HANDLE, which is equivalent to specifying a view of an image filled with ones value.

• imageLayout is the layout that the image subresources accessible from imageView will be in when
the invocation mask image is accessed

Valid Usage

• VUID-vkCmdBindInvocationMaskHUAWEI-None-04976
The invocationMask feature must be enabled

• VUID-vkCmdBindInvocationMaskHUAWEI-imageView-04977
If imageView is not VK_NULL_HANDLE, it must be a valid VkImageView handle of type
VK_IMAGE_VIEW_TYPE_2D

• VUID-vkCmdBindInvocationMaskHUAWEI-imageView-04978
If imageView is not VK_NULL_HANDLE, it must have a format of VK_FORMAT_R8_UINT

• VUID-vkCmdBindInvocationMaskHUAWEI-imageView-04979
If imageView is not VK_NULL_HANDLE, it must have been created with
VK_IMAGE_USAGE_INVOCATION_MASK_BIT_HUAWEI set

• VUID-vkCmdBindInvocationMaskHUAWEI-imageView-04980
If imageView is not VK_NULL_HANDLE, imageLayout must be VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdBindInvocationMaskHUAWEI-width-04981
Thread mask image resolution must match the width and height in vkCmdTraceRaysKHR

• VUID-vkCmdBindInvocationMaskHUAWEI-None-04982
Each element in the invocation mask image must have the value 0 or 1. The value 1
means the invocation is active

• VUID-vkCmdBindInvocationMaskHUAWEI-depth-04983
depth in vkCmdTraceRaysKHR must be 1

Valid Usage (Implicit)

• VUID-vkCmdBindInvocationMaskHUAWEI-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindInvocationMaskHUAWEI-imageView-parameter
If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• VUID-vkCmdBindInvocationMaskHUAWEI-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

• VUID-vkCmdBindInvocationMaskHUAWEI-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindInvocationMaskHUAWEI-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

3328

• VUID-vkCmdBindInvocationMaskHUAWEI-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBindInvocationMaskHUAWEI-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBindInvocationMaskHUAWEI-commonparent
Both of commandBuffer, and imageView that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute State

To dispatch ray tracing, with some parameters sourced on the device, use:

// Provided by VK_KHR_ray_tracing_pipeline
void vkCmdTraceRaysIndirectKHR(
 VkCommandBuffer commandBuffer,
 const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable,
 const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable,
 const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable,
 const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable,
 VkDeviceAddress indirectDeviceAddress);

• commandBuffer is the command buffer into which the command will be recorded.

• pRaygenShaderBindingTable is a VkStridedDeviceAddressRegionKHR that holds the shader
binding table data for the ray generation shader stage.

• pMissShaderBindingTable is a VkStridedDeviceAddressRegionKHR that holds the shader binding
table data for the miss shader stage.

• pHitShaderBindingTable is a VkStridedDeviceAddressRegionKHR that holds the shader binding
table data for the hit shader stage.

• pCallableShaderBindingTable is a VkStridedDeviceAddressRegionKHR that holds the shader
binding table data for the callable shader stage.

3329

• indirectDeviceAddress is a buffer device address which is a pointer to a
VkTraceRaysIndirectCommandKHR structure containing the trace ray parameters.

vkCmdTraceRaysIndirectKHR behaves similarly to vkCmdTraceRaysKHR except that the ray trace
query dimensions are read by the device from indirectDeviceAddress during execution.

Valid Usage

• VUID-vkCmdTraceRaysIndirectKHR-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdTraceRaysIndirectKHR-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdTraceRaysIndirectKHR-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdTraceRaysIndirectKHR-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdTraceRaysIndirectKHR-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdTraceRaysIndirectKHR-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdTraceRaysIndirectKHR-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdTraceRaysIndirectKHR-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then

3330

the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdTraceRaysIndirectKHR-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdTraceRaysIndirectKHR-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdTraceRaysIndirectKHR-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdTraceRaysIndirectKHR-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdTraceRaysIndirectKHR-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdTraceRaysIndirectKHR-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysIndirectKHR-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

3331

• VUID-vkCmdTraceRaysIndirectKHR-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysIndirectKHR-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysIndirectKHR-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysIndirectKHR-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysIndirectKHR-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysIndirectKHR-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysIndirectKHR-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysIndirectKHR-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysIndirectKHR-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this

3332

command

• VUID-vkCmdTraceRaysIndirectKHR-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysIndirectKHR-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdTraceRaysIndirectKHR-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdTraceRaysIndirectKHR-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdTraceRaysIndirectKHR-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdTraceRaysIndirectKHR-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdTraceRaysIndirectKHR-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdTraceRaysIndirectKHR-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdTraceRaysIndirectKHR-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the

3333

pipeline bind point used by this command

• VUID-vkCmdTraceRaysIndirectKHR-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdTraceRaysIndirectKHR-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdTraceRaysIndirectKHR-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdTraceRaysIndirectKHR-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdTraceRaysIndirectKHR-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdTraceRaysIndirectKHR-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdTraceRaysIndirectKHR-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdTraceRaysIndirectKHR-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

3334

• VUID-vkCmdTraceRaysIndirectKHR-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdTraceRaysIndirectKHR-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdTraceRaysIndirectKHR-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdTraceRaysIndirectKHR-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdTraceRaysIndirectKHR-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdTraceRaysIndirectKHR-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdTraceRaysIndirectKHR-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdTraceRaysIndirectKHR-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdTraceRaysIndirectKHR-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdTraceRaysIndirectKHR-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

3335

• VUID-vkCmdTraceRaysIndirectKHR-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdTraceRaysIndirectKHR-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdTraceRaysIndirectKHR-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdTraceRaysIndirectKHR-None-09600

3336

If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdTraceRaysIndirectKHR-None-03429
Any shader group handle referenced by this call must have been queried from the
currently bound ray tracing pipeline

• VUID-vkCmdTraceRaysIndirectKHR-None-09458
If the bound ray tracing pipeline state was created with the
VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR dynamic state enabled then
vkCmdSetRayTracingPipelineStackSizeKHR must have been called in the current
command buffer prior to this trace command

• VUID-vkCmdTraceRaysIndirectKHR-maxPipelineRayRecursionDepth-03679
This command must not cause a shader call instruction to be executed from a shader
invocation with a recursion depth greater than the value of maxPipelineRayRecursionDepth
used to create the bound ray tracing pipeline

• VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-03635
commandBuffer must not be a protected command buffer

• VUID-vkCmdTraceRaysIndirectKHR-size-04023
The size member of pRayGenShaderBindingTable must be equal to its stride member

• VUID-vkCmdTraceRaysIndirectKHR-pRayGenShaderBindingTable-03680
If the buffer from which pRayGenShaderBindingTable->deviceAddress was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdTraceRaysIndirectKHR-pRayGenShaderBindingTable-03681
The buffer from which the pRayGenShaderBindingTable->deviceAddress is queried must
have been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-vkCmdTraceRaysIndirectKHR-pRayGenShaderBindingTable-03682
pRayGenShaderBindingTable->deviceAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysIndirectKHR-pMissShaderBindingTable-03683
If the buffer from which pMissShaderBindingTable->deviceAddress was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdTraceRaysIndirectKHR-pMissShaderBindingTable-03684
The buffer from which the pMissShaderBindingTable->deviceAddress is queried must have
been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-vkCmdTraceRaysIndirectKHR-pMissShaderBindingTable-03685
pMissShaderBindingTable->deviceAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysIndirectKHR-stride-03686

3337

pMissShaderBindingTable->stride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-vkCmdTraceRaysIndirectKHR-stride-04029
pMissShaderBindingTable->stride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-03687
If the buffer from which pHitShaderBindingTable->deviceAddress was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-03688
The buffer from which the pHitShaderBindingTable->deviceAddress is queried must have
been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-03689
pHitShaderBindingTable->deviceAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysIndirectKHR-stride-03690
pHitShaderBindingTable->stride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-vkCmdTraceRaysIndirectKHR-stride-04035
pHitShaderBindingTable->stride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-vkCmdTraceRaysIndirectKHR-pCallableShaderBindingTable-03691
If the buffer from which pCallableShaderBindingTable->deviceAddress was queried is non-
sparse then it must be bound completely and contiguously to a single VkDeviceMemory
object

• VUID-vkCmdTraceRaysIndirectKHR-pCallableShaderBindingTable-03692
The buffer from which the pCallableShaderBindingTable->deviceAddress is queried must
have been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-vkCmdTraceRaysIndirectKHR-pCallableShaderBindingTable-03693
pCallableShaderBindingTable->deviceAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-vkCmdTraceRaysIndirectKHR-stride-03694
pCallableShaderBindingTable->stride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-vkCmdTraceRaysIndirectKHR-stride-04041
pCallableShaderBindingTable->stride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-vkCmdTraceRaysIndirectKHR-flags-03696
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR,
pHitShaderBindingTable->deviceAddress must not be zero

• VUID-vkCmdTraceRaysIndirectKHR-flags-03697
If the currently bound ray tracing pipeline was created with flags that included

3338

VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR,
pHitShaderBindingTable->deviceAddress must not be zero

• VUID-vkCmdTraceRaysIndirectKHR-flags-03511
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR, the shader group handle
identified by pMissShaderBindingTable->deviceAddress must not be set to zero

• VUID-vkCmdTraceRaysIndirectKHR-flags-03512
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR, entries in the table
identified by pHitShaderBindingTable->deviceAddress accessed as a result of this command
in order to execute an any-hit shader must not be set to zero

• VUID-vkCmdTraceRaysIndirectKHR-flags-03513
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR, entries in the table
identified by pHitShaderBindingTable->deviceAddress accessed as a result of this command
in order to execute a closest hit shader must not be set to zero

• VUID-vkCmdTraceRaysIndirectKHR-flags-03514
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR, entries in the
table identified by pHitShaderBindingTable->deviceAddress accessed as a result of this
command in order to execute an intersection shader must not be set to zero

• VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-04735
Any non-zero hit shader group entries in the table identified by pHitShaderBindingTable-
>deviceAddress accessed by this call from a geometry with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR must have been created with
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR

• VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-04736
Any non-zero hit shader group entries in the table identified by pHitShaderBindingTable-
>deviceAddress accessed by this call from a geometry with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR must have been created with
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR

• VUID-vkCmdTraceRaysIndirectKHR-indirectDeviceAddress-03632
If the buffer from which indirectDeviceAddress was queried is non-sparse then it must be
bound completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdTraceRaysIndirectKHR-indirectDeviceAddress-03633
The buffer from which indirectDeviceAddress was queried must have been created with
the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdTraceRaysIndirectKHR-indirectDeviceAddress-03634
indirectDeviceAddress must be a multiple of 4

• VUID-vkCmdTraceRaysIndirectKHR-indirectDeviceAddress-03636
All device addresses between indirectDeviceAddress and indirectDeviceAddress + sizeof
(VkTraceRaysIndirectCommandKHR) - 1 must be in the buffer device address range of the
same buffer

3339

• VUID-vkCmdTraceRaysIndirectKHR-rayTracingPipelineTraceRaysIndirect-03637
The rayTracingPipelineTraceRaysIndirect feature must be enabled

• VUID-vkCmdTraceRaysIndirectKHR-rayTracingMotionBlurPipelineTraceRaysIndirect-
04951
If the bound ray tracing pipeline was created with
VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV
VkPhysicalDeviceRayTracingMotionBlurFeaturesNV::rayTracingMotionBlurPipelineTraceRaysI
ndirect feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdTraceRaysIndirectKHR-pRaygenShaderBindingTable-parameter
pRaygenShaderBindingTable must be a valid pointer to a valid
VkStridedDeviceAddressRegionKHR structure

• VUID-vkCmdTraceRaysIndirectKHR-pMissShaderBindingTable-parameter
pMissShaderBindingTable must be a valid pointer to a valid
VkStridedDeviceAddressRegionKHR structure

• VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-parameter
pHitShaderBindingTable must be a valid pointer to a valid
VkStridedDeviceAddressRegionKHR structure

• VUID-vkCmdTraceRaysIndirectKHR-pCallableShaderBindingTable-parameter
pCallableShaderBindingTable must be a valid pointer to a valid
VkStridedDeviceAddressRegionKHR structure

• VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdTraceRaysIndirectKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdTraceRaysIndirectKHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

3340

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

The VkTraceRaysIndirectCommandKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_pipeline
typedef struct VkTraceRaysIndirectCommandKHR {
 uint32_t width;
 uint32_t height;
 uint32_t depth;
} VkTraceRaysIndirectCommandKHR;

• width is the width of the ray trace query dimensions.

• height is height of the ray trace query dimensions.

• depth is depth of the ray trace query dimensions.

The members of VkTraceRaysIndirectCommandKHR have the same meaning as the similarly named
parameters of vkCmdTraceRaysKHR.

Valid Usage

• VUID-VkTraceRaysIndirectCommandKHR-width-03638
width must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0] ×
VkPhysicalDeviceLimits::maxComputeWorkGroupSize[0]

• VUID-VkTraceRaysIndirectCommandKHR-height-03639
height must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]
× VkPhysicalDeviceLimits::maxComputeWorkGroupSize[1]

• VUID-VkTraceRaysIndirectCommandKHR-depth-03640
depth must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2] ×
VkPhysicalDeviceLimits::maxComputeWorkGroupSize[2]

• VUID-VkTraceRaysIndirectCommandKHR-width-03641
width × height × depth must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxRayDispatchInvocationCount

To dispatch ray tracing, with some parameters sourced on the device, use:

// Provided by VK_KHR_ray_tracing_maintenance1 with VK_KHR_ray_tracing_pipeline
void vkCmdTraceRaysIndirect2KHR(

3341

 VkCommandBuffer commandBuffer,
 VkDeviceAddress indirectDeviceAddress);

• commandBuffer is the command buffer into which the command will be recorded.

• indirectDeviceAddress is a buffer device address which is a pointer to a
VkTraceRaysIndirectCommand2KHR structure containing the trace ray parameters.

vkCmdTraceRaysIndirect2KHR behaves similarly to vkCmdTraceRaysIndirectKHR except that shader
binding table parameters as well as dispatch dimensions are read by the device from
indirectDeviceAddress during execution.

Valid Usage

• VUID-vkCmdTraceRaysIndirect2KHR-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

3342

• VUID-vkCmdTraceRaysIndirect2KHR-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdTraceRaysIndirect2KHR-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdTraceRaysIndirect2KHR-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdTraceRaysIndirect2KHR-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdTraceRaysIndirect2KHR-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdTraceRaysIndirect2KHR-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdTraceRaysIndirect2KHR-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of

3343

the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdTraceRaysIndirect2KHR-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysIndirect2KHR-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysIndirect2KHR-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdTraceRaysIndirect2KHR-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysIndirect2KHR-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysIndirect2KHR-None-08116
Descriptors in bound descriptor buffers, specified via

3344

vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysIndirect2KHR-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdTraceRaysIndirect2KHR-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdTraceRaysIndirect2KHR-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdTraceRaysIndirect2KHR-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdTraceRaysIndirect2KHR-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdTraceRaysIndirect2KHR-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdTraceRaysIndirect2KHR-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdTraceRaysIndirect2KHR-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdTraceRaysIndirect2KHR-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this

3345

command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdTraceRaysIndirect2KHR-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdTraceRaysIndirect2KHR-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdTraceRaysIndirect2KHR-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdTraceRaysIndirect2KHR-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdTraceRaysIndirect2KHR-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdTraceRaysIndirect2KHR-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdTraceRaysIndirect2KHR-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdTraceRaysIndirect2KHR-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

3346

• VUID-vkCmdTraceRaysIndirect2KHR-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdTraceRaysIndirect2KHR-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdTraceRaysIndirect2KHR-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdTraceRaysIndirect2KHR-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdTraceRaysIndirect2KHR-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdTraceRaysIndirect2KHR-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdTraceRaysIndirect2KHR-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdTraceRaysIndirect2KHR-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

3347

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format

3348

must be a single-component format.

• VUID-vkCmdTraceRaysIndirect2KHR-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdTraceRaysIndirect2KHR-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdTraceRaysIndirect2KHR-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdTraceRaysIndirect2KHR-None-03429
Any shader group handle referenced by this call must have been queried from the
currently bound ray tracing pipeline

• VUID-vkCmdTraceRaysIndirect2KHR-None-09458
If the bound ray tracing pipeline state was created with the
VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR dynamic state enabled then
vkCmdSetRayTracingPipelineStackSizeKHR must have been called in the current
command buffer prior to this trace command

• VUID-vkCmdTraceRaysIndirect2KHR-maxPipelineRayRecursionDepth-03679
This command must not cause a shader call instruction to be executed from a shader
invocation with a recursion depth greater than the value of maxPipelineRayRecursionDepth
used to create the bound ray tracing pipeline

• VUID-vkCmdTraceRaysIndirect2KHR-commandBuffer-03635
commandBuffer must not be a protected command buffer

• VUID-vkCmdTraceRaysIndirect2KHR-indirectDeviceAddress-03632
If the buffer from which indirectDeviceAddress was queried is non-sparse then it must be
bound completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdTraceRaysIndirect2KHR-indirectDeviceAddress-03633
The buffer from which indirectDeviceAddress was queried must have been created with
the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdTraceRaysIndirect2KHR-indirectDeviceAddress-03634
indirectDeviceAddress must be a multiple of 4

• VUID-vkCmdTraceRaysIndirect2KHR-indirectDeviceAddress-03636
All device addresses between indirectDeviceAddress and indirectDeviceAddress + sizeof
(VkTraceRaysIndirectCommand2KHR) - 1 must be in the buffer device address range of the
same buffer

• VUID-vkCmdTraceRaysIndirect2KHR-rayTracingPipelineTraceRaysIndirect2-03637
The rayTracingPipelineTraceRaysIndirect2 feature must be enabled

• VUID-vkCmdTraceRaysIndirect2KHR-rayTracingMotionBlurPipelineTraceRaysIndirect-

3349

04951
If the bound ray tracing pipeline was created with
VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV
VkPhysicalDeviceRayTracingMotionBlurFeaturesNV::rayTracingMotionBlurPipelineTraceRaysI
ndirect feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdTraceRaysIndirect2KHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdTraceRaysIndirect2KHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdTraceRaysIndirect2KHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdTraceRaysIndirect2KHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdTraceRaysIndirect2KHR-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Compute Action

The VkTraceRaysIndirectCommand2KHR structure is defined as:

// Provided by VK_KHR_ray_tracing_maintenance1 with VK_KHR_ray_tracing_pipeline
typedef struct VkTraceRaysIndirectCommand2KHR {
 VkDeviceAddress raygenShaderRecordAddress;
 VkDeviceSize raygenShaderRecordSize;
 VkDeviceAddress missShaderBindingTableAddress;
 VkDeviceSize missShaderBindingTableSize;

3350

 VkDeviceSize missShaderBindingTableStride;
 VkDeviceAddress hitShaderBindingTableAddress;
 VkDeviceSize hitShaderBindingTableSize;
 VkDeviceSize hitShaderBindingTableStride;
 VkDeviceAddress callableShaderBindingTableAddress;
 VkDeviceSize callableShaderBindingTableSize;
 VkDeviceSize callableShaderBindingTableStride;
 uint32_t width;
 uint32_t height;
 uint32_t depth;
} VkTraceRaysIndirectCommand2KHR;

• raygenShaderRecordAddress is a VkDeviceAddress of the ray generation shader binding table
record used by this command.

• raygenShaderRecordSize is a VkDeviceSize number of bytes corresponding to the ray generation
shader binding table record at base address raygenShaderRecordAddress.

• missShaderBindingTableAddress is a VkDeviceAddress of the first record in the miss shader
binding table used by this command.

• missShaderBindingTableSize is a VkDeviceSize number of bytes corresponding to the total size of
the miss shader binding table at missShaderBindingTableAddress that may be accessed by this
command.

• missShaderBindingTableStride is a VkDeviceSize number of bytes between records of the miss
shader binding table.

• hitShaderBindingTableAddress is a VkDeviceAddress of the first record in the hit shader binding
table used by this command.

• hitShaderBindingTableSize is a VkDeviceSize number of bytes corresponding to the total size of
the hit shader binding table at hitShaderBindingTableAddress that may be accessed by this
command.

• hitShaderBindingTableStride is a VkDeviceSize number of bytes between records of the hit
shader binding table.

• callableShaderBindingTableAddress is a VkDeviceAddress of the first record in the callable
shader binding table used by this command.

• callableShaderBindingTableSize is a VkDeviceSize number of bytes corresponding to the total
size of the callable shader binding table at callableShaderBindingTableAddress that may be
accessed by this command.

• callableShaderBindingTableStride is a VkDeviceSize number of bytes between records of the
callable shader binding table.

• width is the width of the ray trace query dimensions.

• height is height of the ray trace query dimensions.

• depth is depth of the ray trace query dimensions.

The members of VkTraceRaysIndirectCommand2KHR have the same meaning as the similarly named
parameters of vkCmdTraceRaysKHR.

3351

Indirect shader binding table buffer parameters must satisfy the same memory alignment and
binding requirements as their counterparts in vkCmdTraceRaysIndirectKHR and
vkCmdTraceRaysKHR.

Valid Usage

• VUID-VkTraceRaysIndirectCommand2KHR-pRayGenShaderBindingTable-03680
If the buffer from which raygenShaderRecordAddress was queried is non-sparse then it
must be bound completely and contiguously to a single VkDeviceMemory object

• VUID-VkTraceRaysIndirectCommand2KHR-pRayGenShaderBindingTable-03681
The buffer from which the raygenShaderRecordAddress is queried must have been created
with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-VkTraceRaysIndirectCommand2KHR-pRayGenShaderBindingTable-03682
raygenShaderRecordAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-VkTraceRaysIndirectCommand2KHR-pMissShaderBindingTable-03683
If the buffer from which missShaderBindingTableAddress was queried is non-sparse then it
must be bound completely and contiguously to a single VkDeviceMemory object

• VUID-VkTraceRaysIndirectCommand2KHR-pMissShaderBindingTable-03684
The buffer from which the missShaderBindingTableAddress is queried must have been
created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-VkTraceRaysIndirectCommand2KHR-pMissShaderBindingTable-03685
missShaderBindingTableAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-VkTraceRaysIndirectCommand2KHR-stride-03686
missShaderBindingTableStride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-VkTraceRaysIndirectCommand2KHR-stride-04029
missShaderBindingTableStride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-VkTraceRaysIndirectCommand2KHR-pHitShaderBindingTable-03687
If the buffer from which hitShaderBindingTableAddress was queried is non-sparse then it
must be bound completely and contiguously to a single VkDeviceMemory object

• VUID-VkTraceRaysIndirectCommand2KHR-pHitShaderBindingTable-03688
The buffer from which the hitShaderBindingTableAddress is queried must have been
created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-VkTraceRaysIndirectCommand2KHR-pHitShaderBindingTable-03689
hitShaderBindingTableAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-VkTraceRaysIndirectCommand2KHR-stride-03690
hitShaderBindingTableStride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-VkTraceRaysIndirectCommand2KHR-stride-04035

3352

hitShaderBindingTableStride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-VkTraceRaysIndirectCommand2KHR-pCallableShaderBindingTable-03691
If the buffer from which callableShaderBindingTableAddress was queried is non-sparse
then it must be bound completely and contiguously to a single VkDeviceMemory object

• VUID-VkTraceRaysIndirectCommand2KHR-pCallableShaderBindingTable-03692
The buffer from which the callableShaderBindingTableAddress is queried must have been
created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

• VUID-VkTraceRaysIndirectCommand2KHR-pCallableShaderBindingTable-03693
callableShaderBindingTableAddress must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

• VUID-VkTraceRaysIndirectCommand2KHR-stride-03694
callableShaderBindingTableStride must be a multiple of
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

• VUID-VkTraceRaysIndirectCommand2KHR-stride-04041
callableShaderBindingTableStride must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

• VUID-VkTraceRaysIndirectCommand2KHR-flags-03696
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR,
hitShaderBindingTableAddress must not be zero

• VUID-VkTraceRaysIndirectCommand2KHR-flags-03697
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR,
hitShaderBindingTableAddress must not be zero

• VUID-VkTraceRaysIndirectCommand2KHR-flags-03511
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR, the shader group handle
identified by missShaderBindingTableAddress must not be set to zero

• VUID-VkTraceRaysIndirectCommand2KHR-flags-03512
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR, entries in the table
identified by hitShaderBindingTableAddress accessed as a result of this command in order
to execute an any-hit shader must not be set to zero

• VUID-VkTraceRaysIndirectCommand2KHR-flags-03513
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR, entries in the table
identified by hitShaderBindingTableAddress accessed as a result of this command in order
to execute a closest hit shader must not be set to zero

• VUID-VkTraceRaysIndirectCommand2KHR-flags-03514
If the currently bound ray tracing pipeline was created with flags that included
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR, entries in the
table identified by hitShaderBindingTableAddress accessed as a result of this command in

3353

order to execute an intersection shader must not be set to zero

• VUID-VkTraceRaysIndirectCommand2KHR-pHitShaderBindingTable-04735
Any non-zero hit shader group entries in the table identified by
hitShaderBindingTableAddress accessed by this call from a geometry with a geometryType of
VK_GEOMETRY_TYPE_TRIANGLES_KHR must have been created with
VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR

• VUID-VkTraceRaysIndirectCommand2KHR-pHitShaderBindingTable-04736
Any non-zero hit shader group entries in the table identified by
hitShaderBindingTableAddress accessed by this call from a geometry with a geometryType of
VK_GEOMETRY_TYPE_AABBS_KHR must have been created with
VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR

• VUID-VkTraceRaysIndirectCommand2KHR-width-03638
width must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0] ×
VkPhysicalDeviceLimits::maxComputeWorkGroupSize[0]

• VUID-VkTraceRaysIndirectCommand2KHR-height-03639
height must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]
× VkPhysicalDeviceLimits::maxComputeWorkGroupSize[1]

• VUID-VkTraceRaysIndirectCommand2KHR-depth-03640
depth must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2] ×
VkPhysicalDeviceLimits::maxComputeWorkGroupSize[2]

• VUID-VkTraceRaysIndirectCommand2KHR-width-03641
width × height × depth must be less than or equal to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxRayDispatchInvocationCount

40.3. Shader Binding Table
A shader binding table is a resource which establishes the relationship between the ray tracing
pipeline and the acceleration structures that were built for the ray tracing pipeline. It indicates the
shaders that operate on each geometry in an acceleration structure. In addition, it contains the
resources accessed by each shader, including indices of textures, buffer device addresses, and
constants. The application allocates and manages shader binding tables as VkBuffer objects.

Each entry in the shader binding table consists of shaderGroupHandleSize bytes of data, either as
queried by vkGetRayTracingShaderGroupHandlesKHR to refer to those specified shaders, or all
zeros to refer to a zero shader group. A zero shader group behaves as though it is a shader group
consisting entirely of VK_SHADER_UNUSED_KHR. The remainder of the data specified by the stride is
application-visible data that can be referenced by a ShaderRecordBufferKHR block in the shader.

The shader binding tables to use in a ray tracing pipeline are passed to the vkCmdTraceRaysNV,
vkCmdTraceRaysKHR, or vkCmdTraceRaysIndirectKHR commands. Shader binding tables are read-
only in shaders that are executing on the ray tracing pipeline.

Shader variables identified with the ShaderRecordBufferKHR storage class are used to access the
provided shader binding table. Such variables must be:

3354

• typed as OpTypeStruct, or an array of this type,

• identified with a Block decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in
Offset and Stride Assignment.

The Offset decoration for any member of a Block-decorated variable in the ShaderRecordBufferKHR
storage class must not cause the space required for that variable to extend outside the range [0,
maxStorageBufferRange).

Accesses to the shader binding table from ray tracing pipelines must be synchronized with the
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR pipeline stage and an access type of
VK_ACCESS_SHADER_READ_BIT.

Note

Because different shader record buffers can be associated with the same shader, a
shader variable with ShaderRecordBufferKHR storage class will not be dynamically
uniform if different invocations of the same shader can reference different data in
the shader record buffer, such as if the same shader occurs twice in the shader
binding table with a different shader record buffer. In this case, indexing
resources based on values in the ShaderRecordBufferKHR storage class, the index
should be decorated as NonUniform.

40.3.1. Indexing Rules

In order to execute the correct shaders and access the correct resources during a ray tracing
dispatch, the implementation must be able to locate shader binding table entries at various stages
of execution. This is accomplished by defining a set of indexing rules that compute shader binding
table record positions relative to the buffer’s base address in memory. The application must
organize the contents of the shader binding table’s memory in a way that application of the
indexing rules will lead to correct records.

Ray Generation Shaders

Only one ray generation shader is executed per ray tracing dispatch.

For vkCmdTraceRaysKHR, the location of the ray generation shader is specified by the
pRaygenShaderBindingTable->deviceAddress parameter — there is no indexing. All data accessed
must be less than pRaygenShaderBindingTable->size bytes from deviceAddress.
pRaygenShaderBindingTable->stride is unused, and must be equal to pRaygenShaderBindingTable-
>size.

For vkCmdTraceRaysNV, the location of the ray generation shader is specified by the
raygenShaderBindingTableBuffer and raygenShaderBindingOffset parameters — there is no indexing.

Hit Shaders

The base for the computation of intersection, any-hit, and closest hit shader locations is the
instanceShaderBindingTableRecordOffset value stored with each instance of a top-level acceleration

3355

structure (VkAccelerationStructureInstanceKHR). This value determines the beginning of the
shader binding table records for a given instance.

In the following rule, geometryIndex refers to the geometry index of the intersected geometry within
the instance.

The sbtRecordOffset and sbtRecordStride values are passed in as parameters to traceNV() or
traceRayEXT() calls made in the shaders. See Section 8.19 (Ray Tracing Functions) of the OpenGL
Shading Language Specification for more details. In SPIR-V, these correspond to the SBTOffset and
SBTStride parameters to the pipeline trace ray instructions.

The result of this computation is then added to pHitShaderBindingTable->deviceAddress, a device
address passed to vkCmdTraceRaysKHR , or hitShaderBindingOffset, a base offset passed to
vkCmdTraceRaysNV .

For vkCmdTraceRaysKHR, the complete rule to compute a hit shader binding table record address
in the pHitShaderBindingTable is:

pHitShaderBindingTable->deviceAddress + pHitShaderBindingTable->stride × (
instanceShaderBindingTableRecordOffset + geometryIndex × sbtRecordStride + sbtRecordOffset)

All data accessed must be less than pHitShaderBindingTable->size bytes from the base address.

For vkCmdTraceRaysNV, the offset and stride come from direct parameters, so the full rule to
compute a hit shader binding table record address in the hitShaderBindingTableBuffer is:

hitShaderBindingOffset + hitShaderBindingStride × (instanceShaderBindingTableRecordOffset +
geometryIndex × sbtRecordStride + sbtRecordOffset)

Miss Shaders

A miss shader is executed whenever a ray query fails to find an intersection for the given scene
geometry. Multiple miss shaders may be executed throughout a ray tracing dispatch.

The base for the computation of miss shader locations is pMissShaderBindingTable->deviceAddress, a
device address passed into vkCmdTraceRaysKHR , or missShaderBindingOffset, a base offset passed
into vkCmdTraceRaysNV .

The missIndex value is passed in as a parameter to traceNV() or traceRayEXT() calls made in the
shaders. See Section 8.19 (Ray Tracing Functions) of the OpenGL Shading Language Specification for
more details. In SPIR-V, this corresponds to the MissIndex parameter to the pipeline trace ray
instructions.

For vkCmdTraceRaysKHR, the complete rule to compute a miss shader binding table record address
in the pMissShaderBindingTable is:

pMissShaderBindingTable->deviceAddress + pMissShaderBindingTable->stride × missIndex

3356

All data accessed must be less than pMissShaderBindingTable->size bytes from the base address.

For vkCmdTraceRaysNV, the offset and stride come from direct parameters, so the full rule to
compute a miss shader binding table record address in the missShaderBindingTableBuffer is:

missShaderBindingOffset + missShaderBindingStride × missIndex

Callable Shaders

A callable shader is executed when requested by a ray tracing shader. Multiple callable shaders
may be executed throughout a ray tracing dispatch.

The base for the computation of callable shader locations is pCallableShaderBindingTable-
>deviceAddress, a device address passed into vkCmdTraceRaysKHR , or callableShaderBindingOffset,
a base offset passed into vkCmdTraceRaysNV .

The sbtRecordIndex value is passed in as a parameter to executeCallableNV() or executeCallableEXT()
calls made in the shaders. See Section 8.19 (Ray Tracing Functions) of the OpenGL Shading
Language Specification for more details. In SPIR-V, this corresponds to the SBTIndex parameter to
the OpExecuteCallableNV or OpExecuteCallableKHR instruction.

For vkCmdTraceRaysKHR, the complete rule to compute a callable shader binding table record
address in the pCallableShaderBindingTable is:

pCallableShaderBindingTable->deviceAddress + pCallableShaderBindingTable->stride ×
sbtRecordIndex

All data accessed must be less than pCallableShaderBindingTable->size bytes from the base address.

For vkCmdTraceRaysNV, the offset and stride come from direct parameters, so the full rule to
compute a callable shader binding table record address in the callableShaderBindingTableBuffer is:

callableShaderBindingOffset + callableShaderBindingStride × sbtRecordIndex

40.4. Ray Tracing Pipeline Stack
Ray tracing pipelines have a potentially large set of shaders which may be invoked in various call
chain combinations to perform ray tracing. To store parameters for a given shader execution, an
implementation may use a stack of data in memory. This stack must be sized to the sum of the stack
sizes of all shaders in any call chain executed by the application.

If the stack size is not set explicitly, the stack size for a pipeline is:

rayGenStackMax + min(1, maxPipelineRayRecursionDepth) × max(closestHitStackMax,
missStackMax, intersectionStackMax + anyHitStackMax) + max(0, maxPipelineRayRecursionDepth

3357

-1) × max(closestHitStackMax, missStackMax) + 2 × callableStackMax

where rayGenStackMax, closestHitStackMax, missStackMax, anyHitStackMax,
intersectionStackMax, and callableStackMax are the maximum stack values queried by the
respective shader stages for any shaders in any shader groups defined by the pipeline.

This stack size is potentially significant, so an application may want to provide a more accurate
stack size after pipeline compilation. The value that the application provides is the maximum value
of the sum of all shaders in a call chain across all possible call chains, taking into account any
application specific knowledge about the properties of the call chains.

Note

For example, if an application has two types of closest hit and miss shaders that it
can use but the first level of rays will only use the first kind (possibly reflection)
and the second level will only use the second kind (occlusion or shadow ray, for
example) then the application can compute the stack size by something similar to:

rayGenStack + max(closestHit1Stack, miss1Stack) + max(closestHit2Stack,
miss2Stack)

This is guaranteed to be no larger than the default stack size computation which
assumes that both call levels may be the larger of the two.

40.5. Ray Tracing Capture Replay
In a similar way to bufferDeviceAddressCaptureReplay, the
rayTracingPipelineShaderGroupHandleCaptureReplay feature allows the querying of opaque data
which can be used in a future replay.

During the capture phase, capture/replay tools are expected to query opaque data for shader group
handle replay using vkGetRayTracingCaptureReplayShaderGroupHandlesKHR.

Providing the opaque data during replay, using VkRayTracingShaderGroupCreateInfoKHR
::pShaderGroupCaptureReplayHandle at pipeline creation time, causes the implementation to generate
identical shader group handles to those in the capture phase, allowing capture/replay tools to reuse
previously recorded shader binding table buffer contents or to obtain the same handles by calling
vkGetRayTracingCaptureReplayShaderGroupHandlesKHR again.

40.6. Ray Tracing Validation
Ray tracing validation can help root cause application issues and improve performance. Unlike
existing validation layers, ray tracing validation performs checks at an implementation level, which
helps identify potential problems that may not be caught by the layer.

By enabling the ray tracing validation feature, warnings and errors can be delivered straight from
a ray tracing implementation to the application through a messenger callback registered with the
implementation, where they can be processed through existing application-side debugging or

3358

logging systems.

3359

Chapter 41. Memory Decompression
To decompress data between one or more memory regions call:

// Provided by VK_NV_memory_decompression
void vkCmdDecompressMemoryNV(
 VkCommandBuffer commandBuffer,
 uint32_t decompressRegionCount,
 const VkDecompressMemoryRegionNV* pDecompressMemoryRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• decompressRegionCount is the number of memory regions to decompress.

• pDecompressMemoryRegions is a pointer to an array of decompressRegionCount
VkDecompressMemoryRegionNV structures specifying decompression parameters.

Each region specified in pDecompressMemoryRegions is decompressed from the source to destination
region based on the specified decompression method.

Valid Usage

• VUID-vkCmdDecompressMemoryNV-None-07684
The memoryDecompression feature must be enabled

Valid Usage (Implicit)

• VUID-vkCmdDecompressMemoryNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDecompressMemoryNV-pDecompressMemoryRegions-parameter
pDecompressMemoryRegions must be a valid pointer to an array of decompressRegionCount
valid VkDecompressMemoryRegionNV structures

• VUID-vkCmdDecompressMemoryNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDecompressMemoryNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdDecompressMemoryNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDecompressMemoryNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDecompressMemoryNV-decompressRegionCount-arraylength
decompressRegionCount must be greater than 0

3360

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics
Compute

Action

The VkDecompressMemoryRegionNV structure is defined as:

// Provided by VK_NV_memory_decompression
typedef struct VkDecompressMemoryRegionNV {
 VkDeviceAddress srcAddress;
 VkDeviceAddress dstAddress;
 VkDeviceSize compressedSize;
 VkDeviceSize decompressedSize;
 VkMemoryDecompressionMethodFlagsNV decompressionMethod;
} VkDecompressMemoryRegionNV;

• srcAddress is the address where compressed data is stored.

• dstAddress is the destination address where decompressed data will be written.

• compressedSize is the size of compressed data in bytes.

• decompressedSize is the size of decompressed data in bytes.

• decompressionMethod is a bitmask of VkMemoryDecompressionMethodFlagBitsNV with a single bit set
specifying the method used to decompress data.

Valid Usage

• VUID-VkDecompressMemoryRegionNV-srcAddress-07685
The srcAddress must be 4 byte aligned

• VUID-VkDecompressMemoryRegionNV-srcAddress-07686
The memory in range srcAddress and srcAddress + compressedSize must be valid and
bound to a VkDeviceMemory object

• VUID-VkDecompressMemoryRegionNV-dstAddress-07687
The dstAddress must be 4 byte aligned

• VUID-VkDecompressMemoryRegionNV-decompressionMethod-09395

3361

If decompressionMethod is VK_MEMORY_DECOMPRESSION_METHOD_GDEFLATE_1_0_BIT_NV, then
decompressedSize must be less than or equal to 65536 bytes

• VUID-VkDecompressMemoryRegionNV-dstAddress-07688
The memory in range dstAddress and dstAddress + decompressedSize must be valid and
bound to a VkDeviceMemory object

• VUID-VkDecompressMemoryRegionNV-decompressedSize-07689
The decompressedSize must be large enough to hold the decompressed data based on the
decompressionMethod

• VUID-VkDecompressMemoryRegionNV-decompressionMethod-07690
The decompressionMethod must have a single bit set

• VUID-VkDecompressMemoryRegionNV-srcAddress-07691
The srcAddress to srcAddress + compressedSize region must not overlap with the dstAddress
and dstAddress + decompressedSize region

Valid Usage (Implicit)

• VUID-VkDecompressMemoryRegionNV-decompressionMethod-parameter
decompressionMethod must be a valid combination of
VkMemoryDecompressionMethodFlagBitsNV values

• VUID-VkDecompressMemoryRegionNV-decompressionMethod-requiredbitmask
decompressionMethod must not be 0

To decompress data between one or more memory regions by specifying decompression
parameters indirectly in a buffer, call:

// Provided by VK_NV_memory_decompression
void vkCmdDecompressMemoryIndirectCountNV(
 VkCommandBuffer commandBuffer,
 VkDeviceAddress indirectCommandsAddress,
 VkDeviceAddress indirectCommandsCountAddress,
 uint32_t stride);

• commandBuffer is the command buffer into which the command will be recorded.

• indirectCommandsAddress is the device address containing decompression parameters laid out as
an array of VkDecompressMemoryRegionNV structures.

• indirectCommandsCountAddress is the device address containing the decompression count.

• stride is the byte stride between successive sets of decompression parameters located starting
from indirectCommandsAddress.

Each region specified in indirectCommandsAddress is decompressed from the source to destination
region based on the specified decompression method.

3362

Valid Usage

• VUID-vkCmdDecompressMemoryIndirectCountNV-None-07692
The memoryDecompression feature must be enabled

• VUID-vkCmdDecompressMemoryIndirectCountNV-indirectCommandsAddress-07693
If indirectCommandsAddress comes from a non-sparse buffer then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdDecompressMemoryIndirectCountNV-indirectCommandsAddress-07694
The VkBuffer that indirectCommandsAddress comes from must have been created with the
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDecompressMemoryIndirectCountNV-offset-07695
offset must be a multiple of 4

• VUID-vkCmdDecompressMemoryIndirectCountNV-indirectCommandsCountAddress-
07696
If indirectCommandsCountAddress comes from a non-sparse buffer then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdDecompressMemoryIndirectCountNV-indirectCommandsCountAddress-
07697
The VkBuffer that indirectCommandsCountAddress comes from must have been created with
the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDecompressMemoryIndirectCountNV-indirectCommandsCountAddress-
07698
indirectCommandsCountAddress must be a multiple of 4

• VUID-vkCmdDecompressMemoryIndirectCountNV-indirectCommandsCountAddress-
07699
The count stored in indirectCommandsCountAddress must be less than or equal to
VkPhysicalDeviceMemoryDecompressionPropertiesNV::maxDecompressionIndirectCount

• VUID-vkCmdDecompressMemoryIndirectCountNV-stride-07700
stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkDecompressMemoryRegionNV)

• VUID-vkCmdDecompressMemoryIndirectCountNV-indirectCommandsCountAddress-
07701
If the count stored in indirectCommandsCountAddress is equal to 1, (offset +
sizeof(VkDecompressMemoryRegionNV)) must be less than or equal to the size of the VkBuffer
that indirectCommandsAddress comes from

• VUID-vkCmdDecompressMemoryIndirectCountNV-indirectCommandsCountAddress-
07702
If the count stored in indirectCommandsCountAddress is greater than 1,
indirectCommandsAddress + sizeof(VkDecompressMemoryRegionNV) + (stride × (count stored in
countBuffer - 1)) must be less than or equal to the last valid address in the VkBuffer that
indirectCommandsAddress was created from

3363

Valid Usage (Implicit)

• VUID-vkCmdDecompressMemoryIndirectCountNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDecompressMemoryIndirectCountNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDecompressMemoryIndirectCountNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdDecompressMemoryIndirectCountNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDecompressMemoryIndirectCountNV-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Graphics
Compute

Action

Bits which can be set in VkDecompressMemoryRegionNV::decompressionMethod specifying the
decompression method to select, or returned in VkPhysicalDeviceMemoryDecompressionPropertiesNV
::decompressionMethods specifying the available decompression methods are:

// Provided by VK_NV_memory_decompression
// Flag bits for VkMemoryDecompressionMethodFlagBitsNV
typedef VkFlags64 VkMemoryDecompressionMethodFlagBitsNV;
static const VkMemoryDecompressionMethodFlagBitsNV
VK_MEMORY_DECOMPRESSION_METHOD_GDEFLATE_1_0_BIT_NV = 0x00000001ULL;

• VK_MEMORY_DECOMPRESSION_METHOD_GDEFLATE_1_0_BIT_NV specifies that the GDeflate 1.0 algorithm is
used to decompress data.

// Provided by VK_NV_memory_decompression

3364

typedef VkFlags64 VkMemoryDecompressionMethodFlagsNV;

VkMemoryDecompressionMethodFlagsNV is a bitmask type for specifying a mask of one or more
VkMemoryDecompressionMethodFlagBitsNV:

3365

Chapter 42. Video Coding
Vulkan implementations may expose one or more queue families supporting video coding
operations. These operations are performed by recording them into a command buffer within a
video coding scope, and submitting them to queues with compatible video coding capabilities.

The Vulkan video functionalities are designed to be made available through a set of APIs built on
top of each other, consisting of:

• A core API providing common video coding functionalities,

• APIs providing codec-independent video decode and video encode related functionalities,
respectively,

• Additional codec-specific APIs built on top of those.

This chapter details the fundamental components and operations of these.

42.1. Video Picture Resources
In the context of video coding, multidimensional arrays of image data that can be used as the
source or target of video coding operations are referred to as video picture resources. They may
store additional metadata that includes implementation-private information used during the
execution of video coding operations, as discussed later.

Video picture resources are backed by VkImage objects. Individual subregions of VkImageView
objects created from such resources can be used as decode output pictures, encode input pictures,
reconstructed pictures, and/or reference pictures.

The parameters of a video picture resource are specified using a VkVideoPictureResourceInfoKHR
structure.

The VkVideoPictureResourceInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoPictureResourceInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkOffset2D codedOffset;
 VkExtent2D codedExtent;
 uint32_t baseArrayLayer;
 VkImageView imageViewBinding;
} VkVideoPictureResourceInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• codedOffset is the offset in texels of the image subregion to use.

• codedExtent is the size in pixels of the coded image data.

3366

• baseArrayLayer is the array layer of the image view specified in imageViewBinding to use as the
video picture resource.

• imageViewBinding is an image view representing the video picture resource.

The image subresource referred to by such a structure is defined as the image array layer index
specified in baseArrayLayer relative to the image subresource range the image view specified in
imageViewBinding was created with.

The meaning of the codedOffset and codedExtent depends on the command and context the video
picture resource is used in, as well as on the used video profile and corresponding codec-specific
semantics, as described later.

A video picture resource is uniquely defined by the image subresource referred to by an instance of
this structure, together with the codedOffset and codedExtent members that identify the image
subregion within the image subresource referenced corresponding to the video picture resource
according to the particular codec-specific semantics.

Accesses to image data within a video picture resource happen at the granularity indicated by
VkVideoCapabilitiesKHR::pictureAccessGranularity, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile. As a result, given an effective
image subregion corresponding to a video picture resource, the actual image subregion accessed
may be larger than that as it may include additional padding texels due to the picture access
granularity. Any writes performed by video coding operations to such padding texels will result in
undefined texel values.

Two video picture resources match if they refer to the same image subresource and they specify
identical codedOffset and codedExtent values.

Valid Usage

• VUID-VkVideoPictureResourceInfoKHR-baseArrayLayer-07175
baseArrayLayer must be less than the VkImageViewCreateInfo
::subresourceRange.layerCount specified when the image view imageViewBinding was
created

Valid Usage (Implicit)

• VUID-VkVideoPictureResourceInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_PICTURE_RESOURCE_INFO_KHR

• VUID-VkVideoPictureResourceInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkVideoPictureResourceInfoKHR-imageViewBinding-parameter
imageViewBinding must be a valid VkImageView handle

3367

42.2. Decoded Picture Buffer
An integral part of video coding pipelines is the reconstruction of pictures from a compressed video
bitstream. A reconstructed picture is a video picture resource resulting from this process.

Such reconstructed pictures can be used as reference pictures in subsequent video coding
operations to provide predictions of the values of samples of subsequently decoded or encoded
pictures. The correct use of such reconstructed pictures as reference pictures is driven by the video
compression standard, the implementation, and the application-specific use cases.

The list of reference pictures used to provide such predictions within a single video coding
operation is referred to as the list of active reference pictures.

The decoded picture buffer (DPB) is an indexed data structure that maintains the set of reference
pictures available to be used in video coding operations. Individual indexed entries of the DPB are
referred to as the decoded picture buffer (DPB) slots. The range of valid DPB slot indices is between
zero and N-1, where N is the capacity of the DPB. Each DPB slot can refer to a reference picture
containing a video frame or can refer to up to two reference pictures containing the top and/or
bottom fields that, when both present, together represent a full video frame .

In Vulkan, the state and the backing store of the DPB is separated as follows:

• The state of individual DPB slots is maintained by video session objects.

• The backing store of DPB slots is provided by subregions of VkImage objects used as video
picture resources.

In addition, the implementation may also maintain opaque metadata associated with DPB slots,
including:

• Reference picture metadata corresponding to the video picture resource associated with the DPB
slot.

Such metadata may be stored by the implementation as part of the DPB slot state maintained by the
video session, or as part of the video picture resource backing the DPB slot.

Any metadata stored in the video picture resources backing DPB slots are independent of the video
session used to store it, hence such video picture resources can be shared with other video sessions.
Correspondingly, any metadata that is dependent on the video session will always be stored as part
of the DPB slot state maintained by that video session.

The responsibility of managing the DPB is split between the application and the implementation as
follows:

• The application maintains the association between DPB slot indices and corresponding video
picture resources.

• The implementation maintains global and per-slot opaque reference picture metadata.

In addition, the application is also responsible for managing the mapping between the codec-
specific picture IDs and DPB slots, and any other codec-specific states unless otherwise specified.

3368

42.2.1. DPB Slot States

At a given time, each DPB slot is either in active or inactive state. Initially, all DPB slots managed by
a video session are in inactive state.

A DPB slot can be activated by using it as the target of picture reconstruction in a video coding
operation with the reconstructed picture requested to be set up as a reference picture, according to
the codec-specific semantics, changing its state to active and associating it with a picture reference to
the reconstructed pictures.

Some video coding standards allow multiple picture references to be associated with a single DPB
slot. In this case the state of the individual picture references can be independently updated.

Note

As an example, H.264 decoding allows associating a separate top field and bottom
field picture with the same DPB slot.

As part of reference picture setup, the implementation may also generate reference picture
metadata. Such reference picture metadata is specific to each picture reference associated with the
DPB slot.

If such a video coding operation completes successfully, the activated DPB slot will have a valid
picture reference and the reconstructed picture is associated with the DPB slot. This is true even if
the DPB slot is used as the target of a picture reconstruction that only sets up a top field or bottom
field reference picture and thus does not yet refer to a complete frame. However, if any data
provided as input to such a video coding operation is not compliant with the video compression
standard used, that video coding operation may complete unsuccessfully, in which case the
activated DPB slot will have an invalid picture reference. This is true even if the DPB slot previously
had a valid picture reference to a top field or bottom field reference picture, but the reconstruction
of the other field corresponding to the DPB slot failed.

The application can use queries to get feedback about the outcome of video coding operations and
use the resulting VkQueryResultStatusKHR value to determine whether the video coding operation
completed successfully (result status is positive) or unsuccessfully (result status is negative).

Using a reference picture associated with a DPB slot that has an invalid picture reference as an
active reference picture in subsequent video coding operations is legal, however, the contents of
the outputs of such operations are undefined, and any DPB slots activated by such video coding
operations will also have an invalid picture reference. This is true even if such video coding
operations may otherwise complete successfully.

A DPB slot can also be deactivated by the application, changing its state to inactive and invalidating
any picture references and reference picture metadata associated with the DPB slot.

If an already active DPB slot is used as the target of picture reconstruction in a video coding
operation, but the decoded picture is not requested to be set up as a reference picture, according to
the codec-specific semantics, no reference picture setup happens and the corresponding picture
reference and reference picture metadata is invalidated within the DPB slot. If the DPB slot no
longer has any associated picture references after such an operation, the DPB slot is implicitly

3369

deactivated.

If an already active DPB slot is used as the target of picture reconstruction when decoding a field
picture that is not marked as reference, then the behavior is as follows:

• If the DPB slot is currently associated with a frame, then the DPB slot is deactivated.

• If the DPB slot is not currently associated with a top field picture and the decoded picture is a
top field picture, or if the DPB slot is not currently associated with a bottom field picture and the
decoded picture is a bottom field picture, then the other field picture association of the DPB slot,
if any, is not disturbed.

• If the DPB slot is currently associated with a top field picture and the decoded picture is a top
field picture, or if the DPB slot is currently associated with a bottom field picture and the
decoded picture is a bottom field picture, then that picture association is invalidated, without
disturbing the other field picture association, if any. If the DPB slot no longer has any associated
picture references after such an operation, the DPB slot is implicitly deactivated.

A DPB slot can be activated with a new frame even if it is already active. In this case all previous
associations of the DPB slots with reference pictures are replaced with an association with the
reconstructed picture used to activate it.

If an already active DPB slot is activated with a reconstructed field picture, then the behavior is as
follows:

• If the DPB slot is currently associated with a frame, then that association is replaced with an
association with the reconstructed field picture used to activate it.

• If the DPB slot is not currently associated with a top field picture and the DPB slot is activated
with a top field picture, or if the DPB slot is not currently associated with a bottom field picture
and the DPB slot is activated with a bottom field picture, then the DPB slot is associated with the
reconstructed field picture used to activate it, without disturbing the other field picture
association, if any.

• If the DPB slot is currently associated with a top field picture and the DPB slot is activated with a
new top field picture, or if the DPB slot is currently associated with a bottom field picture and
the DPB slot is activated with a new bottom field picture, then that association is replaced with
an association with the reconstructed field picture used to activate it, without disturbing the
other field picture association, if any.

42.3. Video Profiles
The VkVideoProfileInfoKHR structure is defined as follows:

// Provided by VK_KHR_video_queue
typedef struct VkVideoProfileInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoCodecOperationFlagBitsKHR videoCodecOperation;
 VkVideoChromaSubsamplingFlagsKHR chromaSubsampling;
 VkVideoComponentBitDepthFlagsKHR lumaBitDepth;

3370

 VkVideoComponentBitDepthFlagsKHR chromaBitDepth;
} VkVideoProfileInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• videoCodecOperation is a VkVideoCodecOperationFlagBitsKHR value specifying a video codec
operation.

• chromaSubsampling is a bitmask of VkVideoChromaSubsamplingFlagBitsKHR specifying video
chroma subsampling information.

• lumaBitDepth is a bitmask of VkVideoComponentBitDepthFlagBitsKHR specifying video luma bit
depth information.

• chromaBitDepth is a bitmask of VkVideoComponentBitDepthFlagBitsKHR specifying video
chroma bit depth information.

Video profiles are provided as input to video capability queries such as
vkGetPhysicalDeviceVideoCapabilitiesKHR or vkGetPhysicalDeviceVideoFormatPropertiesKHR, as
well as when creating resources to be used by video coding operations such as images, buffers,
query pools, and video sessions.

The full description of a video profile is specified by an instance of this structure, and the codec-
specific and auxiliary structures provided in its pNext chain.

When this structure is specified as an input parameter to
vkGetPhysicalDeviceVideoCapabilitiesKHR, or through the pProfiles member of a
VkVideoProfileListInfoKHR structure in the pNext chain of the input parameter of a query
command such as vkGetPhysicalDeviceVideoFormatPropertiesKHR or
vkGetPhysicalDeviceImageFormatProperties2, the following error codes indicate specific causes of
the failure of the query operation:

• VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR indicates that the requested video picture
layout (e.g. through the pictureLayout member of a VkVideoDecodeH264ProfileInfoKHR
structure included in the pNext chain of VkVideoProfileInfoKHR) is not supported.

• VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR indicates that a video profile operation
specified by videoCodecOperation is not supported.

• VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR indicates that video format parameters
specified by chromaSubsampling, lumaBitDepth, or chromaBitDepth are not supported.

• VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR indicates that the codec-specific parameters
corresponding to the video codec operation are not supported.

Valid Usage

• VUID-VkVideoProfileInfoKHR-chromaSubsampling-07013
chromaSubsampling must have a single bit set

• VUID-VkVideoProfileInfoKHR-lumaBitDepth-07014

3371

lumaBitDepth must have a single bit set

• VUID-VkVideoProfileInfoKHR-chromaSubsampling-07015
If chromaSubsampling is not VK_VIDEO_CHROMA_SUBSAMPLING_MONOCHROME_BIT_KHR, then
chromaBitDepth must have a single bit set

• VUID-VkVideoProfileInfoKHR-videoCodecOperation-07179
If videoCodecOperation is VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the pNext
chain must include a VkVideoDecodeH264ProfileInfoKHR structure

• VUID-VkVideoProfileInfoKHR-videoCodecOperation-07180
If videoCodecOperation is VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the pNext
chain must include a VkVideoDecodeH265ProfileInfoKHR structure

• VUID-VkVideoProfileInfoKHR-videoCodecOperation-09256
If videoCodecOperation is VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then the pNext
chain must include a VkVideoDecodeAV1ProfileInfoKHR structure

• VUID-VkVideoProfileInfoKHR-videoCodecOperation-07181
If videoCodecOperation is VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the pNext
chain must include a VkVideoEncodeH264ProfileInfoKHR structure

• VUID-VkVideoProfileInfoKHR-videoCodecOperation-07182
If videoCodecOperation is VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the pNext
chain must include a VkVideoEncodeH265ProfileInfoKHR structure

Valid Usage (Implicit)

• VUID-VkVideoProfileInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_PROFILE_INFO_KHR

• VUID-VkVideoProfileInfoKHR-videoCodecOperation-parameter
videoCodecOperation must be a valid VkVideoCodecOperationFlagBitsKHR value

• VUID-VkVideoProfileInfoKHR-chromaSubsampling-parameter
chromaSubsampling must be a valid combination of
VkVideoChromaSubsamplingFlagBitsKHR values

• VUID-VkVideoProfileInfoKHR-chromaSubsampling-requiredbitmask
chromaSubsampling must not be 0

• VUID-VkVideoProfileInfoKHR-lumaBitDepth-parameter
lumaBitDepth must be a valid combination of VkVideoComponentBitDepthFlagBitsKHR
values

• VUID-VkVideoProfileInfoKHR-lumaBitDepth-requiredbitmask
lumaBitDepth must not be 0

• VUID-VkVideoProfileInfoKHR-chromaBitDepth-parameter
chromaBitDepth must be a valid combination of VkVideoComponentBitDepthFlagBitsKHR
values

Possible values of VkVideoProfileInfoKHR::videoCodecOperation, specifying the type of video coding

3372

operation and video compression standard used by a video profile, are:

// Provided by VK_KHR_video_queue
typedef enum VkVideoCodecOperationFlagBitsKHR {
 VK_VIDEO_CODEC_OPERATION_NONE_KHR = 0,
 // Provided by VK_KHR_video_encode_h264
 VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR = 0x00010000,
 // Provided by VK_KHR_video_encode_h265
 VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR = 0x00020000,
 // Provided by VK_KHR_video_decode_h264
 VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR = 0x00000001,
 // Provided by VK_KHR_video_decode_h265
 VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR = 0x00000002,
 // Provided by VK_KHR_video_decode_av1
 VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR = 0x00000004,
} VkVideoCodecOperationFlagBitsKHR;

• VK_VIDEO_CODEC_OPERATION_NONE_KHR indicates no support for any video codec operations.

• VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR specifies support for H.264 decode operations.

• VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR specifies support for H.265 decode operations.

• VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR specifies support for AV1 decode operations.

• VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR specifies support for H.264 encode operations.

• VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR specifies support for H.265 encode operations.

// Provided by VK_KHR_video_queue
typedef VkFlags VkVideoCodecOperationFlagsKHR;

VkVideoCodecOperationFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoCodecOperationFlagBitsKHR.

The video format chroma subsampling is defined with the following enums:

// Provided by VK_KHR_video_queue
typedef enum VkVideoChromaSubsamplingFlagBitsKHR {
 VK_VIDEO_CHROMA_SUBSAMPLING_INVALID_KHR = 0,
 VK_VIDEO_CHROMA_SUBSAMPLING_MONOCHROME_BIT_KHR = 0x00000001,
 VK_VIDEO_CHROMA_SUBSAMPLING_420_BIT_KHR = 0x00000002,
 VK_VIDEO_CHROMA_SUBSAMPLING_422_BIT_KHR = 0x00000004,
 VK_VIDEO_CHROMA_SUBSAMPLING_444_BIT_KHR = 0x00000008,
} VkVideoChromaSubsamplingFlagBitsKHR;

• VK_VIDEO_CHROMA_SUBSAMPLING_MONOCHROME_BIT_KHR specifies that the format is monochrome.

• VK_VIDEO_CHROMA_SUBSAMPLING_420_BIT_KHR specified that the format is 4:2:0 chroma subsampled,
i.e. the two chroma components are sampled horizontally and vertically at half the sample rate

3373

of the luma component.

• VK_VIDEO_CHROMA_SUBSAMPLING_422_BIT_KHR - the format is 4:2:2 chroma subsampled, i.e. the two
chroma components are sampled horizontally at half the sample rate of luma component.

• VK_VIDEO_CHROMA_SUBSAMPLING_444_BIT_KHR - the format is 4:4:4 chroma sampled, i.e. all three
components of the Y′CBCR format are sampled at the same rate, thus there is no chroma
subsampling.

Chroma subsampling is described in more detail in the Chroma Reconstruction section.

// Provided by VK_KHR_video_queue
typedef VkFlags VkVideoChromaSubsamplingFlagsKHR;

VkVideoChromaSubsamplingFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoChromaSubsamplingFlagBitsKHR.

Possible values for the video format component bit depth are:

// Provided by VK_KHR_video_queue
typedef enum VkVideoComponentBitDepthFlagBitsKHR {
 VK_VIDEO_COMPONENT_BIT_DEPTH_INVALID_KHR = 0,
 VK_VIDEO_COMPONENT_BIT_DEPTH_8_BIT_KHR = 0x00000001,
 VK_VIDEO_COMPONENT_BIT_DEPTH_10_BIT_KHR = 0x00000004,
 VK_VIDEO_COMPONENT_BIT_DEPTH_12_BIT_KHR = 0x00000010,
} VkVideoComponentBitDepthFlagBitsKHR;

• VK_VIDEO_COMPONENT_BIT_DEPTH_8_BIT_KHR specifies a component bit depth of 8 bits.

• VK_VIDEO_COMPONENT_BIT_DEPTH_10_BIT_KHR specifies a component bit depth of 10 bits.

• VK_VIDEO_COMPONENT_BIT_DEPTH_12_BIT_KHR specifies a component bit depth of 12 bits.

// Provided by VK_KHR_video_queue
typedef VkFlags VkVideoComponentBitDepthFlagsKHR;

VkVideoComponentBitDepthFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoComponentBitDepthFlagBitsKHR.

Additional information about the video decode use case can be provided by adding a
VkVideoDecodeUsageInfoKHR structure to the pNext chain of VkVideoProfileInfoKHR.

The VkVideoDecodeUsageInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_queue
typedef struct VkVideoDecodeUsageInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoDecodeUsageFlagsKHR videoUsageHints;

3374

} VkVideoDecodeUsageInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• videoUsageHints is a bitmask of VkVideoDecodeUsageFlagBitsKHR specifying hints about the
intended use of the video decode profile.

Valid Usage (Implicit)

• VUID-VkVideoDecodeUsageInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_USAGE_INFO_KHR

• VUID-VkVideoDecodeUsageInfoKHR-videoUsageHints-parameter
videoUsageHints must be a valid combination of VkVideoDecodeUsageFlagBitsKHR values

The following bits can be specified in VkVideoDecodeUsageInfoKHR::videoUsageHints as a hint
about the video decode use case:

// Provided by VK_KHR_video_decode_queue
typedef enum VkVideoDecodeUsageFlagBitsKHR {
 VK_VIDEO_DECODE_USAGE_DEFAULT_KHR = 0,
 VK_VIDEO_DECODE_USAGE_TRANSCODING_BIT_KHR = 0x00000001,
 VK_VIDEO_DECODE_USAGE_OFFLINE_BIT_KHR = 0x00000002,
 VK_VIDEO_DECODE_USAGE_STREAMING_BIT_KHR = 0x00000004,
} VkVideoDecodeUsageFlagBitsKHR;

• VK_VIDEO_DECODE_USAGE_TRANSCODING_BIT_KHR specifies that video decoding is intended to be used
in conjunction with video encoding to transcode a video bitstream with the same and/or
different codecs.

• VK_VIDEO_DECODE_USAGE_OFFLINE_BIT_KHR specifies that video decoding is intended to be used to
consume a local video bitstream.

• VK_VIDEO_DECODE_USAGE_STREAMING_BIT_KHR specifies that video decoding is intended to be used to
consume a video bitstream received as a continuous flow over network.

Note

There are no restrictions on the combination of bits that can be specified by the
application. However, applications should use reasonable combinations in order
for the implementation to be able to select the most appropriate mode of operation
for the particular use case.

// Provided by VK_KHR_video_decode_queue
typedef VkFlags VkVideoDecodeUsageFlagsKHR;

VkVideoDecodeUsageFlagsKHR is a bitmask type for setting a mask of zero or more

3375

VkVideoDecodeUsageFlagBitsKHR.

Additional information about the video encode use case can be provided by adding a
VkVideoEncodeUsageInfoKHR structure to the pNext chain of VkVideoProfileInfoKHR.

The VkVideoEncodeUsageInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeUsageInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoEncodeUsageFlagsKHR videoUsageHints;
 VkVideoEncodeContentFlagsKHR videoContentHints;
 VkVideoEncodeTuningModeKHR tuningMode;
} VkVideoEncodeUsageInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• videoUsageHints is a bitmask of VkVideoEncodeUsageFlagBitsKHR specifying hints about the
intended use of the video encode profile.

• videoContentHints is a bitmask of VkVideoEncodeContentFlagBitsKHR specifying hints about the
content to be encoded using the video encode profile.

• tuningMode is a VkVideoEncodeTuningModeKHR value specifying the tuning mode to use when
encoding with the video profile.

Valid Usage (Implicit)

• VUID-VkVideoEncodeUsageInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_USAGE_INFO_KHR

• VUID-VkVideoEncodeUsageInfoKHR-videoUsageHints-parameter
videoUsageHints must be a valid combination of VkVideoEncodeUsageFlagBitsKHR values

• VUID-VkVideoEncodeUsageInfoKHR-videoContentHints-parameter
videoContentHints must be a valid combination of VkVideoEncodeContentFlagBitsKHR
values

• VUID-VkVideoEncodeUsageInfoKHR-tuningMode-parameter
If tuningMode is not 0, tuningMode must be a valid VkVideoEncodeTuningModeKHR value

The following bits can be specified in VkVideoEncodeUsageInfoKHR::videoUsageHints as a hint
about the video encode use case:

// Provided by VK_KHR_video_encode_queue
typedef enum VkVideoEncodeUsageFlagBitsKHR {
 VK_VIDEO_ENCODE_USAGE_DEFAULT_KHR = 0,
 VK_VIDEO_ENCODE_USAGE_TRANSCODING_BIT_KHR = 0x00000001,

3376

 VK_VIDEO_ENCODE_USAGE_STREAMING_BIT_KHR = 0x00000002,
 VK_VIDEO_ENCODE_USAGE_RECORDING_BIT_KHR = 0x00000004,
 VK_VIDEO_ENCODE_USAGE_CONFERENCING_BIT_KHR = 0x00000008,
} VkVideoEncodeUsageFlagBitsKHR;

• VK_VIDEO_ENCODE_USAGE_TRANSCODING_BIT_KHR specifies that video encoding is intended to be used
in conjunction with video decoding to transcode a video bitstream with the same and/or
different codecs.

• VK_VIDEO_ENCODE_USAGE_STREAMING_BIT_KHR specifies that video encoding is intended to be used to
produce a video bitstream that is expected to be sent as a continuous flow over network.

• VK_VIDEO_ENCODE_USAGE_RECORDING_BIT_KHR specifies that video encoding is intended to be used
for real-time recording for offline consumption.

• VK_VIDEO_ENCODE_USAGE_CONFERENCING_BIT_KHR specifies that video encoding is intended to be used
in a video conferencing scenario.

Note

There are no restrictions on the combination of bits that can be specified by the
application. However, applications should use reasonable combinations in order
for the implementation to be able to select the most appropriate mode of operation
for the particular use case.

// Provided by VK_KHR_video_encode_queue
typedef VkFlags VkVideoEncodeUsageFlagsKHR;

VkVideoEncodeUsageFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeUsageFlagBitsKHR.

The following bits can be specified in VkVideoEncodeUsageInfoKHR::videoContentHints as a hint
about the encoded video content:

// Provided by VK_KHR_video_encode_queue
typedef enum VkVideoEncodeContentFlagBitsKHR {
 VK_VIDEO_ENCODE_CONTENT_DEFAULT_KHR = 0,
 VK_VIDEO_ENCODE_CONTENT_CAMERA_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_CONTENT_DESKTOP_BIT_KHR = 0x00000002,
 VK_VIDEO_ENCODE_CONTENT_RENDERED_BIT_KHR = 0x00000004,
} VkVideoEncodeContentFlagBitsKHR;

• VK_VIDEO_ENCODE_CONTENT_CAMERA_BIT_KHR specifies that video encoding is intended to be used to
encode camera content.

• VK_VIDEO_ENCODE_CONTENT_DESKTOP_BIT_KHR specifies that video encoding is intended to be used to
encode desktop content.

• VK_VIDEO_ENCODE_CONTENT_RENDERED_BIT_KHR specified that video encoding is intended to be used
to encode rendered (e.g. game) content.

3377

Note

There are no restrictions on the combination of bits that can be specified by the
application. However, applications should use reasonable combinations in order
for the implementation to be able to select the most appropriate mode of operation
for the particular content type.

// Provided by VK_KHR_video_encode_queue
typedef VkFlags VkVideoEncodeContentFlagsKHR;

VkVideoEncodeContentFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeContentFlagBitsKHR.

Possible video encode tuning mode values are as follows:

// Provided by VK_KHR_video_encode_queue
typedef enum VkVideoEncodeTuningModeKHR {
 VK_VIDEO_ENCODE_TUNING_MODE_DEFAULT_KHR = 0,
 VK_VIDEO_ENCODE_TUNING_MODE_HIGH_QUALITY_KHR = 1,
 VK_VIDEO_ENCODE_TUNING_MODE_LOW_LATENCY_KHR = 2,
 VK_VIDEO_ENCODE_TUNING_MODE_ULTRA_LOW_LATENCY_KHR = 3,
 VK_VIDEO_ENCODE_TUNING_MODE_LOSSLESS_KHR = 4,
} VkVideoEncodeTuningModeKHR;

• VK_VIDEO_ENCODE_TUNING_MODE_DEFAULT_KHR specifies the default tuning mode.

• VK_VIDEO_ENCODE_TUNING_MODE_HIGH_QUALITY_KHR specifies that video encoding is tuned for high
quality. When using this tuning mode, the implementation may compromise the latency of
video encoding operations to improve quality.

• VK_VIDEO_ENCODE_TUNING_MODE_LOW_LATENCY_KHR specifies that video encoding is tuned for low
latency. When using this tuning mode, the implementation may compromise quality to increase
the performance and lower the latency of video encode operations.

• VK_VIDEO_ENCODE_TUNING_MODE_ULTRA_LOW_LATENCY_KHR specifies that video encoding is tuned for
ultra-low latency. When using this tuning mode, the implementation may compromise quality
to maximize the performance and minimize the latency of video encoding operations.

• VK_VIDEO_ENCODE_TUNING_MODE_LOSSLESS_KHR specifies that video encoding is tuned for lossless
encoding. When using this tuning mode, video encode operations produce lossless output.

The VkVideoProfileListInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoProfileListInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t profileCount;
 const VkVideoProfileInfoKHR* pProfiles;

3378

} VkVideoProfileListInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• profileCount is the number of elements in the pProfiles array.

• pProfiles is a pointer to an array of VkVideoProfileInfoKHR structures.

Note

Video transcoding is an example of a use case that necessitates the specification of
multiple profiles in various contexts.

When the application provides a video decode profile and one or more video encode profiles in the
profile list, the implementation ensures that any capabilitities returned or resources created are
suitable for the video transcoding use cases without the need for manual data transformations.

Valid Usage

• VUID-VkVideoProfileListInfoKHR-pProfiles-06813
pProfiles must not contain more than one element whose videoCodecOperation member
specifies a decode operation

Valid Usage (Implicit)

• VUID-VkVideoProfileListInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_PROFILE_LIST_INFO_KHR

• VUID-VkVideoProfileListInfoKHR-pProfiles-parameter
If profileCount is not 0, pProfiles must be a valid pointer to an array of profileCount valid
VkVideoProfileInfoKHR structures

42.4. Video Capabilities

42.4.1. Video Coding Capabilities

To query video coding capabilities for a specific video profile, call:

// Provided by VK_KHR_video_queue
VkResult vkGetPhysicalDeviceVideoCapabilitiesKHR(
 VkPhysicalDevice physicalDevice,
 const VkVideoProfileInfoKHR* pVideoProfile,
 VkVideoCapabilitiesKHR* pCapabilities);

• physicalDevice is the physical device from which to query the video decode or encode

3379

capabilities.

• pVideoProfile is a pointer to a VkVideoProfileInfoKHR structure.

• pCapabilities is a pointer to a VkVideoCapabilitiesKHR structure in which the capabilities are
returned.

If the video profile described by pVideoProfile is supported by the implementation, then this
command returns VK_SUCCESS and pCapabilities is filled with the capabilities supported with the
specified video profile. Otherwise, one of the video-profile-specific error codes are returned.

Valid Usage

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pVideoProfile-07183
If pVideoProfile->videoCodecOperation specifies a decode operation, then the pNext chain
of pCapabilities must include a VkVideoDecodeCapabilitiesKHR structure

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pVideoProfile-07184
If pVideoProfile->videoCodecOperation is VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR,
then the pNext chain of pCapabilities must include a VkVideoDecodeH264CapabilitiesKHR
structure

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pVideoProfile-07185
If pVideoProfile->videoCodecOperation is VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR,
then the pNext chain of pCapabilities must include a VkVideoDecodeH265CapabilitiesKHR
structure

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pVideoProfile-09257
If pVideoProfile->videoCodecOperation is VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR,
then the pNext chain of pCapabilities must include a VkVideoDecodeAV1CapabilitiesKHR
structure

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pVideoProfile-07186
If pVideoProfile->videoCodecOperation specifies an encode operation, then the pNext chain
of pCapabilities must include a VkVideoEncodeCapabilitiesKHR structure

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pVideoProfile-07187
If pVideoProfile->videoCodecOperation is VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR,
then the pNext chain of pCapabilities must include a VkVideoEncodeH264CapabilitiesKHR
structure

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pVideoProfile-07188
If pVideoProfile->videoCodecOperation is VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR,
then the pNext chain of pCapabilities must include a VkVideoEncodeH265CapabilitiesKHR
structure

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pVideoProfile-parameter

3380

pVideoProfile must be a valid pointer to a valid VkVideoProfileInfoKHR structure

• VUID-vkGetPhysicalDeviceVideoCapabilitiesKHR-pCapabilities-parameter
pCapabilities must be a valid pointer to a VkVideoCapabilitiesKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR

The VkVideoCapabilitiesKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoCapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 VkVideoCapabilityFlagsKHR flags;
 VkDeviceSize minBitstreamBufferOffsetAlignment;
 VkDeviceSize minBitstreamBufferSizeAlignment;
 VkExtent2D pictureAccessGranularity;
 VkExtent2D minCodedExtent;
 VkExtent2D maxCodedExtent;
 uint32_t maxDpbSlots;
 uint32_t maxActiveReferencePictures;
 VkExtensionProperties stdHeaderVersion;
} VkVideoCapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkVideoCapabilityFlagBitsKHR specifying capability flags.

• minBitstreamBufferOffsetAlignment is the minimum alignment for bitstream buffer offsets.

• minBitstreamBufferSizeAlignment is the minimum alignment for bitstream buffer range sizes.

• pictureAccessGranularity is the granularity at which image access to video picture resources
happen.

• minCodedExtent is the minimum width and height of the coded frames.

3381

• maxCodedExtent is the maximum width and height of the coded frames.

• maxDpbSlots is the maximum number of DPB slots supported by a single video session.

• maxActiveReferencePictures is the maximum number of active reference pictures a single video
coding operation can use.

• stdHeaderVersion is a VkExtensionProperties structure reporting the Video Std header name and
version supported for the video profile.

Note

It is common for video compression standards to allow using all reference pictures
associated with active DPB slots as active reference pictures, hence for video
decode profiles the values returned in maxDpbSlots and maxActiveReferencePictures
are often equal. Similarly, in case of video decode profiles supporting field pictures
the value of maxActiveReferencePictures often equals maxDpbSlots × 2.

Valid Usage (Implicit)

• VUID-VkVideoCapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_CAPABILITIES_KHR

• VUID-VkVideoCapabilitiesKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoDecodeAV1CapabilitiesKHR,
VkVideoDecodeCapabilitiesKHR, VkVideoDecodeH264CapabilitiesKHR,
VkVideoDecodeH265CapabilitiesKHR, VkVideoEncodeCapabilitiesKHR,
VkVideoEncodeH264CapabilitiesKHR, or VkVideoEncodeH265CapabilitiesKHR

• VUID-VkVideoCapabilitiesKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

Bits which can be set in VkVideoCapabilitiesKHR::flags are:

// Provided by VK_KHR_video_queue
typedef enum VkVideoCapabilityFlagBitsKHR {
 VK_VIDEO_CAPABILITY_PROTECTED_CONTENT_BIT_KHR = 0x00000001,
 VK_VIDEO_CAPABILITY_SEPARATE_REFERENCE_IMAGES_BIT_KHR = 0x00000002,
} VkVideoCapabilityFlagBitsKHR;

• VK_VIDEO_CAPABILITY_PROTECTED_CONTENT_BIT_KHR indicates that video sessions support producing
and consuming protected content.

• VK_VIDEO_CAPABILITY_SEPARATE_REFERENCE_IMAGES_BIT_KHR indicates that the video picture
resources associated with the DPB slots of a video session can be backed by separate VkImage
objects. If this capability flag is not present, then all DPB slots of a video session must be
associated with video picture resources backed by the same VkImage object (e.g. using different
layers of the same image).

3382

// Provided by VK_KHR_video_queue
typedef VkFlags VkVideoCapabilityFlagsKHR;

VkVideoCapabilityFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoCapabilityFlagBitsKHR.

42.4.2. Video Format Capabilities

To enumerate the supported output, input and DPB image formats and corresponding capabilities
for a specific video profile, call:

// Provided by VK_KHR_video_queue
VkResult vkGetPhysicalDeviceVideoFormatPropertiesKHR(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceVideoFormatInfoKHR* pVideoFormatInfo,
 uint32_t* pVideoFormatPropertyCount,
 VkVideoFormatPropertiesKHR* pVideoFormatProperties);

• physicalDevice is the physical device from which to query the video format properties.

• pVideoFormatInfo is a pointer to a VkPhysicalDeviceVideoFormatInfoKHR structure specifying
the usage and video profiles for which supported image formats and capabilities are returned.

• pVideoFormatPropertyCount is a pointer to an integer related to the number of video format
properties available or queried, as described below.

• pVideoFormatProperties is a pointer to an array of VkVideoFormatPropertiesKHR structures in
which supported image formats and capabilities are returned.

If pVideoFormatProperties is NULL, then the number of video format properties supported for the
given physicalDevice is returned in pVideoFormatPropertyCount. Otherwise,
pVideoFormatPropertyCount must point to a variable set by the user to the number of elements in the
pVideoFormatProperties array, and on return the variable is overwritten with the number of values
actually written to pVideoFormatProperties. If the value of pVideoFormatPropertyCount is less than the
number of video format properties supported, at most pVideoFormatPropertyCount values will be
written to pVideoFormatProperties, and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to
indicate that not all the available values were returned.

Video format properties are always queried with respect to a specific set of video profiles. These are
specified by chaining the VkVideoProfileListInfoKHR structure to pVideoFormatInfo.

For most use cases, the images are used by a single video session and a single video profile is
provided. For a use case such as video transcoding, where a decode session output image can be
used as encode input in one or more encode sessions, multiple video profiles corresponding to the
video sessions that will share the image must be provided.

If any of the video profiles specified via VkVideoProfileListInfoKHR::pProfiles are not supported,
then this command returns one of the video-profile-specific error codes. Furthermore, if
VkPhysicalDeviceVideoFormatInfoKHR::imageUsage includes any image usage flags not supported by

3383

the specified video profiles, then this command returns VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR.

This command also returns VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR if
VkPhysicalDeviceVideoFormatInfoKHR::imageUsage does not include the appropriate flags as
dictated by the decode capability flags returned in VkVideoDecodeCapabilitiesKHR::flags for any of
the profiles specified in the VkVideoProfileListInfoKHR structure provided in the pNext chain of
pVideoFormatInfo.

If the decode capability flags include VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_COINCIDE_BIT_KHR
but not VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR, then in order to query video
format properties for decode DPB and output usage, VkPhysicalDeviceVideoFormatInfoKHR
::imageUsage must include both VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR and
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR. Otherwise, the call will fail with
VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR.

If the decode capability flags include VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR
but not VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_COINCIDE_BIT_KHR, then in order to query video
format properties for decode DPB usage, VkPhysicalDeviceVideoFormatInfoKHR::imageUsage must
include VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR, but not VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR.
Otherwise, the call will fail with VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR. Similarly, to query video
format properties for decode output usage, VkPhysicalDeviceVideoFormatInfoKHR::imageUsage
must include VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR, but not
VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR. Otherwise, the call will fail with
VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR.

The imageUsage member of the VkPhysicalDeviceVideoFormatInfoKHR structure specifies the
expected video usage flags that the returned video formats must support. Correspondingly, the
imageUsageFlags member of each VkVideoFormatPropertiesKHR structure returned will contain at
least the same set of image usage flags.

If the implementation supports using video input, output, or DPB images of a particular format in
operations other than video decode/encode then the imageUsageFlags member of the corresponding
VkVideoFormatPropertiesKHR structure returned will include additional image usage flags
indicating that.

Note

For most use cases, only decode or encode related usage flags are going to be
specified. For a use case such as transcode, if the image were to be shared between
decode and encode session(s), then both decode and encode related usage flags
can be set.

Multiple VkVideoFormatPropertiesKHR entries may be returned with the same format member with
different componentMapping, imageType, or imageTiling values, as described later.

In addition, a different set of VkVideoFormatPropertiesKHR entries may be returned depending on the
imageUsage member of the VkPhysicalDeviceVideoFormatInfoKHR structure, even for the same set of
video profiles, for example, based on whether encode input, encode DPB, decode output, and/or
decode DPB usage is requested.

3384

The application can select the parameters returned in the VkVideoFormatPropertiesKHR entries and
use compatible parameters when creating the input, output, and DPB images. The implementation
will report all image creation and usage flags that are valid for images used with the requested
video profiles but applications should create images only with those that are necessary for the
particular use case.

Before creating an image, the application can obtain the complete set of supported image format
features by calling vkGetPhysicalDeviceImageFormatProperties2 using parameters derived from
the members of one of the reported VkVideoFormatPropertiesKHR entries and adding the same
VkVideoProfileListInfoKHR structure to the pNext chain of VkPhysicalDeviceImageFormatInfo2.

The following applies to all VkVideoFormatPropertiesKHR entries returned by
vkGetPhysicalDeviceVideoFormatPropertiesKHR:

• vkGetPhysicalDeviceFormatProperties2 must succeed when called with
VkVideoFormatPropertiesKHR::format

• If VkVideoFormatPropertiesKHR::imageTiling is VK_IMAGE_TILING_OPTIMAL, then the
optimalTilingFeatures returned by vkGetPhysicalDeviceFormatProperties2 must include all
format features required by the image usage flags reported in VkVideoFormatPropertiesKHR
::imageUsageFlags for the format, as indicated in the Format Feature Dependent Usage Flags
section.

• If VkVideoFormatPropertiesKHR::imageTiling is VK_IMAGE_TILING_LINEAR, then the
linearTilingFeatures returned by vkGetPhysicalDeviceFormatProperties2 must include all
format features required by the image usage flags reported in VkVideoFormatPropertiesKHR
::imageUsageFlags for the format, as indicated in the Format Feature Dependent Usage Flags
section.

• vkGetPhysicalDeviceImageFormatProperties2 must succeed when called with a
VkPhysicalDeviceImageFormatInfo2 structure containing the following information:

◦ The pNext chain including the same VkVideoProfileListInfoKHR structure used to call
vkGetPhysicalDeviceVideoFormatPropertiesKHR.

◦ format set to the value of VkVideoFormatPropertiesKHR::format.

◦ type set to the value of VkVideoFormatPropertiesKHR::imageType.

◦ tiling set to the value of VkVideoFormatPropertiesKHR::imageTiling.

◦ usage set to the value of VkVideoFormatPropertiesKHR::imageUsageFlags.

◦ flags set to the value of VkVideoFormatPropertiesKHR::imageCreateFlags.

The componentMapping member of VkVideoFormatPropertiesKHR defines the ordering of the Y′CBCR color
channels from the perspective of the video codec operations specified in
VkVideoProfileListInfoKHR. For example, if the implementation produces video decode output with
the format VK_FORMAT_G8_B8R8_2PLANE_420_UNORM where the blue and red chrominance channels are
swapped then the componentMapping member of the corresponding VkVideoFormatPropertiesKHR
structure will have the following member values:

components.r = VK_COMPONENT_SWIZZLE_B; // Cb component
components.g = VK_COMPONENT_SWIZZLE_IDENTITY; // Y component

3385

components.b = VK_COMPONENT_SWIZZLE_R; // Cr component
components.a = VK_COMPONENT_SWIZZLE_IDENTITY; // unused, defaults to 1.0

Valid Usage

• VUID-vkGetPhysicalDeviceVideoFormatPropertiesKHR-pNext-06812
The pNext chain of pVideoFormatInfo must include a VkVideoProfileListInfoKHR structure
with profileCount greater than 0

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceVideoFormatPropertiesKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceVideoFormatPropertiesKHR-pVideoFormatInfo-parameter
pVideoFormatInfo must be a valid pointer to a valid
VkPhysicalDeviceVideoFormatInfoKHR structure

• VUID-vkGetPhysicalDeviceVideoFormatPropertiesKHR-pVideoFormatPropertyCount-
parameter
pVideoFormatPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceVideoFormatPropertiesKHR-pVideoFormatProperties-
parameter
If the value referenced by pVideoFormatPropertyCount is not 0, and pVideoFormatProperties
is not NULL, pVideoFormatProperties must be a valid pointer to an array of
pVideoFormatPropertyCount VkVideoFormatPropertiesKHR structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR

3386

The VkPhysicalDeviceVideoFormatInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkPhysicalDeviceVideoFormatInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkImageUsageFlags imageUsage;
} VkPhysicalDeviceVideoFormatInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageUsage is a bitmask of VkImageUsageFlagBits specifying the intended usage of the video
images.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVideoFormatInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_FORMAT_INFO_KHR

• VUID-VkPhysicalDeviceVideoFormatInfoKHR-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkVideoProfileListInfoKHR

• VUID-VkPhysicalDeviceVideoFormatInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPhysicalDeviceVideoFormatInfoKHR-imageUsage-parameter
imageUsage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkPhysicalDeviceVideoFormatInfoKHR-imageUsage-requiredbitmask
imageUsage must not be 0

The VkVideoFormatPropertiesKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoFormatPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkFormat format;
 VkComponentMapping componentMapping;
 VkImageCreateFlags imageCreateFlags;
 VkImageType imageType;
 VkImageTiling imageTiling;
 VkImageUsageFlags imageUsageFlags;
} VkVideoFormatPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3387

• format is a VkFormat that specifies the format that can be used with the specified video profiles
and image usages.

• componentMapping defines the color channel order used for the format. format along with
componentMapping describe how the color channels are ordered when producing video decoder
output or are expected to be ordered in video encoder input, when applicable. If the format
reported does not require component swizzling then all members of componentMapping will be set
to VK_COMPONENT_SWIZZLE_IDENTITY.

• imageCreateFlags is a bitmask of VkImageCreateFlagBits specifying the supported image
creation flags for the format.

• imageType is a VkImageType that specifies the image type the format can be used with.

• imageTiling is a VkImageTiling that specifies the image tiling the format can be used with.

• imageUsageFlags is a bitmask of VkImageUsageFlagBits specifying the supported image usage
flags for the format.

Valid Usage (Implicit)

• VUID-VkVideoFormatPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_FORMAT_PROPERTIES_KHR

• VUID-VkVideoFormatPropertiesKHR-pNext-pNext
pNext must be NULL

42.5. Video Sessions
Video sessions are objects that represent and maintain the state needed to perform video decode or
encode operations using a specific video profile.

In case of video encode profiles this includes the current rate control configuration and the
currently set video encode quality level.

Video sessions are represented by VkVideoSessionKHR handles:

// Provided by VK_KHR_video_queue
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkVideoSessionKHR)

42.5.1. Creating a Video Session

To create a video session object, call:

// Provided by VK_KHR_video_queue
VkResult vkCreateVideoSessionKHR(
 VkDevice device,
 const VkVideoSessionCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,

3388

 VkVideoSessionKHR* pVideoSession);

• device is the logical device that creates the video session.

• pCreateInfo is a pointer to a VkVideoSessionCreateInfoKHR structure containing parameters to
be used to create the video session.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pVideoSession is a pointer to a VkVideoSessionKHR handle in which the resulting video session
object is returned.

The resulting video session object is said to be created with the video codec operation specified in
pCreateInfo->pVideoProfile->videoCodecOperation.

The name and version of the codec-specific Video Std header to be used with the video session is
specified by the VkExtensionProperties structure pointed to by pCreateInfo->pStdHeaderVersion. If a
non-existent or unsupported Video Std header version is specified in pCreateInfo-
>pStdHeaderVersion->specVersion, then this command returns
VK_ERROR_VIDEO_STD_VERSION_NOT_SUPPORTED_KHR.

Video session objects are created in uninitialized state. In order to transition the video session into
initial state, the application must issue a vkCmdControlVideoCodingKHR command with
VkVideoCodingControlInfoKHR::flags including VK_VIDEO_CODING_CONTROL_RESET_BIT_KHR.

Video session objects also maintain the state of the DPB. The number of DPB slots usable with the
created video session is specified in pCreateInfo->maxDpbSlots, and each slot is initially in the
inactive state.

Each DPB slot maintained by the created video session can refer to a reference picture representing
a video frame.

In addition, if the videoCodecOperation member of the VkVideoProfileInfoKHR structure pointed to
by pCreateInfo->pVideoProfile is VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and the
pictureLayout member of the VkVideoDecodeH264ProfileInfoKHR structure provided in the
VkVideoProfileInfoKHR::pNext chain is not VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_PROGRESSIVE_KHR,
then the created video session supports interlaced frames and each DPB slot maintained by the
created video session can instead refer to separate top field and bottom field reference pictures
that together can represent a full video frame. In this case, it is up to the application, driven by the
video content, whether it associates any individual DPB slot with separate top and/or bottom field
pictures or a single picture representing a full frame.

The created video session can be used to perform video coding operations using video frames up to
the maximum size specified in pCreateInfo->maxCodedExtent. The minimum frame size allowed is
implicitly derived from VkVideoCapabilitiesKHR::minCodedExtent, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile specified by pCreateInfo-
>pVideoProfile. Accordingly, the created video session is said to be created with a minCodedExtent
equal to that.

In case of video session objects created with a video encode operation, implementations may
return the VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR error if any of the specified Video Std

3389

parameters do not adhere to the syntactic or semantic requirements of the used video compression
standard, or if values derived from parameters according to the rules defined by the used video
compression standard do not adhere to the capabilities of the video compression standard or the
implementation.

Note

Applications should not rely on the VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR
error being returned by any command as a means to verify Video Std parameters,
as implementations are not required to report the error in any specific set of cases.

Valid Usage (Implicit)

• VUID-vkCreateVideoSessionKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateVideoSessionKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkVideoSessionCreateInfoKHR structure

• VUID-vkCreateVideoSessionKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateVideoSessionKHR-pVideoSession-parameter
pVideoSession must be a valid pointer to a VkVideoSessionKHR handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_VIDEO_STD_VERSION_NOT_SUPPORTED_KHR

• VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR

The VkVideoSessionCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoSessionCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t queueFamilyIndex;
 VkVideoSessionCreateFlagsKHR flags;
 const VkVideoProfileInfoKHR* pVideoProfile;

3390

 VkFormat pictureFormat;
 VkExtent2D maxCodedExtent;
 VkFormat referencePictureFormat;
 uint32_t maxDpbSlots;
 uint32_t maxActiveReferencePictures;
 const VkExtensionProperties* pStdHeaderVersion;
} VkVideoSessionCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• queueFamilyIndex is the index of the queue family the created video session will be used with.

• flags is a bitmask of VkVideoSessionCreateFlagBitsKHR specifying creation flags.

• pVideoProfile is a pointer to a VkVideoProfileInfoKHR structure specifying the video profile the
created video session will be used with.

• pictureFormat is the image format the created video session will be used with. If pVideoProfile-
>videoCodecOperation specifies a decode operation, then pictureFormat is the image format of
decode output pictures usable with the created video session. If pVideoProfile-
>videoCodecOperation specifies an encode operation, then pictureFormat is the image format of
encode input pictures usable with the created video session.

• maxCodedExtent is the maximum width and height of the coded frames the created video session
will be used with.

• referencePictureFormat is the image format of reference pictures stored in the DPB the created
video session will be used with.

• maxDpbSlots is the maximum number of DPB Slots that can be used with the created video
session.

• maxActiveReferencePictures is the maximum number of active reference pictures that can be
used in a single video coding operation using the created video session.

• pStdHeaderVersion is a pointer to a VkExtensionProperties structure requesting the Video Std
header version to use for the videoCodecOperation specified in pVideoProfile.

Valid Usage

• VUID-VkVideoSessionCreateInfoKHR-protectedMemory-07189
If the protectedMemory feature is not enabled or if VkVideoCapabilitiesKHR::flags does not
include VK_VIDEO_CAPABILITY_PROTECTED_CONTENT_BIT_KHR, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile specified by
pVideoProfile, then flags must not include
VK_VIDEO_SESSION_CREATE_PROTECTED_CONTENT_BIT_KHR

• VUID-VkVideoSessionCreateInfoKHR-flags-08371
If flags includes VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, then videoMaintenance1
must be enabled

• VUID-VkVideoSessionCreateInfoKHR-pVideoProfile-04845
pVideoProfile must be a supported video profile

3391

• VUID-VkVideoSessionCreateInfoKHR-maxDpbSlots-04847
maxDpbSlots must be less than or equal to VkVideoCapabilitiesKHR::maxDpbSlots, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile specified by
pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-maxActiveReferencePictures-04849
maxActiveReferencePictures must be less than or equal to VkVideoCapabilitiesKHR
::maxActiveReferencePictures, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR
for the video profile specified by pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-maxDpbSlots-04850
If either maxDpbSlots or maxActiveReferencePictures is 0, then both must be 0

• VUID-VkVideoSessionCreateInfoKHR-maxCodedExtent-04851
maxCodedExtent must be between VkVideoCapabilitiesKHR::minCodedExtent and
VkVideoCapabilitiesKHR::maxCodedExtent, inclusive, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile specified by pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-referencePictureFormat-04852
If pVideoProfile->videoCodecOperation specifies a decode operation and
maxActiveReferencePictures is greater than 0, then referencePictureFormat must be one of
the supported decode DPB formats, as returned by
vkGetPhysicalDeviceVideoFormatPropertiesKHR in VkVideoFormatPropertiesKHR::format
when called with the imageUsage member of its pVideoFormatInfo parameter containing
VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR, and with a VkVideoProfileListInfoKHR
structure specified in the pNext chain of its pVideoFormatInfo parameter whose pProfiles
member contains an element matching pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-referencePictureFormat-06814
If pVideoProfile->videoCodecOperation specifies an encode operation and
maxActiveReferencePictures is greater than 0, then referencePictureFormat must be one of
the supported decode DPB formats, as returned by then referencePictureFormat must be
one of the supported encode DPB formats, as returned by
vkGetPhysicalDeviceVideoFormatPropertiesKHR in VkVideoFormatPropertiesKHR::format
when called with the imageUsage member of its pVideoFormatInfo parameter containing
VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR, and with a VkVideoProfileListInfoKHR
structure specified in the pNext chain of its pVideoFormatInfo parameter whose pProfiles
member contains an element matching pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-pictureFormat-04853
If pVideoProfile->videoCodecOperation specifies a decode operation, then pictureFormat
must be one of the supported decode output formats, as returned by
vkGetPhysicalDeviceVideoFormatPropertiesKHR in VkVideoFormatPropertiesKHR::format
when called with the imageUsage member of its pVideoFormatInfo parameter containing
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR, and with a VkVideoProfileListInfoKHR
structure specified in the pNext chain of its pVideoFormatInfo parameter whose pProfiles
member contains an element matching pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-pictureFormat-04854
If pVideoProfile->videoCodecOperation specifies an encode operation, then pictureFormat
must be one of the supported encode input formats, as returned by
vkGetPhysicalDeviceVideoFormatPropertiesKHR in VkVideoFormatPropertiesKHR::format

3392

when called with the imageUsage member of its pVideoFormatInfo parameter containing
VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR, and with a VkVideoProfileListInfoKHR
structure specified in the pNext chain of its pVideoFormatInfo parameter whose pProfiles
member contains an element matching pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-pStdHeaderVersion-07190
pStdHeaderVersion->extensionName must match VkVideoCapabilitiesKHR
::stdHeaderVersion.extensionName, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile specified by pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-pStdHeaderVersion-07191
pStdHeaderVersion->specVersion must be less than or equal to VkVideoCapabilitiesKHR
::stdHeaderVersion.specVersion, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR
for the video profile specified by pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-pVideoProfile-08251
If pVideoProfile->videoCodecOperation is VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR
and the pNext chain of this structure includes a
VkVideoEncodeH264SessionCreateInfoKHR structure, then its maxLevelIdc member must
be less than or equal to VkVideoEncodeH264CapabilitiesKHR::maxLevelIdc, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile specified in pVideoProfile

• VUID-VkVideoSessionCreateInfoKHR-pVideoProfile-08252
If pVideoProfile->videoCodecOperation is VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR
and the pNext chain of this structure includes a
VkVideoEncodeH265SessionCreateInfoKHR structure, then its maxLevelIdc member must
be less than or equal to VkVideoEncodeH265CapabilitiesKHR::maxLevelIdc, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile specified in pVideoProfile

Valid Usage (Implicit)

• VUID-VkVideoSessionCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_SESSION_CREATE_INFO_KHR

• VUID-VkVideoSessionCreateInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoEncodeH264SessionCreateInfoKHR or
VkVideoEncodeH265SessionCreateInfoKHR

• VUID-VkVideoSessionCreateInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkVideoSessionCreateInfoKHR-flags-parameter
flags must be a valid combination of VkVideoSessionCreateFlagBitsKHR values

• VUID-VkVideoSessionCreateInfoKHR-pVideoProfile-parameter
pVideoProfile must be a valid pointer to a valid VkVideoProfileInfoKHR structure

• VUID-VkVideoSessionCreateInfoKHR-pictureFormat-parameter
pictureFormat must be a valid VkFormat value

• VUID-VkVideoSessionCreateInfoKHR-referencePictureFormat-parameter
referencePictureFormat must be a valid VkFormat value

3393

• VUID-VkVideoSessionCreateInfoKHR-pStdHeaderVersion-parameter
pStdHeaderVersion must be a valid pointer to a valid VkExtensionProperties structure

Bits which can be set in VkVideoSessionCreateInfoKHR::flags are:

// Provided by VK_KHR_video_queue
typedef enum VkVideoSessionCreateFlagBitsKHR {
 VK_VIDEO_SESSION_CREATE_PROTECTED_CONTENT_BIT_KHR = 0x00000001,
 // Provided by VK_KHR_video_encode_queue
 VK_VIDEO_SESSION_CREATE_ALLOW_ENCODE_PARAMETER_OPTIMIZATIONS_BIT_KHR = 0x00000002,
 // Provided by VK_KHR_video_maintenance1
 VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR = 0x00000004,
} VkVideoSessionCreateFlagBitsKHR;

• VK_VIDEO_SESSION_CREATE_PROTECTED_CONTENT_BIT_KHR specifies that the video session uses
protected video content.

• VK_VIDEO_SESSION_CREATE_ALLOW_ENCODE_PARAMETER_OPTIMIZATIONS_BIT_KHR specifies that the
implementation is allowed to override video session parameters and other codec-specific
encoding parameters to optimize video encode operations based on the use case information
specified in the video profile and the used video encode quality level.

Note

Not specifying
VK_VIDEO_SESSION_CREATE_ALLOW_ENCODE_PARAMETER_OPTIMIZATIONS_BIT_KHR does
not guarantee that the implementation will not do any codec-specific
parameter overrides, as certain overrides are necessary for the correct
operation of the video encoder implementation due to limitations to the
available encoding tools on that implementation. This flag, however, enables
the implementation to apply further optimizing overrides.

• VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR specifies that queries within video coding
scopes using the created video session are executed inline with video coding operations.

// Provided by VK_KHR_video_queue
typedef VkFlags VkVideoSessionCreateFlagsKHR;

VkVideoSessionCreateFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoSessionCreateFlagBitsKHR.

42.5.2. Destroying a Video Session

To destroy a video session, call:

// Provided by VK_KHR_video_queue
void vkDestroyVideoSessionKHR(

3394

 VkDevice device,
 VkVideoSessionKHR videoSession,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the video session.

• videoSession is the video session to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyVideoSessionKHR-videoSession-07192
All submitted commands that refer to videoSession must have completed execution

• VUID-vkDestroyVideoSessionKHR-videoSession-07193
If VkAllocationCallbacks were provided when videoSession was created, a compatible set
of callbacks must be provided here

• VUID-vkDestroyVideoSessionKHR-videoSession-07194
If no VkAllocationCallbacks were provided when videoSession was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyVideoSessionKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyVideoSessionKHR-videoSession-parameter
If videoSession is not VK_NULL_HANDLE, videoSession must be a valid
VkVideoSessionKHR handle

• VUID-vkDestroyVideoSessionKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyVideoSessionKHR-videoSession-parent
If videoSession is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to videoSession must be externally synchronized

42.5.3. Video Session Memory Association

After creating a video session object, and before the object can be used to record video coding
operations into command buffers using it, the application must allocate and bind device memory to
the video session. Device memory is allocated separately (see Device Memory) and then associated

3395

with the video session.

Video sessions may have multiple memory bindings identified by unique unsigned integer values.
Appropriate device memory must be bound to each such memory binding before using the video
session to record command buffer commands with it.

To determine the memory requirements for a video session object, call:

// Provided by VK_KHR_video_queue
VkResult vkGetVideoSessionMemoryRequirementsKHR(
 VkDevice device,
 VkVideoSessionKHR videoSession,
 uint32_t* pMemoryRequirementsCount,
 VkVideoSessionMemoryRequirementsKHR* pMemoryRequirements);

• device is the logical device that owns the video session.

• videoSession is the video session to query.

• pMemoryRequirementsCount is a pointer to an integer related to the number of memory binding
requirements available or queried, as described below.

• pMemoryRequirements is NULL or a pointer to an array of
VkVideoSessionMemoryRequirementsKHR structures in which the memory binding
requirements of the video session are returned.

If pMemoryRequirements is NULL, then the number of memory bindings required for the video session
is returned in pMemoryRequirementsCount. Otherwise, pMemoryRequirementsCount must point to a
variable set by the user with the number of elements in the pMemoryRequirements array, and on
return the variable is overwritten with the number of memory binding requirements actually
written to pMemoryRequirements. If pMemoryRequirementsCount is less than the number of memory
bindings required for the video session, then at most pMemoryRequirementsCount elements will be
written to pMemoryRequirements, and VK_INCOMPLETE will be returned, instead of VK_SUCCESS, to
indicate that not all required memory binding requirements were returned.

Valid Usage (Implicit)

• VUID-vkGetVideoSessionMemoryRequirementsKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetVideoSessionMemoryRequirementsKHR-videoSession-parameter
videoSession must be a valid VkVideoSessionKHR handle

• VUID-vkGetVideoSessionMemoryRequirementsKHR-pMemoryRequirementsCount-
parameter
pMemoryRequirementsCount must be a valid pointer to a uint32_t value

• VUID-vkGetVideoSessionMemoryRequirementsKHR-pMemoryRequirements-parameter
If the value referenced by pMemoryRequirementsCount is not 0, and pMemoryRequirements is
not NULL, pMemoryRequirements must be a valid pointer to an array of
pMemoryRequirementsCount VkVideoSessionMemoryRequirementsKHR structures

3396

• VUID-vkGetVideoSessionMemoryRequirementsKHR-videoSession-parent
videoSession must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

The VkVideoSessionMemoryRequirementsKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoSessionMemoryRequirementsKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t memoryBindIndex;
 VkMemoryRequirements memoryRequirements;
} VkVideoSessionMemoryRequirementsKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryBindIndex is the index of the memory binding.

• memoryRequirements is a VkMemoryRequirements structure in which the requested memory
binding requirements for the binding index specified by memoryBindIndex are returned.

Valid Usage (Implicit)

• VUID-VkVideoSessionMemoryRequirementsKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_SESSION_MEMORY_REQUIREMENTS_KHR

• VUID-VkVideoSessionMemoryRequirementsKHR-pNext-pNext
pNext must be NULL

To attach memory to a video session object, call:

// Provided by VK_KHR_video_queue
VkResult vkBindVideoSessionMemoryKHR(
 VkDevice device,
 VkVideoSessionKHR videoSession,
 uint32_t bindSessionMemoryInfoCount,
 const VkBindVideoSessionMemoryInfoKHR* pBindSessionMemoryInfos);

• device is the logical device that owns the video session.

3397

• videoSession is the video session to be bound with device memory.

• bindSessionMemoryInfoCount is the number of elements in pBindSessionMemoryInfos.

• pBindSessionMemoryInfos is a pointer to an array of bindSessionMemoryInfoCount
VkBindVideoSessionMemoryInfoKHR structures specifying memory regions to be bound to
specific memory bindings of the video session.

The valid usage statements below refer to the VkMemoryRequirements structure corresponding to
a specific element of pBindSessionMemoryInfos, which is defined as follows:

• If the memoryBindIndex member of the element of pBindSessionMemoryInfos in question matches
the memoryBindIndex member of one of the elements returned in pMemoryRequirements when
vkGetVideoSessionMemoryRequirementsKHR is called with the same videoSession and with
pMemoryRequirementsCount equal to bindSessionMemoryInfoCount, then the memoryRequirements
member of that element of pMemoryRequirements is the VkMemoryRequirements structure
corresponding to the element of pBindSessionMemoryInfos in question.

• Otherwise the element of pBindSessionMemoryInfos in question is said to not have a
corresponding VkMemoryRequirements structure.

Valid Usage

• VUID-vkBindVideoSessionMemoryKHR-videoSession-07195
The memory binding of videoSession identified by the memoryBindIndex member of any
element of pBindSessionMemoryInfos must not already be backed by a memory object

• VUID-vkBindVideoSessionMemoryKHR-memoryBindIndex-07196
The memoryBindIndex member of each element of pBindSessionMemoryInfos must be unique
within pBindSessionMemoryInfos

• VUID-vkBindVideoSessionMemoryKHR-pBindSessionMemoryInfos-07197
Each element of pBindSessionMemoryInfos must have a corresponding
VkMemoryRequirements structure

• VUID-vkBindVideoSessionMemoryKHR-pBindSessionMemoryInfos-07198
If an element of pBindSessionMemoryInfos has a corresponding VkMemoryRequirements
structure, then the memory member of that element of pBindSessionMemoryInfos must have
been allocated using one of the memory types allowed in the memoryTypeBits member of
the corresponding VkMemoryRequirements structure

• VUID-vkBindVideoSessionMemoryKHR-pBindSessionMemoryInfos-07199
If an element of pBindSessionMemoryInfos has a corresponding VkMemoryRequirements
structure, then the memoryOffset member of that element of pBindSessionMemoryInfos must
be an integer multiple of the alignment member of the corresponding
VkMemoryRequirements structure

• VUID-vkBindVideoSessionMemoryKHR-pBindSessionMemoryInfos-07200
If an element of pBindSessionMemoryInfos has a corresponding VkMemoryRequirements
structure, then the memorySize member of that element of pBindSessionMemoryInfos must
equal the size member of the corresponding VkMemoryRequirements structure

3398

Valid Usage (Implicit)

• VUID-vkBindVideoSessionMemoryKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindVideoSessionMemoryKHR-videoSession-parameter
videoSession must be a valid VkVideoSessionKHR handle

• VUID-vkBindVideoSessionMemoryKHR-pBindSessionMemoryInfos-parameter
pBindSessionMemoryInfos must be a valid pointer to an array of bindSessionMemoryInfoCount
valid VkBindVideoSessionMemoryInfoKHR structures

• VUID-vkBindVideoSessionMemoryKHR-bindSessionMemoryInfoCount-arraylength
bindSessionMemoryInfoCount must be greater than 0

• VUID-vkBindVideoSessionMemoryKHR-videoSession-parent
videoSession must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to videoSession must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBindVideoSessionMemoryInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkBindVideoSessionMemoryInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t memoryBindIndex;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
 VkDeviceSize memorySize;
} VkBindVideoSessionMemoryInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryBindIndex is the memory binding index to bind memory to.

3399

• memory is the allocated device memory to be bound to the video session’s memory binding with
index memoryBindIndex.

• memoryOffset is the start offset of the region of memory which is to be bound.

• memorySize is the size in bytes of the region of memory, starting from memoryOffset bytes, to be
bound.

Valid Usage

• VUID-VkBindVideoSessionMemoryInfoKHR-memoryOffset-07201
memoryOffset must be less than the size of memory

• VUID-VkBindVideoSessionMemoryInfoKHR-memorySize-07202
memorySize must be less than or equal to the size of memory minus memoryOffset

Valid Usage (Implicit)

• VUID-VkBindVideoSessionMemoryInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_VIDEO_SESSION_MEMORY_INFO_KHR

• VUID-VkBindVideoSessionMemoryInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkBindVideoSessionMemoryInfoKHR-memory-parameter
memory must be a valid VkDeviceMemory handle

42.6. Video Profile Compatibility
Resources and query pools used with a particular video session must be compatible with the video
profile the video session was created with.

A VkBuffer is compatible with a video profile if it was created with the VkBufferCreateInfo::pNext
chain including a VkVideoProfileListInfoKHR structure with its pProfiles member containing an
element matching the VkVideoProfileInfoKHR structure chain describing the video profile, and
VkBufferCreateInfo::usage including at least one bit specific to video coding usage.

• VK_BUFFER_USAGE_VIDEO_DECODE_SRC_BIT_KHR

• VK_BUFFER_USAGE_VIDEO_DECODE_DST_BIT_KHR

• VK_BUFFER_USAGE_VIDEO_ENCODE_SRC_BIT_KHR

• VK_BUFFER_USAGE_VIDEO_ENCODE_DST_BIT_KHR

A VkBuffer is also compatible with a video profile if it was created with VkBufferCreateInfo::flags
including VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR.

A VkImage is compatible with a video profile if it was created with the VkImageCreateInfo::pNext
chain including a VkVideoProfileListInfoKHR structure with its pProfiles member containing an
element matching the VkVideoProfileInfoKHR structure chain describing the video profile, and

3400

VkImageCreateInfo::usage including at least one bit specific to video coding usage.

• VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR

• VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR

• VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR

• VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR

• VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR

• VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR

A VkImage is also compatible with a video profile if all of the following conditions are true for the
VkImageCreateInfo structure the image was created with:

• VkImageCreateInfo::flags included VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR.

• The list of VkVideoFormatPropertiesKHR structures, obtained by calling
vkGetPhysicalDeviceVideoFormatPropertiesKHR with VkPhysicalDeviceVideoFormatInfoKHR
::imageUsage equal to the VkImageCreateInfo::usage the image was created with and the
VkPhysicalDeviceVideoFormatInfoKHR::pNext chain including a VkVideoProfileListInfoKHR
structure with its pProfiles member containing a single array element specifying the
VkVideoProfileInfoKHR structure chain describing the video profile in question, contains an
element for which all of the following conditions are true with respect to the
VkImageCreateInfo structure the image was created with:

◦ VkImageCreateInfo::format equals VkVideoFormatPropertiesKHR::format.

◦ VkImageCreateInfo::flags only contains bits also set in VkVideoFormatPropertiesKHR
::imageCreateFlags.

◦ VkImageCreateInfo::imageType equals VkVideoFormatPropertiesKHR::imageType.

◦ VkImageCreateInfo::tiling equals VkVideoFormatPropertiesKHR::imageTiling.

◦ VkImageCreateInfo::usage only contains bits also set in VkVideoFormatPropertiesKHR
::imageUsageFlags.

Note

While some of these rules allow creating buffer or image resources that may be
compatible with any video profile, applications should still prefer to include the
specific video profiles the buffer or image resource is expected to be used with
(through a VkVideoProfileListInfoKHR structure included in the pNext chain of the
corresponding create info structure) whenever the information about the
complete set of video profiles is available at resource creation time, to enable the
implementation to optimize the created resource for the specific use case. In the
absence of that information, the implementation may have to make conservative
decisions about the memory requirements or representation of the resource.

A VkImageView is compatible with a video profile if the VkImage it was created from is also
compatible with that video profile.

A VkQueryPool is compatible with a video profile if it was created with the

3401

VkQueryPoolCreateInfo::pNext chain including a VkVideoProfileInfoKHR structure chain describing
the same video profile, and VkQueryPoolCreateInfo::queryType having one of the following values:

• VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR

• VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR

42.7. Video Session Parameters
Video session parameters objects can store preprocessed codec-specific parameters used with a
compatible video session, and enable reducing the number of parameters needed to be provided
and processed by the implementation while recording video coding operations into command
buffers.

Parameters stored in such objects are immutable to facilitate the concurrent use of the stored
parameters in multiple threads. At the same time, new parameters can be added to existing objects
using the vkUpdateVideoSessionParametersKHR command.

In order to support concurrent use of the stored immutable parameters while also allowing the
video session parameters object to be extended with new parameters, each video session
parameters object maintains an update sequence counter that is set to 0 at object creation time and
must be incremented by each subsequent update operation.

Certain video sequences that adhere to particular video compression standards permit updating
previously supplied parameters. If a parameter update is necessary, the application has the
following options:

• Cache the set of parameters on the application side and create a new video session parameters
object adding all the parameters with appropriate changes, as necessary; or

• Create a new video session parameters object providing only the updated parameters and the
previously used object as the template, which ensures that parameters not specified at creation
time will be copied unmodified from the template object.

The actual types of parameters that can be stored and the capacity for individual parameter types,
and the methods of initializing, updating, and referring to individual parameters are specific to the
video codec operation the video session parameters object was created with.

• For VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR these are defined in the H.264 Decode
Parameter Sets section.

• For VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR these are defined in the H.265 Decode
Parameter Sets section.

• For VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR these are defined in the AV1 Decode
Parameter Sets section.

• For VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR these are defined in the H.264 Encode
Parameter Sets section.

• For VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR these are defined in the H.265 Encode
Parameter Sets section.

3402

Video session parameters objects created with an encode operation are further specialized based
on the video encode quality level the video session parameters are used with, as implementations
may apply different sets of parameter overrides depending on the used quality level. This enables
implementations to store the potentially optimized set of parameters in these objects, further
limiting the necessary processing required while recording video encode operations into command
buffers.

Video session parameters are represented by VkVideoSessionParametersKHR handles:

// Provided by VK_KHR_video_queue
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkVideoSessionParametersKHR)

42.7.1. Creating Video Session Parameters

To create a video session parameters object, call:

// Provided by VK_KHR_video_queue
VkResult vkCreateVideoSessionParametersKHR(
 VkDevice device,
 const VkVideoSessionParametersCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkVideoSessionParametersKHR* pVideoSessionParameters);

• device is the logical device that creates the video session parameters object.

• pCreateInfo is a pointer to VkVideoSessionParametersCreateInfoKHR structure containing
parameters to be used to create the video session parameters object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pVideoSessionParameters is a pointer to a VkVideoSessionParametersKHR handle in which the
resulting video session parameters object is returned.

The resulting video session parameters object is said to be created with the video codec operation
pCreateInfo->videoSession was created with.

Video session parameters objects created with an encode operation are always created with respect
to a video encode quality level. By default, the created video session parameters objects are created
with quality level zero, unless otherwise specified by including a
VkVideoEncodeQualityLevelInfoKHR structure in the pCreateInfo->pNext chain, in which case the
video session parameters object is created with the quality level specified in
VkVideoEncodeQualityLevelInfoKHR::qualityLevel.

If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then it will be used as a
template for constructing the new video session parameters object. This happens by first adding
any parameters according to the additional creation parameters provided in the pCreateInfo->pNext
chain, followed by adding any parameters from the template object that have a key that does not
match the key of any of the already added parameters.

3403

For video session parameters objects created with an encode operation, the template object
specified in pCreateInfo->videoSessionParametersTemplate must have been created with the same
video encode quality level as the newly created object.

Note

This means that codec-specific parameters stored in video session parameters
objects can only be reused across different video encode quality levels by re-
specifying them, as previously created video session parameters against other
quality levels cannot be used as template because the original codec-specific
parameters (before the implementation may have applied parameter overrides)
may no longer be available in them for the purposes of constructing the derived
object.

If pCreateInfo->videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the created video session parameters object
will initially contain the following sets of parameter entries:

• StdVideoH264SequenceParameterSet structures representing H.264 SPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH264SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH264SequenceParameterSet
entries specified in pParametersAddInfo->pStdSPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH264SequenceParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
seq_parameter_set_id.

• StdVideoH264PictureParameterSet structures representing H.264 PPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH264SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH264PictureParameterSet entries
specified in pParametersAddInfo->pStdPPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH264PictureParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
seq_parameter_set_id and pic_parameter_set_id.

If pCreateInfo->videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the created video session parameters object
will initially contain the following sets of parameter entries:

• StdVideoH265VideoParameterSet structures representing H.265 VPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH265VideoParameterSet entries
specified in pParametersAddInfo->pStdVPSs are added first;

3404

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265VideoParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
vps_video_parameter_set_id.

• StdVideoH265SequenceParameterSet structures representing H.265 SPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH265SequenceParameterSet
entries specified in pParametersAddInfo->pStdSPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265SequenceParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
sps_video_parameter_set_id and sps_seq_parameter_set_id.

• StdVideoH265PictureParameterSet structures representing H.265 PPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH265PictureParameterSet entries
specified in pParametersAddInfo->pStdPPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265PictureParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
sps_video_parameter_set_id, pps_seq_parameter_set_id, and pps_pic_parameter_set_id.

If pCreateInfo->videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then the created video session parameters object will
contain a single AV1 sequence header represented by a StdVideoAV1SequenceHeader structure
specified through the pStdSequenceHeader member of the
VkVideoDecodeAV1SessionParametersCreateInfoKHR structure provided in the pCreateInfo->pNext
chain. As such video session parameters objects can only contain a single AV1 sequence header, it is
not possible to use a previously created object as a template or subsequently update the created
video session parameters object.

If pCreateInfo->videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the created video session parameters object
will initially contain the following sets of parameter entries:

• StdVideoH264SequenceParameterSet structures representing H.264 SPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH264SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH264SequenceParameterSet
entries specified in pParametersAddInfo->pStdSPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH264SequenceParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
seq_parameter_set_id.

3405

• StdVideoH264PictureParameterSet structures representing H.264 PPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH264SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH264PictureParameterSet entries
specified in pParametersAddInfo->pStdPPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH264PictureParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
seq_parameter_set_id and pic_parameter_set_id.

If pCreateInfo->videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the created video session parameters object
will initially contain the following sets of parameter entries:

• StdVideoH265VideoParameterSet structures representing H.265 VPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH265VideoParameterSet entries
specified in pParametersAddInfo->pStdVPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265VideoParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
vps_video_parameter_set_id.

• StdVideoH265SequenceParameterSet structures representing H.265 SPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH265SequenceParameterSet
entries specified in pParametersAddInfo->pStdSPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265SequenceParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
sps_video_parameter_set_id and sps_seq_parameter_set_id.

• StdVideoH265PictureParameterSet structures representing H.265 PPS entries, as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure provided in the
pCreateInfo->pNext chain is not NULL, then the set of StdVideoH265PictureParameterSet entries
specified in pParametersAddInfo->pStdPPSs are added first;

◦ If pCreateInfo->videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265PictureParameterSet entry stored in it is copied to the created video session
parameters object if the created object does not already contain such an entry with the same
sps_video_parameter_set_id, pps_seq_parameter_set_id, and pps_pic_parameter_set_id.

In case of video session parameters objects created with a video encode operation, implementations
may return the VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR error if any of the specified Video Std

3406

parameters do not adhere to the syntactic or semantic requirements of the used video compression
standard, or if values derived from parameters according to the rules defined by the used video
compression standard do not adhere to the capabilities of the video compression standard or the
implementation.

Note

Applications should not rely on the VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR
error being returned by any command as a means to verify Video Std parameters,
as implementations are not required to report the error in any specific set of cases.

Valid Usage (Implicit)

• VUID-vkCreateVideoSessionParametersKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateVideoSessionParametersKHR-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkVideoSessionParametersCreateInfoKHR
structure

• VUID-vkCreateVideoSessionParametersKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateVideoSessionParametersKHR-pVideoSessionParameters-parameter
pVideoSessionParameters must be a valid pointer to a VkVideoSessionParametersKHR
handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR

The VkVideoSessionParametersCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoSessionParametersCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoSessionParametersCreateFlagsKHR flags;
 VkVideoSessionParametersKHR videoSessionParametersTemplate;

3407

 VkVideoSessionKHR videoSession;
} VkVideoSessionParametersCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• videoSessionParametersTemplate is VK_NULL_HANDLE or a valid handle to a
VkVideoSessionParametersKHR object used as a template for constructing the new video
session parameters object.

• videoSession is the video session object against which the video session parameters object is
going to be created.

Limiting values are defined below that are referenced by the relevant valid usage statements of this
structure.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then let StdVideoH264SequenceParameterSet
spsAddList[] be the list of H.264 SPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH264SessionParametersCreateInfoKHR structure provided in the pNext chain
is not NULL, then the set of StdVideoH264SequenceParameterSet entries specified in
pParametersAddInfo->pStdSPSs are added to spsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH264SequenceParameterSet entry stored in it with seq_parameter_set_id not matching
any of the entries already in spsAddList is added to spsAddList.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then let StdVideoH264PictureParameterSet
ppsAddList[] be the list of H.264 PPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH264SessionParametersCreateInfoKHR structure provided in the pNext chain
is not NULL, then the set of StdVideoH264PictureParameterSet entries specified in
pParametersAddInfo->pStdPPSs are added to ppsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH264PictureParameterSet entry stored in it with seq_parameter_set_id or
pic_parameter_set_id not matching any of the entries already in ppsAddList is added to
ppsAddList.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then let StdVideoH265VideoParameterSet
vpsAddList[] be the list of H.265 VPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure provided in the pNext chain

3408

is not NULL, then the set of StdVideoH265VideoParameterSet entries specified in
pParametersAddInfo->pStdVPSs are added to vpsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265VideoParameterSet entry stored in it with vps_video_parameter_set_id not
matching any of the entries already in vpsAddList is added to vpsAddList.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then let StdVideoH265SequenceParameterSet
spsAddList[] be the list of H.265 SPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure provided in the pNext chain
is not NULL, then the set of StdVideoH265SequenceParameterSet entries specified in
pParametersAddInfo->pStdSPSs are added to spsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265SequenceParameterSet entry stored in it with sps_video_parameter_set_id or
sps_seq_parameter_set_id not matching any of the entries already in spsAddList is added to
spsAddList.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then let StdVideoH265PictureParameterSet
ppsAddList[] be the list of H.265 PPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure provided in the pNext chain
is not NULL, then the set of StdVideoH265PictureParameterSet entries specified in
pParametersAddInfo->pStdPPSs are added to ppsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265PictureParameterSet entry stored in it with sps_video_parameter_set_id,
pps_seq_parameter_set_id, or pps_pic_parameter_set_id not matching any of the entries
already in ppsAddList is added to ppsAddList.

• If videoSession was created with an encode operation, then let uint32_t qualityLevel be the
video encode quality level of the created video session parameters object, defined as follows:

◦ If the pNext chain of this structure includes a VkVideoEncodeQualityLevelInfoKHR structure,
then qualityLevel is equal to VkVideoEncodeQualityLevelInfoKHR::qualityLevel.

◦ Otherwise qualityLevel is 0

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then let StdVideoH264SequenceParameterSet
spsAddList[] be the list of H.264 SPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH264SessionParametersCreateInfoKHR structure provided in the pNext chain
is not NULL, then the set of StdVideoH264SequenceParameterSet entries specified in
pParametersAddInfo->pStdSPSs are added to spsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each

3409

StdVideoH264SequenceParameterSet entry stored in it with seq_parameter_set_id not matching
any of the entries already in spsAddList is added to spsAddList.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then let StdVideoH264PictureParameterSet
ppsAddList[] be the list of H.264 PPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH264SessionParametersCreateInfoKHR structure provided in the pNext chain
is not NULL, then the set of StdVideoH264PictureParameterSet entries specified in
pParametersAddInfo->pStdPPSs are added to ppsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH264PictureParameterSet entry stored in it with seq_parameter_set_id or
pic_parameter_set_id not matching any of the entries already in ppsAddList is added to
ppsAddList.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then let StdVideoH265VideoParameterSet
vpsAddList[] be the list of H.265 VPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure provided in the pNext chain
is not NULL, then the set of StdVideoH265VideoParameterSet entries specified in
pParametersAddInfo->pStdVPSs are added to vpsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265VideoParameterSet entry stored in it with vps_video_parameter_set_id not
matching any of the entries already in vpsAddList is added to vpsAddList.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then let StdVideoH265SequenceParameterSet
spsAddList[] be the list of H.265 SPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure provided in the pNext chain
is not NULL, then the set of StdVideoH265SequenceParameterSet entries specified in
pParametersAddInfo->pStdSPSs are added to spsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265SequenceParameterSet entry stored in it with sps_video_parameter_set_id or
sps_seq_parameter_set_id not matching any of the entries already in spsAddList is added to
spsAddList.

• If videoSession was created with the codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then let StdVideoH265PictureParameterSet
ppsAddList[] be the list of H.265 PPS entries to add to the created video session parameters
object, defined as follows:

◦ If the pParametersAddInfo member of the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure provided in the pNext chain

3410

is not NULL, then the set of StdVideoH265PictureParameterSet entries specified in
pParametersAddInfo->pStdPPSs are added to ppsAddList;

◦ If videoSessionParametersTemplate is not VK_NULL_HANDLE, then each
StdVideoH265PictureParameterSet entry stored in it with sps_video_parameter_set_id,
pps_seq_parameter_set_id, or pps_pic_parameter_set_id not matching any of the entries
already in ppsAddList is added to ppsAddList.

Valid Usage

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSessionParametersTemplate-04855
If videoSessionParametersTemplate is not VK_NULL_HANDLE, it must have been created against
videoSession

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSessionParametersTemplate-08310
If videoSessionParametersTemplate is not VK_NULL_HANDLE and videoSession was created with
an encode operation, then qualityLevel must equal the video encode quality level
videoSessionParametersTemplate was created with

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07203
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the pNext chain must include a
VkVideoDecodeH264SessionParametersCreateInfoKHR structure

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07204
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the number of elements of spsAddList
must be less than or equal to the maxStdSPSCount specified in the
VkVideoDecodeH264SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07205
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the number of elements of ppsAddList
must be less than or equal to the maxStdPPSCount specified in the
VkVideoDecodeH264SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07206
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the pNext chain must include a
VkVideoDecodeH265SessionParametersCreateInfoKHR structure

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07207
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the number of elements of vpsAddList
must be less than or equal to the maxStdVPSCount specified in the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07208
If videoSession was created with the video codec operation

3411

VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the number of elements of spsAddList
must be less than or equal to the maxStdSPSCount specified in the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07209
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the number of elements of ppsAddList
must be less than or equal to the maxStdPPSCount specified in the
VkVideoDecodeH265SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-09258
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then videoSessionParametersTemplate must
be VK_NULL_HANDLE

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-09259
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then the pNext chain must include a
VkVideoDecodeAV1SessionParametersCreateInfoKHR structure

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07210
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the pNext chain must include a
VkVideoEncodeH264SessionParametersCreateInfoKHR structure

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-04839
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the number of elements of spsAddList
must be less than or equal to the maxStdSPSCount specified in the
VkVideoEncodeH264SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-04840
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the number of elements of ppsAddList
must be less than or equal to the maxStdPPSCount specified in the
VkVideoEncodeH264SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-07211
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the pNext chain must include a
VkVideoEncodeH265SessionParametersCreateInfoKHR structure

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-04841
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the number of elements of vpsAddList
must be less than or equal to the maxStdVPSCount specified in the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure included in the pNext
chain

3412

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-04842
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the number of elements of spsAddList
must be less than or equal to the maxStdSPSCount specified in the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-04843
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the number of elements of ppsAddList
must be less than or equal to the maxStdPPSCount specified in the
VkVideoEncodeH265SessionParametersCreateInfoKHR structure included in the pNext
chain

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-08319
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then num_tile_columns_minus1 must be less
than VkVideoEncodeH265CapabilitiesKHR::maxTiles.width, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile videoSession was created
with, for each element of ppsAddList

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-08320
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then num_tile_rows_minus1 must be less
than VkVideoEncodeH265CapabilitiesKHR::maxTiles.height, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile videoSession was created
with, for each element of ppsAddList

Valid Usage (Implicit)

• VUID-VkVideoSessionParametersCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_SESSION_PARAMETERS_CREATE_INFO_KHR

• VUID-VkVideoSessionParametersCreateInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of
VkVideoDecodeAV1SessionParametersCreateInfoKHR,
VkVideoDecodeH264SessionParametersCreateInfoKHR,
VkVideoDecodeH265SessionParametersCreateInfoKHR,
VkVideoEncodeH264SessionParametersCreateInfoKHR,
VkVideoEncodeH265SessionParametersCreateInfoKHR, or
VkVideoEncodeQualityLevelInfoKHR

• VUID-VkVideoSessionParametersCreateInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkVideoSessionParametersCreateInfoKHR-flags-zerobitmask
flags must be 0

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSessionParametersTemplate-
parameter

3413

If videoSessionParametersTemplate is not VK_NULL_HANDLE,
videoSessionParametersTemplate must be a valid VkVideoSessionParametersKHR handle

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSession-parameter
videoSession must be a valid VkVideoSessionKHR handle

• VUID-VkVideoSessionParametersCreateInfoKHR-videoSessionParametersTemplate-parent
If videoSessionParametersTemplate is a valid handle, it must have been created, allocated,
or retrieved from videoSession

• VUID-VkVideoSessionParametersCreateInfoKHR-commonparent
Both of videoSession, and videoSessionParametersTemplate that are valid handles of non-
ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

// Provided by VK_KHR_video_queue
typedef VkFlags VkVideoSessionParametersCreateFlagsKHR;

VkVideoSessionParametersCreateFlagsKHR is a bitmask type for setting a mask, but is currently
reserved for future use.

42.7.2. Destroying Video Session Parameters

To destroy a video session parameters object, call:

// Provided by VK_KHR_video_queue
void vkDestroyVideoSessionParametersKHR(
 VkDevice device,
 VkVideoSessionParametersKHR videoSessionParameters,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the video session parameters object.

• videoSessionParameters is the video session parameters object to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyVideoSessionParametersKHR-videoSessionParameters-07212
All submitted commands that refer to videoSessionParameters must have completed
execution

• VUID-vkDestroyVideoSessionParametersKHR-videoSessionParameters-07213
If VkAllocationCallbacks were provided when videoSessionParameters was created, a
compatible set of callbacks must be provided here

• VUID-vkDestroyVideoSessionParametersKHR-videoSessionParameters-07214
If no VkAllocationCallbacks were provided when videoSessionParameters was created,
pAllocator must be NULL

3414

Valid Usage (Implicit)

• VUID-vkDestroyVideoSessionParametersKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyVideoSessionParametersKHR-videoSessionParameters-parameter
If videoSessionParameters is not VK_NULL_HANDLE, videoSessionParameters must be a
valid VkVideoSessionParametersKHR handle

• VUID-vkDestroyVideoSessionParametersKHR-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyVideoSessionParametersKHR-videoSessionParameters-parent
If videoSessionParameters is a valid handle, it must have been created, allocated, or
retrieved from device

Host Synchronization

• Host access to videoSessionParameters must be externally synchronized

42.7.3. Updating Video Session Parameters

To update video session parameters object with new parameters, call:

// Provided by VK_KHR_video_queue
VkResult vkUpdateVideoSessionParametersKHR(
 VkDevice device,
 VkVideoSessionParametersKHR videoSessionParameters,
 const VkVideoSessionParametersUpdateInfoKHR* pUpdateInfo);

• device is the logical device that updates the video session parameters.

• videoSessionParameters is the video session parameters object to update.

• pUpdateInfo is a pointer to a VkVideoSessionParametersUpdateInfoKHR structure specifying the
parameter update information.

After a successful call to this command, the update sequence counter of videoSessionParameters is
changed to the value specified in pUpdateInfo->updateSequenceCount.

Note

As each update issued to a video session parameters object needs to specify the
next available update sequence count value, concurrent updates of the same video
session parameters object are inherently disallowed. However, recording video
coding operations to command buffers referring to parameters previously added
to the video session parameters object is allowed, even if there is a concurrent
update in progress adding some new entries to the object.

3415

If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and the pUpdateInfo->pNext chain includes a
VkVideoDecodeH264SessionParametersAddInfoKHR structure, then this command adds the
following parameter entries to videoSessionParameters:

• The H.264 SPS entries specified in VkVideoDecodeH264SessionParametersAddInfoKHR::
pStdSPSs.

• The H.264 PPS entries specified in VkVideoDecodeH264SessionParametersAddInfoKHR
::pStdPPSs.

If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR and the pUpdateInfo->pNext chain includes a
VkVideoDecodeH265SessionParametersAddInfoKHR structure, then this command adds the
following parameter entries to videoSessionParameters:

• The H.265 VPS entries specified in VkVideoDecodeH265SessionParametersAddInfoKHR
::pStdVPSs.

• The H.265 SPS entries specified in VkVideoDecodeH265SessionParametersAddInfoKHR::
pStdSPSs.

• The H.265 PPS entries specified in VkVideoDecodeH265SessionParametersAddInfoKHR
::pStdPPSs.

If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and the pUpdateInfo->pNext chain includes a
VkVideoEncodeH264SessionParametersAddInfoKHR structure, then this command adds the
following parameter entries to videoSessionParameters:

• The H.264 SPS entries specified in VkVideoEncodeH264SessionParametersAddInfoKHR::
pStdSPSs.

• The H.264 PPS entries specified in VkVideoEncodeH264SessionParametersAddInfoKHR
::pStdPPSs.

If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and the pUpdateInfo->pNext chain includes a
VkVideoEncodeH265SessionParametersAddInfoKHR structure, then this command adds the
following parameter entries to videoSessionParameters:

• The H.265 VPS entries specified in VkVideoEncodeH265SessionParametersAddInfoKHR
::pStdVPSs.

• The H.265 SPS entries specified in VkVideoEncodeH265SessionParametersAddInfoKHR::
pStdSPSs.

• The H.265 PPS entries specified in VkVideoEncodeH265SessionParametersAddInfoKHR
::pStdPPSs.

In case of video session parameters objects created with a video encode operation, implementations
may return the VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR error if any of the specified Video Std
parameters do not adhere to the syntactic or semantic requirements of the used video compression

3416

standard, or if values derived from parameters according to the rules defined by the used video
compression standard do not adhere to the capabilities of the video compression standard or the
implementation.

Note

Applications should not rely on the VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR
error being returned by any command as a means to verify Video Std parameters,
as implementations are not required to report the error in any specific set of cases.

Valid Usage

• VUID-vkUpdateVideoSessionParametersKHR-pUpdateInfo-07215
pUpdateInfo->updateSequenceCount must equal the current update sequence counter of
videoSessionParameters plus one

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07216
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoDecodeH264SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH264SequenceParameterSet
entry with seq_parameter_set_id matching any of the elements of
VkVideoDecodeH264SessionParametersAddInfoKHR::pStdSPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07217
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the number of
StdVideoH264SequenceParameterSet entries already stored in it plus the value of the
stdSPSCount member of the VkVideoDecodeH264SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoDecodeH264SessionParametersCreateInfoKHR::maxStdSPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07218
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoDecodeH264SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH264PictureParameterSet entry
with both seq_parameter_set_id and pic_parameter_set_id matching any of the elements of
VkVideoDecodeH264SessionParametersAddInfoKHR::pStdPPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07219
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the number of
StdVideoH264PictureParameterSet entries already stored in it plus the value of the
stdPPSCount member of the VkVideoDecodeH264SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoDecodeH264SessionParametersCreateInfoKHR::maxStdPPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07220

3417

If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoDecodeH265SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH265VideoParameterSet entry
with vps_video_parameter_set_id matching any of the elements of
VkVideoDecodeH265SessionParametersAddInfoKHR::pStdVPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07221
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the number of
StdVideoH265VideoParameterSet entries already stored in it plus the value of the
stdVPSCount member of the VkVideoDecodeH265SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoDecodeH265SessionParametersCreateInfoKHR::maxStdVPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07222
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoDecodeH265SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH265SequenceParameterSet
entry with both sps_video_parameter_set_id and sps_seq_parameter_set_id matching any
of the elements of VkVideoDecodeH265SessionParametersAddInfoKHR::pStdSPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07223
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the number of
StdVideoH265SequenceParameterSet entries already stored in it plus the value of the
stdSPSCount member of the VkVideoDecodeH265SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoDecodeH265SessionParametersCreateInfoKHR::maxStdSPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07224
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoDecodeH265SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH265PictureParameterSet entry
with sps_video_parameter_set_id, pps_seq_parameter_set_id, and pps_pic_parameter_set_id
all matching any of the elements of VkVideoDecodeH265SessionParametersAddInfoKHR
::pStdPPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07225
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the number of
StdVideoH265PictureParameterSet entries already stored in it plus the value of the
stdPPSCount member of the VkVideoDecodeH265SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoDecodeH265SessionParametersCreateInfoKHR::maxStdPPSCount
videoSessionParameters was created with

3418

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-09260
videoSessionParameters must not have been created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07226
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoEncodeH264SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH264SequenceParameterSet
entry with seq_parameter_set_id matching any of the elements of
VkVideoEncodeH264SessionParametersAddInfoKHR::pStdSPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-06441
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the number of
StdVideoH264SequenceParameterSet entries already stored in it plus the value of the
stdSPSCount member of the VkVideoEncodeH264SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoEncodeH264SessionParametersCreateInfoKHR::maxStdSPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07227
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoEncodeH264SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH264PictureParameterSet entry
with both seq_parameter_set_id and pic_parameter_set_id matching any of the elements of
VkVideoEncodeH264SessionParametersAddInfoKHR::pStdPPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-06442
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the number of
StdVideoH264PictureParameterSet entries already stored in it plus the value of the
stdPPSCount member of the VkVideoEncodeH264SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoEncodeH264SessionParametersCreateInfoKHR::maxStdPPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07228
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoEncodeH265SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH265VideoParameterSet entry
with vps_video_parameter_set_id matching any of the elements of
VkVideoEncodeH265SessionParametersAddInfoKHR::pStdVPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-06443
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the number of
StdVideoH265VideoParameterSet entries already stored in it plus the value of the
stdVPSCount member of the VkVideoEncodeH265SessionParametersAddInfoKHR structure

3419

included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoEncodeH265SessionParametersCreateInfoKHR::maxStdVPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07229
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoEncodeH265SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH265SequenceParameterSet
entry with both sps_video_parameter_set_id and sps_seq_parameter_set_id matching any
of the elements of VkVideoEncodeH265SessionParametersAddInfoKHR::pStdSPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-06444
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the number of
StdVideoH265SequenceParameterSet entries already stored in it plus the value of the
stdSPSCount member of the VkVideoEncodeH265SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoEncodeH265SessionParametersCreateInfoKHR::maxStdSPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-07230
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoEncodeH265SessionParametersAddInfoKHR structure, then
videoSessionParameters must not already contain a StdVideoH265PictureParameterSet entry
with sps_video_parameter_set_id, pps_seq_parameter_set_id, and pps_pic_parameter_set_id
all matching any of the elements of VkVideoEncodeH265SessionParametersAddInfoKHR
::pStdPPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-06445
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the number of
StdVideoH265PictureParameterSet entries already stored in it plus the value of the
stdPPSCount member of the VkVideoEncodeH265SessionParametersAddInfoKHR structure
included in the pUpdateInfo->pNext chain must be less than or equal to the
VkVideoEncodeH265SessionParametersCreateInfoKHR::maxStdPPSCount
videoSessionParameters was created with

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-08321
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and the pNext chain of pUpdateInfo includes
a VkVideoEncodeH265SessionParametersAddInfoKHR structure, then
num_tile_columns_minus1 must be less than VkVideoEncodeH265CapabilitiesKHR
::maxTiles.width, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video
profile videoSessionParameters was created with, for each element of
VkVideoEncodeH265SessionParametersAddInfoKHR::pStdPPSs

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-08322
If videoSessionParameters was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and the pNext chain of pUpdateInfo includes

3420

a VkVideoEncodeH265SessionParametersAddInfoKHR structure, then
num_tile_rows_minus1 must be less than VkVideoEncodeH265CapabilitiesKHR
::maxTiles.height, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video
profile videoSessionParameters was created with, for each element of
VkVideoEncodeH265SessionParametersAddInfoKHR::pStdPPSs

Valid Usage (Implicit)

• VUID-vkUpdateVideoSessionParametersKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-parameter
videoSessionParameters must be a valid VkVideoSessionParametersKHR handle

• VUID-vkUpdateVideoSessionParametersKHR-pUpdateInfo-parameter
pUpdateInfo must be a valid pointer to a valid VkVideoSessionParametersUpdateInfoKHR
structure

• VUID-vkUpdateVideoSessionParametersKHR-videoSessionParameters-parent
videoSessionParameters must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR

The VkVideoSessionParametersUpdateInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoSessionParametersUpdateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t updateSequenceCount;
} VkVideoSessionParametersUpdateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• updateSequenceCount is the new update sequence count to set for the video session parameters
object.

3421

Valid Usage (Implicit)

• VUID-VkVideoSessionParametersUpdateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_SESSION_PARAMETERS_UPDATE_INFO_KHR

• VUID-VkVideoSessionParametersUpdateInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of
VkVideoDecodeH264SessionParametersAddInfoKHR,
VkVideoDecodeH265SessionParametersAddInfoKHR,
VkVideoEncodeH264SessionParametersAddInfoKHR, or
VkVideoEncodeH265SessionParametersAddInfoKHR

• VUID-VkVideoSessionParametersUpdateInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

42.8. Video Coding Scope
Applications can record video coding commands for a video session only within a video coding
scope.

To begin a video coding scope, call:

// Provided by VK_KHR_video_queue
void vkCmdBeginVideoCodingKHR(
 VkCommandBuffer commandBuffer,
 const VkVideoBeginCodingInfoKHR* pBeginInfo);

• commandBuffer is the command buffer in which to record the command.

• pBeginInfo is a pointer to a VkVideoBeginCodingInfoKHR structure specifying the parameters of
the video coding scope, including the video session and video session parameters object to use.

After beginning a video coding scope, the video session object specified in pBeginInfo->videoSession
is bound to the command buffer, and the command buffer is ready to record video coding
operations. Similarly, if pBeginInfo->videoSessionParameters is not VK_NULL_HANDLE, it is also bound to
the command buffer, and video coding operations can refer to the codec-specific parameters stored
in it.

This command also establishes the set of bound reference picture resources that can be used as
reconstructed pictures or reference pictures within the video coding scope. Each element of this set
consists of a video picture resource and the DPB slot index associated with it, if there is one.

The set of bound reference picture resources is immutable within a video coding scope, however,
the DPB slot index associated with any of the bound reference picture resources can change during
the video coding scope in response to video coding operations.

The VkVideoReferenceSlotInfoKHR structures provided as the elements of pBeginInfo-

3422

>pReferenceSlots are interpreted by this command as follows:

• If slotIndex is non-negative and pPictureResource is not NULL, then the video picture resource
defined by the VkVideoPictureResourceInfoKHR structure pointed to by pPictureResource is
added to the set of bound reference picture resources and is associated with the DPB slot index
specified in slotIndex.

• If slotIndex is non-negative and pPictureResource is NULL, then the DPB slot with index slotIndex
is deactivated by this command.

• If slotIndex is negative and pPictureResource is not NULL, then the video picture resource defined
by the VkVideoPictureResourceInfoKHR structure pointed to by pPictureResource is added to the
set of bound reference picture resources without an associated DPB slot. Such a picture
resource can be subsequently used as a reconstructed picture to associate it with a DPB slot.

• If slotIndex is negative and pPictureResource is NULL, then the element is ignored.

Note

It is possible for multiple bound reference picture resources to be associated with
the same DPB slot index, or for a single bound reference picture to refer to
multiple separate reference pictures. For example, in case of an H.264 decode
profile with interlaced frame support a single DPB slot can refer to two separate
pictures for the top and bottom fields. Depending on the picture layout used by the
H.264 decode profile, the following special cases may arise:

• If the picture layout is
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_INTERLEAVED_LINES_BIT_KHR,
then the top and bottom field pictures are physically co-located in the same
video picture resource with even scanlines corresponding to the top field and
odd scanlines corresponding to the bottom field, respectively.

• If the picture layout is
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR, then
the top and bottom field pictures are stored in separate video picture resources
(in separate subregions of the same image layer, in separate layers of the same
image, or in entirely separate images), hence two elements of
VkVideoBeginCodingInfoKHR::pReferenceSlots can contain the same slotIndex
but specify different video picture resources in their pPictureResource
members.

All non-negative slotIndex values specified in the elements of pBeginInfo->pReferenceSlots must
identify DPB slots of the video session that are in the active state at the time this command is
executed on the device.

Note

The application does not have to specify an entry in pBeginInfo->pReferenceSlots
corresponding to all active DPB slots of the video session, but only for those which
are intended to be used in the video coding scope. This way the application can
avoid any potential runtime cost associated with binding the corresponding
picture resources to the command buffer.

3423

In case of a video encode session, the application is also responsible for providing information
about the current rate control state configured for the video session by including an instance of the
VkVideoEncodeRateControlInfoKHR structure in the pNext chain of pBeginInfo. If no
VkVideoEncodeRateControlInfoKHR is included, then the presence of an empty
VkVideoEncodeRateControlInfoKHR structure is implied which indicates that the current rate
control mode is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR. The specified state must match the
effective rate control state configured for the video session at the time the recorded command is
executed on the device.

Note

Including an instance of the VkVideoEncodeRateControlInfoKHR structure in the
pNext chain of pBeginInfo does not change the rate control state configured for the
video session, but only specifies the expected rate control state configured at the
time the recorded command is executed on the device which allows the
implementation to have information about the configured rate control state at
command buffer recording time. In order to change the current rate control state
of a video session, the application has to issue an appropriate
vkCmdControlVideoCodingKHR command as described in the Video Coding
Control and Rate Control State sections.

Valid Usage

• VUID-vkCmdBeginVideoCodingKHR-commandBuffer-07231
The VkCommandPool that commandBuffer was allocated from must support the video codec
operation pBeginInfo->videoSession was created with, as returned by
vkGetPhysicalDeviceQueueFamilyProperties2 in VkQueueFamilyVideoPropertiesKHR
::videoCodecOperations

• VUID-vkCmdBeginVideoCodingKHR-None-07232
There must be no active queries

• VUID-vkCmdBeginVideoCodingKHR-commandBuffer-07233
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
then pBeginInfo->videoSession must not have been created with
VK_VIDEO_SESSION_CREATE_PROTECTED_CONTENT_BIT_KHR

• VUID-vkCmdBeginVideoCodingKHR-commandBuffer-07234
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
then pBeginInfo->videoSession must have been created with
VK_VIDEO_SESSION_CREATE_PROTECTED_CONTENT_BIT_KHR

• VUID-vkCmdBeginVideoCodingKHR-commandBuffer-07235
If commandBuffer is an unprotected command buffer, protectedNoFault is not supported,
and the pPictureResource member of any element of pBeginInfo->pReferenceSlots is not
NULL, then pPictureResource->imageViewBinding for that element must not specify an image
view created from a protected image

• VUID-vkCmdBeginVideoCodingKHR-commandBuffer-07236
If commandBuffer is a protected command buffer protectedNoFault is not supported, and the
pPictureResource member of any element of pBeginInfo->pReferenceSlots is not NULL, then

3424

pPictureResource->imageViewBinding for that element must specify an image view created
from a protected image

• VUID-vkCmdBeginVideoCodingKHR-slotIndex-07239
If the slotIndex member of any element of pBeginInfo->pReferenceSlots is not negative,
then it must specify the index of a DPB slot that is in the active state in pBeginInfo-
>videoSession at the time the command is executed on the device

• VUID-vkCmdBeginVideoCodingKHR-pPictureResource-07265
Each video picture resource specified by any non-NULL pPictureResource member specified
in the elements of pBeginInfo->pReferenceSlots for which slotIndex is not negative must
match one of the video picture resources currently associated with the DPB slot index of
pBeginInfo->videoSession specified by slotIndex at the time the command is executed on
the device

• VUID-vkCmdBeginVideoCodingKHR-pBeginInfo-08253
If pBeginInfo->videoSession was created with a video encode operation and the pNext
chain of pBeginInfo does not include an instance of the
VkVideoEncodeRateControlInfoKHR structure, then the rate control mode configured for
pBeginInfo->videoSession at the time the command is executed on the device must be
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR

• VUID-vkCmdBeginVideoCodingKHR-pBeginInfo-08254
If pBeginInfo->videoSession was created with a video encode operation and the pNext
chain of pBeginInfo includes an instance of the VkVideoEncodeRateControlInfoKHR
structure, then it must match the rate control state configured for pBeginInfo-
>videoSession at the time the command is executed on the device

• VUID-vkCmdBeginVideoCodingKHR-pBeginInfo-08255
If pBeginInfo->videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, the current rate control mode is not
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR or
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR, and
VkVideoEncodeH264CapabilitiesKHR::requiresGopRemainingFrames is VK_TRUE, as returned
by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the pBeginInfo-
>videoSession was created with, then the pNext chain of pBeginInfo must include an
instance of the VkVideoEncodeH264GopRemainingFrameInfoKHR with its
useGopRemainingFrames member set to VK_TRUE

• VUID-vkCmdBeginVideoCodingKHR-pBeginInfo-08256
If pBeginInfo->videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, the current rate control mode is not
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR or
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR, and
VkVideoEncodeH265CapabilitiesKHR::requiresGopRemainingFrames is VK_TRUE, as returned
by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the pBeginInfo-
>videoSession was created with, then the pNext chain of pBeginInfo must include an
instance of the VkVideoEncodeH265GopRemainingFrameInfoKHR with its
useGopRemainingFrames member set to VK_TRUE

3425

Valid Usage (Implicit)

• VUID-vkCmdBeginVideoCodingKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginVideoCodingKHR-pBeginInfo-parameter
pBeginInfo must be a valid pointer to a valid VkVideoBeginCodingInfoKHR structure

• VUID-vkCmdBeginVideoCodingKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginVideoCodingKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support decode, or encode
operations

• VUID-vkCmdBeginVideoCodingKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBeginVideoCodingKHR-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdBeginVideoCodingKHR-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Outside Decode
Encode

Action
State

The VkVideoBeginCodingInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoBeginCodingInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoBeginCodingFlagsKHR flags;
 VkVideoSessionKHR videoSession;
 VkVideoSessionParametersKHR videoSessionParameters;
 uint32_t referenceSlotCount;

3426

 const VkVideoReferenceSlotInfoKHR* pReferenceSlots;
} VkVideoBeginCodingInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• videoSession is the video session object to be bound for the processing of the video commands.

• videoSessionParameters is VK_NULL_HANDLE or a handle of a VkVideoSessionParametersKHR object
to be used for the processing of the video commands. If VK_NULL_HANDLE, then no video session
parameters object is bound for the duration of the video coding scope.

• referenceSlotCount is the number of elements in the pReferenceSlots array.

• pReferenceSlots is a pointer to an array of VkVideoReferenceSlotInfoKHR structures specifying
the information used to determine the set of bound reference picture resources for the video
coding scope and their initial association with DPB slot indices.

Limiting values are defined below that are referenced by the relevant valid usage statements of this
structure.

• Let VkOffset2D codedOffsetGranularity be the minimum alignment requirement for the coded
offset of video picture resources. Unless otherwise defined, the value of the x and y members of
codedOffsetGranularity are 0.

◦ If videoSession was created with an H.264 decode profile with a
VkVideoDecodeH264ProfileInfoKHR::pictureLayout of
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR, then
codedOffsetGranularity is equal to VkVideoDecodeH264CapabilitiesKHR
::fieldOffsetGranularity, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for that
video profile.

Valid Usage

• VUID-VkVideoBeginCodingInfoKHR-videoSession-07237
videoSession must have memory bound to all of its memory bindings returned by
vkGetVideoSessionMemoryRequirementsKHR for videoSession

• VUID-VkVideoBeginCodingInfoKHR-slotIndex-04856
Each non-negative VkVideoReferenceSlotInfoKHR::slotIndex specified in the elements of
pReferenceSlots must be less than the VkVideoSessionCreateInfoKHR::maxDpbSlots
specified when videoSession was created

• VUID-VkVideoBeginCodingInfoKHR-pPictureResource-07238
Each video picture resource corresponding to any non-NULL pPictureResource member
specified in the elements of pReferenceSlots must be unique within pReferenceSlots

• VUID-VkVideoBeginCodingInfoKHR-pPictureResource-07240
If the pPictureResource member of any element of pReferenceSlots is not NULL, then the
image view specified in pPictureResource->imageViewBinding for that element must be
compatible with the video profile videoSession was created with

3427

• VUID-VkVideoBeginCodingInfoKHR-pPictureResource-07241
If the pPictureResource member of any element of pReferenceSlots is not NULL, then the
format of the image view specified in pPictureResource->imageViewBinding for that element
must match the VkVideoSessionCreateInfoKHR::referencePictureFormat videoSession was
created with

• VUID-VkVideoBeginCodingInfoKHR-pPictureResource-07242
If the pPictureResource member of any element of pReferenceSlots is not NULL, then its
codedOffset member must be an integer multiple of codedOffsetGranularity

• VUID-VkVideoBeginCodingInfoKHR-pPictureResource-07243
If the pPictureResource member of any element of pReferenceSlots is not NULL, then its
codedExtent member must be between minCodedExtent and maxCodedExtent, inclusive,
videoSession was created with

• VUID-VkVideoBeginCodingInfoKHR-flags-07244
If VkVideoCapabilitiesKHR::flags does not include
VK_VIDEO_CAPABILITY_SEPARATE_REFERENCE_IMAGES_BIT_KHR, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile videoSession was created
with, then pPictureResource->imageViewBinding of all elements of pReferenceSlots with a
non-NULL pPictureResource member must specify image views created from the same
image

• VUID-VkVideoBeginCodingInfoKHR-slotIndex-07245
If videoSession was created with a decode operation and the slotIndex member of any
element of pReferenceSlots is not negative, then the image view specified in
pPictureResource->imageViewBinding for that element must have been created with
VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR

• VUID-VkVideoBeginCodingInfoKHR-slotIndex-07246
If videoSession was created with an encode operation and the slotIndex member of any
element of pReferenceSlots is not negative, then the image view specified in
pPictureResource->imageViewBinding for that element must have been created with
VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR

• VUID-VkVideoBeginCodingInfoKHR-videoSession-07247
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then videoSessionParameters must not be
VK_NULL_HANDLE

• VUID-VkVideoBeginCodingInfoKHR-videoSession-07248
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then videoSessionParameters must not be
VK_NULL_HANDLE

• VUID-VkVideoBeginCodingInfoKHR-videoSession-09261
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then videoSessionParameters must not be
VK_NULL_HANDLE

• VUID-VkVideoBeginCodingInfoKHR-videoSession-07249
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then videoSessionParameters must not be

3428

VK_NULL_HANDLE

• VUID-VkVideoBeginCodingInfoKHR-videoSession-07250
If videoSession was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then videoSessionParameters must not be
VK_NULL_HANDLE

• VUID-VkVideoBeginCodingInfoKHR-videoSessionParameters-04857
If videoSessionParameters is not VK_NULL_HANDLE, it must have been created with
videoSession specified in VkVideoSessionParametersCreateInfoKHR::videoSession

Valid Usage (Implicit)

• VUID-VkVideoBeginCodingInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_BEGIN_CODING_INFO_KHR

• VUID-VkVideoBeginCodingInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoEncodeH264GopRemainingFrameInfoKHR,
VkVideoEncodeH264RateControlInfoKHR,
VkVideoEncodeH265GopRemainingFrameInfoKHR,
VkVideoEncodeH265RateControlInfoKHR, or VkVideoEncodeRateControlInfoKHR

• VUID-VkVideoBeginCodingInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkVideoBeginCodingInfoKHR-flags-zerobitmask
flags must be 0

• VUID-VkVideoBeginCodingInfoKHR-videoSession-parameter
videoSession must be a valid VkVideoSessionKHR handle

• VUID-VkVideoBeginCodingInfoKHR-videoSessionParameters-parameter
If videoSessionParameters is not VK_NULL_HANDLE, videoSessionParameters must be a
valid VkVideoSessionParametersKHR handle

• VUID-VkVideoBeginCodingInfoKHR-pReferenceSlots-parameter
If referenceSlotCount is not 0, pReferenceSlots must be a valid pointer to an array of
referenceSlotCount valid VkVideoReferenceSlotInfoKHR structures

• VUID-VkVideoBeginCodingInfoKHR-videoSessionParameters-parent
If videoSessionParameters is a valid handle, it must have been created, allocated, or
retrieved from videoSession

• VUID-VkVideoBeginCodingInfoKHR-commonparent
Both of videoSession, and videoSessionParameters that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

// Provided by VK_KHR_video_queue
typedef VkFlags VkVideoBeginCodingFlagsKHR;

3429

VkVideoBeginCodingFlagsKHR is a bitmask type for setting a mask, but is currently reserved for future
use.

The VkVideoReferenceSlotInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoReferenceSlotInfoKHR {
 VkStructureType sType;
 const void* pNext;
 int32_t slotIndex;
 const VkVideoPictureResourceInfoKHR* pPictureResource;
} VkVideoReferenceSlotInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• slotIndex is the index of the DPB slot or a negative integer value.

• pPictureResource is NULL or a pointer to a VkVideoPictureResourceInfoKHR structure describing
the video picture resource associated with the DPB slot index specified by slotIndex.

Valid Usage (Implicit)

• VUID-VkVideoReferenceSlotInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_REFERENCE_SLOT_INFO_KHR

• VUID-VkVideoReferenceSlotInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoDecodeAV1DpbSlotInfoKHR,
VkVideoDecodeH264DpbSlotInfoKHR, VkVideoDecodeH265DpbSlotInfoKHR,
VkVideoEncodeH264DpbSlotInfoKHR, or VkVideoEncodeH265DpbSlotInfoKHR

• VUID-VkVideoReferenceSlotInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkVideoReferenceSlotInfoKHR-pPictureResource-parameter
If pPictureResource is not NULL, pPictureResource must be a valid pointer to a valid
VkVideoPictureResourceInfoKHR structure

To end a video coding scope, call:

// Provided by VK_KHR_video_queue
void vkCmdEndVideoCodingKHR(
 VkCommandBuffer commandBuffer,
 const VkVideoEndCodingInfoKHR* pEndCodingInfo);

• commandBuffer is the command buffer in which to record the command.

• pEndCodingInfo is a pointer to a VkVideoEndCodingInfoKHR structure specifying the parameters

3430

for ending the video coding scope.

After ending a video coding scope, the video session object, the optional video session parameters
object, and all reference picture resources previously bound by the corresponding
vkCmdBeginVideoCodingKHR command are unbound.

Valid Usage

• VUID-vkCmdEndVideoCodingKHR-None-07251
There must be no active queries

Valid Usage (Implicit)

• VUID-vkCmdEndVideoCodingKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndVideoCodingKHR-pEndCodingInfo-parameter
pEndCodingInfo must be a valid pointer to a valid VkVideoEndCodingInfoKHR structure

• VUID-vkCmdEndVideoCodingKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndVideoCodingKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support decode, or encode
operations

• VUID-vkCmdEndVideoCodingKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdEndVideoCodingKHR-videocoding
This command must only be called inside of a video coding scope

• VUID-vkCmdEndVideoCodingKHR-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Inside Decode
Encode

Action
State

3431

The VkVideoEndCodingInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoEndCodingInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoEndCodingFlagsKHR flags;
} VkVideoEndCodingInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

Valid Usage (Implicit)

• VUID-VkVideoEndCodingInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_END_CODING_INFO_KHR

• VUID-VkVideoEndCodingInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkVideoEndCodingInfoKHR-flags-zerobitmask
flags must be 0

// Provided by VK_KHR_video_queue
typedef VkFlags VkVideoEndCodingFlagsKHR;

VkVideoEndCodingFlagsKHR is a bitmask type for setting a mask, but is currently reserved for future
use.

42.9. Video Coding Control
To apply dynamic controls to the currently bound video session object, call:

// Provided by VK_KHR_video_queue
void vkCmdControlVideoCodingKHR(
 VkCommandBuffer commandBuffer,
 const VkVideoCodingControlInfoKHR* pCodingControlInfo);

• commandBuffer is the command buffer in which to record the command.

• pCodingControlInfo is a pointer to a VkVideoCodingControlInfoKHR structure specifying the
control parameters.

The control parameters provided in this call are applied to the video session at the time the
command executes on the device and are in effect until a subsequent call to this command with the

3432

same video session bound changes the corresponding control parameters.

A newly created video session must be reset before performing video coding operations using it by
including VK_VIDEO_CODING_CONTROL_RESET_BIT_KHR in pCodingControlInfo->flags. The reset operation
also returns all DPB slots of the video session to the inactive state. Correspondingly, any DPB slot
index associated with the bound reference picture resources is removed.

For encode sessions, the reset operation returns rate control configuration to implementation
default settings and sets the video encode quality level to zero.

After video coding operations are performed using a video session, the reset operation can be used
to return the video session to the same initial state as after the reset of a newly created video
session. This can be used, for example, when different video sequences are needed to be processed
with the same video session object.

If pCodingControlInfo->flags includes VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR, then
the command replaces the rate control configuration maintained by the video session with the
configuration specified in the VkVideoEncodeRateControlInfoKHR structure included in the
pCodingControlInfo->pNext chain.

If pCodingControlInfo->flags includes VK_VIDEO_CODING_CONTROL_ENCODE_QUALITY_LEVEL_BIT_KHR, then
the command changes the current video encode quality level to the value specified in the
qualityLevel member of the VkVideoEncodeQualityLevelInfoKHR structure included in the
pCodingControlInfo->pNext chain.

Valid Usage

• VUID-vkCmdControlVideoCodingKHR-flags-07017
If pCodingControlInfo->flags does not include VK_VIDEO_CODING_CONTROL_RESET_BIT_KHR,
then the bound video session must not be in uninitialized state at the time the command
is executed on the device

• VUID-vkCmdControlVideoCodingKHR-pCodingControlInfo-08243
If the bound video session was not created with an encode operation, then
pCodingControlInfo->flags must not include
VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR or
VK_VIDEO_CODING_CONTROL_ENCODE_QUALITY_LEVEL_BIT_KHR

Valid Usage (Implicit)

• VUID-vkCmdControlVideoCodingKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdControlVideoCodingKHR-pCodingControlInfo-parameter
pCodingControlInfo must be a valid pointer to a valid VkVideoCodingControlInfoKHR
structure

• VUID-vkCmdControlVideoCodingKHR-commandBuffer-recording
commandBuffer must be in the recording state

3433

• VUID-vkCmdControlVideoCodingKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support decode, or encode
operations

• VUID-vkCmdControlVideoCodingKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdControlVideoCodingKHR-videocoding
This command must only be called inside of a video coding scope

• VUID-vkCmdControlVideoCodingKHR-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Inside Decode
Encode

Action

The VkVideoCodingControlInfoKHR structure is defined as:

// Provided by VK_KHR_video_queue
typedef struct VkVideoCodingControlInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoCodingControlFlagsKHR flags;
} VkVideoCodingControlInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkVideoCodingControlFlagsKHR specifying control flags.

Valid Usage

• VUID-VkVideoCodingControlInfoKHR-flags-07018
If flags includes VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR, then the pNext
chain must include a VkVideoEncodeRateControlInfoKHR structure

3434

• VUID-VkVideoCodingControlInfoKHR-flags-08349
If flags includes VK_VIDEO_CODING_CONTROL_ENCODE_QUALITY_LEVEL_BIT_KHR, then the pNext
chain must include a VkVideoEncodeQualityLevelInfoKHR structure

Valid Usage (Implicit)

• VUID-VkVideoCodingControlInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_CODING_CONTROL_INFO_KHR

• VUID-VkVideoCodingControlInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoEncodeH264RateControlInfoKHR,
VkVideoEncodeH265RateControlInfoKHR, VkVideoEncodeQualityLevelInfoKHR, or
VkVideoEncodeRateControlInfoKHR

• VUID-VkVideoCodingControlInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkVideoCodingControlInfoKHR-flags-parameter
flags must be a valid combination of VkVideoCodingControlFlagBitsKHR values

• VUID-VkVideoCodingControlInfoKHR-flags-requiredbitmask
flags must not be 0

Bits which can be set in VkVideoCodingControlInfoKHR::flags, specifying the video coding control
parameters to be modified, are:

// Provided by VK_KHR_video_queue
typedef enum VkVideoCodingControlFlagBitsKHR {
 VK_VIDEO_CODING_CONTROL_RESET_BIT_KHR = 0x00000001,
 // Provided by VK_KHR_video_encode_queue
 VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR = 0x00000002,
 // Provided by VK_KHR_video_encode_queue
 VK_VIDEO_CODING_CONTROL_ENCODE_QUALITY_LEVEL_BIT_KHR = 0x00000004,
} VkVideoCodingControlFlagBitsKHR;

• VK_VIDEO_CODING_CONTROL_RESET_BIT_KHR indicates a request for the bound video session to be
reset before other coding control parameters are applied.

• VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR indicates that the coding control
parameters include video encode rate control parameters (see
VkVideoEncodeRateControlInfoKHR).

• VK_VIDEO_CODING_CONTROL_ENCODE_QUALITY_LEVEL_BIT_KHR indicates that the coding control
parameters include video encode quality level parameters (see
VkVideoEncodeQualityLevelInfoKHR).

// Provided by VK_KHR_video_queue

3435

typedef VkFlags VkVideoCodingControlFlagsKHR;

VkVideoCodingControlFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoCodingControlFlagBitsKHR.

42.10. Inline Queries
If a video session was created with VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, beginning
queries using commands such as vkCmdBeginQuery within a video coding scope is not allowed.
Instead, queries are executed inline by including an instance of the VkVideoInlineQueryInfoKHR
structure in the pNext chain of the parameters of one of the video coding commands, with its
queryPool member set to a valid VkQueryPool handle.

The VkVideoInlineQueryInfoKHR structure is defined as:

// Provided by VK_KHR_video_maintenance1
typedef struct VkVideoInlineQueryInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkQueryPool queryPool;
 uint32_t firstQuery;
 uint32_t queryCount;
} VkVideoInlineQueryInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• queryPool is VK_NULL_HANDLE or a valid handle to a VkQueryPool object that will manage the
results of the queries.

• firstQuery is the query index within the query pool that will contain the query results for the
first video coding operation. The query results of subsequent video coding operations will be
contained by subsequent query indices.

• queryCount is the number of queries to execute.

Note

In practice, if queryPool is not VK_NULL_HANDLE, then queryCount will always have
to match the number of video coding operations issued by the video coding
command this structure is specified to, meaning that using inline queries in a
video coding command will always execute a query for each issued video
coding operation.

This structure can be included in the pNext chain of the input parameter structure of video coding
commands.

• In the pNext chain of the pDecodeInfo parameter of the vkCmdDecodeVideoKHR command to
execute a query for each video decode operation issued by the command.

3436

• In the pNext chain of the pEncodeInfo parameter of the vkCmdEncodeVideoKHR command to
execute a query for each video encode operation issued by the command.

Valid Usage

• VUID-VkVideoInlineQueryInfoKHR-queryPool-08372
If queryPool is not VK_NULL_HANDLE, then firstQuery must be less than the number of
queries in queryPool

• VUID-VkVideoInlineQueryInfoKHR-queryPool-08373
If queryPool is not VK_NULL_HANDLE, then the sum of firstQuery and queryCount must be less
than or equal to the number of queries in queryPool

Valid Usage (Implicit)

• VUID-VkVideoInlineQueryInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_INLINE_QUERY_INFO_KHR

• VUID-VkVideoInlineQueryInfoKHR-queryPool-parameter
If queryPool is not VK_NULL_HANDLE, queryPool must be a valid VkQueryPool handle

42.11. Video Decode Operations
Video decode operations consume compressed video data from a video bitstream buffer and zero
or more reference pictures, and produce a decode output picture and an optional reconstructed
picture.

Note

Such decode output pictures can be shared with the Decoded Picture Buffer, and
can also be used as the input of video encode operations, with graphics or compute
operations, or with Window System Integration APIs, depending on the
capabilities of the implementation.

Video decode operations may access the following resources in the
VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR stage:

• The source video bitstream buffer range and the image subregions corresponding to the list of
active reference pictures with access VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR.

• The image subregions corresponding to the target decode output picture and reconstructed
picture with access VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR.

The image subresource of each video picture resource accessed by the video decode operation is
specified using a corresponding VkVideoPictureResourceInfoKHR structure. Each such image
subresource must be in the appropriate image layout as follows:

• If the image subresource is used in the video decode operation only as decode output picture,

3437

then it must be in the VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR layout.

• If the image subresource is used in the video decode operation both as decode output picture
and reconstructed picture, then it must be in the VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR layout.

• If the image subresource is used in the video decode operation only as reconstructed picture,
then it must be in the VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR layout.

• If the image subresource is used in the video decode operation as a reference picture, then it
must be in the VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR layout.

A video decode operation may complete unsuccessfully. In this case the decode output picture will
have undefined contents. Similarly, if reference picture setup is requested, the reconstructed
picture will also have undefined contents, and the activated DPB slot will have an invalid picture
reference.

42.11.1. Codec-Specific Semantics

The following aspects of video decode operations are codec-specific:

• The interpretation of the contents of the source video bitstream buffer range.

• The construction and interpretation of the list of active reference pictures and the
interpretation of the picture data referred to by the corresponding image subregions.

• The construction and interpretation of information related to the decode output picture and the
generation of picture data to the corresponding image subregion.

• The decision on reference picture setup.

• The construction and interpretation of information related to the optional reconstructed picture
and the generation of picture data to the corresponding image subregion.

These codec-specific behaviors are defined for each video codec operation separately.

• If the used video codec operation is VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the
codec-specific aspects of the video decoding process are performed as defined in the H.264
Decode Operations section.

• If the used video codec operation is VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the
codec-specific aspects of the video decoding process are performed as defined in the H.265
Decode Operations section.

• If the used video codec operation is VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then the
codec-specific aspects of the video decoding process are performed as defined in the AV1
Decode Operations section.

42.11.2. Video Decode Operation Steps

Each video decode operation performs the following steps in the
VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR stage:

1. Reads the encoded video data from the source video bitstream buffer range.

2. Performs picture reconstruction of the encoded video data according to the codec-specific

3438

semantics, applying any prediction data read from the active reference pictures in the process;

3. Writes the decoded picture data to the decode output picture, and optionally to the
reconstructed picture, if one is specified and is different from the decode output picture,
according to the codec-specific semantics;

4. If reference picture setup is requested, the DPB slot index specified in the reconstructed picture
information is activated with the reconstructed picture.

When reconstructed picture information is provided, the specified DPB slot index is associated with
the corresponding bound reference picture resource, indifferent of whether reference picture
setup is requested.

42.11.3. Capabilities

When calling vkGetPhysicalDeviceVideoCapabilitiesKHR with pVideoProfile->videoCodecOperation
specifying a decode operation, the VkVideoDecodeCapabilitiesKHR structure must be included in the
pNext chain of the VkVideoCapabilitiesKHR structure to retrieve capabilities specific to video
decoding.

The VkVideoDecodeCapabilitiesKHR structure is defined as:

// Provided by VK_KHR_video_decode_queue
typedef struct VkVideoDecodeCapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 VkVideoDecodeCapabilityFlagsKHR flags;
} VkVideoDecodeCapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkVideoDecodeCapabilityFlagBitsKHR describing the supported video
decoding capabilities.

Valid Usage (Implicit)

• VUID-VkVideoDecodeCapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_CAPABILITIES_KHR

Bits which may be set in VkVideoDecodeCapabilitiesKHR::flags, indicating the decoding capabilities
supported, are:

// Provided by VK_KHR_video_decode_queue
typedef enum VkVideoDecodeCapabilityFlagBitsKHR {
 VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_COINCIDE_BIT_KHR = 0x00000001,
 VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR = 0x00000002,

3439

} VkVideoDecodeCapabilityFlagBitsKHR;

• VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_COINCIDE_BIT_KHR indicates support for using the
same video picture resource as the reconstructed picture and decode output picture in a video
decode operation.

• VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR indicates support for using
distinct video picture resources as the reconstructed picture and decode output picture in a
video decode operation.

Note

Some video profiles allow using distinct video picture resources as the
reconstructed picture and decode output picture in specific video decode
operations even when the video decode profile does not support
VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR. Even if the
implementation only reports coincide, the decode output picture for film grain
enabled frames must be a different video picture resource from the
reconstructed picture because film grain is applied outside of the coding loop.

Implementations are only required to support one of
VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_COINCIDE_BIT_KHR and
VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR. Accordingly, applications should
handle both cases to maximize portability.

Note

If both VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_COINCIDE_BIT_KHR and
VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR are supported, an
application can choose to create separate images for decode DPB and decode
output. E.g. in cases when linear tiling is preferred (and supported) for the decode
output picture and the DPB requires optimal tiling, this avoids the need for a
separate copy at the expense of additional memory bandwidth requirements
during decoding.

// Provided by VK_KHR_video_decode_queue
typedef VkFlags VkVideoDecodeCapabilityFlagsKHR;

VkVideoDecodeCapabilityFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoDecodeCapabilityFlagBitsKHR.

42.11.4. Video Decode Commands

To launch video decode operations, call:

// Provided by VK_KHR_video_decode_queue
void vkCmdDecodeVideoKHR(
 VkCommandBuffer commandBuffer,

3440

 const VkVideoDecodeInfoKHR* pDecodeInfo);

• commandBuffer is the command buffer in which to record the command.

• pDecodeInfo is a pointer to a VkVideoDecodeInfoKHR structure specifying the parameters of the
video decode operations.

Each call issues one or more video decode operations. The implicit parameter opCount corresponds
to the number of video decode operations issued by the command. After calling this command, the
active query index of each active query is incremented by opCount.

Currently each call to this command results in the issue of a single video decode operation.

If the bound video session was created with VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR and
the pNext chain of pDecodeInfo includes a VkVideoInlineQueryInfoKHR structure with its queryPool
member specifying a valid VkQueryPool handle, then this command will execute a query for each
video decode operation issued by it.

Active Reference Picture Information

The list of active reference pictures used by a video decode operation is a list of image
subregions used as the source of reference picture data and related parameters, and is derived
from the VkVideoReferenceSlotInfoKHR structures provided as the elements of the pDecodeInfo-
>pReferenceSlots array. For each element of pDecodeInfo->pReferenceSlots, one or more elements
are added to the active reference picture list, as defined by the codec-specific semantics. Each
element of this list contains the following information:

• The image subregion within the image subresource referred to by the video picture resource
used as the reference picture.

• The DPB slot index the reference picture is associated with.

• The codec-specific reference information related to the reference picture.

Reconstructed Picture Information

Information related to the optional reconstructed picture used by a video decode operation is
derived from the VkVideoReferenceSlotInfoKHR structure pointed to by pDecodeInfo-
>pSetupReferenceSlot, if not NULL, as defined by the codec-specific semantics, and consists of the
following:

• The image subregion within the image subresource referred to by the video picture resource
used as the reconstructed picture.

• The DPB slot index to use for picture reconstruction.

• The codec-specific reference information related to the reconstructed picture.

Specifying a valid VkVideoReferenceSlotInfoKHR structure in pDecodeInfo->pSetupReferenceSlot is
always required, unless the video session was created with VkVideoSessionCreateInfoKHR
::maxDpbSlot equal to zero. However, the DPB slot identified by pDecodeInfo->pSetupReferenceSlot-
>slotIndex is only activated with the reconstructed picture specified in pDecodeInfo-
>pSetupReferenceSlot->pPictureResource if reference picture setup is requested according to the
codec-specific semantics.

3441

If reconstructed picture information is specified, and pDecodeInfo->pSetupReferenceSlot-
>pPictureResource refers to a video picture resource different than that of the decode output
picture, but reference picture setup is not requested, the contents of the video picture resource
corresponding to the reconstructed picture will be undefined after the video decode operation.

Note

Some implementations may always output the reconstructed picture or use it as
temporary storage during the video decode operation even when the
reconstructed picture is not marked for future reference.

Decode Output Picture Information

Information related to the decode output picture used by a video decode operation is derived
from pDecodeInfo->dstPictureResource and any codec-specific parameters provided in the
pDecodeInfo->pNext chain, as defined by the codec-specific semantics, and consists of the
following:

• The image subregion within the image subresource referred to by the video picture resource
used as the decode output picture.

• The codec-specific picture information related to the decode output picture.

Several limiting values are defined below that are referenced by the relevant valid usage
statements of this command.

• Let uint32_t activeReferencePictureCount be the size of the list of active reference pictures used
by the video decode operation. Unless otherwise defined, activeReferencePictureCount is set to
the value of pDecodeInfo->referenceSlotCount.

◦ If the bound video session was created with an H.264 decode profile, then let
activeReferencePictureCount be the value of pDecodeInfo->referenceSlotCount plus the
number of elements of the pDecodeInfo->pReferenceSlots array that have a
VkVideoDecodeH264DpbSlotInfoKHR structure included in their pNext chain with both
pStdReferenceInfo->flags.top_field_flag and pStdReferenceInfo->flags.bottom_field_flag
set.

Note

This means that the elements of pDecodeInfo->pReferenceSlots that include
both a top and bottom field reference are counted as two separate active
reference pictures, as described in the active reference picture list
construction rules for H.264 decode operations.

• Let VkOffset2D codedOffsetGranularity be the minimum alignment requirement for the coded
offset of video picture resources. Unless otherwise defined, the value of the x and y members of
codedOffsetGranularity are 0.

◦ If the bound video session was created with an H.264 decode profile with a
VkVideoDecodeH264ProfileInfoKHR::pictureLayout of
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR, then
codedOffsetGranularity is equal to VkVideoDecodeH264CapabilitiesKHR

3442

::fieldOffsetGranularity, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for that
video profile.

• Let uint32_t dpbFrameUseCount[] be an array of size maxDpbSlots, where maxDpbSlots is the
VkVideoSessionCreateInfoKHR::maxDpbSlots the bound video session was created with, with
each element indicating the number of times a frame associated with the corresponding DPB
slot index is referred to by the video coding operation. Let the initial value of each element of
the array be 0.

◦ If pDecodeInfo->pSetupReferenceSlot is not NULL, then dpbFrameUseCount[i] is incremented by
one, where i equals pDecodeInfo->pSetupReferenceSlot->slotIndex. If the bound video
session object was created with an H.264 decode profile, then dpbFrameUseCount[i] is
decremented by one if either pStdReferenceInfo->flags.top_field_flag or
pStdReferenceInfo->flags.bottom_field_flag is set in the
VkVideoDecodeH264DpbSlotInfoKHR structure in the pDecodeInfo->pSetupReferenceSlot-
>pNext chain.

◦ For each element of pDecodeInfo->pReferenceSlots, dpbFrameUseCount[i] is incremented by
one, where i equals the slotIndex member of the corresponding element. If the bound video
session object was created with an H.264 decode profile, then dpbFrameUseCount[i] is
decremented by one if either pStdReferenceInfo->flags.top_field_flag or
pStdReferenceInfo->flags.bottom_field_flag is set in the
VkVideoDecodeH264DpbSlotInfoKHR structure in the pNext chain of the corresponding
element of pDecodeInfo->pReferenceSlots.

• Let uint32_t dpbTopFieldUseCount[] and uint32_t dpbBottomFieldUseCount[] be arrays of size
maxDpbSlots, where maxDpbSlots is the VkVideoSessionCreateInfoKHR::maxDpbSlots the bound
video session was created with, with each element indicating the number of times the top field
or the bottom field, respectively, associated with the corresponding DPB slot index is referred to
by the video coding operation. Let the initial value of each element of the arrays be 0.

◦ If the bound video session object was created with an H.264 decode profile and pDecodeInfo-
>pSetupReferenceSlot is not NULL, then perform the following:

▪ If pStdReferenceInfo->flags.top_field_flag is set in the
VkVideoDecodeH264DpbSlotInfoKHR structure in the pDecodeInfo->pSetupReferenceSlot-
>pNext chain, then dpbTopFieldUseCount[i] is incremented by one, where i equals
pDecodeInfo->pSetupReferenceSlot->slotIndex.

▪ If pStdReferenceInfo->flags.bottom_field_flag is set in the
VkVideoDecodeH264DpbSlotInfoKHR structure in the pDecodeInfo->pSetupReferenceSlot-
>pNext chain, then dpbBottomFieldUseCount[i] is incremented by one, where i equals
pDecodeInfo->pSetupReferenceSlot->slotIndex.

◦ If the bound video session object was created with an H.264 decode profile, then perform
the following for each element of pDecodeInfo->pReferenceSlots:

▪ If pStdReferenceInfo->flags.top_field_flag is set in the
VkVideoDecodeH264DpbSlotInfoKHR structure in the pNext chain of the element, then
dpbTopFieldUseCount[i] is incremented by one, where i equals the slotIndex member of
the element.

▪ If pStdReferenceInfo->flags.bottom_field_flag is set in the
VkVideoDecodeH264DpbSlotInfoKHR structure in the pNext chain of the element, then

3443

dpbBottomFieldUseCount[i] is incremented by one, where i equals the slotIndex member
of the element.

Valid Usage

• VUID-vkCmdDecodeVideoKHR-None-08249
The bound video session must have been created with a decode operation

• VUID-vkCmdDecodeVideoKHR-None-07011
The bound video session must not be in uninitialized state at the time the command is
executed on the device

• VUID-vkCmdDecodeVideoKHR-opCount-07134
For each active query, the active query index corresponding to the query type of that
query plus opCount must be less than or equal to the last activatable query index
corresponding to the query type of that query plus one

• VUID-vkCmdDecodeVideoKHR-pNext-08365
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, and the pNext chain of pDecodeInfo
includes a VkVideoInlineQueryInfoKHR structure with its queryPool member specifying a
valid VkQueryPool handle, then VkVideoInlineQueryInfoKHR::queryCount must equal
opCount

• VUID-vkCmdDecodeVideoKHR-pNext-08366
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, and the pNext chain of pDecodeInfo
includes a VkVideoInlineQueryInfoKHR structure with its queryPool member specifying a
valid VkQueryPool handle, then all the queries used by the command, as specified by the
VkVideoInlineQueryInfoKHR structure, must be unavailable

• VUID-vkCmdDecodeVideoKHR-queryType-08367
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, then the queryType used to create the
queryPool specified in the VkVideoInlineQueryInfoKHR structure included in the pNext
chain of pDecodeInfo must be VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR

• VUID-vkCmdDecodeVideoKHR-queryPool-08368
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, then the queryPool specified in the
VkVideoInlineQueryInfoKHR structure included in the pNext chain of pDecodeInfo must
have been created with a VkVideoProfileInfoKHR structure included in the pNext chain of
VkQueryPoolCreateInfo identical to the one specified in VkVideoSessionCreateInfoKHR
::pVideoProfile the bound video session was created with

• VUID-vkCmdDecodeVideoKHR-queryType-08369
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, and the queryType used to create the
queryPool specified in the VkVideoInlineQueryInfoKHR structure included in the pNext
chain of pDecodeInfo is VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR, then the VkCommandPool that
commandBuffer was allocated from must have been created with a queue family index that
supports result status queries, as indicated by

3444

VkQueueFamilyQueryResultStatusPropertiesKHR::queryResultStatusSupport

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07135
pDecodeInfo->srcBuffer must be compatible with the video profile the bound video
session was created with

• VUID-vkCmdDecodeVideoKHR-commandBuffer-07136
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
then pDecodeInfo->srcBuffer must not be a protected buffer

• VUID-vkCmdDecodeVideoKHR-commandBuffer-07137
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
then pDecodeInfo->srcBuffer must be a protected buffer

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07138
pDecodeInfo->srcBufferOffset must be an integer multiple of VkVideoCapabilitiesKHR
::minBitstreamBufferOffsetAlignment, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07139
pDecodeInfo->srcBufferRange must be an integer multiple of VkVideoCapabilitiesKHR
::minBitstreamBufferSizeAlignment, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07140
If pDecodeInfo->pSetupReferenceSlot is not NULL and VkVideoDecodeCapabilitiesKHR::flags
does not include VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_COINCIDE_BIT_KHR, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound
video session was created with, then the video picture resources specified by pDecodeInfo-
>dstPictureResource and pDecodeInfo->pSetupReferenceSlot->pPictureResource must not
match

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07141
If pDecodeInfo->pSetupReferenceSlot is not NULL and none of the following is true:

◦ VkVideoDecodeCapabilitiesKHR::flags includes
VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video
session was created with

◦ the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR and VkVideoDecodeAV1ProfileInfoKHR
::filmGrainSupport set to VK_TRUE, and film grain is enabled for the decoded picture

then the video picture resources specified by pDecodeInfo->dstPictureResource and
pDecodeInfo->pSetupReferenceSlot->pPictureResource must match

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07142
pDecodeInfo->dstPictureResource.imageViewBinding must be compatible with the video
profile the bound video session was created with

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07143

3445

The format of pDecodeInfo->dstPictureResource.imageViewBinding must match the
VkVideoSessionCreateInfoKHR::pictureFormat the bound video session was created with

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07144
pDecodeInfo->dstPictureResource.codedOffset must be an integer multiple of
codedOffsetGranularity

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07145
pDecodeInfo->dstPictureResource.codedExtent must be between minCodedExtent and
maxCodedExtent, inclusive, the bound video session was created with

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07146
pDecodeInfo->dstPictureResource.imageViewBinding must have been created with
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR

• VUID-vkCmdDecodeVideoKHR-commandBuffer-07147
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
then pDecodeInfo->dstPictureResource.imageViewBinding must not have been created from
a protected image

• VUID-vkCmdDecodeVideoKHR-commandBuffer-07148
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
then pDecodeInfo->dstPictureResource.imageViewBinding must have been created from a
protected image

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-08376
pDecodeInfo->pSetupReferenceSlot must not be NULL unless the bound video session was
created with VkVideoSessionCreateInfoKHR::maxDpbSlots equal to zero

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07170
If pDecodeInfo->pSetupReferenceSlot is not NULL, then pDecodeInfo->pSetupReferenceSlot-
>slotIndex must be less than the VkVideoSessionCreateInfoKHR::maxDpbSlots specified
when the bound video session was created

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07173
If pDecodeInfo->pSetupReferenceSlot is not NULL, then pDecodeInfo->pSetupReferenceSlot-
>pPictureResource->codedOffset must be an integer multiple of codedOffsetGranularity

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07149
If pDecodeInfo->pSetupReferenceSlot is not NULL, then pDecodeInfo->pSetupReferenceSlot-
>pPictureResource must match one of the bound reference picture resource

• VUID-vkCmdDecodeVideoKHR-activeReferencePictureCount-07150
activeReferencePictureCount must be less than or equal to the
VkVideoSessionCreateInfoKHR::maxActiveReferencePictures specified when the bound
video session was created

• VUID-vkCmdDecodeVideoKHR-slotIndex-07256
The slotIndex member of each element of pDecodeInfo->pReferenceSlots must be less than
the VkVideoSessionCreateInfoKHR::maxDpbSlots specified when the bound video session
was created

• VUID-vkCmdDecodeVideoKHR-codedOffset-07257
The codedOffset member of the VkVideoPictureResourceInfoKHR structure pointed to by
the pPictureResource member of each element of pDecodeInfo->pReferenceSlots must be

3446

an integer multiple of codedOffsetGranularity

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07151
The pPictureResource member of each element of pDecodeInfo->pReferenceSlots must
match one of the bound reference picture resource associated with the DPB slot index
specified in the slotIndex member of that element

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07264
Each video picture resource corresponding to the pPictureResource member specified in
the elements of pDecodeInfo->pReferenceSlots must be unique within pDecodeInfo-
>pReferenceSlots

• VUID-vkCmdDecodeVideoKHR-dpbFrameUseCount-07176
All elements of dpbFrameUseCount must be less than or equal to 1

• VUID-vkCmdDecodeVideoKHR-dpbTopFieldUseCount-07177
All elements of dpbTopFieldUseCount must be less than or equal to 1

• VUID-vkCmdDecodeVideoKHR-dpbBottomFieldUseCount-07178
All elements of dpbBottomFieldUseCount must be less than or equal to 1

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07252
If pDecodeInfo->pSetupReferenceSlot is NULL or pDecodeInfo->pSetupReferenceSlot-
>pPictureResource does not refer to the same image subresource as pDecodeInfo-
>dstPictureResource, then the image subresource referred to by pDecodeInfo-
>dstPictureResource must be in the VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR layout at the
time the video decode operation is executed on the device

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07253
If pDecodeInfo->pSetupReferenceSlot is not NULL and pDecodeInfo->pSetupReferenceSlot-
>pPictureResource refers to the same image subresource as pDecodeInfo-
>dstPictureResource, then the image subresource referred to by pDecodeInfo-
>dstPictureResource must be in the VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR layout at the
time the video decode operation is executed on the device

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07254
If pDecodeInfo->pSetupReferenceSlot is not NULL, then the image subresource referred to by
pDecodeInfo->pSetupReferenceSlot->pPictureResource must be in the
VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR layout at the time the video decode operation is
executed on the device

• VUID-vkCmdDecodeVideoKHR-pPictureResource-07255
The image subresource referred to by the pPictureResource member of each element of
pDecodeInfo->pReferenceSlots must be in the VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR layout
at the time the video decode operation is executed on the device

• VUID-vkCmdDecodeVideoKHR-pNext-07152
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the pNext chain of pDecodeInfo must
include a VkVideoDecodeH264PictureInfoKHR structure

• VUID-vkCmdDecodeVideoKHR-None-07258
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR but was not created with interlaced frame

3447

support, then the decode output picture must represent a frame

• VUID-vkCmdDecodeVideoKHR-pSliceOffsets-07153
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then all elements of the pSliceOffsets
member of the VkVideoDecodeH264PictureInfoKHR structure included in the pNext chain
of pDecodeInfo must be less than pDecodeInfo->srcBufferRange

• VUID-vkCmdDecodeVideoKHR-StdVideoH264SequenceParameterSet-07154
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH264SequenceParameterSet entry with seq_parameter_set_id
matching StdVideoDecodeH264PictureInfo::seq_parameter_set_id that is provided in the
pStdPictureInfo member of the VkVideoDecodeH264PictureInfoKHR structure included in
the pNext chain of pDecodeInfo

• VUID-vkCmdDecodeVideoKHR-StdVideoH264PictureParameterSet-07155
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH264PictureParameterSet entry with seq_parameter_set_id
and pic_parameter_set_id matching StdVideoDecodeH264PictureInfo::seq_parameter_set_id
and StdVideoDecodeH264PictureInfo::pic_parameter_set_id, respectively, that are provided
in the pStdPictureInfo member of the VkVideoDecodeH264PictureInfoKHR structure
included in the pNext chain of pDecodeInfo

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07156
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and pDecodeInfo->pSetupReferenceSlot is
not NULL, then the pNext chain of pDecodeInfo->pSetupReferenceSlot must include a
VkVideoDecodeH264DpbSlotInfoKHR structure

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07259
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR but was not created with interlaced frame
support, and pDecodeInfo->pSetupReferenceSlot is not NULL, then the reconstructed picture
must represent a frame

• VUID-vkCmdDecodeVideoKHR-pNext-07157
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then the pNext chain of each element of
pDecodeInfo->pReferenceSlots must include a VkVideoDecodeH264DpbSlotInfoKHR
structure

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07260
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR but was not created with interlaced frame
support, then each active reference picture corresponding to the elements of pDecodeInfo-
>pReferenceSlots must represent a frame

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07261
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, pDecodeInfo->pSetupReferenceSlot is not
NULL, and the decode output picture represents a frame, then the reconstructed picture

3448

must also represent a frame

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07262
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, pDecodeInfo->pSetupReferenceSlot is not
NULL, and the decode output picture represents a top field, then the reconstructed picture
must also represent a top field

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07263
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, pDecodeInfo->pSetupReferenceSlot is not
NULL, and the decode output picture represents a bottom field, then the reconstructed
picture must also represent a bottom field

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07266
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and an active reference picture
corresponding to any element of pDecodeInfo->pReferenceSlots represents a frame, then
the DPB slot index of the bound video session specified by the slotIndex member of that
element must be currently associated with a frame picture matching the video picture
resource specified by the pPictureResource member of the same element at the time the
command is executed on the device

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07267
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and an active reference picture
corresponding to any element of pDecodeInfo->pReferenceSlots represents a top field, then
the DPB slot index of the bound video session specified by the slotIndex member of that
element must be currently associated with a top field picture matching the video picture
resource specified by the pPictureResource member of the same element at the time the
command is executed on the device

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07268
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and an active reference picture
corresponding to any element of pDecodeInfo->pReferenceSlots represents a bottom field,
then the DPB slot index of the bound video session specified by the slotIndex member of
that element must be currently associated with a bottom field picture matching the video
picture resource specified by the pPictureResource member of the same element at the
time the command is executed on the device

• VUID-vkCmdDecodeVideoKHR-pNext-07158
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the pNext chain of pDecodeInfo must
include a VkVideoDecodeH265PictureInfoKHR structure

• VUID-vkCmdDecodeVideoKHR-pSliceSegmentOffsets-07159
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then all elements of the
pSliceSegmentOffsets member of the VkVideoDecodeH265PictureInfoKHR structure
included in the pNext chain of pDecodeInfo must be less than pDecodeInfo->srcBufferRange

• VUID-vkCmdDecodeVideoKHR-StdVideoH265VideoParameterSet-07160

3449

If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH265VideoParameterSet entry with
vps_video_parameter_set_id matching StdVideoDecodeH265PictureInfo
::sps_video_parameter_set_id that is provided in the pStdPictureInfo member of the
VkVideoDecodeH265PictureInfoKHR structure included in the pNext chain of pDecodeInfo

• VUID-vkCmdDecodeVideoKHR-StdVideoH265SequenceParameterSet-07161
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH265SequenceParameterSet entry with
sps_video_parameter_set_id and sps_seq_parameter_set_id matching
StdVideoDecodeH265PictureInfo::sps_video_parameter_set_id and
StdVideoDecodeH265PictureInfo::pps_seq_parameter_set_id, respectively, that are provided
in the pStdPictureInfo member of the VkVideoDecodeH265PictureInfoKHR structure
included in the pNext chain of pDecodeInfo

• VUID-vkCmdDecodeVideoKHR-StdVideoH265PictureParameterSet-07162
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH265PictureParameterSet entry with
sps_video_parameter_set_id, pps_seq_parameter_set_id, and pps_pic_parameter_set_id
matching StdVideoDecodeH265PictureInfo::sps_video_parameter_set_id,
StdVideoDecodeH265PictureInfo::pps_seq_parameter_set_id, and
StdVideoDecodeH265PictureInfo::pps_pic_parameter_set_id, respectively, that are provided
in the pStdPictureInfo member of the VkVideoDecodeH265PictureInfoKHR structure
included in the pNext chain of pDecodeInfo

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-07163
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR and pDecodeInfo->pSetupReferenceSlot is
not NULL, then the pNext chain of pDecodeInfo->pSetupReferenceSlot must include a
VkVideoDecodeH265DpbSlotInfoKHR structure

• VUID-vkCmdDecodeVideoKHR-pNext-07164
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then the pNext chain of each element of
pDecodeInfo->pReferenceSlots must include a VkVideoDecodeH265DpbSlotInfoKHR
structure

• VUID-vkCmdDecodeVideoKHR-filmGrainSupport-09248
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR and VkVideoDecodeAV1ProfileInfoKHR
::filmGrainSupport set to VK_FALSE, then film grain must not be enabled for the decoded
picture

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-09249
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, pDecodeInfo->pSetupReferenceSlot is not
NULL, and film grain is enabled for the decoded picture, then the video picture resources
specified by pDecodeInfo->dstPictureResource and pDecodeInfo->pSetupReferenceSlot-

3450

>pPictureResource must not match

• VUID-vkCmdDecodeVideoKHR-pNext-09250
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then the pNext chain of pDecodeInfo must
include a VkVideoDecodeAV1PictureInfoKHR structure

• VUID-vkCmdDecodeVideoKHR-frameHeaderOffset-09251
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then the frameHeaderOffset member of the
VkVideoDecodeAV1PictureInfoKHR structure included in the pNext chain of pDecodeInfo
must be less than the minimum of pDecodeInfo->srcBufferRange

• VUID-vkCmdDecodeVideoKHR-pTileOffsets-09253
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then all elements of the pTileOffsets
member of the VkVideoDecodeAV1PictureInfoKHR structure included in the pNext chain
of pDecodeInfo must be less than pDecodeInfo->srcBufferRange

• VUID-vkCmdDecodeVideoKHR-pTileOffsets-09252
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then for each element i of the pTileOffsets
and pTileSizes members of the VkVideoDecodeAV1PictureInfoKHR structure included in
the pNext chain of pDecodeInfo the sum of pTileOffsets[i] and pTileSizes[i] must be less
than or equal to pDecodeInfo->srcBufferRange

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-09254
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR and pDecodeInfo->pSetupReferenceSlot is not
NULL, then the pNext chain of pDecodeInfo->pSetupReferenceSlot must include a
VkVideoDecodeAV1DpbSlotInfoKHR structure

• VUID-vkCmdDecodeVideoKHR-pNext-09255
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then the pNext chain of each element of
pDecodeInfo->pReferenceSlots must include a VkVideoDecodeAV1DpbSlotInfoKHR
structure

• VUID-vkCmdDecodeVideoKHR-referenceNameSlotIndices-09262
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then each element of the
referenceNameSlotIndices array member of the VkVideoDecodeAV1PictureInfoKHR
structure included in the pNext chain of pDecodeInfo must either be negative or must
equal the slotIndex member of one of the elements of pDecodeInfo->pReferenceSlots

• VUID-vkCmdDecodeVideoKHR-slotIndex-09263
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, then the slotIndex member of each element
of pDecodeInfo->pReferenceSlots must equal one of the elements of the
referenceNameSlotIndices array member of the VkVideoDecodeAV1PictureInfoKHR
structure included in the pNext chain of pDecodeInfo

3451

Valid Usage (Implicit)

• VUID-vkCmdDecodeVideoKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDecodeVideoKHR-pDecodeInfo-parameter
pDecodeInfo must be a valid pointer to a valid VkVideoDecodeInfoKHR structure

• VUID-vkCmdDecodeVideoKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDecodeVideoKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support decode operations

• VUID-vkCmdDecodeVideoKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDecodeVideoKHR-videocoding
This command must only be called inside of a video coding scope

• VUID-vkCmdDecodeVideoKHR-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Inside Decode Action

The VkVideoDecodeInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_queue
typedef struct VkVideoDecodeInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoDecodeFlagsKHR flags;
 VkBuffer srcBuffer;
 VkDeviceSize srcBufferOffset;
 VkDeviceSize srcBufferRange;
 VkVideoPictureResourceInfoKHR dstPictureResource;
 const VkVideoReferenceSlotInfoKHR* pSetupReferenceSlot;

3452

 uint32_t referenceSlotCount;
 const VkVideoReferenceSlotInfoKHR* pReferenceSlots;
} VkVideoDecodeInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• srcBuffer is the source video bitstream buffer to read the encoded bitstream from.

• srcBufferOffset is the starting offset in bytes from the start of srcBuffer to read the encoded
bitstream from.

• srcBufferRange is the size in bytes of the encoded bitstream to decode from srcBuffer, starting
from srcBufferOffset.

• dstPictureResource is the video picture resource to use as the decode output picture.

• pSetupReferenceSlot is NULL or a pointer to a VkVideoReferenceSlotInfoKHR structure specifying
the reconstructed picture information.

• referenceSlotCount is the number of elements in the pReferenceSlots array.

• pReferenceSlots is NULL or a pointer to an array of VkVideoReferenceSlotInfoKHR structures
describing the DPB slots and corresponding reference picture resources to use in this video
decode operation (the set of active reference pictures).

Valid Usage

• VUID-VkVideoDecodeInfoKHR-srcBuffer-07165
srcBuffer must have been created with VK_BUFFER_USAGE_VIDEO_DECODE_SRC_BIT_KHR set

• VUID-VkVideoDecodeInfoKHR-srcBufferOffset-07166
srcBufferOffset must be less than the size of srcBuffer

• VUID-VkVideoDecodeInfoKHR-srcBufferRange-07167
srcBufferRange must be less than or equal to the size of srcBuffer minus srcBufferOffset

• VUID-VkVideoDecodeInfoKHR-pSetupReferenceSlot-07168
If pSetupReferenceSlot is not NULL, then its slotIndex member must not be negative

• VUID-VkVideoDecodeInfoKHR-pSetupReferenceSlot-07169
If pSetupReferenceSlot is not NULL, then its pPictureResource must not be NULL

• VUID-VkVideoDecodeInfoKHR-slotIndex-07171
The slotIndex member of each element of pReferenceSlots must not be negative

• VUID-VkVideoDecodeInfoKHR-pPictureResource-07172
The pPictureResource member of each element of pReferenceSlots must not be NULL

Valid Usage (Implicit)

• VUID-VkVideoDecodeInfoKHR-sType-sType

3453

sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_INFO_KHR

• VUID-VkVideoDecodeInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoDecodeAV1PictureInfoKHR,
VkVideoDecodeH264PictureInfoKHR, VkVideoDecodeH265PictureInfoKHR, or
VkVideoInlineQueryInfoKHR

• VUID-VkVideoDecodeInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkVideoDecodeInfoKHR-flags-zerobitmask
flags must be 0

• VUID-VkVideoDecodeInfoKHR-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

• VUID-VkVideoDecodeInfoKHR-dstPictureResource-parameter
dstPictureResource must be a valid VkVideoPictureResourceInfoKHR structure

• VUID-VkVideoDecodeInfoKHR-pSetupReferenceSlot-parameter
If pSetupReferenceSlot is not NULL, pSetupReferenceSlot must be a valid pointer to a valid
VkVideoReferenceSlotInfoKHR structure

• VUID-VkVideoDecodeInfoKHR-pReferenceSlots-parameter
If referenceSlotCount is not 0, pReferenceSlots must be a valid pointer to an array of
referenceSlotCount valid VkVideoReferenceSlotInfoKHR structures

// Provided by VK_KHR_video_decode_queue
typedef VkFlags VkVideoDecodeFlagsKHR;

VkVideoDecodeFlagsKHR is a bitmask type for setting a mask, but is currently reserved for future use.

42.12. H.264 Decode Operations
Video decode operations using an H.264 decode profile can be used to decode elementary video
stream sequences compliant to the ITU-T H.264 Specification.

Note

Refer to the Preamble for information on how the Khronos Intellectual Property
Rights Policy relates to normative references to external materials not created by
Khronos.

This process is performed according to the video decode operation steps with the codec-specific
semantics defined in section 8 of the ITU-T H.264 Specification as follows:

• Syntax elements, derived values, and other parameters are applied from the following
structures:

◦ The StdVideoH264SequenceParameterSet structure corresponding to the active SPS specifying
the H.264 sequence parameter set.

3454

◦ The StdVideoH264PictureParameterSet structure corresponding to the active PPS specifying
the H.264 picture parameter set.

◦ The StdVideoDecodeH264PictureInfo structure specifying the H.264 picture information.

◦ The StdVideoDecodeH264ReferenceInfo structures specifying the H.264 reference information
corresponding to the optional reconstructed picture and any active reference pictures.

• The contents of the provided video bitstream buffer range are interpreted as defined in the
H.264 Decode Bitstream Data Access section.

• Picture data in the video picture resources corresponding to the used active reference pictures,
decode output picture, and optional reconstructed picture is accessed as defined in the H.264
Decode Picture Data Access section.

• The decision on reference picture setup is made according to the parameters specified in the
H.264 picture information.

If the parameters and the bitstream adhere to the syntactic and semantic requirements defined in
the corresponding sections of the ITU-T H.264 Specification, as described above, and the DPB slots
associated with the active reference pictures all refer to valid picture references, then the video
decode operation will complete successfully. Otherwise, the video decode operation may complete
unsuccessfully.

42.12.1. H.264 Decode Bitstream Data Access

If the target decode output picture is a frame, then the video bitstream buffer range should contain
a VCL NAL unit comprised of the slice headers and data of a picture representing an entire frame,
as defined in sections 7.3.3 and 7.3.4, and this data is interpreted as defined in sections 7.4.3 and
7.4.4 of the ITU-T H.264 Specification, respectively.

If the target decode output picture is a field, then the video bitstream buffer range should contain a
VCL NAL unit comprised of the slice headers and data of a picture representing a field, as defined in
sections 7.3.3 and 7.3.4, and this data is interpreted as defined in sections 7.4.3 and 7.4.4 of the ITU-T
H.264 Specification, respectively.

The offsets provided in VkVideoDecodeH264PictureInfoKHR::pSliceOffsets should specify the
starting offsets corresponding to each slice header within the video bitstream buffer range.

42.12.2. H.264 Decode Picture Data Access

The effective imageOffset and imageExtent corresponding to a decode output picture, reference
picture, or reconstructed picture used in video decode operations with an H.264 decode profile are
defined as follows:

• imageOffset is (codedOffset.x,codedOffset.y) and imageExtent is (codedExtent.width,
codedExtent.height), if the picture represents a frame.

• imageOffset is (codedOffset.x,codedOffset.y) and imageExtent is (codedExtent.width,
codedExtent.height), if the picture represents a field and the picture layout of the used H.264
decode profile is VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_INTERLEAVED_LINES_BIT_KHR.

• imageOffset is (codedOffset.x,codedOffset.y) and imageExtent is (codedExtent.width,

3455

codedExtent.height / 2), if the picture represents a field and the picture layout of the used H.264
decode profile is VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR.

Where codedOffset and codedExtent are the members of the VkVideoPictureResourceInfoKHR
structure corresponding to the picture.

However, accesses to image data within a video picture resource happen at the granularity
indicated by VkVideoCapabilitiesKHR::pictureAccessGranularity, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile. This means that the complete
image subregion accessed by video coding operations using an H.264 decode profile for the video
picture resource is defined as the set of texels within the coordinate range:

([startX,endX),[startY,endY))

Where:

• startX equals imageOffset.x rounded down to the nearest integer multiple of
pictureAccessGranularity.width;

• endX equals imageOffset.x + imageExtent.width rounded up to the nearest integer multiple of
pictureAccessGranularity.width and clamped to the width of the image subresource referred to
by the corresponding VkVideoPictureResourceInfoKHR structure;

• startY equals imageOffset.y rounded down to the nearest integer multiple of
pictureAccessGranularity.height;

• endY equals imageOffset.y + imageExtent.height rounded up to the nearest integer multiple of
pictureAccessGranularity.height and clamped to the height of the image subresource referred
to by the corresponding VkVideoPictureResourceInfoKHR structure.

In case of video decode operations using an H.264 decode profile, any access to a picture at the
coordinates (x,y), as defined by the ITU-T H.264 Specification, is an access to the image subresource
referred to by the corresponding VkVideoPictureResourceInfoKHR structure at the texel
coordinates specified below:

• (x,y), if the accessed picture represents a frame.

• (x,y × 2), if the accessed picture represents a top field and the picture layout of the used H.264
decode profile is VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_INTERLEAVED_LINES_BIT_KHR.

• (x,y × 2 + 1), if the accessed picture represents a bottom field and the picture layout of the used
H.264 decode profile is
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_INTERLEAVED_LINES_BIT_KHR.

• (x,y), if the accessed picture represents a top field and the picture layout of the used H.264
decode profile is VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR.

• (codedOffset.x + x,codedOffset.y + y), if the accessed picture represents a bottom field and the
picture layout of the used H.264 decode profile is
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR.

Where codedOffset is the member of the corresponding VkVideoPictureResourceInfoKHR structure.

3456

42.12.3. H.264 Decode Profile

A video profile supporting H.264 video decode operations is specified by setting
VkVideoProfileInfoKHR::videoCodecOperation to VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR and
adding a VkVideoDecodeH264ProfileInfoKHR structure to the VkVideoProfileInfoKHR::pNext chain.

The VkVideoDecodeH264ProfileInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h264
typedef struct VkVideoDecodeH264ProfileInfoKHR {
 VkStructureType sType;
 const void* pNext;
 StdVideoH264ProfileIdc stdProfileIdc;
 VkVideoDecodeH264PictureLayoutFlagBitsKHR pictureLayout;
} VkVideoDecodeH264ProfileInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdProfileIdc is a StdVideoH264ProfileIdc value specifying the H.264 codec profile IDC, as
defined in section A.2 of the ITU-T H.264 Specification.

• pictureLayout is a VkVideoDecodeH264PictureLayoutFlagBitsKHR value specifying the picture
layout used by the H.264 video sequence to be decoded.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH264ProfileInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_PROFILE_INFO_KHR

• VUID-VkVideoDecodeH264ProfileInfoKHR-pictureLayout-parameter
If pictureLayout is not 0, pictureLayout must be a valid
VkVideoDecodeH264PictureLayoutFlagBitsKHR value

The H.264 video decode picture layout flags are defined as follows:

// Provided by VK_KHR_video_decode_h264
typedef enum VkVideoDecodeH264PictureLayoutFlagBitsKHR {
 VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_PROGRESSIVE_KHR = 0,
 VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_INTERLEAVED_LINES_BIT_KHR =
0x00000001,
 VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR =
0x00000002,
} VkVideoDecodeH264PictureLayoutFlagBitsKHR;

• VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_PROGRESSIVE_KHR specifies support for progressive content.
This flag has the value 0.

3457

• VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_INTERLEAVED_LINES_BIT_KHR specifies support
for or use of a picture layout for interlaced content where all lines belonging to the top field are
decoded to the even-numbered lines within the picture resource, and all lines belonging to the
bottom field are decoded to the odd-numbered lines within the picture resource.

• VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR specifies support for
or use of a picture layout for interlaced content where all lines belonging to a field are grouped
together in a single image subregion, and the two fields comprising the frame can be stored in
separate image subregions of the same image subresource or in separate image subresources.

// Provided by VK_KHR_video_decode_h264
typedef VkFlags VkVideoDecodeH264PictureLayoutFlagsKHR;

VkVideoDecodeH264PictureLayoutFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoDecodeH264PictureLayoutFlagBitsKHR.

42.12.4. H.264 Decode Capabilities

When calling vkGetPhysicalDeviceVideoCapabilitiesKHR to query the capabilities for an H.264
decode profile, the VkVideoCapabilitiesKHR::pNext chain must include a
VkVideoDecodeH264CapabilitiesKHR structure that will be filled with the profile-specific capabilities.

The VkVideoDecodeH264CapabilitiesKHR structure is defined as:

// Provided by VK_KHR_video_decode_h264
typedef struct VkVideoDecodeH264CapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 StdVideoH264LevelIdc maxLevelIdc;
 VkOffset2D fieldOffsetGranularity;
} VkVideoDecodeH264CapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxLevelIdc is a StdVideoH264LevelIdc value indicating the maximum H.264 level supported by
the profile, where enum constant STD_VIDEO_H264_LEVEL_IDC_<major>_<minor> identifies H.264
level <major>.<minor> as defined in section A.3 of the ITU-T H.264 Specification.

• fieldOffsetGranularity is the minimum alignment for VkVideoPictureResourceInfoKHR
::codedOffset specified for a video picture resource when using the picture layout
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH264CapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_CAPABILITIES_KHR

3458

42.12.5. H.264 Decode Parameter Sets

Video session parameters objects created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR can contain the following types of parameters:

H.264 Sequence Parameter Sets (SPS)

Represented by StdVideoH264SequenceParameterSet structures and interpreted as follows:

• reserved1 and reserved2 are used only for padding purposes and are otherwise ignored;

• seq_parameter_set_id is used as the key of the SPS entry;

• level_idc is one of the enum constants STD_VIDEO_H264_LEVEL_IDC_<major>_<minor> identifying
the H.264 level <major>.<minor> as defined in section A.3 of the ITU-T H.264 Specification;

• if flags.seq_scaling_matrix_present_flag is set, then the StdVideoH264ScalingLists structure
pointed to by pScalingLists is interpreted as follows:

◦ scaling_list_present_mask is a bitmask where bit index i corresponds to
seq_scaling_list_present_flag[i] as defined in section 7.4.2.1 of the ITU-T H.264
Specification;

◦ use_default_scaling_matrix_mask is a bitmask where bit index i corresponds to
UseDefaultScalingMatrix4x4Flag[i], when i < 6, or corresponds to
UseDefaultScalingMatrix8x8Flag[i-6], otherwise, as defined in section 7.3.2.1 of the ITU-T
H.264 Specification;

◦ ScalingList4x4 and ScalingList8x8 correspond to the identically named syntax elements
defined in section 7.3.2.1 of the ITU-T H.264 Specification;

• if flags.vui_parameters_present_flag is set, then pSequenceParameterSetVui is a pointer to a
StdVideoH264SequenceParameterSetVui structure that is interpreted as follows:

◦ reserved1 is used only for padding purposes and is otherwise ignored;

◦ if flags.nal_hrd_parameters_present_flag or flags.vcl_hrd_parameters_present_flag is set,
then the StdVideoH264HrdParameters structure pointed to by pHrdParameters is interpreted
as follows:

▪ reserved1 is used only for padding purposes and is otherwise ignored;

▪ all other members of StdVideoH264HrdParameters are interpreted as defined in section
E.2.2 of the ITU-T H.264 Specification;

◦ all other members of StdVideoH264SequenceParameterSetVui are interpreted as defined in
section E.2.1 of the ITU-T H.264 Specification;

• all other members of StdVideoH264SequenceParameterSet are interpreted as defined in section
7.4.2.1 of the ITU-T H.264 Specification.

H.264 Picture Parameter Sets (PPS)

Represented by StdVideoH264PictureParameterSet structures and interpreted as follows:

3459

• the pair constructed from seq_parameter_set_id and pic_parameter_set_id is used as the key
of the PPS entry;

• if flags.pic_scaling_matrix_present_flag is set, then the StdVideoH264ScalingLists structure
pointed to by pScalingLists is interpreted as follows:

◦ scaling_list_present_mask is a bitmask where bit index i corresponds to
pic_scaling_list_present_flag[i] as defined in section 7.4.2.2 of the ITU-T H.264
Specification;

◦ use_default_scaling_matrix_mask is a bitmask where bit index i corresponds to
UseDefaultScalingMatrix4x4Flag[i], when i < 6, or corresponds to
UseDefaultScalingMatrix8x8Flag[i-6], otherwise, as defined in section 7.3.2.2 of the ITU-T
H.264 Specification;

◦ ScalingList4x4 and ScalingList8x8 correspond to the identically named syntax elements
defined in section 7.3.2.2 of the ITU-T H.264 Specification;

• all other members of StdVideoH264PictureParameterSet are interpreted as defined in section
7.4.2.2 of the ITU-T H.264 Specification.

When a video session parameters object is created with the codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, the VkVideoSessionParametersCreateInfoKHR::pNext
chain must include a VkVideoDecodeH264SessionParametersCreateInfoKHR structure specifying the
capacity and initial contents of the object.

The VkVideoDecodeH264SessionParametersCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h264
typedef struct VkVideoDecodeH264SessionParametersCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t maxStdSPSCount;
 uint32_t maxStdPPSCount;
 const VkVideoDecodeH264SessionParametersAddInfoKHR* pParametersAddInfo;
} VkVideoDecodeH264SessionParametersCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxStdSPSCount is the maximum number of H.264 SPS entries the created
VkVideoSessionParametersKHR can contain.

• maxStdPPSCount is the maximum number of H.264 PPS entries the created
VkVideoSessionParametersKHR can contain.

• pParametersAddInfo is NULL or a pointer to a VkVideoDecodeH264SessionParametersAddInfoKHR
structure specifying H.264 parameters to add upon object creation.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH264SessionParametersCreateInfoKHR-sType-sType

3460

sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_SESSION_PARAMETERS_CREATE_INFO_KHR

• VUID-VkVideoDecodeH264SessionParametersCreateInfoKHR-pParametersAddInfo-
parameter
If pParametersAddInfo is not NULL, pParametersAddInfo must be a valid pointer to a valid
VkVideoDecodeH264SessionParametersAddInfoKHR structure

The VkVideoDecodeH264SessionParametersAddInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h264
typedef struct VkVideoDecodeH264SessionParametersAddInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t stdSPSCount;
 const StdVideoH264SequenceParameterSet* pStdSPSs;
 uint32_t stdPPSCount;
 const StdVideoH264PictureParameterSet* pStdPPSs;
} VkVideoDecodeH264SessionParametersAddInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdSPSCount is the number of elements in the pStdSPSs array.

• pStdSPSs is a pointer to an array of StdVideoH264SequenceParameterSet structures describing the
H.264 SPS entries to add.

• stdPPSCount is the number of elements in the pStdPPSs array.

• pStdPPSs is a pointer to an array of StdVideoH264PictureParameterSet structures describing the
H.264 PPS entries to add.

This structure can be specified in the following places:

• In the pParametersAddInfo member of the VkVideoDecodeH264SessionParametersCreateInfoKHR
structure specified in the pNext chain of VkVideoSessionParametersCreateInfoKHR used to
create a video session parameters object. In this case, if the video codec operation the video
session parameters object is created with is VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then
it defines the set of initial parameters to add to the created object (see Creating Video Session
Parameters).

• In the pNext chain of VkVideoSessionParametersUpdateInfoKHR. In this case, if the video codec
operation the video session parameters object to be updated was created with is
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, then it defines the set of parameters to add to it
(see Updating Video Session Parameters).

Valid Usage

• VUID-VkVideoDecodeH264SessionParametersAddInfoKHR-None-04825
The seq_parameter_set_id member of each StdVideoH264SequenceParameterSet structure

3461

specified in the elements of pStdSPSs must be unique within pStdSPSs

• VUID-VkVideoDecodeH264SessionParametersAddInfoKHR-None-04826
The pair constructed from the seq_parameter_set_id and pic_parameter_set_id members of
each StdVideoH264PictureParameterSet structure specified in the elements of pStdPPSs
must be unique within pStdPPSs

Valid Usage (Implicit)

• VUID-VkVideoDecodeH264SessionParametersAddInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_SESSION_PARAMETERS_ADD_INFO_KHR

• VUID-VkVideoDecodeH264SessionParametersAddInfoKHR-pStdSPSs-parameter
If stdSPSCount is not 0, pStdSPSs must be a valid pointer to an array of stdSPSCount
StdVideoH264SequenceParameterSet values

• VUID-VkVideoDecodeH264SessionParametersAddInfoKHR-pStdPPSs-parameter
If stdPPSCount is not 0, pStdPPSs must be a valid pointer to an array of stdPPSCount
StdVideoH264PictureParameterSet values

42.12.6. H.264 Decoding Parameters

The VkVideoDecodeH264PictureInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h264
typedef struct VkVideoDecodeH264PictureInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const StdVideoDecodeH264PictureInfo* pStdPictureInfo;
 uint32_t sliceCount;
 const uint32_t* pSliceOffsets;
} VkVideoDecodeH264PictureInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdPictureInfo is a pointer to a StdVideoDecodeH264PictureInfo structure specifying H.264
picture information.

• sliceCount is the number of elements in pSliceOffsets.

• pSliceOffsets is a pointer to an array of sliceCount offsets specifying the start offset of the slices
of the picture within the video bitstream buffer range specified in VkVideoDecodeInfoKHR.

This structure is specified in the pNext chain of the VkVideoDecodeInfoKHR structure passed to
vkCmdDecodeVideoKHR to specify the codec-specific picture information for an H.264 decode
operation.

3462

Decode Output Picture Information

When this structure is specified in the pNext chain of the VkVideoDecodeInfoKHR structure
passed to vkCmdDecodeVideoKHR, the information related to the decode output picture is
defined as follows:

• If pStdPictureInfo->flags.field_pic_flag is not set, then the picture represents a frame.

• If pStdPictureInfo->flags.field_pic_flag is set, then the picture represents a field.
Specifically:

◦ If pStdPictureInfo->flags.bottom_field_flag is not set, then the picture represents the top
field of the frame.

◦ If pStdPictureInfo->flags.bottom_field_flag is set, then the picture represents the bottom
field of the frame.

• The image subregion used is determined according to the H.264 Decode Picture Data Access
section.

• The decode output picture is associated with the H.264 picture information provided in
pStdPictureInfo.

Std Picture Information

The members of the StdVideoDecodeH264PictureInfo structure pointed to by pStdPictureInfo are
interpreted as follows:

• reserved1 and reserved2 are used only for padding purposes and are otherwise ignored;

• flags.is_intra as defined in section 3.73 of the ITU-T H.264 Specification;

• flags.is_reference as defined in section 3.136 of the ITU-T H.264 Specification;

• flags.complementary_field_pair as defined in section 3.35 of the ITU-T H.264 Specification;

• seq_parameter_set_id and pic_parameter_set_id are used to identify the active parameter sets,
as described below;

• all other members are interpreted as defined in section 7.4.3 of the ITU-T H.264 Specification.

Reference picture setup is controlled by the value of StdVideoDecodeH264PictureInfo
::flags.is_reference. If it is set and a reconstructed picture is specified, then the latter is used as the
target of picture reconstruction to activate the DPB slot specified in pDecodeInfo-
>pSetupReferenceSlot->slotIndex. If StdVideoDecodeH264PictureInfo::flags.is_reference is not set,
but a reconstructed picture is specified, then the corresponding picture reference associated with
the DPB slot is invalidated, as described in the DPB Slot States section.

Active Parameter Sets

The members of the StdVideoDecodeH264PictureInfo structure pointed to by pStdPictureInfo are
used to select the active parameter sets to use from the bound video session parameters object,
as follows:

• The active SPS is the SPS identified by the key specified in StdVideoDecodeH264PictureInfo
::seq_parameter_set_id.

• The active PPS is the PPS identified by the key specified by the pair constructed from

3463

StdVideoDecodeH264PictureInfo::seq_parameter_set_id and StdVideoDecodeH264PictureInfo
::pic_parameter_set_id.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH264PictureInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_PICTURE_INFO_KHR

• VUID-VkVideoDecodeH264PictureInfoKHR-pStdPictureInfo-parameter
pStdPictureInfo must be a valid pointer to a valid StdVideoDecodeH264PictureInfo value

• VUID-VkVideoDecodeH264PictureInfoKHR-pSliceOffsets-parameter
pSliceOffsets must be a valid pointer to an array of sliceCount uint32_t values

• VUID-VkVideoDecodeH264PictureInfoKHR-sliceCount-arraylength
sliceCount must be greater than 0

The VkVideoDecodeH264DpbSlotInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h264
typedef struct VkVideoDecodeH264DpbSlotInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const StdVideoDecodeH264ReferenceInfo* pStdReferenceInfo;
} VkVideoDecodeH264DpbSlotInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdReferenceInfo is a pointer to a StdVideoDecodeH264ReferenceInfo structure specifying H.264
reference information.

This structure is specified in the pNext chain of VkVideoDecodeInfoKHR::pSetupReferenceSlot, if not
NULL, and the pNext chain of the elements of VkVideoDecodeInfoKHR::pReferenceSlots to specify the
codec-specific reference picture information for an H.264 decode operation.

Active Reference Picture Information

When this structure is specified in the pNext chain of the elements of VkVideoDecodeInfoKHR
::pReferenceSlots, one or two elements are added to the list of active reference pictures used by
the video decode operation for each element of VkVideoDecodeInfoKHR::pReferenceSlots as
follows:

• If neither pStdReferenceInfo->flags.top_field_flag nor pStdReferenceInfo-
>flags.bottom_field_flag is set, then the picture is added as a frame reference to the list of
active reference pictures.

• If pStdReferenceInfo->flags.top_field_flag is set, then the picture is added as a top field
reference to the list of active reference pictures.

• If pStdReferenceInfo->flags.bottom_field_flag is set, then the picture is added as a bottom

3464

field reference to the list of active reference pictures.

• For each added reference picture, the corresponding image subregion used is determined
according to the H.264 Decode Picture Data Access section.

• Each added reference picture is associated with the DPB slot index specified in the slotIndex
member of the corresponding element of VkVideoDecodeInfoKHR::pReferenceSlots.

• Each added reference picture is associated with the H.264 reference information provided in
pStdReferenceInfo.

Note

When both the top and bottom field of an interlaced frame currently associated
with a DPB slot is intended to be used as an active reference picture and both
fields are stored in the same image subregion (which is the case when using
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_INTERLEAVED_LINES_BIT_KHR which
stores the two fields at even and odd scanlines of the same image subregion), both
references have to be provided through a single VkVideoReferenceSlotInfoKHR
structure that has both flags.top_field_flag and flags.bottom_field_flag set in
the StdVideoDecodeH264ReferenceInfo structure pointed to by the pStdReferenceInfo
member of the VkVideoDecodeH264DpbSlotInfoKHR structure included in the
corresponding VkVideoReferenceSlotInfoKHR structure’s pNext chain. However,
this approach can only be used when both fields are stored in the same image
subregion. If that is not the case (e.g. when using
VK_VIDEO_DECODE_H264_PICTURE_LAYOUT_INTERLACED_SEPARATE_PLANES_BIT_KHR which
requires separate codedOffset values for the two fields and also allows storing the
two fields of a frame in separate image layers or entirely separate images), then a
separate VkVideoReferenceSlotInfoKHR structure needs to be provided for
referencing the two fields, each only setting one of flags.top_field_flag or
flags.bottom_field_flag, and providing the appropriate video picture resource
information in VkVideoReferenceSlotInfoKHR::pPictureResource.

Reconstructed Picture Information

When this structure is specified in the pNext chain of VkVideoDecodeInfoKHR
::pSetupReferenceSlot, the information related to the reconstructed picture is defined as follows:

• If neither pStdReferenceInfo->flags.top_field_flag nor pStdReferenceInfo-
>flags.bottom_field_flag is set, then the picture represents a frame.

• If pStdReferenceInfo->flags.top_field_flag is set, then the picture represents a field,
specifically, the top field of the frame.

• If pStdReferenceInfo->flags.bottom_field_flag is set, then the picture represents a field,
specifically, the bottom field of the frame.

• The image subregion used is determined according to the H.264 Decode Picture Data Access
section.

• If reference picture setup is requested, then the reconstructed picture is used to activate the
DPB slot with the index specified in VkVideoDecodeInfoKHR::pSetupReferenceSlot-
>slotIndex.

3465

• The reconstructed picture is associated with the H.264 reference information provided in
pStdReferenceInfo.

Std Reference Information

The members of the StdVideoDecodeH264ReferenceInfo structure pointed to by pStdReferenceInfo
are interpreted as follows:

• flags.top_field_flag is used to indicate whether the reference is used as top field reference;

• flags.bottom_field_flag is used to indicate whether the reference is used as bottom field
reference;

• flags.used_for_long_term_reference is used to indicate whether the picture is marked as
“used for long-term reference” as defined in section 8.2.5.1 of the ITU-T H.264 Specification;

• flags.is_non_existing is used to indicate whether the picture is marked as “non-existing” as
defined in section 8.2.5.2 of the ITU-T H.264 Specification;

• all other members are interpreted as defined in section 8.2 of the ITU-T H.264 Specification.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH264DpbSlotInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_DPB_SLOT_INFO_KHR

• VUID-VkVideoDecodeH264DpbSlotInfoKHR-pStdReferenceInfo-parameter
pStdReferenceInfo must be a valid pointer to a valid StdVideoDecodeH264ReferenceInfo
value

42.12.7. H.264 Decode Requirements

This section describes the required H.264 decoding capabilities for physical devices that have at
least one queue family that supports the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR, as returned by
vkGetPhysicalDeviceQueueFamilyProperties2 in VkQueueFamilyVideoPropertiesKHR
::videoCodecOperations.

Table 51. Required Video Std Header Versions

Video Std Header Name Version

vulkan_video_codec_h264std_decode 1.0.0

Table 52. Required Video Capabilities

Video Capability Requirement Requirement
Type1

VkVideoCapabilitiesKHR

flags - min

minBitstreamBufferOffsetAlignment 4096 max

3466

Video Capability Requirement Requirement
Type1

minBitstreamBufferSizeAlignment 4096 max

pictureAccessGranularity (64,64) max

minCodedExtent - max

maxCodedExtent - min

maxDpbSlots 0 min

maxActiveReferencePictures 0 min

VkVideoDecodeCapabilitiesKHR

flags VK_VIDEO_DECODE_CAPAB
ILITY_DPB_AND_OUTPUT_
COINCIDE_BIT_KHR or
VK_VIDEO_DECODE_CAPAB
ILITY_DPB_AND_OUTPUT_
DISTINCT_BIT_KHR

min

VkVideoDecodeH264CapabilitiesKHR

maxLevelIdc STD_VIDEO_H264_LEVEL_
IDC_1_0

min

fieldOffsetGranularity (0,0) except for
profiles using
VK_VIDEO_DECODE_H264_
PICTURE_LAYOUT_INTERL
ACED_SEPARATE_PLANES_
BIT_KHR

implementation-
dependent

1

The Requirement Type column specifies the requirement is either the minimum value all
implementations must support, the maximum value all implementations must support, or the
exact value all implementations must support. For bitmasks a minimum value is the least bits all
implementations must set, but they may have additional bits set beyond this minimum.

42.13. H.265 Decode Operations
Video decode operations using an H.265 decode profile can be used to decode elementary video
stream sequences compliant to the ITU-T H.265 Specification.

Note

Refer to the Preamble for information on how the Khronos Intellectual Property
Rights Policy relates to normative references to external materials not created by
Khronos.

This process is performed according to the video decode operation steps with the codec-specific
semantics defined in section 8 of ITU-T H.265 Specification:

• Syntax elements, derived values, and other parameters are applied from the following

3467

structures:

◦ The StdVideoH265VideoParameterSet structure corresponding to the active VPS specifying the
H.265 video parameter set.

◦ The StdVideoH265SequenceParameterSet structure corresponding to the active SPS specifying
the H.265 sequence parameter set.

◦ The StdVideoH265PictureParameterSet structure corresponding to the active PPS specifying
the H.265 picture parameter set.

◦ The StdVideoDecodeH265PictureInfo structure specifying the H.265 picture information.

◦ The StdVideoDecodeH265ReferenceInfo structures specifying the H.265 reference information
corresponding to the optional reconstructed picture and any active reference pictures.

• The contents of the provided video bitstream buffer range are interpreted as defined in the
H.265 Decode Bitstream Data Access section.

• Picture data in the video picture resources corresponding to the used active reference pictures,
decode output picture, and optional reconstructed picture is accessed as defined in the H.265
Decode Picture Data Access section.

• The decision on reference picture setup is made according to the parameters specified in the
H.265 picture information.

If the parameters and the bitstream adhere to the syntactic and semantic requirements defined in
the corresponding sections of the ITU-T H.265 Specification, as described above, and the DPB slots
associated with the active reference pictures all refer to valid picture references, then the video
decode operation will complete successfully. Otherwise, the video decode operation may complete
unsuccessfully.

42.13.1. H.265 Decode Bitstream Data Access

The video bitstream buffer range should contain a VCL NAL unit comprised of the slice segment
headers and data of a picture representing a frame, as defined in sections 7.3.6 and 7.3.8, and this
data is interpreted as defined in sections 7.4.7 and 7.4.9 of the ITU-T H.265 Specification,
respectively.

The offsets provided in VkVideoDecodeH265PictureInfoKHR::pSliceSegmentOffsets should specify
the starting offsets corresponding to each slice segment header within the video bitstream buffer
range.

42.13.2. H.265 Decode Picture Data Access

Accesses to image data within a video picture resource happen at the granularity indicated by
VkVideoCapabilitiesKHR::pictureAccessGranularity, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile. Accordingly, the complete
image subregion of a decode output picture, reference picture, or reconstructed picture accessed by
video coding operations using an H.265 decode profile is defined as the set of texels within the
coordinate range:

3468

([0,endX),[0,endY))

Where:

• endX equals codedExtent.width rounded up to the nearest integer multiple of
pictureAccessGranularity.width and clamped to the width of the image subresource referred to
by the corresponding VkVideoPictureResourceInfoKHR structure;

• endY equals codedExtent.height rounded up to the nearest integer multiple of
pictureAccessGranularity.height and clamped to the height of the image subresource referred
to by the corresponding VkVideoPictureResourceInfoKHR structure;

Where codedExtent is the member of the VkVideoPictureResourceInfoKHR structure corresponding
to the picture.

In case of video decode operations using an H.265 decode profile, any access to a picture at the
coordinates (x,y), as defined by the ITU-T H.265 Specification, is an access to the image subresource
referred to by the corresponding VkVideoPictureResourceInfoKHR structure at the texel
coordinates (x,y).

42.13.3. H.265 Decode Profile

A video profile supporting H.265 video decode operations is specified by setting
VkVideoProfileInfoKHR::videoCodecOperation to VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR and
adding a VkVideoDecodeH265ProfileInfoKHR structure to the VkVideoProfileInfoKHR::pNext chain.

The VkVideoDecodeH265ProfileInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h265
typedef struct VkVideoDecodeH265ProfileInfoKHR {
 VkStructureType sType;
 const void* pNext;
 StdVideoH265ProfileIdc stdProfileIdc;
} VkVideoDecodeH265ProfileInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdProfileIdc is a StdVideoH265ProfileIdc value specifying the H.265 codec profile IDC, as
defined in section A.3 of the ITU-T H.265 Specification.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH265ProfileInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_PROFILE_INFO_KHR

3469

42.13.4. H.265 Decode Capabilities

When calling vkGetPhysicalDeviceVideoCapabilitiesKHR to query the capabilities for an H.265
decode profile, the VkVideoCapabilitiesKHR::pNext chain must include a
VkVideoDecodeH265CapabilitiesKHR structure that will be filled with the profile-specific capabilities.

The VkVideoDecodeH265CapabilitiesKHR structure is defined as:

// Provided by VK_KHR_video_decode_h265
typedef struct VkVideoDecodeH265CapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 StdVideoH265LevelIdc maxLevelIdc;
} VkVideoDecodeH265CapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxLevelIdc is a StdVideoH265LevelIdc value indicating the maximum H.265 level supported by
the profile, where enum constant STD_VIDEO_H265_LEVEL_IDC_<major>_<minor> identifies H.265
level <major>.<minor> as defined in section A.4 of the ITU-T H.265 Specification.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH265CapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_CAPABILITIES_KHR

42.13.5. H.265 Decode Parameter Sets

Video session parameters objects created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR can contain the following types of parameters:

H.265 Video Parameter Sets (VPS)

Represented by StdVideoH265VideoParameterSet structures and interpreted as follows:

• reserved1, reserved2, and reserved3 are used only for padding purposes and are otherwise
ignored;

• vps_video_parameter_set_id is used as the key of the VPS entry;

• the max_latency_increase_plus1, max_dec_pic_buffering_minus1, and max_num_reorder_pics
members of the StdVideoH265DecPicBufMgr structure pointed to by pDecPicBufMgr correspond
to vps_max_latency_increase_plus1, vps_max_dec_pic_buffering_minus1, and
vps_max_num_reorder_pics, respectively, as defined in section 7.4.3.1 of the ITU-T H.265
Specification;

• the StdVideoH265HrdParameters structure pointed to by pHrdParameters is interpreted as

3470

follows:

◦ reserved is used only for padding purposes and is otherwise ignored;

◦ flags.fixed_pic_rate_general_flag is a bitmask where bit index i corresponds to
fixed_pic_rate_general_flag[i] as defined in section E.3.2 of the ITU-T H.265
Specification;

◦ flags.fixed_pic_rate_within_cvs_flag is a bitmask where bit index i corresponds to
fixed_pic_rate_within_cvs_flag[i] as defined in section E.3.2 of the ITU-T H.265
Specification;

◦ flags.low_delay_hrd_flag is a bitmask where bit index i corresponds to
low_delay_hrd_flag[i] as defined in section E.3.2 of the ITU-T H.265 Specification;

◦ if flags.nal_hrd_parameters_present_flag is set, then pSubLayerHrdParametersNal is a
pointer to an array of vps_max_sub_layers_minus1 + 1 number of
StdVideoH265SubLayerHrdParameters structures where vps_max_sub_layers_minus1 is the
corresponding member of the encompassing StdVideoH265VideoParameterSet structure
and each element is interpreted as follows:

▪ cbr_flag is a bitmask where bit index i corresponds to cbr_flag[i] as defined in
section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of the StdVideoH265SubLayerHrdParameters structure are interpreted
as defined in section E.3.3 of the ITU-T H.265 Specification;

◦ if flags.vcl_hrd_parameters_present_flag is set, then pSubLayerHrdParametersVcl is a
pointer to an array of vps_max_sub_layers_minus1 + 1 number of
StdVideoH265SubLayerHrdParameters structures where vps_max_sub_layers_minus1 is the
corresponding member of the encompassing StdVideoH265VideoParameterSet structure
and each element is interpreted as follows:

▪ cbr_flag is a bitmask where bit index i corresponds to cbr_flag[i] as defined in
section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of the StdVideoH265SubLayerHrdParameters structure are interpreted
as defined in section E.3.3 of the ITU-T H.265 Specification;

◦ all other members of StdVideoH265HrdParameters are interpreted as defined in section
E.3.2 of the ITU-T H.265 Specification;

• the StdVideoH265ProfileTierLevel structure pointed to by pProfileTierLevel are interpreted
as follows:

◦ general_level_idc is one of the enum constants STD_VIDEO_H265_LEVEL_IDC_<major>_<minor>
identifying the H.265 level <major>.<minor> as defined in section A.4 of the ITU-T H.265
Specification;

◦ all other members of StdVideoH265ProfileTierLevel are interpreted as defined in section
7.4.4 of the ITU-T H.265 Specification;

• all other members of StdVideoH265VideoParameterSet are interpreted as defined in section
7.4.3.1 of the ITU-T H.265 Specification.

3471

H.265 Sequence Parameter Sets (SPS)

Represented by StdVideoH265SequenceParameterSet structures and interpreted as follows:

• reserved1 and reserved2 are used only for padding purposes and are otherwise ignored;

• the pair constructed from sps_video_parameter_set_id and sps_seq_parameter_set_id is used
as the key of the SPS entry;

• the StdVideoH265ProfileTierLevel structure pointed to by pProfileTierLevel are interpreted
as follows:

◦ general_level_idc is one of the enum constants STD_VIDEO_H265_LEVEL_IDC_<major>_<minor>
identifying the H.265 level <major>.<minor> as defined in section A.4 of the ITU-T H.265
Specification;

◦ all other members of StdVideoH265ProfileTierLevel are interpreted as defined in section
7.4.4 of the ITU-T H.265 Specification;

• the max_latency_increase_plus1, max_dec_pic_buffering_minus1, and max_num_reorder_pics
members of the StdVideoH265DecPicBufMgr structure pointed to by pDecPicBufMgr correspond
to sps_max_latency_increase_plus1, sps_max_dec_pic_buffering_minus1, and
sps_max_num_reorder_pics, respectively, as defined in section 7.4.3.2 of the ITU-T H.265
Specification;

• if flags.sps_scaling_list_data_present_flag is set, then the StdVideoH265ScalingLists
structure pointed to by pScalingLists is interpreted as follows:

◦ ScalingList4x4, ScalingList8x8, ScalingList16x16, and ScalingList32x32 correspond to
ScalingList[0], ScalingList[1], ScalingList[2], and ScalingList[3], respectively, as
defined in section 7.3.4 of the ITU-T H.265 Specification;

◦ ScalingListDCCoef16x16 and ScalingListDCCoef32x32 correspond to
scaling_list_dc_coef_minus8[0] and scaling_list_dc_coef_minus8[1], respectively, as
defined in section 7.3.4 of the ITU-T H.265 Specification;

• pShortTermRefPicSet is a pointer to an array of num_short_term_ref_pic_sets number of
StdVideoH265ShortTermRefPicSet structures where each element is interpreted as follows:

◦ reserved1, reserved2, and reserved3 are used only for padding purposes and are otherwise
ignored;

◦ used_by_curr_pic_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_flag[i] as defined in section 7.4.8 of the ITU-T H.265 Specification;

◦ use_delta_flag is a bitmask where bit index i corresponds to use_delta_flag[i] as defined
in section 7.4.8 of the ITU-T H.265 Specification;

◦ used_by_curr_pic_s0_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_s0_flag[i] as defined in section 7.4.8 of the ITU-T H.265 Specification;

◦ used_by_curr_pic_s1_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_s1_flag[i] as defined in section 7.4.8 of the ITU-T H.265 Specification;

◦ all other members of StdVideoH265ShortTermRefPicSet are interpreted as defined in
section 7.4.8 of the ITU-T H.265 Specification;

• if flags.long_term_ref_pics_present_flag is set then the StdVideoH265LongTermRefPicsSps
structure pointed to by pLongTermRefPicsSps is interpreted as follows:

3472

◦ used_by_curr_pic_lt_sps_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_lt_sps_flag[i] as defined in section 7.4.3.2 of the ITU-T H.265
Specification;

◦ all other members of StdVideoH265LongTermRefPicsSps are interpreted as defined in
section 7.4.3.2 of the ITU-T H.265 Specification;

• if flags.vui_parameters_present_flag is set, then the StdVideoH265SequenceParameterSetVui
structure pointed to by pSequenceParameterSetVui is interpreted as follows:

◦ reserved1, reserved2, and reserved3 are used only for padding purposes and are otherwise
ignored;

◦ the StdVideoH265HrdParameters structure pointed to by pHrdParameters is interpreted as
follows:

▪ flags.fixed_pic_rate_general_flag is a bitmask where bit index i corresponds to
fixed_pic_rate_general_flag[i] as defined in section E.3.2 of the ITU-T H.265
Specification;

▪ flags.fixed_pic_rate_within_cvs_flag is a bitmask where bit index i corresponds to
fixed_pic_rate_within_cvs_flag[i] as defined in section E.3.2 of the ITU-T H.265
Specification;

▪ flags.low_delay_hrd_flag is a bitmask where bit index i corresponds to
low_delay_hrd_flag[i] as defined in section E.3.2 of the ITU-T H.265 Specification;

▪ if flags.nal_hrd_parameters_present_flag is set, then pSubLayerHrdParametersNal is a
pointer to an array of sps_max_sub_layers_minus1 + 1 number of
StdVideoH265SubLayerHrdParameters structures where sps_max_sub_layers_minus1 is the
corresponding member of the encompassing StdVideoH265SequenceParameterSet
structure and each element is interpreted as follows:

▪ cbr_flag is a bitmask where bit index i corresponds to cbr_flag[i] as defined in
section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of the StdVideoH265SubLayerHrdParameters structure are
interpreted as defined in section E.3.3 of the ITU-T H.265 Specification;

▪ if flags.vcl_hrd_parameters_present_flag is set, then pSubLayerHrdParametersVcl is a
pointer to an array of sps_max_sub_layers_minus1 + 1 number of
StdVideoH265SubLayerHrdParameters structures where sps_max_sub_layers_minus1 is the
corresponding member of the encompassing StdVideoH265SequenceParameterSet
structure and each element is interpreted as follows:

▪ cbr_flag is a bitmask where bit index i corresponds to cbr_flag[i] as defined in
section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of the StdVideoH265SubLayerHrdParameters structure are
interpreted as defined in section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of StdVideoH265HrdParameters are interpreted as defined in section
E.3.2 of the ITU-T H.265 Specification;

◦ all other members of pSequenceParameterSetVui are interpreted as defined in section E.3.1
of the ITU-T H.265 Specification;

3473

• if flags.sps_palette_predictor_initializer_present_flag is set, then the
PredictorPaletteEntries member of the StdVideoH265PredictorPaletteEntries structure
pointed to by pPredictorPaletteEntries is interpreted as defined in section 7.4.9.13 of the ITU-
T H.265 Specification;

• all other members of StdVideoH265SequenceParameterSet are interpreted as defined in section
7.4.3.1 of the ITU-T H.265 Specification.

H.265 Picture Parameter Sets (PPS)

Represented by StdVideoH265PictureParameterSet structures and interpreted as follows:

• reserved1, reserved2, and reserved3 are used only for padding purposes and are otherwise
ignored;

• the triplet constructed from sps_video_parameter_set_id, pps_seq_parameter_set_id, and
pps_pic_parameter_set_id is used as the key of the PPS entry;

• if flags.pps_scaling_list_data_present_flag is set, then the StdVideoH265ScalingLists
structure pointed to by pScalingLists is interpreted as follows:

◦ ScalingList4x4, ScalingList8x8, ScalingList16x16, and ScalingList32x32 correspond to
ScalingList[0], ScalingList[1], ScalingList[2], and ScalingList[3], respectively, as
defined in section 7.3.4 of the ITU-T H.265 Specification;

◦ ScalingListDCCoef16x16 and ScalingListDCCoef32x32 correspond to
scaling_list_dc_coef_minus8[0] and scaling_list_dc_coef_minus8[1], respectively, as
defined in section 7.3.4 of the ITU-T H.265 Specification;

• if flags.pps_palette_predictor_initializer_present_flag is set, then the
PredictorPaletteEntries member of the StdVideoH265PredictorPaletteEntries structure
pointed to by pPredictorPaletteEntries is interpreted as defined in section 7.4.9.13 of the ITU-
T H.265 Specification;

• all other members of StdVideoH265PictureParameterSet are interpreted as defined in section
7.4.3.3 of the ITU-T H.265 Specification.

When a video session parameters object is created with the codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, the VkVideoSessionParametersCreateInfoKHR::pNext
chain must include a VkVideoDecodeH265SessionParametersCreateInfoKHR structure specifying the
capacity and initial contents of the object.

The VkVideoDecodeH265SessionParametersCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h265
typedef struct VkVideoDecodeH265SessionParametersCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t maxStdVPSCount;
 uint32_t maxStdSPSCount;
 uint32_t maxStdPPSCount;
 const VkVideoDecodeH265SessionParametersAddInfoKHR* pParametersAddInfo;

3474

} VkVideoDecodeH265SessionParametersCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxStdVPSCount is the maximum number of H.265 VPS entries the created
VkVideoSessionParametersKHR can contain.

• maxStdSPSCount is the maximum number of H.265 SPS entries the created
VkVideoSessionParametersKHR can contain.

• maxStdPPSCount is the maximum number of H.265 PPS entries the created
VkVideoSessionParametersKHR can contain.

• pParametersAddInfo is NULL or a pointer to a VkVideoDecodeH265SessionParametersAddInfoKHR
structure specifying H.265 parameters to add upon object creation.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH265SessionParametersCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_SESSION_PARAMETERS_CREATE_INFO_KHR

• VUID-VkVideoDecodeH265SessionParametersCreateInfoKHR-pParametersAddInfo-
parameter
If pParametersAddInfo is not NULL, pParametersAddInfo must be a valid pointer to a valid
VkVideoDecodeH265SessionParametersAddInfoKHR structure

The VkVideoDecodeH265SessionParametersAddInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h265
typedef struct VkVideoDecodeH265SessionParametersAddInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t stdVPSCount;
 const StdVideoH265VideoParameterSet* pStdVPSs;
 uint32_t stdSPSCount;
 const StdVideoH265SequenceParameterSet* pStdSPSs;
 uint32_t stdPPSCount;
 const StdVideoH265PictureParameterSet* pStdPPSs;
} VkVideoDecodeH265SessionParametersAddInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdVPSCount is the number of elements in the pStdVPSs array.

• pStdVPSs is a pointer to an array of StdVideoH265VideoParameterSet structures describing the
H.265 VPS entries to add.

• stdSPSCount is the number of elements in the pStdSPSs array.

3475

• pStdSPSs is a pointer to an array of StdVideoH265SequenceParameterSet structures describing the
H.265 SPS entries to add.

• stdPPSCount is the number of elements in the pStdPPSs array.

• pStdPPSs is a pointer to an array of StdVideoH265PictureParameterSet structures describing the
H.265 PPS entries to add.

This structure can be specified in the following places:

• In the pParametersAddInfo member of the VkVideoDecodeH265SessionParametersCreateInfoKHR
structure specified in the pNext chain of VkVideoSessionParametersCreateInfoKHR used to
create a video session parameters object. In this case, if the video codec operation the video
session parameters object is created with is VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then
it defines the set of initial parameters to add to the created object (see Creating Video Session
Parameters).

• In the pNext chain of VkVideoSessionParametersUpdateInfoKHR. In this case, if the video codec
operation the video session parameters object to be updated was created with is
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, then it defines the set of parameters to add to it
(see Updating Video Session Parameters).

Valid Usage

• VUID-VkVideoDecodeH265SessionParametersAddInfoKHR-None-04833
The vps_video_parameter_set_id member of each StdVideoH265VideoParameterSet structure
specified in the elements of pStdVPSs must be unique within pStdVPSs

• VUID-VkVideoDecodeH265SessionParametersAddInfoKHR-None-04834
The pair constructed from the sps_video_parameter_set_id and sps_seq_parameter_set_id
members of each StdVideoH265SequenceParameterSet structure specified in the elements of
pStdSPSs must be unique within pStdSPSs

• VUID-VkVideoDecodeH265SessionParametersAddInfoKHR-None-04835
The triplet constructed from the sps_video_parameter_set_id, pps_seq_parameter_set_id,
and pps_pic_parameter_set_id members of each StdVideoH265PictureParameterSet structure
specified in the elements of pStdPPSs must be unique within pStdPPSs

Valid Usage (Implicit)

• VUID-VkVideoDecodeH265SessionParametersAddInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_SESSION_PARAMETERS_ADD_INFO_KHR

• VUID-VkVideoDecodeH265SessionParametersAddInfoKHR-pStdVPSs-parameter
If stdVPSCount is not 0, pStdVPSs must be a valid pointer to an array of stdVPSCount
StdVideoH265VideoParameterSet values

• VUID-VkVideoDecodeH265SessionParametersAddInfoKHR-pStdSPSs-parameter
If stdSPSCount is not 0, pStdSPSs must be a valid pointer to an array of stdSPSCount
StdVideoH265SequenceParameterSet values

• VUID-VkVideoDecodeH265SessionParametersAddInfoKHR-pStdPPSs-parameter

3476

If stdPPSCount is not 0, pStdPPSs must be a valid pointer to an array of stdPPSCount
StdVideoH265PictureParameterSet values

42.13.6. H.265 Decoding Parameters

The VkVideoDecodeH265PictureInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h265
typedef struct VkVideoDecodeH265PictureInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const StdVideoDecodeH265PictureInfo* pStdPictureInfo;
 uint32_t sliceSegmentCount;
 const uint32_t* pSliceSegmentOffsets;
} VkVideoDecodeH265PictureInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdPictureInfo is a pointer to a StdVideoDecodeH265PictureInfo structure specifying H.265
picture information.

• sliceSegmentCount is the number of elements in pSliceSegmentOffsets.

• pSliceSegmentOffsets is a pointer to an array of sliceSegmentCount offsets specifying the start
offset of the slice segments of the picture within the video bitstream buffer range specified in
VkVideoDecodeInfoKHR.

This structure is specified in the pNext chain of the VkVideoDecodeInfoKHR structure passed to
vkCmdDecodeVideoKHR to specify the codec-specific picture information for an H.265 decode
operation.

Decode Output Picture Information

When this structure is specified in the pNext chain of the VkVideoDecodeInfoKHR structure
passed to vkCmdDecodeVideoKHR, the information related to the decode output picture is
defined as follows:

• The image subregion used is determined according to the H.265 Decode Picture Data Access
section.

• The decode output picture is associated with the H.265 picture information provided in
pStdPictureInfo.

Std Picture Information

The members of the StdVideoDecodeH265PictureInfo structure pointed to by pStdPictureInfo are
interpreted as follows:

• reserved is used only for padding purposes and is otherwise ignored;

• flags.IrapPicFlag as defined in section 3.73 of the ITU-T H.265 Specification;

3477

• flags.IdrPicFlag as defined in section 3.67 of the ITU-T H.265 Specification;

• flags.IsReference as defined in section 3.132 of the ITU-T H.265 Specification;

• sps_video_parameter_set_id, pps_seq_parameter_set_id, and pps_pic_parameter_set_id are
used to identify the active parameter sets, as described below;

• PicOrderCntVal as defined in section 8.3.1 of the ITU-T H.265 Specification;

• NumBitsForSTRefPicSetInSlice is the number of bits used in st_ref_pic_set when
short_term_ref_pic_set_sps_flag is 0, or 0 otherwise, as defined in sections 7.4.7 and 7.4.8 of
the ITU-T H.265 Specification;

• NumDeltaPocsOfRefRpsIdx is the value of NumDeltaPocs[RefRpsIdx] when
short_term_ref_pic_set_sps_flag is 1, or 0 otherwise, as defined in sections 7.4.7 and 7.4.8 of
the ITU-T H.265 Specification;

• RefPicSetStCurrBefore, RefPicSetStCurrAfter, and RefPicSetLtCurr are interpreted as defined
in section 8.3.2 of the ITU-T H.265 Specification where each element of these arrays either
identifies an active reference picture using its DPB slot index or contains the value
STD_VIDEO_H265_NO_REFERENCE_PICTURE to indicate “no reference picture”;

• all other members are interpreted as defined in section 8.3.2 of the ITU-T H.265 Specification.

Reference picture setup is controlled by the value of StdVideoDecodeH265PictureInfo
::flags.IsReference. If it is set and a reconstructed picture is specified, then the latter is used as the
target of picture reconstruction to activate the corresponding DPB slot. If
StdVideoDecodeH265PictureInfo::flags.IsReference is not set, but a reconstructed picture is specified,
then the corresponding picture reference associated with the DPB slot is invalidated, as described
in the DPB Slot States section.

Active Parameter Sets

The members of the StdVideoDecodeH265PictureInfo structure pointed to by pStdPictureInfo are
used to select the active parameter sets to use from the bound video session parameters object,
as follows:

• The active VPS is the VPS identified by the key specified in StdVideoDecodeH265PictureInfo
::sps_video_parameter_set_id.

• The active SPS is the SPS identified by the key specified by the pair constructed from
StdVideoDecodeH265PictureInfo::sps_video_parameter_set_id and
StdVideoDecodeH265PictureInfo::pps_seq_parameter_set_id.

• The active PPS is the PPS identified by the key specified by the triplet constructed from
StdVideoDecodeH265PictureInfo::sps_video_parameter_set_id, StdVideoDecodeH265PictureInfo
::pps_seq_parameter_set_id, and StdVideoDecodeH265PictureInfo::pps_pic_parameter_set_id.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH265PictureInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_PICTURE_INFO_KHR

• VUID-VkVideoDecodeH265PictureInfoKHR-pStdPictureInfo-parameter
pStdPictureInfo must be a valid pointer to a valid StdVideoDecodeH265PictureInfo value

3478

• VUID-VkVideoDecodeH265PictureInfoKHR-pSliceSegmentOffsets-parameter
pSliceSegmentOffsets must be a valid pointer to an array of sliceSegmentCount uint32_t
values

• VUID-VkVideoDecodeH265PictureInfoKHR-sliceSegmentCount-arraylength
sliceSegmentCount must be greater than 0

The VkVideoDecodeH265DpbSlotInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_h265
typedef struct VkVideoDecodeH265DpbSlotInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const StdVideoDecodeH265ReferenceInfo* pStdReferenceInfo;
} VkVideoDecodeH265DpbSlotInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdReferenceInfo is a pointer to a StdVideoDecodeH265ReferenceInfo structure specifying
reference picture information described in section 8.3 of the ITU-T H.265 Specification.

This structure is specified in the pNext chain of VkVideoDecodeInfoKHR::pSetupReferenceSlot, if not
NULL, and the pNext chain of the elements of VkVideoDecodeInfoKHR::pReferenceSlots to specify the
codec-specific reference picture information for an H.265 decode operation.

Active Reference Picture Information

When this structure is specified in the pNext chain of the elements of VkVideoDecodeInfoKHR
::pReferenceSlots, one element is added to the list of active reference pictures used by the video
decode operation for each element of VkVideoDecodeInfoKHR::pReferenceSlots as follows:

• The image subregion used is determined according to the H.265 Decode Picture Data Access
section.

• The reference picture is associated with the DPB slot index specified in the slotIndex
member of the corresponding element of VkVideoDecodeInfoKHR::pReferenceSlots.

• The reference picture is associated with the H.265 reference information provided in
pStdReferenceInfo.

Reconstructed Picture Information

When this structure is specified in the pNext chain of VkVideoDecodeInfoKHR
::pSetupReferenceSlot, the information related to the reconstructed picture is defined as follows:

• The image subregion used is determined according to the H.265 Decode Picture Data Access
section.

• If reference picture setup is requested, then the reconstructed picture is used to activate the
DPB slot with the index specified in VkVideoDecodeInfoKHR::pSetupReferenceSlot-
>slotIndex.

3479

• The reconstructed picture is associated with the H.265 reference information provided in
pStdReferenceInfo.

Std Reference Information

The members of the StdVideoDecodeH265ReferenceInfo structure pointed to by pStdReferenceInfo
are interpreted as follows:

• flags.used_for_long_term_reference is used to indicate whether the picture is marked as
“used for long-term reference” as defined in section 8.3.2 of the ITU-T H.265 Specification;

• flags.unused_for_reference is used to indicate whether the picture is marked as “unused for
reference” as defined in section 8.3.2 of the ITU-T H.265 Specification;

• all other members are interpreted as defined in section 8.3 of the ITU-T H.265 Specification.

Valid Usage (Implicit)

• VUID-VkVideoDecodeH265DpbSlotInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_DPB_SLOT_INFO_KHR

• VUID-VkVideoDecodeH265DpbSlotInfoKHR-pStdReferenceInfo-parameter
pStdReferenceInfo must be a valid pointer to a valid StdVideoDecodeH265ReferenceInfo
value

42.13.7. H.265 Decode Requirements

This section describes the required H.265 decoding capabilities for physical devices that have at
least one queue family that supports the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR, as returned by
vkGetPhysicalDeviceQueueFamilyProperties2 in VkQueueFamilyVideoPropertiesKHR
::videoCodecOperations.

Table 53. Required Video Std Header Versions

Video Std Header Name Version

vulkan_video_codec_h265std_decode 1.0.0

Table 54. Required Video Capabilities

Video Capability Requirement Requirement
Type1

VkVideoCapabilitiesKHR

flags - min

minBitstreamBufferOffsetAlignment 4096 max

minBitstreamBufferSizeAlignment 4096 max

pictureAccessGranularity (64,64) max

minCodedExtent - max

3480

Video Capability Requirement Requirement
Type1

maxCodedExtent - min

maxDpbSlots 0 min

maxActiveReferencePictures 0 min

VkVideoDecodeCapabilitiesKHR

flags VK_VIDEO_DECODE_CAPAB
ILITY_DPB_AND_OUTPUT_
COINCIDE_BIT_KHR or
VK_VIDEO_DECODE_CAPAB
ILITY_DPB_AND_OUTPUT_
DISTINCT_BIT_KHR

min

VkVideoDecodeH265CapabilitiesKHR

maxLevelIdc STD_VIDEO_H265_LEVEL_
IDC_1_0

min

1

The Requirement Type column specifies the requirement is either the minimum value all
implementations must support, the maximum value all implementations must support, or the
exact value all implementations must support. For bitmasks a minimum value is the least bits all
implementations must set, but they may have additional bits set beyond this minimum.

42.14. AV1 Decode Operations
Video decode operations using an AV1 decode profile can be used to decode elementary video
stream sequences compliant with the AV1 Specification.

Note

Refer to the Preamble for information on how the Khronos Intellectual Property
Rights Policy relates to normative references to external materials not created by
Khronos.

This process is performed according to the video decode operation steps with the codec-specific
semantics defined in section 7 of the AV1 Specification:

• Syntax elements, derived values, and other parameters are applied from the following
structures:

◦ The StdVideoAV1SequenceHeader structure stored in the bound video session parameters
object specifying the active sequence header.

◦ The StdVideoDecodeAV1PictureInfo structure specifying the AV1 picture information.

◦ The StdVideoDecodeAV1ReferenceInfo structures specifying the AV1 reference information
corresponding to the optional reconstructed picture and any active reference pictures.

• The contents of the provided video bitstream buffer range are interpreted as defined in the AV1
Decode Bitstream Data Access section.

3481

• Picture data in the video picture resources corresponding to the used active reference pictures,
decode output picture, and optional reconstructed picture is accessed as defined in the AV1
Decode Picture Data Access section.

• The decision on reference picture setup is made according to the parameters specified in the
AV1 picture information.

If the parameters and the bitstream adhere to the syntactic and semantic requirements defined in
the corresponding sections of the AV1 Specification, as described above, and the DPB slots
associated with the active reference pictures all refer to valid picture references, then the video
decode operation will complete successfully. Otherwise, the video decode operation may complete
unsuccessfully.

42.14.1. AV1 Decode Bitstream Data Access

The video bitstream buffer range should contain one or more frame OBUs, comprised of a frame
header OBU and tile group OBU, that together represent an entire frame, as defined in sections 5.10,
5.9, and 5.11, and this data is interpreted as defined in sections 6.9, 6.8, and 6.10 of the AV1
Specification, respectively.

The offset specified in VkVideoDecodeAV1PictureInfoKHR::frameHeaderOffset should specify the
starting offset of the frame header OBU of the frame.

Note

When the tiles of the frame are encoded into multiple tile groups, each frame OBU
has a separate frame header OBU but their content is expected to match per the
requirements of the AV1 Specification. Accordingly, the offset specified in
frameHeaderOffset can be the offset of any of the otherwise identical frame header
OBUs when multiple tile groups are present.

The offsets and sizes provided in VkVideoDecodeAV1PictureInfoKHR::pTileOffsets and
VkVideoDecodeAV1PictureInfoKHR::pTileSizes, respectively, should specify the starting offsets and
sizes corresponding to each tile within the video bitstream buffer range.

42.14.2. AV1 Decode Picture Data Access

Accesses to image data within a video picture resource happen at the granularity indicated by
VkVideoCapabilitiesKHR::pictureAccessGranularity, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile. Accordingly, the complete
image subregion of a decode output picture, reference picture, or reconstructed picture accessed by
video coding operations using an AV1 decode profile is defined as the set of texels within the
coordinate range:

([0,endX),[0,endY))

Where:

• endX equals codedExtent.width rounded up to the nearest integer multiple of

3482

pictureAccessGranularity.width and clamped to the width of the image subresource referred to
by the corresponding VkVideoPictureResourceInfoKHR structure;

• endY equals codedExtent.height rounded up to the nearest integer multiple of
pictureAccessGranularity.height and clamped to the height of the image subresource referred
to by the corresponding VkVideoPictureResourceInfoKHR structure;

Where codedExtent is the member of the VkVideoPictureResourceInfoKHR structure corresponding
to the picture.

In case of video decode operations using an AV1 decode profile, any access to a picture at the
coordinates (x,y), as defined by the AV1 Specification, is an access to the image subresource referred
to by the corresponding VkVideoPictureResourceInfoKHR structure at the texel coordinates (x,y).

42.14.3. AV1 Reference Names and Semantics

Individual reference frames used in the decoding process have different semantics, as defined in
section 6.10.24 of the AV1 Specification. The AV1 semantics associated with a reference picture are
indicated by the corresponding enumeration constant defined in the Video Std enumeration type
StdVideoAV1ReferenceName:

• STD_VIDEO_AV1_REFERENCE_NAME_INTRA_FRAME identifies the reference used for intra coding
(INTRA_FRAME), as defined in sections 2 and 7.11.2 of the AV1 Specification.

• All other enumeration constants refer to forward or backward references used for inter coding,
as defined in sections 2 and 7.11.3 of the AV1 Specification:

◦ STD_VIDEO_AV1_REFERENCE_NAME_LAST_FRAME identifies the LAST_FRAME reference

◦ STD_VIDEO_AV1_REFERENCE_NAME_LAST2_FRAME identifies the LAST2_FRAME reference

◦ STD_VIDEO_AV1_REFERENCE_NAME_LAST3_FRAME identifies the LAST3_FRAME reference

◦ STD_VIDEO_AV1_REFERENCE_NAME_GOLDEN_FRAME identifies the GOLDEN_FRAME reference

◦ STD_VIDEO_AV1_REFERENCE_NAME_BWDREF_FRAME identifies the BWDREF_FRAME reference

◦ STD_VIDEO_AV1_REFERENCE_NAME_ALTREF2_FRAME identifies the ALTREF2_FRAME reference

◦ STD_VIDEO_AV1_REFERENCE_NAME_ALTREF_FRAME identifies the ALTREF_FRAME reference

These enumeration constants are not directly used in any APIs but are used to indirectly index into
certain Video Std and Vulkan API parameter arrays.

42.14.4. AV1 Decode Profile

A video profile supporting AV1 video decode operations is specified by setting
VkVideoProfileInfoKHR::videoCodecOperation to VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR and
adding a VkVideoDecodeAV1ProfileInfoKHR structure to the VkVideoProfileInfoKHR::pNext chain.

The VkVideoDecodeAV1ProfileInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_av1
typedef struct VkVideoDecodeAV1ProfileInfoKHR {

3483

 VkStructureType sType;
 const void* pNext;
 StdVideoAV1Profile stdProfile;
 VkBool32 filmGrainSupport;
} VkVideoDecodeAV1ProfileInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdProfile is a StdVideoAV1Profile value specifying the AV1 codec profile, as defined in section
A.2 of the AV1 Specification.

• filmGrainSupport specifies whether AV1 film grain, as defined in section 7.8.3 of the AV1
Specification, can be used with the video profile. When this member is set to VK_TRUE, video
session objects created against the video profile will be able to decode pictures that have film
grain enabled.

Note

Enabling filmGrainSupport may increase the memory requirements of video
sessions and/or video picture resources on some implementations.

Valid Usage (Implicit)

• VUID-VkVideoDecodeAV1ProfileInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_PROFILE_INFO_KHR

42.14.5. AV1 Decode Capabilities

When calling vkGetPhysicalDeviceVideoCapabilitiesKHR to query the capabilities for an AV1 decode
profile, the VkVideoCapabilitiesKHR::pNext chain must include a VkVideoDecodeAV1CapabilitiesKHR
structure that will be filled with the profile-specific capabilities.

The VkVideoDecodeAV1CapabilitiesKHR structure is defined as:

// Provided by VK_KHR_video_decode_av1
typedef struct VkVideoDecodeAV1CapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 StdVideoAV1Level maxLevel;
} VkVideoDecodeAV1CapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxLevel is a StdVideoAV1Level value specifying the maximum AV1 level supported by the profile,
as defined in section A.3 of the AV1 Specification.

3484

Valid Usage (Implicit)

• VUID-VkVideoDecodeAV1CapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_CAPABILITIES_KHR

42.14.6. AV1 Decode Parameter Sets

Video session parameters objects created with the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR contain a single instance of the following parameter
set:

AV1 Sequence Header

Represented by StdVideoAV1SequenceHeader structures and interpreted as follows:

• flags.reserved and reserved1 are used only for padding purposes and are otherwise ignored;

• the StdVideoAV1ColorConfig structure pointed to by pColorConfig is interpreted as follows:

◦ flags.reserved and reserved1 are used only for padding purposes and are otherwise
ignored;

◦ all other members of StdVideoAV1ColorConfig are interpreted as defined in section 6.4.2 of
the AV1 Specification;

• if flags.timing_info_present_flag is set, then the StdVideoAV1TimingInfo structure pointed to
by pTimingInfo is interpreted as follows:

◦ flags.reserved is used only for padding purposes and is otherwise ignored;

◦ all other members of StdVideoAV1TimingInfo are interpreted as defined in section 6.4.3 of
the AV1 Specification;

• all other members of StdVideoAV1SequenceHeader are interpreted as defined in section 6.4 of
the AV1 Specification.

When a video session parameters object is created with the codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, the VkVideoSessionParametersCreateInfoKHR::pNext
chain must include a VkVideoDecodeAV1SessionParametersCreateInfoKHR structure specifying the
contents of the object.

The VkVideoDecodeAV1SessionParametersCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_av1
typedef struct VkVideoDecodeAV1SessionParametersCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const StdVideoAV1SequenceHeader* pStdSequenceHeader;
} VkVideoDecodeAV1SessionParametersCreateInfoKHR;

3485

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdSequenceHeader is a pointer to a StdVideoAV1SequenceHeader structure describing the AV1
sequence header entry to store in the created object.

Note

As AV1 video session parameters objects will only ever contain a single AV1
sequence header, this has to be specified at object creation time and such video
session parameters objects cannot be updated using the
vkUpdateVideoSessionParametersKHR command. When a new AV1 sequence
header is decoded from the input video bitstream the application needs to create a
new video session parameters object to store it.

Valid Usage (Implicit)

• VUID-VkVideoDecodeAV1SessionParametersCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_SESSION_PARAMETERS_CREATE_INFO_KHR

• VUID-VkVideoDecodeAV1SessionParametersCreateInfoKHR-pStdSequenceHeader-
parameter
pStdSequenceHeader must be a valid pointer to a valid StdVideoAV1SequenceHeader value

42.14.7. AV1 Decoding Parameters

The VkVideoDecodeAV1PictureInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_av1
typedef struct VkVideoDecodeAV1PictureInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const StdVideoDecodeAV1PictureInfo* pStdPictureInfo;
 int32_t referenceNameSlotIndices
[VK_MAX_VIDEO_AV1_REFERENCES_PER_FRAME_KHR];
 uint32_t frameHeaderOffset;
 uint32_t tileCount;
 const uint32_t* pTileOffsets;
 const uint32_t* pTileSizes;
} VkVideoDecodeAV1PictureInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdPictureInfo is a pointer to a StdVideoDecodeAV1PictureInfo structure specifying AV1 picture
information.

• referenceNameSlotIndices is an array of seven (VK_MAX_VIDEO_AV1_REFERENCES_PER_FRAME_KHR,
which is equal to the Video Std definition STD_VIDEO_AV1_REFS_PER_FRAME) signed integer values

3486

specifying the index of the DPB slot or a negative integer value for each AV1 reference name
used for inter coding. In particular, the DPB slot index for the AV1 reference name frame is
specified in referenceNameSlotIndices[frame - STD_VIDEO_AV1_REFERENCE_NAME_LAST_FRAME].

• frameHeaderOffset is the byte offset of the AV1 frame header OBU, as defined in section 5.9 of the
AV1 Specification, within the video bitstream buffer range specified in VkVideoDecodeInfoKHR.

• tileCount is the number of elements in pTileOffsets and pTileSizes.

• pTileOffsets is a pointer to an array of tileCount integers specifying the byte offset of the tiles of
the picture within the video bitstream buffer range specified in VkVideoDecodeInfoKHR.

• pTileSizes is a pointer to an array of tileCount integers specifying the byte size of the tiles of the
picture within the video bitstream buffer range specified in VkVideoDecodeInfoKHR.

This structure is specified in the pNext chain of the VkVideoDecodeInfoKHR structure passed to
vkCmdDecodeVideoKHR to specify the codec-specific picture information for an AV1 decode
operation.

Decode Output Picture Information

When this structure is specified in the pNext chain of the VkVideoDecodeInfoKHR structure
passed to vkCmdDecodeVideoKHR, the information related to the decode output picture is
defined as follows:

• The image subregion used is determined according to the AV1 Decode Picture Data Access
section.

• The decode output picture is associated with the AV1 picture information provided in
pStdPictureInfo.

Std Picture Information

The members of the StdVideoDecodeAV1PictureInfo structure pointed to by pStdPictureInfo are
interpreted as follows:

• flags.reserved, reserved1, and reserved2 are used only for padding purposes and are
otherwise ignored;

• flags.apply_grain indicates that film grain is enabled for the decoded picture, as defined in
section 6.8.20 of the AV1 Specification;

• tg_start and tg_end are interpreted as defined in section 6.10.1 of the AV1 Specification;

• OrderHint, OrderHints, and expectedFrameId are interpreted as defined in section 6.8.2 of the
AV1 Specification;

• the StdVideoAV1TileInfo structure pointed to by pTileInfo is interpreted as follows:

◦ flags.reserved and reserved1 are used only for padding purposes and are otherwise
ignored;

◦ pMiColStarts is a pointer to an array of TileCols number of unsigned integers that
corresponds to MiColStarts defined in section 6.8.14 of the AV1 Specification;

◦ pMiRowStarts is a pointer to an array of TileRows number of unsigned integers that
corresponds to MiRowStarts defined in section 6.8.14 of the AV1 Specification;

3487

◦ pWidthInSbsMinus1 is a pointer to an array of TileCols number of unsigned integers that
corresponds to width_in_sbs_minus_1 defined in section 6.8.14 of the AV1 Specification;

◦ pHeightInSbsMinus1 is a pointer to an array of TileRows number of unsigned integers that
corresponds to height_in_sbs_minus_1 defined in section 6.8.14 of the AV1 Specification;

◦ all other members of StdVideoAV1TileInfo are interpreted as defined in section 6.8.14 of
the AV1 Specification;

• the StdVideoAV1Quantization structure pointed to by pQuantization is interpreted as follows:

◦ flags.reserved is used only for padding purposes and is otherwise ignored;

◦ all other members of StdVideoAV1Quantization are interpreted as defined in section 6.8.11
of the AV1 Specification;

• if flags.segmentation_enabled is set, then the StdVideoAV1Segmentation structure pointed to by
pSegmentation is interpreted as follows:

◦ the elements of FeatureEnabled are bitmasks where bit index j of element i corresponds to
FeatureEnabled[i][j] as defined in section 6.8.13 of the AV1 Specification;

◦ FeatureData is interpreted as defined in section 6.8.13 of the AV1 Specification;

• the StdVideoAV1LoopFilter structure pointed to by pLoopFilter is interpreted as follows:

◦ flags.reserved is used only for padding purposes and is otherwise ignored;

◦ update_ref_delta is a bitmask where bit index i is interpreted as the value of
update_ref_delta corresponding to element i of loop_filter_ref_deltas as defined in
section 6.8.10 of the AV1 Specification;

◦ update_mode_delta is a bitmask where bit index i is interpreted as the value of
update_mode_delta corresponding to element i of loop_filter_mode_deltas as defined in
section 6.8.10 of the AV1 Specification;

◦ all other members of StdVideoAV1LoopFilter are interpreted as defined in section 6.8.10 of
the AV1 Specification;

• if flags.enable_cdef is set in the active sequence header, then the members of the
StdVideoAV1CDEF structure pointed to by pCDEF are interpreted as follows:

◦ cdef_y_sec_strength and cdef_uv_sec_strength are the bitstream values of the
corresponding syntax elements defined in section 5.9.19 of the AV1 Specification;

◦ all other members of StdVideoAV1CDEF are interpreted as defined in section 6.10.14 of the
AV1 Specification;

• the StdVideoAV1LoopRestoration structure pointed to by pLoopRestoration is interpreted as
defined in section 6.10.15 of the AV1 Specification;

• the members of the StdVideoAV1GlobalMotion structure provided in global_motion are
interpreted as defined in section 7.10 of the AV1 Specification;

• if flags.film_grain_params_present is set in the active sequence header, then the
StdVideoAV1FilmGrain structure pointed to by pFilmGrain is interpreted as follows:

◦ flags.reserved is used only for padding purposes and is otherwise ignored;

◦ all other members of StdVideoAV1FilmGrain are interpreted as defined in section 6.8.20 of
the AV1 Specification;

3488

• all other members are interpreted as defined in section 6.8 of the AV1 Specification.

When film grain is enabled for the decoded frame, the flags.update_grain and
film_grain_params_ref_idx values specified in StdVideoAV1FilmGrain are ignored by AV1 decode
operations and the load_grain_params function, as defined in section 6.8.20 of the AV1 Specification,
is not executed. Instead, the application is responsible for specifying the effective film grain
parameters for the frame in StdVideoAV1FilmGrain.

When film grain is enabled for the decoded frame, the application is required to specify a different
decode output picture resource in VkVideoDecodeInfoKHR::dstPictureResource compared to the
reconstructed picture specified in VkVideoDecodeInfoKHR::pSetupReferenceSlot->pPictureResource
even if the implementation does not report support for
VK_VIDEO_DECODE_CAPABILITY_DPB_AND_OUTPUT_DISTINCT_BIT_KHR in VkVideoDecodeCapabilitiesKHR
::flags for the video decode profile.

Reference picture setup is controlled by the value of StdVideoDecodeAV1PictureInfo
::refresh_frame_flags. If it is not zero and a reconstructed picture is specified, then the latter is used
as the target of picture reconstruction to activate the DPB slot specified in pDecodeInfo-
>pSetupReferenceSlot->slotIndex. If StdVideoDecodeAV1PictureInfo::refresh_frame_flags is zero, but a
reconstructed picture is specified, then the corresponding picture reference associated with the
DPB slot is invalidated, as described in the DPB Slot States section.

Active Parameter Sets

The active sequence header is the AV1 sequence header stored in the bound video session
parameters object.

Valid Usage (Implicit)

• VUID-VkVideoDecodeAV1PictureInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_PICTURE_INFO_KHR

• VUID-VkVideoDecodeAV1PictureInfoKHR-pStdPictureInfo-parameter
pStdPictureInfo must be a valid pointer to a valid StdVideoDecodeAV1PictureInfo value

• VUID-VkVideoDecodeAV1PictureInfoKHR-pTileOffsets-parameter
pTileOffsets must be a valid pointer to an array of tileCount uint32_t values

• VUID-VkVideoDecodeAV1PictureInfoKHR-pTileSizes-parameter
pTileSizes must be a valid pointer to an array of tileCount uint32_t values

• VUID-VkVideoDecodeAV1PictureInfoKHR-tileCount-arraylength
tileCount must be greater than 0

The VkVideoDecodeAV1DpbSlotInfoKHR structure is defined as:

// Provided by VK_KHR_video_decode_av1
typedef struct VkVideoDecodeAV1DpbSlotInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const StdVideoDecodeAV1ReferenceInfo* pStdReferenceInfo;

3489

} VkVideoDecodeAV1DpbSlotInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdReferenceInfo is a pointer to a StdVideoDecodeAV1ReferenceInfo structure specifying AV1
reference information.

This structure is specified in the pNext chain of VkVideoDecodeInfoKHR::pSetupReferenceSlot, if not
NULL, and the pNext chain of the elements of VkVideoDecodeInfoKHR::pReferenceSlots to specify the
codec-specific reference picture information for an AV1 decode operation.

Active Reference Picture Information

When this structure is specified in the pNext chain of the elements of VkVideoDecodeInfoKHR
::pReferenceSlots, one element is added to the list of active reference pictures used by the video
decode operation for each element of VkVideoDecodeInfoKHR::pReferenceSlots as follows:

• The image subregion used is determined according to the AV1 Decode Picture Data Access
section.

• The reference picture is associated with the DPB slot index specified in the slotIndex
member of the corresponding element of VkVideoDecodeInfoKHR::pReferenceSlots.

• The reference picture is associated with the AV1 reference information provided in
pStdReferenceInfo.

Reconstructed Picture Information

When this structure is specified in the pNext chain of VkVideoDecodeInfoKHR
::pSetupReferenceSlot, the information related to the reconstructed picture is defined as follows:

• The image subregion used is determined according to the AV1 Decode Picture Data Access
section.

• If reference picture setup is requested, then the reconstructed picture is used to activate the
DPB slot with the index specified in VkVideoDecodeInfoKHR::pSetupReferenceSlot-
>slotIndex.

• The reconstructed picture is associated with the AV1 reference information provided in
pStdReferenceInfo.

Std Reference Information

The members of the StdVideoDecodeAV1ReferenceInfo structure pointed to by pStdReferenceInfo
are interpreted as follows:

• flags.reserved and reserved1 are used only for padding purposes and are otherwise ignored;

• flags.disable_frame_end_update_cdf is interpreted as defined in section 6.8.2 of the AV1
Specification;

• flags.segmentation_enabled is interpreted as defined in section 6.8.13 of the AV1
Specification;

• frame_type is interpreted as defined in section 6.8.2 of the AV1 Specification;

3490

• RefFrameSignBias is a bitmask where bit index i corresponds to RefFrameSignBias[i] as
defined in section 6.8.2 of the AV1 Specification;

• OrderHint is interpreted as defined in section 6.8.2 of the AV1 Specification;

• SavedOrderHints is interpreted as defined in section 7.20 of the AV1 Specification.

Note

When the AV1 reference information is provided for the reconstructed
picture, certain parameters (e.g. frame_type) are specified both in the AV1
picture information and in the AV1 reference information. This is necessary
because unlike the AV1 picture information, which is only used for the
purposes of the video decode operation in question, the AV1 reference
information specified for the reconstructed picture may be associated with
the activated DPB slot, meaning that some implementations may maintain it
as part of the reference picture metadata corresponding to the video picture
resource associated with the DPB slot. When the AV1 reference information
is provided for an active reference picture, the specified parameters
correspond to the parameters specified when the DPB slot was activated (set
up) with the reference picture, as usual, in order to communicate these
parameters for implementations that do not maintain any subset of these
parameters as part of the DPB slot’s reference picture metadata.

Valid Usage (Implicit)

• VUID-VkVideoDecodeAV1DpbSlotInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_DPB_SLOT_INFO_KHR

• VUID-VkVideoDecodeAV1DpbSlotInfoKHR-pStdReferenceInfo-parameter
pStdReferenceInfo must be a valid pointer to a valid StdVideoDecodeAV1ReferenceInfo value

42.14.8. AV1 Decode Requirements

This section describes the required AV1 decoding capabilities for physical devices that have at least
one queue family that supports the video codec operation
VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR, as returned by
vkGetPhysicalDeviceQueueFamilyProperties2 in VkQueueFamilyVideoPropertiesKHR
::videoCodecOperations.

Table 55. Required Video Std Header Versions

Video Std Header Name Version

vulkan_video_codec_av1std_decode 1.0.0

Table 56. Required Video Capabilities

3491

Video Capability Requirement Requirement
Type1

VkVideoCapabilitiesKHR

flags - min

minBitstreamBufferOffsetAlignment 4096 max

minBitstreamBufferSizeAlignment 4096 max

pictureAccessGranularity (64,64) max

minCodedExtent - max

maxCodedExtent - min

maxDpbSlots 0 min

maxActiveReferencePictures 0 min

VkVideoDecodeCapabilitiesKHR

flags VK_VIDEO_DECODE_CAPAB
ILITY_DPB_AND_OUTPUT_
COINCIDE_BIT_KHR or
VK_VIDEO_DECODE_CAPAB
ILITY_DPB_AND_OUTPUT_
DISTINCT_BIT_KHR

min

VkVideoDecodeAV1CapabilitiesKHR

maxLevel STD_VIDEO_AV1_LEVEL_2
_0

min

1

The Requirement Type column specifies the requirement is either the minimum value all
implementations must support, the maximum value all implementations must support, or the
exact value all implementations must support. For bitmasks a minimum value is the least bits all
implementations must set, but they may have additional bits set beyond this minimum.

42.15. Video Encode Operations
Video encode operations consume an encode input picture and zero or more reference pictures, and
produce compressed video data to a video bitstream buffer and an optional reconstructed picture.

Note

Such encode input pictures can be used as the output of video decode operations,
with graphics or compute operations, or with Window System Integration APIs,
depending on the capabilities of the implementation.

Video encode operations may access the following resources in the
VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR stage:

• The image subregions corresponding to the source encode input picture and active reference
pictures with access VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR.

3492

• The destination video bitstream buffer range and the optional reconstructed picture with access
VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR.

The image subresource of each video picture resource accessed by the video encode operation is
specified using a corresponding VkVideoPictureResourceInfoKHR structure. Each such image
subresource must be in the appropriate image layout as follows:

• If the image subresource is used in the video encode operation as an encode input picture, then
it must be in the VK_IMAGE_LAYOUT_VIDEO_ENCODE_SRC_KHR layout.

• If the image subresource is used in the video encode operation as a reconstructed picture or
reference picture, then it must be in the VK_IMAGE_LAYOUT_VIDEO_ENCODE_DPB_KHR layout.

A video encode operation may complete unsuccessfully. In this case the target video bitstream
buffer will have undefined contents. Similarly, if reference picture setup is requested, the
reconstructed-picture will also have undefined contents, and the activated DPB slot will have an
invalid picture reference.

If a video encode operation completes successfully and the codec-specific parameters provided by
the application adhere to the syntactic and semantic requirements defined in the corresponding
video compression standard, then the target video bitstream buffer will contain compressed video
data after the execution of the video encode operation according to the respective codec-specific
semantics.

42.15.1. Codec-Specific Semantics

The following aspects of video encode operations are codec-specific:

• The compressed video data written to the target video bitstream buffer range.

• The construction and interpretation of the list of active reference pictures and the
interpretation of the picture data referred to by the corresponding image subregions.

• The construction and interpretation of information related to the encode input picture and the
interpretation of the picture data referred to by the corresponding image subregion.

• The decision on reference picture setup.

• The construction and interpretation of information related to the optional reconstructed picture
and the generation of picture data to the corresponding image subregion.

• Certain aspects of rate control.

These codec-specific behaviors are defined for each video codec operation separately.

• If the used video codec operation is VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the
codec-specific aspects of the video encoding process are performed as defined in the H.264
Encode Operations section.

• If the used video codec operation is VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the
codec-specific aspects of the video encoding process are performed as defined in the H.265
Encode Operations section.

3493

Video Encode Parameter Overrides

Implementations supporting video encode operations for any particular video codec operation
often support only a subset of the available encoding tools defined by the corresponding video
compression standards. Accordingly, certain implementation-dependent limitations may apply to
codec-specific parameters provided through the structures defined in the Video Std headers
corresponding to the used video codec operation.

Exposing all of these restrictions on particular codec-specific parameter values or combinations
thereof in the form of application-queryable capabilities is impractical, hence this specification
allows implementations to override the value of any of the codec-specific parameters, unless
otherwise specified, as long as all of the following conditions are met:

• If the application-provided codec-specific parameters adhere to the syntactic and semantic
requirements and rules defined by the used video compression standard, and thus would be
usable to produce a video bitstream compliant with that standard, then the codec-specific
parameters resulting from the process of implementation overrides must also adhere to the
same requirements and rules, and any video bitstream produced using the overridden
parameters must also be compliant.

• The overridden codec-specific parameter values must not have an impact on the codec-
independent behaviors defined for video encode operations.

• The implementation must not override any codec-specific parameters specified to a command
that may cause application-provided codec-specific parameters specified to subsequent
commands to no longer adhere to the semantic requirements and rules defined by the used
video compression standard, unless the implementation also overrides those parameters to
adhere to any such requirements and rules.

• The overridden codec-specific parameter values must not have an impact on the codec-specific
picture data access semantics.

• The overridden codec-specific parameter values may change the contents of the codec-specific
bitstream elements produced by video encode operations or otherwise retrieved by the
application (e.g. using the vkGetEncodedVideoSessionParametersKHR command) but must still
adhere to the codec-specific semantics defined for that video codec operation, including, but not
limited to, the number, type, and order of the encoded codec-specific bitstream elements.

Besides codec-specific parameter overrides performed for implementation-dependent reasons,
applications can enable the implementation to apply additional optimizing overrides that may
improve the efficiency or performance of video encoding operations. However, implementations
must meet the conditions listed above even in case of such optimizing overrides.

Note

Unless the application opts in for optimizing overrides, implementations are not
expected to override any of the codec-specific parameters, except when such
overrides are necessary for the correct operation of video encoder implementation
due to limitations to the available encoding tools on that implementation.

3494

42.15.2. Video Encode Operation Steps

Each video encode operation performs the following steps in the
VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR stage:

1. Reads the input picture data from the encode input picture;

2. Determine derived encoding quality parameters according to the codec-specific semantics and
the current rate control state;

3. Compresses the input picture data according to the codec-specific semantics, applying any
prediction data read from the active reference pictures and rate control restrictions in the
process;

4. Writes the encoded bitstream data to the destination video bitstream buffer range;

5. Performs picture reconstruction of the encoded video data according to the codec-specific
semantics, applying any prediction data read from the active reference pictures in the process,
if a reconstructed picture is specified and reference picture setup is requested;

6. If reference picture setup is requested, the DPB slot index specified in the reconstructed picture
information is activated with the reconstructed picture;

7. Writes the reconstructed picture data to the reconstructed picture, if one is specified, according
to the codec-specific semantics.

When reconstructed picture information is provided, the specified DPB slot index is associated with
the corresponding bound reference picture resource, indifferent of whether reference picture
setup is requested.

42.15.3. Capabilities

When calling vkGetPhysicalDeviceVideoCapabilitiesKHR with pVideoProfile->videoCodecOperation
specifying an encode operation, the VkVideoEncodeCapabilitiesKHR structure must be included in
the pNext chain of the VkVideoCapabilitiesKHR structure to retrieve capabilities specific to video
encoding.

The VkVideoEncodeCapabilitiesKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeCapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 VkVideoEncodeCapabilityFlagsKHR flags;
 VkVideoEncodeRateControlModeFlagsKHR rateControlModes;
 uint32_t maxRateControlLayers;
 uint64_t maxBitrate;
 uint32_t maxQualityLevels;
 VkExtent2D encodeInputPictureGranularity;
 VkVideoEncodeFeedbackFlagsKHR supportedEncodeFeedbackFlags;
} VkVideoEncodeCapabilitiesKHR;

3495

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkVideoEncodeCapabilityFlagBitsKHR describing supported encoding
features.

• rateControlModes is a bitmask of VkVideoEncodeRateControlModeFlagBitsKHR indicating
supported rate control modes.

• maxRateControlLayers indicates the maximum number of rate control layers supported.

• maxBitrate indicates the maximum supported bitrate.

• maxQualityLevels indicates the number of discrete video encode quality levels supported.
Implementations must support at least one quality level.

• encodeInputPictureGranularity indicates the granularity at which encode input picture data is
encoded and may indicate a texel granularity up to the size of the codec-specific coding block
size. This capability does not impose any valid usage constraints on the application, however,
depending on the contents of the encode input picture, it may have effects on the encoded
bitstream, as described in more detail below.

• supportedEncodeFeedbackFlags is a bitmask of VkVideoEncodeFeedbackFlagBitsKHR values
specifying the supported flags for video encode feedback queries.

Implementations must include support for at least
VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_BUFFER_OFFSET_BIT_KHR and
VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_BYTES_WRITTEN_BIT_KHR in supportedEncodeFeedbackFlags.

encodeInputPictureGranularity provides information about the way encode input picture data is
used as input to video encode operations. In particular, some implementations may not be able to
limit the set of texels used to encode the output video bitstream to the image subregion specified in
the VkVideoPictureResourceInfoKHR structure corresponding to the encode input picture (i.e. to
the resolution of the image data to encode specified in its codedExtent member).

Note

For example, the application requests the coded extent to be 1920x1080, but the
implementation is only able to source the encode input picture data at the
granularity of the codec-specific coding block size which is 16x16 pixels (or as
otherwise indicated in encodeInputPictureGranularity). In this example, the
content is horizontally aligned with the coding block size, but not vertically
aligned with it. Thus encoding of the last row of coding blocks will be impacted by
the contents of the input image at texel rows 1080 to 1087 (the latter being the next
row which is vertically aligned with the coding block size, assuming a zero-based
texel row index).

If codedExtent rounded up to the next integer multiple of encodeInputPictureGranularity is greater
than the extent of the image subresource specified for the encode input picture, then the texel
values corresponding to texel coordinates outside of the bounds of the image subresource may be
undefined. However, implementations should use well-defined default values for such texels in
order to maximize the encoding efficiency for the last coding block row/column, and/or to ensure
consistent encoding results across repeated encoding of the same input content. Nonetheless, the

3496

values used for such texels must not have an effect on whether the video encode operation
produces a compliant bitstream, and must not have any other effects on the encoded picture data
beyond what may otherwise result from using these texel values as input to any compression
algorithm, as defined in the used video compression standard.

Note

While not required, it is generally a good practice for applications to make sure
that the image subresource used for the encode input picture has an extent that is
an integer multiple of the codec-specific coding block size (or at least
encodeInputPictureGranularity) and that this padding area is filled with known
values in order to improve encoding efficiency, portability, and reproducibility.

Valid Usage (Implicit)

• VUID-VkVideoEncodeCapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_CAPABILITIES_KHR

Bits which may be set in VkVideoEncodeCapabilitiesKHR::flags, indicating the encoding tools
supported, are:

// Provided by VK_KHR_video_encode_queue
typedef enum VkVideoEncodeCapabilityFlagBitsKHR {
 VK_VIDEO_ENCODE_CAPABILITY_PRECEDING_EXTERNALLY_ENCODED_BYTES_BIT_KHR =
0x00000001,
 VK_VIDEO_ENCODE_CAPABILITY_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_DETECTION_BIT_KHR =
0x00000002,
} VkVideoEncodeCapabilityFlagBitsKHR;

• VK_VIDEO_ENCODE_CAPABILITY_PRECEDING_EXTERNALLY_ENCODED_BYTES_BIT_KHR indicates that the
implementation supports the use of VkVideoEncodeInfoKHR::precedingExternallyEncodedBytes.

• VK_VIDEO_ENCODE_CAPABILITY_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_DETECTION_BIT_KHR indicates
that the implementation is able to detect and report when the destination video bitstream
buffer range provided by the application is not sufficiently large to fit the encoded bitstream
data produced by a video encode operation by reporting the
VK_QUERY_RESULT_STATUS_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_KHR query result status code.

Note

Some implementations may not be able to reliably detect insufficient bitstream
buffer range conditions in all situations. Such implementations will not report
support for the
VK_VIDEO_ENCODE_CAPABILITY_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_DETECTION_BI
T_KHR encode capability flag for the video profile, but may still report the
VK_QUERY_RESULT_STATUS_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_KHR query result
status code in certain cases. Applications should always check for the specific
query result status code

3497

VK_QUERY_RESULT_STATUS_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_KHR even when
this encode capability flag is not supported by the implementation for the
video profile in question. However, applications must not assume that a
different negative query result status code indicating an unsuccessful
completion of a video encode operation is not the result of an insufficient
bitstream buffer condition unless this encode capability flag is supported.

// Provided by VK_KHR_video_encode_queue
typedef VkFlags VkVideoEncodeCapabilityFlagsKHR;

VkVideoEncodeCapabilityFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeCapabilityFlagBitsKHR.

42.15.4. Video Encode Quality Levels

Implementations can support more than one video encode quality levels for a video encode profile,
which control the number and type of implementation-specific encoding tools and algorithms
utilized in the encoding process.

Note

Generally, using higher video encode quality levels may produce higher quality
video streams at the cost of additional processing time. However, as the final
quality of an encoded picture depends on the contents of the encode input picture,
the contents of the active reference pictures, the codec-specific encode parameters,
and the particular implementation-specific tools used corresponding to the
individual video encode quality levels, there are no guarantees that using a higher
video encode quality level will always produce a higher quality encoded picture
for any given set of inputs.

To query properties for a specific video encode quality level supported by a video encode profile,
call:

// Provided by VK_KHR_video_encode_queue
VkResult vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR* pQualityLevelInfo,
 VkVideoEncodeQualityLevelPropertiesKHR* pQualityLevelProperties);

• physicalDevice is the physical device to query the video encode quality level properties for.

• pQualityLevelInfo is a pointer to a VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR structure
specifying the video encode profile and quality level to query properties for.

• pQualityLevelProperties is a pointer to a VkVideoEncodeQualityLevelPropertiesKHR structure
in which the properties are returned.

3498

Valid Usage

• VUID-vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR-pQualityLevelInfo-
08257
If pQualityLevelInfo->pVideoProfile->videoCodecOperation is
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the pNext chain of
pQualityLevelProperties must include a VkVideoEncodeH264QualityLevelPropertiesKHR
structure

• VUID-vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR-pQualityLevelInfo-
08258
If pQualityLevelInfo->pVideoProfile->videoCodecOperation is
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the pNext chain of
pQualityLevelProperties must include a VkVideoEncodeH265QualityLevelPropertiesKHR
structure

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR-physicalDevice-
parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR-pQualityLevelInfo-
parameter
pQualityLevelInfo must be a valid pointer to a valid
VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR structure

• VUID-vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR-
pQualityLevelProperties-parameter
pQualityLevelProperties must be a valid pointer to a
VkVideoEncodeQualityLevelPropertiesKHR structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR

3499

The VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const VkVideoProfileInfoKHR* pVideoProfile;
 uint32_t qualityLevel;
} VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pVideoProfile is a pointer to a VkVideoProfileInfoKHR structure specifying the video profile to
query the video encode quality level properties for.

• qualityLevel is the video encode quality level to query properties for.

Valid Usage

• VUID-VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR-pVideoProfile-08259
pVideoProfile must be a supported video profile

• VUID-VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR-pVideoProfile-08260
pVideoProfile->videoCodecOperation must specify an encode operation

• VUID-VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR-qualityLevel-08261
qualityLevel must be less than VkVideoEncodeCapabilitiesKHR::maxQualityLevels, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile specified in
pVideoProfile

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_ENCODE_QUALITY_LEVEL_INFO_KHR

• VUID-VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR-pVideoProfile-parameter
pVideoProfile must be a valid pointer to a valid VkVideoProfileInfoKHR structure

The VkVideoEncodeQualityLevelPropertiesKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeQualityLevelPropertiesKHR {
 VkStructureType sType;
 void* pNext;

3500

 VkVideoEncodeRateControlModeFlagBitsKHR preferredRateControlMode;
 uint32_t preferredRateControlLayerCount;
} VkVideoEncodeQualityLevelPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• preferredRateControlMode is a VkVideoEncodeRateControlModeFlagBitsKHR value indicating the
preferred rate control mode to use with the video encode quality level.

• preferredRateControlLayerCount indicates the preferred number of rate control layers to use
with the video encode quality level.

Valid Usage (Implicit)

• VUID-VkVideoEncodeQualityLevelPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_QUALITY_LEVEL_PROPERTIES_KHR

• VUID-VkVideoEncodeQualityLevelPropertiesKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoEncodeH264QualityLevelPropertiesKHR or
VkVideoEncodeH265QualityLevelPropertiesKHR

• VUID-VkVideoEncodeQualityLevelPropertiesKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

The VkVideoEncodeQualityLevelInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeQualityLevelInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t qualityLevel;
} VkVideoEncodeQualityLevelInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• qualityLevel is the used video encode quality level.

This structure can be specified in the following places:

• In the pNext chain of VkVideoSessionParametersCreateInfoKHR to specify the video encode
quality level to use for a video session parameters object created for a video encode session. If
no instance of this structure is included in the pNext chain of
VkVideoSessionParametersCreateInfoKHR, then the video session parameters object is created
with a video encode quality level of zero.

• In the pNext chain of VkVideoCodingControlInfoKHR to change the video encode quality level

3501

state of the bound video session.

Valid Usage

• VUID-VkVideoEncodeQualityLevelInfoKHR-qualityLevel-08311
qualityLevel must be less than VkVideoEncodeCapabilitiesKHR::maxQualityLevels, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile

Valid Usage (Implicit)

• VUID-VkVideoEncodeQualityLevelInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_QUALITY_LEVEL_INFO_KHR

42.15.5. Retrieving Encoded Session Parameters

Any codec-specific parameters stored in video session parameters objects may need to be
separately encoded and included in the final video bitstream data, depending on the used video
compression standard. In such cases the application must call the
vkGetEncodedVideoSessionParametersKHR command to retrieve the encoded parameter data from
the used video session parameters object in order to be able to produce a compliant video
bitstream.

Note

This is needed because implementations may have changed some of the codec-
specific parameters stored in the video session parameters object, as defined in the
Video Encode Parameter Overrides section. In addition, the
vkGetEncodedVideoSessionParametersKHR command enables the application to
retrieve the encoded parameter data without having to encode these codec-specific
parameters manually.

Encoded parameter data can be retrieved from a video session parameters object created with a
video encode operation using the command:

// Provided by VK_KHR_video_encode_queue
VkResult vkGetEncodedVideoSessionParametersKHR(
 VkDevice device,
 const VkVideoEncodeSessionParametersGetInfoKHR* pVideoSessionParametersInfo,
 VkVideoEncodeSessionParametersFeedbackInfoKHR* pFeedbackInfo,
 size_t* pDataSize,
 void* pData);

• device is the logical device that owns the video session parameters object.

• pVideoSessionParametersInfo is a pointer to a VkVideoEncodeSessionParametersGetInfoKHR
structure specifying the parameters of the encoded parameter data to retrieve.

3502

• pFeedbackInfo is either NULL or a pointer to a
VkVideoEncodeSessionParametersFeedbackInfoKHR structure in which feedback about the
requested parameter data is returned.

• pDataSize is a pointer to a size_t value related to the amount of encode parameter data
returned, as described below.

• pData is either NULL or a pointer to a buffer to write the encoded parameter data to.

If pData is NULL, then the size of the encoded parameter data, in bytes, that can be retrieved is
returned in pDataSize. Otherwise, pDataSize must point to a variable set by the application to the
size of the buffer, in bytes, pointed to by pData, and on return the variable is overwritten with the
number of bytes actually written to pData. If pDataSize is less than the size of the encoded parameter
data that can be retrieved, then no data will be written to pData, zero will be written to pDataSize,
and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that no encoded parameter
data was returned.

If pFeedbackInfo is not NULL then the members of the
VkVideoEncodeSessionParametersFeedbackInfoKHR structure and any additional structures
included in its pNext chain that are applicable to the video session parameters object specified in
pVideoSessionParametersInfo->videoSessionParameters will be filled with feedback about the
requested parameter data on all successful calls to this command.

Note

This includes the cases when pData is NULL or when VK_INCOMPLETE is returned by
the command, and enables the application to determine whether the
implementation overrode any of the requested video session parameters without
actually needing to retrieve the encoded parameter data itself.

Valid Usage

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-08359
pVideoSessionParametersInfo->videoSessionParameters must have been created with an
encode operation

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-08262
If pVideoSessionParametersInfo->videoSessionParameters was created with the video codec
operation VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the pNext chain of
pVideoSessionParametersInfo must include a
VkVideoEncodeH264SessionParametersGetInfoKHR structure

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-08263
If pVideoSessionParametersInfo->videoSessionParameters was created with the video codec
operation VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then for the
VkVideoEncodeH264SessionParametersGetInfoKHR structure included in the pNext chain
of pVideoSessionParametersInfo, if its writeStdSPS member is VK_TRUE, then
pVideoSessionParametersInfo->videoSessionParameters must contain a
StdVideoH264SequenceParameterSet entry with seq_parameter_set_id matching
VkVideoEncodeH264SessionParametersGetInfoKHR::stdSPSId

3503

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-08264
If pVideoSessionParametersInfo->videoSessionParameters was created with the video codec
operation VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then for the
VkVideoEncodeH264SessionParametersGetInfoKHR structure included in the pNext chain
of pVideoSessionParametersInfo, if its writeStdPPS member is VK_TRUE, then
pVideoSessionParametersInfo->videoSessionParameters must contain a
StdVideoH264PictureParameterSet entry with seq_parameter_set_id and
pic_parameter_set_id matching VkVideoEncodeH264SessionParametersGetInfoKHR
::stdSPSId and VkVideoEncodeH264SessionParametersGetInfoKHR::stdPPSId, respectively

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-08265
If pVideoSessionParametersInfo->videoSessionParameters was created with the video codec
operation VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the pNext chain of
pVideoSessionParametersInfo must include a
VkVideoEncodeH265SessionParametersGetInfoKHR structure

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-08266
If pVideoSessionParametersInfo->videoSessionParameters was created with the video codec
operation VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then for the
VkVideoEncodeH265SessionParametersGetInfoKHR structure included in the pNext chain
of pVideoSessionParametersInfo, if its writeStdVPS member is VK_TRUE, then
pVideoSessionParametersInfo->videoSessionParameters must contain a
StdVideoH265VideoParameterSet entry with vps_video_parameter_set_id matching
VkVideoEncodeH265SessionParametersGetInfoKHR::stdVPSId

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-08267
If pVideoSessionParametersInfo->videoSessionParameters was created with the video codec
operation VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then for the
VkVideoEncodeH265SessionParametersGetInfoKHR structure included in the pNext chain
of pVideoSessionParametersInfo, if its writeStdSPS member is VK_TRUE, then
pVideoSessionParametersInfo->videoSessionParameters must contain a
StdVideoH265SequenceParameterSet entry with sps_video_parameter_set_id and
sps_seq_parameter_set_id matching VkVideoEncodeH265SessionParametersGetInfoKHR
::stdVPSId and VkVideoEncodeH265SessionParametersGetInfoKHR::stdSPSId, respectively

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-08268
If pVideoSessionParametersInfo->videoSessionParameters was created with the video codec
operation VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then for the
VkVideoEncodeH265SessionParametersGetInfoKHR structure included in the pNext chain
of pVideoSessionParametersInfo, if its writeStdPPS member is VK_TRUE, then
pVideoSessionParametersInfo->videoSessionParameters must contain a
StdVideoH265PictureParameterSet entry with sps_video_parameter_set_id,
pps_seq_parameter_set_id, and pps_pic_parameter_set_id matching
VkVideoEncodeH265SessionParametersGetInfoKHR::stdVPSId,
VkVideoEncodeH265SessionParametersGetInfoKHR::stdSPSId, and
VkVideoEncodeH265SessionParametersGetInfoKHR::stdPPSId, respectively

3504

Valid Usage (Implicit)

• VUID-vkGetEncodedVideoSessionParametersKHR-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetEncodedVideoSessionParametersKHR-pVideoSessionParametersInfo-
parameter
pVideoSessionParametersInfo must be a valid pointer to a valid
VkVideoEncodeSessionParametersGetInfoKHR structure

• VUID-vkGetEncodedVideoSessionParametersKHR-pFeedbackInfo-parameter
If pFeedbackInfo is not NULL, pFeedbackInfo must be a valid pointer to a
VkVideoEncodeSessionParametersFeedbackInfoKHR structure

• VUID-vkGetEncodedVideoSessionParametersKHR-pDataSize-parameter
pDataSize must be a valid pointer to a size_t value

• VUID-vkGetEncodedVideoSessionParametersKHR-pData-parameter
If the value referenced by pDataSize is not 0, and pData is not NULL, pData must be a valid
pointer to an array of pDataSize bytes

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkVideoEncodeSessionParametersGetInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeSessionParametersGetInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoSessionParametersKHR videoSessionParameters;
} VkVideoEncodeSessionParametersGetInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• videoSessionParameters is the VkVideoSessionParametersKHR object to retrieve encoded
parameter data from.

Depending on the used video encode operation, additional codec-specific structures may need to be

3505

included in the pNext chain of this structure to identify the specific video session parameters to
retrieve encoded parameter data for, as described in the corresponding sections.

Valid Usage (Implicit)

• VUID-VkVideoEncodeSessionParametersGetInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_SESSION_PARAMETERS_GET_INFO_KHR

• VUID-VkVideoEncodeSessionParametersGetInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoEncodeH264SessionParametersGetInfoKHR
or VkVideoEncodeH265SessionParametersGetInfoKHR

• VUID-VkVideoEncodeSessionParametersGetInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkVideoEncodeSessionParametersGetInfoKHR-videoSessionParameters-parameter
videoSessionParameters must be a valid VkVideoSessionParametersKHR handle

The VkVideoEncodeSessionParametersFeedbackInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeSessionParametersFeedbackInfoKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 hasOverrides;
} VkVideoEncodeSessionParametersFeedbackInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• hasOverrides indicates whether any of the requested parameter data were overridden by the
implementation.

Depending on the used video encode operation, additional codec-specific structures can be be
included in the pNext chain of this structure to capture codec-specific feedback information about
the requested parameter data, as described in the corresponding sections.

Valid Usage (Implicit)

• VUID-VkVideoEncodeSessionParametersFeedbackInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_SESSION_PARAMETERS_FEEDBACK_INFO_KHR

• VUID-VkVideoEncodeSessionParametersFeedbackInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of
VkVideoEncodeH264SessionParametersFeedbackInfoKHR or
VkVideoEncodeH265SessionParametersFeedbackInfoKHR

3506

• VUID-VkVideoEncodeSessionParametersFeedbackInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

42.15.6. Video Encode Commands

To launch video encode operations, call:

// Provided by VK_KHR_video_encode_queue
void vkCmdEncodeVideoKHR(
 VkCommandBuffer commandBuffer,
 const VkVideoEncodeInfoKHR* pEncodeInfo);

• commandBuffer is the command buffer in which to record the command.

• pEncodeInfo is a pointer to a VkVideoEncodeInfoKHR structure specifying the parameters of the
video encode operations.

Each call issues one or more video encode operations. The implicit parameter opCount corresponds
to the number of video encode operations issued by the command. After calling this command, the
active query index of each active query is incremented by opCount.

Currently each call to this command results in the issue of a single video encode operation.

If the bound video session was created with VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR and
the pNext chain of pEncodeInfo includes a VkVideoInlineQueryInfoKHR structure with its queryPool
member specifying a valid VkQueryPool handle, then this command will execute a query for each
video encode operation issued by it.

Active Reference Picture Information

The list of active reference pictures used by a video encode operation is a list of image
subregions used as the source of reference picture data and related parameters, and is derived
from the VkVideoReferenceSlotInfoKHR structures provided as the elements of the pEncodeInfo-
>pReferenceSlots array. For each element of pEncodeInfo->pReferenceSlots, one or more elements
are added to the active reference picture list, as defined by the codec-specific semantics. Each
element of this list contains the following information:

• The image subregion within the image subresource referred to by the video picture resource
used as the reference picture.

• The DPB slot index the reference picture is associated with.

• The codec-specific reference information related to the reference picture.

Reconstructed Picture Information

Information related to the optional reconstructed picture used by a video encode operation is
derived from the VkVideoReferenceSlotInfoKHR structure pointed to by pEncodeInfo-
>pSetupReferenceSlot, if not NULL, as defined by the codec-specific semantics, and consists of the
following:

3507

• The image subregion within the image subresource referred to by the video picture resource
used as the reconstructed picture.

• The DPB slot index to use for picture reconstruction.

• The codec-specific reference information related to the reconstructed picture.

Specifying a valid VkVideoReferenceSlotInfoKHR structure in pEncodeInfo->pSetupReferenceSlot is
always required, unless the video session was created with VkVideoSessionCreateInfoKHR
::maxDpbSlot equal to zero. However, the DPB slot identified by pEncodeInfo->pSetupReferenceSlot-
>slotIndex is only activated with the reconstructed picture specified in pEncodeInfo-
>pSetupReferenceSlot->pPictureResource if reference picture setup is requested according to the
codec-specific semantics.

If reconstructed picture information is specified, but reference picture setup is not requested,
according to the codec-specific semantics, the contents of the video picture resource corresponding
to the reconstructed picture will be undefined after the video encode operation.

Note

Some implementations may always output the reconstructed picture or use it as
temporary storage during the video encode operation even when the
reconstructed picture is not marked for future reference.

Encode Input Picture Information

Information related to the encode input picture used by a video encode operation is derived
from pEncodeInfo->srcPictureResource and any codec-specific parameters provided in the
pEncodeInfo->pNext chain, as defined by the codec-specific semantics, and consists of the
following:

• The image subregion within the image subresource referred to by the video picture resource
used as the encode input picture.

• The codec-specific picture information related to the encoded picture.

Several limiting values are defined below that are referenced by the relevant valid usage
statements of this command.

• Let uint32_t activeReferencePictureCount be the size of the list of active reference pictures used
by the video encode operation. Unless otherwise defined, activeReferencePictureCount is set to
the value of pEncodeInfo->referenceSlotCount.

• Let VkOffset2D codedOffsetGranularity be the minimum alignment requirement for the coded
offset of video picture resources. Unless otherwise defined, the value of the x and y members of
codedOffsetGranularity are 0.

• Let uint32_t dpbFrameUseCount[] be an array of size maxDpbSlots, where maxDpbSlots is the
VkVideoSessionCreateInfoKHR::maxDpbSlots the bound video session was created with, with
each element indicating the number of times a frame associated with the corresponding DPB
slot index is referred to by the video coding operation. Let the initial value of each element of
the array be 0.

◦ If pEncodeInfo->pSetupReferenceSlot is not NULL, then dpbFrameUseCount[i] is incremented by

3508

one, where i equals pEncodeInfo->pSetupReferenceSlot->slotIndex.

◦ For each element of pEncodeInfo->pReferenceSlots, dpbFrameUseCount[i] is incremented by
one, where i equals the slotIndex member of the corresponding element.

• Let VkExtent2D maxCodingBlockSize be the maximum codec-specific coding block size that may
be used by the video encode operation.

◦ If the bound video session object was created with an H.264 encode profile, then let
maxCodingBlockSize be equal to the size of an H.264 macroblock, i.e. {16,16}.

◦ If the bound video session object was created with an H.265 encode profile, then let
maxCodingBlockSize be equal to the maximum H.265 coding block size that may be used by
the video encode operation derived as the maximum of the CTB sizes corresponding to the
VkVideoEncodeH265CtbSizeFlagBitsKHR bits set in VkVideoEncodeH265CapabilitiesKHR
::ctbSizes, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile
the bound video session was created with.

◦ Otherwise, maxCodingBlockSize is undefined.

• If maxCodingBlockSize is defined, then let VkExtent2D minCodingBlockExtent be the coded extent of
the encode input picture expressed in terms of codec-specific coding blocks, assuming the
maximum size of such coding blocks, as defined by maxCodingBlockSize, calculated from the
value of the codedExtent member of pEncodeInfo->srcPictureResource as follows:

◦ minCodingBlockExtent.width = (codedExtent.width
maxCodingBlockSize.width - 1) / maxCodingBlockSize.width

◦ minCodingBlockExtent.height = (codedExtent.height
maxCodingBlockSize.height - 1) / maxCodingBlockSize.height

• If the bound video session object was created with an H.264 encode profile, then:

◦ Let StdVideoH264PictureType h264PictureType be the picture type of the encoded picture set
to the value of pStdPictureInfo->primary_pic_type specified in the
VkVideoEncodeH264PictureInfoKHR structure included in the pEncodeInfo->pNext chain.

◦ Let StdVideoH264PictureType h264L0PictureTypes[] and StdVideoH264PictureType
h264L1PictureTypes[] be the picture types of the reference pictures in the L0 and L1
reference lists, respectively. If pStdPictureInfo->pRefLists specified in the
VkVideoEncodeH264PictureInfoKHR structure included in the pEncodeInfo->pNext chain is
not NULL, then for each reference index specified in the elements of the pStdPictureInfo-
>pRefLists->RefPicList0 and pStdPictureInfo->pRefLists->RefPicList1 arrays, if the
reference index is not STD_VIDEO_H264_NO_REFERENCE_PICTURE, pStdReferenceInfo-
>primary_pic_type is added to h264L0PictureTypes or h264L1PictureTypes, respectively, where
pStdReferenceInfo is the member of the VkVideoEncodeH264DpbSlotInfoKHR structure
included in the pNext chain of the element of pEncodeInfo->pReferenceSlots for which
slotIndex equals the reference index in question.

• If the bound video session object was created with an H.265 encode profile, then:

◦ Let StdVideoH265PictureType h265PictureType be the picture type of the encoded picture set
to the value of pStdPictureInfo->pic_type specified in the
VkVideoEncodeH265PictureInfoKHR structure included in the pEncodeInfo->pNext chain.

◦ Let StdVideoH265PictureType h265L0PictureTypes[] and StdVideoH265PictureType

3509

h265L1PictureTypes[] be the picture types of the reference pictures in the L0 and L1
reference lists, respectively. If pStdPictureInfo->pRefLists specified in the
VkVideoEncodeH265PictureInfoKHR structure included in the pEncodeInfo->pNext chain is
not NULL, then for each reference index specified in the elements of the pStdPictureInfo-
>pRefLists->RefPicList0 and pStdPictureInfo->pRefLists->RefPicList1 arrays, if the
reference index is not STD_VIDEO_H265_NO_REFERENCE_PICTURE, pStdReferenceInfo->pic_type is
added to h265L0PictureTypes or h265L1PictureTypes, respectively, where pStdReferenceInfo is
the member of the VkVideoEncodeH265DpbSlotInfoKHR structure included in the pNext
chain of the element of pEncodeInfo->pReferenceSlots for which slotIndex equals the
reference index in question.

Valid Usage

• VUID-vkCmdEncodeVideoKHR-None-08250
The bound video session must have been created with an encode operation

• VUID-vkCmdEncodeVideoKHR-None-07012
The bound video session must not be in uninitialized state at the time the command is
executed on the device

• VUID-vkCmdEncodeVideoKHR-None-08318
The bound video session parameters object must have been created with the currently set
video encode quality level for the bound video session at the time the command is
executed on the device

• VUID-vkCmdEncodeVideoKHR-opCount-07174
For each active query, the active query index corresponding to the query type of that
query plus opCount must be less than or equal to the last activatable query index
corresponding to the query type of that query plus one

• VUID-vkCmdEncodeVideoKHR-pNext-08360
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, and the pNext chain of pEncodeInfo
includes a VkVideoInlineQueryInfoKHR structure with its queryPool member specifying a
valid VkQueryPool handle, then VkVideoInlineQueryInfoKHR::queryCount must equal
opCount

• VUID-vkCmdEncodeVideoKHR-pNext-08361
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, and the pNext chain of pEncodeInfo
includes a VkVideoInlineQueryInfoKHR structure with its queryPool member specifying a
valid VkQueryPool handle, then all the queries used by the command, as specified by the
VkVideoInlineQueryInfoKHR structure, must be unavailable

• VUID-vkCmdEncodeVideoKHR-queryType-08362
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, then the queryType used to create the
queryPool specified in the VkVideoInlineQueryInfoKHR structure included in the pNext
chain of pEncodeInfo must be VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR or
VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR

• VUID-vkCmdEncodeVideoKHR-queryPool-08363

3510

If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, then the queryPool specified in the
VkVideoInlineQueryInfoKHR structure included in the pNext chain of pEncodeInfo must
have been created with a VkVideoProfileInfoKHR structure included in the pNext chain of
VkQueryPoolCreateInfo identical to the one specified in VkVideoSessionCreateInfoKHR
::pVideoProfile the bound video session was created with

• VUID-vkCmdEncodeVideoKHR-queryType-08364
If the bound video session was created with
VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR, and the queryType used to create the
queryPool specified in the VkVideoInlineQueryInfoKHR structure included in the pNext
chain of pEncodeInfo is VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR, then the VkCommandPool that
commandBuffer was allocated from must have been created with a queue family index that
supports result status queries, as indicated by
VkQueueFamilyQueryResultStatusPropertiesKHR::queryResultStatusSupport

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08201
pEncodeInfo->dstBuffer must be compatible with the video profile the bound video
session was created with

• VUID-vkCmdEncodeVideoKHR-commandBuffer-08202
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
then pEncodeInfo->dstBuffer must not be a protected buffer

• VUID-vkCmdEncodeVideoKHR-commandBuffer-08203
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
then pEncodeInfo->dstBuffer must be a protected buffer

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08204
pEncodeInfo->dstBufferOffset must be an integer multiple of VkVideoCapabilitiesKHR
::minBitstreamBufferOffsetAlignment, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08205
pEncodeInfo->dstBufferRange must be an integer multiple of VkVideoCapabilitiesKHR
::minBitstreamBufferSizeAlignment, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08206
pEncodeInfo->srcPictureResource.imageViewBinding must be compatible with the video
profile the bound video session was created with

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08207
The format of pEncodeInfo->srcPictureResource.imageViewBinding must match the
VkVideoSessionCreateInfoKHR::pictureFormat the bound video session was created with

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08208
pEncodeInfo->srcPictureResource.codedOffset must be an integer multiple of
codedOffsetGranularity

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08209
pEncodeInfo->srcPictureResource.codedExtent must be between minCodedExtent and

3511

maxCodedExtent, inclusive, the bound video session was created with

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08210
pEncodeInfo->srcPictureResource.imageViewBinding must have been created with
VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR

• VUID-vkCmdEncodeVideoKHR-commandBuffer-08211
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
then pEncodeInfo->srcPictureResource.imageViewBinding must not have been created from
a protected image

• VUID-vkCmdEncodeVideoKHR-commandBuffer-08212
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
then pEncodeInfo->srcPictureResource.imageViewBinding must have been created from a
protected image

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08377
pEncodeInfo->pSetupReferenceSlot must not be NULL unless the bound video session was
created with VkVideoSessionCreateInfoKHR::maxDpbSlots equal to zero

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08213
If pEncodeInfo->pSetupReferenceSlot is not NULL, then pEncodeInfo->pSetupReferenceSlot-
>slotIndex must be less than the VkVideoSessionCreateInfoKHR::maxDpbSlots specified
when the bound video session was created

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08214
If pEncodeInfo->pSetupReferenceSlot is not NULL, then pEncodeInfo->pSetupReferenceSlot-
>pPictureResource->codedOffset must be an integer multiple of codedOffsetGranularity

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08215
If pEncodeInfo->pSetupReferenceSlot is not NULL, then pEncodeInfo->pSetupReferenceSlot-
>pPictureResource must match one of the bound reference picture resource

• VUID-vkCmdEncodeVideoKHR-activeReferencePictureCount-08216
activeReferencePictureCount must be less than or equal to the
VkVideoSessionCreateInfoKHR::maxActiveReferencePictures specified when the bound
video session was created

• VUID-vkCmdEncodeVideoKHR-slotIndex-08217
The slotIndex member of each element of pEncodeInfo->pReferenceSlots must be less than
the VkVideoSessionCreateInfoKHR::maxDpbSlots specified when the bound video session
was created

• VUID-vkCmdEncodeVideoKHR-codedOffset-08218
The codedOffset member of the VkVideoPictureResourceInfoKHR structure pointed to by
the pPictureResource member of each element of pEncodeInfo->pReferenceSlots must be
an integer multiple of codedOffsetGranularity

• VUID-vkCmdEncodeVideoKHR-pPictureResource-08219
The pPictureResource member of each element of pEncodeInfo->pReferenceSlots must
match one of the bound reference picture resource associated with the DPB slot index
specified in the slotIndex member of that element

• VUID-vkCmdEncodeVideoKHR-pPictureResource-08220
Each video picture resource corresponding to the pPictureResource member specified in

3512

the elements of pEncodeInfo->pReferenceSlots must be unique within pEncodeInfo-
>pReferenceSlots

• VUID-vkCmdEncodeVideoKHR-dpbFrameUseCount-08221
All elements of dpbFrameUseCount must be less than or equal to 1

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08222
The image subresource referred to by pEncodeInfo->srcPictureResource must be in the
VK_IMAGE_LAYOUT_VIDEO_ENCODE_SRC_KHR layout at the time the video encode operation is
executed on the device

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08223
If pEncodeInfo->pSetupReferenceSlot is not NULL, then the image subresource referred to by
pEncodeInfo->pSetupReferenceSlot->pPictureResource must be in the
VK_IMAGE_LAYOUT_VIDEO_ENCODE_DPB_KHR layout at the time the video encode operation is
executed on the device

• VUID-vkCmdEncodeVideoKHR-pPictureResource-08224
The image subresource referred to by the pPictureResource member of each element of
pEncodeInfo->pReferenceSlots must be in the VK_IMAGE_LAYOUT_VIDEO_ENCODE_DPB_KHR layout
at the time the video encode operation is executed on the device

• VUID-vkCmdEncodeVideoKHR-pNext-08225
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the pNext chain of pEncodeInfo must
include a VkVideoEncodeH264PictureInfoKHR structure

• VUID-vkCmdEncodeVideoKHR-StdVideoH264SequenceParameterSet-08226
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH264SequenceParameterSet entry with seq_parameter_set_id
matching StdVideoEncodeH264PictureInfo::seq_parameter_set_id that is provided in the
pStdPictureInfo member of the VkVideoEncodeH264PictureInfoKHR structure included in
the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-StdVideoH264PictureParameterSet-08227
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH264PictureParameterSet entry with seq_parameter_set_id
and pic_parameter_set_id matching StdVideoEncodeH264PictureInfo::seq_parameter_set_id
and StdVideoEncodeH264PictureInfo::pic_parameter_set_id, respectively, that are provided
in the pStdPictureInfo member of the VkVideoEncodeH264PictureInfoKHR structure
included in the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08228
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and pEncodeInfo->pSetupReferenceSlot is
not NULL, then the pNext chain of pEncodeInfo->pSetupReferenceSlot must include a
VkVideoEncodeH264DpbSlotInfoKHR structure

• VUID-vkCmdEncodeVideoKHR-pNext-08229
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the pNext chain of each element of

3513

pEncodeInfo->pReferenceSlots must include a VkVideoEncodeH264DpbSlotInfoKHR
structure

• VUID-vkCmdEncodeVideoKHR-constantQp-08269
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and the current rate control mode is not
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR, then
VkVideoEncodeH264NaluSliceInfoKHR::constantQp must be zero for each element of the
pNaluSliceEntries member of the VkVideoEncodeH264PictureInfoKHR structure included
in the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-constantQp-08270
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and the current rate control mode is
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR, then
VkVideoEncodeH264NaluSliceInfoKHR::constantQp must be between
VkVideoEncodeH264CapabilitiesKHR::minQp and VkVideoEncodeH264CapabilitiesKHR
::maxQp, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the
bound video session was created with, for each element of the pNaluSliceEntries member
of the VkVideoEncodeH264PictureInfoKHR structure included in the pNext chain of
pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-constantQp-08271
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and VkVideoEncodeH264CapabilitiesKHR
::flags does not include VK_VIDEO_ENCODE_H264_CAPABILITY_PER_SLICE_CONSTANT_QP_BIT_KHR,
as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound
video session was created with, then VkVideoEncodeH264NaluSliceInfoKHR::constantQp
must have the same value for each element of the pNaluSliceEntries member of the
VkVideoEncodeH264PictureInfoKHR structure included in the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-naluSliceEntryCount-08302
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then the naluSliceEntryCount member of
the VkVideoEncodeH264PictureInfoKHR structure included in the pNext chain of
pEncodeInfo must be less than or equal to minCodingBlockExtent.width multiplied by
minCodingBlockExtent.height

• VUID-vkCmdEncodeVideoKHR-naluSliceEntryCount-08312
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and VkVideoEncodeH264CapabilitiesKHR
::flags does not include VK_VIDEO_ENCODE_H264_CAPABILITY_ROW_UNALIGNED_SLICE_BIT_KHR, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound
video session was created with, then the naluSliceEntryCount member of the
VkVideoEncodeH264PictureInfoKHR structure included in the pNext chain of pEncodeInfo
must be less than or equal to minCodingBlockExtent.height

• VUID-vkCmdEncodeVideoKHR-pNext-08352
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, the pNext chain of pEncodeInfo includes a
VkVideoEncodeH264PictureInfoKHR structure, and pEncodeInfo->referenceSlotCount is

3514

greater than zero, then VkVideoEncodeH264PictureInfoKHR::pStdPictureInfo->pRefLists
must not be NULL

• VUID-vkCmdEncodeVideoKHR-pNext-08339
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, the pNext chain of pEncodeInfo includes a
VkVideoEncodeH264PictureInfoKHR structure, and VkVideoEncodeH264PictureInfoKHR
::pStdPictureInfo->pRefLists is not NULL, then each element of the RefPicList0 and
RefPicList1 array members of the StdVideoEncodeH264ReferenceListsInfo structure pointed
to by VkVideoEncodeH264PictureInfoKHR::pStdPictureInfo->pRefLists must either be
STD_VIDEO_H264_NO_REFERENCE_PICTURE or must equal the slotIndex member of one of the
elements of pEncodeInfo->pReferenceSlots

• VUID-vkCmdEncodeVideoKHR-pNext-08353
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, the pNext chain of pEncodeInfo includes a
VkVideoEncodeH264PictureInfoKHR structure, and pEncodeInfo->referenceSlotCount is
greater than zero, then the slotIndex member of each element of pEncodeInfo-
>pReferenceSlots must equal one of the elements of the RefPicList0 or RefPicList1 array
members of the StdVideoEncodeH264ReferenceListsInfo structure pointed to by
VkVideoEncodeH264PictureInfoKHR::pStdPictureInfo->pRefLists

• VUID-vkCmdEncodeVideoKHR-maxPPictureL0ReferenceCount-08340
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and VkVideoEncodeH264CapabilitiesKHR
::maxPPictureL0ReferenceCount is zero, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with, then h264PictureType and each element of h264L0PictureTypes and
h264L1PictureTypes must not be STD_VIDEO_H264_PICTURE_TYPE_P

• VUID-vkCmdEncodeVideoKHR-maxBPictureL0ReferenceCount-08341
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and VkVideoEncodeH264CapabilitiesKHR
::maxBPictureL0ReferenceCount and VkVideoEncodeH264CapabilitiesKHR
::maxL1ReferenceCount are both zero, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with, then h264PictureType and each element of h264L0PictureTypes and
h264L1PictureTypes must not be STD_VIDEO_H264_PICTURE_TYPE_B

• VUID-vkCmdEncodeVideoKHR-flags-08342
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and VkVideoEncodeH264CapabilitiesKHR
::flags does not include VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_KHR, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound
video session was created with, then each element of h264L0PictureTypes must not be
STD_VIDEO_H264_PICTURE_TYPE_B

• VUID-vkCmdEncodeVideoKHR-flags-08343
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and VkVideoEncodeH264CapabilitiesKHR
::flags does not include VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L1_LIST_BIT_KHR, as

3515

returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound
video session was created with, then each element of h264L1PictureTypes must not be
STD_VIDEO_H264_PICTURE_TYPE_B

• VUID-vkCmdEncodeVideoKHR-pNext-08230
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the pNext chain of pEncodeInfo must
include a VkVideoEncodeH265PictureInfoKHR structure

• VUID-vkCmdEncodeVideoKHR-StdVideoH265VideoParameterSet-08231
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH265VideoParameterSet entry with
vps_video_parameter_set_id matching StdVideoEncodeH265PictureInfo
::sps_video_parameter_set_id that is provided in the pStdPictureInfo member of the
VkVideoEncodeH265PictureInfoKHR structure included in the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-StdVideoH265SequenceParameterSet-08232
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH265SequenceParameterSet entry with
sps_video_parameter_set_id and sps_seq_parameter_set_id matching
StdVideoEncodeH265PictureInfo::sps_video_parameter_set_id and
StdVideoEncodeH265PictureInfo::pps_seq_parameter_set_id, respectively, that are provided
in the pStdPictureInfo member of the VkVideoEncodeH265PictureInfoKHR structure
included in the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-StdVideoH265PictureParameterSet-08233
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the bound video session parameters
object must contain a StdVideoH265PictureParameterSet entry with
sps_video_parameter_set_id, pps_seq_parameter_set_id, and pps_pic_parameter_set_id
matching StdVideoEncodeH265PictureInfo::sps_video_parameter_set_id,
StdVideoEncodeH265PictureInfo::pps_seq_parameter_set_id, and
StdVideoEncodeH265PictureInfo::pps_pic_parameter_set_id, respectively, that are provided
in the pStdPictureInfo member of the VkVideoEncodeH265PictureInfoKHR structure
included in the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-08234
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and pEncodeInfo->pSetupReferenceSlot is
not NULL, then the pNext chain of pEncodeInfo->pSetupReferenceSlot must include a
VkVideoEncodeH265DpbSlotInfoKHR structure

• VUID-vkCmdEncodeVideoKHR-pNext-08235
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the pNext chain of each element of
pEncodeInfo->pReferenceSlots must include a VkVideoEncodeH265DpbSlotInfoKHR
structure

• VUID-vkCmdEncodeVideoKHR-constantQp-08272
If the bound video session was created with the video codec operation

3516

VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and the current rate control mode is not
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR, then
VkVideoEncodeH265NaluSliceSegmentInfoKHR::constantQp must be zero for each
element of the pNaluSliceSegmentEntries member of the
VkVideoEncodeH265PictureInfoKHR structure included in the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-constantQp-08273
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and the current rate control mode is
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR, then
VkVideoEncodeH265NaluSliceSegmentInfoKHR::constantQp must be between
VkVideoEncodeH265CapabilitiesKHR::minQp and VkVideoEncodeH265CapabilitiesKHR
::maxQp, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the
bound video session was created with, for each element of the pNaluSliceSegmentEntries
member of the VkVideoEncodeH265PictureInfoKHR structure included in the pNext chain
of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-constantQp-08274
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and VkVideoEncodeH265CapabilitiesKHR
::flags does not include
VK_VIDEO_ENCODE_H265_CAPABILITY_PER_SLICE_SEGMENT_CONSTANT_QP_BIT_KHR, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with, then VkVideoEncodeH265NaluSliceSegmentInfoKHR::constantQp must
have the same value for each element of the pNaluSliceSegmentEntries member of the
VkVideoEncodeH264PictureInfoKHR structure included in the pNext chain of pEncodeInfo

• VUID-vkCmdEncodeVideoKHR-naluSliceSegmentEntryCount-08307
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then the naluSliceSegmentEntryCount
member of the VkVideoEncodeH265PictureInfoKHR structure included in the pNext chain
of pEncodeInfo must be less than or equal to minCodingBlockExtent.width multiplied by
minCodingBlockExtent.height

• VUID-vkCmdEncodeVideoKHR-naluSliceSegmentEntryCount-08313
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and VkVideoEncodeH265CapabilitiesKHR
::flags does not include
VK_VIDEO_ENCODE_H265_CAPABILITY_ROW_UNALIGNED_SLICE_SEGMENT_BIT_KHR, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with, then the naluSliceSegmentEntryCount member of the
VkVideoEncodeH265PictureInfoKHR structure included in the pNext chain of pEncodeInfo
must be less than or equal to minCodingBlockExtent.height

• VUID-vkCmdEncodeVideoKHR-pNext-08354
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, the pNext chain of pEncodeInfo includes a
VkVideoEncodeH265PictureInfoKHR structure, and pEncodeInfo->referenceSlotCount is
greater than zero, then VkVideoEncodeH265PictureInfoKHR::pStdPictureInfo->pRefLists
must not be NULL

3517

• VUID-vkCmdEncodeVideoKHR-pNext-08344
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, the pNext chain of pEncodeInfo includes a
VkVideoEncodeH265PictureInfoKHR structure, and VkVideoEncodeH265PictureInfoKHR
::pStdPictureInfo->pRefLists is not NULL, then each element of the RefPicList0 and
RefPicList1 array members of the StdVideoEncodeH265ReferenceListsInfo structure pointed
to by VkVideoEncodeH265PictureInfoKHR::pStdPictureInfo->pRefLists must either be
STD_VIDEO_H265_NO_REFERENCE_PICTURE or must equal the slotIndex member of one of the
elements of pEncodeInfo->pReferenceSlots

• VUID-vkCmdEncodeVideoKHR-pNext-08355
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, the pNext chain of pEncodeInfo includes a
VkVideoEncodeH265PictureInfoKHR structure, and pEncodeInfo->referenceSlotCount is
greater than zero, then the slotIndex member of each element of pEncodeInfo-
>pReferenceSlots must equal one of the elements of the RefPicList0 or RefPicList1 array
members of the StdVideoEncodeH265ReferenceListsInfo structure pointed to by
VkVideoEncodeH265PictureInfoKHR::pStdPictureInfo->pRefLists

• VUID-vkCmdEncodeVideoKHR-maxPPictureL0ReferenceCount-08345
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and VkVideoEncodeH265CapabilitiesKHR
::maxPPictureL0ReferenceCount is zero, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with, then h265PictureType and each element of h265L0PictureTypes and
h265L1PictureTypes must not be STD_VIDEO_H265_PICTURE_TYPE_P

• VUID-vkCmdEncodeVideoKHR-maxBPictureL0ReferenceCount-08346
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and VkVideoEncodeH265CapabilitiesKHR
::maxBPictureL0ReferenceCount and VkVideoEncodeH265CapabilitiesKHR
::maxL1ReferenceCount are both zero, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound video session
was created with, then h265PictureType and each element of h265L0PictureTypes and
h265L1PictureTypes must not be STD_VIDEO_H265_PICTURE_TYPE_B

• VUID-vkCmdEncodeVideoKHR-flags-08347
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and VkVideoEncodeH265CapabilitiesKHR
::flags does not include VK_VIDEO_ENCODE_H265_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_KHR, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound
video session was created with, then each element of h265L0PictureTypes must not be
STD_VIDEO_H264_PICTURE_TYPE_B

• VUID-vkCmdEncodeVideoKHR-flags-08348
If the bound video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and VkVideoEncodeH265CapabilitiesKHR
::flags does not include VK_VIDEO_ENCODE_H265_CAPABILITY_B_FRAME_IN_L1_LIST_BIT_KHR, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile the bound
video session was created with, then each element of h265L1PictureTypes must not be
STD_VIDEO_H265_PICTURE_TYPE_B

3518

Valid Usage (Implicit)

• VUID-vkCmdEncodeVideoKHR-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEncodeVideoKHR-pEncodeInfo-parameter
pEncodeInfo must be a valid pointer to a valid VkVideoEncodeInfoKHR structure

• VUID-vkCmdEncodeVideoKHR-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEncodeVideoKHR-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support encode operations

• VUID-vkCmdEncodeVideoKHR-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdEncodeVideoKHR-videocoding
This command must only be called inside of a video coding scope

• VUID-vkCmdEncodeVideoKHR-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Inside Encode Action

The VkVideoEncodeInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoEncodeFlagsKHR flags;
 VkBuffer dstBuffer;
 VkDeviceSize dstBufferOffset;
 VkDeviceSize dstBufferRange;
 VkVideoPictureResourceInfoKHR srcPictureResource;
 const VkVideoReferenceSlotInfoKHR* pSetupReferenceSlot;

3519

 uint32_t referenceSlotCount;
 const VkVideoReferenceSlotInfoKHR* pReferenceSlots;
 uint32_t precedingExternallyEncodedBytes;
} VkVideoEncodeInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is a pointer to a structure extending this structure.

• flags is reserved for future use.

• dstBuffer is the destination video bitstream buffer to write the encoded bitstream to.

• dstBufferOffset is the starting offset in bytes from the start of dstBuffer to write the encoded
bitstream to.

• dstBufferRange is the maximum bitstream size in bytes that can be written to dstBuffer, starting
from dstBufferOffset.

• srcPictureResource is the video picture resource to use as the encode input picture.

• pSetupReferenceSlot is NULL or a pointer to a VkVideoReferenceSlotInfoKHR structure specifying
the reconstructed picture information.

• referenceSlotCount is the number of elements in the pReferenceSlots array.

• pReferenceSlots is NULL or a pointer to an array of VkVideoReferenceSlotInfoKHR structures
describing the DPB slots and corresponding reference picture resources to use in this video
encode operation (the set of active reference pictures).

• precedingExternallyEncodedBytes is the number of bytes externally encoded by the application to
the video bitstream and is used to update the internal state of the implementation’s rate control
algorithm to account for the bitrate budget consumed by these externally encoded bytes.

Valid Usage

• VUID-VkVideoEncodeInfoKHR-dstBuffer-08236
dstBuffer must have been created with VK_BUFFER_USAGE_VIDEO_ENCODE_DST_BIT_KHR set

• VUID-VkVideoEncodeInfoKHR-dstBufferOffset-08237
dstBufferOffset must be less than the size of dstBuffer

• VUID-VkVideoEncodeInfoKHR-dstBufferRange-08238
dstBufferRange must be less than or equal to the size of dstBuffer minus dstBufferOffset

• VUID-VkVideoEncodeInfoKHR-pSetupReferenceSlot-08239
If pSetupReferenceSlot is not NULL, then its slotIndex member must not be negative

• VUID-VkVideoEncodeInfoKHR-pSetupReferenceSlot-08240
If pSetupReferenceSlot is not NULL, then its pPictureResource must not be NULL

• VUID-VkVideoEncodeInfoKHR-slotIndex-08241
The slotIndex member of each element of pReferenceSlots must not be negative

• VUID-VkVideoEncodeInfoKHR-pPictureResource-08242
The pPictureResource member of each element of pReferenceSlots must not be NULL

3520

Valid Usage (Implicit)

• VUID-VkVideoEncodeInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_INFO_KHR

• VUID-VkVideoEncodeInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoEncodeH264PictureInfoKHR,
VkVideoEncodeH265PictureInfoKHR, or VkVideoInlineQueryInfoKHR

• VUID-VkVideoEncodeInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkVideoEncodeInfoKHR-flags-zerobitmask
flags must be 0

• VUID-VkVideoEncodeInfoKHR-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-VkVideoEncodeInfoKHR-srcPictureResource-parameter
srcPictureResource must be a valid VkVideoPictureResourceInfoKHR structure

• VUID-VkVideoEncodeInfoKHR-pSetupReferenceSlot-parameter
If pSetupReferenceSlot is not NULL, pSetupReferenceSlot must be a valid pointer to a valid
VkVideoReferenceSlotInfoKHR structure

• VUID-VkVideoEncodeInfoKHR-pReferenceSlots-parameter
If referenceSlotCount is not 0, pReferenceSlots must be a valid pointer to an array of
referenceSlotCount valid VkVideoReferenceSlotInfoKHR structures

// Provided by VK_KHR_video_encode_queue
typedef VkFlags VkVideoEncodeFlagsKHR;

VkVideoEncodeFlagsKHR is a bitmask type for setting a mask, but is currently reserved for future
use.

42.16. Video Encode Rate Control
The size of the encoded bitstream data produced by video encode operations is a function of the
following set of constraints:

• The capabilities of the compression algorithms defined and employed by the used video
compression standard;

• Restrictions imposed by the selected video profile according to the rules defined by the used
video compression standard;

• Further restrictions imposed by the capabilities supported by the implementation for the
selected video profile;

• The image data in the encode input picture and the set of active reference pictures (as these
affect the effectiveness of the compression algorithms employed by the video encode

3521

operations);

• The set of codec-specific and codec-independent encoding parameters provided by the
application.

These also inherently define the set of decoder capabilities required for reconstructing and
processing the picture data in the encoded bitstream.

Video coding uses bitrate as the quantitative metric associated with encoded bitstream data size
which expresses the rate at which video bitstream data can be transferred or processed, measured
in number of bits per second. This bitrate is both a function of the encoded bitstream data size of
the encoded pictures as well as the frame rate used by the video sequence.

Rate control algorithms are used by video encode operations to enable adjusting encoding
parameters to achieve a target bitrate, or otherwise directly or indirectly control the bitrate of the
generated video bitstream data. These algorithms are usually not defined by the used video
compression standard, although some video compression standards do provide non-normative
guidelines for implementations.

Accordingly, this specification does not mandate implementations to produce identical encoded
bitstream data outputs in response to video encode operations, however, it does define a set of
codec-independent and codec-specific parameters that enable the application to control the
behavior of the rate control algorithms supported by the implementation. Some of these
parameters guarantee certain implementation behavior while others provide guidance for
implementations to apply various rate control heuristics.

Note

Applications need to make sure that they configure rate control parameters
appropriately and that they follow the promises made to the implementation
through parameters providing guidance for the implementation’s rate control
algorithms and heuristics in order to be able to get the desired rate control
behavior and to be able to hit the set bitrate targets. In addition, the behavior of
rate control may also differ across implementations even if the capabilities of the
used video profile match between those implementations. This may happen due to
implementations applying different rate control algorithms or heuristics
internally, and thus even the same set of guidance parameter values may have
different effects on the rate control behavior across implementations.

42.16.1. Rate Control Modes

After a video session is reset to the initial state, the default behavior and parameters of video
encode rate control are entirely implementation-dependent and the application cannot affect the
bitrate or quality parameters of the encoded bitstream data produced by video encode operations
unless the application changes the rate control configuration of the video session, as described in
the Video Coding Control section.

For each supported video profile, the implementation may expose a set of rate control modes that
are available for use by the application when encoding bitstreams targeting that video profile.
These modes allow using different rate control algorithms that fall into one of the following two

3522

categories:

1. Per-operation rate control

2. Stream-level rate control

In case of per-operation rate control, the bitrate of the generated video bitstream data is indirectly
controlled by quality, size, or other encoding parameters specified by the application for each
individual video encode operation.

In case of stream-level rate control, the application can directly specify target bitrates besides other
encoding parameters to control the behavior of the rate control algorithm used by the
implementation across multiple video encode operations.

The rate control modes are defined with the following enums:

// Provided by VK_KHR_video_encode_queue
typedef enum VkVideoEncodeRateControlModeFlagBitsKHR {
 VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR = 0,
 VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_RATE_CONTROL_MODE_CBR_BIT_KHR = 0x00000002,
 VK_VIDEO_ENCODE_RATE_CONTROL_MODE_VBR_BIT_KHR = 0x00000004,
} VkVideoEncodeRateControlModeFlagBitsKHR;

• VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR specifies the use of implementation-specific rate
control.

• VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR specifies that rate control is disabled and
the application will specify per-operation rate control parameters controlling the encoding
quality. In this mode implementations will encode pictures independently of the output bitrate
of prior video encode operations.

◦ When using an H.264 encode profile, implementations will use the QP value specified in
VkVideoEncodeH264NaluSliceInfoKHR::constantQp to control the quality of the encoded
picture.

◦ When using an H.265 encode profile, implementations will use the QP value specified in
VkVideoEncodeH265NaluSliceSegmentInfoKHR::constantQp to control the quality of the
encoded picture.

• VK_VIDEO_ENCODE_RATE_CONTROL_MODE_CBR_BIT_KHR specifies the use of constant bitrate (CBR) rate
control mode. In this mode the implementation will attempt to produce the encoded bitstream
at a constant bitrate while conforming to the constraints of other rate control parameters.

• VK_VIDEO_ENCODE_RATE_CONTROL_MODE_VBR_BIT_KHR specifies the use of variable bitrate (VBR) rate
control mode. In this mode the implementation will produce the encoded bitstream at a
variable bitrate according to the constraints of other rate control parameters.

// Provided by VK_KHR_video_encode_queue
typedef VkFlags VkVideoEncodeRateControlModeFlagsKHR;

3523

VkVideoEncodeRateControlModeFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeRateControlModeFlagBitsKHR.

42.16.2. Leaky Bucket Model

Video encoding implementations use the leaky bucket model for stream-level rate control. The leaky
bucket is a concept referring to the interface between the video encoder and the consumer (for
example, a network connection), where the video encoder produces encoded bitstream data
corresponding to the encoded pictures and adds them in the leaky bucket while its content are
drained by the consumer.

Analogously, a similar leaky bucket is considered to exist at the input interface of a video decoder,
into which encoded bitstream data is continuously added and is subsequently consumed by the
video decoder. It is desirable to avoid overflowing or underflowing this leaky bucked because:

• In case of an underflow, the video decoder will be unable to consume encoded bitstream data in
order to decode pictures (and optionally display them).

• In case of an overflow, the leaky bucket will be unable to accommodate more encoded bitstream
data and such data may need to be thrown away, leading to the loss of the corresponding
encoded pictures.

These requirements can be satisfied by imposing various constraints on the encoder-side leaky
bucket to avoid its overflow or underflow, depending on the used rate control algorithm and codec
parameters. However, enumerating these constraints is outside the scope of this specification.

The term virtual buffer is often used as an alternative to refer to the leaky bucket.

This virtual buffer model is defined by the following parameters:

• The bitrate (R) at which the encoded bitstream is expected to be processed.

• The size (B) of the virtual buffer.

• The initial occupancy (F) of the virtual buffer.

In this model the virtual buffer is used to smooth out fluctuations in the bitrate of the encoded
bitstream over time without experiencing buffer overflow or underflow, as long as the bitrate of
the encoded stream does not diverge from the target bitrate for extended periods of time.

This buffering may inherently impose a processing delay, as the goal of the model is to enable
decoders maintain a consistent processing rate of an encoded bitstream with varying data rate.

The initial or start-up delay (D) is computed as:

D = F / R

Note

Applications need to configure the virtual buffer with sufficient size to avoid or
minimize buffer overflows and underflows while also keeping it small enough to

3524

meet their latency goals.

42.16.3. Rate Control Layers

Some video compression standards and video profiles allow associating encoded pictures with
specific video coding layers. The name, identification, and semantics associated with such video
coding layers are defined by the corresponding video compression standards.

Analogously, stream-level rate control can be configured to use one or more rate control layers:

• When a single rate control layer is configured, it is applied to all encoded pictures, regardless of
the picture’s video coding layer. In this case the distribution of the available bitrate budget
across video coding layers is implementation-dependent.

• When multiple rate control layers are configured, each rate control layer is applied to the
corresponding video coding layer, i.e. only across encoded pictures pertaining to the
corresponding video coding layer.

Individual rate control layers are identified using layer indices between zero and N-1, where N is the
number of active rate control layers.

Rate control layers are only applicable when using stream-level rate control modes.

42.16.4. Rate Control State

Rate control state is maintained by the implementation in the video session objects and its
parameters are specified using an instance of the VkVideoEncodeRateControlInfoKHR structure. The
complete rate control state of a video session is defined by the following set of parameters:

• The values of the members of the VkVideoEncodeRateControlInfoKHR structure used to
configure the rate control state.

• The values of the members of any VkVideoEncodeRateControlLayerInfoKHR structures
specified in VkVideoEncodeRateControlInfoKHR::pLayers used to configure the state of
individual rate control layers.

• If the video session was created with an H.264 encode profile:

◦ The values of the members of the VkVideoEncodeH264RateControlInfoKHR structure, if one
is specified in the pNext chain of the VkVideoEncodeRateControlInfoKHR used to configure
the rate control state.

◦ The values of the members of any VkVideoEncodeH264RateControlLayerInfoKHR structures
included in the pNext chain of a VkVideoEncodeRateControlLayerInfoKHR structure used to
configure the state of a rate control layer.

• If the video session was created with an H.265 encode profile:

◦ The values of the members of the VkVideoEncodeH265RateControlInfoKHR structure, if one
is specified in the pNext chain of the VkVideoEncodeRateControlInfoKHR used to configure
the rate control state.

◦ The values of the members of any VkVideoEncodeH265RateControlLayerInfoKHR structures
included in the pNext chain of a VkVideoEncodeRateControlLayerInfoKHR structure used to

3525

configure the state of a rate control layer.

Two rate control states match if all the parameters listed above match between them.

The VkVideoEncodeRateControlInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeRateControlInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoEncodeRateControlFlagsKHR flags;
 VkVideoEncodeRateControlModeFlagBitsKHR rateControlMode;
 uint32_t layerCount;
 const VkVideoEncodeRateControlLayerInfoKHR* pLayers;
 uint32_t virtualBufferSizeInMs;
 uint32_t initialVirtualBufferSizeInMs;
} VkVideoEncodeRateControlInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• rateControlMode is a VkVideoEncodeRateControlModeFlagBitsKHR value specifying the rate
control mode.

• layerCount specifies the number of rate control layers to use.

• pLayers is a pointer to an array of layerCount VkVideoEncodeRateControlLayerInfoKHR
structures, each specifying the rate control configuration of the corresponding rate control
layer.

• virtualBufferSizeInMs is the size in milliseconds of the virtual buffer used by the
implementation’s rate control algorithm for the leaky bucket model, with respect to the average
bitrate of the stream calculated by summing the values of the averageBitrate members of the
elements of the pLayers array.

• initialVirtualBufferSizeInMs is the initial occupancy in milliseconds of the virtual buffer used
by the implementation’s rate control algorithm for the leaky bucket model.

If layerCount is zero then the values of virtualBufferSizeInMs and initialVirtualBufferSizeInMs are
ignored.

This structure can be specified in the following places:

• In the pNext chain of VkVideoBeginCodingInfoKHR to specify the current rate control state
expected to be configured when beginning a video coding scope.

• In the pNext chain of VkVideoCodingControlInfoKHR to change the rate control configuration of
the bound video session.

Including this structure in the pNext chain of VkVideoCodingControlInfoKHR and including
VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR in VkVideoCodingControlInfoKHR::flags

3526

enables updating the rate control configuration of the bound video session. This replaces the entire
rate control configuration of the bound video session and may reset the state of all enabled rate
control layers to an initial state according to the codec-specific rate control semantics defined in the
corresponding sections listed below.

When layerCount is greater than one, multiple rate control layers are configured, and each rate
control layer is applied to the corresponding video coding layer identified by the index of the
corresponding element of pLayer.

• If the video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then this index specifies the H.264 temporal
layer ID of the video coding layer the rate control layer is applied to.

• If the video session was created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then this index specifies the H.265 temporal ID
of the video coding layer the rate control layer is applied to.

Additional structures providing codec-specific rate control parameters can be included in the pNext
chain of VkVideoCodingControlInfoKHR depending on the video profile the bound video session was
created. For further details see:

• Video Coding Control

• H.264 Encode Rate Control

• H.265 Encode Rate Control

The new rate control configuration takes effect when the corresponding
vkCmdControlVideoCodingKHR is executed on the device, and only impacts video encode
operations that follow in execution order.

Valid Usage

• VUID-VkVideoEncodeRateControlInfoKHR-rateControlMode-08248
If rateControlMode is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR or
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR, then layerCount must be 0

• VUID-VkVideoEncodeRateControlInfoKHR-rateControlMode-08275
If rateControlMode is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_CBR_BIT_KHR or
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_VBR_BIT_KHR, then layerCount must be greater than 0

• VUID-VkVideoEncodeRateControlInfoKHR-rateControlMode-08244
If rateControlMode is not VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR, then it must
specify one of the bits included in VkVideoEncodeCapabilitiesKHR::rateControlModes, as
returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile

• VUID-VkVideoEncodeRateControlInfoKHR-layerCount-08245
layerCount member must be less than or equal to VkVideoEncodeCapabilitiesKHR
::maxRateControlLayers, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the
used video profile

• VUID-VkVideoEncodeRateControlInfoKHR-pLayers-08276
For each element of pLayers, its averageBitrate member must be between 1 and

3527

VkVideoEncodeCapabilitiesKHR::maxBitrate, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile

• VUID-VkVideoEncodeRateControlInfoKHR-pLayers-08277
For each element of pLayers, its maxBitrate member must be between 1 and
VkVideoEncodeCapabilitiesKHR::maxBitrate, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile

• VUID-VkVideoEncodeRateControlInfoKHR-rateControlMode-08356
If rateControlMode is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_CBR_BIT_KHR, then for each
element of pLayers, its averageBitrate member must equal its maxBitrate member

• VUID-VkVideoEncodeRateControlInfoKHR-rateControlMode-08278
If rateControlMode is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_VBR_BIT_KHR, then for each
element of pLayers, its averageBitrate member must be less than or equal to its maxBitrate
member

• VUID-VkVideoEncodeRateControlInfoKHR-layerCount-08357
If layerCount is not zero, then virtualBufferSizeInMs must be greater than zero

• VUID-VkVideoEncodeRateControlInfoKHR-layerCount-08358
If layerCount is not zero, then initialVirtualBufferSizeInMs must be less than
virtualBufferSizeInMs

• VUID-VkVideoEncodeRateControlInfoKHR-videoCodecOperation-07022
If the videoCodecOperation of the used video profile is
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, the pNext chain this structure is included
in also includes an instance of the VkVideoEncodeH264RateControlInfoKHR structure,
and layerCount is greater than 1, then layerCount must equal
VkVideoEncodeH264RateControlInfoKHR::temporalLayerCount

• VUID-VkVideoEncodeRateControlInfoKHR-videoCodecOperation-07025
If the videoCodecOperation of the used video profile is
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, the pNext chain this structure is included
in also includes an instance of the VkVideoEncodeH265RateControlInfoKHR structure,
and layerCount is greater than 1, then layerCount must equal
VkVideoEncodeH265RateControlInfoKHR::subLayerCount

Valid Usage (Implicit)

• VUID-VkVideoEncodeRateControlInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_RATE_CONTROL_INFO_KHR

• VUID-VkVideoEncodeRateControlInfoKHR-flags-zerobitmask
flags must be 0

• VUID-VkVideoEncodeRateControlInfoKHR-rateControlMode-parameter
If rateControlMode is not 0, rateControlMode must be a valid
VkVideoEncodeRateControlModeFlagBitsKHR value

• VUID-VkVideoEncodeRateControlInfoKHR-pLayers-parameter
If layerCount is not 0, pLayers must be a valid pointer to an array of layerCount valid
VkVideoEncodeRateControlLayerInfoKHR structures

3528

// Provided by VK_KHR_video_encode_queue
typedef VkFlags VkVideoEncodeRateControlFlagsKHR;

VkVideoEncodeRateControlFlagsKHR is a bitmask type for setting a mask, but currently reserved for
future use.

Rate Control Layer State

The configuration of individual rate control layers is specified using an instance of the
VkVideoEncodeRateControlLayerInfoKHR structure.

The VkVideoEncodeRateControlLayerInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_queue
typedef struct VkVideoEncodeRateControlLayerInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint64_t averageBitrate;
 uint64_t maxBitrate;
 uint32_t frameRateNumerator;
 uint32_t frameRateDenominator;
} VkVideoEncodeRateControlLayerInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is a pointer to a structure extending this structure.

• averageBitrate is the average bitrate to be targeted by the implementation’s rate control
algorithm.

• maxBitrate is the peak bitrate to be targeted by the implementation’s rate control algorithm.

• frameRateNumerator is the numerator of the frame rate assumed by the implementation’s rate
control algorithm.

• frameRateDenominator is the denominator of the frame rate assumed by the implementation’s
rate control algorithm.

Note

The ability of the implementation’s rate control algorithm to be able to match the
requested average and/or peak bitrates may be limited by the set of other codec-
independent and codec-specific rate control parameters specified by the
application, the input content, as well as the application conforming to the rate
control guidance provided to the implementation, as described earlier.

Additional structures providing codec-specific rate control parameters can be included in the pNext
chain of VkVideoEncodeRateControlLayerInfoKHR depending on the video profile the bound video
session was created with. For further details see:

• Video Coding Control

3529

• H.264 Encode Rate Control

• H.265 Encode Rate Control

Valid Usage

• VUID-VkVideoEncodeRateControlLayerInfoKHR-frameRateNumerator-08350
frameRateNumerator must be greater than zero

• VUID-VkVideoEncodeRateControlLayerInfoKHR-frameRateDenominator-08351
frameRateDenominator must be greater than zero

Valid Usage (Implicit)

• VUID-VkVideoEncodeRateControlLayerInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_RATE_CONTROL_LAYER_INFO_KHR

• VUID-VkVideoEncodeRateControlLayerInfoKHR-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkVideoEncodeH264RateControlLayerInfoKHR or
VkVideoEncodeH265RateControlLayerInfoKHR

• VUID-VkVideoEncodeRateControlLayerInfoKHR-sType-unique
The sType value of each struct in the pNext chain must be unique

42.17. H.264 Encode Operations
Video encode operations using an H.264 encode profile can be used to encode elementary video
stream sequences compliant to the ITU-T H.264 Specification.

Note

Refer to the Preamble for information on how the Khronos Intellectual Property
Rights Policy relates to normative references to external materials not created by
Khronos.

This process is performed according to the video encode operation steps with the codec-specific
semantics defined in section 8 of the ITU-T H.264 Specification as follows:

• Syntax elements, derived values, and other parameters are applied from the following
structures:

◦ The StdVideoH264SequenceParameterSet structure corresponding to the active SPS specifying
the H.264 sequence parameter set.

◦ The StdVideoH264PictureParameterSet structure corresponding to the active PPS specifying
the H.264 picture parameter set.

◦ The StdVideoEncodeH264PictureInfo structure specifying the H.264 picture information.

◦ The StdVideoEncodeH264SliceHeader structures specifying the H.264 slice header parameters

3530

for each encoded H.264 slice.

◦ The StdVideoEncodeH264ReferenceInfo structures specifying the H.264 reference information
corresponding to the optional reconstructed picture and any active reference pictures.

• The encoded bitstream data is written to the destination video bitstream buffer range as
defined in the H.264 Encode Bitstream Data Access section.

• Picture data in the video picture resources corresponding to the used encode input picture,
active reference pictures, and optional reconstructed picture is accessed as defined in the H.264
Encode Picture Data Access section.

• The decision on reference picture setup is made according to the parameters specified in the
H.264 picture information.

If the parameters adhere to the syntactic and semantic requirements defined in the corresponding
sections of the ITU-T H.264 Specification, as described above, and the DPB slots associated with the
active reference pictures all refer to valid picture references, then the video encode operation will
complete successfully. Otherwise, the video encode operation may complete unsuccessfully.

42.17.1. H.264 Encode Parameter Overrides

Implementations may override, unless otherwise specified, any of the H.264 encode parameters
specified in the following Video Std structures:

• StdVideoH264SequenceParameterSet

• StdVideoH264PictureParameterSet

• StdVideoEncodeH264PictureInfo

• StdVideoEncodeH264SliceHeader

• StdVideoEncodeH264ReferenceInfo

All such H.264 encode parameter overrides must fulfill the conditions defined in the Video Encode
Parameter Overrides section.

In addition, implementations must not override any of the following H.264 encode parameters:

• StdVideoEncodeH264PictureInfo::primary_pic_type

• StdVideoEncodeH264SliceHeader::slice_type

In case of H.264 encode parameters stored in video session parameters objects, applications need to
use the vkGetEncodedVideoSessionParametersKHR command to determine whether any
implementation overrides happened. If the query indicates that implementation overrides were
applied, then the application needs to retrieve and use the encoded H.264 parameter sets in the
bitstream in order to be able to produce a compliant H.264 video bitstream using the H.264 encode
parameters stored in the video session parameters object.

In case of any H.264 encode parameters stored in the encoded bitstream produced by video encode
operations, if the implementation supports the
VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_HAS_OVERRIDES_BIT_KHR video encode feedback query flag, the
application can use such queries to retrieve feedback about whether any implementation overrides

3531

have been applied to those H.264 encode parameters.

42.17.2. H.264 Encode Bitstream Data Access

Each video encode operation writes one or more VCL NAL units comprising of slice headers and
data of the encoded picture, in the format defined in sections 7.3.3 and 7.3.4, according to the
semantics defined in sections 7.4.3 and 7.4.4 of the ITU-T H.264 Specification, respectively. The
number of VCL NAL units written is specified by VkVideoEncodeH264PictureInfoKHR
::naluSliceEntryCount.

In addition, if VkVideoEncodeH264PictureInfoKHR::generatePrefixNalu is set to VK_TRUE for the
video encode operation, then an additional prefix NAL unit is written before each VCL NAL unit
corresponding to individual slices in the format defined in section 7.3.2.12, according to the
semantics defined in section 7.4.2.12 of the ITU-T H.264 Specification, respectively.

42.17.3. H.264 Encode Picture Data Access

Accesses to image data within a video picture resource happen at the granularity indicated by
VkVideoCapabilitiesKHR::pictureAccessGranularity, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile. Accordingly, the complete
image subregion of a encode input picture, reference picture, or reconstructed picture accessed by
video coding operations using an H.264 encode profile is defined as the set of texels within the
coordinate range:

([0,endX),[0,endY))

Where:

• endX equals codedExtent.width rounded up to the nearest integer multiple of
pictureAccessGranularity.width and clamped to the width of the image subresource referred to
by the corresponding VkVideoPictureResourceInfoKHR structure;

• endY equals codedExtent.height rounded up to the nearest integer multiple of
pictureAccessGranularity.height and clamped to the height of the image subresource referred
to by the corresponding VkVideoPictureResourceInfoKHR structure;

Where codedExtent is the member of the VkVideoPictureResourceInfoKHR structure corresponding
to the picture.

In case of video encode operations using an H.264 encode profile, any access to a picture at the
coordinates (x,y), as defined by the ITU-T H.264 Specification, is an access to the image subresource
referred to by the corresponding VkVideoPictureResourceInfoKHR structure at the texel
coordinates (x,y).

Implementations may choose not to access some or all texels within particular reference pictures
available to a video encode operation (e.g. due to video encode parameter overrides restricting the
effective set of used reference pictures, or if the encoding algorithm chooses not to use certain
subregions of the reference picture data for sample prediction).

3532

42.17.4. H.264 Frame, Picture, and Slice

H.264 pictures are partitioned into slices, as defined in section 6.3 of the ITU-T H.264 Specification.

Video encode operations using an H.264 encode profile can encode slices of different types, as
defined in section 7.4.3 of the ITU-T H.264 Specification, by specifying the corresponding
enumeration constant value in StdVideoEncodeH264SliceHeader::slice_type in the H.264 slice header
parameters from the Video Std enumeration type StdVideoH264SliceType:

• STD_VIDEO_H264_SLICE_TYPE_P indicates that the slice is a P slice as defined in section 3.109 of the
ITU-T H.264 Specification.

• STD_VIDEO_H264_SLICE_TYPE_B indicates that the slice is a B slice as defined in section 3.9 of the
ITU-T H.264 Specification.

• STD_VIDEO_H264_SLICE_TYPE_I indicates that the slice is an I slice as defined in section 3.66 of the
ITU-T H.264 Specification.

Pictures constructed from such slices can be of different types, as defined in section 7.4.2.4 of the
ITU-T H.264 Specification. Video encode operations using an H.264 encode profile can encode
pictures of a specific type by specifying the corresponding enumeration constant value in
StdVideoEncodeH264PictureInfo::primary_pic_type in the H.264 picture information from the Video
Std enumeration type StdVideoH264PictureType:

• STD_VIDEO_H264_PICTURE_TYPE_P indicates that the picture is a P picture. A frame consisting of a P
picture is also referred to as a P frame.

• STD_VIDEO_H264_PICTURE_TYPE_B indicates that the picture is a B picture. A frame consisting of a B
picture is also referred to as a B frame.

• STD_VIDEO_H264_PICTURE_TYPE_I indicates that the picture is an I picture. A frame consisting of an
I picture is also referred to as an I frame.

• STD_VIDEO_H264_PICTURE_TYPE_IDR indicates that the picture is a special type of I picture called an
IDR picture as defined in section 3.69 of the ITU-T H.264 Specification. A frame consisting of an
IDR picture is also referred to as an IDR frame.

42.17.5. H.264 Encode Profile

A video profile supporting H.264 video encode operations is specified by setting
VkVideoProfileInfoKHR::videoCodecOperation to VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR and
adding a VkVideoEncodeH264ProfileInfoKHR structure to the VkVideoProfileInfoKHR::pNext chain.

The VkVideoEncodeH264ProfileInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264ProfileInfoKHR {
 VkStructureType sType;
 const void* pNext;
 StdVideoH264ProfileIdc stdProfileIdc;
} VkVideoEncodeH264ProfileInfoKHR;

3533

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdProfileIdc is a StdVideoH264ProfileIdc value specifying the H.264 codec profile IDC, as
defined in section A.2 of the ITU-T H.264 Specification.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264ProfileInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PROFILE_INFO_KHR

42.17.6. H.264 Encode Capabilities

When calling vkGetPhysicalDeviceVideoCapabilitiesKHR to query the capabilities for an H.264
encode profile, the VkVideoCapabilitiesKHR::pNext chain must include a
VkVideoEncodeH264CapabilitiesKHR structure that will be filled with the profile-specific capabilities.

The VkVideoEncodeH264CapabilitiesKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264CapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 VkVideoEncodeH264CapabilityFlagsKHR flags;
 StdVideoH264LevelIdc maxLevelIdc;
 uint32_t maxSliceCount;
 uint32_t maxPPictureL0ReferenceCount;
 uint32_t maxBPictureL0ReferenceCount;
 uint32_t maxL1ReferenceCount;
 uint32_t maxTemporalLayerCount;
 VkBool32 expectDyadicTemporalLayerPattern;
 int32_t minQp;
 int32_t maxQp;
 VkBool32 prefersGopRemainingFrames;
 VkBool32 requiresGopRemainingFrames;
 VkVideoEncodeH264StdFlagsKHR stdSyntaxFlags;
} VkVideoEncodeH264CapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkVideoEncodeH264CapabilityFlagBitsKHR indicating supported H.264
encoding capabilities.

• maxLevelIdc is a StdVideoH264LevelIdc value indicating the maximum H.264 level supported by
the profile, where enum constant STD_VIDEO_H264_LEVEL_IDC_<major>_<minor> identifies H.264
level <major>.<minor> as defined in section A.3 of the ITU-T H.264 Specification.

• maxSliceCount indicates the maximum number of slices that can be encoded for a single picture.

3534

Further restrictions may apply to the number of slices that can be encoded for a single picture
depending on other capabilities and codec-specific rules.

• maxPPictureL0ReferenceCount indicates the maximum number of reference pictures the
implementation supports in the reference list L0 for P pictures.

Note

As implementations may override the reference lists,
maxPPictureL0ReferenceCount does not limit the number of elements that the
application can specify in the L0 reference list for P pictures. However, if
maxPPictureL0ReferenceCount is zero, then the use of P pictures is not allowed.

• maxBPictureL0ReferenceCount indicates the maximum number of reference pictures the
implementation supports in the reference list L0 for B pictures.

• maxL1ReferenceCount indicates the maximum number of reference pictures the implementation
supports in the reference list L1 if encoding of B pictures is supported.

Note

As implementations may override the reference lists,
maxBPictureL0ReferenceCount and maxL1ReferenceCount does not limit the
number of elements that the application can specify in the L0 and L1 reference
lists for B pictures. However, if maxBPictureL0ReferenceCount and
maxL1ReferenceCount are both zero, then the use of B pictures is not allowed.

• maxTemporalLayerCount indicates the maximum number of H.264 temporal layers supported by
the implementation.

• expectDyadicTemporalLayerPattern indicates that the implementation’s rate control algorithms
expect the application to use a dyadic temporal layer pattern when encoding multiple temporal
layers.

• minQp indicates the minimum QP value supported.

• maxQp indicates the maximum QP value supported.

• prefersGopRemainingFrames indicates that the implementation’s rate control algorithm prefers
the application to specify the number of frames of each type remaining in the current group of
pictures when beginning a video coding scope.

• requiresGopRemainingFrames indicates that the implementation’s rate control algorithm requires
the application to specify the number of frames of each type remaining in the current group of
pictures when beginning a video coding scope.

• stdSyntaxFlags is a bitmask of VkVideoEncodeH264StdFlagBitsKHR indicating capabilities
related to H.264 syntax elements.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264CapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_CAPABILITIES_KHR

3535

Bits which may be set in VkVideoEncodeH264CapabilitiesKHR::flags, indicating the H.264 encoding
capabilities supported, are:

// Provided by VK_KHR_video_encode_h264
typedef enum VkVideoEncodeH264CapabilityFlagBitsKHR {
 VK_VIDEO_ENCODE_H264_CAPABILITY_HRD_COMPLIANCE_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_H264_CAPABILITY_PREDICTION_WEIGHT_TABLE_GENERATED_BIT_KHR =
0x00000002,
 VK_VIDEO_ENCODE_H264_CAPABILITY_ROW_UNALIGNED_SLICE_BIT_KHR = 0x00000004,
 VK_VIDEO_ENCODE_H264_CAPABILITY_DIFFERENT_SLICE_TYPE_BIT_KHR = 0x00000008,
 VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_KHR = 0x00000010,
 VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L1_LIST_BIT_KHR = 0x00000020,
 VK_VIDEO_ENCODE_H264_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR = 0x00000040,
 VK_VIDEO_ENCODE_H264_CAPABILITY_PER_SLICE_CONSTANT_QP_BIT_KHR = 0x00000080,
 VK_VIDEO_ENCODE_H264_CAPABILITY_GENERATE_PREFIX_NALU_BIT_KHR = 0x00000100,
} VkVideoEncodeH264CapabilityFlagBitsKHR;

• VK_VIDEO_ENCODE_H264_CAPABILITY_HRD_COMPLIANCE_BIT_KHR indicates whether the implementation
may be able to generate HRD compliant bitstreams if any of the
nal_hrd_parameters_present_flag or vcl_hrd_parameters_present_flag members of
StdVideoH264SpsVuiFlags are set to 1 in the active SPS.

• VK_VIDEO_ENCODE_H264_CAPABILITY_PREDICTION_WEIGHT_TABLE_GENERATED_BIT_KHR indicates that if
StdVideoH264PpsFlags::weighted_pred_flag is set to 1 or StdVideoH264PictureParameterSet
::weighted_bipred_idc is set to STD_VIDEO_H264_WEIGHTED_BIPRED_IDC_EXPLICIT in the active PPS
when encoding a P picture or B picture, respectively, then the implementation is able to
internally decide syntax for pred_weight_table, as defined in section 7.4.3.2 of the ITU-T H.264
Specification, and the application is not required to provide a weight table in the H.264 slice
header parameters.

• VK_VIDEO_ENCODE_H264_CAPABILITY_ROW_UNALIGNED_SLICE_BIT_KHR indicates that each slice in a
frame with multiple slices may begin or finish at any offset in a macroblock row. If not
supported, all slices in the frame must begin at the start of a macroblock row (and hence each
slice must finish at the end of a macroblock row).

• VK_VIDEO_ENCODE_H264_CAPABILITY_DIFFERENT_SLICE_TYPE_BIT_KHR indicates that when a frame is
encoded with multiple slices, the implementation allows encoding each slice with a different
StdVideoEncodeH264SliceHeader::slice_type specified in the H.264 slice header parameters. If not
supported, all slices of the frame must be encoded with the same slice_type which corresponds
to the picture type of the frame.

• VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_KHR indicates support for using a B
frame as L0 reference, as specified in StdVideoEncodeH264ReferenceListsInfo::RefPicList0 in the
H.264 picture information.

• VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L1_LIST_BIT_KHR indicates support for using a B
frame as L1 reference, as specified in StdVideoEncodeH264ReferenceListsInfo::RefPicList1 in the
H.264 picture information.

• VK_VIDEO_ENCODE_H264_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR indicates support for
specifying different QP values in the members of VkVideoEncodeH264QpKHR.

3536

• VK_VIDEO_ENCODE_H264_CAPABILITY_PER_SLICE_CONSTANT_QP_BIT_KHR indicates support for
specifying different constant QP values for each slice.

• VK_VIDEO_ENCODE_H264_CAPABILITY_GENERATE_PREFIX_NALU_BIT_KHR indicates support for generating
prefix NAL units by setting VkVideoEncodeH264PictureInfoKHR::generatePrefixNalu to VK_TRUE.

// Provided by VK_KHR_video_encode_h264
typedef VkFlags VkVideoEncodeH264CapabilityFlagsKHR;

VkVideoEncodeH264CapabilityFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeH264CapabilityFlagBitsKHR.

Bits which may be set in VkVideoEncodeH264CapabilitiesKHR::stdSyntaxFlags, indicating the
capabilities related to the H.264 syntax elements, are:

// Provided by VK_KHR_video_encode_h264
typedef enum VkVideoEncodeH264StdFlagBitsKHR {
 VK_VIDEO_ENCODE_H264_STD_SEPARATE_COLOR_PLANE_FLAG_SET_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_H264_STD_QPPRIME_Y_ZERO_TRANSFORM_BYPASS_FLAG_SET_BIT_KHR =
0x00000002,
 VK_VIDEO_ENCODE_H264_STD_SCALING_MATRIX_PRESENT_FLAG_SET_BIT_KHR = 0x00000004,
 VK_VIDEO_ENCODE_H264_STD_CHROMA_QP_INDEX_OFFSET_BIT_KHR = 0x00000008,
 VK_VIDEO_ENCODE_H264_STD_SECOND_CHROMA_QP_INDEX_OFFSET_BIT_KHR = 0x00000010,
 VK_VIDEO_ENCODE_H264_STD_PIC_INIT_QP_MINUS26_BIT_KHR = 0x00000020,
 VK_VIDEO_ENCODE_H264_STD_WEIGHTED_PRED_FLAG_SET_BIT_KHR = 0x00000040,
 VK_VIDEO_ENCODE_H264_STD_WEIGHTED_BIPRED_IDC_EXPLICIT_BIT_KHR = 0x00000080,
 VK_VIDEO_ENCODE_H264_STD_WEIGHTED_BIPRED_IDC_IMPLICIT_BIT_KHR = 0x00000100,
 VK_VIDEO_ENCODE_H264_STD_TRANSFORM_8X8_MODE_FLAG_SET_BIT_KHR = 0x00000200,
 VK_VIDEO_ENCODE_H264_STD_DIRECT_SPATIAL_MV_PRED_FLAG_UNSET_BIT_KHR = 0x00000400,
 VK_VIDEO_ENCODE_H264_STD_ENTROPY_CODING_MODE_FLAG_UNSET_BIT_KHR = 0x00000800,
 VK_VIDEO_ENCODE_H264_STD_ENTROPY_CODING_MODE_FLAG_SET_BIT_KHR = 0x00001000,
 VK_VIDEO_ENCODE_H264_STD_DIRECT_8X8_INFERENCE_FLAG_UNSET_BIT_KHR = 0x00002000,
 VK_VIDEO_ENCODE_H264_STD_CONSTRAINED_INTRA_PRED_FLAG_SET_BIT_KHR = 0x00004000,
 VK_VIDEO_ENCODE_H264_STD_DEBLOCKING_FILTER_DISABLED_BIT_KHR = 0x00008000,
 VK_VIDEO_ENCODE_H264_STD_DEBLOCKING_FILTER_ENABLED_BIT_KHR = 0x00010000,
 VK_VIDEO_ENCODE_H264_STD_DEBLOCKING_FILTER_PARTIAL_BIT_KHR = 0x00020000,
 VK_VIDEO_ENCODE_H264_STD_SLICE_QP_DELTA_BIT_KHR = 0x00080000,
 VK_VIDEO_ENCODE_H264_STD_DIFFERENT_SLICE_QP_DELTA_BIT_KHR = 0x00100000,
} VkVideoEncodeH264StdFlagBitsKHR;

• VK_VIDEO_ENCODE_H264_STD_SEPARATE_COLOR_PLANE_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH264SpsFlags
::separate_colour_plane_flag in the SPS when that value is 1.

• VK_VIDEO_ENCODE_H264_STD_QPPRIME_Y_ZERO_TRANSFORM_BYPASS_FLAG_SET_BIT_KHR indicates whether
the implementation supports using the application-provided value for StdVideoH264SpsFlags
::qpprime_y_zero_transform_bypass_flag in the SPS when that value is 1.

• VK_VIDEO_ENCODE_H264_STD_SCALING_MATRIX_PRESENT_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided values for StdVideoH264SpsFlags

3537

::seq_scaling_matrix_present_flag in the SPS and StdVideoH264PpsFlags
::pic_scaling_matrix_present_flag in the PPS when any of those values are 1.

• VK_VIDEO_ENCODE_H264_STD_CHROMA_QP_INDEX_OFFSET_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoH264PictureParameterSet::chroma_qp_index_offset in the PPS when that value is non-
zero.

• VK_VIDEO_ENCODE_H264_STD_SECOND_CHROMA_QP_INDEX_OFFSET_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoH264PictureParameterSet::second_chroma_qp_index_offset in the PPS when that value is
non-zero.

• VK_VIDEO_ENCODE_H264_STD_PIC_INIT_QP_MINUS26_BIT_KHR indicates whether the implementation
supports using the application-provided value for StdVideoH264PictureParameterSet
::pic_init_qp_minus26 in the PPS when that value is non-zero.

• VK_VIDEO_ENCODE_H264_STD_WEIGHTED_PRED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH264PpsFlags
::weighted_pred_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H264_STD_WEIGHTED_BIPRED_IDC_EXPLICIT_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoH264PictureParameterSet::weighted_bipred_idc in the PPS when that value is
STD_VIDEO_H264_WEIGHTED_BIPRED_IDC_EXPLICIT.

• VK_VIDEO_ENCODE_H264_STD_WEIGHTED_BIPRED_IDC_IMPLICIT_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoH264PictureParameterSet::weighted_bipred_idc in the PPS when that value is
STD_VIDEO_H264_WEIGHTED_BIPRED_IDC_IMPLICIT.

• VK_VIDEO_ENCODE_H264_STD_TRANSFORM_8X8_MODE_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH264PpsFlags
::transform_8x8_mode_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H264_STD_DIRECT_SPATIAL_MV_PRED_FLAG_UNSET_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoEncodeH264SliceHeaderFlags::direct_spatial_mv_pred_flag in the H.264 slice header
parameters when that value is 0.

• VK_VIDEO_ENCODE_H264_STD_ENTROPY_CODING_MODE_FLAG_UNSET_BIT_KHR indicates whether the
implementation supports CAVLC entropy coding, as defined in section 9.2 of the ITU-T H.264
Specification, and thus supports using the application-provided value for StdVideoH264PpsFlags
::entropy_coding_mode_flag in the PPS when that value is 0.

• VK_VIDEO_ENCODE_H264_STD_ENTROPY_CODING_MODE_FLAG_SET_BIT_KHR indicates whether the
implementation supports CABAC entropy coding, as defined in section 9.3 of the ITU-T H.264
Specification, and thus supports using the application-provided value for StdVideoH264PpsFlags
::entropy_coding_mode_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H264_STD_DIRECT_8X8_INFERENCE_FLAG_UNSET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH264SpsFlags
::direct_8x8_inference_flag in the SPS when that value is 0.

• VK_VIDEO_ENCODE_H264_STD_CONSTRAINED_INTRA_PRED_FLAG_SET_BIT_KHR indicates whether the

3538

implementation supports using the application-provided value for StdVideoH264PpsFlags
::constrained_intra_pred_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H264_STD_DEBLOCKING_FILTER_DISABLED_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoEncodeH264SliceHeader::disable_deblocking_filter_idc in the H.264 slice header
parameters when that value is STD_VIDEO_H264_DISABLE_DEBLOCKING_FILTER_IDC_DISABLED.

• VK_VIDEO_ENCODE_H264_STD_DEBLOCKING_FILTER_ENABLED_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoEncodeH264SliceHeader::disable_deblocking_filter_idc in the H.264 slice header
parameters when that value is STD_VIDEO_H264_DISABLE_DEBLOCKING_FILTER_IDC_ENABLED.

• VK_VIDEO_ENCODE_H264_STD_DEBLOCKING_FILTER_PARTIAL_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoEncodeH264SliceHeader::disable_deblocking_filter_idc in the H.264 slice header
parameters when that value is STD_VIDEO_H264_DISABLE_DEBLOCKING_FILTER_IDC_PARTIAL.

• VK_VIDEO_ENCODE_H264_STD_SLICE_QP_DELTA_BIT_KHR indicates whether the implementation
supports using the application-provided value for StdVideoEncodeH264SliceHeader
::slice_qp_delta in the H.264 slice header parameters when that value is identical across the
slices of the encoded frame.

• VK_VIDEO_ENCODE_H264_STD_DIFFERENT_SLICE_QP_DELTA_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoEncodeH264SliceHeader::slice_qp_delta in the H.264 slice header parameters when that
value is different across the slices of the encoded frame.

These capability flags provide information to the application about specific H.264 syntax element
values that the implementation supports without having to override them and do not otherwise
restrict the values that the application can specify for any of the mentioned H.264 syntax elements.

// Provided by VK_KHR_video_encode_h264
typedef VkFlags VkVideoEncodeH264StdFlagsKHR;

VkVideoEncodeH264StdFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeH264StdFlagBitsKHR.

42.17.7. H.264 Encode Quality Level Properties

When calling vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR with pVideoProfile-
>videoCodecOperation specified as VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, the
VkVideoEncodeH264QualityLevelPropertiesKHR structure must be included in the pNext chain of
the VkVideoEncodeQualityLevelPropertiesKHR structure to retrieve additional video encode
quality level properties specific to H.264 encoding.

The VkVideoEncodeH264QualityLevelPropertiesKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264QualityLevelPropertiesKHR {

3539

 VkStructureType sType;
 void* pNext;
 VkVideoEncodeH264RateControlFlagsKHR preferredRateControlFlags;
 uint32_t preferredGopFrameCount;
 uint32_t preferredIdrPeriod;
 uint32_t preferredConsecutiveBFrameCount;
 uint32_t preferredTemporalLayerCount;
 VkVideoEncodeH264QpKHR preferredConstantQp;
 uint32_t preferredMaxL0ReferenceCount;
 uint32_t preferredMaxL1ReferenceCount;
 VkBool32 preferredStdEntropyCodingModeFlag;
} VkVideoEncodeH264QualityLevelPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• preferredRateControlFlags is a bitmask of VkVideoEncodeH264RateControlFlagBitsKHR values
indicating the preferred flags to use for VkVideoEncodeH264RateControlInfoKHR::flags.

• preferredGopFrameCount indicates the preferred value to use for
VkVideoEncodeH264RateControlInfoKHR::gopFrameCount.

• preferredIdrPeriod indicates the preferred value to use for
VkVideoEncodeH264RateControlInfoKHR::idrPeriod.

• preferredConsecutiveBFrameCount indicates the preferred value to use for
VkVideoEncodeH264RateControlInfoKHR::consecutiveBFrameCount.

• preferredTemporalLayerCount indicates the preferred value to use for
VkVideoEncodeH264RateControlInfoKHR::temporalLayerCount.

• preferredConstantQp indicates the preferred values to use for
VkVideoEncodeH264NaluSliceInfoKHR::constantQp for each picture type when using rate
control mode VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR.

• preferredMaxL0ReferenceCount indicates the preferred maximum number of reference pictures
to use in the reference list L0.

• preferredMaxL1ReferenceCount indicates the preferred maximum number of reference pictures
to use in the reference list L1.

• preferredStdEntropyCodingModeFlag indicates the preferred value to use for
entropy_coding_mode_flag in StdVideoH264PpsFlags.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264QualityLevelPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_QUALITY_LEVEL_PROPERTIES_KHR

42.17.8. H.264 Encode Session

Additional parameters can be specified when creating a video session with an H.264 encode profile

3540

by including an instance of the VkVideoEncodeH264SessionCreateInfoKHR structure in the pNext
chain of VkVideoSessionCreateInfoKHR.

The VkVideoEncodeH264SessionCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264SessionCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 useMaxLevelIdc;
 StdVideoH264LevelIdc maxLevelIdc;
} VkVideoEncodeH264SessionCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• useMaxLevelIdc indicates whether the value of maxLevelIdc should be used by the
implementation. When it is set to VK_FALSE, the implementation ignores the value of maxLevelIdc
and uses the value of VkVideoEncodeH264CapabilitiesKHR::maxLevelIdc, as reported by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile.

• maxLevelIdc is a StdVideoH264LevelIdc value specifying the upper bound on the H.264 level for
the video bitstreams produced by the created video session, where enum constant
STD_VIDEO_H264_LEVEL_IDC_<major>_<minor> identifies H.264 level <major>.<minor> as defined in
section A.3 of the ITU-T H.264 Specification.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264SessionCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_CREATE_INFO_KHR

42.17.9. H.264 Encode Parameter Sets

Video session parameters objects created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR can contain the following types of parameters:

H.264 Sequence Parameter Sets (SPS)

Represented by StdVideoH264SequenceParameterSet structures and interpreted as follows:

• reserved1 and reserved2 are used only for padding purposes and are otherwise ignored;

• seq_parameter_set_id is used as the key of the SPS entry;

• level_idc is one of the enum constants STD_VIDEO_H264_LEVEL_IDC_<major>_<minor> identifying
the H.264 level <major>.<minor> as defined in section A.3 of the ITU-T H.264 Specification;

• if flags.seq_scaling_matrix_present_flag is set, then the StdVideoH264ScalingLists structure
pointed to by pScalingLists is interpreted as follows:

3541

◦ scaling_list_present_mask is a bitmask where bit index i corresponds to
seq_scaling_list_present_flag[i] as defined in section 7.4.2.1 of the ITU-T H.264
Specification;

◦ use_default_scaling_matrix_mask is a bitmask where bit index i corresponds to
UseDefaultScalingMatrix4x4Flag[i], when i < 6, or corresponds to
UseDefaultScalingMatrix8x8Flag[i-6], otherwise, as defined in section 7.3.2.1 of the ITU-T
H.264 Specification;

◦ ScalingList4x4 and ScalingList8x8 correspond to the identically named syntax elements
defined in section 7.3.2.1 of the ITU-T H.264 Specification;

• if flags.vui_parameters_present_flag is set, then pSequenceParameterSetVui is a pointer to a
StdVideoH264SequenceParameterSetVui structure that is interpreted as follows:

◦ reserved1 is used only for padding purposes and is otherwise ignored;

◦ if flags.nal_hrd_parameters_present_flag or flags.vcl_hrd_parameters_present_flag is set,
then the StdVideoH264HrdParameters structure pointed to by pHrdParameters is interpreted
as follows:

▪ reserved1 is used only for padding purposes and is otherwise ignored;

▪ all other members of StdVideoH264HrdParameters are interpreted as defined in section
E.2.2 of the ITU-T H.264 Specification;

◦ all other members of StdVideoH264SequenceParameterSetVui are interpreted as defined in
section E.2.1 of the ITU-T H.264 Specification;

• all other members of StdVideoH264SequenceParameterSet are interpreted as defined in section
7.4.2.1 of the ITU-T H.264 Specification.

H.264 Picture Parameter Sets (PPS)

Represented by StdVideoH264PictureParameterSet structures and interpreted as follows:

• the pair constructed from seq_parameter_set_id and pic_parameter_set_id is used as the key
of the PPS entry;

• if flags.pic_scaling_matrix_present_flag is set, then the StdVideoH264ScalingLists structure
pointed to by pScalingLists is interpreted as follows:

◦ scaling_list_present_mask is a bitmask where bit index i corresponds to
pic_scaling_list_present_flag[i] as defined in section 7.4.2.2 of the ITU-T H.264
Specification;

◦ use_default_scaling_matrix_mask is a bitmask where bit index i corresponds to
UseDefaultScalingMatrix4x4Flag[i], when i < 6, or corresponds to
UseDefaultScalingMatrix8x8Flag[i-6], otherwise, as defined in section 7.3.2.2 of the ITU-T
H.264 Specification;

◦ ScalingList4x4 and ScalingList8x8 correspond to the identically named syntax elements
defined in section 7.3.2.2 of the ITU-T H.264 Specification;

• all other members of StdVideoH264PictureParameterSet are interpreted as defined in section
7.4.2.2 of the ITU-T H.264 Specification.

3542

Implementations may override any of these parameters according to the semantics defined in the
Video Encode Parameter Overrides section before storing the resulting H.264 parameter sets into
the video session parameters object. Applications need to use the
vkGetEncodedVideoSessionParametersKHR command to determine whether any implementation
overrides happened and to retrieve the encoded H.264 parameter sets in order to be able to
produce a compliant H.264 video bitstream.

Such H.264 parameter set overrides may also have cascading effects on the implementation
overrides applied to the encoded bitstream produced by video encode operations. If the
implementation supports the VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_HAS_OVERRIDES_BIT_KHR video
encode feedback query flag, then the application can use such queries to retrieve feedback about
whether any implementation overrides have been applied to the encoded bitstream.

When a video session parameters object is created with the codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, the VkVideoSessionParametersCreateInfoKHR::pNext
chain must include a VkVideoEncodeH264SessionParametersCreateInfoKHR structure specifying the
capacity and initial contents of the object.

The VkVideoEncodeH264SessionParametersCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264SessionParametersCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t maxStdSPSCount;
 uint32_t maxStdPPSCount;
 const VkVideoEncodeH264SessionParametersAddInfoKHR* pParametersAddInfo;
} VkVideoEncodeH264SessionParametersCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxStdSPSCount is the maximum number of H.264 SPS entries the created
VkVideoSessionParametersKHR can contain.

• maxStdPPSCount is the maximum number of H.264 PPS entries the created
VkVideoSessionParametersKHR can contain.

• pParametersAddInfo is NULL or a pointer to a VkVideoEncodeH264SessionParametersAddInfoKHR
structure specifying H.264 parameters to add upon object creation.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264SessionParametersCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_CREATE_INFO_KHR

• VUID-VkVideoEncodeH264SessionParametersCreateInfoKHR-pParametersAddInfo-
parameter
If pParametersAddInfo is not NULL, pParametersAddInfo must be a valid pointer to a valid
VkVideoEncodeH264SessionParametersAddInfoKHR structure

3543

The VkVideoEncodeH264SessionParametersAddInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264SessionParametersAddInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t stdSPSCount;
 const StdVideoH264SequenceParameterSet* pStdSPSs;
 uint32_t stdPPSCount;
 const StdVideoH264PictureParameterSet* pStdPPSs;
} VkVideoEncodeH264SessionParametersAddInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdSPSCount is the number of elements in the pStdSPSs array.

• pStdSPSs is a pointer to an array of StdVideoH264SequenceParameterSet structures describing the
H.264 SPS entries to add.

• stdPPSCount is the number of elements in the pStdPPSs array.

• pStdPPSs is a pointer to an array of StdVideoH264PictureParameterSet structures describing the
H.264 PPS entries to add.

This structure can be specified in the following places:

• In the pParametersAddInfo member of the VkVideoEncodeH264SessionParametersCreateInfoKHR
structure specified in the pNext chain of VkVideoSessionParametersCreateInfoKHR used to
create a video session parameters object. In this case, if the video codec operation the video
session parameters object is created with is VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then
it defines the set of initial parameters to add to the created object (see Creating Video Session
Parameters).

• In the pNext chain of VkVideoSessionParametersUpdateInfoKHR. In this case, if the video codec
operation the video session parameters object to be updated was created with is
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, then it defines the set of parameters to add to it
(see Updating Video Session Parameters).

Valid Usage

• VUID-VkVideoEncodeH264SessionParametersAddInfoKHR-None-04837
The seq_parameter_set_id member of each StdVideoH264SequenceParameterSet structure
specified in the elements of pStdSPSs must be unique within pStdSPSs

• VUID-VkVideoEncodeH264SessionParametersAddInfoKHR-None-04838
The pair constructed from the seq_parameter_set_id and pic_parameter_set_id members of
each StdVideoH264PictureParameterSet structure specified in the elements of pStdPPSs
must be unique within pStdPPSs

3544

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264SessionParametersAddInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_ADD_INFO_KHR

• VUID-VkVideoEncodeH264SessionParametersAddInfoKHR-pStdSPSs-parameter
If stdSPSCount is not 0, and pStdSPSs is not NULL, pStdSPSs must be a valid pointer to an
array of stdSPSCount StdVideoH264SequenceParameterSet values

• VUID-VkVideoEncodeH264SessionParametersAddInfoKHR-pStdPPSs-parameter
If stdPPSCount is not 0, and pStdPPSs is not NULL, pStdPPSs must be a valid pointer to an
array of stdPPSCount StdVideoH264PictureParameterSet values

The VkVideoEncodeH264SessionParametersGetInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264SessionParametersGetInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 writeStdSPS;
 VkBool32 writeStdPPS;
 uint32_t stdSPSId;
 uint32_t stdPPSId;
} VkVideoEncodeH264SessionParametersGetInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• writeStdSPS indicates whether the encoded H.264 sequence parameter set identified by stdSPSId
is requested to be retrieved.

• writeStdPPS indicates whether the encoded H.264 picture parameter set identified by the pair
constructed from stdSPSId and stdPPSId is requested to be retrieved.

• stdSPSId specifies the H.264 sequence parameter set ID used to identify the retrieved H.264
sequence and/or picture parameter set(s).

• stdPPSId specifies the H.264 picture parameter set ID used to identify the retrieved H.264 picture
parameter set when writeStdPPS is set to VK_TRUE.

When this structure is specified in the pNext chain of the
VkVideoEncodeSessionParametersGetInfoKHR structure passed to
vkGetEncodedVideoSessionParametersKHR, the command will write encoded parameter data to
the output buffer in the following order:

1. The H.264 sequence parameter set identified by stdSPSId, if writeStdSPS is set to VK_TRUE.

2. The H.264 picture parameter set identified by the pair constructed from stdSPSId and stdPPSId,
if writeStdPPS is set to VK_TRUE.

3545

Valid Usage

• VUID-VkVideoEncodeH264SessionParametersGetInfoKHR-writeStdSPS-08279
At least one of writeStdSPS and writeStdPPS must be set to VK_TRUE

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264SessionParametersGetInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_GET_INFO_KHR

The VkVideoEncodeH264SessionParametersFeedbackInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264SessionParametersFeedbackInfoKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 hasStdSPSOverrides;
 VkBool32 hasStdPPSOverrides;
} VkVideoEncodeH264SessionParametersFeedbackInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• hasStdSPSOverrides indicates whether any of the parameters of the requested H.264 sequence
parameter set, if one was requested via VkVideoEncodeH264SessionParametersGetInfoKHR
::writeStdSPS, were overridden by the implementation.

• hasStdPPSOverrides indicates whether any of the parameters of the requested H.264 picture
parameter set, if one was requested via VkVideoEncodeH264SessionParametersGetInfoKHR
::writeStdPPS, were overridden by the implementation.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264SessionParametersFeedbackInfoKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_FEEDBACK_INFO_KHR

42.17.10. H.264 Encoding Parameters

The VkVideoEncodeH264PictureInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264PictureInfoKHR {
 VkStructureType sType;
 const void* pNext;

3546

 uint32_t naluSliceEntryCount;
 const VkVideoEncodeH264NaluSliceInfoKHR* pNaluSliceEntries;
 const StdVideoEncodeH264PictureInfo* pStdPictureInfo;
 VkBool32 generatePrefixNalu;
} VkVideoEncodeH264PictureInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• naluSliceEntryCount is the number of elements in pNaluSliceEntries.

• pNaluSliceEntries is a pointer to an array of naluSliceEntryCount
VkVideoEncodeH264NaluSliceInfoKHR structures specifying the parameters of the individual
H.264 slices to encode for the input picture.

• pStdPictureInfo is a pointer to a StdVideoEncodeH264PictureInfo structure specifying H.264
picture information.

• generatePrefixNalu controls whether prefix NALUs are generated before slice NALUs into the
target bitstream, as defined in sections 7.3.2.12 and 7.4.2.12 of the ITU-T H.264 Specification.

This structure is specified in the pNext chain of the VkVideoEncodeInfoKHR structure passed to
vkCmdEncodeVideoKHR to specify the codec-specific picture information for an H.264 encode
operation.

Encode Input Picture Information

When this structure is specified in the pNext chain of the VkVideoEncodeInfoKHR structure
passed to vkCmdEncodeVideoKHR, the information related to the encode input picture is
defined as follows:

• The image subregion used is determined according to the H.264 Encode Picture Data Access
section.

• The encode input picture is associated with the H.264 picture information provided in
pStdPictureInfo.

Std Picture Information

The members of the StdVideoEncodeH264PictureInfo structure pointed to by pStdPictureInfo are
interpreted as follows:

• flags.reserved and reserved1 are used only for padding purposes and are otherwise ignored;

• flags.IdrPicFlag as defined in section 7.4.1 of the ITU-T H.264 Specification;

• flags.is_reference as defined in section 3.136 of the ITU-T H.264 Specification;

• seq_parameter_set_id and pic_parameter_set_id are used to identify the active parameter sets,
as described below;

• primary_pic_type as defined in section 7.4.2 of the ITU-T H.264 Specification;

• PicOrderCnt as defined in section 8.2 of the ITU-T H.264 Specification;

• temporal_id as defined in section G.7.4.1.1 of the ITU-T H.264 Specification;

3547

• if pRefLists is not NULL, then it is a pointer to a StdVideoEncodeH264ReferenceListsInfo
structure that is interpreted as follows:

◦ flags.reserved is used only for padding purposes and is otherwise ignored;

◦ ref_pic_list_modification_flag_l0 and ref_pic_list_modification_flag_l1 as defined in
section 7.4.3.1 of the ITU-T H.264 Specification;

◦ num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 as defined in section
7.4.3 of the ITU-T H.264 Specification;

◦ RefPicList0 and RefPicList1 as defined in section 8.2.4 of the ITU-T H.264 Specification
where each element of these arrays either identifies an active reference picture using its
DPB slot index or contains the value STD_VIDEO_H264_NO_REFERENCE_PICTURE to indicate “no
reference picture”;

◦ if refList0ModOpCount is not zero, then pRefList0ModOperations is a pointer to an array of
refList0ModOpCount number of StdVideoEncodeH264RefListModEntry structures specifying
the modification parameters for the reference list L0 as defined in section 7.4.3.1 of the
ITU-T H.264 Specification;

◦ if refList1ModOpCount is not zero, then pRefList1ModOperations is a pointer to an array of
refList1ModOpCount number of StdVideoEncodeH264RefListModEntry structures specifying
the modification parameters for the reference list L1 as defined in section 7.4.3.1 of the
ITU-T H.264 Specification;

◦ if refPicMarkingOpCount is not zero, then refPicMarkingOperations is a pointer to an array
of refPicMarkingOpCount number of StdVideoEncodeH264RefPicMarkingEntry structures
specifying the reference picture marking parameters as defined in section 7.4.3.3 of the
ITU-T H.264 Specification;

• all other members are interpreted as defined in section 7.4.3 of the ITU-T H.264 Specification.

Reference picture setup is controlled by the value of StdVideoEncodeH264PictureInfo
::flags.is_reference. If it is set and a reconstructed picture is specified, then the latter is used as the
target of picture reconstruction to activate the DPB slot specified in pEncodeInfo-
>pSetupReferenceSlot->slotIndex. If StdVideoEncodeH264PictureInfo::flags.is_reference is not set,
but a reconstructed picture is specified, then the corresponding picture reference associated with
the DPB slot is invalidated, as described in the DPB Slot States section.

Active Parameter Sets

The members of the StdVideoEncodeH264PictureInfo structure pointed to by pStdPictureInfo are
used to select the active parameter sets to use from the bound video session parameters object,
as follows:

• The active SPS is the SPS identified by the key specified in StdVideoEncodeH264PictureInfo
::seq_parameter_set_id.

• The active PPS is the PPS identified by the key specified by the pair constructed from
StdVideoEncodeH264PictureInfo::seq_parameter_set_id and StdVideoEncodeH264PictureInfo
::pic_parameter_set_id.

H.264 encoding uses explicit weighted sample prediction for a slice, as defined in section 8.4.2.3 of
the ITU-T H.264 Specification, if any of the following conditions are true for the active PPS and the

3548

pStdSliceHeader member of the corresponding element of pNaluSliceEntries:

• pStdSliceHeader->slice_type is STD_VIDEO_H264_SLICE_TYPE_P and weighted_pred_flag is enabled
in the active PPS.

• pStdSliceHeader->slice_type is STD_VIDEO_H264_SLICE_TYPE_B and weighted_bipred_idc in the
active PPS equals STD_VIDEO_H264_WEIGHTED_BIPRED_IDC_EXPLICIT.

Valid Usage

• VUID-VkVideoEncodeH264PictureInfoKHR-naluSliceEntryCount-08301
naluSliceEntryCount must be between 1 and VkVideoEncodeH264CapabilitiesKHR
::maxSliceCount, inclusive, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for
the used video profile

• VUID-VkVideoEncodeH264PictureInfoKHR-flags-08304
If VkVideoEncodeH264CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H264_CAPABILITY_GENERATE_PREFIX_NALU_BIT_KHR, then generatePrefixNalu
must be VK_FALSE

• VUID-VkVideoEncodeH264PictureInfoKHR-flags-08314
If VkVideoEncodeH264CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H264_CAPABILITY_PREDICTION_WEIGHT_TABLE_GENERATED_BIT_KHR and the slice
corresponding to any element of pNaluSliceEntries uses explicit weighted sample
prediction, then VkVideoEncodeH264NaluSliceInfoKHR::pStdSliceHeader->pWeightTable
must not be NULL for that element of pNaluSliceEntries

• VUID-VkVideoEncodeH264PictureInfoKHR-flags-08315
If VkVideoEncodeH264CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H264_CAPABILITY_DIFFERENT_SLICE_TYPE_BIT_KHR, then
VkVideoEncodeH264NaluSliceInfoKHR::pStdSliceHeader->slice_type must be identical for
all elements of pNaluSliceEntries

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264PictureInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PICTURE_INFO_KHR

• VUID-VkVideoEncodeH264PictureInfoKHR-pNaluSliceEntries-parameter
pNaluSliceEntries must be a valid pointer to an array of naluSliceEntryCount valid
VkVideoEncodeH264NaluSliceInfoKHR structures

• VUID-VkVideoEncodeH264PictureInfoKHR-pStdPictureInfo-parameter
pStdPictureInfo must be a valid pointer to a valid StdVideoEncodeH264PictureInfo value

• VUID-VkVideoEncodeH264PictureInfoKHR-naluSliceEntryCount-arraylength
naluSliceEntryCount must be greater than 0

3549

The VkVideoEncodeH264NaluSliceInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264NaluSliceInfoKHR {
 VkStructureType sType;
 const void* pNext;
 int32_t constantQp;
 const StdVideoEncodeH264SliceHeader* pStdSliceHeader;
} VkVideoEncodeH264NaluSliceInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• constantQp is the QP to use for the slice if the current rate control mode configured for the video
session is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR.

• pStdSliceHeader is a pointer to a StdVideoEncodeH264SliceHeader structure specifying H.264 slice
header parameters for the slice.

Std Slice Header Parameters

The members of the StdVideoEncodeH264SliceHeader structure pointed to by pStdSliceHeader are
interpreted as follows:

• flags.reserved and reserved1 are used only for padding purposes and are otherwise ignored;

• if pWeightTable is not NULL, then it is a pointer to a StdVideoEncodeH264WeightTable that is
interpreted as follows:

◦ flags.reserved is used only for padding purposes and is otherwise ignored;

◦ all other members of StdVideoEncodeH264WeightTable are interpreted as defined in section
7.4.3.2 of the ITU-T H.264 Specification;

• all other members are interpreted as defined in section 7.4.3 of the ITU-T H.264 Specification.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264NaluSliceInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_NALU_SLICE_INFO_KHR

• VUID-VkVideoEncodeH264NaluSliceInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkVideoEncodeH264NaluSliceInfoKHR-pStdSliceHeader-parameter
pStdSliceHeader must be a valid pointer to a valid StdVideoEncodeH264SliceHeader value

The VkVideoEncodeH264DpbSlotInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264DpbSlotInfoKHR {
 VkStructureType sType;

3550

 const void* pNext;
 const StdVideoEncodeH264ReferenceInfo* pStdReferenceInfo;
} VkVideoEncodeH264DpbSlotInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdReferenceInfo is a pointer to a StdVideoEncodeH264ReferenceInfo structure specifying H.264
reference information.

This structure is specified in the pNext chain of VkVideoEncodeInfoKHR::pSetupReferenceSlot, if not
NULL, and the pNext chain of the elements of VkVideoEncodeInfoKHR::pReferenceSlots to specify the
codec-specific reference picture information for an H.264 encode operation.

Active Reference Picture Information

When this structure is specified in the pNext chain of the elements of VkVideoEncodeInfoKHR
::pReferenceSlots, one element is added to the list of active reference pictures used by the video
encode operation for each element of VkVideoEncodeInfoKHR::pReferenceSlots as follows:

• The image subregion used is determined according to the H.264 Encode Picture Data Access
section.

• The reference picture is associated with the DPB slot index specified in the slotIndex
member of the corresponding element of VkVideoEncodeInfoKHR::pReferenceSlots.

• The reference picture is associated with the H.264 reference information provided in
pStdReferenceInfo.

Reconstructed Picture Information

When this structure is specified in the pNext chain of VkVideoEncodeInfoKHR
::pSetupReferenceSlot, the information related to the reconstructed picture is defined as follows:

• The image subregion used is determined according to the H.264 Encode Picture Data Access
section.

• If reference picture setup is requested, then the reconstructed picture is used to activate the
DPB slot with the index specified in VkVideoEncodeInfoKHR::pSetupReferenceSlot-
>slotIndex.

• The reconstructed picture is associated with the H.264 reference information provided in
pStdReferenceInfo.

Std Reference Information

The members of the StdVideoEncodeH264ReferenceInfo structure pointed to by pStdReferenceInfo
are interpreted as follows:

• flags.reserved is used only for padding purposes and is otherwise ignored;

• flags.used_for_long_term_reference is used to indicate whether the picture is marked as
“used for long-term reference” as defined in section 8.2.5.1 of the ITU-T H.264 Specification;

• primary_pic_type as defined in section 7.4.2 of the ITU-T H.264 Specification;

3551

• long_term_pic_num and long_term_frame_idx as defined in section 7.4.3 of the ITU-T H.264
Specification;

• temporal_id as defined in section G.7.4.1.1 of the ITU-T H.264 Specification;

• all other members are interpreted as defined in section 8.2 of the ITU-T H.264 Specification.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264DpbSlotInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_DPB_SLOT_INFO_KHR

• VUID-VkVideoEncodeH264DpbSlotInfoKHR-pStdReferenceInfo-parameter
pStdReferenceInfo must be a valid pointer to a valid StdVideoEncodeH264ReferenceInfo
value

42.17.11. H.264 Encode Rate Control

Group of Pictures

In case of H.264 encoding it is common practice to follow a regular pattern of different picture
types in display order when encoding subsequent frames. This pattern is referred to as the group of
pictures (GOP).

A regular GOP is defined by the following parameters:

• The number of frames in the GOP;

• The number of consecutive B frames between I and/or P frames in display order.

GOPs are further classified as open and closed GOPs.

Frame types in an open GOP follow each other in display order according to the following
algorithm:

1. The first frame is always an I frame.

2. This is followed by a number of consecutive B frames, as defined above.

3. If the number of frames in the GOP is not reached yet, then the next frame is a P frame and the
algorithm continues from step 2.

3552

B... B I B B B P B B B P B B I BB ...

GOP frame count

consecutive B-frame count

Text is not SVG - cannot display

Figure 31. H.264 open GOP

In case of a closed GOP, an IDR frame is used at a certain period.

GOP frame count

IDR period

B... B IDR B B P B B B PB B IDR B ...I B

Text is not SVG - cannot display

Figure 32. H.264 closed GOP

It is also typical for H.264 encoding to use specific reference picture usage patterns across the
frames of the GOP. The two most common reference patterns used are as follows:

Flat Reference Pattern

• Each P frame uses the last non-B frame, in display order, as reference.

• Each B frame uses the last non-B frame, in display order, as its backward reference, and uses
the next non-B frame, in display order, as its forward reference.

B... B I B B B P B B B P B B I BB ...

Text is not SVG - cannot display

Figure 33. H.264 flat reference pattern

Dyadic Reference Pattern

• Each P frame uses the last non-B frame, in display order, as reference.

3553

• The following algorithm is applied to the sequence of consecutive B frames between I and/or
P frames in display order:

1. The B frame in the middle of this sequence uses the frame preceding the sequence as its
backward reference, and uses the frame following the sequence as its forward reference.

2. The algorithm is executed recursively for the following frame sequences:

▪ The B frames of the original sequence preceding the frame in the middle, if any.

▪ The B frames of the original sequence following the frame in the middle, if any.

B... B I B B B P B B B P B B I BB ...

Text is not SVG - cannot display

Figure 34. H.264 dyadic reference pattern

The application can provide guidance to the implementation’s rate control algorithm about the
structure of the GOP used by the application. Any such guidance about the GOP and its structure
does not mandate that specific GOP structure to be used by the application, as the picture type of
individual encoded pictures is still application-controlled, however, any deviation from the
provided guidance may result in undesired rate control behavior including, but not limited, to the
implementation not being able to conform to the expected average or target bitrates, or other rate
control parameters specified by the application.

When an H.264 encode session is used to encode multiple temporal layers, it is also common
practice to follow a regular pattern for the H.264 temporal ID for the encoded pictures in display
order when encoding subsequent frames. This pattern is referred to as the temporal GOP. The most
common temporal layer pattern used is as follows:

Dyadic Temporal Layer Pattern

• The number of frames in the temporal GOP is 2n-1, where n is the number of temporal layers.

• The ith frame in the temporal GOP uses temporal ID t, if and only if the index of the least
significant bit set in i equals n-t-1, except for the first frame, which is the only frame in the
temporal GOP using temporal ID zero.

• The ith frame in the temporal GOP uses the rth frame as reference, where r is calculated from i
by clearing the least significant bit set in it, except for the first frame in the temporal GOP,
which uses the first frame of the previous temporal GOP, if any, as reference.

3554

0

1

2

3

Te
m

po
ra

l L
ay

er

0 1 2 3 4 5 6 7

Temporal GOP Index

0 1 2 3 4 5 6 7

Text is not SVG - cannot display

Figure 35. H.264 dyadic temporal layer pattern

Note

Multi-layer rate control and multi-layer coding are typically used for streaming
cases where low latency is expected, hence B pictures with forward prediction are
usually not used.

The VkVideoEncodeH264RateControlInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264RateControlInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoEncodeH264RateControlFlagsKHR flags;
 uint32_t gopFrameCount;
 uint32_t idrPeriod;
 uint32_t consecutiveBFrameCount;
 uint32_t temporalLayerCount;
} VkVideoEncodeH264RateControlInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkVideoEncodeH264RateControlFlagBitsKHR specifying H.264 rate control
flags.

• gopFrameCount is the number of frames within a group of pictures (GOP) intended to be used by
the application. If it is set to 0, the rate control algorithm may assume an implementation-
dependent GOP length. If it is set to UINT32_MAX, the GOP length is treated as infinite.

• idrPeriod is the interval, in terms of number of frames, between two IDR frames (see IDR
period). If it is set to 0, the rate control algorithm may assume an implementation-dependent
IDR period. If it is set to UINT32_MAX, the IDR period is treated as infinite.

3555

• consecutiveBFrameCount is the number of consecutive B frames between I and/or P frames within
the GOP.

• temporalLayerCount specifies the number of H.264 temporal layers that the application intends to
use.

When an instance of this structure is included in the pNext chain of the
VkVideoCodingControlInfoKHR structure passed to the vkCmdControlVideoCodingKHR command,
and VkVideoCodingControlInfoKHR::flags includes
VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR, the parameters in this structure are used as
guidance for the implementation’s rate control algorithm (see Video Coding Control).

If flags includes VK_VIDEO_ENCODE_H264_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR, then the rate
control state is reset to an initial state to meet HRD compliance requirements. Otherwise the new
rate control state may be applied without a reset depending on the implementation and the
specified rate control parameters.

Note

It would be possible to infer the picture type to be used when encoding a frame, on
the basis of the values provided for consecutiveBFrameCount, idrPeriod, and
gopFrameCount, but this inferred picture type will not be used by implementations
to override the picture type provided to the video encode operation.

Valid Usage

• VUID-VkVideoEncodeH264RateControlInfoKHR-flags-08280
If VkVideoEncodeH264CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H264_CAPABILITY_HRD_COMPLIANCE_BIT_KHR, then flags must not contain
VK_VIDEO_ENCODE_H264_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR

• VUID-VkVideoEncodeH264RateControlInfoKHR-flags-08281
If flags contains VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR or
VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR, then it must also
contain VK_VIDEO_ENCODE_H264_RATE_CONTROL_REGULAR_GOP_BIT_KHR

• VUID-VkVideoEncodeH264RateControlInfoKHR-flags-08282
If flags contains VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR, then
it must not also contain
VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR

• VUID-VkVideoEncodeH264RateControlInfoKHR-flags-08283
If flags contains VK_VIDEO_ENCODE_H264_RATE_CONTROL_REGULAR_GOP_BIT_KHR, then
gopFrameCount must be greater than 0

• VUID-VkVideoEncodeH264RateControlInfoKHR-idrPeriod-08284
If idrPeriod is not 0, then it must be greater than or equal to gopFrameCount

• VUID-VkVideoEncodeH264RateControlInfoKHR-consecutiveBFrameCount-08285
If consecutiveBFrameCount is not 0, then it must be less than gopFrameCount

3556

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264RateControlInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_RATE_CONTROL_INFO_KHR

• VUID-VkVideoEncodeH264RateControlInfoKHR-flags-parameter
flags must be a valid combination of VkVideoEncodeH264RateControlFlagBitsKHR values

Bits which can be set in VkVideoEncodeH264RateControlInfoKHR::flags, specifying H.264 rate
control flags, are:

// Provided by VK_KHR_video_encode_h264
typedef enum VkVideoEncodeH264RateControlFlagBitsKHR {
 VK_VIDEO_ENCODE_H264_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_H264_RATE_CONTROL_REGULAR_GOP_BIT_KHR = 0x00000002,
 VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR = 0x00000004,
 VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR = 0x00000008,
 VK_VIDEO_ENCODE_H264_RATE_CONTROL_TEMPORAL_LAYER_PATTERN_DYADIC_BIT_KHR =
0x00000010,
} VkVideoEncodeH264RateControlFlagBitsKHR;

• VK_VIDEO_ENCODE_H264_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR specifies that rate control
should attempt to produce an HRD compliant bitstream, as defined in annex C of the ITU-T
H.264 Specification.

• VK_VIDEO_ENCODE_H264_RATE_CONTROL_REGULAR_GOP_BIT_KHR specifies that the application intends to
use a regular GOP structure according to the parameters specified in the gopFrameCount,
idrPeriod, and consecutiveBFrameCount members of the VkVideoEncodeH264RateControlInfoKHR
structure.

• VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR specifies that the
application intends to follow a flat reference pattern in the GOP.

• VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR specifies that the
application intends to follow a dyadic reference pattern in the GOP.

• VK_VIDEO_ENCODE_H264_RATE_CONTROL_TEMPORAL_LAYER_PATTERN_DYADIC_BIT_KHR specifies that the
application intends to follow a dyadic temporal layer pattern.

// Provided by VK_KHR_video_encode_h264
typedef VkFlags VkVideoEncodeH264RateControlFlagsKHR;

VkVideoEncodeH264RateControlFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeH264RateControlFlagBitsKHR.

Rate Control Layers

The VkVideoEncodeH264RateControlLayerInfoKHR structure is defined as:

3557

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264RateControlLayerInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 useMinQp;
 VkVideoEncodeH264QpKHR minQp;
 VkBool32 useMaxQp;
 VkVideoEncodeH264QpKHR maxQp;
 VkBool32 useMaxFrameSize;
 VkVideoEncodeH264FrameSizeKHR maxFrameSize;
} VkVideoEncodeH264RateControlLayerInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• useMinQp indicates whether the QP values determined by rate control will be clamped to the
lower bounds on the QP values specified in minQp.

• minQp specifies the lower bounds on the QP values, for each picture type, that the
implementation’s rate control algorithm will use when useMinQp is set to VK_TRUE.

• useMaxQp indicates whether the QP values determined by rate control will be clamped to the
upper bounds on the QP values specified in maxQp.

• maxQp specifies the upper bounds on the QP values, for each picture type, that the
implementation’s rate control algorithm will use when useMaxQp is set to VK_TRUE.

• useMaxFrameSize indicates whether the implementation’s rate control algorithm should use the
values specified in maxFrameSize as the upper bounds on the encoded frame size for each picture
type.

• maxFrameSize specifies the upper bounds on the encoded frame size, for each picture type, when
useMaxFrameSize is set to VK_TRUE.

When used, the values in minQp and maxQp guarantee that the effective QP values used by the
implementation will respect those lower and upper bounds, respectively. However, limiting the
range of QP values that the implementation is able to use will also limit the capabilities of the
implementation’s rate control algorithm to comply to other constraints. In particular, the
implementation may not be able to comply to the following:

• The average and/or peak bitrate values to be used for the encoded bitstream specified in the
averageBitrate and maxBitrate members of the VkVideoEncodeRateControlLayerInfoKHR
structure.

• The upper bounds on the encoded frame size, for each picture type, specified in the
maxFrameSize member of VkVideoEncodeH264RateControlLayerInfoKHR.

Note

In general, applications need to configure rate control parameters appropriately in
order to be able to get the desired rate control behavior, as described in the Video
Encode Rate Control section.

3558

When an instance of this structure is included in the pNext chain of a
VkVideoEncodeRateControlLayerInfoKHR structure specified in one of the elements of the pLayers
array member of the VkVideoEncodeRateControlInfoKHR structure passed to the
vkCmdControlVideoCodingKHR command, VkVideoCodingControlInfoKHR::flags includes
VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR, and the bound video session was created
with the video codec operation VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, it specifies the
H.264-specific rate control parameters of the rate control layer corresponding to that element of
pLayers.

Valid Usage

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-useMinQp-08286
If useMinQp is VK_TRUE, then the qpI, qpP, and qpB members of minQp must all be between
VkVideoEncodeH264CapabilitiesKHR::minQp and VkVideoEncodeH264CapabilitiesKHR
::maxQp, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video
profile

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-useMaxQp-08287
If useMaxQp is VK_TRUE, then the qpI, qpP, and qpB members of maxQp must all be between
VkVideoEncodeH264CapabilitiesKHR::minQp and VkVideoEncodeH264CapabilitiesKHR
::maxQp, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video
profile

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-useMinQp-08288
If useMinQp is VK_TRUE and VkVideoEncodeH264CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H264_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR, then the qpI, qpP,
and qpB members of minQp must all specify the same value

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-useMaxQp-08289
If useMaxQp is VK_TRUE and VkVideoEncodeH264CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H264_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR, then the qpI, qpP,
and qpB members of maxQp must all specify the same value

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-useMinQp-08374
If useMinQp and useMaxQp are both VK_TRUE, then the qpI, qpP, and qpB members of minQp
must all be less than or equal to the respective members of maxQp

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_RATE_CONTROL_LAYER_INFO_KHR

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-minQp-parameter
minQp must be a valid VkVideoEncodeH264QpKHR structure

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-maxQp-parameter
maxQp must be a valid VkVideoEncodeH264QpKHR structure

3559

• VUID-VkVideoEncodeH264RateControlLayerInfoKHR-maxFrameSize-parameter
maxFrameSize must be a valid VkVideoEncodeH264FrameSizeKHR structure

The VkVideoEncodeH264QpKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264QpKHR {
 int32_t qpI;
 int32_t qpP;
 int32_t qpB;
} VkVideoEncodeH264QpKHR;

• qpI is the QP to be used for I pictures.

• qpP is the QP to be used for P pictures.

• qpB is the QP to be used for B pictures.

The VkVideoEncodeH264FrameSizeKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264FrameSizeKHR {
 uint32_t frameISize;
 uint32_t framePSize;
 uint32_t frameBSize;
} VkVideoEncodeH264FrameSizeKHR;

• frameISize is the size in bytes to be used for I pictures.

• framePSize is the size in bytes to be used for P pictures.

• frameBSize is the size in bytes to be used for B pictures.

GOP Remaining Frames

Besides session level rate control configuration, the application can specify the number of frames
per frame type remaining in the group of pictures (GOP).

The VkVideoEncodeH264GopRemainingFrameInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h264
typedef struct VkVideoEncodeH264GopRemainingFrameInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 useGopRemainingFrames;
 uint32_t gopRemainingI;
 uint32_t gopRemainingP;
 uint32_t gopRemainingB;
} VkVideoEncodeH264GopRemainingFrameInfoKHR;

3560

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• useGopRemainingFrames indicates whether the implementation’s rate control algorithm should
use the values specified in gopRemainingI, gopRemainingP, and gopRemainingB. If
useGopRemainingFrames is VK_FALSE, then the values of gopRemainingI, gopRemainingP, and
gopRemainingB are ignored.

• gopRemainingI specifies the number of I frames the implementation’s rate control algorithm
should assume to be remaining in the GOP prior to executing the video encode operation.

• gopRemainingP specifies the number of P frames the implementation’s rate control algorithm
should assume to be remaining in the GOP prior to executing the video encode operation.

• gopRemainingB specifies the number of B frames the implementation’s rate control algorithm
should assume to be remaining in the GOP prior to executing the video encode operation.

Setting useGopRemainingFrames to VK_TRUE and including this structure in the pNext chain of
VkVideoBeginCodingInfoKHR is only mandatory if the VkVideoEncodeH264CapabilitiesKHR
::requiresGopRemainingFrames reported for the used video profile is VK_TRUE. However,
implementations may use these remaining frame counts, when specified, even when it is not
required. In particular, when the application does not use a regular GOP structure, these values
may provide additional guidance for the implementation’s rate control algorithm.

The VkVideoEncodeH264CapabilitiesKHR::prefersGopRemainingFrames capability is also used to
indicate that the implementation’s rate control algorithm may operate more accurately if the
application specifies the remaining frame counts using this structure.

As with other rate control guidance values, if the effective order and number of frames encoded by
the application are not in line with the remaining frame counts specified in this structure at any
given point, then the behavior of the implementation’s rate control algorithm may deviate from the
one expected by the application.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH264GopRemainingFrameInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_GOP_REMAINING_FRAME_INFO_KHR

42.17.12. H.264 Encode Requirements

This section described the required H.264 encoding capabilities for physical devices that have at
least one queue family that supports the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, as returned by
vkGetPhysicalDeviceQueueFamilyProperties2 in VkQueueFamilyVideoPropertiesKHR
::videoCodecOperations.

Table 57. Required Video Std Header Versions

Video Std Header Name Version

vulkan_video_codec_h264std_encode 1.0.0

3561

Table 58. Required Video Capabilities

Video Capability Requirement Requirement
Type1

VkVideoCapabilitiesKHR

flags - min

minBitstreamBufferOffsetAlignment 4096 max

minBitstreamBufferSizeAlignment 4096 max

pictureAccessGranularity (64,64) max

minCodedExtent - max

maxCodedExtent - min

maxDpbSlots 0 min

maxActiveReferencePictures 0 min

VkVideoEncodeCapabilitiesKHR

flags - min

rateControlModes - min

maxBitrate 64000 min

maxQualityLevels 1 min

encodeInputPictureGranularity (64,64) max

supportedEncodeFeedbackFlags VK_VIDEO_ENCODE_FEEDB
ACK_BITSTREAM_BUFFER_
OFFSET_BIT_KHR
VK_VIDEO_ENCODE_FEEDB
ACK_BITSTREAM_BYTES_W
RITTEN_BIT_KHR

min

VkVideoEncodeH264CapabilitiesKHR

flags - min

maxLevelIdc STD_VIDEO_H264_LEVEL_
IDC_1_0

min

maxSliceCount 1 min

maxPPictureL0ReferenceCount 0 min

maxBPictureL0ReferenceCount 0 min

maxL1ReferenceCount 0 min

maxTemporalLayerCount 1 min

expectDyadicTemporalLayerPattern - implementation-
dependent

minQp - max

maxQp - min

3562

Video Capability Requirement Requirement
Type1

prefersGopRemainingFrames - implementation-
dependent

requiresGopRemainingFrames - implementation-
dependent

stdSyntaxFlags - min

1

The Requirement Type column specifies the requirement is either the minimum value all
implementations must support, the maximum value all implementations must support, or the
exact value all implementations must support. For bitmasks a minimum value is the least bits all
implementations must set, but they may have additional bits set beyond this minimum.

42.18. H.265 Encode Operations
Video encode operations using an H.265 encode profile can be used to encode elementary video
stream sequences compliant to the ITU-T H.265 Specification.

Note

Refer to the Preamble for information on how the Khronos Intellectual Property
Rights Policy relates to normative references to external materials not created by
Khronos.

This process is performed according to the video encode operation steps with the codec-specific
semantics defined in section 8 of the ITU-T H.265 Specification as follows:

• Syntax elements, derived values, and other parameters are applied from the following
structures:

◦ The StdVideoH265VideoParameterSet structure corresponding to the active VPS specifying the
H.265 video parameter set.

◦ The StdVideoH265SequenceParameterSet structure corresponding to the active SPS specifying
the H.265 sequence parameter set.

◦ The StdVideoH265PictureParameterSet structure corresponding to the active PPS specifying
the H.265 picture parameter set.

◦ The StdVideoEncodeH265PictureInfo structure specifying the H.265 picture information.

◦ The StdVideoEncodeH265SliceSegmentHeader structures specifying the H.265 slice segment
header parameters for each encoded H.265 slice segment.

◦ The StdVideoEncodeH265ReferenceInfo structures specifying the H.265 reference information
corresponding to the optional reconstructed picture and any active reference pictures.

• The encoded bitstream data is written to the destination video bitstream buffer range as
defined in the H.265 Encode Bitstream Data Access section.

• Picture data in the video picture resources corresponding to the used encode input picture,

3563

active reference pictures, and optional reconstructed picture is accessed as defined in the H.265
Encode Picture Data Access section.

• The decision on reference picture setup is made according to the parameters specified in the
H.265 picture information.

If the parameters adhere to the syntactic and semantic requirements defined in the corresponding
sections of the ITU-T H.265 Specification, as described above, and the DPB slots associated with the
active reference pictures all refer to valid picture references, then the video encode operation will
complete successfully. Otherwise, the video encode operation may complete unsuccessfully.

42.18.1. H.265 Encode Parameter Overrides

Implementations may override, unless otherwise specified, any of the H.265 encode parameters
specified in the following Video Std structures:

• StdVideoH265VideoParameterSet

• StdVideoH265SequenceParameterSet

• StdVideoH265PictureParameterSet

• StdVideoEncodeH265PictureInfo

• StdVideoEncodeH265SliceSegmentHeader

• StdVideoEncodeH265ReferenceInfo

All such H.265 encode parameter overrides must fulfill the conditions defined in the Video Encode
Parameter Overrides section.

In addition, implementations must not override any of the following H.265 encode parameters:

• StdVideoEncodeH265PictureInfo::pic_type

• StdVideoEncodeH265SliceSegmentHeader::slice_type

In case of H.265 encode parameters stored in video session parameters objects, applications need to
use the vkGetEncodedVideoSessionParametersKHR command to determine whether any
implementation overrides happened. If the query indicates that implementation overrides were
applied, then the application needs to retrieve and use the encoded H.265 parameter sets in the
bitstream in order to be able to produce a compliant H.265 video bitstream using the H.265 encode
parameters stored in the video session parameters object.

In case of any H.265 encode parameters stored in the encoded bitstream produced by video encode
operations, if the implementation supports the
VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_HAS_OVERRIDES_BIT_KHR video encode feedback query flag, the
application can use such queries to retrieve feedback about whether any implementation overrides
have been applied to those H.265 encode parameters.

42.18.2. H.265 Encode Bitstream Data Access

Each video encode operation writes one or more VCL NAL units comprising of slice segment
headers and data of the encoded picture, in the format defined in sections 7.3.6 and 7.3.8, according

3564

to the semantics defined in sections 7.4.7 and 7.4.9 of the ITU-T H.265 Specification, respectively.
The number of VCL NAL units written is specified by VkVideoEncodeH265PictureInfoKHR
::naluSliceSegmentEntryCount.

42.18.3. H.265 Encode Picture Data Access

Accesses to image data within a video picture resource happen at the granularity indicated by
VkVideoCapabilitiesKHR::pictureAccessGranularity, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile. Accordingly, the complete
image subregion of a encode input picture, reference picture, or reconstructed picture accessed by
video coding operations using an H.265 encode profile is defined as the set of texels within the
coordinate range:

([0,endX),[0,endY))

Where:

• endX equals codedExtent.width rounded up to the nearest integer multiple of
pictureAccessGranularity.width and clamped to the width of the image subresource referred to
by the corresponding VkVideoPictureResourceInfoKHR structure;

• endY equals codedExtent.height rounded up to the nearest integer multiple of
pictureAccessGranularity.height and clamped to the height of the image subresource referred
to by the corresponding VkVideoPictureResourceInfoKHR structure;

Where codedExtent is the member of the VkVideoPictureResourceInfoKHR structure corresponding
to the picture.

In case of video encode operations using an H.265 encode profile, any access to a picture at the
coordinates (x,y), as defined by the ITU-T H.265 Specification, is an access to the image subresource
referred to by the corresponding VkVideoPictureResourceInfoKHR structure at the texel
coordinates (x,y).

Implementations may choose not to access some or all texels within particular reference pictures
available to a video encode operation (e.g. due to video encode parameter overrides restricting the
effective set of used reference pictures, or if the encoding algorithm chooses not to use certain
subregions of the reference picture data for sample prediction).

42.18.4. H.265 Frame, Picture, Slice Segments, and Tiles

H.265 pictures consist of one or more slices, slice segments, and tiles, as defined in section 6.3.1 of
the ITU-T H.265 Specification.

Video encode operations using an H.265 encode profile can encode slice segments of different
types, as defined in section 7.4.7.1 of the ITU-T H.265 Specification, by specifying the corresponding
enumeration constant value in StdVideoEncodeH265SliceSegmentHeader::slice_type in the H.265 slice
segment header parameters from the Video Std enumeration type StdVideoH265SliceType:

• STD_VIDEO_H265_SLICE_TYPE_B indicates that the slice segment is part of a B slice as defined in

3565

section 3.12 of the ITU-T H.265 Specification.

• STD_VIDEO_H265_SLICE_TYPE_P indicates that the slice segment is part of a P slice as defined in
section 3.111 of the ITU-T H.265 Specification.

• STD_VIDEO_H265_SLICE_TYPE_I indicates that the slice segment is part of an I slice as defined in
section 3.74 of the ITU-T H.265 Specification.

Pictures constructed from such slice segments can be of different types, as defined in section 7.4.3.5
of the ITU-T H.265 Specification. Video encode operations using an H.265 encode profile can encode
pictures of a specific type by specifying the corresponding enumeration constant value in
StdVideoEncodeH265PictureInfo::pic_type in the H.265 picture information from the Video Std
enumeration type StdVideoH265PictureType:

• STD_VIDEO_H265_PICTURE_TYPE_P indicates that the picture is a P picture. A frame consisting of a P
picture is also referred to as a P frame.

• STD_VIDEO_H265_PICTURE_TYPE_B indicates that the picture is a B picture. A frame consisting of a B
picture is also referred to as a B frame.

• STD_VIDEO_H265_PICTURE_TYPE_I indicates that the picture is an I picture. A frame consisting of an
I picture is also referred to as an I frame.

• STD_VIDEO_H265_PICTURE_TYPE_IDR indicates that the picture is a special type of I picture called an
IDR picture as defined in section 3.67 of the ITU-T H.265 Specification. A frame consisting of an
IDR picture is also referred to as an IDR frame.

42.18.5. H.265 Encode Profile

A video profile supporting H.265 video encode operations is specified by setting
VkVideoProfileInfoKHR::videoCodecOperation to VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR and
adding a VkVideoEncodeH265ProfileInfoKHR structure to the VkVideoProfileInfoKHR::pNext chain.

The VkVideoEncodeH265ProfileInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265ProfileInfoKHR {
 VkStructureType sType;
 const void* pNext;
 StdVideoH265ProfileIdc stdProfileIdc;
} VkVideoEncodeH265ProfileInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdProfileIdc is a StdVideoH265ProfileIdc value specifying the H.265 codec profile IDC, as
defined in section A.3 of the ITU-T H.265 Specification.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265ProfileInfoKHR-sType-sType

3566

sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_PROFILE_INFO_KHR

42.18.6. H.265 Encode Capabilities

When calling vkGetPhysicalDeviceVideoCapabilitiesKHR to query the capabilities for an H.265
encode profile, the VkVideoCapabilitiesKHR::pNext chain must include a
VkVideoEncodeH265CapabilitiesKHR structure that will be filled with the profile-specific capabilities.

The VkVideoEncodeH265CapabilitiesKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265CapabilitiesKHR {
 VkStructureType sType;
 void* pNext;
 VkVideoEncodeH265CapabilityFlagsKHR flags;
 StdVideoH265LevelIdc maxLevelIdc;
 uint32_t maxSliceSegmentCount;
 VkExtent2D maxTiles;
 VkVideoEncodeH265CtbSizeFlagsKHR ctbSizes;
 VkVideoEncodeH265TransformBlockSizeFlagsKHR transformBlockSizes;
 uint32_t maxPPictureL0ReferenceCount;
 uint32_t maxBPictureL0ReferenceCount;
 uint32_t maxL1ReferenceCount;
 uint32_t maxSubLayerCount;
 VkBool32
expectDyadicTemporalSubLayerPattern;
 int32_t minQp;
 int32_t maxQp;
 VkBool32 prefersGopRemainingFrames;
 VkBool32 requiresGopRemainingFrames;
 VkVideoEncodeH265StdFlagsKHR stdSyntaxFlags;
} VkVideoEncodeH265CapabilitiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkVideoEncodeH265CapabilityFlagBitsKHR indicating supported H.265
encoding capabilities.

• maxLevelIdc is a StdVideoH265LevelIdc value indicating the maximum H.265 level supported by
the profile, where enum constant STD_VIDEO_H265_LEVEL_IDC_<major>_<minor> identifies H.265
level <major>.<minor> as defined in section A.4 of the ITU-T H.265 Specification.

• maxSliceSegmentCount indicates the maximum number of slice segments that can be encoded for
a single picture. Further restrictions may apply to the number of slice segments that can be
encoded for a single picture depending on other capabilities and codec-specific rules.

• maxTiles indicates the maximum number of H.265 tile columns and rows, as defined in sections
3.175 and 3.176 of the ITU-T H.265 Specification that can be encoded for a single picture.
Further restrictions may apply to the number of H.265 tiles that can be encoded for a single

3567

picture depending on other capabilities and codec-specific rules.

• ctbSizes is a bitmask of VkVideoEncodeH265CtbSizeFlagBitsKHR describing the supported CTB
sizes.

• transformBlockSizes is a bitmask of VkVideoEncodeH265TransformBlockSizeFlagBitsKHR
describing the supported transform block sizes.

• maxPPictureL0ReferenceCount indicates the maximum number of reference pictures the
implementation supports in the reference list L0 for P pictures.

Note

As implementations may override the reference lists,
maxPPictureL0ReferenceCount does not limit the number of elements that the
application can specify in the L0 reference list for P pictures. However, if
maxPPictureL0ReferenceCount is zero, then the use of P pictures is not allowed.
In case of H.265 encoding, backward-only predictive pictures can be encoded
even if P pictures are not supported, as the ITU-T H.265 Specification supports
generalized P & B frames (also known as low delay B frames) whereas B frames
can refer to past frames through both the L0 and L1 reference lists.

• maxBPictureL0ReferenceCount indicates the maximum number of reference pictures the
implementation supports in the reference list L0 for B pictures.

• maxL1ReferenceCount indicates the maximum number of reference pictures the implementation
supports in the reference list L1 if encoding of B pictures is supported.

Note

As implementations may override the reference lists,
maxBPictureL0ReferenceCount and maxL1ReferenceCount does not limit the
number of elements that the application can specify in the L0 and L1 reference
lists for B pictures. However, if maxBPictureL0ReferenceCount and
maxL1ReferenceCount are both zero, then the use of B pictures is not allowed.

• maxSubLayerCount indicates the maximum number of H.265 sub-layers supported by the
implementation.

• expectDyadicTemporalSubLayerPattern indicates that the implementation’s rate control
algorithms expect the application to use a dyadic temporal sub-layer pattern when encoding
multiple temporal sub-layers.

• minQp indicates the minimum QP value supported.

• maxQp indicates the maximum QP value supported.

• prefersGopRemainingFrames indicates that the implementation’s rate control algorithm prefers
the application to specify the number of frames of each type remaining in the current group of
pictures when beginning a video coding scope.

• requiresGopRemainingFrames indicates that the implementation’s rate control algorithm requires
the application to specify the number of frames of each type remaining in the current group of
pictures when beginning a video coding scope.

3568

• stdSyntaxFlags is a bitmask of VkVideoEncodeH265StdFlagBitsKHR indicating capabilities
related to H.265 syntax elements.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265CapabilitiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_CAPABILITIES_KHR

Bits which may be set in VkVideoEncodeH265CapabilitiesKHR::flags, indicating the H.265 encoding
capabilities supported, are:

// Provided by VK_KHR_video_encode_h265
typedef enum VkVideoEncodeH265CapabilityFlagBitsKHR {
 VK_VIDEO_ENCODE_H265_CAPABILITY_HRD_COMPLIANCE_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_H265_CAPABILITY_PREDICTION_WEIGHT_TABLE_GENERATED_BIT_KHR =
0x00000002,
 VK_VIDEO_ENCODE_H265_CAPABILITY_ROW_UNALIGNED_SLICE_SEGMENT_BIT_KHR = 0x00000004,
 VK_VIDEO_ENCODE_H265_CAPABILITY_DIFFERENT_SLICE_SEGMENT_TYPE_BIT_KHR = 0x00000008,
 VK_VIDEO_ENCODE_H265_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_KHR = 0x00000010,
 VK_VIDEO_ENCODE_H265_CAPABILITY_B_FRAME_IN_L1_LIST_BIT_KHR = 0x00000020,
 VK_VIDEO_ENCODE_H265_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR = 0x00000040,
 VK_VIDEO_ENCODE_H265_CAPABILITY_PER_SLICE_SEGMENT_CONSTANT_QP_BIT_KHR =
0x00000080,
 VK_VIDEO_ENCODE_H265_CAPABILITY_MULTIPLE_TILES_PER_SLICE_SEGMENT_BIT_KHR =
0x00000100,
 VK_VIDEO_ENCODE_H265_CAPABILITY_MULTIPLE_SLICE_SEGMENTS_PER_TILE_BIT_KHR =
0x00000200,
} VkVideoEncodeH265CapabilityFlagBitsKHR;

• VK_VIDEO_ENCODE_H265_CAPABILITY_HRD_COMPLIANCE_BIT_KHR indicates if the implementation may
be able to generate HRD compliant bitstreams if any of the nal_hrd_parameters_present_flag,
vcl_hrd_parameters_present_flag, or sub_pic_hrd_params_present_flag members of
StdVideoH265HrdFlags are set to 1 in the HRD parameters of the active VPS or active SPS, or if
StdVideoH265SpsVuiFlags::vui_hrd_parameters_present_flag is set to 1 in the active SPS.

• VK_VIDEO_ENCODE_H265_CAPABILITY_PREDICTION_WEIGHT_TABLE_GENERATED_BIT_KHR indicates that if
the weighted_pred_flag or the weighted_bipred_flag member of StdVideoH265PpsFlags is set to 1 in
the active PPS when encoding a P picture or B picture, respectively, then the implementation is
able to internally decide syntax for pred_weight_table, as defined in section 7.4.7.3 of the ITU-T
H.265 Specification, and the application is not required to provide a weight table in the H.265
slice segment header parameters.

• VK_VIDEO_ENCODE_H265_CAPABILITY_ROW_UNALIGNED_SLICE_SEGMENT_BIT_KHR indicates that each slice
segment in a frame with a single or multiple tiles per slice may begin or finish at any offset in a
CTB row. If not supported, all slice segments in such a frame must begin at the start of a CTB
row (and hence each slice segment must finish at the end of a CTB row). Also indicates that each
slice segment in a frame with multiple slices per tile may begin or finish at any offset within the
enclosing tile’s CTB row. If not supported, slice segments in such a frame must begin at the start

3569

of the enclosing tile’s CTB row (and hence each slice segment must finish at the end of the
enclosing tile’s CTB row).

• VK_VIDEO_ENCODE_H265_CAPABILITY_DIFFERENT_SLICE_SEGMENT_TYPE_BIT_KHR indicates that when a
frame is encoded with multiple slice segments, the implementation allows encoding each slice
segment with a different StdVideoEncodeH265SliceSegmentHeader::slice_type specified in the
H.265 slice segment header parameters. If not supported, all slice segments of the frame must
be encoded with the same slice_type which corresponds to the picture type of the frame.

• VK_VIDEO_ENCODE_H265_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_KHR indicates support for using a B
frame as L0 reference, as specified in StdVideoEncodeH265ReferenceListsInfo::RefPicList0 in the
H.265 picture information.

• VK_VIDEO_ENCODE_H265_CAPABILITY_B_FRAME_IN_L1_LIST_BIT_KHR indicates support for using a B
frame as L1 reference, as specified in StdVideoEncodeH265ReferenceListsInfo::RefPicList1 in the
H.265 picture information.

• VK_VIDEO_ENCODE_H265_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR indicates support for
specifying different QP values in the members of VkVideoEncodeH265QpKHR.

• VK_VIDEO_ENCODE_H265_CAPABILITY_PER_SLICE_SEGMENT_CONSTANT_QP_BIT_KHR indicates support for
specifying different constant QP values for each slice segment.

• VK_VIDEO_ENCODE_H265_CAPABILITY_MULTIPLE_TILES_PER_SLICE_SEGMENT_BIT_KHR indicates if
encoding multiple tiles per slice segment, as defined in section 6.3.1 of the ITU-T H.265
Specification, is supported. If this capability flag is not present, then the implementation is only
able to encode a single tile for each slice segment.

• VK_VIDEO_ENCODE_H265_CAPABILITY_MULTIPLE_SLICE_SEGMENTS_PER_TILE_BIT_KHR indicates if
encoding multiple slice segments per tile, as defined in section 6.3.1 of the ITU-T H.265
Specification, is supported. If this capability flag is not present, then the implementation is only
able to encode a single slice segment for each tile.

// Provided by VK_KHR_video_encode_h265
typedef VkFlags VkVideoEncodeH265CapabilityFlagsKHR;

VkVideoEncodeH265CapabilityFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeH265CapabilityFlagBitsKHR.

Bits which may be set in VkVideoEncodeH265CapabilitiesKHR::stdSyntaxFlags, indicating the
capabilities related to the H.265 syntax elements, are:

// Provided by VK_KHR_video_encode_h265
typedef enum VkVideoEncodeH265StdFlagBitsKHR {
 VK_VIDEO_ENCODE_H265_STD_SEPARATE_COLOR_PLANE_FLAG_SET_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_H265_STD_SAMPLE_ADAPTIVE_OFFSET_ENABLED_FLAG_SET_BIT_KHR =
0x00000002,
 VK_VIDEO_ENCODE_H265_STD_SCALING_LIST_DATA_PRESENT_FLAG_SET_BIT_KHR = 0x00000004,
 VK_VIDEO_ENCODE_H265_STD_PCM_ENABLED_FLAG_SET_BIT_KHR = 0x00000008,
 VK_VIDEO_ENCODE_H265_STD_SPS_TEMPORAL_MVP_ENABLED_FLAG_SET_BIT_KHR = 0x00000010,
 VK_VIDEO_ENCODE_H265_STD_INIT_QP_MINUS26_BIT_KHR = 0x00000020,
 VK_VIDEO_ENCODE_H265_STD_WEIGHTED_PRED_FLAG_SET_BIT_KHR = 0x00000040,

3570

 VK_VIDEO_ENCODE_H265_STD_WEIGHTED_BIPRED_FLAG_SET_BIT_KHR = 0x00000080,
 VK_VIDEO_ENCODE_H265_STD_LOG2_PARALLEL_MERGE_LEVEL_MINUS2_BIT_KHR = 0x00000100,
 VK_VIDEO_ENCODE_H265_STD_SIGN_DATA_HIDING_ENABLED_FLAG_SET_BIT_KHR = 0x00000200,
 VK_VIDEO_ENCODE_H265_STD_TRANSFORM_SKIP_ENABLED_FLAG_SET_BIT_KHR = 0x00000400,
 VK_VIDEO_ENCODE_H265_STD_TRANSFORM_SKIP_ENABLED_FLAG_UNSET_BIT_KHR = 0x00000800,
 VK_VIDEO_ENCODE_H265_STD_PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT_FLAG_SET_BIT_KHR =
0x00001000,
 VK_VIDEO_ENCODE_H265_STD_TRANSQUANT_BYPASS_ENABLED_FLAG_SET_BIT_KHR = 0x00002000,
 VK_VIDEO_ENCODE_H265_STD_CONSTRAINED_INTRA_PRED_FLAG_SET_BIT_KHR = 0x00004000,
 VK_VIDEO_ENCODE_H265_STD_ENTROPY_CODING_SYNC_ENABLED_FLAG_SET_BIT_KHR =
0x00008000,
 VK_VIDEO_ENCODE_H265_STD_DEBLOCKING_FILTER_OVERRIDE_ENABLED_FLAG_SET_BIT_KHR =
0x00010000,
 VK_VIDEO_ENCODE_H265_STD_DEPENDENT_SLICE_SEGMENTS_ENABLED_FLAG_SET_BIT_KHR =
0x00020000,
 VK_VIDEO_ENCODE_H265_STD_DEPENDENT_SLICE_SEGMENT_FLAG_SET_BIT_KHR = 0x00040000,
 VK_VIDEO_ENCODE_H265_STD_SLICE_QP_DELTA_BIT_KHR = 0x00080000,
 VK_VIDEO_ENCODE_H265_STD_DIFFERENT_SLICE_QP_DELTA_BIT_KHR = 0x00100000,
} VkVideoEncodeH265StdFlagBitsKHR;

• VK_VIDEO_ENCODE_H265_STD_SEPARATE_COLOR_PLANE_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265SpsFlags
::separate_colour_plane_flag in the SPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_SAMPLE_ADAPTIVE_OFFSET_ENABLED_FLAG_SET_BIT_KHR indicates whether
the implementation supports using the application-provided value for StdVideoH265SpsFlags
::sample_adaptive_offset_enabled_flag in the SPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_SCALING_LIST_DATA_PRESENT_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for the
scaling_list_enabled_flag and sps_scaling_list_data_present_flag members of
StdVideoH265SpsFlags in the SPS, and the application-provided value for StdVideoH265PpsFlags
::pps_scaling_list_data_present_flag in the PPS when those values are 1.

• VK_VIDEO_ENCODE_H265_STD_PCM_ENABLED_FLAG_SET_BIT_KHR indicates whether the implementation
supports using the application-provided value for StdVideoH265SpsFlags::pcm_enable_flag in the
SPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_SPS_TEMPORAL_MVP_ENABLED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265SpsFlags
::sps_temporal_mvp_enabled_flag in the SPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_INIT_QP_MINUS26_BIT_KHR indicates whether the implementation
supports using the application-provided value for StdVideoH265PictureParameterSet
::init_qp_minus26 in the PPS when that value is non-zero.

• VK_VIDEO_ENCODE_H265_STD_WEIGHTED_PRED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265PpsFlags
::weighted_pred_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_WEIGHTED_BIPRED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265PpsFlags
::weighted_bipred_flag in the PPS when that value is 1.

3571

• VK_VIDEO_ENCODE_H265_STD_LOG2_PARALLEL_MERGE_LEVEL_MINUS2_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoH265PictureParameterSet::log2_parallel_merge_level_minus2 in the PPS when that value
is non-zero.

• VK_VIDEO_ENCODE_H265_STD_SIGN_DATA_HIDING_ENABLED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265PpsFlags
::sign_data_hiding_enabled_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_TRANSFORM_SKIP_ENABLED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265PpsFlags
::transform_skip_enabled_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_TRANSFORM_SKIP_ENABLED_FLAG_UNSET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265PpsFlags
::transform_skip_enabled_flag in the PPS when that value is 0.

• VK_VIDEO_ENCODE_H265_STD_PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT_FLAG_SET_BIT_KHR indicates
whether the implementation supports using the application-provided value for
StdVideoH265PpsFlags::pps_slice_chroma_qp_offsets_present_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_TRANSQUANT_BYPASS_ENABLED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265PpsFlags
::transquant_bypass_enabled_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_CONSTRAINED_INTRA_PRED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265PpsFlags
::constrained_intra_pred_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_ENTROPY_CODING_SYNC_ENABLED_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for StdVideoH265PpsFlags
::entropy_coding_sync_enabled_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_DEBLOCKING_FILTER_OVERRIDE_ENABLED_FLAG_SET_BIT_KHR indicates
whether the implementation supports using the application-provided value for
StdVideoH265PpsFlags::deblocking_filter_override_enabled_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_DEPENDENT_SLICE_SEGMENTS_ENABLED_FLAG_SET_BIT_KHR indicates
whether the implementation supports using the application-provided value for
StdVideoH265PpsFlags::dependent_slice_segments_enabled_flag in the PPS when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_DEPENDENT_SLICE_SEGMENT_FLAG_SET_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoEncodeH265SliceSegmentHeader::dependent_slice_segment_flag in the H.265 slice segment
header parameters when that value is 1.

• VK_VIDEO_ENCODE_H265_STD_SLICE_QP_DELTA_BIT_KHR indicates whether the implementation
supports using the application-provided value for StdVideoEncodeH265SliceSegmentHeader
::slice_qp_delta in the H.265 slice segment header parameters when that value is identical
across the slice segments of the encoded frame.

• VK_VIDEO_ENCODE_H265_STD_DIFFERENT_SLICE_QP_DELTA_BIT_KHR indicates whether the
implementation supports using the application-provided value for
StdVideoEncodeH265SliceSegmentHeader::slice_qp_delta in the H.265 slice segment header
parameters when that value is different across the slice segments of the encoded frame.

3572

These capability flags provide information to the application about specific H.265 syntax element
values that the implementation supports without having to override them and do not otherwise
restrict the values that the application can specify for any of the mentioned H.265 syntax elements.

// Provided by VK_KHR_video_encode_h265
typedef VkFlags VkVideoEncodeH265StdFlagsKHR;

VkVideoEncodeH265StdFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeH265StdFlagBitsKHR.

Bits which may be set in VkVideoEncodeH265CapabilitiesKHR::ctbSizes, indicating the CTB sizes
supported by the implementation, are:

// Provided by VK_KHR_video_encode_h265
typedef enum VkVideoEncodeH265CtbSizeFlagBitsKHR {
 VK_VIDEO_ENCODE_H265_CTB_SIZE_16_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_H265_CTB_SIZE_32_BIT_KHR = 0x00000002,
 VK_VIDEO_ENCODE_H265_CTB_SIZE_64_BIT_KHR = 0x00000004,
} VkVideoEncodeH265CtbSizeFlagBitsKHR;

• VK_VIDEO_ENCODE_H265_CTB_SIZE_16_BIT_KHR specifies that a CTB size of 16x16 is supported.

• VK_VIDEO_ENCODE_H265_CTB_SIZE_32_BIT_KHR specifies that a CTB size of 32x32 is supported.

• VK_VIDEO_ENCODE_H265_CTB_SIZE_64_BIT_KHR specifies that a CTB size of 64x64 is supported.

// Provided by VK_KHR_video_encode_h265
typedef VkFlags VkVideoEncodeH265CtbSizeFlagsKHR;

VkVideoEncodeH265CtbSizeFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeH265CtbSizeFlagBitsKHR.

Implementations must support at least one of VkVideoEncodeH265CtbSizeFlagBitsKHR.

Bits which may be set in VkVideoEncodeH265CapabilitiesKHR::transformBlockSizes, indicating the
transform block sizes supported by the implementation, are:

// Provided by VK_KHR_video_encode_h265
typedef enum VkVideoEncodeH265TransformBlockSizeFlagBitsKHR {
 VK_VIDEO_ENCODE_H265_TRANSFORM_BLOCK_SIZE_4_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_H265_TRANSFORM_BLOCK_SIZE_8_BIT_KHR = 0x00000002,
 VK_VIDEO_ENCODE_H265_TRANSFORM_BLOCK_SIZE_16_BIT_KHR = 0x00000004,
 VK_VIDEO_ENCODE_H265_TRANSFORM_BLOCK_SIZE_32_BIT_KHR = 0x00000008,
} VkVideoEncodeH265TransformBlockSizeFlagBitsKHR;

• VK_VIDEO_ENCODE_H265_TRANSFORM_BLOCK_SIZE_4_BIT_KHR specifies that a transform block size of
4x4 is supported.

3573

• VK_VIDEO_ENCODE_H265_TRANSFORM_BLOCK_SIZE_8_BIT_KHR specifies that a transform block size of
8x8 is supported.

• VK_VIDEO_ENCODE_H265_TRANSFORM_BLOCK_SIZE_16_BIT_KHR specifies that a transform block size of
16x16 is supported.

• VK_VIDEO_ENCODE_H265_TRANSFORM_BLOCK_SIZE_32_BIT_KHR specifies that a transform block size of
32x32 is supported.

// Provided by VK_KHR_video_encode_h265
typedef VkFlags VkVideoEncodeH265TransformBlockSizeFlagsKHR;

VkVideoEncodeH265TransformBlockSizeFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeH265TransformBlockSizeFlagBitsKHR.

Implementations must support at least one of VkVideoEncodeH265TransformBlockSizeFlagBitsKHR.

42.18.7. H.265 Encode Quality Level Properties

When calling vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR with pVideoProfile-
>videoCodecOperation specified as VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, the
VkVideoEncodeH265QualityLevelPropertiesKHR structure must be included in the pNext chain of
the VkVideoEncodeQualityLevelPropertiesKHR structure to retrieve additional video encode
quality level properties specific to H.265 encoding.

The VkVideoEncodeH265QualityLevelPropertiesKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265QualityLevelPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkVideoEncodeH265RateControlFlagsKHR preferredRateControlFlags;
 uint32_t preferredGopFrameCount;
 uint32_t preferredIdrPeriod;
 uint32_t preferredConsecutiveBFrameCount;
 uint32_t preferredSubLayerCount;
 VkVideoEncodeH265QpKHR preferredConstantQp;
 uint32_t preferredMaxL0ReferenceCount;
 uint32_t preferredMaxL1ReferenceCount;
} VkVideoEncodeH265QualityLevelPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• preferredRateControlFlags is a bitmask of VkVideoEncodeH265RateControlFlagBitsKHR values
indicating the preferred flags to use for VkVideoEncodeH265RateControlInfoKHR::flags.

• preferredGopFrameCount indicates the preferred value to use for
VkVideoEncodeH265RateControlInfoKHR::gopFrameCount.

3574

• preferredIdrPeriod indicates the preferred value to use for
VkVideoEncodeH265RateControlInfoKHR::idrPeriod.

• preferredConsecutiveBFrameCount indicates the preferred value to use for
VkVideoEncodeH265RateControlInfoKHR::consecutiveBFrameCount.

• preferredSubLayerCount indicates the preferred value to use for
VkVideoEncodeH265RateControlInfoKHR::subLayerCount.

• preferredConstantQp indicates the preferred values to use for
VkVideoEncodeH265NaluSliceSegmentInfoKHR::constantQp for each picture type when using
rate control mode VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR.

• preferredMaxL0ReferenceCount indicates the preferred maximum number of reference pictures
to use in the reference list L0.

• preferredMaxL1ReferenceCount indicates the preferred maximum number of reference pictures
to use in the reference list L1.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265QualityLevelPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_QUALITY_LEVEL_PROPERTIES_KHR

42.18.8. H.265 Encode Session

Additional parameters can be specified when creating a video session with an H.265 encode profile
by including an instance of the VkVideoEncodeH265SessionCreateInfoKHR structure in the pNext
chain of VkVideoSessionCreateInfoKHR.

The VkVideoEncodeH265SessionCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265SessionCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 useMaxLevelIdc;
 StdVideoH265LevelIdc maxLevelIdc;
} VkVideoEncodeH265SessionCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• useMaxLevelIdc indicates whether the value of maxLevelIdc should be used by the
implementation. When it is set to VK_FALSE, the implementation ignores the value of maxLevelIdc
and uses the value of VkVideoEncodeH265CapabilitiesKHR::maxLevelIdc, as reported by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the video profile.

• maxLevelIdc is a StdVideoH265LevelIdc value specifying the upper bound on the H.265 level for
the video bitstreams produced by the created video session, where enum constant

3575

STD_VIDEO_H265_LEVEL_IDC_<major>_<minor> identifies H.265 level <major>.<minor> as defined in
section A.4 of the ITU-T H.265 Specification.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265SessionCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_CREATE_INFO_KHR

42.18.9. H.265 Encode Parameter Sets

Video session parameters objects created with the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR can contain the following types of parameters:

H.265 Video Parameter Sets (VPS)

Represented by StdVideoH265VideoParameterSet structures and interpreted as follows:

• reserved1, reserved2, and reserved3 are used only for padding purposes and are otherwise
ignored;

• vps_video_parameter_set_id is used as the key of the VPS entry;

• the max_latency_increase_plus1, max_dec_pic_buffering_minus1, and max_num_reorder_pics
members of the StdVideoH265DecPicBufMgr structure pointed to by pDecPicBufMgr correspond
to vps_max_latency_increase_plus1, vps_max_dec_pic_buffering_minus1, and
vps_max_num_reorder_pics, respectively, as defined in section 7.4.3.1 of the ITU-T H.265
Specification;

• the StdVideoH265HrdParameters structure pointed to by pHrdParameters is interpreted as
follows:

◦ reserved is used only for padding purposes and is otherwise ignored;

◦ flags.fixed_pic_rate_general_flag is a bitmask where bit index i corresponds to
fixed_pic_rate_general_flag[i] as defined in section E.3.2 of the ITU-T H.265
Specification;

◦ flags.fixed_pic_rate_within_cvs_flag is a bitmask where bit index i corresponds to
fixed_pic_rate_within_cvs_flag[i] as defined in section E.3.2 of the ITU-T H.265
Specification;

◦ flags.low_delay_hrd_flag is a bitmask where bit index i corresponds to
low_delay_hrd_flag[i] as defined in section E.3.2 of the ITU-T H.265 Specification;

◦ if flags.nal_hrd_parameters_present_flag is set, then pSubLayerHrdParametersNal is a
pointer to an array of vps_max_sub_layers_minus1 + 1 number of
StdVideoH265SubLayerHrdParameters structures where vps_max_sub_layers_minus1 is the
corresponding member of the encompassing StdVideoH265VideoParameterSet structure
and each element is interpreted as follows:

▪ cbr_flag is a bitmask where bit index i corresponds to cbr_flag[i] as defined in
section E.3.3 of the ITU-T H.265 Specification;

3576

▪ all other members of the StdVideoH265SubLayerHrdParameters structure are interpreted
as defined in section E.3.3 of the ITU-T H.265 Specification;

◦ if flags.vcl_hrd_parameters_present_flag is set, then pSubLayerHrdParametersVcl is a
pointer to an array of vps_max_sub_layers_minus1 + 1 number of
StdVideoH265SubLayerHrdParameters structures where vps_max_sub_layers_minus1 is the
corresponding member of the encompassing StdVideoH265VideoParameterSet structure
and each element is interpreted as follows:

▪ cbr_flag is a bitmask where bit index i corresponds to cbr_flag[i] as defined in
section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of the StdVideoH265SubLayerHrdParameters structure are interpreted
as defined in section E.3.3 of the ITU-T H.265 Specification;

◦ all other members of StdVideoH265HrdParameters are interpreted as defined in section
E.3.2 of the ITU-T H.265 Specification;

• the StdVideoH265ProfileTierLevel structure pointed to by pProfileTierLevel are interpreted
as follows:

◦ general_level_idc is one of the enum constants STD_VIDEO_H265_LEVEL_IDC_<major>_<minor>
identifying the H.265 level <major>.<minor> as defined in section A.4 of the ITU-T H.265
Specification;

◦ all other members of StdVideoH265ProfileTierLevel are interpreted as defined in section
7.4.4 of the ITU-T H.265 Specification;

• all other members of StdVideoH265VideoParameterSet are interpreted as defined in section
7.4.3.1 of the ITU-T H.265 Specification.

H.265 Sequence Parameter Sets (SPS)

Represented by StdVideoH265SequenceParameterSet structures and interpreted as follows:

• reserved1 and reserved2 are used only for padding purposes and are otherwise ignored;

• the pair constructed from sps_video_parameter_set_id and sps_seq_parameter_set_id is used
as the key of the SPS entry;

• the StdVideoH265ProfileTierLevel structure pointed to by pProfileTierLevel are interpreted
as follows:

◦ general_level_idc is one of the enum constants STD_VIDEO_H265_LEVEL_IDC_<major>_<minor>
identifying the H.265 level <major>.<minor> as defined in section A.4 of the ITU-T H.265
Specification;

◦ all other members of StdVideoH265ProfileTierLevel are interpreted as defined in section
7.4.4 of the ITU-T H.265 Specification;

• the max_latency_increase_plus1, max_dec_pic_buffering_minus1, and max_num_reorder_pics
members of the StdVideoH265DecPicBufMgr structure pointed to by pDecPicBufMgr correspond
to sps_max_latency_increase_plus1, sps_max_dec_pic_buffering_minus1, and
sps_max_num_reorder_pics, respectively, as defined in section 7.4.3.2 of the ITU-T H.265
Specification;

3577

• if flags.sps_scaling_list_data_present_flag is set, then the StdVideoH265ScalingLists
structure pointed to by pScalingLists is interpreted as follows:

◦ ScalingList4x4, ScalingList8x8, ScalingList16x16, and ScalingList32x32 correspond to
ScalingList[0], ScalingList[1], ScalingList[2], and ScalingList[3], respectively, as
defined in section 7.3.4 of the ITU-T H.265 Specification;

◦ ScalingListDCCoef16x16 and ScalingListDCCoef32x32 correspond to
scaling_list_dc_coef_minus8[0] and scaling_list_dc_coef_minus8[1], respectively, as
defined in section 7.3.4 of the ITU-T H.265 Specification;

• pShortTermRefPicSet is a pointer to an array of num_short_term_ref_pic_sets number of
StdVideoH265ShortTermRefPicSet structures where each element is interpreted as follows:

◦ reserved1, reserved2, and reserved3 are used only for padding purposes and are otherwise
ignored;

◦ used_by_curr_pic_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_flag[i] as defined in section 7.4.8 of the ITU-T H.265 Specification;

◦ use_delta_flag is a bitmask where bit index i corresponds to use_delta_flag[i] as defined
in section 7.4.8 of the ITU-T H.265 Specification;

◦ used_by_curr_pic_s0_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_s0_flag[i] as defined in section 7.4.8 of the ITU-T H.265 Specification;

◦ used_by_curr_pic_s1_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_s1_flag[i] as defined in section 7.4.8 of the ITU-T H.265 Specification;

◦ all other members of StdVideoH265ShortTermRefPicSet are interpreted as defined in
section 7.4.8 of the ITU-T H.265 Specification;

• if flags.long_term_ref_pics_present_flag is set then the StdVideoH265LongTermRefPicsSps
structure pointed to by pLongTermRefPicsSps is interpreted as follows:

◦ used_by_curr_pic_lt_sps_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_lt_sps_flag[i] as defined in section 7.4.3.2 of the ITU-T H.265
Specification;

◦ all other members of StdVideoH265LongTermRefPicsSps are interpreted as defined in
section 7.4.3.2 of the ITU-T H.265 Specification;

• if flags.vui_parameters_present_flag is set, then the StdVideoH265SequenceParameterSetVui
structure pointed to by pSequenceParameterSetVui is interpreted as follows:

◦ reserved1, reserved2, and reserved3 are used only for padding purposes and are otherwise
ignored;

◦ the StdVideoH265HrdParameters structure pointed to by pHrdParameters is interpreted as
follows:

▪ flags.fixed_pic_rate_general_flag is a bitmask where bit index i corresponds to
fixed_pic_rate_general_flag[i] as defined in section E.3.2 of the ITU-T H.265
Specification;

▪ flags.fixed_pic_rate_within_cvs_flag is a bitmask where bit index i corresponds to
fixed_pic_rate_within_cvs_flag[i] as defined in section E.3.2 of the ITU-T H.265
Specification;

3578

▪ flags.low_delay_hrd_flag is a bitmask where bit index i corresponds to
low_delay_hrd_flag[i] as defined in section E.3.2 of the ITU-T H.265 Specification;

▪ if flags.nal_hrd_parameters_present_flag is set, then pSubLayerHrdParametersNal is a
pointer to an array of sps_max_sub_layers_minus1 + 1 number of
StdVideoH265SubLayerHrdParameters structures where sps_max_sub_layers_minus1 is the
corresponding member of the encompassing StdVideoH265SequenceParameterSet
structure and each element is interpreted as follows:

▪ cbr_flag is a bitmask where bit index i corresponds to cbr_flag[i] as defined in
section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of the StdVideoH265SubLayerHrdParameters structure are
interpreted as defined in section E.3.3 of the ITU-T H.265 Specification;

▪ if flags.vcl_hrd_parameters_present_flag is set, then pSubLayerHrdParametersVcl is a
pointer to an array of sps_max_sub_layers_minus1 + 1 number of
StdVideoH265SubLayerHrdParameters structures where sps_max_sub_layers_minus1 is the
corresponding member of the encompassing StdVideoH265SequenceParameterSet
structure and each element is interpreted as follows:

▪ cbr_flag is a bitmask where bit index i corresponds to cbr_flag[i] as defined in
section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of the StdVideoH265SubLayerHrdParameters structure are
interpreted as defined in section E.3.3 of the ITU-T H.265 Specification;

▪ all other members of StdVideoH265HrdParameters are interpreted as defined in section
E.3.2 of the ITU-T H.265 Specification;

◦ all other members of pSequenceParameterSetVui are interpreted as defined in section E.3.1
of the ITU-T H.265 Specification;

• if flags.sps_palette_predictor_initializer_present_flag is set, then the
PredictorPaletteEntries member of the StdVideoH265PredictorPaletteEntries structure
pointed to by pPredictorPaletteEntries is interpreted as defined in section 7.4.9.13 of the ITU-
T H.265 Specification;

• all other members of StdVideoH265SequenceParameterSet are interpreted as defined in section
7.4.3.1 of the ITU-T H.265 Specification.

H.265 Picture Parameter Sets (PPS)

Represented by StdVideoH265PictureParameterSet structures and interpreted as follows:

• reserved1, reserved2, and reserved3 are used only for padding purposes and are otherwise
ignored;

• the triplet constructed from sps_video_parameter_set_id, pps_seq_parameter_set_id, and
pps_pic_parameter_set_id is used as the key of the PPS entry;

• if flags.pps_scaling_list_data_present_flag is set, then the StdVideoH265ScalingLists
structure pointed to by pScalingLists is interpreted as follows:

◦ ScalingList4x4, ScalingList8x8, ScalingList16x16, and ScalingList32x32 correspond to

3579

ScalingList[0], ScalingList[1], ScalingList[2], and ScalingList[3], respectively, as
defined in section 7.3.4 of the ITU-T H.265 Specification;

◦ ScalingListDCCoef16x16 and ScalingListDCCoef32x32 correspond to
scaling_list_dc_coef_minus8[0] and scaling_list_dc_coef_minus8[1], respectively, as
defined in section 7.3.4 of the ITU-T H.265 Specification;

• if flags.pps_palette_predictor_initializer_present_flag is set, then the
PredictorPaletteEntries member of the StdVideoH265PredictorPaletteEntries structure
pointed to by pPredictorPaletteEntries is interpreted as defined in section 7.4.9.13 of the ITU-
T H.265 Specification;

• all other members of StdVideoH265PictureParameterSet are interpreted as defined in section
7.4.3.3 of the ITU-T H.265 Specification.

Implementations may override any of these parameters according to the semantics defined in the
Video Encode Parameter Overrides section before storing the resulting H.265 parameter sets into
the video session parameters object. Applications need to use the
vkGetEncodedVideoSessionParametersKHR command to determine whether any implementation
overrides happened and to retrieve the encoded H.265 parameter sets in order to be able to
produce a compliant H.265 video bitstream.

Such H.265 parameter set overrides may also have cascading effects on the implementation
overrides applied to the encoded bitstream produced by video encode operations. If the
implementation supports the VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_HAS_OVERRIDES_BIT_KHR video
encode feedback query flag, then the application can use such queries to retrieve feedback about
whether any implementation overrides have been applied to the encoded bitstream.

When a video session parameters object is created with the codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, the VkVideoSessionParametersCreateInfoKHR::pNext
chain must include a VkVideoEncodeH265SessionParametersCreateInfoKHR structure specifying the
capacity and initial contents of the object.

The VkVideoEncodeH265SessionParametersCreateInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265SessionParametersCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t maxStdVPSCount;
 uint32_t maxStdSPSCount;
 uint32_t maxStdPPSCount;
 const VkVideoEncodeH265SessionParametersAddInfoKHR* pParametersAddInfo;
} VkVideoEncodeH265SessionParametersCreateInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxStdVPSCount is the maximum number of H.265 VPS entries the created
VkVideoSessionParametersKHR can contain.

3580

• maxStdSPSCount is the maximum number of H.265 SPS entries the created
VkVideoSessionParametersKHR can contain.

• maxStdPPSCount is the maximum number of H.265 PPS entries the created
VkVideoSessionParametersKHR can contain.

• pParametersAddInfo is NULL or a pointer to a VkVideoEncodeH265SessionParametersAddInfoKHR
structure specifying H.265 parameters to add upon object creation.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265SessionParametersCreateInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_CREATE_INFO_KHR

• VUID-VkVideoEncodeH265SessionParametersCreateInfoKHR-pParametersAddInfo-
parameter
If pParametersAddInfo is not NULL, pParametersAddInfo must be a valid pointer to a valid
VkVideoEncodeH265SessionParametersAddInfoKHR structure

The VkVideoEncodeH265SessionParametersAddInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265SessionParametersAddInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t stdVPSCount;
 const StdVideoH265VideoParameterSet* pStdVPSs;
 uint32_t stdSPSCount;
 const StdVideoH265SequenceParameterSet* pStdSPSs;
 uint32_t stdPPSCount;
 const StdVideoH265PictureParameterSet* pStdPPSs;
} VkVideoEncodeH265SessionParametersAddInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stdVPSCount is the number of elements in the pStdVPSs array.

• pStdVPSs is a pointer to an array of StdVideoH265VideoParameterSet structures describing the
H.265 VPS entries to add.

• stdSPSCount is the number of elements in the pStdSPSs array.

• pStdSPSs is a pointer to an array of StdVideoH265SequenceParameterSet structures describing the
H.265 SPS entries to add.

• stdPPSCount is the number of elements in the pStdPPSs array.

• pStdPPSs is a pointer to an array of StdVideoH265PictureParameterSet structures describing the
H.265 PPS entries to add.

This structure can be specified in the following places:

3581

• In the pParametersAddInfo member of the VkVideoEncodeH265SessionParametersCreateInfoKHR
structure specified in the pNext chain of VkVideoSessionParametersCreateInfoKHR used to
create a video session parameters object. In this case, if the video codec operation the video
session parameters object is created with is VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then
it defines the set of initial parameters to add to the created object (see Creating Video Session
Parameters).

• In the pNext chain of VkVideoSessionParametersUpdateInfoKHR. In this case, if the video codec
operation the video session parameters object to be updated was created with is
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, then it defines the set of parameters to add to it
(see Updating Video Session Parameters).

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265SessionParametersAddInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_ADD_INFO_KHR

• VUID-VkVideoEncodeH265SessionParametersAddInfoKHR-pStdVPSs-parameter
If stdVPSCount is not 0, and pStdVPSs is not NULL, pStdVPSs must be a valid pointer to an
array of stdVPSCount StdVideoH265VideoParameterSet values

• VUID-VkVideoEncodeH265SessionParametersAddInfoKHR-pStdSPSs-parameter
If stdSPSCount is not 0, and pStdSPSs is not NULL, pStdSPSs must be a valid pointer to an
array of stdSPSCount StdVideoH265SequenceParameterSet values

• VUID-VkVideoEncodeH265SessionParametersAddInfoKHR-pStdPPSs-parameter
If stdPPSCount is not 0, and pStdPPSs is not NULL, pStdPPSs must be a valid pointer to an
array of stdPPSCount StdVideoH265PictureParameterSet values

Valid Usage

• VUID-VkVideoEncodeH265SessionParametersAddInfoKHR-None-06438
The vps_video_parameter_set_id member of each StdVideoH265VideoParameterSet structure
specified in the elements of pStdVPSs must be unique within pStdVPSs

• VUID-VkVideoEncodeH265SessionParametersAddInfoKHR-None-06439
The pair constructed from the sps_video_parameter_set_id and sps_seq_parameter_set_id
members of each StdVideoH265SequenceParameterSet structure specified in the elements of
pStdSPSs must be unique within pStdSPSs

• VUID-VkVideoEncodeH265SessionParametersAddInfoKHR-None-06440
The triplet constructed from the sps_video_parameter_set_id, pps_seq_parameter_set_id,
and pps_pic_parameter_set_id members of each StdVideoH265PictureParameterSet structure
specified in the elements of pStdPPSs must be unique within pStdPPSs

The VkVideoEncodeH265SessionParametersGetInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265SessionParametersGetInfoKHR {

3582

 VkStructureType sType;
 const void* pNext;
 VkBool32 writeStdVPS;
 VkBool32 writeStdSPS;
 VkBool32 writeStdPPS;
 uint32_t stdVPSId;
 uint32_t stdSPSId;
 uint32_t stdPPSId;
} VkVideoEncodeH265SessionParametersGetInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• writeStdVPS indicates whether the encoded H.265 video parameter set identified by stdVPSId is
requested to be retrieved.

• writeStdSPS indicates whether the encoded H.265 sequence parameter set identified by the pair
constructed from stdVPSId and stdSPSId is requested to be retrieved.

• writeStdPPS indicates whether the encoded H.265 picture parameter set identified by the triplet
constructed from stdVPSId, stdSPSId, and stdPPSId is requested to be retrieved.

• stdVPSId specifies the H.265 video parameter set ID used to identify the retrieved H.265 video,
sequence, and/or picture parameter set(s).

• stdSPSId specifies the H.265 sequence parameter set ID used to identify the retrieved H.265
sequence and/or picture parameter set(s) when writeStdSPS and/or writeStdPPS is set to VK_TRUE.

• stdPPSId specifies the H.265 picture parameter set ID used to identify the retrieved H.265 picture
parameter set when writeStdPPS is set to VK_TRUE.

When this structure is specified in the pNext chain of the
VkVideoEncodeSessionParametersGetInfoKHR structure passed to
vkGetEncodedVideoSessionParametersKHR, the command will write encoded parameter data to
the output buffer in the following order:

1. The H.265 video parameter set identified by stdVPSId, if writeStdVPS is set to VK_TRUE.

2. The H.265 sequence parameter set identified by the pair constructed from stdVPSId and
stdSPSId, if writeStdSPS is set to VK_TRUE.

3. The H.265 picture parameter set identified by the triplet constructed from stdVPSId, stdSPSId,
and stdPPSId, if writeStdPPS is set to VK_TRUE.

Valid Usage

• VUID-VkVideoEncodeH265SessionParametersGetInfoKHR-writeStdVPS-08290
At least one of writeStdVPS, writeStdSPS, and writeStdPPS must be set to VK_TRUE

3583

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265SessionParametersGetInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_GET_INFO_KHR

The VkVideoEncodeH265SessionParametersFeedbackInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265SessionParametersFeedbackInfoKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 hasStdVPSOverrides;
 VkBool32 hasStdSPSOverrides;
 VkBool32 hasStdPPSOverrides;
} VkVideoEncodeH265SessionParametersFeedbackInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• hasStdVPSOverrides indicates whether any of the parameters of the requested H.265 video
parameter set, if one was requested via VkVideoEncodeH265SessionParametersGetInfoKHR
::writeStdVPS, were overridden by the implementation.

• hasStdSPSOverrides indicates whether any of the parameters of the requested H.265 sequence
parameter set, if one was requested via VkVideoEncodeH265SessionParametersGetInfoKHR
::writeStdSPS, were overridden by the implementation.

• hasStdPPSOverrides indicates whether any of the parameters of the requested H.265 picture
parameter set, if one was requested via VkVideoEncodeH265SessionParametersGetInfoKHR
::writeStdPPS, were overridden by the implementation.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265SessionParametersFeedbackInfoKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_FEEDBACK_INFO_KHR

42.18.10. H.265 Encoding Parameters

The VkVideoEncodeH265PictureInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265PictureInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t naluSliceSegmentEntryCount;
 const VkVideoEncodeH265NaluSliceSegmentInfoKHR* pNaluSliceSegmentEntries;

3584

 const StdVideoEncodeH265PictureInfo* pStdPictureInfo;
} VkVideoEncodeH265PictureInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• naluSliceSegmentEntryCount is the number of elements in pNaluSliceSegmentEntries.

• pNaluSliceSegmentEntries is a pointer to an array of naluSliceSegmentEntryCount
VkVideoEncodeH265NaluSliceSegmentInfoKHR structures specifying the parameters of the
individual H.265 slice segments to encode for the input picture.

• pStdPictureInfo is a pointer to a StdVideoEncodeH265PictureInfo structure specifying H.265
picture information.

This structure is specified in the pNext chain of the VkVideoEncodeInfoKHR structure passed to
vkCmdEncodeVideoKHR to specify the codec-specific picture information for an H.265 encode
operation.

Encode Input Picture Information

When this structure is specified in the pNext chain of the VkVideoEncodeInfoKHR structure
passed to vkCmdEncodeVideoKHR, the information related to the encode input picture is
defined as follows:

• The image subregion used is determined according to the H.265 Encode Picture Data Access
section.

• The encode input picture is associated with the H.265 picture information provided in
pStdPictureInfo.

Std Picture Information

The members of the StdVideoEncodeH265PictureInfo structure pointed to by pStdPictureInfo are
interpreted as follows:

• flags.reserved and reserved1 are used only for padding purposes and are otherwise ignored;

• flags.is_reference as defined in section 3.132 of the ITU-T H.265 Specification;

• flags.IrapPicFlag as defined in section 3.73 of the ITU-T H.265 Specification;

• flags.used_for_long_term_reference is used to indicate whether the picture is marked as
“used for long-term reference” as defined in section 8.3.2 of the ITU-T H.265 Specification;

• flags.discardable_flag and cross_layer_bla_flag as defined in section F.7.4.7.1 of the ITU-T
H.265 Specification;

• pic_type as defined in section 7.4.3.5 of the ITU-T H.265 Specification;

• sps_video_parameter_set_id, pps_seq_parameter_set_id, and pps_pic_parameter_set_id are
used to identify the active parameter sets, as described below;

• PicOrderCntVal as defined in section 8.3.1 of the ITU-T H.265 Specification;

• TemporalId as defined in section 7.4.2.2 of the ITU-T H.265 Specification;

• if pRefLists is not NULL, then it is a pointer to a StdVideoEncodeH265ReferenceListsInfo

3585

structure that is interpreted as follows:

◦ flags.reserved is used only for padding purposes and is otherwise ignored;

◦ ref_pic_list_modification_flag_l0 and ref_pic_list_modification_flag_l1 as defined in
section 7.4.7.2 of the ITU-T H.265 Specification;

◦ num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 as defined in section
7.4.7.1 of the ITU-T H.265 Specification;

◦ RefPicList0 and RefPicList1 as defined in section 8.3.4 of the ITU-T H.265 Specification
where each element of these arrays either identifies an active reference picture using its
DPB slot index or contains the value STD_VIDEO_H265_NO_REFERENCE_PICTURE to indicate “no
reference picture”;

◦ list_entry_l0 and list_entry_l1 as defined in section 7.4.7.2 of the ITU-T H.265
Specification;

• if flags.short_term_ref_pic_set_sps_flag is set, then the StdVideoH265ShortTermRefPicSet
structure pointed to by pShortTermRefPicSet is interpreted as defined for the elements of the
pShortTermRefPicSet array specified in H.265 sequence parameter sets.

• if flags.long_term_ref_pics_present_flag is set in the active SPS, then the
StdVideoEncodeH265LongTermRefPics structure pointed to by pLongTermRefPics is interpreted as
follows:

◦ used_by_curr_pic_lt_flag is a bitmask where bit index i corresponds to
used_by_curr_pic_lt_flag[i] as defined in section 7.4.7.1 of the ITU-T H.265 Specification;

◦ all other members of StdVideoEncodeH265LongTermRefPics are interpreted as defined in
section 7.4.7.1 of the ITU-T H.265 Specification;

• all other members are interpreted as defined in section 7.4.7.1 of the ITU-T H.265
Specification.

Reference picture setup is controlled by the value of StdVideoEncodeH265PictureInfo
::flags.is_reference. If it is set and a reconstructed picture is specified, then the latter is used as the
target of picture reconstruction to activate the DPB slot specified in pEncodeInfo-
>pSetupReferenceSlot->slotIndex. If StdVideoEncodeH265PictureInfo::flags.is_reference is not set,
but a reconstructed picture is specified, then the corresponding picture reference associated with
the DPB slot is invalidated, as described in the DPB Slot States section.

Active Parameter Sets

The members of the StdVideoEncodeH265PictureInfo structure pointed to by pStdPictureInfo are
used to select the active parameter sets to use from the bound video session parameters object,
as follows:

• The active VPS is the VPS identified by the key specified in StdVideoEncodeH265PictureInfo
::sps_video_parameter_set_id.

• The active SPS is the SPS identified by the key specified by the pair constructed from
StdVideoEncodeH265PictureInfo::sps_video_parameter_set_id and
StdVideoEncodeH265PictureInfo::pps_seq_parameter_set_id.

• The active PPS is the PPS identified by the key specified by the triplet constructed from
StdVideoEncodeH265PictureInfo::sps_video_parameter_set_id, StdVideoEncodeH265PictureInfo

3586

::pps_seq_parameter_set_id, and StdVideoEncodeH265PictureInfo::pps_pic_parameter_set_id.

H.265 encoding uses explicit weighted sample prediction for a slice segment, as defined in section
8.5.3.3.4 of the ITU-T H.265 Specification, if any of the following conditions are true for the active
PPS and the pStdSliceSegmentHeader member of the corresponding element of
pNaluSliceSegmentEntries:

• pStdSliceSegmentHeader->slice_type is STD_VIDEO_H265_SLICE_TYPE_P and weighted_pred_flag is
enabled in the active PPS.

• pStdSliceSegmentHeader->slice_type is STD_VIDEO_H265_SLICE_TYPE_B and weighted_bipred_flag is
enabled in the active PPS.

The number of H.265 tiles, as defined in section 3.174 of the ITU-T H.265 Specification, is derived
from the num_tile_columns_minus1 and num_tile_rows_minus1 members of the active PPS as follows:

(num_tile_columns_minus1 + 1) × (num_tile_rows_minus1 + 1)

Valid Usage

• VUID-VkVideoEncodeH265PictureInfoKHR-naluSliceSegmentEntryCount-08306
naluSliceSegmentEntryCount must be between 1 and VkVideoEncodeH265CapabilitiesKHR
::maxSliceSegmentCount, inclusive, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile

• VUID-VkVideoEncodeH265PictureInfoKHR-flags-08323
If VkVideoEncodeH265CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H265_CAPABILITY_MULTIPLE_TILES_PER_SLICE_SEGMENT_BIT_KHR, then
naluSliceSegmentEntryCount must be greater than or equal to the number of H.265 tiles in
the picture

• VUID-VkVideoEncodeH265PictureInfoKHR-flags-08324
If VkVideoEncodeH265CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H265_CAPABILITY_MULTIPLE_SLICE_SEGMENTS_PER_TILE_BIT_KHR, then
naluSliceSegmentEntryCount must be less than or equal to the number of H.265 tiles in the
picture

• VUID-VkVideoEncodeH265PictureInfoKHR-flags-08316
If VkVideoEncodeH265CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H265_CAPABILITY_PREDICTION_WEIGHT_TABLE_GENERATED_BIT_KHR and the slice
segment corresponding to any element of pNaluSliceSegmentEntries uses explicit weighted
sample prediction, then VkVideoEncodeH265NaluSliceSegmentInfoKHR
::pStdSliceSegmentHeader->pWeightTable must not be NULL for that element of
pNaluSliceSegmentEntries

• VUID-VkVideoEncodeH265PictureInfoKHR-flags-08317
If VkVideoEncodeH265CapabilitiesKHR::flags, as returned by

3587

vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H265_CAPABILITY_DIFFERENT_SLICE_SEGMENT_TYPE_BIT_KHR, then
VkVideoEncodeH265NaluSliceSegmentInfoKHR::pStdSliceSegmentHeader->slice_type
must be identical for all elements of pNaluSliceSegmentEntries

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265PictureInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_PICTURE_INFO_KHR

• VUID-VkVideoEncodeH265PictureInfoKHR-pNaluSliceSegmentEntries-parameter
pNaluSliceSegmentEntries must be a valid pointer to an array of
naluSliceSegmentEntryCount valid VkVideoEncodeH265NaluSliceSegmentInfoKHR
structures

• VUID-VkVideoEncodeH265PictureInfoKHR-pStdPictureInfo-parameter
pStdPictureInfo must be a valid pointer to a valid StdVideoEncodeH265PictureInfo value

• VUID-VkVideoEncodeH265PictureInfoKHR-naluSliceSegmentEntryCount-arraylength
naluSliceSegmentEntryCount must be greater than 0

The VkVideoEncodeH265NaluSliceSegmentInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265NaluSliceSegmentInfoKHR {
 VkStructureType sType;
 const void* pNext;
 int32_t constantQp;
 const StdVideoEncodeH265SliceSegmentHeader* pStdSliceSegmentHeader;
} VkVideoEncodeH265NaluSliceSegmentInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• constantQp is the QP to use for the slice segment if the current rate control mode configured for
the video session is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR.

• pStdSliceSegmentHeader is a pointer to a StdVideoEncodeH265SliceSegmentHeader structure
specifying H.265 slice segment header parameters for the slice segment.

Std Slice Segment Header Parameters

The members of the StdVideoEncodeH265SliceSegmentHeader structure pointed to by
pStdSliceSegmentHeader are interpreted as follows:

• flags.reserved and reserved1 are used only for padding purposes and are otherwise ignored;

• if pWeightTable is not NULL, then it is a pointer to a StdVideoEncodeH265WeightTable that is
interpreted as follows:

◦ flags.luma_weight_l0_flag, flags.chroma_weight_l0_flag, flags.luma_weight_l1_flag, and

3588

flags.chroma_weight_l1_flag are bitmasks where bit index i corresponds to
luma_weight_l0_flag[i], chroma_weight_l0_flag[i], luma_weight_l1_flag[i], and
chroma_weight_l1_flag[i], respectively, as defined in section 7.4.7.3 of the ITU-T H.265
Specification;

◦ all other members of StdVideoEncodeH265WeightTable are interpreted as defined in section
7.4.7.3 of the ITU-T H.265 Specification;

• all other members are interpreted as defined in section 7.4.7.1 of the ITU-T H.265
Specification.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265NaluSliceSegmentInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_NALU_SLICE_SEGMENT_INFO_KHR

• VUID-VkVideoEncodeH265NaluSliceSegmentInfoKHR-pNext-pNext
pNext must be NULL

• VUID-VkVideoEncodeH265NaluSliceSegmentInfoKHR-pStdSliceSegmentHeader-
parameter
pStdSliceSegmentHeader must be a valid pointer to a valid
StdVideoEncodeH265SliceSegmentHeader value

The VkVideoEncodeH265DpbSlotInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265DpbSlotInfoKHR {
 VkStructureType sType;
 const void* pNext;
 const StdVideoEncodeH265ReferenceInfo* pStdReferenceInfo;
} VkVideoEncodeH265DpbSlotInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pStdReferenceInfo is a pointer to a StdVideoEncodeH265ReferenceInfo structure specifying H.265
reference information.

This structure is specified in the pNext chain of VkVideoEncodeInfoKHR::pSetupReferenceSlot, if not
NULL, and the pNext chain of the elements of VkVideoEncodeInfoKHR::pReferenceSlots to specify the
codec-specific reference picture information for an H.265 encode operation.

Active Reference Picture Information

When this structure is specified in the pNext chain of the elements of VkVideoEncodeInfoKHR
::pReferenceSlots, one element is added to the list of active reference pictures used by the video
encode operation for each element of VkVideoEncodeInfoKHR::pReferenceSlots as follows:

• The image subregion used is determined according to the H.265 Encode Picture Data Access

3589

section.

• The reference picture is associated with the DPB slot index specified in the slotIndex
member of the corresponding element of VkVideoEncodeInfoKHR::pReferenceSlots.

• The reference picture is associated with the H.265 reference information provided in
pStdReferenceInfo.

Reconstructed Picture Information

When this structure is specified in the pNext chain of VkVideoEncodeInfoKHR
::pSetupReferenceSlot, the information related to the reconstructed picture is defined as follows:

• The image subregion used is determined according to the H.265 Encode Picture Data Access
section.

• If reference picture setup is requested, then the reconstructed picture is used to activate the
DPB slot with the index specified in VkVideoEncodeInfoKHR::pSetupReferenceSlot-
>slotIndex.

• The reconstructed picture is associated with the H.265 reference information provided in
pStdReferenceInfo.

Std Reference Information

The members of the StdVideoEncodeH265ReferenceInfo structure pointed to by pStdReferenceInfo
are interpreted as follows:

• flags.reserved is used only for padding purposes and is otherwise ignored;

• flags.used_for_long_term_reference is used to indicate whether the picture is marked as
“used for long-term reference” as defined in section 8.3.2 of the ITU-T H.265 Specification;

• flags.unused_for_reference is used to indicate whether the picture is marked as “unused for
reference” as defined in section 8.3.2 of the ITU-T H.265 Specification;

• pic_type as defined in section 7.4.3.5 of the ITU-T H.265 Specification;

• PicOrderCntVal as defined in section 8.3.1 of the ITU-T H.265 Specification;

• TemporalId as defined in section 7.4.2.2 of the ITU-T H.265 Specification.

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265DpbSlotInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_DPB_SLOT_INFO_KHR

• VUID-VkVideoEncodeH265DpbSlotInfoKHR-pStdReferenceInfo-parameter
pStdReferenceInfo must be a valid pointer to a valid StdVideoEncodeH265ReferenceInfo
value

42.18.11. H.265 Encode Rate Control

3590

Group of Pictures

In case of H.265 encoding it is common practice to follow a regular pattern of different picture
types in display order when encoding subsequent frames. This pattern is referred to as the group of
pictures (GOP).

A regular GOP is defined by the following parameters:

• The number of frames in the GOP;

• The number of consecutive B frames between I and/or P frames in display order.

GOPs are further classified as open and closed GOPs.

Frame types in an open GOP follow each other in display order according to the following
algorithm:

1. The first frame is always an I frame.

2. This is followed by a number of consecutive B frames, as defined above.

3. If the number of frames in the GOP is not reached yet, then the next frame is a P frame and the
algorithm continues from step 2.

B... B I B B B P B B B P B B I BB ...

GOP frame count

consecutive B-frame count

Text is not SVG - cannot display

Figure 36. H.265 open GOP

In case of a closed GOP, an IDR frame is used at a certain period.

GOP frame count

IDR period

B... B IDR B B P B B B PB B IDR B ...I B

Text is not SVG - cannot display

Figure 37. H.265 closed GOP

It is also typical for H.265 encoding to use specific reference picture usage patterns across the
frames of the GOP. The two most common reference patterns used are as follows:

3591

Flat Reference Pattern

• Each P frame uses the last non-B frame, in display order, as reference.

• Each B frame uses the last non-B frame, in display order, as its backward reference, and uses
the next non-B frame, in display order, as its forward reference.

B... B I B B B P B B B P B B I BB ...

Text is not SVG - cannot display

Figure 38. H.265 flat reference pattern

Dyadic Reference Pattern

• Each P frame uses the last non-B frame, in display order, as reference.

• The following algorithm is applied to the sequence of consecutive B frames between I and/or
P frames in display order:

1. The B frame in the middle of this sequence uses the frame preceding the sequence as its
backward reference, and uses the frame following the sequence as its forward reference.

2. The algorithm is executed recursively for the following frame sequences:

▪ The B frames of the original sequence preceding the frame in the middle, if any.

▪ The B frames of the original sequence following the frame in the middle, if any.

B... B I B B B P B B B P B B I BB ...

Text is not SVG - cannot display

Figure 39. H.265 dyadic reference pattern

The application can provide guidance to the implementation’s rate control algorithm about the
structure of the GOP used by the application. Any such guidance about the GOP and its structure
does not mandate that specific GOP structure to be used by the application, as the picture type of
individual encoded pictures is still application-controlled, however, any deviation from the
provided guidance may result in undesired rate control behavior including, but not limited, to the
implementation not being able to conform to the expected average or target bitrates, or other rate

3592

control parameters specified by the application.

When an H.265 encode session is used to encode multiple temporal sub-layers, it is also common
practice to follow a regular pattern for the H.265 temporal ID for the encoded pictures in display
order when encoding subsequent frames. This pattern is referred to as the temporal GOP. The most
common temporal layer pattern used is as follows:

Dyadic Temporal Sub-Layer Pattern

• The number of frames in the temporal GOP is 2n-1, where n is the number of temporal sub-
layers.

• The ith frame in the temporal GOP uses temporal ID t, if and only if the index of the least
significant bit set in i equals n-t-1, except for the first frame, which is the only frame in the
temporal GOP using temporal ID zero.

• The ith frame in the temporal GOP uses the rth frame as reference, where r is calculated from i
by clearing the least significant bit set in it, except for the first frame in the temporal GOP,
which uses the first frame of the previous temporal GOP, if any, as reference.

0

1

2

3

Te
m

po
ra

l L
ay

er

0 1 2 3 4 5 6 7

Temporal GOP Index

0 1 2 3 4 5 6 7

Text is not SVG - cannot display

Figure 40. H.265 dyadic temporal sub-layer pattern

Note

Multi-layer rate control and multi-layer coding are typically used for streaming
cases where low latency is expected, hence B pictures with forward prediction are
usually not used.

The VkVideoEncodeH265RateControlInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265RateControlInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkVideoEncodeH265RateControlFlagsKHR flags;
 uint32_t gopFrameCount;

3593

 uint32_t idrPeriod;
 uint32_t consecutiveBFrameCount;
 uint32_t subLayerCount;
} VkVideoEncodeH265RateControlInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkVideoEncodeH265RateControlFlagBitsKHR specifying H.265 rate control
flags.

• gopFrameCount is the number of frames within a group of pictures (GOP) intended to be used by
the application. If it is set to 0, the rate control algorithm may assume an implementation-
dependent GOP length. If it is set to UINT32_MAX, the GOP length is treated as infinite.

• idrPeriod is the interval, in terms of number of frames, between two IDR frames (see IDR
period). If it is set to 0, the rate control algorithm may assume an implementation-dependent
IDR period. If it is set to UINT32_MAX, the IDR period is treated as infinite.

• consecutiveBFrameCount is the number of consecutive B frames between I and/or P frames within
the GOP.

• temporalLayerCount specifies the number of H.265 sub-layers that the application intends to use.

When an instance of this structure is included in the pNext chain of the
VkVideoCodingControlInfoKHR structure passed to the vkCmdControlVideoCodingKHR command,
and VkVideoCodingControlInfoKHR::flags includes
VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR, the parameters in this structure are used as
guidance for the implementation’s rate control algorithm (see Video Coding Control).

If flags includes VK_VIDEO_ENCODE_H265_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR, then the rate
control state is reset to an initial state to meet HRD compliance requirements. Otherwise the new
rate control state may be applied without a reset depending on the implementation and the
specified rate control parameters.

Note

It would be possible to infer the picture type to be used when encoding a frame, on
the basis of the values provided for consecutiveBFrameCount, idrPeriod, and
gopFrameCount, but this inferred picture type will not be used by implementations
to override the picture type provided to the video encode operation.

Valid Usage

• VUID-VkVideoEncodeH265RateControlInfoKHR-flags-08291
If VkVideoEncodeH265CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H265_CAPABILITY_HRD_COMPLIANCE_BIT_KHR, then flags must not contain
VK_VIDEO_ENCODE_H265_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR

• VUID-VkVideoEncodeH265RateControlInfoKHR-flags-08292

3594

If flags contains VK_VIDEO_ENCODE_H265_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR or
VK_VIDEO_ENCODE_H265_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR, then it must also
contain VK_VIDEO_ENCODE_H265_RATE_CONTROL_REGULAR_GOP_BIT_KHR

• VUID-VkVideoEncodeH265RateControlInfoKHR-flags-08293
If flags contains VK_VIDEO_ENCODE_H265_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR, then
it must not also contain
VK_VIDEO_ENCODE_H265_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR

• VUID-VkVideoEncodeH265RateControlInfoKHR-flags-08294
If flags contains VK_VIDEO_ENCODE_H265_RATE_CONTROL_REGULAR_GOP_BIT_KHR, then
gopFrameCount must be greater than 0

• VUID-VkVideoEncodeH265RateControlInfoKHR-idrPeriod-08295
If idrPeriod is not 0, then it must be greater than or equal to gopFrameCount

• VUID-VkVideoEncodeH265RateControlInfoKHR-consecutiveBFrameCount-08296
If consecutiveBFrameCount is not 0, then it must be less than gopFrameCount

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265RateControlInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_RATE_CONTROL_INFO_KHR

• VUID-VkVideoEncodeH265RateControlInfoKHR-flags-parameter
flags must be a valid combination of VkVideoEncodeH265RateControlFlagBitsKHR values

Bits which can be set in VkVideoEncodeH265RateControlInfoKHR::flags, specifying H.265 rate
control flags, are:

// Provided by VK_KHR_video_encode_h265
typedef enum VkVideoEncodeH265RateControlFlagBitsKHR {
 VK_VIDEO_ENCODE_H265_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR = 0x00000001,
 VK_VIDEO_ENCODE_H265_RATE_CONTROL_REGULAR_GOP_BIT_KHR = 0x00000002,
 VK_VIDEO_ENCODE_H265_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR = 0x00000004,
 VK_VIDEO_ENCODE_H265_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR = 0x00000008,
 VK_VIDEO_ENCODE_H265_RATE_CONTROL_TEMPORAL_SUB_LAYER_PATTERN_DYADIC_BIT_KHR =
0x00000010,
} VkVideoEncodeH265RateControlFlagBitsKHR;

• VK_VIDEO_ENCODE_H265_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR specifies that rate control
should attempt to produce an HRD compliant bitstream, as defined in annex C of the ITU-T
H.265 Specification.

• VK_VIDEO_ENCODE_H265_RATE_CONTROL_REGULAR_GOP_BIT_KHR specifies that the application intends to
use a regular GOP structure according to the parameters specified in the gopFrameCount,
idrPeriod, and consecutiveBFrameCount members of the VkVideoEncodeH265RateControlInfoKHR
structure.

• VK_VIDEO_ENCODE_H265_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR specifies that the

3595

application intends to follow a flat reference pattern in the GOP.

• VK_VIDEO_ENCODE_H265_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR specifies that the
application intends to follow a dyadic reference pattern in the GOP.

• VK_VIDEO_ENCODE_H265_RATE_CONTROL_TEMPORAL_SUB_LAYER_PATTERN_DYADIC_BIT_KHR specifies that the
application intends to follow a dyadic temporal sub-layer pattern.

// Provided by VK_KHR_video_encode_h265
typedef VkFlags VkVideoEncodeH265RateControlFlagsKHR;

VkVideoEncodeH265RateControlFlagsKHR is a bitmask type for setting a mask of zero or more
VkVideoEncodeH265RateControlFlagBitsKHR.

Rate Control Layers

The VkVideoEncodeH265RateControlLayerInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265RateControlLayerInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 useMinQp;
 VkVideoEncodeH265QpKHR minQp;
 VkBool32 useMaxQp;
 VkVideoEncodeH265QpKHR maxQp;
 VkBool32 useMaxFrameSize;
 VkVideoEncodeH265FrameSizeKHR maxFrameSize;
} VkVideoEncodeH265RateControlLayerInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• useMinQp indicates whether the QP values determined by rate control will be clamped to the
lower bounds on the QP values specified in minQp.

• minQp specifies the lower bounds on the QP values, for each picture type, that the
implementation’s rate control algorithm will use when useMinQp is set to VK_TRUE.

• useMaxQp indicates whether the QP values determined by rate control will be clamped to the
upper bounds on the QP values specified in maxQp.

• maxQp specifies the upper bounds on the QP values, for each picture type, that the
implementation’s rate control algorithm will use when useMaxQp is set to VK_TRUE.

• useMaxFrameSize indicates whether the implementation’s rate control algorithm should use the
values specified in maxFrameSize as the upper bounds on the encoded frame size for each picture
type.

• maxFrameSize specifies the upper bounds on the encoded frame size, for each picture type, when
useMaxFrameSize is set to VK_TRUE.

3596

When used, the values in minQp and maxQp guarantee that the effective QP values used by the
implementation will respect those lower and upper bounds, respectively. However, limiting the
range of QP values that the implementation is able to use will also limit the capabilities of the
implementation’s rate control algorithm to comply to other constraints. In particular, the
implementation may not be able to comply to the following:

• The average and/or peak bitrate values to be used for the encoded bitstream specified in the
averageBitrate and maxBitrate members of the VkVideoEncodeRateControlLayerInfoKHR
structure.

• The upper bounds on the encoded frame size, for each picture type, specified in the
maxFrameSize member of VkVideoEncodeH265RateControlLayerInfoKHR.

Note

In general, applications need to configure rate control parameters appropriately in
order to be able to get the desired rate control behavior, as described in the Video
Encode Rate Control section.

When an instance of this structure is included in the pNext chain of a
VkVideoEncodeRateControlLayerInfoKHR structure specified in one of the elements of the pLayers
array member of the VkVideoEncodeRateControlInfoKHR structure passed to the
vkCmdControlVideoCodingKHR command, VkVideoCodingControlInfoKHR::flags includes
VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR, and the bound video session was created
with the video codec operation VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, it specifies the
H.265-specific rate control parameters of the rate control layer corresponding to that element of
pLayers.

Valid Usage

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-useMinQp-08297
If useMinQp is VK_TRUE, then the qpI, qpP, and qpB members of minQp must all be between
VkVideoEncodeH265CapabilitiesKHR::minQp and VkVideoEncodeH265CapabilitiesKHR
::maxQp, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video
profile

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-useMaxQp-08298
If useMaxQp is VK_TRUE, then the qpI, qpP, and qpB members of maxQp must all be between
VkVideoEncodeH265CapabilitiesKHR::minQp and VkVideoEncodeH265CapabilitiesKHR
::maxQp, as returned by vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video
profile

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-useMinQp-08299
If useMinQp is VK_TRUE and VkVideoEncodeH265CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include
VK_VIDEO_ENCODE_H265_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR, then the qpI, qpP,
and qpB members of minQp must all specify the same value

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-useMaxQp-08300
If useMaxQp is VK_TRUE and VkVideoEncodeH265CapabilitiesKHR::flags, as returned by
vkGetPhysicalDeviceVideoCapabilitiesKHR for the used video profile, does not include

3597

VK_VIDEO_ENCODE_H265_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR, then the qpI, qpP,
and qpB members of maxQp must all specify the same value

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-useMinQp-08375
If useMinQp and useMaxQp are both VK_TRUE, then the qpI, qpP, and qpB members of minQp
must all be less than or equal to the respective members of maxQp

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_RATE_CONTROL_LAYER_INFO_KHR

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-minQp-parameter
minQp must be a valid VkVideoEncodeH265QpKHR structure

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-maxQp-parameter
maxQp must be a valid VkVideoEncodeH265QpKHR structure

• VUID-VkVideoEncodeH265RateControlLayerInfoKHR-maxFrameSize-parameter
maxFrameSize must be a valid VkVideoEncodeH265FrameSizeKHR structure

The VkVideoEncodeH265QpKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265QpKHR {
 int32_t qpI;
 int32_t qpP;
 int32_t qpB;
} VkVideoEncodeH265QpKHR;

• qpI is the QP to be used for I pictures.

• qpP is the QP to be used for P pictures.

• qpB is the QP to be used for B pictures.

The VkVideoEncodeH265FrameSizeKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265FrameSizeKHR {
 uint32_t frameISize;
 uint32_t framePSize;
 uint32_t frameBSize;
} VkVideoEncodeH265FrameSizeKHR;

• frameISize is the size in bytes to be used for I frames.

• framePSize is the size in bytes to be used for P frames.

• frameBSize is the size in bytes to be used for B frames.

3598

GOP Remaining Frames

Besides session level rate control configuration, the application can specify the number of frames
per frame type remaining in the group of pictures (GOP).

The VkVideoEncodeH265GopRemainingFrameInfoKHR structure is defined as:

// Provided by VK_KHR_video_encode_h265
typedef struct VkVideoEncodeH265GopRemainingFrameInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkBool32 useGopRemainingFrames;
 uint32_t gopRemainingI;
 uint32_t gopRemainingP;
 uint32_t gopRemainingB;
} VkVideoEncodeH265GopRemainingFrameInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• useGopRemainingFrames indicates whether the implementation’s rate control algorithm should
use the values specified in gopRemainingI, gopRemainingP, and gopRemainingB. If
useGopRemainingFrames is VK_FALSE, then the values of gopRemainingI, gopRemainingP, and
gopRemainingB are ignored.

• gopRemainingI specifies the number of I frames the implementation’s rate control algorithm
should assume to be remaining in the GOP prior to executing the video encode operation.

• gopRemainingP specifies the number of P frames the implementation’s rate control algorithm
should assume to be remaining in the GOP prior to executing the video encode operation.

• gopRemainingB specifies the number of B frames the implementation’s rate control algorithm
should assume to be remaining in the GOP prior to executing the video encode operation.

Setting useGopRemainingFrames to VK_TRUE and including this structure in the pNext chain of
VkVideoBeginCodingInfoKHR is only mandatory if the VkVideoEncodeH265CapabilitiesKHR
::requiresGopRemainingFrames reported for the used video profile is VK_TRUE. However,
implementations may use these remaining frame counts, when specified, even when it is not
required. In particular, when the application does not use a regular GOP structure, these values
may provide additional guidance for the implementation’s rate control algorithm.

The VkVideoEncodeH265CapabilitiesKHR::prefersGopRemainingFrames capability is also used to
indicate that the implementation’s rate control algorithm may operate more accurately if the
application specifies the remaining frame counts using this structure.

As with other rate control guidance values, if the effective order and number of frames encoded by
the application are not in line with the remaining frame counts specified in this structure at any
given point, then the behavior of the implementation’s rate control algorithm may deviate from the
one expected by the application.

3599

Valid Usage (Implicit)

• VUID-VkVideoEncodeH265GopRemainingFrameInfoKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_GOP_REMAINING_FRAME_INFO_KHR

42.18.12. H.265 Encode Requirements

This section described the required H.265 encoding capabilities for physical devices that have at
least one queue family that supports the video codec operation
VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR, as returned by
vkGetPhysicalDeviceQueueFamilyProperties2 in VkQueueFamilyVideoPropertiesKHR
::videoCodecOperations.

Table 59. Required Video Std Header Versions

Video Std Header Name Version

vulkan_video_codec_h265std_encode 1.0.0

Table 60. Required Video Capabilities

Video Capability Requirement Requirement
Type1

VkVideoCapabilitiesKHR

flags - min

minBitstreamBufferOffsetAlignment 4096 max

minBitstreamBufferSizeAlignment 4096 max

pictureAccessGranularity (64,64) max

minCodedExtent - max

maxCodedExtent - min

maxDpbSlots 0 min

maxActiveReferencePictures 0 min

VkVideoEncodeCapabilitiesKHR

flags - min

rateControlModes - min

maxBitrate 128000 min

maxQualityLevels 1 min

encodeInputPictureGranularity (64,64) max

3600

Video Capability Requirement Requirement
Type1

supportedEncodeFeedbackFlags VK_VIDEO_ENCODE_FEEDB
ACK_BITSTREAM_BUFFER_
OFFSET_BIT_KHR
VK_VIDEO_ENCODE_FEEDB
ACK_BITSTREAM_BYTES_W
RITTEN_BIT_KHR

min

VkVideoEncodeH265CapabilitiesKHR

flags - min

maxLevelIdc STD_VIDEO_H265_LEVEL_
IDC_1_0

min

maxSliceSegmentCount 1 min

maxTiles (1,1) min

ctbSizes at least one bit set implementation-
dependent

transformBlockSizes at least one bit set implementation-
dependent

maxPPictureL0ReferenceCount 0 min

maxBPictureL0ReferenceCount 0 min

maxL1ReferenceCount 0 min

maxSubLayerCount 1 min

expectDyadicTemporalSubLayerPattern - implementation-
dependent

minQp - max

maxQp - min

prefersGopRemainingFrames - implementation-
dependent

requiresGopRemainingFrames - implementation-
dependent

stdSyntaxFlags - min

1

The Requirement Type column specifies the requirement is either the minimum value all
implementations must support, the maximum value all implementations must support, or the
exact value all implementations must support. For bitmasks a minimum value is the least bits all
implementations must set, but they may have additional bits set beyond this minimum.

3601

Chapter 43. Optical Flow

43.1. Optical Flow Queues
VK_NV_optical_flow adds a optical flow queue type bit VK_QUEUE_OPTICAL_FLOW_BIT_NV to
VkQueueFlagBits. Optical flow operations are supported by queues with an advertised queue
capability of VK_QUEUE_OPTICAL_FLOW_BIT_NV. As in the case of other queue types, an application must
use vkGetPhysicalDeviceQueueFamilyProperties to query whether the physical device has support
for the Optical Flow Queue. When the implementation reports the VK_QUEUE_OPTICAL_FLOW_BIT_NV bit
for a queue family, it advertises general support for Vulkan queue operations described in Devices
and Queues.

43.2. Optical Flow Image Formats
To enumerate the supported image formats for a specific optical flow usage, call:

// Provided by VK_NV_optical_flow
VkResult vkGetPhysicalDeviceOpticalFlowImageFormatsNV(
 VkPhysicalDevice physicalDevice,
 const VkOpticalFlowImageFormatInfoNV* pOpticalFlowImageFormatInfo,
 uint32_t* pFormatCount,
 VkOpticalFlowImageFormatPropertiesNV* pImageFormatProperties);

• physicalDevice is the physical device being queried.

• pOpticalFlowImageFormatInfo is a pointer to a VkOpticalFlowImageFormatInfoNV structure
specifying the optical flow usage for which information is returned.

• pFormatCount is a pointer to an integer related to the number of optical flow properties available
or queried, as described below.

• pImageFormatProperties is a pointer to an array of VkOpticalFlowImageFormatPropertiesNV
structures in which supported formats and image parameters are returned.

If pImageFormatProperties is NULL, then the number of optical flow properties supported for the
given physicalDevice is returned in pFormatCount. Otherwise, pFormatCount must point to a variable
set by the user to the number of elements in the pImageFormatProperties array, and on return the
variable is overwritten with the number of values actually written to pImageFormatProperties. If the
value of pFormatCount is less than the number of optical flow properties supported, at most
pFormatCount values will be written to pImageFormatProperties, and VK_INCOMPLETE will be returned
instead of VK_SUCCESS, to indicate that not all the available values were returned.

Before creating an image to be used as a optical flow frame, obtain the supported image creation
parameters by querying with vkGetPhysicalDeviceFormatProperties2 and
vkGetPhysicalDeviceImageFormatProperties2 using one of the reported formats and adding
VkOpticalFlowImageFormatInfoNV to the pNext chain of VkPhysicalDeviceImageFormatInfo2.

When querying the parameters with vkGetPhysicalDeviceImageFormatProperties2 for images used

3602

for optical flow operations, the VkOpticalFlowImageFormatInfoNV::usage field must contain one or
more of the bits defined in VkOpticalFlowUsageFlagBitsNV.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceOpticalFlowImageFormatsNV-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceOpticalFlowImageFormatsNV-pOpticalFlowImageFormatInfo-
parameter
pOpticalFlowImageFormatInfo must be a valid pointer to a valid
VkOpticalFlowImageFormatInfoNV structure

• VUID-vkGetPhysicalDeviceOpticalFlowImageFormatsNV-pFormatCount-parameter
pFormatCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceOpticalFlowImageFormatsNV-pImageFormatProperties-
parameter
If the value referenced by pFormatCount is not 0, and pImageFormatProperties is not NULL,
pImageFormatProperties must be a valid pointer to an array of pFormatCount
VkOpticalFlowImageFormatPropertiesNV structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_FORMAT_NOT_SUPPORTED

Note

VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_R8_UNORM and
VK_FORMAT_G8_B8R8_2PLANE_420_UNORM are initially supported for images with optical
usage VK_OPTICAL_FLOW_USAGE_INPUT_BIT_NV.

VK_FORMAT_R16G16_S10_5_NV is initially supported for images with optical flow usage
VK_OPTICAL_FLOW_USAGE_OUTPUT_BIT_NV, VK_OPTICAL_FLOW_USAGE_HINT_BIT_NV and
VK_OPTICAL_FLOW_USAGE_GLOBAL_FLOW_BIT_NV.

VK_FORMAT_R8_UINT and VK_FORMAT_R32_UINT are initially supported for images with
optical flow usage VK_OPTICAL_FLOW_USAGE_COST_BIT_NV. It is recommended to use
VK_FORMAT_R8_UINT because of the lower bandwidth.

The VkOpticalFlowImageFormatInfoNV structure is defined as:

3603

// Provided by VK_NV_optical_flow
typedef struct VkOpticalFlowImageFormatInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkOpticalFlowUsageFlagsNV usage;
} VkOpticalFlowImageFormatInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• usage is a bitmask of VkOpticalFlowUsageFlagBitsNV describing the intended optical flow usage
of the image.

Valid Usage (Implicit)

• VUID-VkOpticalFlowImageFormatInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_OPTICAL_FLOW_IMAGE_FORMAT_INFO_NV

• VUID-VkOpticalFlowImageFormatInfoNV-usage-parameter
usage must be a valid combination of VkOpticalFlowUsageFlagBitsNV values

• VUID-VkOpticalFlowImageFormatInfoNV-usage-requiredbitmask
usage must not be 0

Bits which can be set in VkOpticalFlowImageFormatInfoNV::usage, controlling optical flow usage,
are:

// Provided by VK_NV_optical_flow
typedef enum VkOpticalFlowUsageFlagBitsNV {
 VK_OPTICAL_FLOW_USAGE_UNKNOWN_NV = 0,
 VK_OPTICAL_FLOW_USAGE_INPUT_BIT_NV = 0x00000001,
 VK_OPTICAL_FLOW_USAGE_OUTPUT_BIT_NV = 0x00000002,
 VK_OPTICAL_FLOW_USAGE_HINT_BIT_NV = 0x00000004,
 VK_OPTICAL_FLOW_USAGE_COST_BIT_NV = 0x00000008,
 VK_OPTICAL_FLOW_USAGE_GLOBAL_FLOW_BIT_NV = 0x00000010,
} VkOpticalFlowUsageFlagBitsNV;

• VK_OPTICAL_FLOW_USAGE_INPUT_BIT_NV specifies that the image can be used as input or reference
frame for an optical flow operation.

• VK_OPTICAL_FLOW_USAGE_OUTPUT_BIT_NV specifies that the image can be used as output flow vector
map for an optical flow operation.

• VK_OPTICAL_FLOW_USAGE_HINT_BIT_NV specifies that the image can be used as hint flow vector map
for an optical flow operation.

• VK_OPTICAL_FLOW_USAGE_COST_BIT_NV specifies that the image can be used as output cost map for
an optical flow operation.

• VK_OPTICAL_FLOW_USAGE_GLOBAL_FLOW_BIT_NV specifies that the image can be used as global flow

3604

vector for an optical flow operation.

// Provided by VK_NV_optical_flow
typedef VkFlags VkOpticalFlowUsageFlagsNV;

VkOpticalFlowUsageFlagsNV is a bitmask type for setting a mask of zero or more
VkOpticalFlowUsageFlagBitsNV.

The VkOpticalFlowImageFormatPropertiesNV structure is defined as:

// Provided by VK_NV_optical_flow
typedef struct VkOpticalFlowImageFormatPropertiesNV {
 VkStructureType sType;
 const void* pNext;
 VkFormat format;
} VkOpticalFlowImageFormatPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• format is a VkFormat that specifies the format that can be used with the specified optical flow
image usages.

Valid Usage (Implicit)

• VUID-VkOpticalFlowImageFormatPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_OPTICAL_FLOW_IMAGE_FORMAT_PROPERTIES_NV

• VUID-VkOpticalFlowImageFormatPropertiesNV-pNext-pNext
pNext must be NULL

43.3. Optical Flow Session

43.3.1. Optical Flow Session Object

Optical flow session objects are abstracted and represented by VkOpticalFlowSessionNV handles:

// Provided by VK_NV_optical_flow
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkOpticalFlowSessionNV)

Creating an Optical Flow Session

To create an optical flow session object, call:

// Provided by VK_NV_optical_flow

3605

VkResult vkCreateOpticalFlowSessionNV(
 VkDevice device,
 const VkOpticalFlowSessionCreateInfoNV* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkOpticalFlowSessionNV* pSession);

• device is the logical device that creates the optical flow session object.

• pCreateInfo is a pointer to a VkOpticalFlowSessionCreateInfoNV structure containing
parameters specifying the creation of the optical flow session.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSession is a pointer to a VkOpticalFlowSessionNV handle specifying the optical flow session
object which will be created by this function when it returns VK_SUCCESS

Valid Usage (Implicit)

• VUID-vkCreateOpticalFlowSessionNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateOpticalFlowSessionNV-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkOpticalFlowSessionCreateInfoNV
structure

• VUID-vkCreateOpticalFlowSessionNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateOpticalFlowSessionNV-pSession-parameter
pSession must be a valid pointer to a VkOpticalFlowSessionNV handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

The VkOpticalFlowSessionCreateInfoNV structure is defined as:

// Provided by VK_NV_optical_flow
typedef struct VkOpticalFlowSessionCreateInfoNV {
 VkStructureType sType;
 void* pNext;
 uint32_t width;
 uint32_t height;

3606

 VkFormat imageFormat;
 VkFormat flowVectorFormat;
 VkFormat costFormat;
 VkOpticalFlowGridSizeFlagsNV outputGridSize;
 VkOpticalFlowGridSizeFlagsNV hintGridSize;
 VkOpticalFlowPerformanceLevelNV performanceLevel;
 VkOpticalFlowSessionCreateFlagsNV flags;
} VkOpticalFlowSessionCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• width is the width in pixels of the input or reference frame to be bound to this optical flow
session.

• height is the height in pixels of the input or reference frame to be bound to this optical flow
session.

• imageFormat is the VkFormat of the input and reference frame to be bound to this optical flow
session.

• flowVectorFormat is the VkFormat of the flow vector maps (output or hint) to be bound to this
optical flow session.

• costFormat is the VkFormat of the cost maps to be bound to this optical flow session.

• outputGridSize is exactly one bit of VkOpticalFlowGridSizeFlagsNV specifying the grid size of the
output flow and cost maps to be bound to this optical flow session. The size of the output flow
and cost maps is determined by VkOpticalFlowSessionCreateInfoNV::width and
VkOpticalFlowSessionCreateInfoNV::height divided by VkOpticalFlowSessionCreateInfoNV
::outputGridSize.

• hintGridSize is one exactly bit of VkOpticalFlowGridSizeFlagsNV specifying the grid size of the
hint flow vector maps to be bound to this optical flow session. The size of the hint maps is
determined by VkOpticalFlowSessionCreateInfoNV::width and VkOpticalFlowSessionCreateInfoNV
::height divided by VkOpticalFlowSessionCreateInfoNV::hintGridSize.

• performanceLevel is the VkOpticalFlowPerformanceLevelNV used for this optical flow session.

• flags are the VkOpticalFlowSessionCreateFlagsNV used for this optical flow session.

Valid Usage

• VUID-VkOpticalFlowSessionCreateInfoNV-width-07581
width must be greater than or equal to VkPhysicalDeviceOpticalFlowPropertiesNV::minWidth
and less than or equal to VkPhysicalDeviceOpticalFlowPropertiesNV::maxWidth

• VUID-VkOpticalFlowSessionCreateInfoNV-height-07582
height must be greater than or equal to VkPhysicalDeviceOpticalFlowPropertiesNV
::minHeight and less than or equal to VkPhysicalDeviceOpticalFlowPropertiesNV::maxHeight

• VUID-VkOpticalFlowSessionCreateInfoNV-imageFormat-07583
imageFormat must be one of the formats returned by
vkGetPhysicalDeviceOpticalFlowImageFormatsNV for VK_OPTICAL_FLOW_USAGE_INPUT_BIT_NV

3607

• VUID-VkOpticalFlowSessionCreateInfoNV-flowVectorFormat-07584
flowVectorFormat must be one of the formats returned by
vkGetPhysicalDeviceOpticalFlowImageFormatsNV for
VK_OPTICAL_FLOW_USAGE_OUTPUT_BIT_NV

• VUID-VkOpticalFlowSessionCreateInfoNV-costFormat-07585
costFormat must be one of the formats returned by
vkGetPhysicalDeviceOpticalFlowImageFormatsNV for VK_OPTICAL_FLOW_USAGE_COST_BIT_NV
if VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_COST_BIT_NV is set in flags

• VUID-VkOpticalFlowSessionCreateInfoNV-outputGridSize-07586
outputGridSize must be exactly one of the bits reported in
VkPhysicalDeviceOpticalFlowPropertiesNV::supportedOutputGridSizes

• VUID-VkOpticalFlowSessionCreateInfoNV-hintGridSize-07587
hintGridSize must be exactly one of the bits reported in
VkPhysicalDeviceOpticalFlowPropertiesNV::supportedHintGridSizes if
VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_HINT_BIT_NV is set in flags

• VUID-VkOpticalFlowSessionCreateInfoNV-flags-07588
VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_HINT_BIT_NV must not be set in flags if
VkPhysicalDeviceOpticalFlowPropertiesNV::hintSupported is VK_FALSE

• VUID-VkOpticalFlowSessionCreateInfoNV-flags-07589
VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_COST_BIT_NV must not be set in flags if
VkPhysicalDeviceOpticalFlowPropertiesNV::costSupported is VK_FALSE

• VUID-VkOpticalFlowSessionCreateInfoNV-flags-07590
VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_GLOBAL_FLOW_BIT_NV must not be set in flags if
VkPhysicalDeviceOpticalFlowPropertiesNV::globalFlowSupported is VK_FALSE

• VUID-VkOpticalFlowSessionCreateInfoNV-flags-07591
VK_OPTICAL_FLOW_SESSION_CREATE_ALLOW_REGIONS_BIT_NV must not be set in flags if
VkPhysicalDeviceOpticalFlowPropertiesNV::maxNumRegionsOfInterest is 0

• VUID-VkOpticalFlowSessionCreateInfoNV-flags-07592
VK_OPTICAL_FLOW_SESSION_CREATE_BOTH_DIRECTIONS_BIT_NV must not be set in flags if
VkPhysicalDeviceOpticalFlowPropertiesNV::bidirectionalFlowSupported is VK_FALSE

Valid Usage (Implicit)

• VUID-VkOpticalFlowSessionCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_OPTICAL_FLOW_SESSION_CREATE_INFO_NV

• VUID-VkOpticalFlowSessionCreateInfoNV-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkOpticalFlowSessionCreatePrivateDataInfoNV

• VUID-VkOpticalFlowSessionCreateInfoNV-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkOpticalFlowSessionCreateInfoNV-imageFormat-parameter
imageFormat must be a valid VkFormat value

3608

• VUID-VkOpticalFlowSessionCreateInfoNV-flowVectorFormat-parameter
flowVectorFormat must be a valid VkFormat value

• VUID-VkOpticalFlowSessionCreateInfoNV-costFormat-parameter
If costFormat is not 0, costFormat must be a valid VkFormat value

• VUID-VkOpticalFlowSessionCreateInfoNV-outputGridSize-parameter
outputGridSize must be a valid combination of VkOpticalFlowGridSizeFlagBitsNV values

• VUID-VkOpticalFlowSessionCreateInfoNV-outputGridSize-requiredbitmask
outputGridSize must not be 0

• VUID-VkOpticalFlowSessionCreateInfoNV-hintGridSize-parameter
hintGridSize must be a valid combination of VkOpticalFlowGridSizeFlagBitsNV values

• VUID-VkOpticalFlowSessionCreateInfoNV-performanceLevel-parameter
If performanceLevel is not 0, performanceLevel must be a valid
VkOpticalFlowPerformanceLevelNV value

• VUID-VkOpticalFlowSessionCreateInfoNV-flags-parameter
flags must be a valid combination of VkOpticalFlowSessionCreateFlagBitsNV values

The VkOpticalFlowSessionCreatePrivateDataInfoNV structure is for NV internal use only and is
defined as:

// Provided by VK_NV_optical_flow
typedef struct VkOpticalFlowSessionCreatePrivateDataInfoNV {
 VkStructureType sType;
 void* pNext;
 uint32_t id;
 uint32_t size;
 const void* pPrivateData;
} VkOpticalFlowSessionCreatePrivateDataInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• id is an identifier for data which is passed at a memory location specified in
VkOpticalFlowSessionCreatePrivateDataInfoNV::pPrivateData.

• size is the size of data in bytes which is passed at a memory location specified in
VkOpticalFlowSessionCreatePrivateDataInfoNV::pPrivateData.

• pPrivateData is a pointer to NV internal data.

Valid Usage (Implicit)

• VUID-VkOpticalFlowSessionCreatePrivateDataInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_OPTICAL_FLOW_SESSION_CREATE_PRIVATE_DATA_INFO_NV

• VUID-VkOpticalFlowSessionCreatePrivateDataInfoNV-pPrivateData-parameter
pPrivateData must be a pointer value

3609

Optical flow vectors are generated block-wise, one vector for each block of NxN pixels (referred to
as grid).

Bits which can be set in VkOpticalFlowSessionCreateInfoNV::outputGridSize and
VkOpticalFlowSessionCreateInfoNV::hintGridSize, or which are returned in
VkPhysicalDeviceOpticalFlowPropertiesNV::supportedOutputGridSizes and
VkPhysicalDeviceOpticalFlowPropertiesNV::supportedHintGridSizes controlling optical flow grid
sizes, are:

// Provided by VK_NV_optical_flow
typedef enum VkOpticalFlowGridSizeFlagBitsNV {
 VK_OPTICAL_FLOW_GRID_SIZE_UNKNOWN_NV = 0,
 VK_OPTICAL_FLOW_GRID_SIZE_1X1_BIT_NV = 0x00000001,
 VK_OPTICAL_FLOW_GRID_SIZE_2X2_BIT_NV = 0x00000002,
 VK_OPTICAL_FLOW_GRID_SIZE_4X4_BIT_NV = 0x00000004,
 VK_OPTICAL_FLOW_GRID_SIZE_8X8_BIT_NV = 0x00000008,
} VkOpticalFlowGridSizeFlagBitsNV;

• VK_OPTICAL_FLOW_GRID_SIZE_1X1_BIT_NV specifies that grid is 1x1 pixel.

• VK_OPTICAL_FLOW_GRID_SIZE_2X2_BIT_NV specifies that grid is 2x2 pixel.

• VK_OPTICAL_FLOW_GRID_SIZE_4X4_BIT_NV specifies that grid is 4x4 pixel.

• VK_OPTICAL_FLOW_GRID_SIZE_8X8_BIT_NV specifies that grid is 8x8 pixel.

// Provided by VK_NV_optical_flow
typedef VkFlags VkOpticalFlowGridSizeFlagsNV;

VkOpticalFlowGridSizeFlagsNV is a bitmask type for setting a mask of zero or more
VkOpticalFlowGridSizeFlagBitsNV.

Optical flow exposes performance levels which the user can choose based on the desired
performance and quality requirement.

The optical flow performance level types are defined with the following:

// Provided by VK_NV_optical_flow
typedef enum VkOpticalFlowPerformanceLevelNV {
 VK_OPTICAL_FLOW_PERFORMANCE_LEVEL_UNKNOWN_NV = 0,
 VK_OPTICAL_FLOW_PERFORMANCE_LEVEL_SLOW_NV = 1,
 VK_OPTICAL_FLOW_PERFORMANCE_LEVEL_MEDIUM_NV = 2,
 VK_OPTICAL_FLOW_PERFORMANCE_LEVEL_FAST_NV = 3,
} VkOpticalFlowPerformanceLevelNV;

• VK_OPTICAL_FLOW_PERFORMANCE_LEVEL_SLOW_NV is a level with slower performance but higher
quality.

• VK_OPTICAL_FLOW_PERFORMANCE_LEVEL_MEDIUM_NV is a level with medium performance and medium

3610

quality.

• VK_OPTICAL_FLOW_PERFORMANCE_LEVEL_FAST_NV is a preset with higher performance but lower
quality.

Bits which can be set in VkOpticalFlowSessionCreateInfoNV::flags, controlling optical flow session
operations, are:

// Provided by VK_NV_optical_flow
typedef enum VkOpticalFlowSessionCreateFlagBitsNV {
 VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_HINT_BIT_NV = 0x00000001,
 VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_COST_BIT_NV = 0x00000002,
 VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_GLOBAL_FLOW_BIT_NV = 0x00000004,
 VK_OPTICAL_FLOW_SESSION_CREATE_ALLOW_REGIONS_BIT_NV = 0x00000008,
 VK_OPTICAL_FLOW_SESSION_CREATE_BOTH_DIRECTIONS_BIT_NV = 0x00000010,
} VkOpticalFlowSessionCreateFlagBitsNV;

• VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_HINT_BIT_NV specifies that a VkImageView with external
flow vectors will be used as hints in performing the motion search and must be bound to
VK_OPTICAL_FLOW_SESSION_BINDING_POINT_HINT_NV.

• VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_COST_BIT_NV specifies that the cost for the forward flow
is generated in a VkImageView which must be bound to
VK_OPTICAL_FLOW_SESSION_BINDING_POINT_COST_NV. Additionally, if
VK_OPTICAL_FLOW_SESSION_CREATE_BOTH_DIRECTIONS_BIT_NV is also set, the cost for backward flow is
generated in a VkImageView which must be bound to
VK_OPTICAL_FLOW_SESSION_BINDING_POINT_BACKWARD_COST_NV. The cost is the confidence level of the
flow vector for each grid in the frame. The Cost implies how (in)accurate the flow vector is.
Higher cost value implies the flow vector to be less accurate and vice-versa.

• VK_OPTICAL_FLOW_SESSION_CREATE_ENABLE_GLOBAL_FLOW_BIT_NV specifies that a global flow vector is
estimated from forward flow in a single pixel VkImageView which must be bound to
VK_OPTICAL_FLOW_SESSION_BINDING_POINT_GLOBAL_FLOW_NV.

• VK_OPTICAL_FLOW_SESSION_CREATE_ALLOW_REGIONS_BIT_NV specifies that regions of interest can be
specified in VkOpticalFlowExecuteInfoNV.

• VK_OPTICAL_FLOW_SESSION_CREATE_BOTH_DIRECTIONS_BIT_NV specifies that backward flow is
generated in addition to forward flow which is always generated.

VkOpticalFlowSessionCreateFlagsNV is a bitmask type for setting a mask of zero or more
VkOpticalFlowSessionCreateFlagBitsNV.

// Provided by VK_NV_optical_flow
typedef VkFlags VkOpticalFlowSessionCreateFlagsNV;

Destroying an Optical Flow Session

To destroy a optical flow session object, call:

3611

// Provided by VK_NV_optical_flow
void vkDestroyOpticalFlowSessionNV(
 VkDevice device,
 VkOpticalFlowSessionNV session,
 const VkAllocationCallbacks* pAllocator);

• device is the device that was used for the creation of the optical flow session.

• session is the optical flow session to be destroyed.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage (Implicit)

• VUID-vkDestroyOpticalFlowSessionNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyOpticalFlowSessionNV-session-parameter
session must be a valid VkOpticalFlowSessionNV handle

• VUID-vkDestroyOpticalFlowSessionNV-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyOpticalFlowSessionNV-session-parent
session must have been created, allocated, or retrieved from device

43.3.2. Binding Vulkan Image Views to an Optical Flow Session

To bind a vulkan image to an optical flow session object, call:

// Provided by VK_NV_optical_flow
VkResult vkBindOpticalFlowSessionImageNV(
 VkDevice device,
 VkOpticalFlowSessionNV session,
 VkOpticalFlowSessionBindingPointNV bindingPoint,
 VkImageView view,
 VkImageLayout layout);

• device is the device which owns the optical flow session object session.

• session is the optical flow session object to which the image view is to be bound.

• bindingPoint specifies the binding point VkOpticalFlowSessionBindingPointNV to which the
image view is bound.

• view is a VkImageView to be bound.

• layout must specify the layout that the image subresources accessible from view will be in at the
time the optical flow vectors are calculated with vkCmdOpticalFlowExecuteNV on a VkDevice.

3612

Valid Usage (Implicit)

• VUID-vkBindOpticalFlowSessionImageNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindOpticalFlowSessionImageNV-session-parameter
session must be a valid VkOpticalFlowSessionNV handle

• VUID-vkBindOpticalFlowSessionImageNV-bindingPoint-parameter
bindingPoint must be a valid VkOpticalFlowSessionBindingPointNV value

• VUID-vkBindOpticalFlowSessionImageNV-view-parameter
If view is not VK_NULL_HANDLE, view must be a valid VkImageView handle

• VUID-vkBindOpticalFlowSessionImageNV-layout-parameter
layout must be a valid VkImageLayout value

• VUID-vkBindOpticalFlowSessionImageNV-session-parent
session must have been created, allocated, or retrieved from device

• VUID-vkBindOpticalFlowSessionImageNV-view-parent
If view is a valid handle, it must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

The optical flow session binding points are defined with the following:

// Provided by VK_NV_optical_flow
typedef enum VkOpticalFlowSessionBindingPointNV {
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_UNKNOWN_NV = 0,
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_INPUT_NV = 1,
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_REFERENCE_NV = 2,
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_HINT_NV = 3,
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_FLOW_VECTOR_NV = 4,
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_BACKWARD_FLOW_VECTOR_NV = 5,
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_COST_NV = 6,
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_BACKWARD_COST_NV = 7,
 VK_OPTICAL_FLOW_SESSION_BINDING_POINT_GLOBAL_FLOW_NV = 8,
} VkOpticalFlowSessionBindingPointNV;

• VK_OPTICAL_FLOW_SESSION_BINDING_POINT_INPUT_NV specifies the binding point for the input frame.

3613

• VK_OPTICAL_FLOW_SESSION_BINDING_POINT_REFERENCE_NV specifies the binding point for the input
reference frame.

• VK_OPTICAL_FLOW_SESSION_BINDING_POINT_HINT_NV specifies the binding point for the optional
external hint flow vectors.

• VK_OPTICAL_FLOW_SESSION_BINDING_POINT_FLOW_VECTOR_NV specifies the binding point for output
flow vectors of default forward flow calculation.

• VK_OPTICAL_FLOW_SESSION_BINDING_POINT_BACKWARD_FLOW_VECTOR_NV specifies the binding point for
the optional output flow vector map of optional backward flow calculation.

• VK_OPTICAL_FLOW_SESSION_BINDING_POINT_COST_NV specifies the binding point for the optional
output cost map of default forward flow calculation.

• VK_OPTICAL_FLOW_SESSION_BINDING_POINT_BACKWARD_COST_NV specifies the binding point for the
optional output cost map of optional backward flow calculation.

• VK_OPTICAL_FLOW_SESSION_BINDING_POINT_GLOBAL_FLOW_NV specifies the binding point for the
optional global flow value of default forward flow calculation.

43.3.3. Optical Flow Execution

Default direction of flow estimation is forward which calculates the optical flow from input frame
to reference frame. Optionally backward flow estimation can be additionally calculated. An output
flow vector (Vx, Vy) means that current pixel (x, y) of input frame can be found at location (x+Vx,
y+Vy) in reference frame. A backward flow vector (Vx, Vy) means that current pixel (x, y) of
reference frame can be found at location (x+Vx, y+Vy) in input frame.

To calculate optical flow vectors from two input frames, call:

// Provided by VK_NV_optical_flow
void vkCmdOpticalFlowExecuteNV(
 VkCommandBuffer commandBuffer,
 VkOpticalFlowSessionNV session,
 const VkOpticalFlowExecuteInfoNV* pExecuteInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• session is the optical flow session object on which this command is operating.

• pExecuteInfo Info is a pointer to a VkOpticalFlowExecuteInfoNV.

Valid Usage (Implicit)

• VUID-vkCmdOpticalFlowExecuteNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdOpticalFlowExecuteNV-session-parameter
session must be a valid VkOpticalFlowSessionNV handle

• VUID-vkCmdOpticalFlowExecuteNV-pExecuteInfo-parameter
pExecuteInfo must be a valid pointer to a valid VkOpticalFlowExecuteInfoNV structure

3614

• VUID-vkCmdOpticalFlowExecuteNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdOpticalFlowExecuteNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support optical flow
operations

• VUID-vkCmdOpticalFlowExecuteNV-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdOpticalFlowExecuteNV-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdOpticalFlowExecuteNV-commonparent
Both of commandBuffer, and session must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Outside Outside Opticalflow Action

The VkOpticalFlowExecuteInfoNV structure is defined as:

// Provided by VK_NV_optical_flow
typedef struct VkOpticalFlowExecuteInfoNV {
 VkStructureType sType;
 void* pNext;
 VkOpticalFlowExecuteFlagsNV flags;
 uint32_t regionCount;
 const VkRect2D* pRegions;
} VkOpticalFlowExecuteInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags are the VkOpticalFlowExecuteFlagsNV used for this command.

• regionCount is the number of regions of interest specified in pRegions.

• pRegions is a pointer to regionCount VkRect2D regions of interest.

3615

Valid Usage

• VUID-VkOpticalFlowExecuteInfoNV-regionCount-07593
regionCount must be 0 if VK_OPTICAL_FLOW_SESSION_CREATE_ALLOW_REGIONS_BIT_NV was not set
for VkOpticalFlowSessionNV on which this command is operating

Valid Usage (Implicit)

• VUID-VkOpticalFlowExecuteInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_OPTICAL_FLOW_EXECUTE_INFO_NV

• VUID-VkOpticalFlowExecuteInfoNV-pNext-pNext
pNext must be NULL

• VUID-VkOpticalFlowExecuteInfoNV-flags-parameter
flags must be a valid combination of VkOpticalFlowExecuteFlagBitsNV values

• VUID-VkOpticalFlowExecuteInfoNV-pRegions-parameter
If regionCount is not 0, pRegions must be a valid pointer to an array of regionCount
VkRect2D structures

Bits which can be set in VkOpticalFlowExecuteInfoNV::flags, controlling optical flow execution,
are:

// Provided by VK_NV_optical_flow
typedef enum VkOpticalFlowExecuteFlagBitsNV {
 VK_OPTICAL_FLOW_EXECUTE_DISABLE_TEMPORAL_HINTS_BIT_NV = 0x00000001,
} VkOpticalFlowExecuteFlagBitsNV;

• VK_OPTICAL_FLOW_EXECUTE_DISABLE_TEMPORAL_HINTS_BIT_NV specifies that temporal hints from
previously generated flow vectors are not used. If temporal hints are enabled, optical flow
vectors from previous vkCmdOpticalFlowExecuteNV call are automatically used as hints for the
current vkCmdOpticalFlowExecuteNV call, to take advantage of temporal correlation in a video
sequence. Temporal hints should be disabled if there is a-priori knowledge of no temporal
correlation (e.g. a scene change, independent successive frame pairs).

VkOpticalFlowExecuteFlagsNV is a bitmask type for setting a mask of zero or more
VkOpticalFlowExecuteFlagBitsNV.

// Provided by VK_NV_optical_flow
typedef VkFlags VkOpticalFlowExecuteFlagsNV;

3616

Chapter 44. Execution Graphs
Execution graphs provide a way for applications to dispatch multiple operations dynamically from
a single initial command on the host. To achieve this, a new execution graph pipeline is provided,
that links together multiple shaders or pipelines which each describe one or more operations that
can be dispatched within the execution graph. Each linked pipeline or shader describes an
execution node within the graph, which can be dispatched dynamically from another shader within
the same graph. This allows applications to describe much richer execution topologies at a finer
granularity than would typically be possible with API commands alone.

44.1. Pipeline Creation
To create execution graph pipelines, call:

// Provided by VK_AMDX_shader_enqueue
VkResult vkCreateExecutionGraphPipelinesAMDX(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkExecutionGraphPipelineCreateInfoAMDX* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

• device is the logical device that creates the execution graph pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is a pointer to an array of VkExecutionGraphPipelineCreateInfoAMDX structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array of VkPipeline handles in which the resulting execution graph
pipeline objects are returned.

Pipelines are created and returned as described for Multiple Pipeline Creation.

Valid Usage

• VUID-vkCreateExecutionGraphPipelinesAMDX-shaderEnqueue-09124
The shaderEnqueue feature must be enabled

• VUID-vkCreateExecutionGraphPipelinesAMDX-flags-09125
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that
corresponds to that element

3617

• VUID-vkCreateExecutionGraphPipelinesAMDX-flags-09126
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

• VUID-vkCreateExecutionGraphPipelinesAMDX-pipelineCache-09127
If pipelineCache was created with VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT,
host access to pipelineCache must be externally synchronized

Valid Usage (Implicit)

• VUID-vkCreateExecutionGraphPipelinesAMDX-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateExecutionGraphPipelinesAMDX-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkCreateExecutionGraphPipelinesAMDX-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of createInfoCount valid
VkExecutionGraphPipelineCreateInfoAMDX structures

• VUID-vkCreateExecutionGraphPipelinesAMDX-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateExecutionGraphPipelinesAMDX-pPipelines-parameter
pPipelines must be a valid pointer to an array of createInfoCount VkPipeline handles

• VUID-vkCreateExecutionGraphPipelinesAMDX-createInfoCount-arraylength
createInfoCount must be greater than 0

• VUID-vkCreateExecutionGraphPipelinesAMDX-pipelineCache-parent
If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success

• VK_SUCCESS

• VK_PIPELINE_COMPILE_REQUIRED_EXT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkExecutionGraphPipelineCreateInfoAMDX structure is defined as:

3618

// Provided by VK_AMDX_shader_enqueue
typedef struct VkExecutionGraphPipelineCreateInfoAMDX {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 const VkPipelineLibraryCreateInfoKHR* pLibraryInfo;
 VkPipelineLayout layout;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkExecutionGraphPipelineCreateInfoAMDX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stageCount is the number of entries in the pStages array.

• pStages is a pointer to an array of stageCount VkPipelineShaderStageCreateInfo structures
describing the set of the shader stages to be included in the execution graph pipeline.

• pLibraryInfo is a pointer to a VkPipelineLibraryCreateInfoKHR structure defining pipeline
libraries to include.

• layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

• basePipelineHandle is a pipeline to derive from

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive
from

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

Each shader stage provided when creating an execution graph pipeline (including those in
libraries) is associated with a name and an index, determined by the inclusion or omission of a
VkPipelineShaderStageNodeCreateInfoAMDX structure in its pNext chain.

In addition to the shader name and index, an internal "node index" is also generated for each node,
which can be queried with vkGetExecutionGraphPipelineNodeIndexAMDX, and is used exclusively
for initial dispatch of an execution graph.

Valid Usage

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-None-09497
If the pNext chain does not include a VkPipelineCreateFlags2CreateInfoKHR structure,
flags must be a valid combination of VkPipelineCreateFlagBits values

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-07984

3619

If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid execution graph VkPipeline handle

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-07985
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-07986
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, basePipelineIndex must be -1
or basePipelineHandle must be VK_NULL_HANDLE

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-layout-07987
If a push constant block is declared in a shader, a push constant range in layout must
match both the shader stage and range

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-layout-07988
If a resource variables is declared in a shader, a descriptor slot in layout must match the
shader stage

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-layout-07990
If a resource variables is declared in a shader, and the descriptor type is not
VK_DESCRIPTOR_TYPE_MUTABLE_EXT, a descriptor slot in layout must match the descriptor
type

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-layout-07991
If a resource variables is declared in a shader as an array, a descriptor slot in layout must
match the descriptor count

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-03365
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-03366
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-03367
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-03368
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-03369
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-03370
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-03576
flags must not include
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-04945
flags must not include VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV

3620

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-09007
If the VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV
::deviceGeneratedComputePipelines is not enabled, flags must not include
VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-flags-09008
If flags includes VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV, then the pNext chain must
include a pointer to a valid instance of VkComputePipelineIndirectBufferInfoNV
specifying the address where the pipeline’s metadata will be saved

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-pipelineCreationCacheControl-02875
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT or
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-stage-09128
The stage member of any element of pStages must be VK_SHADER_STAGE_COMPUTE_BIT

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-pStages-09129
The shader code for the entry point identified by each element of pStages and the rest of
the state identified by this structure must adhere to the pipeline linking rules described in
the Shader Interfaces chapter

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-layout-09130
layout must be consistent with the layout of the shaders specified in pStages

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-pLibraryInfo-09131
If pLibraryInfo is not NULL, each element of its pLibraries member must have been created
with a layout that is compatible with the layout in this pipeline

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-layout-09132
The number of resources in layout accessible to each shader stage that is used by the
pipeline must be less than or equal to VkPhysicalDeviceLimits::maxPerStageResources

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-pLibraryInfo-09133
If pLibraryInfo is not NULL, each element of pLibraryInfo->libraries must be either a
compute pipeline or an execution graph pipeline

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-None-09134
There must be no two nodes in the pipeline that share both the same shader name and
index, as specified by VkPipelineShaderStageNodeCreateInfoAMDX

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-None-09135
There must be no two nodes in the pipeline that share the same shader name and have
input payload declarations with different sizes

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-None-09136
There must be no two nodes in the pipeline that share the same name but have different
execution models

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-CoalescedInputCountAMDX-09137
There must be no two nodes in the pipeline that share the same name where one includes
CoalescedInputCountAMDX and the other does not

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-StaticNumWorkgroupsAMDX-09138
There must be no two nodes in the pipeline that share the same name where one includes

3621

StaticNumWorkgroupsAMDX and the other does not

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-PayloadNodeNameAMDX-09139
If an output payload declared in any shader in the pipeline has a PayloadNodeNameAMDX
decoration with a Node Name that matches the shader name of any other node in the graph,
the size of the output payload must match the size of the input payload in the matching
node

Valid Usage (Implicit)

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-sType-sType
sType must be VK_STRUCTURE_TYPE_EXECUTION_GRAPH_PIPELINE_CREATE_INFO_AMDX

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkPipelineCompilerControlCreateInfoAMD or
VkPipelineCreationFeedbackCreateInfo

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-pStages-parameter
If stageCount is not 0, and pStages is not NULL, pStages must be a valid pointer to an array
of stageCount valid VkPipelineShaderStageCreateInfo structures

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-pLibraryInfo-parameter
If pLibraryInfo is not NULL, pLibraryInfo must be a valid pointer to a valid
VkPipelineLibraryCreateInfoKHR structure

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-VkExecutionGraphPipelineCreateInfoAMDX-commonparent
Both of basePipelineHandle, and layout that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

VK_SHADER_INDEX_UNUSED_AMDX is a special shader index used to indicate that the created node does
not override the index. In this case, the shader index is determined through other means. It is
defined as:

#define VK_SHADER_INDEX_UNUSED_AMDX (~0U)

The VkPipelineShaderStageNodeCreateInfoAMDX structure is defined as:

// Provided by VK_AMDX_shader_enqueue
typedef struct VkPipelineShaderStageNodeCreateInfoAMDX {
 VkStructureType sType;
 const void* pNext;
 const char* pName;

3622

 uint32_t index;
} VkPipelineShaderStageNodeCreateInfoAMDX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pName is the shader name to use when creating a node in an execution graph. If pName is NULL, the
name of the entry point specified in SPIR-V is used as the shader name.

• index is the shader index to use when creating a node in an execution graph. If index is
VK_SHADER_INDEX_UNUSED_AMDX then the original index is used, either as specified by the
ShaderIndexAMDX execution mode, or 0 if that too is not specified.

When included in the pNext chain of a VkPipelineShaderStageCreateInfo structure, this structure
specifies the shader name and shader index of a node when creating an execution graph pipeline. If
this structure is omitted, the shader name is set to the name of the entry point in SPIR-V and the
shader index is set to 0.

When dispatching a node from another shader, the name is fixed at pipeline creation, but the index
can be set dynamically. By associating multiple shaders with the same name but different indexes,
applications can dynamically select different nodes to execute. Applications must ensure each node
has a unique name and index.

Valid Usage (Implicit)

• VUID-VkPipelineShaderStageNodeCreateInfoAMDX-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_NODE_CREATE_INFO_AMDX

• VUID-VkPipelineShaderStageNodeCreateInfoAMDX-pName-parameter
If pName is not NULL, pName must be a null-terminated UTF-8 string

To query the internal node index for a particular node in an execution graph, call:

// Provided by VK_AMDX_shader_enqueue
VkResult vkGetExecutionGraphPipelineNodeIndexAMDX(
 VkDevice device,
 VkPipeline executionGraph,
 const VkPipelineShaderStageNodeCreateInfoAMDX* pNodeInfo,
 uint32_t* pNodeIndex);

• device is the that executionGraph was created on.

• executionGraph is the execution graph pipeline to query the internal node index for.

• pNodeInfo is a pointer to a VkPipelineShaderStageNodeCreateInfoAMDX structure identifying
the name and index of the node to query.

• pNodeIndex is the returned internal node index of the identified node.

Once this function returns, the contents of pNodeIndex contain the internal node index of the

3623

identified node.

Valid Usage

• VUID-vkGetExecutionGraphPipelineNodeIndexAMDX-pNodeInfo-09140
pNodeInfo->pName must not be NULL

• VUID-vkGetExecutionGraphPipelineNodeIndexAMDX-pNodeInfo-09141
pNodeInfo->index must not be VK_SHADER_INDEX_UNUSED_AMDX

• VUID-vkGetExecutionGraphPipelineNodeIndexAMDX-executionGraph-09142
There must be a node in executionGraph with a shader name and index equal to
pNodeInfo->pName and pNodeInfo->index

Valid Usage (Implicit)

• VUID-vkGetExecutionGraphPipelineNodeIndexAMDX-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetExecutionGraphPipelineNodeIndexAMDX-executionGraph-parameter
executionGraph must be a valid VkPipeline handle

• VUID-vkGetExecutionGraphPipelineNodeIndexAMDX-pNodeInfo-parameter
pNodeInfo must be a valid pointer to a valid VkPipelineShaderStageNodeCreateInfoAMDX
structure

• VUID-vkGetExecutionGraphPipelineNodeIndexAMDX-pNodeIndex-parameter
pNodeIndex must be a valid pointer to a uint32_t value

• VUID-vkGetExecutionGraphPipelineNodeIndexAMDX-executionGraph-parent
executionGraph must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

44.2. Initializing Scratch Memory
Implementations may need scratch memory to manage dispatch queues or similar when executing
a pipeline graph, and this is explicitly managed by the application.

To query the scratch space required to dispatch an execution graph, call:

// Provided by VK_AMDX_shader_enqueue

3624

VkResult vkGetExecutionGraphPipelineScratchSizeAMDX(
 VkDevice device,
 VkPipeline executionGraph,
 VkExecutionGraphPipelineScratchSizeAMDX* pSizeInfo);

• device is the that executionGraph was created on.

• executionGraph is the execution graph pipeline to query the scratch space for.

• pSizeInfo is a pointer to a VkExecutionGraphPipelineScratchSizeAMDX structure that will
contain the required scratch size.

After this function returns, information about the scratch space required will be returned in
pSizeInfo.

Valid Usage (Implicit)

• VUID-vkGetExecutionGraphPipelineScratchSizeAMDX-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetExecutionGraphPipelineScratchSizeAMDX-executionGraph-parameter
executionGraph must be a valid VkPipeline handle

• VUID-vkGetExecutionGraphPipelineScratchSizeAMDX-pSizeInfo-parameter
pSizeInfo must be a valid pointer to a VkExecutionGraphPipelineScratchSizeAMDX
structure

• VUID-vkGetExecutionGraphPipelineScratchSizeAMDX-executionGraph-parent
executionGraph must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkExecutionGraphPipelineScratchSizeAMDX structure is defined as:

// Provided by VK_AMDX_shader_enqueue
typedef struct VkExecutionGraphPipelineScratchSizeAMDX {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize size;
} VkExecutionGraphPipelineScratchSizeAMDX;

• sType is a VkStructureType value identifying this structure.

3625

• pNext is NULL or a pointer to a structure extending this structure.

• size indicates the scratch space required for dispatch the queried execution graph.

Valid Usage (Implicit)

• VUID-VkExecutionGraphPipelineScratchSizeAMDX-sType-sType
sType must be VK_STRUCTURE_TYPE_EXECUTION_GRAPH_PIPELINE_SCRATCH_SIZE_AMDX

To initialize scratch memory for a particular execution graph, call:

// Provided by VK_AMDX_shader_enqueue
void vkCmdInitializeGraphScratchMemoryAMDX(
 VkCommandBuffer commandBuffer,
 VkDeviceAddress scratch);

• commandBuffer is the command buffer into which the command will be recorded.

• scratch is a pointer to the scratch memory to be initialized.

This command must be called before using scratch to dispatch the currently bound execution
graph pipeline.

Execution of this command may modify any memory locations in the range [scratch,scratch + size),
where size is the value returned in VkExecutionGraphPipelineScratchSizeAMDX::size by
VkExecutionGraphPipelineScratchSizeAMDX for the currently bound execution graph pipeline.
Accesses to this memory range are performed in the VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT
pipeline stage with the VK_ACCESS_2_SHADER_STORAGE_READ_BIT and
VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT access flags.

If any portion of scratch is modified by any command other than vkCmdDispatchGraphAMDX,
vkCmdDispatchGraphIndirectAMDX, vkCmdDispatchGraphIndirectCountAMDX, or
vkCmdInitializeGraphScratchMemoryAMDX with the same execution graph, it must be reinitialized for
the execution graph again before dispatching against it.

Valid Usage

• VUID-vkCmdInitializeGraphScratchMemoryAMDX-scratch-09143
scratch must be the device address of an allocated memory range at least as large as the
value of VkExecutionGraphPipelineScratchSizeAMDX::size returned by
VkExecutionGraphPipelineScratchSizeAMDX for the currently bound execution graph
pipeline.

• VUID-vkCmdInitializeGraphScratchMemoryAMDX-scratch-09144
scratch must be a multiple of 64

3626

Valid Usage (Implicit)

• VUID-vkCmdInitializeGraphScratchMemoryAMDX-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdInitializeGraphScratchMemoryAMDX-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdInitializeGraphScratchMemoryAMDX-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdInitializeGraphScratchMemoryAMDX-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdInitializeGraphScratchMemoryAMDX-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdInitializeGraphScratchMemoryAMDX-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Outside Graphics
Compute

Action

44.3. Dispatching a Graph
Initial dispatch of an execution graph is done from the host in the same way as any other
command, and can be used in a similar way to compute dispatch commands, with indirect variants
available.

To record an execution graph dispatch, call:

// Provided by VK_AMDX_shader_enqueue
void vkCmdDispatchGraphAMDX(
 VkCommandBuffer commandBuffer,
 VkDeviceAddress scratch,
 const VkDispatchGraphCountInfoAMDX* pCountInfo);

3627

• commandBuffer is the command buffer into which the command will be recorded.

• scratch is a pointer to the scratch memory to be used.

• pCountInfo is a host pointer to a VkDispatchGraphCountInfoAMDX structure defining the nodes
which will be initially executed.

When this command is executed, the nodes specified in pCountInfo are executed. Nodes executed as
part of this command are not implicitly synchronized in any way against each other once they are
dispatched.

For this command, all device/host pointers in substructures are treated as host pointers and read
only during host execution of this command. Once this command returns, no reference to the
original pointers is retained.

Execution of this command may modify any memory locations in the range [scratch,scratch + size),
where size is the value returned in VkExecutionGraphPipelineScratchSizeAMDX::size by
VkExecutionGraphPipelineScratchSizeAMDX for the currently bound execution graph pipeline
Accesses to this memory range are performed in the VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT
pipeline stage with the VK_ACCESS_2_SHADER_STORAGE_READ_BIT and
VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT access flags.

Valid Usage

• VUID-vkCmdDispatchGraphAMDX-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchGraphAMDX-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchGraphAMDX-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchGraphAMDX-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

3628

• VUID-vkCmdDispatchGraphAMDX-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatchGraphAMDX-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatchGraphAMDX-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatchGraphAMDX-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDispatchGraphAMDX-None-02693
If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDispatchGraphAMDX-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchGraphAMDX-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchGraphAMDX-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDispatchGraphAMDX-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDispatchGraphAMDX-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to

3629

VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDispatchGraphAMDX-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDispatchGraphAMDX-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphAMDX-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphAMDX-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphAMDX-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphAMDX-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphAMDX-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphAMDX-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphAMDX-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was

3630

not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphAMDX-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphAMDX-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphAMDX-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDispatchGraphAMDX-None-08117
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphAMDX-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDispatchGraphAMDX-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDispatchGraphAMDX-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDispatchGraphAMDX-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDispatchGraphAMDX-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatchGraphAMDX-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any

3631

VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatchGraphAMDX-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDispatchGraphAMDX-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDispatchGraphAMDX-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchGraphAMDX-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchGraphAMDX-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchGraphAMDX-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDispatchGraphAMDX-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatchGraphAMDX-None-06550

3632

If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatchGraphAMDX-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDispatchGraphAMDX-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDispatchGraphAMDX-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatchGraphAMDX-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed
using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDispatchGraphAMDX-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDispatchGraphAMDX-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDispatchGraphAMDX-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchGraphAMDX-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchGraphAMDX-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchGraphAMDX-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchGraphAMDX-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the

3633

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchGraphAMDX-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchGraphAMDX-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchGraphAMDX-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchGraphAMDX-OpImageBoxFilterQCOM-06973
If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDispatchGraphAMDX-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphAMDX-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphAMDX-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDispatchGraphAMDX-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchGraphAMDX-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchGraphAMDX-OpImageBlockMatchWindow-09215

3634

If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphAMDX-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDispatchGraphAMDX-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDispatchGraphAMDX-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatchGraphAMDX-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,
VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatchGraphAMDX-commandBuffer-09181
commandBuffer must not be a protected command buffer

• VUID-vkCmdDispatchGraphAMDX-commandBuffer-09182
commandBuffer must be a primary command buffer

• VUID-vkCmdDispatchGraphAMDX-scratch-09183
scratch must be the device address of an allocated memory range at least as large as the
value of VkExecutionGraphPipelineScratchSizeAMDX::size returned by
VkExecutionGraphPipelineScratchSizeAMDX for the currently bound execution graph
pipeline

• VUID-vkCmdDispatchGraphAMDX-scratch-09184
scratch must be a device address within a VkBuffer created with the
VK_BUFFER_USAGE_EXECUTION_GRAPH_SCRATCH_BIT_AMDX or
VK_BUFFER_USAGE_2_EXECUTION_GRAPH_SCRATCH_BIT_AMDX flag

• VUID-vkCmdDispatchGraphAMDX-scratch-09185
Device memory in the range [scratch,scratch
VkExecutionGraphPipelineScratchSizeAMDX::size) must have been initialized with
vkCmdInitializeGraphScratchMemoryAMDX using the currently bound execution graph
pipeline, and not modified after that by anything other than another execution graph
dispatch command

• VUID-vkCmdDispatchGraphAMDX-maxComputeWorkGroupCount-09186
Execution of this command must not cause a node to be dispatched with a larger number
of workgroups than that specified by either a MaxNumWorkgroupsAMDX decoration in the
dispatched node or maxComputeWorkGroupCount

• VUID-vkCmdDispatchGraphAMDX-maxExecutionGraphShaderPayloadCount-09187

3635

Execution of this command must not cause any shader to initialize more than
maxExecutionGraphShaderPayloadCount output payloads

• VUID-vkCmdDispatchGraphAMDX-NodeMaxPayloadsAMDX-09188
Execution of this command must not cause any shader that declares NodeMaxPayloadsAMDX
to initialize more output payloads than specified by the max number of payloads for that
decoration. This requirement applies to each NodeMaxPayloadsAMDX decoration separately

• VUID-vkCmdDispatchGraphAMDX-pCountInfo-09145
pCountInfo->infos must be a host pointer to a memory allocation at least as large as the
product of count and stride

• VUID-vkCmdDispatchGraphAMDX-infos-09146
Host memory locations at indexes in the range [infos, infos + (count*stride)), at a
granularity of stride must contain valid VkDispatchGraphInfoAMDX structures in the
first 24 bytes

• VUID-vkCmdDispatchGraphAMDX-pCountInfo-09147
For each VkDispatchGraphInfoAMDX structure in pCountInfo->infos, payloads must be a
host pointer to a memory allocation at least as large as the product of payloadCount and
payloadStride

• VUID-vkCmdDispatchGraphAMDX-pCountInfo-09148
For each VkDispatchGraphInfoAMDX structure in pCountInfo->infos, nodeIndex must be a
valid node index in the currently bound execution graph pipeline, as returned by
vkGetExecutionGraphPipelineNodeIndexAMDX

• VUID-vkCmdDispatchGraphAMDX-pCountInfo-09149
For each VkDispatchGraphInfoAMDX structure in pCountInfo->infos, host memory
locations at indexes in the range [payloads, payloads + (payloadCount * payloadStride)), at a
granularity of payloadStride must contain a payload matching the size of the input
payload expected by the node in nodeIndex in the first bytes

Valid Usage (Implicit)

• VUID-vkCmdDispatchGraphAMDX-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatchGraphAMDX-pCountInfo-parameter
pCountInfo must be a valid pointer to a valid VkDispatchGraphCountInfoAMDX structure

• VUID-vkCmdDispatchGraphAMDX-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDispatchGraphAMDX-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdDispatchGraphAMDX-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDispatchGraphAMDX-videocoding
This command must only be called outside of a video coding scope

3636

• VUID-vkCmdDispatchGraphAMDX-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Outside Graphics
Compute

Action

To record an execution graph dispatch with node and payload parameters read on device, call:

// Provided by VK_AMDX_shader_enqueue
void vkCmdDispatchGraphIndirectAMDX(
 VkCommandBuffer commandBuffer,
 VkDeviceAddress scratch,
 const VkDispatchGraphCountInfoAMDX* pCountInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• scratch is a pointer to the scratch memory to be used.

• pCountInfo is a host pointer to a VkDispatchGraphCountInfoAMDX structure defining the nodes
which will be initially executed.

When this command is executed, the nodes specified in pCountInfo are executed. Nodes executed as
part of this command are not implicitly synchronized in any way against each other once they are
dispatched.

For this command, all device/host pointers in substructures are treated as device pointers and read
during device execution of this command. The allocation and contents of these pointers only needs
to be valid during device execution. All of these addresses will be read in the
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT pipeline stage with the
VK_ACCESS_2_SHADER_STORAGE_READ_BIT access flag.

Execution of this command may modify any memory locations in the range [scratch,scratch + size),
where size is the value returned in VkExecutionGraphPipelineScratchSizeAMDX::size by
VkExecutionGraphPipelineScratchSizeAMDX for the currently bound execution graph pipeline.
Accesses to this memory range are performed in the VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT
pipeline stage with the VK_ACCESS_2_SHADER_STORAGE_READ_BIT and

3637

VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT access flags.

Valid Usage

• VUID-vkCmdDispatchGraphIndirectAMDX-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-02693

3638

If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDispatchGraphIndirectAMDX-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchGraphIndirectAMDX-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchGraphIndirectAMDX-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDispatchGraphIndirectAMDX-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDispatchGraphIndirectAMDX-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain

3639

VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphIndirectAMDX-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08117

3640

If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDispatchGraphIndirectAMDX-uniformBuffers-06935

3641

If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchGraphIndirectAMDX-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchGraphIndirectAMDX-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDispatchGraphIndirectAMDX-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatchGraphIndirectAMDX-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatchGraphIndirectAMDX-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDispatchGraphIndirectAMDX-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDispatchGraphIndirectAMDX-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed

3642

using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDispatchGraphIndirectAMDX-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchGraphIndirectAMDX-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchGraphIndirectAMDX-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchGraphIndirectAMDX-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchGraphIndirectAMDX-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchGraphIndirectAMDX-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageBoxFilterQCOM-06973

3643

If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDispatchGraphIndirectAMDX-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDispatchGraphIndirectAMDX-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatchGraphIndirectAMDX-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,

3644

VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatchGraphIndirectAMDX-commandBuffer-09181
commandBuffer must not be a protected command buffer

• VUID-vkCmdDispatchGraphIndirectAMDX-commandBuffer-09182
commandBuffer must be a primary command buffer

• VUID-vkCmdDispatchGraphIndirectAMDX-scratch-09183
scratch must be the device address of an allocated memory range at least as large as the
value of VkExecutionGraphPipelineScratchSizeAMDX::size returned by
VkExecutionGraphPipelineScratchSizeAMDX for the currently bound execution graph
pipeline

• VUID-vkCmdDispatchGraphIndirectAMDX-scratch-09184
scratch must be a device address within a VkBuffer created with the
VK_BUFFER_USAGE_EXECUTION_GRAPH_SCRATCH_BIT_AMDX or
VK_BUFFER_USAGE_2_EXECUTION_GRAPH_SCRATCH_BIT_AMDX flag

• VUID-vkCmdDispatchGraphIndirectAMDX-scratch-09185
Device memory in the range [scratch,scratch
VkExecutionGraphPipelineScratchSizeAMDX::size) must have been initialized with
vkCmdInitializeGraphScratchMemoryAMDX using the currently bound execution graph
pipeline, and not modified after that by anything other than another execution graph
dispatch command

• VUID-vkCmdDispatchGraphIndirectAMDX-maxComputeWorkGroupCount-09186
Execution of this command must not cause a node to be dispatched with a larger number
of workgroups than that specified by either a MaxNumWorkgroupsAMDX decoration in the
dispatched node or maxComputeWorkGroupCount

• VUID-vkCmdDispatchGraphIndirectAMDX-maxExecutionGraphShaderPayloadCount-
09187
Execution of this command must not cause any shader to initialize more than
maxExecutionGraphShaderPayloadCount output payloads

• VUID-vkCmdDispatchGraphIndirectAMDX-NodeMaxPayloadsAMDX-09188
Execution of this command must not cause any shader that declares NodeMaxPayloadsAMDX
to initialize more output payloads than specified by the max number of payloads for that
decoration. This requirement applies to each NodeMaxPayloadsAMDX decoration separately

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-09150
pCountInfo->infos must be a device pointer to a memory allocation at least as large as the
product of count and stride when this command is executed on the device

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-09151
pCountInfo->infos must be a device address within a VkBuffer created with the
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT flag

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-09152
pCountInfo->infos must be a multiple of executionGraphDispatchAddressAlignment

3645

• VUID-vkCmdDispatchGraphIndirectAMDX-infos-09153
Device memory locations at indexes in the range [infos, infos + (count*stride)), at a
granularity of stride must contain valid VkDispatchGraphInfoAMDX structures in the
first 24 bytes when this command is executed on the device

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-09154
For each VkDispatchGraphInfoAMDX structure in pCountInfo->infos, payloads must be a
device pointer to a memory allocation at least as large as the product of payloadCount and
payloadStride when this command is executed on the device

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-09155
For each VkDispatchGraphInfoAMDX structure in pCountInfo->infos, payloads must be a
device address within a VkBuffer created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT
flag

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-09156
For each VkDispatchGraphInfoAMDX structure in pCountInfo->infos, payloads must be a
multiple of executionGraphDispatchAddressAlignment

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-09157
For each VkDispatchGraphInfoAMDX structure in pCountInfo->infos, nodeIndex must be a
valid node index in the currently bound execution graph pipeline, as returned by
vkGetExecutionGraphPipelineNodeIndexAMDX when this command is executed on the
device

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-09158
For each VkDispatchGraphInfoAMDX structure in pCountInfo->infos, device memory
locations at indexes in the range [payloads, payloads + (payloadCount * payloadStride)), at a
granularity of payloadStride must contain a payload matching the size of the input
payload expected by the node in nodeIndex in the first bytes when this command is
executed on the device

Valid Usage (Implicit)

• VUID-vkCmdDispatchGraphIndirectAMDX-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatchGraphIndirectAMDX-pCountInfo-parameter
pCountInfo must be a valid pointer to a valid VkDispatchGraphCountInfoAMDX structure

• VUID-vkCmdDispatchGraphIndirectAMDX-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDispatchGraphIndirectAMDX-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdDispatchGraphIndirectAMDX-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDispatchGraphIndirectAMDX-videocoding
This command must only be called outside of a video coding scope

3646

• VUID-vkCmdDispatchGraphIndirectAMDX-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Outside Graphics
Compute

Action

To record an execution graph dispatch with all parameters read on device, call:

// Provided by VK_AMDX_shader_enqueue
void vkCmdDispatchGraphIndirectCountAMDX(
 VkCommandBuffer commandBuffer,
 VkDeviceAddress scratch,
 VkDeviceAddress countInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• scratch is a pointer to the scratch memory to be used.

• countInfo is a device address of a VkDispatchGraphCountInfoAMDX structure defining the
nodes which will be initially executed.

When this command is executed, the nodes specified in countInfo are executed. Nodes executed as
part of this command are not implicitly synchronized in any way against each other once they are
dispatched.

For this command, all pointers in substructures are treated as device pointers and read during
device execution of this command. The allocation and contents of these pointers only needs to be
valid during device execution. All of these addresses will be read in the
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT pipeline stage with the
VK_ACCESS_2_SHADER_STORAGE_READ_BIT access flag.

Execution of this command may modify any memory locations in the range [scratch,scratch + size),
where size is the value returned in VkExecutionGraphPipelineScratchSizeAMDX::size by
VkExecutionGraphPipelineScratchSizeAMDX for the currently bound execution graph pipeline.
Accesses to this memory range are performed in the VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT
pipeline stage with the VK_ACCESS_2_SHADER_STORAGE_READ_BIT and

3647

VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT access flags.

Valid Usage

• VUID-vkCmdDispatchGraphIndirectCountAMDX-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-02692
If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-02693

3648

If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with
VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-vkCmdDispatchGraphIndirectCountAMDX-filterCubic-02694
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command
must have a VkImageViewType and format that supports cubic filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchGraphIndirectCountAMDX-filterCubicMinmax-02695
Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of
either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this
command must have a VkImageViewType and format that supports cubic filtering
together with minmax filtering, as specified by
VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by
vkGetPhysicalDeviceImageFormatProperties2

• VUID-vkCmdDispatchGraphIndirectCountAMDX-cubicRangeClamp-09212
If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with
VK_FILTER_CUBIC_EXT as a result of this command must not have a
VkSamplerReductionModeCreateInfo::reductionMode equal to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-reductionMode-09213
Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo
::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a
result of this command must sample with VK_FILTER_CUBIC_EXT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-selectableCubicWeights-09214
If the selectableCubicWeights feature is not enabled, then any VkImageView being
sampled with VK_FILTER_CUBIC_EXT as a result of this command must have
VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to
VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-flags-02696
Any VkImage created with a VkImageCreateInfo::flags containing
VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be
sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain

3649

VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline or the
VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT ,
as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphIndirectCountAMDX-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and
VkPushConstantRange arrays used to create the current VkShaderEXT , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by the VkPipeline
bound to the pipeline bind point used by this command and the bound VkPipeline was
not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08115
If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08116
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the
VkPipeline bound to the pipeline bind point used by this command and the bound
VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08604
Descriptors in bound descriptor buffers, specified via
vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08117

3650

If the descriptors used by the VkPipeline bound to the pipeline bind point were specified
via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created
with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08119
If a descriptor is dynamically used with a VkPipeline created with
VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08605
If a descriptor is dynamically used with a VkShaderEXT created with a
VkDescriptorSetLayout that was created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must
be resident

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08606
If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline
bind point used by this command

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08608
If a pipeline is bound to the pipeline bind point used by this command, there must not
have been any calls to dynamic state setting commands for any state not specified as
dynamic in the VkPipeline object bound to the pipeline bind point used by this command,
since that pipeline was bound

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used to sample from any VkImage with a VkImageView of the type
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY,
VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command or any
VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this
command accesses a VkSampler object that uses unnormalized coordinates, that sampler
must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample*
instructions that includes a LOD bias or any offset values, in any shader stage

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08607
If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind
point used by this command, or a valid combination of valid and VK_NULL_HANDLE
shader objects must be bound to every supported shader stage corresponding to the
pipeline bind point used by this command

• VUID-vkCmdDispatchGraphIndirectCountAMDX-uniformBuffers-06935

3651

If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08612
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a uniform
buffer, it must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchGraphIndirectCountAMDX-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and that stage was created without enabling either
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers,
and the robustBufferAccess feature is not enabled, that stage must not access values
outside of the range of the buffer as specified in the descriptor set bound to the same
pipeline bind point

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-08613
If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage
corresponding to the pipeline bind point used by this command accesses a storage buffer,
it must not access values outside of the range of the buffer as specified in the descriptor
set bound to the same pipeline bind point

• VUID-vkCmdDispatchGraphIndirectCountAMDX-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatchGraphIndirectCountAMDX-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDispatchGraphIndirectCountAMDX-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDispatchGraphIndirectCountAMDX-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageWrite-08795
If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed

3652

using OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have at least as many components as the image view’s format

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageWrite-08796
If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using
OpImageWrite as a result of this command, then the Type of the Texel operand of that
instruction must have four components

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDispatchGraphIndirectCountAMDX-SampledType-04470
If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchGraphIndirectCountAMDX-SampledType-04471
If a VkImageView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchGraphIndirectCountAMDX-SampledType-04472
If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a
result of this command, the SampledType of the OpTypeImage operand of that instruction
must have a Width of 64

• VUID-vkCmdDispatchGraphIndirectCountAMDX-SampledType-04473
If a VkBufferView with a VkFormat that has a component width less than 64-bit is
accessed as a result of this command, the SampledType of the OpTypeImage operand of that
instruction must have a Width of 32

• VUID-vkCmdDispatchGraphIndirectCountAMDX-sparseImageInt64Atomics-04474
If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchGraphIndirectCountAMDX-sparseImageInt64Atomics-04475
If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions
through an OpTypeImage with a SampledType with a Width of 64 by this command

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageWeightedSampleQCOM-06971
If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageWeightedSampleQCOM-06972
If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of
this command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageBoxFilterQCOM-06973

3653

If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command,
then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageBlockMatchSSDQCOM-06974
If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageBlockMatchSADQCOM-06975
If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageBlockMatchSADQCOM-06976
If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a
reference image as result of this command, then the specified reference coordinates must
not fail integer texel coordinate validation

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageWeightedSampleQCOM-06977
If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM,
OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM,
OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM
uses a VkSampler as a result of this command, then the sampler must have been created
with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageWeightedSampleQCOM-06978
If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM,
OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM,
OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM,
OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this
command, then the sampler must not have been created with
VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageBlockMatchWindow-09215
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageBlockMatchWindow-09216
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to
read from an VkImageView as a result of this command, then the image view’s format
must be a single-component format.

• VUID-vkCmdDispatchGraphIndirectCountAMDX-OpImageBlockMatchWindow-09217
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference
image as result of this command, then the specified reference coordinates must not fail
integer texel coordinate validation

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatchGraphIndirectCountAMDX-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM,

3654

VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatchGraphIndirectCountAMDX-commandBuffer-09181
commandBuffer must not be a protected command buffer

• VUID-vkCmdDispatchGraphIndirectCountAMDX-commandBuffer-09182
commandBuffer must be a primary command buffer

• VUID-vkCmdDispatchGraphIndirectCountAMDX-scratch-09183
scratch must be the device address of an allocated memory range at least as large as the
value of VkExecutionGraphPipelineScratchSizeAMDX::size returned by
VkExecutionGraphPipelineScratchSizeAMDX for the currently bound execution graph
pipeline

• VUID-vkCmdDispatchGraphIndirectCountAMDX-scratch-09184
scratch must be a device address within a VkBuffer created with the
VK_BUFFER_USAGE_EXECUTION_GRAPH_SCRATCH_BIT_AMDX or
VK_BUFFER_USAGE_2_EXECUTION_GRAPH_SCRATCH_BIT_AMDX flag

• VUID-vkCmdDispatchGraphIndirectCountAMDX-scratch-09185
Device memory in the range [scratch,scratch
VkExecutionGraphPipelineScratchSizeAMDX::size) must have been initialized with
vkCmdInitializeGraphScratchMemoryAMDX using the currently bound execution graph
pipeline, and not modified after that by anything other than another execution graph
dispatch command

• VUID-vkCmdDispatchGraphIndirectCountAMDX-maxComputeWorkGroupCount-09186
Execution of this command must not cause a node to be dispatched with a larger number
of workgroups than that specified by either a MaxNumWorkgroupsAMDX decoration in the
dispatched node or maxComputeWorkGroupCount

• VUID-vkCmdDispatchGraphIndirectCountAMDX-
maxExecutionGraphShaderPayloadCount-09187
Execution of this command must not cause any shader to initialize more than
maxExecutionGraphShaderPayloadCount output payloads

• VUID-vkCmdDispatchGraphIndirectCountAMDX-NodeMaxPayloadsAMDX-09188
Execution of this command must not cause any shader that declares NodeMaxPayloadsAMDX
to initialize more output payloads than specified by the max number of payloads for that
decoration. This requirement applies to each NodeMaxPayloadsAMDX decoration separately

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09159
countInfo must be a device pointer to a memory allocation containing a valid
VkDispatchGraphCountInfoAMDX structure when this command is executed on the
device

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09160
countInfo must be a device address within a VkBuffer created with the
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT flag

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09161

3655

countInfo must be a multiple of executionGraphDispatchAddressAlignment

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09162
countInfo->infos must be a device pointer to a memory allocation at least as large as the
product of count and stride when this command is executed on the device

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09163
countInfo->infos must be a device address within a VkBuffer created with the
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT flag

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09164
countInfo->infos must be a multiple of executionGraphDispatchAddressAlignment

• VUID-vkCmdDispatchGraphIndirectCountAMDX-infos-09165
Device memory locations at indexes in the range [infos, infos + (count*stride)), at a
granularity of stride must contain valid VkDispatchGraphInfoAMDX structures in the
first 24 bytes when this command is executed on the device

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09166
For each VkDispatchGraphInfoAMDX structure in countInfo->infos, payloads must be a
device pointer to a memory allocation at least as large as the product of payloadCount and
payloadStride when this command is executed on the device

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09167
For each VkDispatchGraphInfoAMDX structure in countInfo->infos, payloads must be a
device address within a VkBuffer created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT
flag

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09168
For each VkDispatchGraphInfoAMDX structure in countInfo->infos, payloads must be a
multiple of executionGraphDispatchAddressAlignment

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09169
For each VkDispatchGraphInfoAMDX structure in countInfo->infos, nodeIndex must be a
valid node index in the currently bound execution graph pipeline, as returned by
vkGetExecutionGraphPipelineNodeIndexAMDX when this command is executed on the
device

• VUID-vkCmdDispatchGraphIndirectCountAMDX-countInfo-09170
For each VkDispatchGraphInfoAMDX structure in countInfo->infos, device memory
locations at indexes in the range [payloads, payloads + (payloadCount * payloadStride)), at a
granularity of payloadStride must contain a payload matching the size of the input
payload expected by the node in nodeIndex in the first bytes when this command is
executed on the device

Valid Usage (Implicit)

• VUID-vkCmdDispatchGraphIndirectCountAMDX-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatchGraphIndirectCountAMDX-commandBuffer-recording
commandBuffer must be in the recording state

3656

• VUID-vkCmdDispatchGraphIndirectCountAMDX-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdDispatchGraphIndirectCountAMDX-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDispatchGraphIndirectCountAMDX-videocoding
This command must only be called outside of a video coding scope

• VUID-vkCmdDispatchGraphIndirectCountAMDX-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary Outside Outside Graphics
Compute

Action

The VkDeviceOrHostAddressConstAMDX union is defined as:

// Provided by VK_AMDX_shader_enqueue
typedef union VkDeviceOrHostAddressConstAMDX {
 VkDeviceAddress deviceAddress;
 const void* hostAddress;
} VkDeviceOrHostAddressConstAMDX;

• deviceAddress is a buffer device address as returned by the vkGetBufferDeviceAddressKHR
command.

• hostAddress is a const host memory address.

The VkDispatchGraphCountInfoAMDX structure is defined as:

// Provided by VK_AMDX_shader_enqueue
typedef struct VkDispatchGraphCountInfoAMDX {
 uint32_t count;
 VkDeviceOrHostAddressConstAMDX infos;
 uint64_t stride;
} VkDispatchGraphCountInfoAMDX;

3657

• count is the number of dispatches to perform.

• infos is the device or host address of a flat array of VkDispatchGraphInfoAMDX structures

• stride is the byte stride between successive VkDispatchGraphInfoAMDX structures in infos

Whether infos is consumed as a device or host pointer is defined by the command this structure is
used in.

The VkDispatchGraphInfoAMDX structure is defined as:

// Provided by VK_AMDX_shader_enqueue
typedef struct VkDispatchGraphInfoAMDX {
 uint32_t nodeIndex;
 uint32_t payloadCount;
 VkDeviceOrHostAddressConstAMDX payloads;
 uint64_t payloadStride;
} VkDispatchGraphInfoAMDX;

• nodeIndex is the index of a node in an execution graph to be dispatched.

• payloadCount is the number of payloads to dispatch for the specified node.

• payloads is a device or host address pointer to a flat array of payloads with size equal to the
product of payloadCount and payloadStride

• payloadStride is the byte stride between successive payloads in payloads

Whether payloads is consumed as a device or host pointer is defined by the command this structure
is used in.

Valid Usage

• VUID-VkDispatchGraphInfoAMDX-payloadCount-09171
payloadCount must be no greater than maxExecutionGraphShaderPayloadCount

44.4. Shader Enqueue
Compute shaders in an execution graph can use the OpInitializeNodePayloadsAMDX to initialize
nodes for dispatch. Any node payload initialized in this way will be enqueued for dispatch once the
shader is done writing to the payload. As compilers may be conservative when making this
determination, shaders can further call OpFinalizeNodePayloadsAMDX to guarantee that the payload is
no longer being written.

The Node Name operand of the PayloadNodeNameAMDX decoration on a payload identifies the shader
name of the node to be enqueued, and the Shader Index operand of OpInitializeNodePayloadsAMDX
identifies the shader index. A node identified in this way is dispatched as described in the following
sections.

3658

44.4.1. Compute Nodes

Compute shaders added as nodes to an execution graph are executed differently based on the
presence or absence of the StaticNumWorkgroupsAMDX or CoalescingAMDX execution modes.

Dispatching a compute shader node that does not declare either the StaticNumWorkgroupsAMDX or
CoalescingAMDX execution mode will execute a number of workgroups in each dimension specified
by the first 12 bytes of the payload, interpreted as a VkDispatchIndirectCommand. The same
payload will be broadcast to each workgroup in the same dispatch. Additional values in the payload
are have no effect on execution.

Dispatching a compute shader node with the StaticNumWorkgroupsAMDX execution mode will execute
workgroups in each dimension according to the x, y, and z size operands to the
StaticNumWorkgroupsAMDX execution mode. The same payload will be broadcast to each workgroup in
the same dispatch. Any values in the payload have no effect on execution.

Dispatching a compute shader node with the CoalescingAMDX execution mode will enqueue a single
invocation for execution. Implementations may combine multiple such dispatches into the same
workgroup, up to the size of the workgroup. The number of invocations coalesced into a given
workgroup in this way can be queried via the CoalescedInputCountAMDX built-in. Any values in the
payload have no effect on execution.

3659

Chapter 45. Low Latency 2

45.1. Latency Reduction
To enable or disable low latency mode on a swapchain, call:

// Provided by VK_NV_low_latency2
VkResult vkSetLatencySleepModeNV(
 VkDevice device,
 VkSwapchainKHR swapchain,
 const VkLatencySleepModeInfoNV* pSleepModeInfo);

• device is the device associated with swapchain.

• swapchain is the swapchain to enable or disable low latency mode on.

• pSleepModeInfo is NULL or a pointer to a VkLatencySleepModeInfoNV structure specifying the
parameters of the latency sleep mode.

If pSleepModeInfo is NULL, vkSetLatencySleepModeNV will disable low latency mode, low latency boost,
and set the minimum present interval previously specified by VkLatencySleepModeInfoNV to zero
on swapchain. As an exception to the normal rules for objects which are externally synchronized,
the swapchain passed to vkSetLatencySleepModeNV may be simultaneously used by other threads in
calls to functions other than vkDestroySwapchainKHR. Access to the swapchain data associated
with this extension must be atomic within the implementation.

Valid Usage (Implicit)

• VUID-vkSetLatencySleepModeNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetLatencySleepModeNV-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkSetLatencySleepModeNV-pSleepModeInfo-parameter
pSleepModeInfo must be a valid pointer to a valid VkLatencySleepModeInfoNV structure

• VUID-vkSetLatencySleepModeNV-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_INITIALIZATION_FAILED

3660

The VkLatencySleepModeInfoNV structure is defined as:

// Provided by VK_NV_low_latency2
typedef struct VkLatencySleepModeInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkBool32 lowLatencyMode;
 VkBool32 lowLatencyBoost;
 uint32_t minimumIntervalUs;
} VkLatencySleepModeInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• lowLatencyMode is the toggle to enable or disable low latency mode.

• lowLatencyBoost allows an application to hint to the GPU to increase performance to provide
additional latency savings at a cost of increased power consumption.

• minimumIntervalUs is the microseconds between vkQueuePresentKHR calls for a given
swapchain that vkLatencySleepNV will enforce.

If lowLatencyMode is set to VK_FALSE, lowLatencyBoost will still hint to the GPU to increase its power
state and vkLatencySleepNV will still enforce minimumIntervalUs between vkQueuePresentKHR calls.

Valid Usage (Implicit)

• VUID-VkLatencySleepModeInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_LATENCY_SLEEP_MODE_INFO_NV

To provide the synchronization primitive used to delay host CPU work for lower latency rendering,
call:

// Provided by VK_NV_low_latency2
VkResult vkLatencySleepNV(
 VkDevice device,
 VkSwapchainKHR swapchain,
 const VkLatencySleepInfoNV* pSleepInfo);

• device is the device associated with swapchain.

• swapchain is the swapchain to delay associated CPU work based on
VkLatencySubmissionPresentIdNV submissions.

• pSleepInfo is a pointer to a VkLatencySleepInfoNV structure specifying the parameters of the
latency sleep.

vkLatencySleepNV returns immediately. Applications should use vkWaitSemaphores with
pSleepInfo->signalSemaphore to delay host CPU work. CPU work refers to application work done

3661

before presenting which includes but is not limited to: input sampling, simulation, command buffer
recording, command buffer submission, and present submission. It is recommended to call this
function before input sampling. When using this function, it should be called exactly once between
presents.

Valid Usage (Implicit)

• VUID-vkLatencySleepNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkLatencySleepNV-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkLatencySleepNV-pSleepInfo-parameter
pSleepInfo must be a valid pointer to a valid VkLatencySleepInfoNV structure

• VUID-vkLatencySleepNV-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_UNKNOWN

The VkLatencySleepInfoNV structure is defined as:

// Provided by VK_NV_low_latency2
typedef struct VkLatencySleepInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore signalSemaphore;
 uint64_t value;
} VkLatencySleepInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• signalSemaphore is a semaphore that is signaled to indicate that the application should resume
input sampling work.

• value is the value that signalSemaphore is set to for resuming sampling work.

Valid Usage

• VUID-VkLatencySleepInfoNV-signalSemaphore-09361

3662

signalSemaphore must be a timeline semaphore

Valid Usage (Implicit)

• VUID-VkLatencySleepInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_LATENCY_SLEEP_INFO_NV

• VUID-VkLatencySleepInfoNV-signalSemaphore-parameter
signalSemaphore must be a valid VkSemaphore handle

An application can provide timestamps at various stages of its frame generation work by calling:

// Provided by VK_NV_low_latency2
void vkSetLatencyMarkerNV(
 VkDevice device,
 VkSwapchainKHR swapchain,
 const VkSetLatencyMarkerInfoNV* pLatencyMarkerInfo);

• device is the device associated with swapchain.

• swapchain is the swapchain to capture timestamps on.

• pSetLatencyMarkerInfo is a pointer to a VkSetLatencyMarkerInfoNV structure specifying the
parameters of the marker to set.

At the beginning and end of simulation and render threads and beginning and end of
vkQueuePresentKHR calls, vkSetLatencyMarkerNV can be called to provide timestamps for the
application’s reference. These timestamps are returned with a call to vkGetLatencyTimingsNV
alongside driver provided timestamps at various points of interest with regards to latency within
the application. As an exception to the normal rules for objects which are externally synchronized,
the swapchain passed to vkSetLatencyMarkerNV may be simultaneously used by other threads in calls
to functions other than vkDestroySwapchainKHR. Access to the swapchain data associated with this
extension must be atomic within the implementation.

Valid Usage (Implicit)

• VUID-vkSetLatencyMarkerNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetLatencyMarkerNV-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkSetLatencyMarkerNV-pLatencyMarkerInfo-parameter
pLatencyMarkerInfo must be a valid pointer to a valid VkSetLatencyMarkerInfoNV
structure

• VUID-vkSetLatencyMarkerNV-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

3663

The VkSetLatencyMarkerInfoNV structure is defined as:

// Provided by VK_NV_low_latency2
typedef struct VkSetLatencyMarkerInfoNV {
 VkStructureType sType;
 const void* pNext;
 uint64_t presentID;
 VkLatencyMarkerNV marker;
} VkSetLatencyMarkerInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentId is an application provided value that is used to associate the timestamp with a
vkQueuePresentKHR command using VkPresentIdKHR::pPresentIds for a given present.

• marker is the type of timestamp to be recorded.

Valid Usage (Implicit)

• VUID-VkSetLatencyMarkerInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_SET_LATENCY_MARKER_INFO_NV

• VUID-VkSetLatencyMarkerInfoNV-marker-parameter
marker must be a valid VkLatencyMarkerNV value

The VkLatencyMarkerNV enum is defined as:

// Provided by VK_NV_low_latency2
typedef enum VkLatencyMarkerNV {
 VK_LATENCY_MARKER_SIMULATION_START_NV = 0,
 VK_LATENCY_MARKER_SIMULATION_END_NV = 1,
 VK_LATENCY_MARKER_RENDERSUBMIT_START_NV = 2,
 VK_LATENCY_MARKER_RENDERSUBMIT_END_NV = 3,
 VK_LATENCY_MARKER_PRESENT_START_NV = 4,
 VK_LATENCY_MARKER_PRESENT_END_NV = 5,
 VK_LATENCY_MARKER_INPUT_SAMPLE_NV = 6,
 VK_LATENCY_MARKER_TRIGGER_FLASH_NV = 7,
 VK_LATENCY_MARKER_OUT_OF_BAND_RENDERSUBMIT_START_NV = 8,
 VK_LATENCY_MARKER_OUT_OF_BAND_RENDERSUBMIT_END_NV = 9,
 VK_LATENCY_MARKER_OUT_OF_BAND_PRESENT_START_NV = 10,
 VK_LATENCY_MARKER_OUT_OF_BAND_PRESENT_END_NV = 11,
} VkLatencyMarkerNV;

The members of the VkLatencyMarkerNV are used as arguments for vkSetLatencyMarkerNV in the
use cases described below:

• VK_LATENCY_MARKER_SIMULATION_START_NV should be called at the start of the simulation execution

3664

each frame, but after the call to vkLatencySleepNV.

• VK_LATENCY_MARKER_SIMULATION_END_NV should be called at the end of the simulation execution
each frame.

• VK_LATENCY_MARKER_RENDERSUBMIT_START_NV should be called at the beginning of the render
submission execution each frame. This should be wherever Vulkan API calls are made and
must not span into asynchronous rendering.

• VK_LATENCY_MARKER_RENDERSUBMIT_END_NV should be called at the end of the render submission
execution each frame.

• VK_LATENCY_MARKER_PRESENT_START_NV should be called just before vkQueuePresentKHR.

• VK_LATENCY_MARKER_PRESENT_END_NV should be called when vkQueuePresentKHR returns.

• VK_LATENCY_MARKER_INPUT_SAMPLE_NV should be called just before the application gathers input
data.

• VK_LATENCY_MARKER_TRIGGER_FLASH_NV should be called anywhere between
VK_LATENCY_MARKER_SIMULATION_START_NV and VK_LATENCY_MARKER_SIMULATION_END_NV whenever a
left mouse click occurs.

To get an array containing the newest collected latency data, call:

// Provided by VK_NV_low_latency2
void vkGetLatencyTimingsNV(
 VkDevice device,
 VkSwapchainKHR swapchain,
 VkGetLatencyMarkerInfoNV* pLatencyMarkerInfo);

• device is the device associated with swapchain.

• swapchain is the swapchain to return data from.

• pGetLatencyMarkerInfo is a pointer to a VkGetLatencyMarkerInfoNV structure specifying the
parameters for returning latency information.

The timings returned by vkGetLatencyTimingsNV contain the timestamps requested from
vkSetLatencyMarkerNV and additional implementation-specific markers defined in
VkLatencyTimingsFrameReportNV.

Valid Usage (Implicit)

• VUID-vkGetLatencyTimingsNV-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetLatencyTimingsNV-swapchain-parameter
swapchain must be a valid VkSwapchainKHR handle

• VUID-vkGetLatencyTimingsNV-pLatencyMarkerInfo-parameter
pLatencyMarkerInfo must be a valid pointer to a VkGetLatencyMarkerInfoNV structure

• VUID-vkGetLatencyTimingsNV-swapchain-parent
swapchain must have been created, allocated, or retrieved from device

3665

The VkGetLatencyMarkerInfoNV structure is defined as:

// Provided by VK_NV_low_latency2
typedef struct VkGetLatencyMarkerInfoNV {
 VkStructureType sType;
 const void* pNext;
 uint32_t timingCount;
 VkLatencyTimingsFrameReportNV* pTimings;
} VkGetLatencyMarkerInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is either NULL or a pointer to a structure extending this structure.

• timingCount is an integer related to the number of of previous frames of latency data available
or queried, as described below.

• pTimings is either NULL or a pointer to an array of VkLatencyTimingsFrameReportNV structures.

If pTimings is NULL then the maximum number of queryable frame data is returned in timingCount.
Otherwise, timingCount must be set by the user to the number of elements in the pTimings array, and
on return the variable is overwritten with the number of values actually written to pTimings. The
elements of pTimings are arranged in the order they were requested in, with the oldest data in the
first entry.

Valid Usage (Implicit)

• VUID-VkGetLatencyMarkerInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_GET_LATENCY_MARKER_INFO_NV

• VUID-VkGetLatencyMarkerInfoNV-pTimings-parameter
If timingCount is not 0, and pTimings is not NULL, pTimings must be a valid pointer to an
array of timingCount VkLatencyTimingsFrameReportNV structures

The VkLatencyTimingsFrameReportNV structure describes latency data returned by
vkGetLatencyTimingsNV

// Provided by VK_NV_low_latency2
typedef struct VkLatencyTimingsFrameReportNV {
 VkStructureType sType;
 const void* pNext;
 uint64_t presentID;
 uint64_t inputSampleTimeUs;
 uint64_t simStartTimeUs;
 uint64_t simEndTimeUs;
 uint64_t renderSubmitStartTimeUs;
 uint64_t renderSubmitEndTimeUs;
 uint64_t presentStartTimeUs;
 uint64_t presentEndTimeUs;

3666

 uint64_t driverStartTimeUs;
 uint64_t driverEndTimeUs;
 uint64_t osRenderQueueStartTimeUs;
 uint64_t osRenderQueueEndTimeUs;
 uint64_t gpuRenderStartTimeUs;
 uint64_t gpuRenderEndTimeUs;
} VkLatencyTimingsFrameReportNV;

The members of the VkLatencyTimingsFrameReportNV structure describe the following:

• presentId is the application provided value that is used to associate the timestamp with a
vkQueuePresentKHR command using VkPresentIdKHR::pPresentIds for a given present.

• simStartTimeUs is the timestamp written when vkSetLatencyMarkerNV is called with the
VkLatencyMarkerNV enum VK_LATENCY_MARKER_SIMULATION_START_NV.

• simEndTimeUs is the timestamp written when vkSetLatencyMarkerNV is called with the
VkLatencyMarkerNV enum VK_LATENCY_MARKER_SIMULATION_END_NV

• renderStartTimeUs is the timestamp written when vkSetLatencyMarkerNV is called with the
VkLatencyMarkerNV enum VK_LATENCY_MARKER_RENDERSUBMIT_START_NV.

• renderEndTimeUs is the timestamp written when vkSetLatencyMarkerNV is called with the
VkLatencyMarkerNV enum VK_LATENCY_MARKER_RENDERSUBMIT_END_NV.

• presentStartTimeUs is the timestamp written when vkSetLatencyMarkerNV is called with the
VkLatencyMarkerNV enum VK_LATENCY_MARKER_PRESENT_START_NV.

• presentEndTimeUs is the timestamp written when vkSetLatencyMarkerNV is called with the
VkLatencyMarkerNV enum VK_LATENCY_MARKER_PRESENT_END_NV.

• driverStartTimeUs is the timestamp written when the first vkQueueSubmit for the frame is called.

• driverEndTimeUs is the timestamp written when the final vkQueueSubmit hands off from the
Vulkan Driver.

• osRenderQueueStartTimeUs is the timestamp written when the final vkQueueSubmit hands off from
the Vulkan Driver.

• osRenderQueueEndTimeUs is the timestamp written when the first submission reaches the GPU.

• gpuRenderStartTimeUs is the timestamp written when the first submission reaches the GPU.

• gpuRenderEndTimeUs is the timestamp written when the final submission finishes on the GPU for
the frame.

Valid Usage (Implicit)

• VUID-VkLatencyTimingsFrameReportNV-sType-sType
sType must be VK_STRUCTURE_TYPE_LATENCY_TIMINGS_FRAME_REPORT_NV

The VkLatencySubmissionPresentIdNV structure is defined as:

// Provided by VK_NV_low_latency2

3667

typedef struct VkLatencySubmissionPresentIdNV {
 VkStructureType sType;
 const void* pNext;
 uint64_t presentID;
} VkLatencySubmissionPresentIdNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentId is used to associate the vkQueueSubmit with the presentId used for a given
vkQueuePresentKHR via VkPresentIdKHR::pPresentIds.

For any submission to be tracked with low latency mode pacing, it needs to be associated with other
submissions in a given present. Applications must include the VkLatencySubmissionPresentIdNV
in the pNext chain of vkQueueSubmit to associate that submission with the presentId present for
low latency mode.

Valid Usage (Implicit)

• VUID-VkLatencySubmissionPresentIdNV-sType-sType
sType must be VK_STRUCTURE_TYPE_LATENCY_SUBMISSION_PRESENT_ID_NV

An application can mark a queue as Out of Band to indicate that all vkQueueSubmit calls on this
queue are ignored for latency evaluation by calling:

// Provided by VK_NV_low_latency2
void vkQueueNotifyOutOfBandNV(
 VkQueue queue,
 const VkOutOfBandQueueTypeInfoNV* pQueueTypeInfo);

• queue is the VkQueue to be marked as out of band.

• pQueueTypeInfo is a pointer to a VkOutOfBandQueueTypeInfoNV structure specifying the queue
type.

Valid Usage (Implicit)

• VUID-vkQueueNotifyOutOfBandNV-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueNotifyOutOfBandNV-pQueueTypeInfo-parameter
pQueueTypeInfo must be a valid pointer to a valid VkOutOfBandQueueTypeInfoNV
structure

3668

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

The VkOutOfBandQueueTypeInfoNV structure is defined as:

// Provided by VK_NV_low_latency2
typedef struct VkOutOfBandQueueTypeInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkOutOfBandQueueTypeNV queueType;
} VkOutOfBandQueueTypeInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• queueType describes the usage of the queue to be marked as out of band.

Valid Usage (Implicit)

• VUID-VkOutOfBandQueueTypeInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_OUT_OF_BAND_QUEUE_TYPE_INFO_NV

• VUID-VkOutOfBandQueueTypeInfoNV-queueType-parameter
queueType must be a valid VkOutOfBandQueueTypeNV value

The VkOutOfBandQueueTypeNV enum is defined as:

// Provided by VK_NV_low_latency2
typedef enum VkOutOfBandQueueTypeNV {
 VK_OUT_OF_BAND_QUEUE_TYPE_RENDER_NV = 0,
 VK_OUT_OF_BAND_QUEUE_TYPE_PRESENT_NV = 1,
} VkOutOfBandQueueTypeNV;

The members of the VkOutOfBandQueueTypeNV are used to describe the queue type in
VkOutOfBandQueueTypeInfoNV as described below:

• VK_OUT_OF_BAND_QUEUE_TYPE_RENDER_NV indicates that work will be submitted to this queue.

• VK_OUT_OF_BAND_QUEUE_TYPE_PRESENT_NV indicates that this queue will be presented from.

To allow low latency mode to be used by a swapchain, add a VkSwapchainLatencyCreateInfoNV
structure to the pNext chain of VkSwapchainCreateInfoKHR.

3669

The VkSwapchainLatencyCreateInfoNV structure is defined as:

// Provided by VK_NV_low_latency2
typedef struct VkSwapchainLatencyCreateInfoNV {
 VkStructureType sType;
 const void* pNext;
 VkBool32 latencyModeEnable;
} VkSwapchainLatencyCreateInfoNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• lowLatencyModeEnable indicates if the swapchain created will utilize low latency mode.

Valid Usage (Implicit)

• VUID-VkSwapchainLatencyCreateInfoNV-sType-sType
sType must be VK_STRUCTURE_TYPE_SWAPCHAIN_LATENCY_CREATE_INFO_NV

The VkLatencySurfaceCapabilitiesNV structure is defined as:

// Provided by VK_NV_low_latency2
typedef struct VkLatencySurfaceCapabilitiesNV {
 VkStructureType sType;
 const void* pNext;
 uint32_t presentModeCount;
 VkPresentModeKHR* pPresentModes;
} VkLatencySurfaceCapabilitiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentModeCount is the number of presentation modes provided.

• pPresentModes is list of presentation modes optimized for use with low latency mode with
presentModeCount entries.

If pPresentModes is NULL, then the number of present modes that are optimized for use with low
latency mode returned in presentModeCount. Otherwise, presentModeCount must be set by the user to
the number of elements in the pPresentModes array, and on return the variable is overwritten with
the number of values actually written to pPresentModes. If the value of presentModeCount is less than
the number of optimized present modes, at most presentModeCount values will be written to
pPresentModes.

Valid Usage (Implicit)

• VUID-VkLatencySurfaceCapabilitiesNV-sType-sType

3670

sType must be VK_STRUCTURE_TYPE_LATENCY_SURFACE_CAPABILITIES_NV

• VUID-VkLatencySurfaceCapabilitiesNV-pPresentModes-parameter
If presentModeCount is not 0, and pPresentModes is not NULL, pPresentModes must be a valid
pointer to an array of presentModeCount VkPresentModeKHR values

3671

Chapter 46. Extending Vulkan
New functionality may be added to Vulkan via either new extensions or new versions of the core,
or new versions of an extension in some cases.

This chapter describes how Vulkan is versioned, how compatibility is affected between different
versions, and compatibility rules that are followed by the Vulkan Working Group.

46.1. Instance and Device Functionality
Commands that enumerate instance properties, or that accept a VkInstance object as a parameter,
are considered instance-level functionality.

Commands that dispatch from a VkDevice object or a child object of a VkDevice, or take any of them
as a parameter, are considered device-level functionality. Types defined by a device extension are
also considered device-level functionality.

Commands that dispatch from VkPhysicalDevice, or accept a VkPhysicalDevice object as a
parameter, are considered either instance-level or device-level functionality depending if the
functionality is specified by an instance extension or device extension respectively.

Additionally, commands that enumerate physical device properties are considered device-level
functionality.

Note

Applications usually interface to Vulkan using a loader that implements only
instance-level functionality, passing device-level functionality to implementations
of the full Vulkan API on the system. In some circumstances, as these may be
implemented independently, it is possible that the loader and device
implementations on a given installation will support different versions. To allow
for this and call out when it happens, the Vulkan specification enumerates device
and instance level functionality separately - they have independent version
queries.

Note

Vulkan 1.0 initially specified new physical device enumeration functionality as
instance-level, requiring it to be included in an instance extension. As the
capabilities of device-level functionality require discovery via physical device
enumeration, this led to the situation where many device extensions required an
instance extension as well. To alleviate this extra work,
VK_KHR_get_physical_device_properties2 (and subsequently Vulkan 1.1) redefined
device-level functionality to include physical device enumeration.

46.2. Core Versions
The Vulkan Specification is regularly updated with bug fixes and clarifications. Occasionally new

3672

functionality is added to the core and at some point it is expected that there will be a desire to
perform a large, breaking change to the API. In order to indicate to developers how and when these
changes are made to the specification, and to provide a way to identify each set of changes, the
Vulkan API maintains a version number.

46.2.1. Version Numbers

The Vulkan version number comprises four parts indicating the variant, major, minor and patch
version of the Vulkan API Specification.

The variant indicates the variant of the Vulkan API supported by the implementation. This is always
0 for the Vulkan API.

Note

A non-zero variant indicates the API is a variant of the Vulkan API and
applications will typically need to be modified to run against it. The variant field
was a later addition to the version number, added in version 1.2.175 of the
Specification. As Vulkan uses variant 0, this change is fully backwards compatible
with the previous version number format for Vulkan implementations. New
version number macros have been added for this change and the old macros
deprecated. For existing applications using the older format and macros, an
implementation with non-zero variant will decode as a very high Vulkan version.
The high version number should be detectable by applications performing suitable
version checking.

The major version indicates a significant change in the API, which will encompass a wholly new
version of the specification.

The minor version indicates the incorporation of new functionality into the core specification.

The patch version indicates bug fixes, clarifications, and language improvements have been
incorporated into the specification.

Compatibility guarantees made about versions of the API sharing any of the same version numbers
are documented in Core Versions

The version number is used in several places in the API. In each such use, the version numbers are
packed into a 32-bit integer as follows:

• The variant is a 3-bit integer packed into bits 31-29.

• The major version is a 7-bit integer packed into bits 28-22.

• The minor version number is a 10-bit integer packed into bits 21-12.

• The patch version number is a 12-bit integer packed into bits 11-0.

VK_API_VERSION_VARIANT extracts the API variant number from a packed version number:

// Provided by VK_VERSION_1_0

3673

#define VK_API_VERSION_VARIANT(version) ((uint32_t)(version) >> 29U)

VK_API_VERSION_MAJOR extracts the API major version number from a packed version number:

// Provided by VK_VERSION_1_0
#define VK_API_VERSION_MAJOR(version) (((uint32_t)(version) >> 22U) & 0x7FU)

VK_VERSION_MAJOR extracts the API major version number from a packed version number:

// Provided by VK_VERSION_1_0
// DEPRECATED: This define is deprecated. VK_API_VERSION_MAJOR should be used instead.
#define VK_VERSION_MAJOR(version) ((uint32_t)(version) >> 22U)

VK_API_VERSION_MINOR extracts the API minor version number from a packed version number:

// Provided by VK_VERSION_1_0
#define VK_API_VERSION_MINOR(version) (((uint32_t)(version) >> 12U) & 0x3FFU)

VK_VERSION_MINOR extracts the API minor version number from a packed version number:

// Provided by VK_VERSION_1_0
// DEPRECATED: This define is deprecated. VK_API_VERSION_MINOR should be used instead.
#define VK_VERSION_MINOR(version) (((uint32_t)(version) >> 12U) & 0x3FFU)

VK_API_VERSION_PATCH extracts the API patch version number from a packed version number:

// Provided by VK_VERSION_1_0
#define VK_API_VERSION_PATCH(version) ((uint32_t)(version) & 0xFFFU)

VK_VERSION_PATCH extracts the API patch version number from a packed version number:

// Provided by VK_VERSION_1_0
// DEPRECATED: This define is deprecated. VK_API_VERSION_PATCH should be used instead.
#define VK_VERSION_PATCH(version) ((uint32_t)(version) & 0xFFFU)

VK_MAKE_API_VERSION constructs an API version number.

// Provided by VK_VERSION_1_0
#define VK_MAKE_API_VERSION(variant, major, minor, patch) \
 ((((uint32_t)(variant)) << 29U) | (((uint32_t)(major)) << 22U) |
(((uint32_t)(minor)) << 12U) | ((uint32_t)(patch)))

3674

• variant is the variant number.

• major is the major version number.

• minor is the minor version number.

• patch is the patch version number.

VK_MAKE_VERSION constructs an API version number.

// Provided by VK_VERSION_1_0
// DEPRECATED: This define is deprecated. VK_MAKE_API_VERSION should be used instead.
#define VK_MAKE_VERSION(major, minor, patch) \
 ((((uint32_t)(major)) << 22U) | (((uint32_t)(minor)) << 12U) |
((uint32_t)(patch)))

• major is the major version number.

• minor is the minor version number.

• patch is the patch version number.

VK_API_VERSION_1_0 returns the API version number for Vulkan 1.0.0.

// Provided by VK_VERSION_1_0
// Vulkan 1.0 version number
#define VK_API_VERSION_1_0 VK_MAKE_API_VERSION(0, 1, 0, 0)// Patch version should
always be set to 0

VK_API_VERSION_1_1 returns the API version number for Vulkan 1.1.0.

// Provided by VK_VERSION_1_1
// Vulkan 1.1 version number
#define VK_API_VERSION_1_1 VK_MAKE_API_VERSION(0, 1, 1, 0)// Patch version should
always be set to 0

VK_API_VERSION_1_2 returns the API version number for Vulkan 1.2.0.

// Provided by VK_VERSION_1_2
// Vulkan 1.2 version number
#define VK_API_VERSION_1_2 VK_MAKE_API_VERSION(0, 1, 2, 0)// Patch version should
always be set to 0

VK_API_VERSION_1_3 returns the API version number for Vulkan 1.3.0.

// Provided by VK_VERSION_1_3
// Vulkan 1.3 version number
#define VK_API_VERSION_1_3 VK_MAKE_API_VERSION(0, 1, 3, 0)// Patch version should

3675

always be set to 0

46.2.2. Querying Version Support

The version of instance-level functionality can be queried by calling vkEnumerateInstanceVersion.

The version of device-level functionality can be queried by calling vkGetPhysicalDeviceProperties
or vkGetPhysicalDeviceProperties2, and is returned in VkPhysicalDeviceProperties::apiVersion,
encoded as described in Version Numbers.

46.3. Layers
When a layer is enabled, it inserts itself into the call chain for Vulkan commands the layer is
interested in. Layers can be used for a variety of tasks that extend the base behavior of Vulkan
beyond what is required by the specification - such as call logging, tracing, validation, or providing
additional extensions.

Note

For example, an implementation is not expected to check that the value of enums
used by the application fall within allowed ranges. Instead, a validation layer
would do those checks and flag issues. This avoids a performance penalty during
production use of the application because those layers would not be enabled in
production.

Note

Vulkan layers may wrap object handles (i.e. return a different handle value to the
application than that generated by the implementation). This is generally
discouraged, as it increases the probability of incompatibilities with new
extensions. The validation layers wrap handles in order to track the proper use
and destruction of each object. See the “Architecture of the Vulkan Loader
Interfaces” document for additional information.

To query the available layers, call:

// Provided by VK_VERSION_1_0
VkResult vkEnumerateInstanceLayerProperties(
 uint32_t* pPropertyCount,
 VkLayerProperties* pProperties);

• pPropertyCount is a pointer to an integer related to the number of layer properties available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkLayerProperties structures.

If pProperties is NULL, then the number of layer properties available is returned in pPropertyCount.
Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the
pProperties array, and on return the variable is overwritten with the number of structures actually

3676

written to pProperties. If pPropertyCount is less than the number of layer properties available, at
most pPropertyCount structures will be written, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available properties were returned.

The list of available layers may change at any time due to actions outside of the Vulkan
implementation, so two calls to vkEnumerateInstanceLayerProperties with the same parameters may
return different results, or retrieve different pPropertyCount values or pProperties contents. Once an
instance has been created, the layers enabled for that instance will continue to be enabled and
valid for the lifetime of that instance, even if some of them become unavailable for future
instances.

Valid Usage (Implicit)

• VUID-vkEnumerateInstanceLayerProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkEnumerateInstanceLayerProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkLayerProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkLayerProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkLayerProperties {
 char layerName[VK_MAX_EXTENSION_NAME_SIZE];
 uint32_t specVersion;
 uint32_t implementationVersion;
 char description[VK_MAX_DESCRIPTION_SIZE];
} VkLayerProperties;

• layerName is an array of VK_MAX_EXTENSION_NAME_SIZE char containing a null-terminated UTF-8
string which is the name of the layer. Use this name in the ppEnabledLayerNames array passed in
the VkInstanceCreateInfo structure to enable this layer for an instance.

• specVersion is the Vulkan version the layer was written to, encoded as described in Version
Numbers.

3677

• implementationVersion is the version of this layer. It is an integer, increasing with backward
compatible changes.

• description is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8
string which provides additional details that can be used by the application to identify the layer.

VK_MAX_EXTENSION_NAME_SIZE is the length in char values of an array containing a layer or extension
name string, as returned in VkLayerProperties::layerName, VkExtensionProperties::extensionName,
and other queries.

#define VK_MAX_EXTENSION_NAME_SIZE 256U

VK_MAX_DESCRIPTION_SIZE is the length in char values of an array containing a string with additional
descriptive information about a query, as returned in VkLayerProperties::description and other
queries.

#define VK_MAX_DESCRIPTION_SIZE 256U

To enable a layer, the name of the layer should be added to the ppEnabledLayerNames member of
VkInstanceCreateInfo when creating a VkInstance.

Loader implementations may provide mechanisms outside the Vulkan API for enabling specific
layers. Layers enabled through such a mechanism are implicitly enabled, while layers enabled by
including the layer name in the ppEnabledLayerNames member of VkInstanceCreateInfo are explicitly
enabled. Implicitly enabled layers are loaded before explicitly enabled layers, such that implicitly
enabled layers are closer to the application, and explicitly enabled layers are closer to the driver.
Except where otherwise specified, implicitly enabled and explicitly enabled layers differ only in the
way they are enabled, and the order in which they are loaded. Explicitly enabling a layer that is
implicitly enabled results in this layer being loaded as an implicitly enabled layer; it has no
additional effect.

46.3.1. Device Layer Deprecation

Previous versions of this specification distinguished between instance and device layers. Instance
layers were only able to intercept commands that operate on VkInstance and VkPhysicalDevice,
except they were not able to intercept vkCreateDevice. Device layers were enabled for individual
devices when they were created, and could only intercept commands operating on that device or its
child objects.

Device-only layers are now deprecated, and this specification no longer distinguishes between
instance and device layers. Layers are enabled during instance creation, and are able to intercept
all commands operating on that instance or any of its child objects. At the time of deprecation there
were no known device-only layers and no compelling reason to create one.

In order to maintain compatibility with implementations released prior to device-layer
deprecation, applications should still enumerate and enable device layers. The behavior of
vkEnumerateDeviceLayerProperties and valid usage of the ppEnabledLayerNames member of
VkDeviceCreateInfo maximizes compatibility with applications written to work with the previous

3678

requirements.

To enumerate device layers, call:

// Provided by VK_VERSION_1_0
VkResult vkEnumerateDeviceLayerProperties(
 VkPhysicalDevice physicalDevice,
 uint32_t* pPropertyCount,
 VkLayerProperties* pProperties);

• physicalDevice is the physical device that will be queried.

• pPropertyCount is a pointer to an integer related to the number of layer properties available or
queried.

• pProperties is either NULL or a pointer to an array of VkLayerProperties structures.

If pProperties is NULL, then the number of layer properties available is returned in pPropertyCount.
Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the
pProperties array, and on return the variable is overwritten with the number of structures actually
written to pProperties. If pPropertyCount is less than the number of layer properties available, at
most pPropertyCount structures will be written, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available properties were returned.

The list of layers enumerated by vkEnumerateDeviceLayerProperties must be exactly the sequence of
layers enabled for the instance. The members of VkLayerProperties for each enumerated layer must
be the same as the properties when the layer was enumerated by
vkEnumerateInstanceLayerProperties.

Note

Due to platform details on Android, vkEnumerateDeviceLayerProperties may be
called with physicalDevice equal to NULL during layer discovery. This behaviour
will only be observed by layer implementations, and not the underlying Vulkan
driver.

Valid Usage (Implicit)

• VUID-vkEnumerateDeviceLayerProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkEnumerateDeviceLayerProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkEnumerateDeviceLayerProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkLayerProperties structures

3679

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated
and their values must be ignored by implementations. However, for compatibility, only an empty
list of layers or a list that exactly matches the sequence enabled at instance creation time are valid,
and validation layers should issue diagnostics for other cases.

Regardless of the enabled layer list provided in VkDeviceCreateInfo, the sequence of layers active
for a device will be exactly the sequence of layers enabled when the parent instance was created.

46.4. Extensions
Extensions may define new Vulkan commands, structures, and enumerants. For compilation
purposes, the interfaces defined by registered extensions, including new structures and
enumerants as well as function pointer types for new commands, are defined in the Khronos-
supplied vulkan_core.h together with the core API. However, commands defined by extensions may
not be available for static linking - in which case function pointers to these commands should be
queried at runtime as described in Command Function Pointers. Extensions may be provided by
layers as well as by a Vulkan implementation.

Because extensions may extend or change the behavior of the Vulkan API, extension authors
should add support for their extensions to the Khronos validation layers. This is especially
important for new commands whose parameters have been wrapped by the validation layers. See
the “Architecture of the Vulkan Loader Interfaces” document for additional information.

Note

To enable an instance extension, the name of the extension can be added to the
ppEnabledExtensionNames member of VkInstanceCreateInfo when creating a
VkInstance.

To enable a device extension, the name of the extension can be added to the
ppEnabledExtensionNames member of VkDeviceCreateInfo when creating a VkDevice.

Physical-Device-Level functionality does not have any enabling mechanism and
can be used as long as the VkPhysicalDevice supports the device extension as
determined by vkEnumerateDeviceExtensionProperties.

Enabling an extension (with no further use of that extension) does not change the
behavior of functionality exposed by the core Vulkan API or any other extension,

3680

other than making valid the use of the commands, enums and structures defined
by that extension.

Valid Usage sections for individual commands and structures do not currently
contain which extensions have to be enabled in order to make their use valid,
although they might do so in the future. It is defined only in the Valid Usage for
Extensions section.

46.4.1. Instance Extensions

Instance extensions add new instance-level functionality to the API, outside of the core
specification.

To query the available instance extensions, call:

// Provided by VK_VERSION_1_0
VkResult vkEnumerateInstanceExtensionProperties(
 const char* pLayerName,
 uint32_t* pPropertyCount,
 VkExtensionProperties* pProperties);

• pLayerName is either NULL or a pointer to a null-terminated UTF-8 string naming the layer to
retrieve extensions from.

• pPropertyCount is a pointer to an integer related to the number of extension properties available
or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkExtensionProperties structures.

When pLayerName parameter is NULL, only extensions provided by the Vulkan implementation or by
implicitly enabled layers are returned. When pLayerName is the name of a layer, the instance
extensions provided by that layer are returned.

If pProperties is NULL, then the number of extensions properties available is returned in
pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of
elements in the pProperties array, and on return the variable is overwritten with the number of
structures actually written to pProperties. If pPropertyCount is less than the number of extension
properties available, at most pPropertyCount structures will be written, and VK_INCOMPLETE will be
returned instead of VK_SUCCESS, to indicate that not all the available properties were returned.

Because the list of available layers may change externally between calls to
vkEnumerateInstanceExtensionProperties, two calls may retrieve different results if a pLayerName is
available in one call but not in another. The extensions supported by a layer may also change
between two calls, e.g. if the layer implementation is replaced by a different version between those
calls.

Implementations must not advertise any pair of extensions that cannot be enabled together due to
behavioral differences, or any extension that cannot be enabled against the advertised version.

3681

Valid Usage (Implicit)

• VUID-vkEnumerateInstanceExtensionProperties-pLayerName-parameter
If pLayerName is not NULL, pLayerName must be a null-terminated UTF-8 string

• VUID-vkEnumerateInstanceExtensionProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkEnumerateInstanceExtensionProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkExtensionProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_LAYER_NOT_PRESENT

46.4.2. Device Extensions

Device extensions add new device-level functionality to the API, outside of the core specification.

To query the extensions available to a given physical device, call:

// Provided by VK_VERSION_1_0
VkResult vkEnumerateDeviceExtensionProperties(
 VkPhysicalDevice physicalDevice,
 const char* pLayerName,
 uint32_t* pPropertyCount,
 VkExtensionProperties* pProperties);

• physicalDevice is the physical device that will be queried.

• pLayerName is either NULL or a pointer to a null-terminated UTF-8 string naming the layer to
retrieve extensions from.

• pPropertyCount is a pointer to an integer related to the number of extension properties available
or queried, and is treated in the same fashion as the vkEnumerateInstanceExtensionProperties
::pPropertyCount parameter.

• pProperties is either NULL or a pointer to an array of VkExtensionProperties structures.

3682

When pLayerName parameter is NULL, only extensions provided by the Vulkan implementation or by
implicitly enabled layers are returned. When pLayerName is the name of a layer, the device
extensions provided by that layer are returned.

Implementations must not advertise any pair of extensions that cannot be enabled together due to
behavioral differences, or any extension that cannot be enabled against the advertised version.

Implementations claiming support for the Roadmap 2022 profile must advertise the
VK_KHR_global_priority extension in pProperties.

Implementations claiming support for the Roadmap 2024 profile must advertise the following
extensions in pProperties:

• VK_KHR_dynamic_rendering_local_read

• VK_KHR_load_store_op_none

• VK_KHR_shader_quad_control

• VK_KHR_shader_maximal_reconvergence

• VK_KHR_shader_subgroup_uniform_control_flow

• VK_KHR_shader_subgroup_rotate

• VK_KHR_shader_float_controls2

• VK_KHR_shader_expect_assume

• VK_KHR_line_rasterization

• VK_KHR_vertex_attribute_divisor

• VK_KHR_index_type_uint8

• VK_KHR_map_memory2

• VK_KHR_maintenance5

• VK_KHR_push_descriptor

Note

Due to platform details on Android, vkEnumerateDeviceExtensionProperties may be
called with physicalDevice equal to NULL during layer discovery. This behaviour
will only be observed by layer implementations, and not the underlying Vulkan
driver.

Valid Usage (Implicit)

• VUID-vkEnumerateDeviceExtensionProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkEnumerateDeviceExtensionProperties-pLayerName-parameter
If pLayerName is not NULL, pLayerName must be a null-terminated UTF-8 string

• VUID-vkEnumerateDeviceExtensionProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

3683

• VUID-vkEnumerateDeviceExtensionProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkExtensionProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_LAYER_NOT_PRESENT

The VkExtensionProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkExtensionProperties {
 char extensionName[VK_MAX_EXTENSION_NAME_SIZE];
 uint32_t specVersion;
} VkExtensionProperties;

• extensionName is an array of VK_MAX_EXTENSION_NAME_SIZE char containing a null-terminated UTF-8
string which is the name of the extension.

• specVersion is the version of this extension. It is an integer, incremented with backward
compatible changes.

Accessing Device-Level Functionality From a VkPhysicalDevice

Some device extensions also add support for physical-device-level functionality. Physical-device-
level functionality can be used, if the required extension is supported as advertised by
vkEnumerateDeviceExtensionProperties for a given VkPhysicalDevice.

Accessing Device-Level Functionality From a VkDevice

For commands that are dispatched from a VkDevice, or from a child object of a VkDevice, device
extensions must be enabled in vkCreateDevice.

46.5. Extension Dependencies
Some extensions are dependent on other extensions, or on specific core API versions, to function.
To enable extensions with dependencies, any required extensions must also be enabled through the
same API mechanisms when creating an instance with vkCreateInstance or a device with

3684

vkCreateDevice. Each extension which has such dependencies documents them in the appendix
summarizing that extension.

If an extension is supported (as queried by vkEnumerateInstanceExtensionProperties or
vkEnumerateDeviceExtensionProperties), then required extensions of that extension must also be
supported for the same instance or physical device.

Any device extension that has an instance extension dependency that is not enabled by
vkCreateInstance is considered to be unsupported, hence it must not be returned by
vkEnumerateDeviceExtensionProperties for any VkPhysicalDevice child of the instance. Instance
extensions do not have dependencies on device extensions.

If a required extension has been promoted to another extension or to a core API version, then as a
general rule, the dependency is also satisfied by the promoted extension or core version. This will
be true so long as any features required by the original extension are also required or enabled by
the promoted extension or core version. However, in some cases an extension is promoted while
making some of its features optional in the promoted extension or core version. In this case, the
dependency may not be satisfied. The only way to be certain is to look at the descriptions of the
original dependency and the promoted version in the Layers & Extensions and Core Revisions
appendices.

Note

There is metadata in vk.xml describing some aspects of promotion, especially
requires, promotedto and deprecatedby attributes of <extension> tags. However, the
metadata does not yet fully describe this scenario. In the future, we may extend
the XML schema to describe the full set of extensions and versions satisfying a
dependency. As discussed in more detail for Promotion below, when an extension
is promoted it does not mean that a mechanical substitution of an extension API by
the corresponding promoted API will work in exactly the same fashion; be
supported at runtime; or even exist.

46.6. Compatibility Guarantees (Informative)
This section is marked as informal as there is no binding responsibility on implementations of the
Vulkan API - these guarantees are however a contract between the Vulkan Working Group and
developers using this Specification.

46.6.1. Core Versions

Each of the major, minor, and patch versions of the Vulkan specification provide different
compatibility guarantees.

Patch Versions

A difference in the patch version indicates that a set of bug fixes or clarifications have been made
to the Specification. Informative enums returned by Vulkan commands that will not affect the
runtime behavior of a valid application may be added in a patch version (e.g. VkVendorId).

3685

The specification’s patch version is strictly increasing for a given major version of the specification;
any change to a specification as described above will result in the patch version being increased by
1. Patch versions are applied to all minor versions, even if a given minor version is not affected by
the provoking change.

Specifications with different patch versions but the same major and minor version are fully
compatible with each other - such that a valid application written against one will work with an
implementation of another.

Note

If a patch version includes a bug fix or clarification that could have a significant
impact on developer expectations, these will be highlighted in the change log.
Generally the Vulkan Working Group tries to avoid these kinds of changes, instead
fixing them in either an extension or core version.

Minor Versions

Changes in the minor version of the specification indicate that new functionality has been added to
the core specification. This will usually include new interfaces in the header, and may also include
behavior changes and bug fixes. Core functionality may be deprecated in a minor version, but will
not be obsoleted or removed.

The specification’s minor version is strictly increasing for a given major version of the
specification; any change to a specification as described above will result in the minor version
being increased by 1. Changes that can be accommodated in a patch version will not increase the
minor version.

Specifications with a lower minor version are backwards compatible with an implementation of a
specification with a higher minor version for core functionality and extensions issued with the KHR
vendor tag. Vendor and multi-vendor extensions are not guaranteed to remain functional across
minor versions, though in general they are with few exceptions - see Obsoletion for more
information.

Major Versions

A difference in the major version of specifications indicates a large set of changes which will likely
include interface changes, behavioral changes, removal of deprecated functionality, and the
modification, addition, or replacement of other functionality.

The specification’s major version is monotonically increasing; any change to the specification as
described above will result in the major version being increased. Changes that can be
accommodated in a patch or minor version will not increase the major version.

The Vulkan Working Group intends to only issue a new major version of the Specification in order
to realise significant improvements to the Vulkan API that will necessarily require breaking
compatibility.

A new major version will likely include a wholly new version of the specification to be issued -
which could include an overhaul of the versioning semantics for the minor and patch versions. The

3686

patch and minor versions of a specification are therefore not meaningful across major versions. If a
major version of the specification includes similar versioning semantics, it is expected that the
patch and the minor version will be reset to 0 for that major version.

46.6.2. Extensions

A KHR extension must be able to be enabled alongside any other KHR extension, and for any minor
or patch version of the core Specification beyond the minimum version it requires. A multi-vendor
extension should be able to be enabled alongside any KHR extension or other multi-vendor
extension, and for any minor or patch version of the core Specification beyond the minimum
version it requires. A vendor extension should be able to be enabled alongside any KHR extension,
multi-vendor extension, or other vendor extension from the same vendor, and for any minor or
patch version of the core Specification beyond the minimum version it requires. A vendor
extension may be able to be enabled alongside vendor extensions from another vendor.

The one other exception to this is if a vendor or multi-vendor extension is made obsolete by either a
core version or another extension, which will be highlighted in the extension appendix.

Promotion

Extensions, or features of an extension, may be promoted to a new core version of the API, or a
newer extension which an equal or greater number of implementors are in favour of.

When extension functionality is promoted, minor changes may be introduced, limited to the
following:

• Naming

• Non-intrusive parameter changes

• Feature advertisement/enablement

• Combining structure parameters into larger structures

• Author ID suffixes changed or removed

Note

If extension functionality is promoted, there is no guarantee of direct
compatibility, however it should require little effort to port code from the original
feature to the promoted one.

The Vulkan Working Group endeavours to ensure that larger changes are marked
as either deprecated or obsoleted as appropriate, and can do so retroactively if
necessary.

Extensions that are promoted are listed as being promoted in their extension appendices, with
reference to where they were promoted to.

When an extension is promoted, any backwards compatibility aliases which exist in the extension
will not be promoted.

 Note

3687

As a hypothetical example, if the VK_KHR_surface extension were promoted to part
of a future core version, the VK_COLOR_SPACE_SRGB_NONLINEAR_KHR token defined by
that extension would be promoted to VK_COLOR_SPACE_SRGB_NONLINEAR. However, the
VK_COLORSPACE_SRGB_NONLINEAR_KHR token aliases VK_COLOR_SPACE_SRGB_NONLINEAR_KHR.
The VK_COLORSPACE_SRGB_NONLINEAR_KHR would not be promoted, because it is a
backwards compatibility alias that exists only due to a naming mistake when the
extension was initially published.

Deprecation

Extensions may be marked as deprecated when the intended use cases either become irrelevant or
can be solved in other ways. Generally, a new feature will become available to solve the use case in
another extension or core version of the API, but it is not guaranteed.

Note

Features that are intended to replace deprecated functionality have no guarantees
of compatibility, and applications may require drastic modification in order to
make use of the new features.

Extensions that are deprecated are listed as being deprecated in their extension appendices, with
an explanation of the deprecation and any features that are relevant.

Obsoletion

Occasionally, an extension will be marked as obsolete if a new version of the core API or a new
extension is fundamentally incompatible with it. An obsoleted extension must not be used with the
extension or core version that obsoleted it.

Extensions that are obsoleted are listed as being obsoleted in their extension appendices, with
reference to what they were obsoleted by.

Aliases

When an extension is promoted or deprecated by a newer feature, some or all of its functionality
may be replicated into the newer feature. Rather than duplication of all the documentation and
definitions, the specification instead identifies the identical commands and types as aliases of one
another. Each alias is mentioned together with the definition it aliases, with the older aliases
marked as “equivalents”. Each alias of the same command has identical behavior, and each alias of
the same type has identical meaning - they can be used interchangeably in an application with no
compatibility issues.

Note

For promoted types, the aliased extension type is semantically identical to the new
core type. The C99 headers simply typedef the older aliases to the promoted types.

For promoted command aliases, however, there are two separate entry point
definitions, due to the fact that the C99 ABI has no way to alias command
definitions without resorting to macros. Calling via either entry point definition

3688

will produce identical behavior within the bounds of the specification, and should
still invoke the same entry point in the implementation. Debug tools may use
separate entry points with different debug behavior; to write the appropriate
command name to an output log, for instance.

Special Use Extensions

Some extensions exist only to support a specific purpose or specific class of application. These are
referred to as “special use extensions”. Use of these extensions in applications not meeting the
special use criteria is not recommended.

Special use cases are restricted, and only those defined below are used to describe extensions:

Table 61. Extension Special Use Cases

Special Use XML Tag Full Description

CAD support cadsupport Extension is intended to support specialized functionality
used by CAD/CAM applications.

D3D support d3demulatio
n

Extension is intended to support D3D emulation layers,
and applications ported from D3D, by adding functionality
specific to D3D.

Developer tools devtools Extension is intended to support developer tools such as
capture-replay libraries.

Debugging tools debugging Extension is intended for use by applications when
debugging.

OpenGL / ES support glemulation Extension is intended to support OpenGL and/or OpenGL
ES emulation layers, and applications ported from those
APIs, by adding functionality specific to those APIs.

Special use extensions are identified in the metadata for each such extension in the Layers &
Extensions appendix, using the name in the “Special Use” column above.

Special use extensions are also identified in vk.xml with the short name in “XML Tag” column
above, as described in the “API Extensions (extension tag)” section of the registry schema
documentation.

3689

Chapter 47. Features
Features describe functionality which is not supported on all implementations. Features are
properties of the physical device. Features are optional, and must be explicitly enabled before use.
Support for features is reported and enabled on a per-feature basis.

Note

Features are reported via the basic VkPhysicalDeviceFeatures structure, as well as
the extensible structure VkPhysicalDeviceFeatures2, which was added in the
VK_KHR_get_physical_device_properties2 extension and included in Vulkan 1.1.
When new features are added in future Vulkan versions or extensions, each
extension should introduce one new feature structure, if needed. This structure
can be added to the pNext chain of the VkPhysicalDeviceFeatures2 structure.

For convenience, new core versions of Vulkan may introduce new unified feature structures for
features promoted from extensions. At the same time, the extension’s original feature structure (if
any) is also promoted to the core API, and is an alias of the extension’s structure. This results in
multiple names for the same feature: in the original extension’s feature structure and the promoted
structure alias, in the unified feature structure. When a feature was implicitly supported and
enabled in the extension, but an explicit name was added during promotion, then the extension
itself acts as an alias for the feature as listed in the table below.

All aliases of the same feature in the core API must be reported consistently: either all must be
reported as supported, or none of them. When a promoted extension is available, any
corresponding feature aliases must be supported.

Table 62. Extension Feature Aliases

Extension Feature(s)

VK_KHR_shader_draw_parameters shaderDrawParameters

VK_KHR_draw_indirect_count drawIndirectCount

VK_KHR_sampler_mirror_clamp_to_edge samplerMirrorClampToEdge

VK_EXT_descriptor_indexing descriptorIndexing

VK_EXT_sampler_filter_minmax samplerFilterMinmax

VK_EXT_shader_viewport_index_layer shaderOutputViewportIndex, shaderOutputLayer

To query supported features, call:

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceFeatures(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceFeatures* pFeatures);

• physicalDevice is the physical device from which to query the supported features.

• pFeatures is a pointer to a VkPhysicalDeviceFeatures structure in which the physical device

3690

features are returned. For each feature, a value of VK_TRUE specifies that the feature is supported
on this physical device, and VK_FALSE specifies that the feature is not supported.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFeatures-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceFeatures-pFeatures-parameter
pFeatures must be a valid pointer to a VkPhysicalDeviceFeatures structure

Fine-grained features used by a logical device must be enabled at VkDevice creation time. If a
feature is enabled that the physical device does not support, VkDevice creation will fail and return
VK_ERROR_FEATURE_NOT_PRESENT.

The fine-grained features are enabled by passing a pointer to the VkPhysicalDeviceFeatures
structure via the pEnabledFeatures member of the VkDeviceCreateInfo structure that is passed into
the vkCreateDevice call. If a member of pEnabledFeatures is set to VK_TRUE or VK_FALSE, then the device
will be created with the indicated feature enabled or disabled, respectively. Features can also be
enabled by using the VkPhysicalDeviceFeatures2 structure.

If an application wishes to enable all features supported by a device, it can simply pass in the
VkPhysicalDeviceFeatures structure that was previously returned by vkGetPhysicalDeviceFeatures.
To disable an individual feature, the application can set the desired member to VK_FALSE in the
same structure. Setting pEnabledFeatures to NULL and not including a VkPhysicalDeviceFeatures2 in
the pNext chain of VkDeviceCreateInfo is equivalent to setting all members of the structure to
VK_FALSE.

Note

Some features, such as robustBufferAccess, may incur a runtime performance cost.
Application writers should carefully consider the implications of enabling all
supported features.

To query supported features defined by the core or extensions, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceFeatures2(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceFeatures2* pFeatures);

or the equivalent command

// Provided by VK_KHR_get_physical_device_properties2
void vkGetPhysicalDeviceFeatures2KHR(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceFeatures2* pFeatures);

3691

• physicalDevice is the physical device from which to query the supported features.

• pFeatures is a pointer to a VkPhysicalDeviceFeatures2 structure in which the physical device
features are returned.

Each structure in pFeatures and its pNext chain contains members corresponding to fine-grained
features. vkGetPhysicalDeviceFeatures2 writes each member to a boolean value indicating whether
that feature is supported.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFeatures2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceFeatures2-pFeatures-parameter
pFeatures must be a valid pointer to a VkPhysicalDeviceFeatures2 structure

The VkPhysicalDeviceFeatures2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceFeatures2 {
 VkStructureType sType;
 void* pNext;
 VkPhysicalDeviceFeatures features;
} VkPhysicalDeviceFeatures2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkPhysicalDeviceFeatures2 VkPhysicalDeviceFeatures2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• features is a VkPhysicalDeviceFeatures structure describing the fine-grained features of the
Vulkan 1.0 API.

The pNext chain of this structure is used to extend the structure with features defined by extensions.
This structure can be used in vkGetPhysicalDeviceFeatures2 or can be included in the pNext chain
of a VkDeviceCreateInfo structure, in which case it controls which features are enabled on the
device in lieu of pEnabledFeatures.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFeatures2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2

3692

The VkPhysicalDeviceFeatures structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceFeatures {
 VkBool32 robustBufferAccess;
 VkBool32 fullDrawIndexUint32;
 VkBool32 imageCubeArray;
 VkBool32 independentBlend;
 VkBool32 geometryShader;
 VkBool32 tessellationShader;
 VkBool32 sampleRateShading;
 VkBool32 dualSrcBlend;
 VkBool32 logicOp;
 VkBool32 multiDrawIndirect;
 VkBool32 drawIndirectFirstInstance;
 VkBool32 depthClamp;
 VkBool32 depthBiasClamp;
 VkBool32 fillModeNonSolid;
 VkBool32 depthBounds;
 VkBool32 wideLines;
 VkBool32 largePoints;
 VkBool32 alphaToOne;
 VkBool32 multiViewport;
 VkBool32 samplerAnisotropy;
 VkBool32 textureCompressionETC2;
 VkBool32 textureCompressionASTC_LDR;
 VkBool32 textureCompressionBC;
 VkBool32 occlusionQueryPrecise;
 VkBool32 pipelineStatisticsQuery;
 VkBool32 vertexPipelineStoresAndAtomics;
 VkBool32 fragmentStoresAndAtomics;
 VkBool32 shaderTessellationAndGeometryPointSize;
 VkBool32 shaderImageGatherExtended;
 VkBool32 shaderStorageImageExtendedFormats;
 VkBool32 shaderStorageImageMultisample;
 VkBool32 shaderStorageImageReadWithoutFormat;
 VkBool32 shaderStorageImageWriteWithoutFormat;
 VkBool32 shaderUniformBufferArrayDynamicIndexing;
 VkBool32 shaderSampledImageArrayDynamicIndexing;
 VkBool32 shaderStorageBufferArrayDynamicIndexing;
 VkBool32 shaderStorageImageArrayDynamicIndexing;
 VkBool32 shaderClipDistance;
 VkBool32 shaderCullDistance;
 VkBool32 shaderFloat64;
 VkBool32 shaderInt64;
 VkBool32 shaderInt16;
 VkBool32 shaderResourceResidency;
 VkBool32 shaderResourceMinLod;
 VkBool32 sparseBinding;
 VkBool32 sparseResidencyBuffer;

3693

 VkBool32 sparseResidencyImage2D;
 VkBool32 sparseResidencyImage3D;
 VkBool32 sparseResidency2Samples;
 VkBool32 sparseResidency4Samples;
 VkBool32 sparseResidency8Samples;
 VkBool32 sparseResidency16Samples;
 VkBool32 sparseResidencyAliased;
 VkBool32 variableMultisampleRate;
 VkBool32 inheritedQueries;
} VkPhysicalDeviceFeatures;

This structure describes the following features:

• robustBufferAccess specifies that accesses to buffers are bounds-checked against the range of
the buffer descriptor (as determined by VkDescriptorBufferInfo::range,
VkBufferViewCreateInfo::range, or the size of the buffer). Out of bounds accesses must not
cause application termination, and the effects of shader loads, stores, and atomics must
conform to an implementation-dependent behavior as described below.

◦ A buffer access is considered to be out of bounds if any of the following are true:

▪ The pointer was formed by OpImageTexelPointer and the coordinate is less than zero or
greater than or equal to the number of whole elements in the bound range.

▪ The pointer was not formed by OpImageTexelPointer and the object pointed to is not
wholly contained within the bound range. This includes accesses performed via variable
pointers where the buffer descriptor being accessed cannot be statically determined.
Uninitialized pointers and pointers equal to OpConstantNull are treated as pointing to a
zero-sized object, so all accesses through such pointers are considered to be out of
bounds. Buffer accesses through buffer device addresses are not bounds-checked.

▪ If the VkPhysicalDeviceCooperativeMatrixFeaturesNV::cooperativeMatrixRobustBufferAccess
feature is not enabled, then accesses using OpCooperativeMatrixLoadNV and
OpCooperativeMatrixStoreNV may not be bounds-checked.

▪ If the VkPhysicalDeviceCooperativeMatrixFeaturesKHR
::cooperativeMatrixRobustBufferAccess feature is not enabled, then accesses using
OpCooperativeMatrixLoadKHR and OpCooperativeMatrixStoreKHR may not be bounds-
checked.

Note

If a SPIR-V OpLoad instruction loads a structure and the tail end of the
structure is out of bounds, then all members of the structure are
considered out of bounds even if the members at the end are not
statically used.

▪ If robustBufferAccess2 is not enabled and any buffer access is determined to be out of
bounds, then any other access of the same type (load, store, or atomic) to the same buffer
that accesses an address less than 16 bytes away from the out of bounds address may
also be considered out of bounds.

3694

▪ If the access is a load that reads from the same memory locations as a prior store in the
same shader invocation, with no other intervening accesses to the same memory
locations in that shader invocation, then the result of the load may be the value stored
by the store instruction, even if the access is out of bounds. If the load is Volatile, then
an out of bounds load must return the appropriate out of bounds value.

◦ Accesses to descriptors written with a VK_NULL_HANDLE resource or view are not
considered to be out of bounds. Instead, each type of descriptor access defines a specific
behavior for accesses to a null descriptor.

◦ Out-of-bounds buffer loads will return any of the following values:

▪ If the access is to a uniform buffer and robustBufferAccess2 is enabled, loads of offsets
between the end of the descriptor range and the end of the descriptor range rounded up
to a multiple of robustUniformBufferAccessSizeAlignment bytes must return either zero
values or the contents of the memory at the offset being loaded. Loads of offsets past the
descriptor range rounded up to a multiple of robustUniformBufferAccessSizeAlignment
bytes must return zero values.

▪ If the access is to a storage buffer and robustBufferAccess2 is enabled, loads of offsets
between the end of the descriptor range and the end of the descriptor range rounded up
to a multiple of robustStorageBufferAccessSizeAlignment bytes must return either zero
values or the contents of the memory at the offset being loaded. Loads of offsets past the
descriptor range rounded up to a multiple of robustStorageBufferAccessSizeAlignment
bytes must return zero values. Similarly, stores to addresses between the end of the
descriptor range and the end of the descriptor range rounded up to a multiple of
robustStorageBufferAccessSizeAlignment bytes may be discarded.

▪ Non-atomic accesses to storage buffers that are a multiple of 32 bits may be decomposed
into 32-bit accesses that are individually bounds-checked.

▪ If the access is to an index buffer and robustBufferAccess2 is enabled, zero values must
be returned.

▪ If the access is to a uniform texel buffer or storage texel buffer and robustBufferAccess2
is enabled, zero values must be returned, and then Conversion to RGBA is applied based
on the buffer view’s format.

▪ Values from anywhere within the memory range(s) bound to the buffer (possibly
including bytes of memory past the end of the buffer, up to the end of the bound range).

▪ Zero values, or (0,0,0,x) vectors for vector reads where x is a valid value represented in
the type of the vector components and may be any of:

▪ 0, 1, or the maximum representable positive integer value, for signed or unsigned
integer components

▪ 0.0 or 1.0, for floating-point components

◦ Out-of-bounds writes may modify values within the memory range(s) bound to the buffer,
but must not modify any other memory.

▪ If robustBufferAccess2 is enabled, out of bounds writes must not modify any memory.

◦ Out-of-bounds atomics may modify values within the memory range(s) bound to the buffer,
but must not modify any other memory, and return an undefined value.

3695

▪ If robustBufferAccess2 is enabled, out of bounds atomics must not modify any memory,
and return an undefined value.

◦ If robustBufferAccess2 is disabled, vertex input attributes are considered out of bounds if the
offset of the attribute in the bound vertex buffer range plus the size of the attribute is
greater than either:

▪ vertexBufferRangeSize, if bindingStride == 0; or

▪ (vertexBufferRangeSize - (vertexBufferRangeSize % bindingStride))

where vertexBufferRangeSize is the byte size of the memory range bound to the vertex
buffer binding and bindingStride is the byte stride of the corresponding vertex input
binding. Further, if any vertex input attribute using a specific vertex input binding is out of
bounds, then all vertex input attributes using that vertex input binding for that vertex
shader invocation are considered out of bounds.

▪ If a vertex input attribute is out of bounds, it will be assigned one of the following
values:

▪ Values from anywhere within the memory range(s) bound to the buffer, converted
according to the format of the attribute.

▪ Zero values, format converted according to the format of the attribute.

▪ Zero values, or (0,0,0,x) vectors, as described above.

◦ If robustBufferAccess2 is enabled, vertex input attributes are considered out of bounds if the
offset of the attribute in the bound vertex buffer range plus the size of the attribute is
greater than the byte size of the memory range bound to the vertex buffer binding.

▪ If a vertex input attribute is out of bounds, the raw data extracted are zero values, and
missing G, B, or A components are filled with (0,0,1).

◦ If robustBufferAccess is not enabled, applications must not perform out of bounds accesses
except under the conditions enabled by the pipelineRobustness feature .

• fullDrawIndexUint32 specifies the full 32-bit range of indices is supported for indexed draw calls
when using a VkIndexType of VK_INDEX_TYPE_UINT32. maxDrawIndexedIndexValue is the maximum
index value that may be used (aside from the primitive restart index, which is always 232-1
when the VkIndexType is VK_INDEX_TYPE_UINT32). If this feature is supported,
maxDrawIndexedIndexValue must be 232-1; otherwise it must be no smaller than 224-1. See
maxDrawIndexedIndexValue.

• imageCubeArray specifies whether image views with a VkImageViewType of
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY can be created, and that the corresponding SampledCubeArray and
ImageCubeArray SPIR-V capabilities can be used in shader code.

• independentBlend specifies whether the VkPipelineColorBlendAttachmentState settings are
controlled independently per-attachment. If this feature is not enabled, the
VkPipelineColorBlendAttachmentState settings for all color attachments must be identical.
Otherwise, a different VkPipelineColorBlendAttachmentState can be provided for each bound
color attachment.

• geometryShader specifies whether geometry shaders are supported. If this feature is not enabled,
the VK_SHADER_STAGE_GEOMETRY_BIT and VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT enum values must

3696

not be used. This also specifies whether shader modules can declare the Geometry capability.

• tessellationShader specifies whether tessellation control and evaluation shaders are supported.
If this feature is not enabled, the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, and
VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO enum values must not be used.
This also specifies whether shader modules can declare the Tessellation capability.

• sampleRateShading specifies whether Sample Shading and multisample interpolation are
supported. If this feature is not enabled, the sampleShadingEnable member of the
VkPipelineMultisampleStateCreateInfo structure must be set to VK_FALSE and the
minSampleShading member is ignored. This also specifies whether shader modules can declare
the SampleRateShading capability.

• dualSrcBlend specifies whether blend operations which take two sources are supported. If this
feature is not enabled, the VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, and VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA enum values must not
be used as source or destination blending factors. See Dual-Source Blending.

• logicOp specifies whether logic operations are supported. If this feature is not enabled, the
logicOpEnable member of the VkPipelineColorBlendStateCreateInfo structure must be set to
VK_FALSE, and the logicOp member is ignored.

• multiDrawIndirect specifies whether multiple draw indirect is supported. If this feature is not
enabled, the drawCount parameter to the vkCmdDrawIndirect and vkCmdDrawIndexedIndirect
commands must be 0 or 1. The maxDrawIndirectCount member of the VkPhysicalDeviceLimits
structure must also be 1 if this feature is not supported. See maxDrawIndirectCount.

• drawIndirectFirstInstance specifies whether indirect drawing calls support the firstInstance
parameter. If this feature is not enabled, the firstInstance member of all VkDrawIndirectCommand
and VkDrawIndexedIndirectCommand structures that are provided to the vkCmdDrawIndirect and
vkCmdDrawIndexedIndirect commands must be 0.

• depthClamp specifies whether depth clamping is supported. If this feature is not enabled, the
depthClampEnable member of the VkPipelineRasterizationStateCreateInfo structure must be set
to VK_FALSE. Otherwise, setting depthClampEnable to VK_TRUE will enable depth clamping.

• depthBiasClamp specifies whether depth bias clamping is supported. If this feature is not
enabled, the depthBiasClamp member of the VkPipelineRasterizationStateCreateInfo structure
must be set to 0.0 unless the VK_DYNAMIC_STATE_DEPTH_BIAS dynamic state is enabled, and the
depthBiasClamp parameter to vkCmdSetDepthBias must be set to 0.0.

• fillModeNonSolid specifies whether point and wireframe fill modes are supported. If this feature
is not enabled, the VK_POLYGON_MODE_POINT and VK_POLYGON_MODE_LINE enum values must not be
used.

• depthBounds specifies whether depth bounds tests are supported. If this feature is not enabled,
the depthBoundsTestEnable member of the VkPipelineDepthStencilStateCreateInfo structure
must be set to VK_FALSE. When depthBoundsTestEnable is set to VK_FALSE, the minDepthBounds and
maxDepthBounds members of the VkPipelineDepthStencilStateCreateInfo structure are ignored.

• wideLines specifies whether lines with width other than 1.0 are supported. If this feature is not

3697

enabled, the lineWidth member of the VkPipelineRasterizationStateCreateInfo structure must
be set to 1.0 unless the VK_DYNAMIC_STATE_LINE_WIDTH dynamic state is enabled, and the lineWidth
parameter to vkCmdSetLineWidth must be set to 1.0. When this feature is supported, the range
and granularity of supported line widths are indicated by the lineWidthRange and
lineWidthGranularity members of the VkPhysicalDeviceLimits structure, respectively.

• largePoints specifies whether points with size greater than 1.0 are supported. If this feature is
not enabled, only a point size of 1.0 written by a shader is supported. The range and granularity
of supported point sizes are indicated by the pointSizeRange and pointSizeGranularity members
of the VkPhysicalDeviceLimits structure, respectively.

• alphaToOne specifies whether the implementation is able to replace the alpha value of the
fragment shader color output in the Multisample Coverage fragment operation. If this feature is
not enabled, then the alphaToOneEnable member of the VkPipelineMultisampleStateCreateInfo
structure must be set to VK_FALSE. Otherwise setting alphaToOneEnable to VK_TRUE will enable
alpha-to-one behavior.

• multiViewport specifies whether more than one viewport is supported. If this feature is not
enabled:

◦ The viewportCount and scissorCount members of the VkPipelineViewportStateCreateInfo
structure must be set to 1.

◦ The firstViewport and viewportCount parameters to the vkCmdSetViewport command must be
set to 0 and 1, respectively.

◦ The firstScissor and scissorCount parameters to the vkCmdSetScissor command must be set
to 0 and 1, respectively.

◦ The exclusiveScissorCount member of the
VkPipelineViewportExclusiveScissorStateCreateInfoNV structure must be set to 0 or 1.

◦ The firstExclusiveScissor and exclusiveScissorCount parameters to the
vkCmdSetExclusiveScissorNV command must be set to 0 and 1, respectively.

• samplerAnisotropy specifies whether anisotropic filtering is supported. If this feature is not
enabled, the anisotropyEnable member of the VkSamplerCreateInfo structure must be VK_FALSE.

• textureCompressionETC2 specifies whether all of the ETC2 and EAC compressed texture formats
are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK

◦ VK_FORMAT_EAC_R11_UNORM_BLOCK

◦ VK_FORMAT_EAC_R11_SNORM_BLOCK

3698

◦ VK_FORMAT_EAC_R11G11_UNORM_BLOCK

◦ VK_FORMAT_EAC_R11G11_SNORM_BLOCK

To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

• textureCompressionASTC_LDR specifies whether all of the ASTC LDR compressed texture formats
are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ASTC_4x4_UNORM_BLOCK

◦ VK_FORMAT_ASTC_4x4_SRGB_BLOCK

◦ VK_FORMAT_ASTC_5x4_UNORM_BLOCK

◦ VK_FORMAT_ASTC_5x4_SRGB_BLOCK

◦ VK_FORMAT_ASTC_5x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_5x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_6x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_6x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_6x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_6x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_8x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_8x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_8x8_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x8_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x8_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x8_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x10_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x10_SRGB_BLOCK

◦ VK_FORMAT_ASTC_12x10_UNORM_BLOCK

◦ VK_FORMAT_ASTC_12x10_SRGB_BLOCK

3699

◦ VK_FORMAT_ASTC_12x12_UNORM_BLOCK

◦ VK_FORMAT_ASTC_12x12_SRGB_BLOCK

To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

• textureCompressionBC specifies whether all of the BC compressed texture formats are supported.
If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_BC1_RGB_UNORM_BLOCK

◦ VK_FORMAT_BC1_RGB_SRGB_BLOCK

◦ VK_FORMAT_BC1_RGBA_UNORM_BLOCK

◦ VK_FORMAT_BC1_RGBA_SRGB_BLOCK

◦ VK_FORMAT_BC2_UNORM_BLOCK

◦ VK_FORMAT_BC2_SRGB_BLOCK

◦ VK_FORMAT_BC3_UNORM_BLOCK

◦ VK_FORMAT_BC3_SRGB_BLOCK

◦ VK_FORMAT_BC4_UNORM_BLOCK

◦ VK_FORMAT_BC4_SNORM_BLOCK

◦ VK_FORMAT_BC5_UNORM_BLOCK

◦ VK_FORMAT_BC5_SNORM_BLOCK

◦ VK_FORMAT_BC6H_UFLOAT_BLOCK

◦ VK_FORMAT_BC6H_SFLOAT_BLOCK

◦ VK_FORMAT_BC7_UNORM_BLOCK

◦ VK_FORMAT_BC7_SRGB_BLOCK

To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

• occlusionQueryPrecise specifies whether occlusion queries returning actual sample counts are
supported. Occlusion queries are created in a VkQueryPool by specifying the queryType of
VK_QUERY_TYPE_OCCLUSION in the VkQueryPoolCreateInfo structure which is passed to
vkCreateQueryPool. If this feature is enabled, queries of this type can enable
VK_QUERY_CONTROL_PRECISE_BIT in the flags parameter to vkCmdBeginQuery. If this feature is not
supported, the implementation supports only boolean occlusion queries. When any samples are
passed, boolean queries will return a non-zero result value, otherwise a result value of zero is
returned. When this feature is enabled and VK_QUERY_CONTROL_PRECISE_BIT is set, occlusion
queries will report the actual number of samples passed.

• pipelineStatisticsQuery specifies whether the pipeline statistics queries are supported. If this

3700

feature is not enabled, queries of type VK_QUERY_TYPE_PIPELINE_STATISTICS cannot be created,
and none of the VkQueryPipelineStatisticFlagBits bits can be set in the pipelineStatistics
member of the VkQueryPoolCreateInfo structure.

• vertexPipelineStoresAndAtomics specifies whether storage buffers and images support stores
and atomic operations in the vertex, tessellation, and geometry shader stages. If this feature is
not enabled, all storage image, storage texel buffer, and storage buffer variables used by these
stages in shader modules must be decorated with the NonWritable decoration (or the readonly
memory qualifier in GLSL).

• fragmentStoresAndAtomics specifies whether storage buffers and images support stores and
atomic operations in the fragment shader stage. If this feature is not enabled, all storage image,
storage texel buffer, and storage buffer variables used by the fragment stage in shader modules
must be decorated with the NonWritable decoration (or the readonly memory qualifier in GLSL).

• shaderTessellationAndGeometryPointSize specifies whether the PointSize built-in decoration is
available in the tessellation control, tessellation evaluation, and geometry shader stages. If this
feature is not enabled, members decorated with the PointSize built-in decoration must not be
read from or written to and all points written from a tessellation or geometry shader will have a
size of 1.0. This also specifies whether shader modules can declare the TessellationPointSize
capability for tessellation control and evaluation shaders, or if the shader modules can declare
the GeometryPointSize capability for geometry shaders. An implementation supporting this
feature must also support one or both of the tessellationShader or geometryShader features.

• shaderImageGatherExtended specifies whether the extended set of image gather instructions are
available in shader code. If this feature is not enabled, the OpImage*Gather instructions do not
support the Offset and ConstOffsets operands. This also specifies whether shader modules can
declare the ImageGatherExtended capability.

• shaderStorageImageExtendedFormats specifies whether all the “storage image extended formats”
below are supported; if this feature is supported, then the VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT
must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_R16G16_SFLOAT

◦ VK_FORMAT_B10G11R11_UFLOAT_PACK32

◦ VK_FORMAT_R16_SFLOAT

◦ VK_FORMAT_R16G16B16A16_UNORM

◦ VK_FORMAT_A2B10G10R10_UNORM_PACK32

◦ VK_FORMAT_R16G16_UNORM

◦ VK_FORMAT_R8G8_UNORM

◦ VK_FORMAT_R16_UNORM

◦ VK_FORMAT_R8_UNORM

◦ VK_FORMAT_R16G16B16A16_SNORM

◦ VK_FORMAT_R16G16_SNORM

◦ VK_FORMAT_R8G8_SNORM

◦ VK_FORMAT_R16_SNORM

3701

◦ VK_FORMAT_R8_SNORM

◦ VK_FORMAT_R16G16_SINT

◦ VK_FORMAT_R8G8_SINT

◦ VK_FORMAT_R16_SINT

◦ VK_FORMAT_R8_SINT

◦ VK_FORMAT_A2B10G10R10_UINT_PACK32

◦ VK_FORMAT_R16G16_UINT

◦ VK_FORMAT_R8G8_UINT

◦ VK_FORMAT_R16_UINT

◦ VK_FORMAT_R8_UINT

Note

shaderStorageImageExtendedFormats feature only adds a guarantee of format
support, which is specified for the whole physical device. Therefore enabling
or disabling the feature via vkCreateDevice has no practical effect.

To query for additional properties, or if the feature is not supported,
vkGetPhysicalDeviceFormatProperties and
vkGetPhysicalDeviceImageFormatProperties can be used to check for
supported properties of individual formats, as usual rules allow.

VK_FORMAT_R32G32_UINT, VK_FORMAT_R32G32_SINT, and VK_FORMAT_R32G32_SFLOAT
from StorageImageExtendedFormats SPIR-V capability, are already covered by
core Vulkan mandatory format support.

• shaderStorageImageMultisample specifies whether multisampled storage images are supported. If
this feature is not enabled, images that are created with a usage that includes
VK_IMAGE_USAGE_STORAGE_BIT must be created with samples equal to VK_SAMPLE_COUNT_1_BIT. This
also specifies whether shader modules can declare the StorageImageMultisample and
ImageMSArray capabilities.

• shaderStorageImageReadWithoutFormat specifies whether storage images and storage texel buffers
require a format qualifier to be specified when reading. shaderStorageImageReadWithoutFormat
applies only to formats listed in the storage without format list.

• shaderStorageImageWriteWithoutFormat specifies whether storage images and storage texel
buffers require a format qualifier to be specified when writing.
shaderStorageImageWriteWithoutFormat applies only to formats listed in the storage without
format list.

• shaderUniformBufferArrayDynamicIndexing specifies whether arrays of uniform buffers can be
indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must be indexed only by constant integral
expressions when aggregated into arrays in shader code. This also specifies whether shader
modules can declare the UniformBufferArrayDynamicIndexing capability.

3702

• shaderSampledImageArrayDynamicIndexing specifies whether arrays of samplers or sampled
images can be indexed by dynamically uniform integer expressions in shader code. If this
feature is not enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_SAMPLER,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also specifies whether shader modules can declare the SampledImageArrayDynamicIndexing
capability.

• shaderStorageBufferArrayDynamicIndexing specifies whether arrays of storage buffers can be
indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must be indexed only by constant integral
expressions when aggregated into arrays in shader code. This also specifies whether shader
modules can declare the StorageBufferArrayDynamicIndexing capability.

• shaderStorageImageArrayDynamicIndexing specifies whether arrays of storage images can be
indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must be indexed
only by constant integral expressions when aggregated into arrays in shader code. This also
specifies whether shader modules can declare the StorageImageArrayDynamicIndexing capability.

• shaderClipDistance specifies whether clip distances are supported in shader code. If this feature
is not enabled, any members decorated with the ClipDistance built-in decoration must not be
read from or written to in shader modules. This also specifies whether shader modules can
declare the ClipDistance capability.

• shaderCullDistance specifies whether cull distances are supported in shader code. If this feature
is not enabled, any members decorated with the CullDistance built-in decoration must not be
read from or written to in shader modules. This also specifies whether shader modules can
declare the CullDistance capability.

• shaderFloat64 specifies whether 64-bit floats (doubles) are supported in shader code. If this
feature is not enabled, 64-bit floating-point types must not be used in shader code. This also
specifies whether shader modules can declare the Float64 capability. Declaring and using 64-bit
floats is enabled for all storage classes that SPIR-V allows with the Float64 capability.

• shaderInt64 specifies whether 64-bit integers (signed and unsigned) are supported in shader
code. If this feature is not enabled, 64-bit integer types must not be used in shader code. This
also specifies whether shader modules can declare the Int64 capability. Declaring and using 64-
bit integers is enabled for all storage classes that SPIR-V allows with the Int64 capability.

• shaderInt16 specifies whether 16-bit integers (signed and unsigned) are supported in shader
code. If this feature is not enabled, 16-bit integer types must not be used in shader code. This
also specifies whether shader modules can declare the Int16 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Int16 SPIR-V capability:
Declaring and using 16-bit integers in the Private, Workgroup (for non-Block variables), and
Function storage classes is enabled, while declaring them in the interface storage classes (e.g.,
UniformConstant, Uniform, StorageBuffer, Input, Output, and PushConstant) is not enabled.

• shaderResourceResidency specifies whether image operations that return resource residency
information are supported in shader code. If this feature is not enabled, the OpImageSparse*
instructions must not be used in shader code. This also specifies whether shader modules can
declare the SparseResidency capability. The feature requires at least one of the sparseResidency*

3703

features to be supported.

• shaderResourceMinLod specifies whether image operations specifying the minimum resource LOD
are supported in shader code. If this feature is not enabled, the MinLod image operand must not
be used in shader code. This also specifies whether shader modules can declare the MinLod
capability.

• sparseBinding specifies whether resource memory can be managed at opaque sparse block level
instead of at the object level. If this feature is not enabled, resource memory must be bound
only on a per-object basis using the vkBindBufferMemory and vkBindImageMemory commands. In
this case, buffers and images must not be created with VK_BUFFER_CREATE_SPARSE_BINDING_BIT
and VK_IMAGE_CREATE_SPARSE_BINDING_BIT set in the flags member of the VkBufferCreateInfo and
VkImageCreateInfo structures, respectively. Otherwise resource memory can be managed as
described in Sparse Resource Features.

• sparseResidencyBuffer specifies whether the device can access partially resident buffers. If this
feature is not enabled, buffers must not be created with VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT
set in the flags member of the VkBufferCreateInfo structure.

• sparseResidencyImage2D specifies whether the device can access partially resident 2D images
with 1 sample per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_1_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidencyImage3D specifies whether the device can access partially resident 3D images. If
this feature is not enabled, images with an imageType of VK_IMAGE_TYPE_3D must not be created
with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidency2Samples specifies whether the physical device can access partially resident 2D
images with 2 samples per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_2_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidency4Samples specifies whether the physical device can access partially resident 2D
images with 4 samples per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_4_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidency8Samples specifies whether the physical device can access partially resident 2D
images with 8 samples per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_8_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidency16Samples specifies whether the physical device can access partially resident 2D
images with 16 samples per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_16_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

3704

• sparseResidencyAliased specifies whether the physical device can correctly access data aliased
into multiple locations. If this feature is not enabled, the VK_BUFFER_CREATE_SPARSE_ALIASED_BIT
and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT enum values must not be used in flags members of the
VkBufferCreateInfo and VkImageCreateInfo structures, respectively.

• variableMultisampleRate specifies whether all pipelines that will be bound to a command buffer
during a subpass which uses no attachments must have the same value for
VkPipelineMultisampleStateCreateInfo::rasterizationSamples. If set to VK_TRUE, the
implementation supports variable multisample rates in a subpass which uses no attachments. If
set to VK_FALSE, then all pipelines bound in such a subpass must have the same multisample
rate. This has no effect in situations where a subpass uses any attachments.

• inheritedQueries specifies whether a secondary command buffer may be executed while a
query is active.

The VkPhysicalDeviceVulkan11Features structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkan11Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 storageBuffer16BitAccess;
 VkBool32 uniformAndStorageBuffer16BitAccess;
 VkBool32 storagePushConstant16;
 VkBool32 storageInputOutput16;
 VkBool32 multiview;
 VkBool32 multiviewGeometryShader;
 VkBool32 multiviewTessellationShader;
 VkBool32 variablePointersStorageBuffer;
 VkBool32 variablePointers;
 VkBool32 protectedMemory;
 VkBool32 samplerYcbcrConversion;
 VkBool32 shaderDrawParameters;
} VkPhysicalDeviceVulkan11Features;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageBuffer16BitAccess specifies whether objects in the StorageBuffer, ShaderRecordBufferKHR,
or PhysicalStorageBuffer storage class with the Block decoration can have 16-bit integer and 16-
bit floating-point members. If this feature is not enabled, 16-bit integer or 16-bit floating-point
members must not be used in such objects. This also specifies whether shader modules can
declare the StorageBuffer16BitAccess capability.

• uniformAndStorageBuffer16BitAccess specifies whether objects in the Uniform storage class with
the Block decoration can have 16-bit integer and 16-bit floating-point members. If this feature is
not enabled, 16-bit integer or 16-bit floating-point members must not be used in such objects.
This also specifies whether shader modules can declare the UniformAndStorageBuffer16BitAccess

3705

capability.

• storagePushConstant16 specifies whether objects in the PushConstant storage class can have 16-
bit integer and 16-bit floating-point members. If this feature is not enabled, 16-bit integer or
floating-point members must not be used in such objects. This also specifies whether shader
modules can declare the StoragePushConstant16 capability.

• storageInputOutput16 specifies whether objects in the Input and Output storage classes can have
16-bit integer and 16-bit floating-point members. If this feature is not enabled, 16-bit integer or
16-bit floating-point members must not be used in such objects. This also specifies whether
shader modules can declare the StorageInputOutput16 capability.

• multiview specifies whether the implementation supports multiview rendering within a render
pass. If this feature is not enabled, the view mask of each subpass must always be zero.

• multiviewGeometryShader specifies whether the implementation supports multiview rendering
within a render pass, with geometry shaders. If this feature is not enabled, then a pipeline
compiled against a subpass with a non-zero view mask must not include a geometry shader.

• multiviewTessellationShader specifies whether the implementation supports multiview
rendering within a render pass, with tessellation shaders. If this feature is not enabled, then a
pipeline compiled against a subpass with a non-zero view mask must not include any
tessellation shaders.

• variablePointersStorageBuffer specifies whether the implementation supports the SPIR-V
VariablePointersStorageBuffer capability. When this feature is not enabled, shader modules
must not declare the SPV_KHR_variable_pointers extension or the VariablePointersStorageBuffer
capability.

• variablePointers specifies whether the implementation supports the SPIR-V VariablePointers
capability. When this feature is not enabled, shader modules must not declare the
VariablePointers capability.

• protectedMemory specifies whether protected memory is supported.

• samplerYcbcrConversion specifies whether the implementation supports sampler Y′CBCR

conversion. If samplerYcbcrConversion is VK_FALSE, sampler Y′CBCR conversion is not supported,
and samplers using sampler Y′CBCR conversion must not be used.

• shaderDrawParameters specifies whether the implementation supports the SPIR-V DrawParameters
capability. When this feature is not enabled, shader modules must not declare the
SPV_KHR_shader_draw_parameters extension or the DrawParameters capability.

If the VkPhysicalDeviceVulkan11Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceVulkan11Features can
also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan11Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES

3706

The VkPhysicalDeviceVulkan12Features structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkan12Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 samplerMirrorClampToEdge;
 VkBool32 drawIndirectCount;
 VkBool32 storageBuffer8BitAccess;
 VkBool32 uniformAndStorageBuffer8BitAccess;
 VkBool32 storagePushConstant8;
 VkBool32 shaderBufferInt64Atomics;
 VkBool32 shaderSharedInt64Atomics;
 VkBool32 shaderFloat16;
 VkBool32 shaderInt8;
 VkBool32 descriptorIndexing;
 VkBool32 shaderInputAttachmentArrayDynamicIndexing;
 VkBool32 shaderUniformTexelBufferArrayDynamicIndexing;
 VkBool32 shaderStorageTexelBufferArrayDynamicIndexing;
 VkBool32 shaderUniformBufferArrayNonUniformIndexing;
 VkBool32 shaderSampledImageArrayNonUniformIndexing;
 VkBool32 shaderStorageBufferArrayNonUniformIndexing;
 VkBool32 shaderStorageImageArrayNonUniformIndexing;
 VkBool32 shaderInputAttachmentArrayNonUniformIndexing;
 VkBool32 shaderUniformTexelBufferArrayNonUniformIndexing;
 VkBool32 shaderStorageTexelBufferArrayNonUniformIndexing;
 VkBool32 descriptorBindingUniformBufferUpdateAfterBind;
 VkBool32 descriptorBindingSampledImageUpdateAfterBind;
 VkBool32 descriptorBindingStorageImageUpdateAfterBind;
 VkBool32 descriptorBindingStorageBufferUpdateAfterBind;
 VkBool32 descriptorBindingUniformTexelBufferUpdateAfterBind;
 VkBool32 descriptorBindingStorageTexelBufferUpdateAfterBind;
 VkBool32 descriptorBindingUpdateUnusedWhilePending;
 VkBool32 descriptorBindingPartiallyBound;
 VkBool32 descriptorBindingVariableDescriptorCount;
 VkBool32 runtimeDescriptorArray;
 VkBool32 samplerFilterMinmax;
 VkBool32 scalarBlockLayout;
 VkBool32 imagelessFramebuffer;
 VkBool32 uniformBufferStandardLayout;
 VkBool32 shaderSubgroupExtendedTypes;
 VkBool32 separateDepthStencilLayouts;
 VkBool32 hostQueryReset;
 VkBool32 timelineSemaphore;
 VkBool32 bufferDeviceAddress;
 VkBool32 bufferDeviceAddressCaptureReplay;
 VkBool32 bufferDeviceAddressMultiDevice;
 VkBool32 vulkanMemoryModel;
 VkBool32 vulkanMemoryModelDeviceScope;
 VkBool32 vulkanMemoryModelAvailabilityVisibilityChains;

3707

 VkBool32 shaderOutputViewportIndex;
 VkBool32 shaderOutputLayer;
 VkBool32 subgroupBroadcastDynamicId;
} VkPhysicalDeviceVulkan12Features;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• samplerMirrorClampToEdge indicates whether the implementation supports the
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE sampler address mode. If this feature is not
enabled, the VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE sampler address mode must not be
used.

• drawIndirectCount indicates whether the implementation supports the
vkCmdDrawIndirectCount and vkCmdDrawIndexedIndirectCount functions. If this feature is
not enabled, these functions must not be used.

• storageBuffer8BitAccess indicates whether objects in the StorageBuffer, ShaderRecordBufferKHR,
or PhysicalStorageBuffer storage class with the Block decoration can have 8-bit integer
members. If this feature is not enabled, 8-bit integer members must not be used in such objects.
This also indicates whether shader modules can declare the StorageBuffer8BitAccess capability.

• uniformAndStorageBuffer8BitAccess indicates whether objects in the Uniform storage class with
the Block decoration can have 8-bit integer members. If this feature is not enabled, 8-bit integer
members must not be used in such objects. This also indicates whether shader modules can
declare the UniformAndStorageBuffer8BitAccess capability.

• storagePushConstant8 indicates whether objects in the PushConstant storage class can have 8-bit
integer members. If this feature is not enabled, 8-bit integer members must not be used in such
objects. This also indicates whether shader modules can declare the StoragePushConstant8
capability.

• shaderBufferInt64Atomics indicates whether shaders can perform 64-bit unsigned and signed
integer atomic operations on buffers.

• shaderSharedInt64Atomics indicates whether shaders can perform 64-bit unsigned and signed
integer atomic operations on shared and payload memory.

• shaderFloat16 indicates whether 16-bit floats (halfs) are supported in shader code. This also
indicates whether shader modules can declare the Float16 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Float16 SPIR-V capability:
Declaring and using 16-bit floats in the Private, Workgroup (for non-Block variables), and
Function storage classes is enabled, while declaring them in the interface storage classes (e.g.,
UniformConstant, Uniform, StorageBuffer, Input, Output, and PushConstant) is not enabled.

• shaderInt8 indicates whether 8-bit integers (signed and unsigned) are supported in shader code.
This also indicates whether shader modules can declare the Int8 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Int8 SPIR-V capability:
Declaring and using 8-bit integers in the Private, Workgroup (for non-Block variables), and
Function storage classes is enabled, while declaring them in the interface storage classes (e.g.,

3708

UniformConstant, Uniform, StorageBuffer, Input, Output, and PushConstant) is not enabled.

• descriptorIndexing indicates whether the implementation supports the minimum set of
descriptor indexing features as described in the Feature Requirements section. Enabling the
descriptorIndexing member when vkCreateDevice is called does not imply the other minimum
descriptor indexing features are also enabled. Those other descriptor indexing features must be
enabled individually as needed by the application.

• shaderInputAttachmentArrayDynamicIndexing indicates whether arrays of input attachments can
be indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the InputAttachmentArrayDynamicIndexing
capability.

• shaderUniformTexelBufferArrayDynamicIndexing indicates whether arrays of uniform texel
buffers can be indexed by dynamically uniform integer expressions in shader code. If this
feature is not enabled, resources with a descriptor type of
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must be indexed only by constant integral expressions
when aggregated into arrays in shader code. This also indicates whether shader modules can
declare the UniformTexelBufferArrayDynamicIndexing capability.

• shaderStorageTexelBufferArrayDynamicIndexing indicates whether arrays of storage texel buffers
can be indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the StorageTexelBufferArrayDynamicIndexing
capability.

• shaderUniformBufferArrayNonUniformIndexing indicates whether arrays of uniform buffers can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must not be indexed by non-uniform integer
expressions when aggregated into arrays in shader code. This also indicates whether shader
modules can declare the UniformBufferArrayNonUniformIndexing capability.

• shaderSampledImageArrayNonUniformIndexing indicates whether arrays of samplers or sampled
images can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_SAMPLER,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must not be
indexed by non-uniform integer expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the SampledImageArrayNonUniformIndexing
capability.

• shaderStorageBufferArrayNonUniformIndexing indicates whether arrays of storage buffers can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must not be indexed by non-uniform integer
expressions when aggregated into arrays in shader code. This also indicates whether shader
modules can declare the StorageBufferArrayNonUniformIndexing capability.

• shaderStorageImageArrayNonUniformIndexing indicates whether arrays of storage images can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,

3709

resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must not be indexed by
non-uniform integer expressions when aggregated into arrays in shader code. This also
indicates whether shader modules can declare the StorageImageArrayNonUniformIndexing
capability.

• shaderInputAttachmentArrayNonUniformIndexing indicates whether arrays of input attachments
can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT must not be
indexed by non-uniform integer expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the InputAttachmentArrayNonUniformIndexing
capability.

• shaderUniformTexelBufferArrayNonUniformIndexing indicates whether arrays of uniform texel
buffers can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must not
be indexed by non-uniform integer expressions when aggregated into arrays in shader code.
This also indicates whether shader modules can declare the
UniformTexelBufferArrayNonUniformIndexing capability.

• shaderStorageTexelBufferArrayNonUniformIndexing indicates whether arrays of storage texel
buffers can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must not
be indexed by non-uniform integer expressions when aggregated into arrays in shader code.
This also indicates whether shader modules can declare the
StorageTexelBufferArrayNonUniformIndexing capability.

• descriptorBindingUniformBufferUpdateAfterBind indicates whether the implementation supports
updating uniform buffer descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER.

• descriptorBindingSampledImageUpdateAfterBind indicates whether the implementation supports
updating sampled image descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE.

• descriptorBindingStorageImageUpdateAfterBind indicates whether the implementation supports
updating storage image descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

• descriptorBindingStorageBufferUpdateAfterBind indicates whether the implementation supports
updating storage buffer descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER.

• descriptorBindingUniformTexelBufferUpdateAfterBind indicates whether the implementation
supports updating uniform texel buffer descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

• descriptorBindingStorageTexelBufferUpdateAfterBind indicates whether the implementation

3710

supports updating storage texel buffer descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

• descriptorBindingUpdateUnusedWhilePending indicates whether the implementation supports
updating descriptors while the set is in use. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT must not be used.

• descriptorBindingPartiallyBound indicates whether the implementation supports statically
using a descriptor set binding in which some descriptors are not valid. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT must not be used.

• descriptorBindingVariableDescriptorCount indicates whether the implementation supports
descriptor sets with a variable-sized last binding. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT must not be used.

• runtimeDescriptorArray indicates whether the implementation supports the SPIR-V
RuntimeDescriptorArray capability. If this feature is not enabled, descriptors must not be
declared in runtime arrays.

• samplerFilterMinmax indicates whether the implementation supports a minimum set of required
formats supporting min/max filtering as defined by the filterMinmaxSingleComponentFormats
property minimum requirements. If this feature is not enabled, then
VkSamplerReductionModeCreateInfo must only use
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE.

• scalarBlockLayout indicates that the implementation supports the layout of resource blocks in
shaders using scalar alignment.

• imagelessFramebuffer indicates that the implementation supports specifying the image view for
attachments at render pass begin time via VkRenderPassAttachmentBeginInfo.

• uniformBufferStandardLayout indicates that the implementation supports the same layouts for
uniform buffers as for storage and other kinds of buffers. See Standard Buffer Layout.

• shaderSubgroupExtendedTypes is a boolean specifying whether subgroup operations can use 8-bit
integer, 16-bit integer, 64-bit integer, 16-bit floating-point, and vectors of these types in group
operations with subgroup scope, if the implementation supports the types.

• separateDepthStencilLayouts indicates whether the implementation supports a
VkImageMemoryBarrier for a depth/stencil image with only one of VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT set, and whether VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL can be used.

• hostQueryReset indicates that the implementation supports resetting queries from the host with
vkResetQueryPool.

• timelineSemaphore indicates whether semaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE are supported.

• bufferDeviceAddress indicates that the implementation supports accessing buffer memory in
shaders as storage buffers via an address queried from vkGetBufferDeviceAddress.

• bufferDeviceAddressCaptureReplay indicates that the implementation supports saving and
reusing buffer and device addresses, e.g. for trace capture and replay.

3711

• bufferDeviceAddressMultiDevice indicates that the implementation supports the
bufferDeviceAddress , rayTracingPipeline and rayQuery features for logical devices created with
multiple physical devices. If this feature is not supported, buffer and acceleration structure
addresses must not be queried on a logical device created with more than one physical device.

• vulkanMemoryModel indicates whether shader modules can declare the VulkanMemoryModel
capability.

• vulkanMemoryModelDeviceScope indicates whether the Vulkan Memory Model can use Device
scope synchronization. This also indicates whether shader modules can declare the
VulkanMemoryModelDeviceScope capability.

• vulkanMemoryModelAvailabilityVisibilityChains indicates whether the Vulkan Memory Model
can use availability and visibility chains with more than one element.

• shaderOutputViewportIndex indicates whether the implementation supports the
ShaderViewportIndex SPIR-V capability enabling variables decorated with the ViewportIndex built-
in to be exported from mesh, vertex or tessellation evaluation shaders. If this feature is not
enabled, the ViewportIndex built-in decoration must not be used on outputs in mesh, vertex or
tessellation evaluation shaders.

• shaderOutputLayer indicates whether the implementation supports the ShaderLayer SPIR-V
capability enabling variables decorated with the Layer built-in to be exported from mesh, vertex
or tessellation evaluation shaders. If this feature is not enabled, the Layer built-in decoration
must not be used on outputs in mesh, vertex or tessellation evaluation shaders.

• If subgroupBroadcastDynamicId is VK_TRUE, the “Id” operand of OpGroupNonUniformBroadcast can be
dynamically uniform within a subgroup, and the “Index” operand of
OpGroupNonUniformQuadBroadcast can be dynamically uniform within the derivative group. If it is
VK_FALSE, these operands must be constants.

If the VkPhysicalDeviceVulkan12Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceVulkan12Features can
also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan12Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES

The VkPhysicalDeviceVulkan13Features structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceVulkan13Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 robustImageAccess;
 VkBool32 inlineUniformBlock;
 VkBool32 descriptorBindingInlineUniformBlockUpdateAfterBind;
 VkBool32 pipelineCreationCacheControl;

3712

 VkBool32 privateData;
 VkBool32 shaderDemoteToHelperInvocation;
 VkBool32 shaderTerminateInvocation;
 VkBool32 subgroupSizeControl;
 VkBool32 computeFullSubgroups;
 VkBool32 synchronization2;
 VkBool32 textureCompressionASTC_HDR;
 VkBool32 shaderZeroInitializeWorkgroupMemory;
 VkBool32 dynamicRendering;
 VkBool32 shaderIntegerDotProduct;
 VkBool32 maintenance4;
} VkPhysicalDeviceVulkan13Features;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• robustImageAccess indicates whether image accesses are tightly bounds-checked against the
dimensions of the image view. Invalid texels resulting from out of bounds image loads will be
replaced as described in Texel Replacement, with either (0,0,1) or (0,0,0) values inserted for
missing G, B, or A components based on the format.

• inlineUniformBlock indicates whether the implementation supports inline uniform block
descriptors. If this feature is not enabled, VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK must not be
used.

• descriptorBindingInlineUniformBlockUpdateAfterBind indicates whether the implementation
supports updating inline uniform block descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK.

• pipelineCreationCacheControl indicates that the implementation supports:

◦ The following can be used in Vk*PipelineCreateInfo::flags:

▪ VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT

▪ VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

◦ The following can be used in VkPipelineCacheCreateInfo::flags:

▪ VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

• privateData indicates whether the implementation supports private data. See Private Data.

• shaderDemoteToHelperInvocation indicates whether the implementation supports the SPIR-V
DemoteToHelperInvocationEXT capability.

• shaderTerminateInvocation specifies whether the implementation supports SPIR-V modules that
use the SPV_KHR_terminate_invocation extension.

• subgroupSizeControl indicates whether the implementation supports controlling shader
subgroup sizes via the VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag
and the VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure.

3713

• computeFullSubgroups indicates whether the implementation supports requiring full subgroups
in compute , mesh, or task shaders via the
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag.

• synchronization2 indicates whether the implementation supports the new set of
synchronization commands introduced in VK_KHR_synchronization2.

• textureCompressionASTC_HDR indicates whether all of the ASTC HDR compressed texture formats
are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK

To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

• shaderZeroInitializeWorkgroupMemory specifies whether the implementation supports initializing
a variable in Workgroup storage class.

• dynamicRendering specifies that the implementation supports dynamic render pass instances
using the vkCmdBeginRendering command.

• shaderIntegerDotProduct specifies whether shader modules can declare the
DotProductInputAllKHR, DotProductInput4x8BitKHR, DotProductInput4x8BitPackedKHR and
DotProductKHR capabilities.

• maintenance4 indicates that the implementation supports the following:

◦ The application may destroy a VkPipelineLayout object immediately after using it to create
another object.

◦ LocalSizeId can be used as an alternative to LocalSize to specify the local workgroup size
with specialization constants.

3714

◦ Images created with identical creation parameters will always have the same alignment
requirements.

◦ The size memory requirement of a buffer or image is never greater than that of another
buffer or image created with a greater or equal size.

◦ Push constants do not have to be initialized before they are dynamically accessed.

◦ The interface matching rules allow a larger output vector to match with a smaller input
vector, with additional values being discarded.

If the VkPhysicalDeviceVulkan13Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceVulkan13Features can
also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan13Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES

The VkPhysicalDeviceVariablePointersFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceVariablePointersFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 variablePointersStorageBuffer;
 VkBool32 variablePointers;
} VkPhysicalDeviceVariablePointersFeatures;

// Provided by VK_VERSION_1_1
typedef VkPhysicalDeviceVariablePointersFeatures
VkPhysicalDeviceVariablePointerFeatures;

or the equivalent

// Provided by VK_KHR_variable_pointers
typedef VkPhysicalDeviceVariablePointersFeatures
VkPhysicalDeviceVariablePointersFeaturesKHR;

// Provided by VK_KHR_variable_pointers
typedef VkPhysicalDeviceVariablePointersFeatures
VkPhysicalDeviceVariablePointerFeaturesKHR;

This structure describes the following features:

3715

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• variablePointersStorageBuffer specifies whether the implementation supports the SPIR-V
VariablePointersStorageBuffer capability. When this feature is not enabled, shader modules
must not declare the SPV_KHR_variable_pointers extension or the VariablePointersStorageBuffer
capability.

• variablePointers specifies whether the implementation supports the SPIR-V VariablePointers
capability. When this feature is not enabled, shader modules must not declare the
VariablePointers capability.

If the VkPhysicalDeviceVariablePointersFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceVariablePointersFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage

• VUID-VkPhysicalDeviceVariablePointersFeatures-variablePointers-01431
If variablePointers is enabled then variablePointersStorageBuffer must also be enabled

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVariablePointersFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES

The VkPhysicalDeviceMultiviewFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceMultiviewFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 multiview;
 VkBool32 multiviewGeometryShader;
 VkBool32 multiviewTessellationShader;
} VkPhysicalDeviceMultiviewFeatures;

or the equivalent

// Provided by VK_KHR_multiview
typedef VkPhysicalDeviceMultiviewFeatures VkPhysicalDeviceMultiviewFeaturesKHR;

This structure describes the following features:

3716

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• multiview specifies whether the implementation supports multiview rendering within a render
pass. If this feature is not enabled, the view mask of each subpass must always be zero.

• multiviewGeometryShader specifies whether the implementation supports multiview rendering
within a render pass, with geometry shaders. If this feature is not enabled, then a pipeline
compiled against a subpass with a non-zero view mask must not include a geometry shader.

• multiviewTessellationShader specifies whether the implementation supports multiview
rendering within a render pass, with tessellation shaders. If this feature is not enabled, then a
pipeline compiled against a subpass with a non-zero view mask must not include any
tessellation shaders.

If the VkPhysicalDeviceMultiviewFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceMultiviewFeatures can
also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage

• VUID-VkPhysicalDeviceMultiviewFeatures-multiviewGeometryShader-00580
If multiviewGeometryShader is enabled then multiview must also be enabled

• VUID-VkPhysicalDeviceMultiviewFeatures-multiviewTessellationShader-00581
If multiviewTessellationShader is enabled then multiview must also be enabled

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiviewFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES

The VkPhysicalDeviceShaderAtomicFloatFeaturesEXT structure is defined as:

// Provided by VK_EXT_shader_atomic_float
typedef struct VkPhysicalDeviceShaderAtomicFloatFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderBufferFloat32Atomics;
 VkBool32 shaderBufferFloat32AtomicAdd;
 VkBool32 shaderBufferFloat64Atomics;
 VkBool32 shaderBufferFloat64AtomicAdd;
 VkBool32 shaderSharedFloat32Atomics;
 VkBool32 shaderSharedFloat32AtomicAdd;
 VkBool32 shaderSharedFloat64Atomics;
 VkBool32 shaderSharedFloat64AtomicAdd;
 VkBool32 shaderImageFloat32Atomics;

3717

 VkBool32 shaderImageFloat32AtomicAdd;
 VkBool32 sparseImageFloat32Atomics;
 VkBool32 sparseImageFloat32AtomicAdd;
} VkPhysicalDeviceShaderAtomicFloatFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderBufferFloat32Atomics indicates whether shaders can perform 32-bit floating-point load,
store and exchange atomic operations on storage buffers.

• shaderBufferFloat32AtomicAdd indicates whether shaders can perform 32-bit floating-point add
atomic operations on storage buffers.

• shaderBufferFloat64Atomics indicates whether shaders can perform 64-bit floating-point load,
store and exchange atomic operations on storage buffers.

• shaderBufferFloat64AtomicAdd indicates whether shaders can perform 64-bit floating-point add
atomic operations on storage buffers.

• shaderSharedFloat32Atomics indicates whether shaders can perform 32-bit floating-point load,
store and exchange atomic operations on shared and payload memory.

• shaderSharedFloat32AtomicAdd indicates whether shaders can perform 32-bit floating-point add
atomic operations on shared and payload memory.

• shaderSharedFloat64Atomics indicates whether shaders can perform 64-bit floating-point load,
store and exchange atomic operations on shared and payload memory.

• shaderSharedFloat64AtomicAdd indicates whether shaders can perform 64-bit floating-point add
atomic operations on shared and payload memory.

• shaderImageFloat32Atomics indicates whether shaders can perform 32-bit floating-point load,
store and exchange atomic image operations.

• shaderImageFloat32AtomicAdd indicates whether shaders can perform 32-bit floating-point add
atomic image operations.

• sparseImageFloat32Atomics indicates whether 32-bit floating-point load, store and exchange
atomic operations can be used on sparse images.

• sparseImageFloat32AtomicAdd indicates whether 32-bit floating-point add atomic operations can
be used on sparse images.

If the VkPhysicalDeviceShaderAtomicFloatFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3718

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderAtomicFloatFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT

The VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT structure is defined as:

// Provided by VK_EXT_shader_atomic_float2
typedef struct VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderBufferFloat16Atomics;
 VkBool32 shaderBufferFloat16AtomicAdd;
 VkBool32 shaderBufferFloat16AtomicMinMax;
 VkBool32 shaderBufferFloat32AtomicMinMax;
 VkBool32 shaderBufferFloat64AtomicMinMax;
 VkBool32 shaderSharedFloat16Atomics;
 VkBool32 shaderSharedFloat16AtomicAdd;
 VkBool32 shaderSharedFloat16AtomicMinMax;
 VkBool32 shaderSharedFloat32AtomicMinMax;
 VkBool32 shaderSharedFloat64AtomicMinMax;
 VkBool32 shaderImageFloat32AtomicMinMax;
 VkBool32 sparseImageFloat32AtomicMinMax;
} VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderBufferFloat16Atomics indicates whether shaders can perform 16-bit floating-point load,
store, and exchange atomic operations on storage buffers.

• shaderBufferFloat16AtomicAdd indicates whether shaders can perform 16-bit floating-point add
atomic operations on storage buffers.

• shaderBufferFloat16AtomicMinMax indicates whether shaders can perform 16-bit floating-point
min and max atomic operations on storage buffers.

• shaderBufferFloat32AtomicMinMax indicates whether shaders can perform 32-bit floating-point
min and max atomic operations on storage buffers.

• shaderBufferFloat64AtomicMinMax indicates whether shaders can perform 64-bit floating-point
min and max atomic operations on storage buffers.

• shaderSharedFloat16Atomics indicates whether shaders can perform 16-bit floating-point load,
store and exchange atomic operations on shared and payload memory.

• shaderSharedFloat16AtomicAdd indicates whether shaders can perform 16-bit floating-point add
atomic operations on shared and payload memory.

3719

• shaderSharedFloat16AtomicMinMax indicates whether shaders can perform 16-bit floating-point
min and max atomic operations on shared and payload memory.

• shaderSharedFloat32AtomicMinMax indicates whether shaders can perform 32-bit floating-point
min and max atomic operations on shared and payload memory.

• shaderSharedFloat64AtomicMinMax indicates whether shaders can perform 64-bit floating-point
min and max atomic operations on shared and payload memory.

• shaderImageFloat32AtomicMinMax indicates whether shaders can perform 32-bit floating-point
min and max atomic image operations.

• sparseImageFloat32AtomicMinMax indicates whether 32-bit floating-point min and max atomic
operations can be used on sparse images.

If the VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT

The VkPhysicalDeviceShaderAtomicInt64Features structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceShaderAtomicInt64Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderBufferInt64Atomics;
 VkBool32 shaderSharedInt64Atomics;
} VkPhysicalDeviceShaderAtomicInt64Features;

or the equivalent

// Provided by VK_KHR_shader_atomic_int64
typedef VkPhysicalDeviceShaderAtomicInt64Features
VkPhysicalDeviceShaderAtomicInt64FeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderBufferInt64Atomics indicates whether shaders can perform 64-bit unsigned and signed

3720

integer atomic operations on buffers.

• shaderSharedInt64Atomics indicates whether shaders can perform 64-bit unsigned and signed
integer atomic operations on shared and payload memory.

If the VkPhysicalDeviceShaderAtomicInt64Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderAtomicInt64Features can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderAtomicInt64Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES

The VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT structure is defined as:

// Provided by VK_EXT_shader_image_atomic_int64
typedef struct VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderImageInt64Atomics;
 VkBool32 sparseImageInt64Atomics;
} VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderImageInt64Atomics indicates whether shaders can support 64-bit unsigned and signed
integer atomic operations on images.

• sparseImageInt64Atomics indicates whether 64-bit integer atomics can be used on sparse images.

If the VkPhysicalDeviceShaderAtomicInt64FeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderAtomicInt64FeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_ATOMIC_INT64_FEATURES_EXT

3721

The VkPhysicalDevice8BitStorageFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDevice8BitStorageFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 storageBuffer8BitAccess;
 VkBool32 uniformAndStorageBuffer8BitAccess;
 VkBool32 storagePushConstant8;
} VkPhysicalDevice8BitStorageFeatures;

or the equivalent

// Provided by VK_KHR_8bit_storage
typedef VkPhysicalDevice8BitStorageFeatures VkPhysicalDevice8BitStorageFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageBuffer8BitAccess indicates whether objects in the StorageBuffer, ShaderRecordBufferKHR,
or PhysicalStorageBuffer storage class with the Block decoration can have 8-bit integer
members. If this feature is not enabled, 8-bit integer members must not be used in such objects.
This also indicates whether shader modules can declare the StorageBuffer8BitAccess capability.

• uniformAndStorageBuffer8BitAccess indicates whether objects in the Uniform storage class with
the Block decoration can have 8-bit integer members. If this feature is not enabled, 8-bit integer
members must not be used in such objects. This also indicates whether shader modules can
declare the UniformAndStorageBuffer8BitAccess capability.

• storagePushConstant8 indicates whether objects in the PushConstant storage class can have 8-bit
integer members. If this feature is not enabled, 8-bit integer members must not be used in such
objects. This also indicates whether shader modules can declare the StoragePushConstant8
capability.

If the VkPhysicalDevice8BitStorageFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevice8BitStorageFeatures
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevice8BitStorageFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES

The VkPhysicalDevice16BitStorageFeatures structure is defined as:

3722

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDevice16BitStorageFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 storageBuffer16BitAccess;
 VkBool32 uniformAndStorageBuffer16BitAccess;
 VkBool32 storagePushConstant16;
 VkBool32 storageInputOutput16;
} VkPhysicalDevice16BitStorageFeatures;

or the equivalent

// Provided by VK_KHR_16bit_storage
typedef VkPhysicalDevice16BitStorageFeatures VkPhysicalDevice16BitStorageFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageBuffer16BitAccess specifies whether objects in the StorageBuffer, ShaderRecordBufferKHR,
or PhysicalStorageBuffer storage class with the Block decoration can have 16-bit integer and 16-
bit floating-point members. If this feature is not enabled, 16-bit integer or 16-bit floating-point
members must not be used in such objects. This also specifies whether shader modules can
declare the StorageBuffer16BitAccess capability.

• uniformAndStorageBuffer16BitAccess specifies whether objects in the Uniform storage class with
the Block decoration can have 16-bit integer and 16-bit floating-point members. If this feature is
not enabled, 16-bit integer or 16-bit floating-point members must not be used in such objects.
This also specifies whether shader modules can declare the UniformAndStorageBuffer16BitAccess
capability.

• storagePushConstant16 specifies whether objects in the PushConstant storage class can have 16-
bit integer and 16-bit floating-point members. If this feature is not enabled, 16-bit integer or
floating-point members must not be used in such objects. This also specifies whether shader
modules can declare the StoragePushConstant16 capability.

• storageInputOutput16 specifies whether objects in the Input and Output storage classes can have
16-bit integer and 16-bit floating-point members. If this feature is not enabled, 16-bit integer or
16-bit floating-point members must not be used in such objects. This also specifies whether
shader modules can declare the StorageInputOutput16 capability.

If the VkPhysicalDevice16BitStorageFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevice16BitStorageFeatures
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

3723

Valid Usage (Implicit)

• VUID-VkPhysicalDevice16BitStorageFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES

The VkPhysicalDeviceShaderFloat16Int8Features structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceShaderFloat16Int8Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderFloat16;
 VkBool32 shaderInt8;
} VkPhysicalDeviceShaderFloat16Int8Features;

or the equivalent

// Provided by VK_KHR_shader_float16_int8
typedef VkPhysicalDeviceShaderFloat16Int8Features
VkPhysicalDeviceShaderFloat16Int8FeaturesKHR;

// Provided by VK_KHR_shader_float16_int8
typedef VkPhysicalDeviceShaderFloat16Int8Features
VkPhysicalDeviceFloat16Int8FeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderFloat16 indicates whether 16-bit floats (halfs) are supported in shader code. This also
indicates whether shader modules can declare the Float16 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Float16 SPIR-V capability:
Declaring and using 16-bit floats in the Private, Workgroup (for non-Block variables), and
Function storage classes is enabled, while declaring them in the interface storage classes (e.g.,
UniformConstant, Uniform, StorageBuffer, Input, Output, and PushConstant) is not enabled.

• shaderInt8 indicates whether 8-bit integers (signed and unsigned) are supported in shader code.
This also indicates whether shader modules can declare the Int8 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Int8 SPIR-V capability:
Declaring and using 8-bit integers in the Private, Workgroup (for non-Block variables), and
Function storage classes is enabled, while declaring them in the interface storage classes (e.g.,
UniformConstant, Uniform, StorageBuffer, Input, Output, and PushConstant) is not enabled.

If the VkPhysicalDeviceShaderFloat16Int8Features structure is included in the pNext chain of the

3724

VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderFloat16Int8Features can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderFloat16Int8Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES

The VkPhysicalDeviceShaderClockFeaturesKHR structure is defined as:

// Provided by VK_KHR_shader_clock
typedef struct VkPhysicalDeviceShaderClockFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderSubgroupClock;
 VkBool32 shaderDeviceClock;
} VkPhysicalDeviceShaderClockFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderSubgroupClock indicates whether shaders can perform Subgroup scoped clock reads.

• shaderDeviceClock indicates whether shaders can perform Device scoped clock reads.

If the VkPhysicalDeviceShaderClockFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceShaderClockFeaturesKHR
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderClockFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR

The VkPhysicalDeviceSamplerYcbcrConversionFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceSamplerYcbcrConversionFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 samplerYcbcrConversion;

3725

} VkPhysicalDeviceSamplerYcbcrConversionFeatures;

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkPhysicalDeviceSamplerYcbcrConversionFeatures
VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• samplerYcbcrConversion specifies whether the implementation supports sampler Y′CBCR

conversion. If samplerYcbcrConversion is VK_FALSE, sampler Y′CBCR conversion is not supported,
and samplers using sampler Y′CBCR conversion must not be used.

If the VkPhysicalDeviceSamplerYcbcrConversionFeatures structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSamplerYcbcrConversionFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSamplerYcbcrConversionFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES

The VkPhysicalDeviceProtectedMemoryFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceProtectedMemoryFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 protectedMemory;
} VkPhysicalDeviceProtectedMemoryFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• protectedMemory specifies whether protected memory is supported.

If the VkPhysicalDeviceProtectedMemoryFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to

3726

indicate whether each corresponding feature is supported.
VkPhysicalDeviceProtectedMemoryFeatures can also be used in the pNext chain of VkDeviceCreateInfo
to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceProtectedMemoryFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES

The VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT structure is defined as:

// Provided by VK_EXT_blend_operation_advanced
typedef struct VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 advancedBlendCoherentOperations;
} VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• advancedBlendCoherentOperations specifies whether blending using advanced blend operations is
guaranteed to execute atomically and in primitive order. If this is VK_TRUE,
VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT is treated the same as
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT, and advanced blending needs no additional
synchronization over basic blending. If this is VK_FALSE, then memory dependencies are
required to guarantee order between two advanced blending operations that occur on the same
sample.

If the VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT

The VkPhysicalDeviceConditionalRenderingFeaturesEXT structure is defined as:

// Provided by VK_EXT_conditional_rendering
typedef struct VkPhysicalDeviceConditionalRenderingFeaturesEXT {

3727

 VkStructureType sType;
 void* pNext;
 VkBool32 conditionalRendering;
 VkBool32 inheritedConditionalRendering;
} VkPhysicalDeviceConditionalRenderingFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• conditionalRendering specifies whether conditional rendering is supported.

• inheritedConditionalRendering specifies whether a secondary command buffer can be executed
while conditional rendering is active in the primary command buffer.

If the VkPhysicalDeviceConditionalRenderingFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceConditionalRenderingFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceConditionalRenderingFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT

The VkPhysicalDeviceShaderDrawParametersFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceShaderDrawParametersFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderDrawParameters;
} VkPhysicalDeviceShaderDrawParametersFeatures;

// Provided by VK_VERSION_1_1
typedef VkPhysicalDeviceShaderDrawParametersFeatures
VkPhysicalDeviceShaderDrawParameterFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderDrawParameters specifies whether the implementation supports the SPIR-V DrawParameters
capability. When this feature is not enabled, shader modules must not declare the

3728

SPV_KHR_shader_draw_parameters extension or the DrawParameters capability.

If the VkPhysicalDeviceShaderDrawParametersFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderDrawParametersFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderDrawParametersFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES

The VkPhysicalDeviceMeshShaderFeaturesNV structure is defined as:

// Provided by VK_NV_mesh_shader
typedef struct VkPhysicalDeviceMeshShaderFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 taskShader;
 VkBool32 meshShader;
} VkPhysicalDeviceMeshShaderFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• taskShader specifies whether task shaders are supported. If this feature is not enabled, the
VK_SHADER_STAGE_TASK_BIT_NV and VK_PIPELINE_STAGE_TASK_SHADER_BIT_NV enum values must not
be used.

• meshShader specifies whether mesh shaders are supported. If this feature is not enabled, the
VK_SHADER_STAGE_MESH_BIT_NV and VK_PIPELINE_STAGE_MESH_SHADER_BIT_NV enum values must not
be used.

If the VkPhysicalDeviceMeshShaderFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceMeshShaderFeaturesNV
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMeshShaderFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV

The VkPhysicalDeviceMeshShaderFeaturesEXT structure is defined as:

3729

// Provided by VK_EXT_mesh_shader
typedef struct VkPhysicalDeviceMeshShaderFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 taskShader;
 VkBool32 meshShader;
 VkBool32 multiviewMeshShader;
 VkBool32 primitiveFragmentShadingRateMeshShader;
 VkBool32 meshShaderQueries;
} VkPhysicalDeviceMeshShaderFeaturesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• taskShader specifies whether task shaders are supported. If this feature is not enabled, the
VK_SHADER_STAGE_TASK_BIT_EXT and VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT enum values must
not be used.

• meshShader specifies whether mesh shaders are supported. If this feature is not enabled, the
VK_SHADER_STAGE_MESH_BIT_EXT and VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT enum values must
not be used.

• multiviewMeshShader specifies whether the implementation supports multiview rendering within
a render pass, with mesh shaders. If this feature is not enabled, then a pipeline compiled
against a subpass with a non-zero view mask must not include a mesh shader.

• primitiveFragmentShadingRateMeshShader indicates that the implementation supports the
primitive fragment shading rate in mesh shaders.

• meshShaderQueries indicates that the implementation supports creating query pools using the
VK_QUERY_TYPE_MESH_PRIMITIVES_GENERATED_EXT query type and statistic queries containing the
VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT and
VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT flags

If the VkPhysicalDeviceMeshShaderFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceMeshShaderFeaturesEXT
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

The corresponding features of the VkPhysicalDeviceMeshShaderFeaturesNV structure must match
those in VkPhysicalDeviceMeshShaderFeaturesEXT.

Valid Usage

• VUID-VkPhysicalDeviceMeshShaderFeaturesEXT-multiviewMeshShader-07032
If multiviewMeshShader is enabled then VkPhysicalDeviceMultiviewFeaturesKHR::multiview
must also be enabled

• VUID-VkPhysicalDeviceMeshShaderFeaturesEXT-
primitiveFragmentShadingRateMeshShader-07033
If primitiveFragmentShadingRateMeshShader is enabled then

3730

VkPhysicalDeviceFragmentShadingRateFeaturesKHR::primitiveFragmentShadingRate must also
be enabled

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMeshShaderFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_EXT

The VkPhysicalDeviceMemoryDecompressionFeaturesNV structure is defined as:

// Provided by VK_NV_memory_decompression
typedef struct VkPhysicalDeviceMemoryDecompressionFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 memoryDecompression;
} VkPhysicalDeviceMemoryDecompressionFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryDecompression indicates whether memory decompression is supported.

If the VkPhysicalDeviceMemoryDecompressionFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceMemoryDecompressionFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMemoryDecompressionFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_DECOMPRESSION_FEATURES_NV

The VkPhysicalDeviceDescriptorIndexingFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceDescriptorIndexingFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderInputAttachmentArrayDynamicIndexing;
 VkBool32 shaderUniformTexelBufferArrayDynamicIndexing;
 VkBool32 shaderStorageTexelBufferArrayDynamicIndexing;
 VkBool32 shaderUniformBufferArrayNonUniformIndexing;

3731

 VkBool32 shaderSampledImageArrayNonUniformIndexing;
 VkBool32 shaderStorageBufferArrayNonUniformIndexing;
 VkBool32 shaderStorageImageArrayNonUniformIndexing;
 VkBool32 shaderInputAttachmentArrayNonUniformIndexing;
 VkBool32 shaderUniformTexelBufferArrayNonUniformIndexing;
 VkBool32 shaderStorageTexelBufferArrayNonUniformIndexing;
 VkBool32 descriptorBindingUniformBufferUpdateAfterBind;
 VkBool32 descriptorBindingSampledImageUpdateAfterBind;
 VkBool32 descriptorBindingStorageImageUpdateAfterBind;
 VkBool32 descriptorBindingStorageBufferUpdateAfterBind;
 VkBool32 descriptorBindingUniformTexelBufferUpdateAfterBind;
 VkBool32 descriptorBindingStorageTexelBufferUpdateAfterBind;
 VkBool32 descriptorBindingUpdateUnusedWhilePending;
 VkBool32 descriptorBindingPartiallyBound;
 VkBool32 descriptorBindingVariableDescriptorCount;
 VkBool32 runtimeDescriptorArray;
} VkPhysicalDeviceDescriptorIndexingFeatures;

or the equivalent

// Provided by VK_EXT_descriptor_indexing
typedef VkPhysicalDeviceDescriptorIndexingFeatures
VkPhysicalDeviceDescriptorIndexingFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderInputAttachmentArrayDynamicIndexing indicates whether arrays of input attachments can
be indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the InputAttachmentArrayDynamicIndexing
capability.

• shaderUniformTexelBufferArrayDynamicIndexing indicates whether arrays of uniform texel
buffers can be indexed by dynamically uniform integer expressions in shader code. If this
feature is not enabled, resources with a descriptor type of
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must be indexed only by constant integral expressions
when aggregated into arrays in shader code. This also indicates whether shader modules can
declare the UniformTexelBufferArrayDynamicIndexing capability.

• shaderStorageTexelBufferArrayDynamicIndexing indicates whether arrays of storage texel buffers
can be indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the StorageTexelBufferArrayDynamicIndexing
capability.

3732

• shaderUniformBufferArrayNonUniformIndexing indicates whether arrays of uniform buffers can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must not be indexed by non-uniform integer
expressions when aggregated into arrays in shader code. This also indicates whether shader
modules can declare the UniformBufferArrayNonUniformIndexing capability.

• shaderSampledImageArrayNonUniformIndexing indicates whether arrays of samplers or sampled
images can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_SAMPLER,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must not be
indexed by non-uniform integer expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the SampledImageArrayNonUniformIndexing
capability.

• shaderStorageBufferArrayNonUniformIndexing indicates whether arrays of storage buffers can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must not be indexed by non-uniform integer
expressions when aggregated into arrays in shader code. This also indicates whether shader
modules can declare the StorageBufferArrayNonUniformIndexing capability.

• shaderStorageImageArrayNonUniformIndexing indicates whether arrays of storage images can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must not be indexed by
non-uniform integer expressions when aggregated into arrays in shader code. This also
indicates whether shader modules can declare the StorageImageArrayNonUniformIndexing
capability.

• shaderInputAttachmentArrayNonUniformIndexing indicates whether arrays of input attachments
can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT must not be
indexed by non-uniform integer expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the InputAttachmentArrayNonUniformIndexing
capability.

• shaderUniformTexelBufferArrayNonUniformIndexing indicates whether arrays of uniform texel
buffers can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must not
be indexed by non-uniform integer expressions when aggregated into arrays in shader code.
This also indicates whether shader modules can declare the
UniformTexelBufferArrayNonUniformIndexing capability.

• shaderStorageTexelBufferArrayNonUniformIndexing indicates whether arrays of storage texel
buffers can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must not
be indexed by non-uniform integer expressions when aggregated into arrays in shader code.
This also indicates whether shader modules can declare the
StorageTexelBufferArrayNonUniformIndexing capability.

• descriptorBindingUniformBufferUpdateAfterBind indicates whether the implementation supports
updating uniform buffer descriptors after a set is bound. If this feature is not enabled,

3733

VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER.

• descriptorBindingSampledImageUpdateAfterBind indicates whether the implementation supports
updating sampled image descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE.

• descriptorBindingStorageImageUpdateAfterBind indicates whether the implementation supports
updating storage image descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

• descriptorBindingStorageBufferUpdateAfterBind indicates whether the implementation supports
updating storage buffer descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER.

• descriptorBindingUniformTexelBufferUpdateAfterBind indicates whether the implementation
supports updating uniform texel buffer descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

• descriptorBindingStorageTexelBufferUpdateAfterBind indicates whether the implementation
supports updating storage texel buffer descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

• descriptorBindingUpdateUnusedWhilePending indicates whether the implementation supports
updating descriptors while the set is in use. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT must not be used.

• descriptorBindingPartiallyBound indicates whether the implementation supports statically
using a descriptor set binding in which some descriptors are not valid. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT must not be used.

• descriptorBindingVariableDescriptorCount indicates whether the implementation supports
descriptor sets with a variable-sized last binding. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT must not be used.

• runtimeDescriptorArray indicates whether the implementation supports the SPIR-V
RuntimeDescriptorArray capability. If this feature is not enabled, descriptors must not be
declared in runtime arrays.

If the VkPhysicalDeviceDescriptorIndexingFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDescriptorIndexingFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3734

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorIndexingFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES

The VkPhysicalDeviceCopyMemoryIndirectFeaturesNV structure is defined as:

// Provided by VK_NV_copy_memory_indirect
typedef struct VkPhysicalDeviceCopyMemoryIndirectFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 indirectCopy;
} VkPhysicalDeviceCopyMemoryIndirectFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• indirectCopy indicates whether indirect copies are supported.

If the VkPhysicalDeviceCopyMemoryIndirectFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCopyMemoryIndirectFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCopyMemoryIndirectFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COPY_MEMORY_INDIRECT_FEATURES_NV

The VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR structure is defined as:

// Provided by VK_KHR_vertex_attribute_divisor
typedef struct VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 vertexAttributeInstanceRateDivisor;
 VkBool32 vertexAttributeInstanceRateZeroDivisor;
} VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR;

or the equivalent

// Provided by VK_EXT_vertex_attribute_divisor

3735

typedef VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• vertexAttributeInstanceRateDivisor specifies whether vertex attribute fetching may be repeated
in the case of instanced rendering.

• vertexAttributeInstanceRateZeroDivisor specifies whether a zero value for
VkVertexInputBindingDivisorDescriptionEXT::divisor is supported.

If the VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_KHR

The VkPhysicalDeviceASTCDecodeFeaturesEXT structure is defined as:

// Provided by VK_EXT_astc_decode_mode
typedef struct VkPhysicalDeviceASTCDecodeFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 decodeModeSharedExponent;
} VkPhysicalDeviceASTCDecodeFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• decodeModeSharedExponent indicates whether the implementation supports decoding ASTC
compressed formats to VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 internal precision.

If the VkPhysicalDeviceASTCDecodeFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceASTCDecodeFeaturesEXT
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

3736

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceASTCDecodeFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ASTC_DECODE_FEATURES_EXT

The VkPhysicalDeviceTransformFeedbackFeaturesEXT structure is defined as:

// Provided by VK_EXT_transform_feedback
typedef struct VkPhysicalDeviceTransformFeedbackFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 transformFeedback;
 VkBool32 geometryStreams;
} VkPhysicalDeviceTransformFeedbackFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• transformFeedback indicates whether the implementation supports transform feedback and
shader modules can declare the TransformFeedback capability.

• geometryStreams indicates whether the implementation supports the GeometryStreams SPIR-V
capability.

If the VkPhysicalDeviceTransformFeedbackFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceTransformFeedbackFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTransformFeedbackFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT

The VkPhysicalDeviceVulkanMemoryModelFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkanMemoryModelFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 vulkanMemoryModel;
 VkBool32 vulkanMemoryModelDeviceScope;
 VkBool32 vulkanMemoryModelAvailabilityVisibilityChains;

3737

} VkPhysicalDeviceVulkanMemoryModelFeatures;

or the equivalent

// Provided by VK_KHR_vulkan_memory_model
typedef VkPhysicalDeviceVulkanMemoryModelFeatures
VkPhysicalDeviceVulkanMemoryModelFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• vulkanMemoryModel indicates whether shader modules can declare the VulkanMemoryModel
capability.

• vulkanMemoryModelDeviceScope indicates whether the Vulkan Memory Model can use Device
scope synchronization. This also indicates whether shader modules can declare the
VulkanMemoryModelDeviceScope capability.

• vulkanMemoryModelAvailabilityVisibilityChains indicates whether the Vulkan Memory Model
can use availability and visibility chains with more than one element.

If the VkPhysicalDeviceVulkanMemoryModelFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceVulkanMemoryModelFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkanMemoryModelFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES

The VkPhysicalDeviceInlineUniformBlockFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceInlineUniformBlockFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 inlineUniformBlock;
 VkBool32 descriptorBindingInlineUniformBlockUpdateAfterBind;
} VkPhysicalDeviceInlineUniformBlockFeatures;

or the equivalent

3738

// Provided by VK_EXT_inline_uniform_block
typedef VkPhysicalDeviceInlineUniformBlockFeatures
VkPhysicalDeviceInlineUniformBlockFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• inlineUniformBlock indicates whether the implementation supports inline uniform block
descriptors. If this feature is not enabled, VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK must not be
used.

• descriptorBindingInlineUniformBlockUpdateAfterBind indicates whether the implementation
supports updating inline uniform block descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK.

If the VkPhysicalDeviceInlineUniformBlockFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceInlineUniformBlockFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceInlineUniformBlockFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES

The VkPhysicalDeviceRepresentativeFragmentTestFeaturesNV structure is defined as:

// Provided by VK_NV_representative_fragment_test
typedef struct VkPhysicalDeviceRepresentativeFragmentTestFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 representativeFragmentTest;
} VkPhysicalDeviceRepresentativeFragmentTestFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• representativeFragmentTest indicates whether the implementation supports the representative
fragment test. See Representative Fragment Test.

If the VkPhysicalDeviceRepresentativeFragmentTestFeaturesNV structure is included in the pNext

3739

chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceRepresentativeFragmentTestFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRepresentativeFragmentTestFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_REPRESENTATIVE_FRAGMENT_TEST_FEATURES_NV

The VkPhysicalDeviceExclusiveScissorFeaturesNV structure is defined as:

// Provided by VK_NV_scissor_exclusive
typedef struct VkPhysicalDeviceExclusiveScissorFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 exclusiveScissor;
} VkPhysicalDeviceExclusiveScissorFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• exclusiveScissor indicates that the implementation supports the exclusive scissor test.

See Exclusive Scissor Test for more information.

If the VkPhysicalDeviceExclusiveScissorFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceExclusiveScissorFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExclusiveScissorFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXCLUSIVE_SCISSOR_FEATURES_NV

The VkPhysicalDeviceCornerSampledImageFeaturesNV structure is defined as:

// Provided by VK_NV_corner_sampled_image
typedef struct VkPhysicalDeviceCornerSampledImageFeaturesNV {
 VkStructureType sType;
 void* pNext;

3740

 VkBool32 cornerSampledImage;
} VkPhysicalDeviceCornerSampledImageFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• cornerSampledImage specifies whether images can be created with a VkImageCreateInfo::flags
containing VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV. See Corner-Sampled Images.

If the VkPhysicalDeviceCornerSampledImageFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCornerSampledImageFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCornerSampledImageFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CORNER_SAMPLED_IMAGE_FEATURES_NV

The VkPhysicalDeviceComputeShaderDerivativesFeaturesNV structure is defined as:

// Provided by VK_NV_compute_shader_derivatives
typedef struct VkPhysicalDeviceComputeShaderDerivativesFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 computeDerivativeGroupQuads;
 VkBool32 computeDerivativeGroupLinear;
} VkPhysicalDeviceComputeShaderDerivativesFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• computeDerivativeGroupQuads indicates that the implementation supports the
ComputeDerivativeGroupQuadsNV SPIR-V capability.

• computeDerivativeGroupLinear indicates that the implementation supports the
ComputeDerivativeGroupLinearNV SPIR-V capability.

See Quad shader scope for more information.

If the VkPhysicalDeviceComputeShaderDerivativesFeaturesNVfeatures. structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.

3741

VkPhysicalDeviceComputeShaderDerivativesFeaturesNVfeatures. can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceComputeShaderDerivativesFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV

The VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR structure is defined as:

// Provided by VK_KHR_fragment_shader_barycentric
typedef struct VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 fragmentShaderBarycentric;
} VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR;

or the equivalent

// Provided by VK_NV_fragment_shader_barycentric
typedef VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR
VkPhysicalDeviceFragmentShaderBarycentricFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentShaderBarycentric indicates that the implementation supports the BaryCoordKHR and
BaryCoordNoPerspKHR SPIR-V fragment shader built-ins and supports the PerVertexKHR SPIR-V
decoration on fragment shader input variables.

See Barycentric Interpolation for more information.

If the VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_FEATURES_KHR

3742

The VkPhysicalDeviceShaderImageFootprintFeaturesNV structure is defined as:

// Provided by VK_NV_shader_image_footprint
typedef struct VkPhysicalDeviceShaderImageFootprintFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 imageFootprint;
} VkPhysicalDeviceShaderImageFootprintFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageFootprint specifies whether the implementation supports the ImageFootprintNV SPIR-V
capability.

See Texel Footprint Evaluation for more information.

If the VkPhysicalDeviceShaderImageFootprintFeaturesNV structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderImageFootprintFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderImageFootprintFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_FOOTPRINT_FEATURES_NV

The VkPhysicalDeviceShadingRateImageFeaturesNV structure is defined as:

// Provided by VK_NV_shading_rate_image
typedef struct VkPhysicalDeviceShadingRateImageFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 shadingRateImage;
 VkBool32 shadingRateCoarseSampleOrder;
} VkPhysicalDeviceShadingRateImageFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shadingRateImage indicates that the implementation supports the use of a shading rate image to
derive an effective shading rate for fragment processing. It also indicates that the

3743

implementation supports the ShadingRateNV SPIR-V execution mode.

• shadingRateCoarseSampleOrder indicates that the implementation supports a user-configurable
ordering of coverage samples in fragments larger than one pixel.

See Shading Rate Image for more information.

If the VkPhysicalDeviceShadingRateImageFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShadingRateImageFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShadingRateImageFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_FEATURES_NV

The VkPhysicalDeviceFragmentDensityMapFeaturesEXT structure is defined as:

// Provided by VK_EXT_fragment_density_map
typedef struct VkPhysicalDeviceFragmentDensityMapFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 fragmentDensityMap;
 VkBool32 fragmentDensityMapDynamic;
 VkBool32 fragmentDensityMapNonSubsampledImages;
} VkPhysicalDeviceFragmentDensityMapFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentDensityMap specifies whether the implementation supports render passes with a
fragment density map attachment. If this feature is not enabled and the pNext chain of
VkRenderPassCreateInfo includes a VkRenderPassFragmentDensityMapCreateInfoEXT
structure, fragmentDensityMapAttachment must be VK_ATTACHMENT_UNUSED.

• fragmentDensityMapDynamic specifies whether the implementation supports dynamic fragment
density map image views. If this feature is not enabled,
VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DYNAMIC_BIT_EXT must not be included in
VkImageViewCreateInfo::flags.

• fragmentDensityMapNonSubsampledImages specifies whether the implementation supports regular
non-subsampled image attachments with fragment density map render passes. If this feature is
not enabled, render passes with a fragment density map attachment must only have
subsampled attachments bound.

3744

If the VkPhysicalDeviceFragmentDensityMapFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceFragmentDensityMapFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentDensityMapFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_FEATURES_EXT

The VkPhysicalDeviceFragmentDensityMap2FeaturesEXT structure is defined as:

// Provided by VK_EXT_fragment_density_map2
typedef struct VkPhysicalDeviceFragmentDensityMap2FeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 fragmentDensityMapDeferred;
} VkPhysicalDeviceFragmentDensityMap2FeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentDensityMapDeferred specifies whether the implementation supports deferred reads of
fragment density map image views. If this feature is not enabled,
VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DEFERRED_BIT_EXT must not be included in
VkImageViewCreateInfo::flags.

If the VkPhysicalDeviceFragmentDensityMap2FeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceFragmentDensityMap2FeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentDensityMap2FeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_2_FEATURES_EXT

The VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM structure is defined as:

// Provided by VK_QCOM_fragment_density_map_offset
typedef struct VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM {
 VkStructureType sType;

3745

 void* pNext;
 VkBool32 fragmentDensityMapOffset;
} VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentDensityMapOffsets specifies whether the implementation supports fragment density
map offsets

If the VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_OFFSET_FEATURES_QCOM

The VkPhysicalDeviceInvocationMaskFeaturesHUAWEI structure is defined as:

// Provided by VK_HUAWEI_invocation_mask
typedef struct VkPhysicalDeviceInvocationMaskFeaturesHUAWEI {
 VkStructureType sType;
 void* pNext;
 VkBool32 invocationMask;
} VkPhysicalDeviceInvocationMaskFeaturesHUAWEI;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• invocationMask indicates that the implementation supports the use of an invocation mask image
to optimize the ray dispatch.

If the VkPhysicalDeviceInvocationMaskFeaturesHUAWEI structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceInvocationMaskFeaturesHUAWEI can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3746

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceInvocationMaskFeaturesHUAWEI-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INVOCATION_MASK_FEATURES_HUAWEI

The VkPhysicalDeviceScalarBlockLayoutFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceScalarBlockLayoutFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 scalarBlockLayout;
} VkPhysicalDeviceScalarBlockLayoutFeatures;

or the equivalent

// Provided by VK_EXT_scalar_block_layout
typedef VkPhysicalDeviceScalarBlockLayoutFeatures
VkPhysicalDeviceScalarBlockLayoutFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• scalarBlockLayout indicates that the implementation supports the layout of resource blocks in
shaders using scalar alignment.

If the VkPhysicalDeviceScalarBlockLayoutFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceScalarBlockLayoutFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceScalarBlockLayoutFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES

The VkPhysicalDeviceUniformBufferStandardLayoutFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceUniformBufferStandardLayoutFeatures {
 VkStructureType sType;
 void* pNext;

3747

 VkBool32 uniformBufferStandardLayout;
} VkPhysicalDeviceUniformBufferStandardLayoutFeatures;

or the equivalent

// Provided by VK_KHR_uniform_buffer_standard_layout
typedef VkPhysicalDeviceUniformBufferStandardLayoutFeatures
VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• uniformBufferStandardLayout indicates that the implementation supports the same layouts for
uniform buffers as for storage and other kinds of buffers. See Standard Buffer Layout.

If the VkPhysicalDeviceUniformBufferStandardLayoutFeatures structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceUniformBufferStandardLayoutFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceUniformBufferStandardLayoutFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES

The VkPhysicalDeviceDepthClipEnableFeaturesEXT structure is defined as:

// Provided by VK_EXT_depth_clip_enable
typedef struct VkPhysicalDeviceDepthClipEnableFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 depthClipEnable;
} VkPhysicalDeviceDepthClipEnableFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• depthClipEnable indicates that the implementation supports setting the depth clipping operation
explicitly via the VkPipelineRasterizationDepthClipStateCreateInfoEXT pipeline state. Otherwise
depth clipping is only enabled when VkPipelineRasterizationStateCreateInfo::depthClampEnable

3748

is set to VK_FALSE.

If the VkPhysicalDeviceDepthClipEnableFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDepthClipEnableFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDepthClipEnableFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT

The VkPhysicalDeviceMemoryPriorityFeaturesEXT structure is defined as:

// Provided by VK_EXT_memory_priority
typedef struct VkPhysicalDeviceMemoryPriorityFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 memoryPriority;
} VkPhysicalDeviceMemoryPriorityFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryPriority indicates that the implementation supports memory priorities specified at
memory allocation time via VkMemoryPriorityAllocateInfoEXT.

If the VkPhysicalDeviceMemoryPriorityFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceMemoryPriorityFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMemoryPriorityFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT

The VkPhysicalDeviceBufferDeviceAddressFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceBufferDeviceAddressFeatures {
 VkStructureType sType;

3749

 void* pNext;
 VkBool32 bufferDeviceAddress;
 VkBool32 bufferDeviceAddressCaptureReplay;
 VkBool32 bufferDeviceAddressMultiDevice;
} VkPhysicalDeviceBufferDeviceAddressFeatures;

or the equivalent

// Provided by VK_KHR_buffer_device_address
typedef VkPhysicalDeviceBufferDeviceAddressFeatures
VkPhysicalDeviceBufferDeviceAddressFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• bufferDeviceAddress indicates that the implementation supports accessing buffer memory in
shaders as storage buffers via an address queried from vkGetBufferDeviceAddress.

• bufferDeviceAddressCaptureReplay indicates that the implementation supports saving and
reusing buffer and device addresses, e.g. for trace capture and replay.

• bufferDeviceAddressMultiDevice indicates that the implementation supports the
bufferDeviceAddress , rayTracingPipeline and rayQuery features for logical devices created with
multiple physical devices. If this feature is not supported, buffer and acceleration structure
addresses must not be queried on a logical device created with more than one physical device.

Note

bufferDeviceAddressMultiDevice exists to allow certain legacy platforms to be able
to support bufferDeviceAddress without needing to support shared GPU virtual
addresses for multi-device configurations.

See vkGetBufferDeviceAddress for more information.

If the VkPhysicalDeviceBufferDeviceAddressFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceBufferDeviceAddressFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceBufferDeviceAddressFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES

The VkPhysicalDeviceBufferDeviceAddressFeaturesEXT structure is defined as:

3750

// Provided by VK_EXT_buffer_device_address
typedef struct VkPhysicalDeviceBufferDeviceAddressFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 bufferDeviceAddress;
 VkBool32 bufferDeviceAddressCaptureReplay;
 VkBool32 bufferDeviceAddressMultiDevice;
} VkPhysicalDeviceBufferDeviceAddressFeaturesEXT;

// Provided by VK_EXT_buffer_device_address
typedef VkPhysicalDeviceBufferDeviceAddressFeaturesEXT
VkPhysicalDeviceBufferAddressFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• bufferDeviceAddress indicates that the implementation supports accessing buffer memory in
shaders as storage buffers via an address queried from vkGetBufferDeviceAddressEXT.

• bufferDeviceAddressCaptureReplay indicates that the implementation supports saving and
reusing buffer addresses, e.g. for trace capture and replay.

• bufferDeviceAddressMultiDevice indicates that the implementation supports the
bufferDeviceAddress feature for logical devices created with multiple physical devices. If this
feature is not supported, buffer addresses must not be queried on a logical device created with
more than one physical device.

If the VkPhysicalDeviceBufferDeviceAddressFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Note

The VkPhysicalDeviceBufferDeviceAddressFeaturesEXT structure has the same
members as the VkPhysicalDeviceBufferDeviceAddressFeatures structure, but the
functionality indicated by the members is expressed differently. The features
indicated by the VkPhysicalDeviceBufferDeviceAddressFeatures structure requires
additional flags to be passed at memory allocation time, and the capture and
replay mechanism is built around opaque capture addresses for buffer and
memory objects.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceBufferDeviceAddressFeaturesEXT-sType-sType

3751

sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT

The VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV structure is defined as:

// Provided by VK_NV_dedicated_allocation_image_aliasing
typedef struct VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 dedicatedAllocationImageAliasing;
} VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dedicatedAllocationImageAliasing indicates that the implementation supports aliasing of
compatible image objects on a dedicated allocation.

If the VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEDICATED_ALLOCATION_IMAGE_ALIASING_FEATURES_NV

The VkPhysicalDeviceImagelessFramebufferFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceImagelessFramebufferFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 imagelessFramebuffer;
} VkPhysicalDeviceImagelessFramebufferFeatures;

or the equivalent

// Provided by VK_KHR_imageless_framebuffer
typedef VkPhysicalDeviceImagelessFramebufferFeatures
VkPhysicalDeviceImagelessFramebufferFeaturesKHR;

3752

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imagelessFramebuffer indicates that the implementation supports specifying the image view for
attachments at render pass begin time via VkRenderPassAttachmentBeginInfo.

If the VkPhysicalDeviceImagelessFramebufferFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImagelessFramebufferFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImagelessFramebufferFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES

The VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT structure is defined as:

// Provided by VK_EXT_fragment_shader_interlock
typedef struct VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 fragmentShaderSampleInterlock;
 VkBool32 fragmentShaderPixelInterlock;
 VkBool32 fragmentShaderShadingRateInterlock;
} VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentShaderSampleInterlock indicates that the implementation supports the
FragmentShaderSampleInterlockEXT SPIR-V capability.

• fragmentShaderPixelInterlock indicates that the implementation supports the
FragmentShaderPixelInterlockEXT SPIR-V capability.

• fragmentShaderShadingRateInterlock indicates that the implementation supports the
FragmentShaderShadingRateInterlockEXT SPIR-V capability.

If the VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3753

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT

The VkPhysicalDeviceCooperativeMatrixFeaturesNV structure is defined as:

// Provided by VK_NV_cooperative_matrix
typedef struct VkPhysicalDeviceCooperativeMatrixFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 cooperativeMatrix;
 VkBool32 cooperativeMatrixRobustBufferAccess;
} VkPhysicalDeviceCooperativeMatrixFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• cooperativeMatrix indicates that the implementation supports the CooperativeMatrixNV SPIR-V
capability.

• cooperativeMatrixRobustBufferAccess indicates that the implementation supports robust buffer
access for SPIR-V OpCooperativeMatrixLoadNV and OpCooperativeMatrixStoreNV instructions.

If the VkPhysicalDeviceCooperativeMatrixFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCooperativeMatrixFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCooperativeMatrixFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_NV

The VkPhysicalDeviceCooperativeMatrixFeaturesKHR structure is defined as:

// Provided by VK_KHR_cooperative_matrix
typedef struct VkPhysicalDeviceCooperativeMatrixFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 cooperativeMatrix;
 VkBool32 cooperativeMatrixRobustBufferAccess;

3754

} VkPhysicalDeviceCooperativeMatrixFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• cooperativeMatrix indicates that the implementation supports the CooperativeMatrixKHR SPIR-V
capability.

• cooperativeMatrixRobustBufferAccess indicates that the implementation supports robust buffer
access for SPIR-V OpCooperativeMatrixLoadKHR and OpCooperativeMatrixStoreKHR instructions.

If the VkPhysicalDeviceCooperativeMatrixFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCooperativeMatrixFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCooperativeMatrixFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR

The VkPhysicalDeviceYcbcrImageArraysFeaturesEXT structure is defined as:

// Provided by VK_EXT_ycbcr_image_arrays
typedef struct VkPhysicalDeviceYcbcrImageArraysFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 ycbcrImageArrays;
} VkPhysicalDeviceYcbcrImageArraysFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• ycbcrImageArrays indicates that the implementation supports creating images with a format that
requires Y′CBCR conversion and has multiple array layers.

If the VkPhysicalDeviceYcbcrImageArraysFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3755

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceYcbcrImageArraysFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT

The VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderSubgroupExtendedTypes;
} VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures;

or the equivalent

// Provided by VK_KHR_shader_subgroup_extended_types
typedef VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures
VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderSubgroupExtendedTypes is a boolean specifying whether subgroup operations can use 8-bit
integer, 16-bit integer, 64-bit integer, 16-bit floating-point, and vectors of these types in group
operations with subgroup scope, if the implementation supports the types.

If the VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES

The VkPhysicalDeviceHostQueryResetFeatures structure is defined as:

// Provided by VK_VERSION_1_2

3756

typedef struct VkPhysicalDeviceHostQueryResetFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 hostQueryReset;
} VkPhysicalDeviceHostQueryResetFeatures;

or the equivalent

// Provided by VK_EXT_host_query_reset
typedef VkPhysicalDeviceHostQueryResetFeatures
VkPhysicalDeviceHostQueryResetFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• hostQueryReset indicates that the implementation supports resetting queries from the host with
vkResetQueryPool.

If the VkPhysicalDeviceHostQueryResetFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceHostQueryResetFeatures
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceHostQueryResetFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES

The VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL structure is defined as:

// Provided by VK_INTEL_shader_integer_functions2
typedef struct VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderIntegerFunctions2;
} VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderIntegerFunctions2 indicates that the implementation supports the IntegerFunctions2INTEL
SPIR-V capability.

3757

If the VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTELfeatures. structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTELfeatures. can also be used in the pNext chain
of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL

The VkPhysicalDeviceCoverageReductionModeFeaturesNV structure is defined as:

// Provided by VK_NV_coverage_reduction_mode
typedef struct VkPhysicalDeviceCoverageReductionModeFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 coverageReductionMode;
} VkPhysicalDeviceCoverageReductionModeFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• coverageReductionMode indicates whether the implementation supports coverage reduction
modes. See Coverage Reduction.

If the VkPhysicalDeviceCoverageReductionModeFeaturesNV structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCoverageReductionModeFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCoverageReductionModeFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COVERAGE_REDUCTION_MODE_FEATURES_NV

The VkPhysicalDeviceTimelineSemaphoreFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceTimelineSemaphoreFeatures {
 VkStructureType sType;
 void* pNext;

3758

 VkBool32 timelineSemaphore;
} VkPhysicalDeviceTimelineSemaphoreFeatures;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkPhysicalDeviceTimelineSemaphoreFeatures
VkPhysicalDeviceTimelineSemaphoreFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• timelineSemaphore indicates whether semaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE are supported.

If the VkPhysicalDeviceTimelineSemaphoreFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceTimelineSemaphoreFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTimelineSemaphoreFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES

The VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX structure is defined as:

// Provided by VK_QNX_external_memory_screen_buffer
typedef struct VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX {
 VkStructureType sType;
 void* pNext;
 VkBool32 screenBufferImport;
} VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX;

The members of the VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX structure describe the
following features:

• screenBufferImport indicates whether QNX Screen buffer import functionality is supported. If
screenBufferImport is set to VK_TRUE, VkDeviceMemory supports importing _screen_buffer from
applications. In this case, the application is responsible for the resource management of the
_screen_buffer.

Table 63. Functionality supported for QNX Screen Buffer features

3759

Features Functionality

screenBufferImport VkImportScreenBufferInfoQNX

Always supported1 vkGetScreenBufferPropertiesQNX,
VkScreenBufferPropertiesQNX,
VkScreenBufferFormatPropertiesQNX,
VkExternalFormatQNX

1

Functionality in this row is always available.

The Functionality supported for QNX Screen buffer features table summarizes the functionality
enabled by the VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX structure. Each entry in the
body of the table summarizes the functionality that can be used when the given features are
supported and enabled. This summarizes Valid Usage statements that are added elsewhere in this
specification.

If the VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_SCREEN_BUFFER_FEATURES_QNX

The VkPhysicalDeviceIndexTypeUint8FeaturesKHR structure is defined as:

// Provided by VK_KHR_index_type_uint8
typedef struct VkPhysicalDeviceIndexTypeUint8FeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 indexTypeUint8;
} VkPhysicalDeviceIndexTypeUint8FeaturesKHR;

or the equivalent

// Provided by VK_EXT_index_type_uint8
typedef VkPhysicalDeviceIndexTypeUint8FeaturesKHR
VkPhysicalDeviceIndexTypeUint8FeaturesEXT;

This structure describes the following feature:

3760

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• indexTypeUint8 indicates that VK_INDEX_TYPE_UINT8_KHR can be used with
vkCmdBindIndexBuffer2KHR and vkCmdBindIndexBuffer.

If the VkPhysicalDeviceIndexTypeUint8FeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceIndexTypeUint8FeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceIndexTypeUint8FeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_KHR

The VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT structure is defined as:

// Provided by VK_EXT_primitive_topology_list_restart
typedef struct VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 primitiveTopologyListRestart;
 VkBool32 primitiveTopologyPatchListRestart;
} VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• primitiveTopologyListRestart indicates that list type primitives,
VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY and
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, can use the primitive restart index value
in index buffers.

• primitiveTopologyPatchListRestart indicates that the VK_PRIMITIVE_TOPOLOGY_PATCH_LIST topology
can use the primitive restart index value in index buffers.

If the VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3761

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT

The VkPhysicalDeviceShaderSMBuiltinsFeaturesNV structure is defined as:

// Provided by VK_NV_shader_sm_builtins
typedef struct VkPhysicalDeviceShaderSMBuiltinsFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderSMBuiltins;
} VkPhysicalDeviceShaderSMBuiltinsFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderSMBuiltins indicates whether the implementation supports the SPIR-V ShaderSMBuiltinsNV
capability.

If the VkPhysicalDeviceShaderSMBuiltinsFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderSMBuiltinsFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderSMBuiltinsFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SM_BUILTINS_FEATURES_NV

The VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 separateDepthStencilLayouts;
} VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures;

or the equivalent

3762

// Provided by VK_KHR_separate_depth_stencil_layouts
typedef VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures
VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• separateDepthStencilLayouts indicates whether the implementation supports a
VkImageMemoryBarrier for a depth/stencil image with only one of VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT set, and whether VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL can be used.

If the VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES

The VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR structure is defined as:

// Provided by VK_KHR_pipeline_executable_properties
typedef struct VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 pipelineExecutableInfo;
} VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineExecutableInfo indicates that the implementation supports reporting properties and
statistics about the pipeline executables associated with a compiled pipeline.

If the VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is

3763

filled in to indicate whether each corresponding feature is supported.
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR

The VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderDemoteToHelperInvocation;
} VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures;

or the equivalent

// Provided by VK_EXT_shader_demote_to_helper_invocation
typedef VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures
VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderDemoteToHelperInvocation indicates whether the implementation supports the SPIR-V
DemoteToHelperInvocationEXT capability.

If the VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES

3764

The VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT structure is defined as:

// Provided by VK_EXT_texel_buffer_alignment
typedef struct VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 texelBufferAlignment;
} VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• texelBufferAlignment indicates whether the implementation uses more specific alignment
requirements advertised in VkPhysicalDeviceTexelBufferAlignmentProperties rather than
VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment.

If the VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT

The VkPhysicalDeviceAttachmentFeedbackLoopDynamicStateFeaturesEXT structure is defined as:

// Provided by VK_EXT_attachment_feedback_loop_dynamic_state
typedef struct VkPhysicalDeviceAttachmentFeedbackLoopDynamicStateFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 attachmentFeedbackLoopDynamicState;
} VkPhysicalDeviceAttachmentFeedbackLoopDynamicStateFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachmentFeedbackLoopDynamicState specifies whether dynamic feedback loops are supported.

If the VkPhysicalDeviceAttachmentFeedbackLoopDynamicStateFeaturesEXT structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it

3765

is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceAttachmentFeedbackLoopDynamicStateFeaturesEXT can also be used in the pNext chain
of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceAttachmentFeedbackLoopDynamicStateFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_DYNAMIC_STATE_FEATURES_EXT

The VkPhysicalDeviceTextureCompressionASTCHDRFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceTextureCompressionASTCHDRFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 textureCompressionASTC_HDR;
} VkPhysicalDeviceTextureCompressionASTCHDRFeatures;

or the equivalent

// Provided by VK_EXT_texture_compression_astc_hdr
typedef VkPhysicalDeviceTextureCompressionASTCHDRFeatures
VkPhysicalDeviceTextureCompressionASTCHDRFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• textureCompressionASTC_HDR indicates whether all of the ASTC HDR compressed texture formats
are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK

3766

◦ VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK
To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

If the VkPhysicalDeviceTextureCompressionASTCHDRFeatures structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceTextureCompressionASTCHDRFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTextureCompressionASTCHDRFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES

The VkPhysicalDeviceLineRasterizationFeaturesKHR structure is defined as:

// Provided by VK_KHR_line_rasterization
typedef struct VkPhysicalDeviceLineRasterizationFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 rectangularLines;
 VkBool32 bresenhamLines;
 VkBool32 smoothLines;
 VkBool32 stippledRectangularLines;
 VkBool32 stippledBresenhamLines;
 VkBool32 stippledSmoothLines;
} VkPhysicalDeviceLineRasterizationFeaturesKHR;

or the equivalent

// Provided by VK_EXT_line_rasterization
typedef VkPhysicalDeviceLineRasterizationFeaturesKHR
VkPhysicalDeviceLineRasterizationFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

3767

• pNext is NULL or a pointer to a structure extending this structure.

• rectangularLines indicates whether the implementation supports rectangular line rasterization.

• bresenhamLines indicates whether the implementation supports Bresenham-style line
rasterization.

• smoothLines indicates whether the implementation supports smooth line rasterization.

• stippledRectangularLines indicates whether the implementation supports stippled line
rasterization with VK_LINE_RASTERIZATION_MODE_RECTANGULAR_KHR lines.

• stippledBresenhamLines indicates whether the implementation supports stippled line
rasterization with VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR lines.

• stippledSmoothLines indicates whether the implementation supports stippled line rasterization
with VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR lines.

If the VkPhysicalDeviceLineRasterizationFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceLineRasterizationFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceLineRasterizationFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_KHR

The VkPhysicalDeviceSubgroupSizeControlFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceSubgroupSizeControlFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 subgroupSizeControl;
 VkBool32 computeFullSubgroups;
} VkPhysicalDeviceSubgroupSizeControlFeatures;

or the equivalent

// Provided by VK_EXT_subgroup_size_control
typedef VkPhysicalDeviceSubgroupSizeControlFeatures
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3768

• subgroupSizeControl indicates whether the implementation supports controlling shader
subgroup sizes via the VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag
and the VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure.

• computeFullSubgroups indicates whether the implementation supports requiring full subgroups
in compute , mesh, or task shaders via the
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag.

If the VkPhysicalDeviceSubgroupSizeControlFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSubgroupSizeControlFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Note

The VkPhysicalDeviceSubgroupSizeControlFeaturesEXT structure was added in
version 2 of the VK_EXT_subgroup_size_control extension. Version 1
implementations of this extension will not fill out the features structure but
applications may assume that both subgroupSizeControl and computeFullSubgroups
are supported if the extension is supported. (See also the Feature Requirements
section.) Applications are advised to add a
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT structure to the pNext chain of
VkDeviceCreateInfo to enable the features regardless of the version of the
extension supported by the implementation. If the implementation only supports
version 1, it will safely ignore the VkPhysicalDeviceSubgroupSizeControlFeaturesEXT
structure.

Vulkan 1.3 implementations always support the features structure.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubgroupSizeControlFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES

The VkPhysicalDeviceCoherentMemoryFeaturesAMD structure is defined as:

// Provided by VK_AMD_device_coherent_memory
typedef struct VkPhysicalDeviceCoherentMemoryFeaturesAMD {
 VkStructureType sType;
 void* pNext;
 VkBool32 deviceCoherentMemory;
} VkPhysicalDeviceCoherentMemoryFeaturesAMD;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3769

• deviceCoherentMemory indicates that the implementation supports device coherent memory.

If the VkPhysicalDeviceCoherentMemoryFeaturesAMD structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCoherentMemoryFeaturesAMD can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCoherentMemoryFeaturesAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD

The VkPhysicalDeviceAccelerationStructureFeaturesKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkPhysicalDeviceAccelerationStructureFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 accelerationStructure;
 VkBool32 accelerationStructureCaptureReplay;
 VkBool32 accelerationStructureIndirectBuild;
 VkBool32 accelerationStructureHostCommands;
 VkBool32 descriptorBindingAccelerationStructureUpdateAfterBind;
} VkPhysicalDeviceAccelerationStructureFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• accelerationStructure indicates whether the implementation supports the acceleration
structure functionality. See Acceleration Structures.

• accelerationStructureCaptureReplay indicates whether the implementation supports saving and
reusing acceleration structure device addresses, e.g. for trace capture and replay.

• accelerationStructureIndirectBuild indicates whether the implementation supports indirect
acceleration structure build commands, e.g. vkCmdBuildAccelerationStructuresIndirectKHR.

• accelerationStructureHostCommands indicates whether the implementation supports host side
acceleration structure commands, e.g. vkBuildAccelerationStructuresKHR,
vkCopyAccelerationStructureKHR, vkCopyAccelerationStructureToMemoryKHR,
vkCopyMemoryToAccelerationStructureKHR, vkWriteAccelerationStructuresPropertiesKHR.

• descriptorBindingAccelerationStructureUpdateAfterBind indicates whether the implementation
supports updating acceleration structure descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR.

3770

If the VkPhysicalDeviceAccelerationStructureFeaturesKHR structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceAccelerationStructureFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceAccelerationStructureFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR

The VkPhysicalDeviceRayTracingPipelineFeaturesKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_pipeline
typedef struct VkPhysicalDeviceRayTracingPipelineFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 rayTracingPipeline;
 VkBool32 rayTracingPipelineShaderGroupHandleCaptureReplay;
 VkBool32 rayTracingPipelineShaderGroupHandleCaptureReplayMixed;
 VkBool32 rayTracingPipelineTraceRaysIndirect;
 VkBool32 rayTraversalPrimitiveCulling;
} VkPhysicalDeviceRayTracingPipelineFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rayTracingPipeline indicates whether the implementation supports the ray tracing pipeline
functionality. See Ray Tracing.

• rayTracingPipelineShaderGroupHandleCaptureReplay indicates whether the implementation
supports saving and reusing shader group handles, e.g. for trace capture and replay.

• rayTracingPipelineShaderGroupHandleCaptureReplayMixed indicates whether the implementation
supports reuse of shader group handles being arbitrarily mixed with creation of non-reused
shader group handles. If this is VK_FALSE, all reused shader group handles must be specified
before any non-reused handles may be created.

• rayTracingPipelineTraceRaysIndirect indicates whether the implementation supports indirect
ray tracing commands, e.g. vkCmdTraceRaysIndirectKHR.

• rayTraversalPrimitiveCulling indicates whether the implementation supports primitive culling
during ray traversal.

If the VkPhysicalDeviceRayTracingPipelineFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRayTracingPipelineFeaturesKHR can also be used in the pNext chain of

3771

VkDeviceCreateInfo to selectively enable these features.

Valid Usage

• VUID-VkPhysicalDeviceRayTracingPipelineFeaturesKHR-
rayTracingPipelineShaderGroupHandleCaptureReplayMixed-03575
If rayTracingPipelineShaderGroupHandleCaptureReplayMixed is VK_TRUE,
rayTracingPipelineShaderGroupHandleCaptureReplay must also be VK_TRUE

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingPipelineFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR

The VkPhysicalDeviceRayQueryFeaturesKHR structure is defined as:

// Provided by VK_KHR_ray_query
typedef struct VkPhysicalDeviceRayQueryFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 rayQuery;
} VkPhysicalDeviceRayQueryFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rayQuery indicates whether the implementation supports ray query (OpRayQueryProceedKHR)
functionality.

If the VkPhysicalDeviceRayQueryFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceRayQueryFeaturesKHR
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayQueryFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR

The VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_maintenance1
typedef struct VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR {

3772

 VkStructureType sType;
 void* pNext;
 VkBool32 rayTracingMaintenance1;
 VkBool32 rayTracingPipelineTraceRaysIndirect2;
} VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rayTracingMaintenance1 indicates that the implementation supports the following:

◦ The CullMaskKHR SPIR-V builtin using the SPV_KHR_ray_cull_mask SPIR-V extension.

◦ Additional acceleration structure property queries:
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR and
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR.

◦ A new access flag VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR.

◦ A new pipeline stage flag bit VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR

• rayTracingPipelineTraceRaysIndirect2 indicates whether the implementation supports the
extended indirect ray tracing command vkCmdTraceRaysIndirect2KHR.

If the VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MAINTENANCE_1_FEATURES_KHR

The VkPhysicalDeviceVideoMaintenance1FeaturesKHR structure is defined as:

// Provided by VK_KHR_video_maintenance1
typedef struct VkPhysicalDeviceVideoMaintenance1FeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 videoMaintenance1;
} VkPhysicalDeviceVideoMaintenance1FeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

3773

• pNext is NULL or a pointer to a structure extending this structure.

• videoMaintenance1 indicates that the implementation supports the following:

◦ The new buffer creation flag VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR.

◦ The new image creation flag VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR.

◦ The new video session creation flag VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR.

If the VkPhysicalDeviceVideoMaintenance1FeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceVideoMaintenance1FeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVideoMaintenance1FeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_MAINTENANCE_1_FEATURES_KHR

The VkPhysicalDeviceExtendedDynamicStateFeaturesEXT structure is defined as:

// Provided by VK_EXT_extended_dynamic_state
typedef struct VkPhysicalDeviceExtendedDynamicStateFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 extendedDynamicState;
} VkPhysicalDeviceExtendedDynamicStateFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• extendedDynamicState indicates that the implementation supports the following dynamic states:

◦ VK_DYNAMIC_STATE_CULL_MODE

◦ VK_DYNAMIC_STATE_FRONT_FACE

◦ VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY

◦ VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT

◦ VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT

◦ VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE

◦ VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE

◦ VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE

◦ VK_DYNAMIC_STATE_DEPTH_COMPARE_OP

◦ VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE

3774

◦ VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE

◦ VK_DYNAMIC_STATE_STENCIL_OP

If the VkPhysicalDeviceExtendedDynamicStateFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExtendedDynamicStateFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT

The VkPhysicalDeviceExtendedDynamicState2FeaturesEXT structure is defined as:

// Provided by VK_EXT_extended_dynamic_state2
typedef struct VkPhysicalDeviceExtendedDynamicState2FeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 extendedDynamicState2;
 VkBool32 extendedDynamicState2LogicOp;
 VkBool32 extendedDynamicState2PatchControlPoints;
} VkPhysicalDeviceExtendedDynamicState2FeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• extendedDynamicState2 indicates that the implementation supports the following dynamic states:

◦ VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE

◦ VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE

◦ VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE

• extendedDynamicState2LogicOp indicates that the implementation supports the following dynamic
state:

◦ VK_DYNAMIC_STATE_LOGIC_OP_EXT

• extendedDynamicState2PatchControlPoints indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT

If the VkPhysicalDeviceExtendedDynamicState2FeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.

3775

VkPhysicalDeviceExtendedDynamicState2FeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExtendedDynamicState2FeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT

The VkPhysicalDeviceExtendedDynamicState3FeaturesEXT structure is defined as:

// Provided by VK_EXT_extended_dynamic_state3
typedef struct VkPhysicalDeviceExtendedDynamicState3FeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 extendedDynamicState3TessellationDomainOrigin;
 VkBool32 extendedDynamicState3DepthClampEnable;
 VkBool32 extendedDynamicState3PolygonMode;
 VkBool32 extendedDynamicState3RasterizationSamples;
 VkBool32 extendedDynamicState3SampleMask;
 VkBool32 extendedDynamicState3AlphaToCoverageEnable;
 VkBool32 extendedDynamicState3AlphaToOneEnable;
 VkBool32 extendedDynamicState3LogicOpEnable;
 VkBool32 extendedDynamicState3ColorBlendEnable;
 VkBool32 extendedDynamicState3ColorBlendEquation;
 VkBool32 extendedDynamicState3ColorWriteMask;
 VkBool32 extendedDynamicState3RasterizationStream;
 VkBool32 extendedDynamicState3ConservativeRasterizationMode;
 VkBool32 extendedDynamicState3ExtraPrimitiveOverestimationSize;
 VkBool32 extendedDynamicState3DepthClipEnable;
 VkBool32 extendedDynamicState3SampleLocationsEnable;
 VkBool32 extendedDynamicState3ColorBlendAdvanced;
 VkBool32 extendedDynamicState3ProvokingVertexMode;
 VkBool32 extendedDynamicState3LineRasterizationMode;
 VkBool32 extendedDynamicState3LineStippleEnable;
 VkBool32 extendedDynamicState3DepthClipNegativeOneToOne;
 VkBool32 extendedDynamicState3ViewportWScalingEnable;
 VkBool32 extendedDynamicState3ViewportSwizzle;
 VkBool32 extendedDynamicState3CoverageToColorEnable;
 VkBool32 extendedDynamicState3CoverageToColorLocation;
 VkBool32 extendedDynamicState3CoverageModulationMode;
 VkBool32 extendedDynamicState3CoverageModulationTableEnable;
 VkBool32 extendedDynamicState3CoverageModulationTable;
 VkBool32 extendedDynamicState3CoverageReductionMode;
 VkBool32 extendedDynamicState3RepresentativeFragmentTestEnable;
 VkBool32 extendedDynamicState3ShadingRateImageEnable;
} VkPhysicalDeviceExtendedDynamicState3FeaturesEXT;

This structure describes the following features:

3776

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• extendedDynamicState3TessellationDomainOrigin indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT

• extendedDynamicState3DepthClampEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT

• extendedDynamicState3PolygonMode indicates that the implementation supports the following
dynamic state:

◦ VK_DYNAMIC_STATE_POLYGON_MODE_EXT

• extendedDynamicState3RasterizationSamples indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT

• extendedDynamicState3SampleMask indicates that the implementation supports the following
dynamic state:

◦ VK_DYNAMIC_STATE_SAMPLE_MASK_EXT

• extendedDynamicState3AlphaToCoverageEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT

• extendedDynamicState3AlphaToOneEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT

• extendedDynamicState3LogicOpEnable indicates that the implementation supports the following
dynamic state:

◦ VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT

• extendedDynamicState3ColorBlendEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT

• extendedDynamicState3ColorBlendEquation indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT

• extendedDynamicState3ColorWriteMask indicates that the implementation supports the following
dynamic state:

◦ VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT

• extendedDynamicState3RasterizationStream indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT

3777

• extendedDynamicState3ConservativeRasterizationMode indicates that the implementation
supports the following dynamic state:

◦ VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT

• extendedDynamicState3ExtraPrimitiveOverestimationSize indicates that the implementation
supports the following dynamic state:

◦ VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT

• extendedDynamicState3DepthClipEnable indicates that the implementation supports the following
dynamic state:

◦ VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT

• extendedDynamicState3SampleLocationsEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT

• extendedDynamicState3ColorBlendAdvanced indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT

• extendedDynamicState3ProvokingVertexMode indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT

• extendedDynamicState3LineRasterizationMode indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT

• extendedDynamicState3LineStippleEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT

• extendedDynamicState3DepthClipNegativeOneToOne indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT

• extendedDynamicState3ViewportWScalingEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV

• extendedDynamicState3ViewportSwizzle indicates that the implementation supports the following
dynamic state:

◦ VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV

• extendedDynamicState3CoverageToColorEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV

• extendedDynamicState3CoverageToColorLocation indicates that the implementation supports the
following dynamic state:

3778

◦ VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV

• extendedDynamicState3CoverageModulationMode indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV

• extendedDynamicState3CoverageModulationTableEnable indicates that the implementation
supports the following dynamic state:

◦ VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV

• extendedDynamicState3CoverageModulationTable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV

• extendedDynamicState3CoverageReductionMode indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV

• extendedDynamicState3RepresentativeFragmentTestEnable indicates that the implementation
supports the following dynamic state:

◦ VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV

• extendedDynamicState3ShadingRateImageEnable indicates that the implementation supports the
following dynamic state:

◦ VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV

If the VkPhysicalDeviceExtendedDynamicState3FeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceExtendedDynamicState3FeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExtendedDynamicState3FeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_FEATURES_EXT

The VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV structure is defined as:

// Provided by VK_NV_device_generated_commands
typedef struct VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 deviceGeneratedCommands;
} VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV;

This structure describes the following feature:

3779

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceGeneratedCommands indicates whether the implementation supports functionality to
generate commands on the device. See Device-Generated Commands.

If the VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_FEATURES_NV

The VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV structure is defined as:

// Provided by VK_NV_device_generated_commands_compute
typedef struct VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 deviceGeneratedCompute;
 VkBool32 deviceGeneratedComputePipelines;
 VkBool32 deviceGeneratedComputeCaptureReplay;
} VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceGeneratedCompute indicates whether the implementation supports functionality to
generate dispatch commands and push constants for the compute pipeline on the device. See
Device-Generated Commands.

• deviceGeneratedComputePipelines indicates whether the implementation supports functionality
to generate commands to bind compute pipelines on the device. See Device-Generated
Commands.

• deviceGeneratedComputeCaptureReplay indicates whether the implementation supports
functionality to capture compute pipeline address and reuse later for replay in Device-
Generated Commands.

If the VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV can also be used in the pNext chain of

3780

VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_COMPUTE_FEATURES_NV

The VkPhysicalDeviceDiagnosticsConfigFeaturesNV structure is defined as:

// Provided by VK_NV_device_diagnostics_config
typedef struct VkPhysicalDeviceDiagnosticsConfigFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 diagnosticsConfig;
} VkPhysicalDeviceDiagnosticsConfigFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• diagnosticsConfig indicates whether the implementation supports the ability to configure
diagnostic tools.

If the VkPhysicalDeviceDiagnosticsConfigFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDiagnosticsConfigFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDiagnosticsConfigFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DIAGNOSTICS_CONFIG_FEATURES_NV

The VkPhysicalDeviceDeviceMemoryReportFeaturesEXT structure is defined as:

// Provided by VK_EXT_device_memory_report
typedef struct VkPhysicalDeviceDeviceMemoryReportFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 deviceMemoryReport;
} VkPhysicalDeviceDeviceMemoryReportFeaturesEXT;

This structure describes the following feature:

3781

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceMemoryReport indicates whether the implementation supports the ability to register device
memory report callbacks.

If the VkPhysicalDeviceDeviceMemoryReportFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDeviceMemoryReportFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDeviceMemoryReportFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_MEMORY_REPORT_FEATURES_EXT

The VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR structure is defined as:

// Provided by VK_KHR_global_priority
typedef struct VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 globalPriorityQuery;
} VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR;

or the equivalent

// Provided by VK_EXT_global_priority_query
typedef VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR
VkPhysicalDeviceGlobalPriorityQueryFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• globalPriorityQuery indicates whether the implementation supports the ability to query global
queue priorities.

If the VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3782

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR

The VkPhysicalDevicePipelineCreationCacheControlFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDevicePipelineCreationCacheControlFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 pipelineCreationCacheControl;
} VkPhysicalDevicePipelineCreationCacheControlFeatures;

or the equivalent

// Provided by VK_EXT_pipeline_creation_cache_control
typedef VkPhysicalDevicePipelineCreationCacheControlFeatures
VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineCreationCacheControl indicates that the implementation supports:

◦ The following can be used in Vk*PipelineCreateInfo::flags:

▪ VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT

▪ VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

◦ The following can be used in VkPipelineCacheCreateInfo::flags:

▪ VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

If the VkPhysicalDevicePipelineCreationCacheControlFeatures structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDevicePipelineCreationCacheControlFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePipelineCreationCacheControlFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES

3783

The VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderZeroInitializeWorkgroupMemory;
} VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures;

or the equivalent

// Provided by VK_KHR_zero_initialize_workgroup_memory
typedef VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures
VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderZeroInitializeWorkgroupMemory specifies whether the implementation supports initializing
a variable in Workgroup storage class.

If the VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES

The VkPhysicalDevicePrivateDataFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDevicePrivateDataFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 privateData;
} VkPhysicalDevicePrivateDataFeatures;

or the equivalent

3784

// Provided by VK_EXT_private_data
typedef VkPhysicalDevicePrivateDataFeatures VkPhysicalDevicePrivateDataFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• privateData indicates whether the implementation supports private data. See Private Data.

If the VkPhysicalDevicePrivateDataFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevicePrivateDataFeatures
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePrivateDataFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES

The VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR structure is defined as:

// Provided by VK_KHR_shader_subgroup_uniform_control_flow
typedef struct VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderSubgroupUniformControlFlow;
} VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderSubgroupUniformControlFlow specifies whether the implementation supports the shader
execution mode SubgroupUniformControlFlowKHR

If the VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR-sType-sType

3785

sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR

The VkPhysicalDeviceRobustness2FeaturesEXT structure is defined as:

// Provided by VK_EXT_robustness2
typedef struct VkPhysicalDeviceRobustness2FeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 robustBufferAccess2;
 VkBool32 robustImageAccess2;
 VkBool32 nullDescriptor;
} VkPhysicalDeviceRobustness2FeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• robustBufferAccess2 indicates whether buffer accesses are tightly bounds-checked against the
range of the descriptor. Uniform buffers must be bounds-checked to the range of the descriptor,
where the range is rounded up to a multiple of robustUniformBufferAccessSizeAlignment. Storage
buffers must be bounds-checked to the range of the descriptor, where the range is rounded up
to a multiple of robustStorageBufferAccessSizeAlignment. Out of bounds buffer loads will return
zero values, and image load, sample, and atomic operations from texel buffers will have (0,0,1)
values inserted for missing G, B, or A components based on the format.

• robustImageAccess2 indicates whether image accesses are tightly bounds-checked against the
dimensions of the image view. Out of bounds image load, sample, and atomic operations from
images will return zero values, with (0,0,1) values inserted for missing G, B, or A components
based on the format.

• nullDescriptor indicates whether descriptors can be written with a VK_NULL_HANDLE
resource or view, which are considered valid to access and act as if the descriptor were bound
to nothing.

If the VkPhysicalDeviceRobustness2FeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceRobustness2FeaturesEXT
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage

• VUID-VkPhysicalDeviceRobustness2FeaturesEXT-robustBufferAccess2-04000
If robustBufferAccess2 is enabled then robustBufferAccess must also be enabled

3786

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRobustness2FeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT

The VkPhysicalDeviceImageRobustnessFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceImageRobustnessFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 robustImageAccess;
} VkPhysicalDeviceImageRobustnessFeatures;

or the equivalent

// Provided by VK_EXT_image_robustness
typedef VkPhysicalDeviceImageRobustnessFeatures
VkPhysicalDeviceImageRobustnessFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• robustImageAccess indicates whether image accesses are tightly bounds-checked against the
dimensions of the image view. Invalid texels resulting from out of bounds image loads will be
replaced as described in Texel Replacement, with either (0,0,1) or (0,0,0) values inserted for
missing G, B, or A components based on the format.

If the VkPhysicalDeviceImageRobustnessFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImageRobustnessFeatures can also be used in the pNext chain of VkDeviceCreateInfo
to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageRobustnessFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES

The VkPhysicalDeviceShaderTerminateInvocationFeatures structure is defined as:

// Provided by VK_VERSION_1_3

3787

typedef struct VkPhysicalDeviceShaderTerminateInvocationFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderTerminateInvocation;
} VkPhysicalDeviceShaderTerminateInvocationFeatures;

or the equivalent

// Provided by VK_KHR_shader_terminate_invocation
typedef VkPhysicalDeviceShaderTerminateInvocationFeatures
VkPhysicalDeviceShaderTerminateInvocationFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderTerminateInvocation specifies whether the implementation supports SPIR-V modules that
use the SPV_KHR_terminate_invocation extension.

If the VkPhysicalDeviceShaderTerminateInvocationFeatures structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderTerminateInvocationFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderTerminateInvocationFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES

The VkPhysicalDeviceCustomBorderColorFeaturesEXT structure is defined as:

// Provided by VK_EXT_custom_border_color
typedef struct VkPhysicalDeviceCustomBorderColorFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 customBorderColors;
 VkBool32 customBorderColorWithoutFormat;
} VkPhysicalDeviceCustomBorderColorFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3788

• customBorderColors indicates that the implementation supports providing a borderColor value
with one of the following values at sampler creation time:

◦ VK_BORDER_COLOR_FLOAT_CUSTOM_EXT

◦ VK_BORDER_COLOR_INT_CUSTOM_EXT

• customBorderColorWithoutFormat indicates that explicit formats are not required for custom
border colors and the value of the format member of the
VkSamplerCustomBorderColorCreateInfoEXT structure may be VK_FORMAT_UNDEFINED. If this
feature bit is not set, applications must provide the VkFormat of the image view(s) being
sampled by this sampler in the format member of the
VkSamplerCustomBorderColorCreateInfoEXT structure.

If the VkPhysicalDeviceCustomBorderColorFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCustomBorderColorFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCustomBorderColorFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT

The VkPhysicalDeviceBorderColorSwizzleFeaturesEXT structure is defined as:

// Provided by VK_EXT_border_color_swizzle
typedef struct VkPhysicalDeviceBorderColorSwizzleFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 borderColorSwizzle;
 VkBool32 borderColorSwizzleFromImage;
} VkPhysicalDeviceBorderColorSwizzleFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• borderColorSwizzle indicates that defined values are returned by sampled image operations
when used with a sampler that uses a VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK,
VK_BORDER_COLOR_INT_OPAQUE_BLACK, VK_BORDER_COLOR_FLOAT_CUSTOM_EXT, or
VK_BORDER_COLOR_INT_CUSTOM_EXT borderColor and an image view that uses a non-identity
component mapping, when either borderColorSwizzleFromImage is enabled or the
VkSamplerBorderColorComponentMappingCreateInfoEXT is specified.

• borderColorSwizzleFromImage indicates that the implementation will return the correct border
color values from sampled image operations under the conditions expressed above, without the

3789

application having to specify the border color component mapping when creating the sampler
object. If this feature bit is not set, applications can chain a
VkSamplerBorderColorComponentMappingCreateInfoEXT structure when creating samplers for
use with image views that do not have an identity swizzle and, when those samplers are
combined with image views using the same component mapping, sampled image operations
that use opaque black or custom border colors will return the correct border color values.

If the VkPhysicalDeviceBorderColorSwizzleFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceBorderColorSwizzleFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceBorderColorSwizzleFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT

The VkPhysicalDevicePortabilitySubsetFeaturesKHR structure is defined as:

// Provided by VK_KHR_portability_subset
typedef struct VkPhysicalDevicePortabilitySubsetFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 constantAlphaColorBlendFactors;
 VkBool32 events;
 VkBool32 imageViewFormatReinterpretation;
 VkBool32 imageViewFormatSwizzle;
 VkBool32 imageView2DOn3DImage;
 VkBool32 multisampleArrayImage;
 VkBool32 mutableComparisonSamplers;
 VkBool32 pointPolygons;
 VkBool32 samplerMipLodBias;
 VkBool32 separateStencilMaskRef;
 VkBool32 shaderSampleRateInterpolationFunctions;
 VkBool32 tessellationIsolines;
 VkBool32 tessellationPointMode;
 VkBool32 triangleFans;
 VkBool32 vertexAttributeAccessBeyondStride;
} VkPhysicalDevicePortabilitySubsetFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• constantAlphaColorBlendFactors indicates whether this implementation supports constant alpha
Blend Factors used as source or destination color Blending.

3790

• events indicates whether this implementation supports synchronization using Events.

• imageViewFormatReinterpretation indicates whether this implementation supports a VkImageView
being created with a texel format containing a different number of components, or a different
number of bits in each component, than the texel format of the underlying VkImage.

• imageViewFormatSwizzle indicates whether this implementation supports remapping format
components using VkImageViewCreateInfo::components.

• imageView2DOn3DImage indicates whether this implementation supports a VkImage being created
with the VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT flag set, permitting a 2D or 2D array image
view to be created on a 3D VkImage.

• multisampleArrayImage indicates whether this implementation supports a VkImage being created
as a 2D array with multiple samples per texel.

• mutableComparisonSamplers indicates whether this implementation allows descriptors with
comparison samplers to be updated.

• pointPolygons indicates whether this implementation supports Rasterization using a point
Polygon Mode.

• samplerMipLodBias indicates whether this implementation supports setting a mipmap LOD bias
value when creating a sampler.

• separateStencilMaskRef indicates whether this implementation supports separate front and back
Stencil Test reference values.

• shaderSampleRateInterpolationFunctions indicates whether this implementation supports
fragment shaders which use the InterpolationFunction capability and the extended instructions
InterpolateAtCentroid, InterpolateAtOffset, and InterpolateAtSample from the GLSL.std.450
extended instruction set. This member is only meaningful if the sampleRateShading feature is
supported.

• tessellationIsolines indicates whether this implementation supports isoline output from the
Tessellation stage of a graphics pipeline. This member is only meaningful if tessellationShader
are supported.

• tessellationPointMode indicates whether this implementation supports point output from the
Tessellation stage of a graphics pipeline. This member is only meaningful if tessellationShader
are supported.

• triangleFans indicates whether this implementation supports Triangle Fans primitive topology.

• vertexAttributeAccessBeyondStride indicates whether this implementation supports accessing a
vertex input attribute beyond the stride of the corresponding vertex input binding.

If the VkPhysicalDevicePortabilitySubsetFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDevicePortabilitySubsetFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePortabilitySubsetFeaturesKHR-sType-sType

3791

sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PORTABILITY_SUBSET_FEATURES_KHR

The VkPhysicalDevicePerformanceQueryFeaturesKHR structure is defined as:

// Provided by VK_KHR_performance_query
typedef struct VkPhysicalDevicePerformanceQueryFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 performanceCounterQueryPools;
 VkBool32 performanceCounterMultipleQueryPools;
} VkPhysicalDevicePerformanceQueryFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• performanceCounterQueryPools indicates whether the implementation supports performance
counter query pools.

• performanceCounterMultipleQueryPools indicates whether the implementation supports using
multiple performance query pools in a primary command buffer and secondary command
buffers executed within it.

If the VkPhysicalDevicePerformanceQueryFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDevicePerformanceQueryFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePerformanceQueryFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR

The VkPhysicalDevice4444FormatsFeaturesEXT structure is defined as:

// Provided by VK_EXT_4444_formats
typedef struct VkPhysicalDevice4444FormatsFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 formatA4R4G4B4;
 VkBool32 formatA4B4G4R4;
} VkPhysicalDevice4444FormatsFeaturesEXT;

This structure describes the following features:

3792

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• formatA4R4G4B4 indicates that the implementation must support using a VkFormat of
VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT with at least the following VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

◦ VK_FORMAT_FEATURE_BLIT_SRC_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• formatA4B4G4R4 indicates that the implementation must support using a VkFormat of
VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT with at least the following VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

◦ VK_FORMAT_FEATURE_BLIT_SRC_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

If the VkPhysicalDevice4444FormatsFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevice4444FormatsFeaturesEXT
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevice4444FormatsFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT

Note

Although the formats defined by the VK_EXT_4444_formats extension were promoted
to Vulkan 1.3 as optional formats, the VkPhysicalDevice4444FormatsFeaturesEXT
structure was not promoted to Vulkan 1.3.

The VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT structure is defined as:

// Provided by VK_EXT_mutable_descriptor_type
typedef struct VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 mutableDescriptorType;
} VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT;

or the equivalent

// Provided by VK_VALVE_mutable_descriptor_type
typedef VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT
VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE;

3793

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• mutableDescriptorType indicates that the implementation must support using the
VkDescriptorType of VK_DESCRIPTOR_TYPE_MUTABLE_EXT with at least the following descriptor
types, where any combination of the types must be supported:

◦ VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE

◦ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE

◦ VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER

◦ VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER

◦ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER

◦ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER

• Additionally, mutableDescriptorType indicates that:

◦ Non-uniform descriptor indexing must be supported if all descriptor types in a
VkMutableDescriptorTypeListEXT for VK_DESCRIPTOR_TYPE_MUTABLE_EXT have the
corresponding non-uniform indexing features enabled in
VkPhysicalDeviceDescriptorIndexingFeatures.

◦ VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT with descriptorType of
VK_DESCRIPTOR_TYPE_MUTABLE_EXT relaxes the list of required descriptor types to the descriptor
types which have the corresponding update-after-bind feature enabled in
VkPhysicalDeviceDescriptorIndexingFeatures.

◦ Dynamically uniform descriptor indexing must be supported if all descriptor types in a
VkMutableDescriptorTypeListEXT for VK_DESCRIPTOR_TYPE_MUTABLE_EXT have the
corresponding dynamic indexing features enabled.

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT must be supported.

◦ VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT must be supported.

If the VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_EXT

The VkPhysicalDeviceDepthClipControlFeaturesEXT structure is defined as:

// Provided by VK_EXT_depth_clip_control

3794

typedef struct VkPhysicalDeviceDepthClipControlFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 depthClipControl;
} VkPhysicalDeviceDepthClipControlFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• depthClipControl indicates that the implementation supports setting
VkPipelineViewportDepthClipControlCreateInfoEXT::negativeOneToOne to VK_TRUE.

If the VkPhysicalDeviceDepthClipControlFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDepthClipControlFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDepthClipControlFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT

The VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR structure is defined as:

// Provided by VK_KHR_workgroup_memory_explicit_layout
typedef struct VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 workgroupMemoryExplicitLayout;
 VkBool32 workgroupMemoryExplicitLayoutScalarBlockLayout;
 VkBool32 workgroupMemoryExplicitLayout8BitAccess;
 VkBool32 workgroupMemoryExplicitLayout16BitAccess;
} VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• workgroupMemoryExplicitLayout indicates whether the implementation supports the SPIR-V
WorkgroupMemoryExplicitLayoutKHR capability.

• workgroupMemoryExplicitLayoutScalarBlockLayout indicates whether the implementation
supports scalar alignment for laying out Workgroup Blocks.

• workgroupMemoryExplicitLayout8BitAccess indicates whether objects in the Workgroup storage

3795

class with the Block decoration can have 8-bit integer members. If this feature is not enabled, 8-
bit integer members must not be used in such objects. This also indicates whether shader
modules can declare the WorkgroupMemoryExplicitLayout8BitAccessKHR capability.

• workgroupMemoryExplicitLayout16BitAccess indicates whether objects in the Workgroup storage
class with the Block decoration can have 16-bit integer and 16-bit floating-point members. If this
feature is not enabled, 16-bit integer or 16-bit floating-point members must not be used in such
objects. This also indicates whether shader modules can declare the
WorkgroupMemoryExplicitLayout16BitAccessKHR capability.

If the VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR

The VkPhysicalDeviceSynchronization2Features structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceSynchronization2Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 synchronization2;
} VkPhysicalDeviceSynchronization2Features;

or the equivalent

// Provided by VK_KHR_synchronization2
typedef VkPhysicalDeviceSynchronization2Features
VkPhysicalDeviceSynchronization2FeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• synchronization2 indicates whether the implementation supports the new set of
synchronization commands introduced in VK_KHR_synchronization2.

If the VkPhysicalDeviceSynchronization2Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to

3796

indicate whether each corresponding feature is supported.
VkPhysicalDeviceSynchronization2Features can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSynchronization2Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES

The VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT structure is defined as:

// Provided by VK_EXT_vertex_input_dynamic_state
typedef struct VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 vertexInputDynamicState;
} VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• vertexInputDynamicState indicates that the implementation supports the following dynamic
states:

◦ VK_DYNAMIC_STATE_VERTEX_INPUT_EXT

If the VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT

The VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT structure is defined as:

// Provided by VK_EXT_primitives_generated_query
typedef struct VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 primitivesGeneratedQuery;

3797

 VkBool32 primitivesGeneratedQueryWithRasterizerDiscard;
 VkBool32 primitivesGeneratedQueryWithNonZeroStreams;
} VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• primitivesGeneratedQuery indicates whether the implementation supports the
VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT query type.

• primitivesGeneratedQueryWithRasterizerDiscard indicates whether the implementation supports
this query when rasterization discard is enabled.

• primitivesGeneratedQueryWithNonZeroStreams indicates whether the implementation supports
this query with a non-zero index in vkCmdBeginQueryIndexedEXT.

If the VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT

The VkPhysicalDeviceFragmentShadingRateFeaturesKHR structure is defined as:

// Provided by VK_KHR_fragment_shading_rate
typedef struct VkPhysicalDeviceFragmentShadingRateFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 pipelineFragmentShadingRate;
 VkBool32 primitiveFragmentShadingRate;
 VkBool32 attachmentFragmentShadingRate;
} VkPhysicalDeviceFragmentShadingRateFeaturesKHR;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineFragmentShadingRate indicates that the implementation supports the pipeline fragment
shading rate.

3798

• primitiveFragmentShadingRate indicates that the implementation supports the primitive
fragment shading rate.

• attachmentFragmentShadingRate indicates that the implementation supports the attachment
fragment shading rate.

If the VkPhysicalDeviceFragmentShadingRateFeaturesKHR structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceFragmentShadingRateFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentShadingRateFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR

The VkPhysicalDeviceLegacyDitheringFeaturesEXT structure is defined as:

// Provided by VK_EXT_legacy_dithering
typedef struct VkPhysicalDeviceLegacyDitheringFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 legacyDithering;
} VkPhysicalDeviceLegacyDitheringFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• legacyDithering indicates whether the implementation supports Legacy Dithering.

If the VkPhysicalDeviceLegacyDitheringFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceLegacyDitheringFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceLegacyDitheringFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LEGACY_DITHERING_FEATURES_EXT

The VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV structure is defined as:

// Provided by VK_NV_fragment_shading_rate_enums

3799

typedef struct VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 fragmentShadingRateEnums;
 VkBool32 supersampleFragmentShadingRates;
 VkBool32 noInvocationFragmentShadingRates;
} VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentShadingRateEnums indicates that the implementation supports specifying fragment
shading rates using the VkFragmentShadingRateNV enumerated type.

• supersampleFragmentShadingRates indicates that the implementation supports fragment shading
rate enum values indicating more than one invocation per fragment.

• noInvocationFragmentShadingRates indicates that the implementation supports a fragment
shading rate enum value indicating that no fragment shaders should be invoked when that
shading rate is used.

If the VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_ENUMS_FEATURES_NV

The VkPhysicalDeviceInheritedViewportScissorFeaturesNV structure is defined as:

// Provided by VK_NV_inherited_viewport_scissor
typedef struct VkPhysicalDeviceInheritedViewportScissorFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 inheritedViewportScissor2D;
} VkPhysicalDeviceInheritedViewportScissorFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3800

• inheritedViewportScissor2D indicates whether secondary command buffers can inherit most of
the dynamic state affected by VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT,
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT, VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT,
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT, VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT,
VK_DYNAMIC_STATE_VIEWPORT or VK_DYNAMIC_STATE_SCISSOR, from a primary command buffer.

If the VkPhysicalDeviceInheritedViewportScissorFeaturesNV structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceInheritedViewportScissorFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceInheritedViewportScissorFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INHERITED_VIEWPORT_SCISSOR_FEATURES_NV

The VkPhysicalDevicePipelineProtectedAccessFeaturesEXT structure is defined as:

// Provided by VK_EXT_pipeline_protected_access
typedef struct VkPhysicalDevicePipelineProtectedAccessFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 pipelineProtectedAccess;
} VkPhysicalDevicePipelineProtectedAccessFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineProtectedAccess indicates whether the implementation supports specifying protected
access on individual pipelines.

If the VkPhysicalDevicePipelineProtectedAccessFeaturesEXT structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDevicePipelineProtectedAccessFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePipelineProtectedAccessFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_PROTECTED_ACCESS_FEATURES_EXT

3801

The VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT structure is defined as:

// Provided by VK_EXT_ycbcr_2plane_444_formats
typedef struct VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 ycbcr2plane444Formats;
} VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• ycbcr2plane444Formats indicates that the implementation supports the following 2-plane 444 Y′C

BCR formats:

◦ VK_FORMAT_G8_B8R8_2PLANE_444_UNORM

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G16_B16R16_2PLANE_444_UNORM

If the VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_2_PLANE_444_FORMATS_FEATURES_EXT

Note

Although the formats defined by the VK_EXT_ycbcr_2plane_444_formats were
promoted to Vulkan 1.3 as optional formats, the
VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT structure was not promoted
to Vulkan 1.3.

The VkPhysicalDeviceColorWriteEnableFeaturesEXT structure is defined as:

// Provided by VK_EXT_color_write_enable
typedef struct VkPhysicalDeviceColorWriteEnableFeaturesEXT {
 VkStructureType sType;
 void* pNext;

3802

 VkBool32 colorWriteEnable;
} VkPhysicalDeviceColorWriteEnableFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• colorWriteEnable indicates that the implementation supports the dynamic state
VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT.

If the VkPhysicalDeviceColorWriteEnableFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceColorWriteEnableFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceColorWriteEnableFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT

The VkPhysicalDevicePipelinePropertiesFeaturesEXT structure is defined as:

// Provided by VK_EXT_pipeline_properties
typedef struct VkPhysicalDevicePipelinePropertiesFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 pipelinePropertiesIdentifier;
} VkPhysicalDevicePipelinePropertiesFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelinePropertiesIdentifier indicates that the implementation supports querying a unique
pipeline identifier.

If the VkPhysicalDevicePipelinePropertiesFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDevicePipelinePropertiesFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3803

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePipelinePropertiesFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_PROPERTIES_FEATURES_EXT

The VkPhysicalDeviceProvokingVertexFeaturesEXT structure is defined as:

// Provided by VK_EXT_provoking_vertex
typedef struct VkPhysicalDeviceProvokingVertexFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 provokingVertexLast;
 VkBool32 transformFeedbackPreservesProvokingVertex;
} VkPhysicalDeviceProvokingVertexFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• provokingVertexLast indicates whether the implementation supports the
VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT provoking vertex mode for flat shading.

• transformFeedbackPreservesProvokingVertex indicates that the order of vertices within each
primitive written by transform feedback will preserve the provoking vertex. This does not apply
to triangle fan primitives when transformFeedbackPreservesTriangleFanProvokingVertex is
VK_FALSE. transformFeedbackPreservesProvokingVertex must be VK_FALSE when the
VK_EXT_transform_feedback extension is not supported.

If the VkPhysicalDeviceProvokingVertexFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceProvokingVertexFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

When VkPhysicalDeviceProvokingVertexFeaturesEXT is in the pNext chain of VkDeviceCreateInfo but
the transformFeedback feature is not enabled, the value of
transformFeedbackPreservesProvokingVertex is ignored.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceProvokingVertexFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT

The VkPhysicalDeviceDescriptorBufferFeaturesEXT structure is defined as:

3804

// Provided by VK_EXT_descriptor_buffer
typedef struct VkPhysicalDeviceDescriptorBufferFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 descriptorBuffer;
 VkBool32 descriptorBufferCaptureReplay;
 VkBool32 descriptorBufferImageLayoutIgnored;
 VkBool32 descriptorBufferPushDescriptors;
} VkPhysicalDeviceDescriptorBufferFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• descriptorBuffer indicates that the implementation supports putting shader-accessible
descriptors directly in memory.

• descriptorBufferCaptureReplay indicates that the implementation supports capture and replay
when using descriptor buffers. If this is VK_TRUE, all resources created with
VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT,
VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT,
VK_IMAGE_VIEW_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT,
VK_SAMPLER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT, or
VK_ACCELERATION_STRUCTURE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT must be created
before resources of the same types without those flags.

• descriptorBufferImageLayoutIgnored indicates that the implementation will ignore imageLayout in
VkDescriptorImageInfo when calling vkGetDescriptorEXT.

• descriptorBufferPushDescriptors indicates that the implementation supports using push
descriptors with descriptor buffers.

If the VkPhysicalDeviceDescriptorBufferFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDescriptorBufferFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorBufferFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_FEATURES_EXT

The VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT structure is defined as:

// Provided by VK_EXT_pageable_device_local_memory
typedef struct VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT {
 VkStructureType sType;

3805

 void* pNext;
 VkBool32 pageableDeviceLocalMemory;
} VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pageableDeviceLocalMemory indicates that the implementation supports pageable device-local
memory and may transparently move device-local memory allocations to host-local memory to
better share device-local memory with other applications.

If the VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PAGEABLE_DEVICE_LOCAL_MEMORY_FEATURES_EXT

The VkPhysicalDeviceMultiDrawFeaturesEXT structure is defined as:

// Provided by VK_EXT_multi_draw
typedef struct VkPhysicalDeviceMultiDrawFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 multiDraw;
} VkPhysicalDeviceMultiDrawFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• multiDraw indicates that the implementation supports vkCmdDrawMultiEXT and
vkCmdDrawMultiIndexedEXT.

If the VkPhysicalDeviceMultiDrawFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceMultiDrawFeaturesEXT
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

3806

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiDrawFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT

The VkPhysicalDeviceRayTracingMotionBlurFeaturesNV structure is defined as:

// Provided by VK_NV_ray_tracing_motion_blur
typedef struct VkPhysicalDeviceRayTracingMotionBlurFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 rayTracingMotionBlur;
 VkBool32 rayTracingMotionBlurPipelineTraceRaysIndirect;
} VkPhysicalDeviceRayTracingMotionBlurFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rayTracingMotionBlur indicates whether the implementation supports the motion blur feature.

• rayTracingMotionBlurPipelineTraceRaysIndirect indicates whether the implementation supports
indirect ray tracing commands with the motion blur feature enabled.

If the VkPhysicalDeviceRayTracingMotionBlurFeaturesNV structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRayTracingMotionBlurFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingMotionBlurFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MOTION_BLUR_FEATURES_NV

The VkPhysicalDeviceOpacityMicromapFeaturesEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkPhysicalDeviceOpacityMicromapFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 micromap;
 VkBool32 micromapCaptureReplay;
 VkBool32 micromapHostCommands;
} VkPhysicalDeviceOpacityMicromapFeaturesEXT;

3807

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• micromap indicates whether the implementation supports the micromap array feature.

• micromapCaptureReplay indicates whether the implementation supports capture and replay of
addresses for micromap arrays.

• micromapHostCommands indicates whether the implementation supports host side micromap array
commands.

If the VkPhysicalDeviceOpacityMicromapFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceOpacityMicromapFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceOpacityMicromapFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPACITY_MICROMAP_FEATURES_EXT

The VkPhysicalDeviceDisplacementMicromapFeaturesNV structure is defined as:

// Provided by VK_NV_displacement_micromap
typedef struct VkPhysicalDeviceDisplacementMicromapFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 displacementMicromap;
} VkPhysicalDeviceDisplacementMicromapFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• displacementMicromap indicates whether the implementation supports the displacement
micromap feature.

If the VkPhysicalDeviceDisplacementMicromapFeaturesNV structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDisplacementMicromapFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3808

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDisplacementMicromapFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISPLACEMENT_MICROMAP_FEATURES_NV

The VkPhysicalDeviceRayTracingValidationFeaturesNV structure is defined as:

// Provided by VK_NV_ray_tracing_validation
typedef struct VkPhysicalDeviceRayTracingValidationFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 rayTracingValidation;
} VkPhysicalDeviceRayTracingValidationFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rayTracingValidation indicates whether the implementation supports the ray tracing validation
feature.

If the VkPhysicalDeviceRayTracingValidationFeaturesNV structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRayTracingValidationFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingValidationFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_VALIDATION_FEATURES_NV

The VkPhysicalDeviceSubpassShadingFeaturesHUAWEI structure is defined as:

// Provided by VK_HUAWEI_subpass_shading
typedef struct VkPhysicalDeviceSubpassShadingFeaturesHUAWEI {
 VkStructureType sType;
 void* pNext;
 VkBool32 subpassShading;
} VkPhysicalDeviceSubpassShadingFeaturesHUAWEI;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

3809

• pNext is NULL or a pointer to a structure extending this structure.

• subpassShading specifies whether subpass shading is supported.

If the VkPhysicalDeviceSubpassShadingFeaturesHUAWEI structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSubpassShadingFeaturesHUAWEI can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubpassShadingFeaturesHUAWEI-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_SHADING_FEATURES_HUAWEI

The VkPhysicalDeviceExternalMemoryRDMAFeaturesNV structure is defined as:

// Provided by VK_NV_external_memory_rdma
typedef struct VkPhysicalDeviceExternalMemoryRDMAFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 externalMemoryRDMA;
} VkPhysicalDeviceExternalMemoryRDMAFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• externalMemoryRDMA indicates whether the implementation has support for the
VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV memory property and the
VK_EXTERNAL_MEMORY_HANDLE_TYPE_RDMA_ADDRESS_BIT_NV external memory handle type.

If the VkPhysicalDeviceExternalMemoryRDMAFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceExternalMemoryRDMAFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalMemoryRDMAFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_RDMA_FEATURES_NV

The VkPhysicalDevicePresentIdFeaturesKHR structure is defined as:

// Provided by VK_KHR_present_id

3810

typedef struct VkPhysicalDevicePresentIdFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 presentId;
} VkPhysicalDevicePresentIdFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentId indicates that the implementation supports specifying present ID values in the
VkPresentIdKHR extension to the VkPresentInfoKHR struct.

If the VkPhysicalDevicePresentIdFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevicePresentIdFeaturesKHR
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePresentIdFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_ID_FEATURES_KHR

The VkPhysicalDevicePresentWaitFeaturesKHR structure is defined as:

// Provided by VK_KHR_present_wait
typedef struct VkPhysicalDevicePresentWaitFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 presentWait;
} VkPhysicalDevicePresentWaitFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentWait indicates that the implementation supports vkWaitForPresentKHR.

If the VkPhysicalDevicePresentWaitFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevicePresentWaitFeaturesKHR
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

3811

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePresentWaitFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_WAIT_FEATURES_KHR

The VkPhysicalDeviceHostImageCopyFeaturesEXT structure is defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkPhysicalDeviceHostImageCopyFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 hostImageCopy;
} VkPhysicalDeviceHostImageCopyFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• hostImageCopy indicates that the implementation supports copying from host memory to images
using the vkCopyMemoryToImageEXT command, copying from images to host memory using
the vkCopyImageToMemoryEXT command, and copying between images using the
vkCopyImageToImageEXT command.

If the VkPhysicalDeviceHostImageCopyFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceHostImageCopyFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceHostImageCopyFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_FEATURES_EXT

The VkPhysicalDevicePresentBarrierFeaturesNV structure is defined as:

// Provided by VK_NV_present_barrier
typedef struct VkPhysicalDevicePresentBarrierFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 presentBarrier;
} VkPhysicalDevicePresentBarrierFeaturesNV;

This structure describes the following feature:

3812

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• presentBarrier indicates that the implementation supports the present barrier feature.

If the VkPhysicalDevicePresentBarrierFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDevicePresentBarrierFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePresentBarrierFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_BARRIER_FEATURES_NV

The VkPhysicalDeviceShaderIntegerDotProductFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceShaderIntegerDotProductFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderIntegerDotProduct;
} VkPhysicalDeviceShaderIntegerDotProductFeatures;

or the equivalent

// Provided by VK_KHR_shader_integer_dot_product
typedef VkPhysicalDeviceShaderIntegerDotProductFeatures
VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderIntegerDotProduct specifies whether shader modules can declare the
DotProductInputAllKHR, DotProductInput4x8BitKHR, DotProductInput4x8BitPackedKHR and
DotProductKHR capabilities.

If the VkPhysicalDeviceShaderIntegerDotProductFeatures structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderIntegerDotProductFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3813

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderIntegerDotProductFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES

The VkPhysicalDeviceMaintenance4Features structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceMaintenance4Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 maintenance4;
} VkPhysicalDeviceMaintenance4Features;

or the equivalent

// Provided by VK_KHR_maintenance4
typedef VkPhysicalDeviceMaintenance4Features VkPhysicalDeviceMaintenance4FeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maintenance4 indicates that the implementation supports the following:

◦ The application may destroy a VkPipelineLayout object immediately after using it to create
another object.

◦ LocalSizeId can be used as an alternative to LocalSize to specify the local workgroup size
with specialization constants.

◦ Images created with identical creation parameters will always have the same alignment
requirements.

◦ The size memory requirement of a buffer or image is never greater than that of another
buffer or image created with a greater or equal size.

◦ Push constants do not have to be initialized before they are dynamically accessed.

◦ The interface matching rules allow a larger output vector to match with a smaller input
vector, with additional values being discarded.

If the VkPhysicalDeviceMaintenance4Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceMaintenance4Features
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

3814

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance4Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES

The VkPhysicalDeviceMaintenance5FeaturesKHR structure is defined as:

// Provided by VK_KHR_maintenance5
typedef struct VkPhysicalDeviceMaintenance5FeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 maintenance5;
} VkPhysicalDeviceMaintenance5FeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maintenance5 indicates that the implementation supports the following:

◦ The ability to expose support for the optional format VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR.

◦ The ability to expose support for the optional format VK_FORMAT_A8_UNORM_KHR.

◦ A property to indicate that multisample coverage operations are performed after sample
counting in EarlyFragmentTests mode.

◦ Creating a VkBufferView with a subset of the associated VkBuffer usage using
VkBufferUsageFlags2CreateInfoKHR.

◦ A new function vkCmdBindIndexBuffer2KHR, allowing a range of memory to be bound as
an index buffer.

◦ vkGetDeviceProcAddr will return NULL for function pointers of core functions for versions
higher than the version requested by the application.

◦ vkCmdBindVertexBuffers2 supports using VK_WHOLE_SIZE in the pSizes parameter.

◦ If PointSize is not written, a default value of 1.0 is used for the size of points.

◦ VkShaderModuleCreateInfo can be added as a chained structure to pipeline creation via
VkPipelineShaderStageCreateInfo, rather than having to create a shader module.

◦ A function vkGetRenderingAreaGranularityKHR to query the optimal render area for a
dynamic rendering instance.

◦ A property to indicate that depth/stencil texturing operations with VK_COMPONENT_SWIZZLE_ONE
have defined behavior.

◦ vkGetDeviceImageSubresourceLayoutKHR allows an application to perform a
vkGetImageSubresourceLayout query without having to create an image.

◦ VK_REMAINING_ARRAY_LAYERS as the layerCount member of VkImageSubresourceLayers.

3815

◦ A property to indicate whether PointSize controls the final rasterization of polygons if
polygon mode is VK_POLYGON_MODE_POINT.

◦ Two properties to indicate the non-strict line rasterization algorithm used.

◦ Two new flags words VkPipelineCreateFlagBits2KHR and VkBufferUsageFlagBits2KHR.

◦ Physical-device-level functions can now be called with any value in the valid range for a
type beyond the defined enumerants, such that applications can avoid checking individual
features, extensions, or versions before querying supported properties of a particular
enumerant.

◦ Copies between images of any type are allowed, with 1D images treated as 2D images with a
height of 1.

If the VkPhysicalDeviceMaintenance5FeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceMaintenance5FeaturesKHR can also be used in the pNext chain of VkDeviceCreateInfo
to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance5FeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_5_FEATURES_KHR

The VkPhysicalDeviceMaintenance6FeaturesKHR structure is defined as:

// Provided by VK_KHR_maintenance6
typedef struct VkPhysicalDeviceMaintenance6FeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 maintenance6;
} VkPhysicalDeviceMaintenance6FeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maintenance6 indicates that the implementation supports the following:

◦ VK_NULL_HANDLE can be used when binding an index buffer

◦ VkBindMemoryStatusKHR can be included in the pNext chain of the
VkBindBufferMemoryInfo and VkBindImageMemoryInfo structures, enabling applications
to retrieve VkResult values for individual memory binding operations.

◦ VkPhysicalDeviceMaintenance6PropertiesKHR::blockTexelViewCompatibleMultipleLayers
property to indicate that the implementation supports creating image views with
VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT where the layerCount member of

3816

subresourceRange is greater than 1.

◦ VkPhysicalDeviceMaintenance6PropertiesKHR::maxCombinedImageSamplerDescriptorCount
property which indicates the maximum descriptor size required for any format that
requires a sampler Y′CBCR conversion supported by the implementation.

◦ A VkPhysicalDeviceMaintenance6PropertiesKHR::fragmentShadingRateClampCombinerInputs
property which indicates whether the implementation clamps the inputs to fragment
shading rate combiner operations.

If the VkPhysicalDeviceMaintenance6FeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceMaintenance6FeaturesKHR can also be used in the pNext chain of VkDeviceCreateInfo
to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance6FeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_6_FEATURES_KHR

The VkPhysicalDeviceDynamicRenderingFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceDynamicRenderingFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 dynamicRendering;
} VkPhysicalDeviceDynamicRenderingFeatures;

or the equivalent

// Provided by VK_KHR_dynamic_rendering
typedef VkPhysicalDeviceDynamicRenderingFeatures
VkPhysicalDeviceDynamicRenderingFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dynamicRendering specifies that the implementation supports dynamic render pass instances
using the vkCmdBeginRendering command.

If the VkPhysicalDeviceDynamicRenderingFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.

3817

VkPhysicalDeviceDynamicRenderingFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDynamicRenderingFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES

The VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT structure is defined as:

// Provided by VK_EXT_rgba10x6_formats
typedef struct VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 formatRgba10x6WithoutYCbCrSampler;
} VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• formatRgba10x6WithoutYCbCrSampler indicates that VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16
can be used with a VkImageView with subresourceRange.aspectMask equal to
VK_IMAGE_ASPECT_COLOR_BIT without a sampler Y′CBCR conversion enabled.

If the VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RGBA10X6_FORMATS_FEATURES_EXT

The VkPhysicalDevicePipelineRobustnessFeaturesEXT structure is defined as:

// Provided by VK_EXT_pipeline_robustness
typedef struct VkPhysicalDevicePipelineRobustnessFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 pipelineRobustness;
} VkPhysicalDevicePipelineRobustnessFeaturesEXT;

3818

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineRobustness indicates that robustness can be requested on a per-pipeline-stage
granularity.

Note

Enabling pipelineRobustness may, on some platforms, incur a minor performance
cost when robustBufferAccess is disabled, even for pipelines which do not make
use of any robustness features. If robustness is not needed, pipelineRobustness
should not be enabled by an application.

If the VkPhysicalDevicePipelineRobustnessFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDevicePipelineRobustnessFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePipelineRobustnessFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT

The VkPhysicalDeviceImageViewMinLodFeaturesEXT structure is defined as:

// Provided by VK_EXT_image_view_min_lod
typedef struct VkPhysicalDeviceImageViewMinLodFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 minLod;
} VkPhysicalDeviceImageViewMinLodFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minLod indicates whether the implementation supports clamping the minimum LOD value
during Image Level(s) Selection, Texel Gathering and Integer Texel Coordinate Operations with
a given VkImageView by VkImageViewMinLodCreateInfoEXT::minLod.

If the VkPhysicalDeviceImageViewMinLodFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImageViewMinLodFeaturesEXT can also be used in the pNext chain of

3819

VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageViewMinLodFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT

The VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT structure is defined as:

// Provided by VK_EXT_rasterization_order_attachment_access
typedef struct VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 rasterizationOrderColorAttachmentAccess;
 VkBool32 rasterizationOrderDepthAttachmentAccess;
 VkBool32 rasterizationOrderStencilAttachmentAccess;
} VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT;

or the equivalent

// Provided by VK_ARM_rasterization_order_attachment_access
typedef VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT
VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesARM;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rasterizationOrderColorAttachmentAccess indicates that rasterization order access to color and
input attachments is supported by the implementation.

• rasterizationOrderDepthAttachmentAccess indicates that rasterization order access to the depth
aspect of depth/stencil and input attachments is supported by the implementation.

• rasterizationOrderStencilAttachmentAccess indicates that rasterization order access to the
stencil aspect of depth/stencil and input attachments is supported by the implementation.

If the VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT can also be used in the pNext chain
of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT-sType-sType

3820

sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT

The VkPhysicalDeviceSubpassMergeFeedbackFeaturesEXT structure is defined as:

// Provided by VK_EXT_subpass_merge_feedback
typedef struct VkPhysicalDeviceSubpassMergeFeedbackFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 subpassMergeFeedback;
} VkPhysicalDeviceSubpassMergeFeedbackFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• subpassMergeFeedback indicates whether the implementation supports feedback of subpass
merging.

If the VkPhysicalDeviceSubpassMergeFeedbackFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSubpassMergeFeedbackFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubpassMergeFeedbackFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_MERGE_FEEDBACK_FEATURES_EXT

The VkPhysicalDeviceLinearColorAttachmentFeaturesNV structure is defined as:

// Provided by VK_NV_linear_color_attachment
typedef struct VkPhysicalDeviceLinearColorAttachmentFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 linearColorAttachment;
} VkPhysicalDeviceLinearColorAttachmentFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• linearColorAttachment indicates whether the implementation supports renderable Linear Color

3821

Attachment

If the VkPhysicalDeviceLinearColorAttachmentFeaturesNV structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceLinearColorAttachmentFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceLinearColorAttachmentFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINEAR_COLOR_ATTACHMENT_FEATURES_NV

The VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT structure is defined as:

// Provided by VK_EXT_attachment_feedback_loop_layout
typedef struct VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 attachmentFeedbackLoopLayout;
} VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachmentFeedbackLoopLayout indicates whether the implementation supports using
VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT image layout for images created with
VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT

The VkPhysicalDeviceNestedCommandBufferFeaturesEXT structure is defined as:

// Provided by VK_EXT_nested_command_buffer
typedef struct VkPhysicalDeviceNestedCommandBufferFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 nestedCommandBuffer;
 VkBool32 nestedCommandBufferRendering;
 VkBool32 nestedCommandBufferSimultaneousUse;

3822

} VkPhysicalDeviceNestedCommandBufferFeaturesEXT;

This structure describes the following features:

• nestedCommandBuffer indicates the implementation supports nested command buffers, which
allows Secondary Command Buffers to execute other Secondary Command Buffers.

• nestedCommandBufferRendering indicates that it is valid to call vkCmdExecuteCommands inside a
Secondary Command Buffer recorded with VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT.

• nestedCommandBufferSimultaneousUse indicates that the implementation supports nested
command buffers with command buffers that are recorded with
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT.

If the VkPhysicalDeviceNestedCommandBufferFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceNestedCommandBufferFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceNestedCommandBufferFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NESTED_COMMAND_BUFFER_FEATURES_EXT

The VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT structure is defined as:

// Provided by VK_EXT_graphics_pipeline_library
typedef struct VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 graphicsPipelineLibrary;
} VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• graphicsPipelineLibrary indicates that the implementation supports graphics pipeline libraries.

If the VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3823

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_FEATURES_EXT

The VkPhysicalDeviceMultisampledRenderToSingleSampledFeaturesEXT structure is defined as:

// Provided by VK_EXT_multisampled_render_to_single_sampled
typedef struct VkPhysicalDeviceMultisampledRenderToSingleSampledFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 multisampledRenderToSingleSampled;
} VkPhysicalDeviceMultisampledRenderToSingleSampledFeaturesEXT;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• multisampledRenderToSingleSampled indicates that the implementation supports multisampled
rendering to single-sampled render pass attachments.

If the VkPhysicalDeviceMultisampledRenderToSingleSampledFeaturesEXT structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceMultisampledRenderToSingleSampledFeaturesEXT can also be used in the pNext chain
of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultisampledRenderToSingleSampledFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_FEATURES_EXT

The VkPhysicalDeviceImage2DViewOf3DFeaturesEXT structure is defined as:

// Provided by VK_EXT_image_2d_view_of_3d
typedef struct VkPhysicalDeviceImage2DViewOf3DFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 image2DViewOf3D;
 VkBool32 sampler2DViewOf3D;
} VkPhysicalDeviceImage2DViewOf3DFeaturesEXT;

3824

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image2DViewOf3D indicates that the implementation supports using a 2D view of a 3D image in a
descriptor of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE if the image is created using
VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT.

• sampler2DViewOf3D indicates that the implementation supports using a 2D view of a 3D image in
a descriptor of type VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER if the image is created using
VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT.

If the VkPhysicalDeviceImage2DViewOf3DFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImage2DViewOf3DFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImage2DViewOf3DFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT

The VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT structure is defined as:

// Provided by VK_EXT_image_sliced_view_of_3d
typedef struct VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 imageSlicedViewOf3D;
} VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT;

The members of the VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT structure describe the
following features:

• imageSlicedViewOf3D indicates that the implementation supports using a sliced view of a 3D
image in a descriptor of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE by using a
VkImageViewSlicedCreateInfoEXT structure when creating the view.

If the VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

3825

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_SLICED_VIEW_OF_3D_FEATURES_EXT

The VkPhysicalDeviceImageCompressionControlFeaturesEXT structure is defined as:

// Provided by VK_EXT_image_compression_control
typedef struct VkPhysicalDeviceImageCompressionControlFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 imageCompressionControl;
} VkPhysicalDeviceImageCompressionControlFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageCompressionControl indicates that the implementation supports providing controls for
image compression at image creation time.

If the VkPhysicalDeviceImageCompressionControlFeaturesEXT structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImageCompressionControlFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageCompressionControlFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT

The VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT structure is defined as:

// Provided by VK_EXT_image_compression_control_swapchain
typedef struct VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 imageCompressionControlSwapchain;
} VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

3826

• pNext is NULL or a pointer to a structure extending this structure.

• imageCompressionControlSwapchain indicates that the implementation supports controlling image
controls per swapchain and querying image compression properties per surface.

If the VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_FEATURES_EXT

The VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_position_fetch
typedef struct VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 rayTracingPositionFetch;
} VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rayTracingPositionFetch indicates that the implementation supports fetching the object space
vertex positions of a hit triangle.

If the VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_POSITION_FETCH_FEATURES_KHR

The VkPhysicalDeviceShaderFloatControls2FeaturesKHR structure is defined as:

3827

// Provided by VK_KHR_shader_float_controls2
typedef struct VkPhysicalDeviceShaderFloatControls2FeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderFloatControls2;
} VkPhysicalDeviceShaderFloatControls2FeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderFloatControls2 specifies whether shader modules can declare the FloatControls2
capability.

If the VkPhysicalDeviceShaderFloatControls2FeaturesKHR structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderFloatControls2FeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderFloatControls2FeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT_CONTROLS_2_FEATURES_KHR

The VkPhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD structure is defined as:

// Provided by VK_AMD_shader_early_and_late_fragment_tests
typedef struct VkPhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderEarlyAndLateFragmentTests;
} VkPhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderEarlyAndLateFragmentTests indicates whether the implementation supports the
EarlyAndLateFragmentTestsAMD Execution Mode.

If the VkPhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD can also be used in the pNext chain of

3828

VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_EARLY_AND_LATE_FRAGMENT_TESTS_FEATURES_AMD

The VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT structure is defined as:

// Provided by VK_EXT_non_seamless_cube_map
typedef struct VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 nonSeamlessCubeMap;
} VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• nonSeamlessCubeMap indicates that the implementation supports
VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT.

If the VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT

The VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT structure is defined as:

// Provided by VK_EXT_shader_module_identifier
typedef struct VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderModuleIdentifier;
} VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT;

This structure describes the following feature:

3829

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderModuleIdentifier indicates whether the implementation supports querying an identifier
of a VkShaderModule or VkShaderModuleCreateInfo structure, and creating pipelines from
identifiers only.

If the VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT

The VkPhysicalDeviceTilePropertiesFeaturesQCOM structure is defined as:

// Provided by VK_QCOM_tile_properties
typedef struct VkPhysicalDeviceTilePropertiesFeaturesQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 tileProperties;
} VkPhysicalDeviceTilePropertiesFeaturesQCOM;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• tileProperties indicates that the implementation supports queries for returning tile properties.

If the VkPhysicalDeviceTilePropertiesFeaturesQCOM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceTilePropertiesFeaturesQCOM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTilePropertiesFeaturesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TILE_PROPERTIES_FEATURES_QCOM

The VkPhysicalDeviceImageProcessingFeaturesQCOM structure is defined as:

3830

// Provided by VK_QCOM_image_processing
typedef struct VkPhysicalDeviceImageProcessingFeaturesQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 textureSampleWeighted;
 VkBool32 textureBoxFilter;
 VkBool32 textureBlockMatch;
} VkPhysicalDeviceImageProcessingFeaturesQCOM;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• textureSampleWeighted indicates that the implementation supports shader modules that declare
the TextureSampleWeightedQCOM capability.

• textureBoxFilter indicates that the implementation supports shader modules that declare the
TextureBoxFilterQCOM capability.

• textureBlockMatch indicates that the implementation supports shader modules that declare the
TextureBlockMatchQCOM capability.

If the VkPhysicalDeviceImageProcessingFeaturesQCOM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImageProcessingFeaturesQCOM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageProcessingFeaturesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_FEATURES_QCOM

The VkPhysicalDeviceImageProcessing2FeaturesQCOM structure is defined as:

// Provided by VK_QCOM_image_processing2
typedef struct VkPhysicalDeviceImageProcessing2FeaturesQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 textureBlockMatch2;
} VkPhysicalDeviceImageProcessing2FeaturesQCOM;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3831

• textureBlockMatch2 indicates that the implementation supports shader modules that declare the
TextureBlockMatch2QCOM capability.

If the VkPhysicalDeviceImageProcessing2FeaturesQCOM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImageProcessing2FeaturesQCOM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageProcessing2FeaturesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_2_FEATURES_QCOM

The VkPhysicalDeviceDepthClampZeroOneFeaturesEXT structure is defined as:

// Provided by VK_EXT_depth_clamp_zero_one
typedef struct VkPhysicalDeviceDepthClampZeroOneFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 depthClampZeroOne;
} VkPhysicalDeviceDepthClampZeroOneFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• depthClampZeroOne indicates that the implementation supports clamping the depth to a range of 0
to 1.

If the VkPhysicalDeviceDepthClampZeroOneFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDepthClampZeroOneFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDepthClampZeroOneFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLAMP_ZERO_ONE_FEATURES_EXT

The VkPhysicalDeviceShaderTileImageFeaturesEXT structure is defined as:

// Provided by VK_EXT_shader_tile_image
typedef struct VkPhysicalDeviceShaderTileImageFeaturesEXT {

3832

 VkStructureType sType;
 void* pNext;
 VkBool32 shaderTileImageColorReadAccess;
 VkBool32 shaderTileImageDepthReadAccess;
 VkBool32 shaderTileImageStencilReadAccess;
} VkPhysicalDeviceShaderTileImageFeaturesEXT;

The members of the VkPhysicalDeviceShaderTileImageFeaturesEXT structure describe the following
features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderTileImageColorReadAccess indicates that the implementation supports the
TileImageColorReadAccessEXT SPIR-V capability.

• shaderTileImageDepthReadAccess indicates that the implementation supports the
TileImageDepthReadAccessEXT SPIR-V capability.

• shaderTileImageStencilReadAccess indicates that the implementation supports the
TileImageStencilReadAccessEXT SPIR-V capability.

If the VkPhysicalDeviceShaderTileImageFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderTileImageFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderTileImageFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TILE_IMAGE_FEATURES_EXT

The VkPhysicalDeviceDepthBiasControlFeaturesEXT structure is defined as:

// Provided by VK_EXT_depth_bias_control
typedef struct VkPhysicalDeviceDepthBiasControlFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 depthBiasControl;
 VkBool32 leastRepresentableValueForceUnormRepresentation;
 VkBool32 floatRepresentation;
 VkBool32 depthBiasExact;
} VkPhysicalDeviceDepthBiasControlFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

3833

• pNext is NULL or a pointer to a structure extending this structure.

• depthBiasControl indicates whether the implementation supports the vkCmdSetDepthBias2EXT
command and the VkDepthBiasRepresentationInfoEXT structure.

• leastRepresentableValueForceUnormRepresentation indicates whether the implementation
supports using the VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT
depth bias representation.

• floatRepresentation indicates whether the implementation supports using the
VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT depth bias representation.

• depthBiasExact indicates whether the implementation supports forcing depth bias to not be
scaled to ensure a minimum resolvable difference using VkDepthBiasRepresentationInfoEXT
::depthBiasExact.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDepthBiasControlFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_BIAS_CONTROL_FEATURES_EXT

The VkPhysicalDeviceAddressBindingReportFeaturesEXT structure is defined as:

// Provided by VK_EXT_device_address_binding_report
typedef struct VkPhysicalDeviceAddressBindingReportFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 reportAddressBinding;
} VkPhysicalDeviceAddressBindingReportFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• reportAddressBinding indicates whether this implementation supports reporting the binding of
GPU virtual address ranges to Vulkan objects.

If the VkPhysicalDeviceAddressBindingReportFeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceAddressBindingReportFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceAddressBindingReportFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ADDRESS_BINDING_REPORT_FEATURES_EXT

3834

The VkPhysicalDeviceOpticalFlowFeaturesNV structure is defined as:

// Provided by VK_NV_optical_flow
typedef struct VkPhysicalDeviceOpticalFlowFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 opticalFlow;
} VkPhysicalDeviceOpticalFlowFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• opticalFlow indicates whether the implementation supports optical flow.

If the VkPhysicalDeviceOpticalFlowFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceOpticalFlowFeaturesNV
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceOpticalFlowFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPTICAL_FLOW_FEATURES_NV

The VkPhysicalDeviceFaultFeaturesEXT structure is defined as:

// Provided by VK_EXT_device_fault
typedef struct VkPhysicalDeviceFaultFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 deviceFault;
 VkBool32 deviceFaultVendorBinary;
} VkPhysicalDeviceFaultFeaturesEXT;

The members of the VkPhysicalDeviceFaultFeaturesEXT structure describe the following features:

• deviceFault indicates that the implementation supports the reporting of device fault
information.

• deviceFaultVendorBinary indicates that the implementation supports the generation of vendor-
specific binary crash dumps. These may provide additional information when imported into
vendor-specific external tools.

If the VkPhysicalDeviceFaultFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceFaultFeaturesEXT can

3835

also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFaultFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FAULT_FEATURES_EXT

The VkPhysicalDevicePipelineLibraryGroupHandlesFeaturesEXT structure is defined as:

// Provided by VK_EXT_pipeline_library_group_handles
typedef struct VkPhysicalDevicePipelineLibraryGroupHandlesFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 pipelineLibraryGroupHandles;
} VkPhysicalDevicePipelineLibraryGroupHandlesFeaturesEXT;

This structure describes the following features:

• pipelineLibraryGroupHandles indicates whether the implementation supports querying group
handles directly from a ray tracing pipeline library, and guarantees bitwise identical group
handles for such libraries when linked into other pipelines.

If the VkPhysicalDevicePipelineLibraryGroupHandlesFeaturesEXT structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDevicePipelineLibraryGroupHandlesFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePipelineLibraryGroupHandlesFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_LIBRARY_GROUP_HANDLES_FEATURES_EXT

The VkPhysicalDeviceShaderObjectFeaturesEXT structure is defined as:

// Provided by VK_EXT_shader_object
typedef struct VkPhysicalDeviceShaderObjectFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderObject;
} VkPhysicalDeviceShaderObjectFeaturesEXT;

This structure describes the following feature:

• shaderObject indicates whether the implementation supports shader objects.

3836

If the VkPhysicalDeviceShaderObjectFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderObjectFeaturesEXT can also be used in the pNext chain of VkDeviceCreateInfo
to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderObjectFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_FEATURES_EXT

The VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM structure is defined as:

// Provided by VK_ARM_shader_core_builtins
typedef struct VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderCoreBuiltins;
} VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderCoreBuiltins indicates whether the implementation supports the SPIR-V CoreBuiltinsARM
capability.

If the VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_BUILTINS_FEATURES_ARM

The VkPhysicalDeviceFrameBoundaryFeaturesEXT structure is defined as:

// Provided by VK_EXT_frame_boundary
typedef struct VkPhysicalDeviceFrameBoundaryFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 frameBoundary;

3837

} VkPhysicalDeviceFrameBoundaryFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• frameBoundary indicates whether the implementation supports frame boundary information.

If the VkPhysicalDeviceFrameBoundaryFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceFrameBoundaryFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFrameBoundaryFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAME_BOUNDARY_FEATURES_EXT

The VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT structure is defined as:

// Provided by VK_EXT_swapchain_maintenance1
typedef struct VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 swapchainMaintenance1;
} VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• swapchainMaintenance1 indicates that the implementation supports the following:

◦ VkSwapchainPresentFenceInfoEXT, specifying a fence that is signaled when the resources
associated with a present operation can be safely destroyed.

◦ VkSwapchainPresentModesCreateInfoEXT and VkSwapchainPresentModeInfoEXT, allowing
the swapchain to switch present modes without a need for recreation.

◦ VkSwapchainPresentScalingCreateInfoEXT, specifying the scaling behavior of the swapchain
in presence of window resizing.

◦ The VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT flag, allowing the
implementation to defer the allocation of swapchain image memory until first acquisition.

◦ vkReleaseSwapchainImagesEXT, allowing acquired swapchain images to be released
without presenting them.

3838

If the VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SWAPCHAIN_MAINTENANCE_1_FEATURES_EXT

The VkPhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT structure is defined as:

// Provided by VK_EXT_dynamic_rendering_unused_attachments
typedef struct VkPhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 dynamicRenderingUnusedAttachments;
} VkPhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dynamicRenderingUnusedAttachments indicates that the implementation supports binding graphics
pipelines within a render pass instance where any pipeline VkPipelineRenderingCreateInfo
::pColorAttachmentFormats element with a format other than VK_FORMAT_UNDEFINED is allowed with
a corresponding VkRenderingInfo::pColorAttachments element with an imageView equal to
VK_NULL_HANDLE, or any pipeline VkPipelineRenderingCreateInfo::pColorAttachmentFormats
element with a VK_FORMAT_UNDEFINED format is allowed with a corresponding VkRenderingInfo
::pColorAttachments element with a non-VK_NULL_HANDLE imageView. Also a
VkPipelineRenderingCreateInfo::depthAttachmentFormat other than VK_FORMAT_UNDEFINED is
allowed with a VK_NULL_HANDLE VkRenderingInfo::pDepthAttachment, or a
VkPipelineRenderingCreateInfo::depthAttachmentFormat of VK_FORMAT_UNDEFINED is allowed with a
non-VK_NULL_HANDLE VkRenderingInfo::pDepthAttachment. Also a
VkPipelineRenderingCreateInfo::stencilAttachmentFormat other than VK_FORMAT_UNDEFINED is
allowed with a VK_NULL_HANDLE VkRenderingInfo::pStencilAttachment, or a
VkPipelineRenderingCreateInfo::stencilAttachmentFormat of VK_FORMAT_UNDEFINED is allowed with
a non-VK_NULL_HANDLE VkRenderingInfo::pStencilAttachment. Any writes to a
VkRenderingInfo::pColorAttachments, VkRenderingInfo::pDepthAttachment, or VkRenderingInfo
::pStencilAttachment with VK_NULL_HANDLE are discarded.

If the VkPhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT structure is included in the
pNext chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it
is filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT can also be used in the pNext chain

3839

of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_UNUSED_ATTACHMENTS_FEATURES_EXT

The VkPhysicalDeviceRayTracingInvocationReorderFeaturesNV structure is defined as:

// Provided by VK_NV_ray_tracing_invocation_reorder
typedef struct VkPhysicalDeviceRayTracingInvocationReorderFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 rayTracingInvocationReorder;
} VkPhysicalDeviceRayTracingInvocationReorderFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• rayTracingInvocationReorder indicates that the implementation supports
SPV_NV_shader_invocation_reorder.

If the VkPhysicalDeviceRayTracingInvocationReorderFeaturesNV structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceRayTracingInvocationReorderFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingInvocationReorderFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_INVOCATION_REORDER_FEATURES_NV

The VkPhysicalDeviceExtendedSparseAddressSpaceFeaturesNV structure is defined as:

// Provided by VK_NV_extended_sparse_address_space
typedef struct VkPhysicalDeviceExtendedSparseAddressSpaceFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 extendedSparseAddressSpace;
} VkPhysicalDeviceExtendedSparseAddressSpaceFeaturesNV;

3840

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• extendedSparseAddressSpace indicates that the implementation supports allowing certain usages
of sparse memory resources to exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize. See
VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV.

If the VkPhysicalDeviceExtendedSparseAddressSpaceFeaturesNV structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceExtendedSparseAddressSpaceFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExtendedSparseAddressSpaceFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_SPARSE_ADDRESS_SPACE_FEATURES_NV

The VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM structure is defined as:

// Provided by VK_QCOM_multiview_per_view_viewports
typedef struct VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 multiviewPerViewViewports;
} VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM;

This structure describes the following features:

• multiviewPerViewViewports indicates that the implementation supports multiview per-view
viewports.

If the VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_VIEWPORTS_FEATURES_QCOM

3841

The VkPhysicalDeviceMultiviewPerViewRenderAreasFeaturesQCOM structure is defined as:

// Provided by VK_QCOM_multiview_per_view_render_areas
typedef struct VkPhysicalDeviceMultiviewPerViewRenderAreasFeaturesQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 multiviewPerViewRenderAreas;
} VkPhysicalDeviceMultiviewPerViewRenderAreasFeaturesQCOM;

This structure describes the following features:

• multiviewPerViewRenderAreas indicates that the implementation supports multiview per-view
render areas.

If the VkPhysicalDeviceMultiviewPerViewRenderAreasFeaturesQCOM structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceMultiviewPerViewRenderAreasFeaturesQCOM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiviewPerViewRenderAreasFeaturesQCOM-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_RENDER_AREAS_FEATURES_QCOM

The VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI structure is defined as:

// Provided by VK_HUAWEI_cluster_culling_shader
typedef struct VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI {
 VkStructureType sType;
 void* pNext;
 VkBool32 clustercullingShader;
 VkBool32 multiviewClusterCullingShader;
} VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• clustercullingShader specifies whether cluster culling shader is supported.

• multiviewClusterCullingShader specifies whether multiview is supported.

If the VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI can also be used in the pNext chain of

3842

VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_FEATURES_HUAWEI

To query whether a Cluster Culling Shader supports the per-cluster shading rate feature, include a
VkPhysicalDeviceClusterCullingShaderVrsFeaturesHUAWEI structure in the pNext chain of the
VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI structure. This structure is defined as:

// Provided by VK_HUAWEI_cluster_culling_shader
typedef struct VkPhysicalDeviceClusterCullingShaderVrsFeaturesHUAWEI {
 VkStructureType sType;
 void* pNext;
 VkBool32 clusterShadingRate;
} VkPhysicalDeviceClusterCullingShaderVrsFeaturesHUAWEI;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• clusterShadingRate specifies whether per-cluster shading rates is supported.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceClusterCullingShaderVrsFeaturesHUAWEI-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_VRS_FEATURES_HUAWEI

The VkPhysicalDeviceShaderEnqueueFeaturesAMDX structure is defined as:

// Provided by VK_AMDX_shader_enqueue
typedef struct VkPhysicalDeviceShaderEnqueueFeaturesAMDX {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderEnqueue;
} VkPhysicalDeviceShaderEnqueueFeaturesAMDX;

This structure describes the following feature:

• shaderEnqueue indicates whether the implementation supports execution graphs.

If the VkPhysicalDeviceShaderEnqueueFeaturesAMDX structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.

3843

VkPhysicalDeviceShaderEnqueueFeaturesAMDX can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderEnqueueFeaturesAMDX-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ENQUEUE_FEATURES_AMDX

The VkPhysicalDeviceCubicClampFeaturesQCOM structure is defined as:

// Provided by VK_QCOM_filter_cubic_clamp
typedef struct VkPhysicalDeviceCubicClampFeaturesQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 cubicRangeClamp;
} VkPhysicalDeviceCubicClampFeaturesQCOM;

This structure describes the following features:

• cubicRangeClamp indicates that the implementation supports cubic filtering in combination with
a texel range clamp.

If the VkPhysicalDeviceCubicClampFeaturesQCOM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceCubicClampFeaturesQCOM
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCubicClampFeaturesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUBIC_CLAMP_FEATURES_QCOM

The VkPhysicalDeviceYcbcrDegammaFeaturesQCOM structure is defined as:

// Provided by VK_QCOM_ycbcr_degamma
typedef struct VkPhysicalDeviceYcbcrDegammaFeaturesQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 ycbcrDegamma;
} VkPhysicalDeviceYcbcrDegammaFeaturesQCOM;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3844

• ycbcrDegamma indicates whether the implementation supports Y′CBCR degamma.

If the VkPhysicalDeviceYcbcrDegammaFeaturesQCOM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceYcbcrDegammaFeaturesQCOM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceYcbcrDegammaFeaturesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_DEGAMMA_FEATURES_QCOM

The VkPhysicalDeviceCubicWeightsFeaturesQCOM structure is defined as:

// Provided by VK_QCOM_filter_cubic_weights
typedef struct VkPhysicalDeviceCubicWeightsFeaturesQCOM {
 VkStructureType sType;
 void* pNext;
 VkBool32 selectableCubicWeights;
} VkPhysicalDeviceCubicWeightsFeaturesQCOM;

This structure describes the following feature:

• selectableCubicWeights indicates that the implementation supports the selection of filter cubic
weights.

If the VkPhysicalDeviceCubicWeightsFeaturesQCOM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCubicWeightsFeaturesQCOM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCubicWeightsFeaturesQCOM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUBIC_WEIGHTS_FEATURES_QCOM

The VkPhysicalDeviceDescriptorPoolOverallocationFeaturesNV structure is defined as:

// Provided by VK_NV_descriptor_pool_overallocation
typedef struct VkPhysicalDeviceDescriptorPoolOverallocationFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 descriptorPoolOverallocation;

3845

} VkPhysicalDeviceDescriptorPoolOverallocationFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• descriptorPoolOverallocation indicates that the implementation allows the application to opt
into descriptor pool overallocation by creating the descriptor pool with
VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_SETS_BIT_NV and/or
VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_POOLS_BIT_NV flags.

If the VkPhysicalDeviceDescriptorPoolOverallocationFeaturesNV structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceDescriptorPoolOverallocationFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorPoolOverallocationFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_POOL_OVERALLOCATION_FEATURES_NV

The VkPhysicalDevicePerStageDescriptorSetFeaturesNV structure is defined as:

// Provided by VK_NV_per_stage_descriptor_set
typedef struct VkPhysicalDevicePerStageDescriptorSetFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 perStageDescriptorSet;
 VkBool32 dynamicPipelineLayout;
} VkPhysicalDevicePerStageDescriptorSetFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• perStageDescriptorSet indicates that the implementation allows the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_PER_STAGE_BIT_NV descriptor set layout creation flag to be used
so the bindings are specified per-stage rather than across all stages.

• dynamicPipelineLayout indicates the implementation allows the layout member of
VkBindDescriptorSetsInfoKHR, VkPushConstantsInfoKHR, VkPushDescriptorSetInfoKHR,
VkPushDescriptorSetWithTemplateInfoKHR, VkSetDescriptorBufferOffsetsInfoEXT and
VkBindDescriptorBufferEmbeddedSamplersInfoEXT to be VK_NULL_HANDLE and
VkPipelineLayoutCreateInfo can be chained off those structures' pNext instead.

3846

If the VkPhysicalDevicePerStageDescriptorSetFeaturesNV structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDevicePerStageDescriptorSetFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePerStageDescriptorSetFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PER_STAGE_DESCRIPTOR_SET_FEATURES_NV

The VkPhysicalDeviceCudaKernelLaunchFeaturesNV structure is defined as:

// Provided by VK_NV_cuda_kernel_launch
typedef struct VkPhysicalDeviceCudaKernelLaunchFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 cudaKernelLaunchFeatures;
} VkPhysicalDeviceCudaKernelLaunchFeaturesNV;

This structure describes the following features:

• cudaKernelLaunchFeatures is non-zero if cuda kernel launch is supported.

If the VkPhysicalDeviceCudaKernelLaunchFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceCudaKernelLaunchFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCudaKernelLaunchFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUDA_KERNEL_LAUNCH_FEATURES_NV

The VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR structure is defined as:

// Provided by VK_KHR_shader_maximal_reconvergence
typedef struct VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderMaximalReconvergence;
} VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR;

This structure describes the following feature:

3847

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderMaximalReconvergence specifies whether the implementation supports the shader
execution mode MaximallyReconvergesKHR

If the VkPhysicalDevicePrivateDataFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevicePrivateDataFeaturesEXT
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MAXIMAL_RECONVERGENCE_FEATURES_KHR

The VkPhysicalDeviceExternalFormatResolveFeaturesANDROID structure is defined as:

// Provided by VK_ANDROID_external_format_resolve
typedef struct VkPhysicalDeviceExternalFormatResolveFeaturesANDROID {
 VkStructureType sType;
 void* pNext;
 VkBool32 externalFormatResolve;
} VkPhysicalDeviceExternalFormatResolveFeaturesANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• externalFormatResolve specifies whether external format resolves are supported.

If the VkPhysicalDeviceExternalFormatResolveFeaturesANDROID structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceExternalFormatResolveFeaturesANDROID can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalFormatResolveFeaturesANDROID-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FORMAT_RESOLVE_FEATURES_ANDROID

The VkPhysicalDeviceSchedulingControlsFeaturesARM structure is defined as:

// Provided by VK_ARM_scheduling_controls

3848

typedef struct VkPhysicalDeviceSchedulingControlsFeaturesARM {
 VkStructureType sType;
 void* pNext;
 VkBool32 schedulingControls;
} VkPhysicalDeviceSchedulingControlsFeaturesARM;

This structure describes the following features:

• schedulingControls indicates that the implementation supports scheduling controls.

If the VkPhysicalDeviceSchedulingControlsFeaturesARM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSchedulingControlsFeaturesARM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSchedulingControlsFeaturesARM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_FEATURES_ARM

The VkPhysicalDeviceRelaxedLineRasterizationFeaturesIMG structure is defined as:

// Provided by VK_IMG_relaxed_line_rasterization
typedef struct VkPhysicalDeviceRelaxedLineRasterizationFeaturesIMG {
 VkStructureType sType;
 void* pNext;
 VkBool32 relaxedLineRasterization;
} VkPhysicalDeviceRelaxedLineRasterizationFeaturesIMG;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• relaxedLineRasterization indicates that the implementation supports relaxed line rasterization
control.

If the VkPhysicalDeviceRelaxedLineRasterizationFeaturesIMG structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRelaxedLineRasterizationFeaturesIMG can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRelaxedLineRasterizationFeaturesIMG-sType-sType

3849

sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RELAXED_LINE_RASTERIZATION_FEATURES_IMG

The VkPhysicalDeviceRenderPassStripedFeaturesARM structure is defined as:

// Provided by VK_ARM_render_pass_striped
typedef struct VkPhysicalDeviceRenderPassStripedFeaturesARM {
 VkStructureType sType;
 void* pNext;
 VkBool32 renderPassStriped;
} VkPhysicalDeviceRenderPassStripedFeaturesARM;

The members of the VkPhysicalDeviceRenderPassStripedFeaturesARM structure describe the following
features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• renderPassStriped indicates that striped rendering is supported by the implementation.

If the VkPhysicalDeviceRenderPassStripedFeaturesARM structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRenderPassStripedFeaturesARM can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRenderPassStripedFeaturesARM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RENDER_PASS_STRIPED_FEATURES_ARM

The VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR structure is defined as:

// Provided by VK_KHR_shader_subgroup_rotate
typedef struct VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderSubgroupRotate;
 VkBool32 shaderSubgroupRotateClustered;
} VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderSubgroupRotate specifies whether shader modules can declare the
GroupNonUniformRotateKHR capability.

3850

• shaderSubgroupRotateClustered specifies whether shader modules can use the ClusterSize
operand to OpGroupNonUniformRotateKHR.

If the VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_ROTATE_FEATURES_KHR

The VkPhysicalDeviceShaderExpectAssumeFeaturesKHR structure is defined as:

// Provided by VK_KHR_shader_expect_assume
typedef struct VkPhysicalDeviceShaderExpectAssumeFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderExpectAssume;
} VkPhysicalDeviceShaderExpectAssumeFeaturesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderExpectAssume specifies whether shader modules can declare the ExpectAssumeKHR
capability.

If the VkPhysicalDeviceShaderExpectAssumeFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderExpectAssumeFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderExpectAssumeFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_EXPECT_ASSUME_FEATURES_KHR

The VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR structure is defined as:

// Provided by VK_KHR_dynamic_rendering_local_read
typedef struct VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR {
 VkStructureType sType;
 void* pNext;

3851

 VkBool32 dynamicRenderingLocalRead;
} VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dynamicRenderingLocalRead specifies that the implementation supports local reads inside
dynamic render pass instances using the vkCmdBeginRendering command.

If the VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_LOCAL_READ_FEATURES_KHR

The VkPhysicalDeviceShaderQuadControlFeaturesKHR structure is defined as:

// Provided by VK_KHR_shader_quad_control
typedef struct VkPhysicalDeviceShaderQuadControlFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderQuadControl;
} VkPhysicalDeviceShaderQuadControlFeaturesKHR;

This structure describes the following features:

• shaderQuadControl indicates whether the implementation supports shaders with the
QuadControlKHR capability.

If the VkPhysicalDeviceShaderQuadControlFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderQuadControlFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderQuadControlFeaturesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_QUAD_CONTROL_FEATURES_KHR

3852

The VkPhysicalDeviceMapMemoryPlacedFeaturesEXT structure is defined as:

// Provided by VK_EXT_map_memory_placed
typedef struct VkPhysicalDeviceMapMemoryPlacedFeaturesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 memoryMapPlaced;
 VkBool32 memoryMapRangePlaced;
 VkBool32 memoryUnmapReserve;
} VkPhysicalDeviceMapMemoryPlacedFeaturesEXT;

This structure describes the following features:

• memoryMapPlaced indicates that the implementation supports placing memory maps at client-
specified virtual addresses.

• memoryMapRangePlaced indicates that the implementation supports placing memory maps of a
subrange of a memory object at client-specified virtual addresses.

• memoryUnmapReserve indicates that the implementation supports leaving the memory range
reserved when unmapping a memory object.

If the VkPhysicalDeviceMapMemoryPlacedFeaturesEXT structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceMapMemoryPlacedFeaturesEXT can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMapMemoryPlacedFeaturesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAP_MEMORY_PLACED_FEATURES_EXT

The VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV structure is defined as:

// Provided by VK_NV_shader_atomic_float16_vector
typedef struct VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderFloat16VectorAtomics;
} VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderFloat16VectorAtomics indicates whether shaders can perform 16-bit floating-point, 2- and

3853

4-component vector atomic operations.

If the VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT16_VECTOR_FEATURES_NV

The VkPhysicalDeviceRawAccessChainsFeaturesNV structure is defined as:

// Provided by VK_NV_raw_access_chains
typedef struct VkPhysicalDeviceRawAccessChainsFeaturesNV {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderRawAccessChains;
} VkPhysicalDeviceRawAccessChainsFeaturesNV;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderRawAccessChains specifies whether shader modules can declare the RawAccessChainsNV
capability.

If the VkPhysicalDeviceRawAccessChainsFeaturesNV structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceRawAccessChainsFeaturesNV can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRawAccessChainsFeaturesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAW_ACCESS_CHAINS_FEATURES_NV

47.1. Feature Requirements
All Vulkan graphics implementations must support the following features:

3854

• robustBufferAccess, unless the VK_KHR_portability_subset extension is enabled.

• multiview, if Vulkan 1.1 is supported.

• shaderDrawParameters, if the VK_KHR_shader_draw_parameters extension is supported.

• uniformBufferStandardLayout, if Vulkan 1.2 or the VK_KHR_uniform_buffer_standard_layout
extension is supported.

• variablePointersStorageBuffer, if the VK_KHR_variable_pointers extension is supported.

• storageBuffer8BitAccess, if the VK_KHR_8bit_storage extension is supported.

• storageBuffer8BitAccess, if uniformAndStorageBuffer8BitAccess is enabled.

• If the descriptorIndexing feature is supported, or if the VK_EXT_descriptor_indexing extension is
supported:

◦ shaderSampledImageArrayDynamicIndexing

◦ shaderStorageBufferArrayDynamicIndexing

◦ shaderUniformTexelBufferArrayDynamicIndexing

◦ shaderStorageTexelBufferArrayDynamicIndexing

◦ shaderSampledImageArrayNonUniformIndexing

◦ shaderStorageBufferArrayNonUniformIndexing

◦ shaderUniformTexelBufferArrayNonUniformIndexing

◦ descriptorBindingSampledImageUpdateAfterBind

◦ descriptorBindingStorageImageUpdateAfterBind

◦ descriptorBindingStorageBufferUpdateAfterBind (see also robustBufferAccessUpdateAfterBind)

◦ descriptorBindingUniformTexelBufferUpdateAfterBind (see also
robustBufferAccessUpdateAfterBind)

◦ descriptorBindingStorageTexelBufferUpdateAfterBind (see also
robustBufferAccessUpdateAfterBind)

◦ descriptorBindingUpdateUnusedWhilePending

◦ descriptorBindingPartiallyBound

◦ runtimeDescriptorArray

• If Vulkan 1.3 is supported:

◦ vulkanMemoryModel

◦ vulkanMemoryModelDeviceScope

• inlineUniformBlock, if Vulkan 1.3 or the VK_EXT_inline_uniform_block extension is supported.

• descriptorBindingInlineUniformBlockUpdateAfterBind, if Vulkan 1.3 or the
VK_EXT_inline_uniform_block extension is supported; and if the descriptorIndexing feature is
supported, or the VK_EXT_descriptor_indexing extension is supported.

• scalarBlockLayout, if the VK_EXT_scalar_block_layout extension is supported.

• subgroupBroadcastDynamicId, if Vulkan 1.2 is supported.

3855

• samplerMirrorClampToEdge, if the VK_KHR_sampler_mirror_clamp_to_edge extension is supported.

• drawIndirectCount, if the VK_KHR_draw_indirect_count extension is supported.

• samplerFilterMinmax, if the VK_EXT_sampler_filter_minmax extension is supported.

• shaderOutputViewportIndex, if the VK_EXT_shader_viewport_index_layer extension is supported.

• shaderOutputLayer, if the VK_EXT_shader_viewport_index_layer extension is supported.

• subgroupSizeControl, if Vulkan 1.3 or the VK_EXT_subgroup_size_control extension is supported.

• computeFullSubgroups, if Vulkan 1.3 or the VK_EXT_subgroup_size_control extension is supported.

• deviceMemoryReport, if the VK_EXT_device_memory_report extension is supported.

• globalPriorityQuery, if the VK_EXT_global_priority_query extension is supported.

• globalPriorityQuery, if the VK_KHR_global_priority extension is supported.

• imagelessFramebuffer, if Vulkan 1.2 or the VK_KHR_imageless_framebuffer extension is supported.

• separateDepthStencilLayouts, if Vulkan 1.2 or the VK_KHR_separate_depth_stencil_layouts
extension is supported.

• hostQueryReset, if Vulkan 1.2 or the VK_EXT_host_query_reset extension is supported.

• timelineSemaphore, if Vulkan 1.2 or the VK_KHR_timeline_semaphore extension is supported.

• If the VK_KHR_acceleration_structure extension is supported:

◦ accelerationStructure

◦ All the features required by the descriptorIndexing feature if Vulkan 1.2 is supported, or the
VK_EXT_descriptor_indexing extension.

◦ descriptorBindingAccelerationStructureUpdateAfterBind

◦ bufferDeviceAddress from Vulkan 1.2 or the VK_KHR_buffer_device_address extension.

• If the VK_KHR_ray_tracing_pipeline extension is supported:

◦ rayTracingPipeline

◦ rayTracingPipelineTraceRaysIndirect

◦ rayTraversalPrimitiveCulling, if rayQuery is supported

◦ the VK_KHR_pipeline_library extension must be supported.

• rayQuery, if the VK_KHR_ray_query extension is supported.

• pipelineCreationCacheControl, if Vulkan 1.3 or the VK_EXT_pipeline_creation_cache_control
extension is supported.

• shaderSubgroupExtendedTypes, if Vulkan 1.2 or the VK_KHR_shader_subgroup_extended_types
extension is supported.

• samplerYcbcrConversion, if the VK_KHR_sampler_ycbcr_conversion extension is supported.

• pipelineExecutableInfo, if the VK_KHR_pipeline_executable_properties extension is supported.

• textureCompressionASTC_HDR, if the VK_EXT_texture_compression_astc_hdr extension is supported.

• depthClipEnable, if the VK_EXT_depth_clip_enable extension is supported.

• memoryPriority, if the VK_EXT_memory_priority extension is supported.

3856

• ycbcrImageArrays, if the VK_EXT_ycbcr_image_arrays extension is supported.

• indexTypeUint8, if the VK_KHR_index_type_uint8 or VK_EXT_index_type_uint8 extension is
supported.

• indexTypeUint8, if the VK_KHR_index_type_uint8 extension is supported.

• primitiveTopologyListRestart, if the VK_EXT_primitive_topology_list_restart extension is
supported.

• shaderDemoteToHelperInvocation, if Vulkan 1.3 or the VK_EXT_shader_demote_to_helper_invocation
extension is supported.

• texelBufferAlignment, if Vulkan 1.3 or the VK_EXT_texel_buffer_alignment extension is supported.

• vulkanMemoryModel, if the VK_KHR_vulkan_memory_model extension is supported.

• bufferDeviceAddress, if Vulkan 1.3 or the VK_KHR_buffer_device_address extension is supported.

• performanceCounterQueryPools, if the VK_KHR_performance_query extension is supported.

• transformFeedback, if the VK_EXT_transform_feedback extension is supported.

• conditionalRendering, if the VK_EXT_conditional_rendering extension is supported.

• vertexAttributeInstanceRateDivisor, if the VK_EXT_vertex_attribute_divisor extension or the
VK_KHR_vertex_attribute_divisor extension is supported.

• fragmentDensityMap, if the VK_EXT_fragment_density_map extension is supported.

• shaderSubgroupClock, if the VK_KHR_shader_clock extension is supported.

• shaderBufferInt64Atomics, if the VK_KHR_shader_atomic_int64 extension is supported.

• shaderInt64, if the shaderSharedInt64Atomics or shaderBufferInt64Atomics features are supported.

• shaderFloat16 or shaderInt8, if the VK_KHR_shader_float16_int8 extension is supported.

• fragmentShaderSampleInterlock or fragmentShaderPixelInterlock or
fragmentShaderShadingRateInterlock, if the VK_EXT_fragment_shader_interlock extension is
supported.

• rectangularLines or bresenhamLines or smoothLines or stippledRectangularLines or
stippledBresenhamLines or stippledSmoothLines, if the VK_KHR_line_rasterization extension is
supported.

• rectangularLines or bresenhamLines or smoothLines or stippledRectangularLines or
stippledBresenhamLines or stippledSmoothLines, if the VK_EXT_line_rasterization extension is
supported.

• storageBuffer16BitAccess, if the VK_KHR_16bit_storage extension is supported.

• storageBuffer16BitAccess, if uniformAndStorageBuffer16BitAccess is enabled.

• robustImageAccess, if Vulkan 1.3 or the VK_EXT_image_robustness extension is supported.

• formatA4R4G4B4, if the VK_EXT_4444_formats extension is supported.

• mutableDescriptorType, if the VK_EXT_mutable_descriptor_type or
VK_VALVE_mutable_descriptor_type extension is supported.

• shaderInt64 and shaderImageInt64Atomics, if the VK_EXT_shader_image_atomic_int64 extension is
supported.

3857

• shaderImageInt64Atomics, if the sparseImageInt64Atomics feature is supported.

• shaderImageFloat32Atomics, if the sparseImageFloat32Atomics feature is supported.

• shaderImageFloat32AtomicAdd, if the sparseImageFloat32AtomicAdd feature is supported.

• primitivesGeneratedQuery, if the VK_EXT_primitives_generated_query extension is supported.

• pipelineFragmentShadingRate, if the VK_KHR_fragment_shading_rate extension is supported.

• pipelineProtectedAccess, if the VK_EXT_pipeline_protected_access extension is supported.

• legacyDithering, if the VK_EXT_legacy_dithering extension is supported.

• shaderTerminateInvocation if Vulkan 1.3 or the VK_KHR_shader_terminate_invocation extension is
supported.

• shaderZeroInitializeWorkgroupMemory, if Vulkan 1.3 or the
VK_KHR_zero_initialize_workgroup_memory extension is supported.

• workgroupMemoryExplicitLayout, if the VK_KHR_workgroup_memory_explicit_layout extension is
supported.

• vertexInputDynamicState, if the VK_EXT_vertex_input_dynamic_state extension is supported.

• synchronization2 if Vulkan 1.3 or the VK_KHR_synchronization2 extension is supported.

• provokingVertexLast, if the VK_EXT_provoking_vertex extension is supported.

• descriptorBuffer, if the VK_EXT_descriptor_buffer extension is supported.

• shaderSubgroupUniformControlFlow, if the VK_KHR_shader_subgroup_uniform_control_flow extension
is supported.

• borderColorSwizzle if the VK_EXT_border_color_swizzle extension is supported.

• multiDraw, if the VK_EXT_multi_draw extension is supported.

• shaderImageFloat32AtomicMinMax, if the sparseImageFloat32AtomicMinMax feature is supported.

• presentId, if the VK_KHR_present_id extension is supported.

• presentWait, if the VK_KHR_present_wait extension is supported.

• hostImageCopy, if the VK_EXT_host_image_copy extension is supported.

• shaderIntegerDotProduct if Vulkan 1.3 or the VK_KHR_shader_integer_dot_product extension is
supported.

• maintenance4, if Vulkan 1.3 or the VK_KHR_maintenance4 extension is supported.

• maintenance5, if the VK_KHR_maintenance5 extension is supported.

• maintenance6, if the VK_KHR_maintenance6 extension is supported.

• image2DViewOf3D, if the VK_EXT_image_2d_view_of_3d extension is supported.

• imageSlicedViewOf3D, if the VK_EXT_image_sliced_view_of_3d extension is supported.

• privateData, if Vulkan 1.3 or the VK_EXT_private_data extension is supported.

• extendedDynamicState, if the VK_EXT_extended_dynamic_state extension is supported.

• extendedDynamicState2, if the VK_EXT_extended_dynamic_state2 extension is supported.

• depthClipControl, if the VK_EXT_depth_clip_control extension is supported.

3858

• minLod, if the VK_EXT_image_view_min_lod extension is supported.

• linearColorAttachment, if the VK_NV_linear_color_attachment extension is supported.

• presentBarrier, if the VK_NV_present_barrier extension is supported.

• graphicsPipelineLibrary, if the VK_EXT_graphics_pipeline_library extension is supported.

• dynamicRendering, if Vulkan 1.3 or the VK_KHR_dynamic_rendering extension is supported.

• nestedCommandBuffer, if the VK_EXT_nested_command_buffer extension is supported.

• taskShader and meshShader, if the VK_EXT_mesh_shader extension is supported.

• primitiveFragmentShadingRate if primitiveFragmentShadingRateMeshShader feature is supported.

• subpassMergeFeedback, if the VK_EXT_subpass_merge_feedback extension is supported.

• rayTracingMaintenance1, if the VK_KHR_ray_tracing_maintenance1 extension is supported.

• videoMaintenance1, if the VK_KHR_video_maintenance1 extension is supported.

• colorWriteEnable, if the VK_EXT_color_write_enable extension is supported.

• multisampledRenderToSingleSampled, if the VK_EXT_multisampled_render_to_single_sampled
extension is supported.

• imageCompressionControl, if the VK_EXT_image_compression_control extension is supported.

• imageCompressionControlSwapchain, if the VK_EXT_image_compression_control_swapchain extension
is supported.

• shaderEarlyAndLateFragmentTests, if the VK_AMD_shader_early_and_late_fragment_tests extension
is supported.

• nonSeamlessCubeMap, if the VK_EXT_non_seamless_cube_map extension is supported.

• shaderModuleIdentifier, if VK_EXT_shader_module_identifier extension is supported.

• pipelineRobustness, if the VK_EXT_pipeline_robustness extension is supported.

• textureSampleWeighted, TextureBlockMatch, and TextureBoxFilter if VK_QCOM_image_processing
extension is supported.

• TextureBlockMatch2 if VK_QCOM_image_processing2 extension is supported.

• tileProperties if VK_QCOM_tile_properties extension is supported.

• attachmentFeedbackLoopLayout, if the VK_EXT_attachment_feedback_loop_layout extension is
supported.

• depthClampZeroOne, if the VK_EXT_depth_clamp_zero_one extension is supported.

• deviceFault, if the VK_EXT_device_fault extension is supported.

• reportAddressBinding, if the VK_EXT_device_address_binding_report extension is supported.

• micromap, if the VK_EXT_opacity_micromap extension is supported.

• frameBoundary, if the VK_EXT_frame_boundary extension is supported.

• displacementMicromap, if the VK_NV_displacement_micromap extension is supported.

• pipelineLibraryGroupHandles, if the VK_EXT_pipeline_library_group_handles extension is
supported.

3859

• swapchainMaintenance1, if the VK_EXT_swapchain_maintenance1 extension is supported.

• tessellationShader, if the extendedDynamicState3TessellationDomainOrigin feature is supported.

• depthClamp, if the extendedDynamicState3DepthClampEnable feature is supported.

• fillModeNonSolid, if the extendedDynamicState3PolygonMode feature is supported.

• alphaToOne, if the extendedDynamicState3AlphaToOneEnable feature is supported.

• logicOp, if the extendedDynamicState3LogicOpEnable feature is supported.

• geometryStreams, if the extendedDynamicState3RasterizationStream feature is supported.

• VK_EXT_conservative_rasterization extension, if the
extendedDynamicState3ConservativeRasterizationMode feature is supported.

• VK_EXT_conservative_rasterization extension, if the
extendedDynamicState3ExtraPrimitiveOverestimationSize feature is supported.

• VK_EXT_sample_locations extension, if the extendedDynamicState3SampleLocationsEnable feature is
supported.

• VK_EXT_blend_operation_advanced extension, if the extendedDynamicState3ColorBlendAdvanced
feature is supported.

• provokingVertexLast, if the extendedDynamicState3ProvokingVertexMode feature is supported.

• VK_KHR_line_rasterization or VK_EXT_line_rasterization extension, if the
extendedDynamicState3LineRasterizationMode feature is supported.

• VK_KHR_line_rasterization or VK_EXT_line_rasterization extension, if the
extendedDynamicState3LineStippleEnable feature is supported.

• depthClipControl, if the extendedDynamicState3DepthClipNegativeOneToOne feature is supported.

• VK_NV_clip_space_w_scaling extension, if the extendedDynamicState3ViewportWScalingEnable
feature is supported.

• VK_NV_viewport_swizzle extension, if the extendedDynamicState3ViewportSwizzle feature is
supported.

• VK_NV_fragment_coverage_to_color extension, if the extendedDynamicState3CoverageToColorEnable
feature is supported.

• VK_NV_fragment_coverage_to_color extension, if the
extendedDynamicState3CoverageToColorLocation feature is supported.

• VK_NV_framebuffer_mixed_samples extension, if the extendedDynamicState3CoverageModulationMode
feature is supported.

• VK_NV_framebuffer_mixed_samples extension, if the
extendedDynamicState3CoverageModulationTableEnable feature is supported.

• VK_NV_framebuffer_mixed_samples extension, if the extendedDynamicState3CoverageModulationTable
feature is supported.

• coverageReductionMode, if the extendedDynamicState3CoverageReductionMode feature is supported.

• representativeFragmentTest, if the extendedDynamicState3RepresentativeFragmentTestEnable
feature is supported.

3860

• shadingRateImage, if the extendedDynamicState3ShadingRateImageEnable feature is supported.

• multiviewPerViewViewports, if the VK_QCOM_multiview_per_view_viewports extension is supported.

• attachmentFeedbackLoopDynamicState, if the VK_EXT_attachment_feedback_loop_dynamic_state
extension is supported.

• rayTracingPositionFetch, if the VK_KHR_ray_tracing_position_fetch extension is supported.

• shaderObject, if the VK_EXT_shader_object extension is supported.

• shaderTileImageColorReadAccess, if the VK_EXT_shader_tile_image extension is supported.

• depthBiasControl, if the VK_EXT_depth_bias_control extension is supported.

• deviceGeneratedCompute, if the VK_NV_device_generated_commands_compute extension is supported.

• shaderEnqueue if the VK_AMDX_shader_enqueue extension is supported.

• cooperativeMatrix if the VK_KHR_cooperative_matrix extension is supported.

• ycbcrDegamma, if the VK_QCOM_ycbcr_degamma extension is supported.

• descriptorPoolOverallocation, if the VK_NV_descriptor_pool_overallocation extension is
supported.

• externalFormatResolve, if the VK_ANDROID_external_format_resolve extension is supported.

• extendedSparseAddressSpace, if the VK_NV_extended_sparse_address_space extension is supported.

• schedulingControls, if the VK_ARM_scheduling_controls extension is supported.

• relaxedLineRasterization, if the VK_IMG_relaxed_line_rasterization extension is supported.

• renderPassStriped, if the VK_ARM_render_pass_striped extension is supported.

• perStageDescriptorSet, if the VK_NV_per_stage_descriptor_set extension is supported.

• shaderMaximalReconvergence, if the VK_KHR_shader_maximal_reconvergence extension is supported.

• shaderSubgroupRotate, if the VK_KHR_shader_subgroup_rotate extension is supported.

• shaderExpectAssume, if the VK_KHR_shader_expect_assume extension is supported.

• shaderFloatControls2, if the VK_KHR_shader_float_controls2 extension is supported.

• dynamicRenderingLocalRead, if the VK_KHR_dynamic_rendering_local_read extension is supported.

• shaderQuadControl, if the VK_KHR_shader_quad_control extension is supported.

• shaderFloat16VectorAtomics, if the VK_NV_shader_atomic_float16_vector extension is supported.

• memoryMapPlaced if the VK_EXT_map_memory_placed extension is supported.

• shaderRawAccessChains, if the VK_NV_raw_access_chains extension is supported.

All other features defined in the Specification are optional.

47.2. Profile Features

47.2.1. Roadmap 2022

Implementations that claim support for the Roadmap 2022 profile must support the following
features:

3861

• fullDrawIndexUint32

• imageCubeArray

• independentBlend

• sampleRateShading

• drawIndirectFirstInstance

• depthClamp

• depthBiasClamp

• samplerAnisotropy

• occlusionQueryPrecise

• fragmentStoresAndAtomics

• shaderStorageImageExtendedFormats

• shaderUniformBufferArrayDynamicIndexing

• shaderSampledImageArrayDynamicIndexing

• shaderStorageBufferArrayDynamicIndexing

• shaderStorageImageArrayDynamicIndexing

• samplerYcbcrConversion

• samplerMirrorClampToEdge

• descriptorIndexing

• shaderUniformTexelBufferArrayDynamicIndexing

• shaderStorageTexelBufferArrayDynamicIndexing

• shaderUniformBufferArrayNonUniformIndexing

• shaderSampledImageArrayNonUniformIndexing

• shaderStorageBufferArrayNonUniformIndexing

• shaderStorageImageArrayNonUniformIndexing

• shaderUniformTexelBufferArrayNonUniformIndexing

• shaderStorageTexelBufferArrayNonUniformIndexing

• descriptorBindingSampledImageUpdateAfterBind

• descriptorBindingStorageImageUpdateAfterBind

• descriptorBindingStorageBufferUpdateAfterBind

• descriptorBindingUniformTexelBufferUpdateAfterBind

• descriptorBindingStorageTexelBufferUpdateAfterBind

• descriptorBindingUpdateUnusedWhilePending

• descriptorBindingPartiallyBound

• descriptorBindingVariableDescriptorCount

• runtimeDescriptorArray

3862

• scalarBlockLayout

47.2.2. Roadmap 2024

Implementations that claim support for the Roadmap 2024 profile must support the following
features:

• multiDrawIndirect

• shaderImageGatherExtended

• shaderDrawParameters

• shaderInt8

• shaderInt16

• shaderFloat16

• storageBuffer16BitAccess

• storageBuffer8BitAccess

3863

Chapter 48. Limits
Limits are implementation-dependent minimums, maximums, and other device characteristics that
an application may need to be aware of.

Note

Limits are reported via the basic VkPhysicalDeviceLimits structure as well as the
extensible structure VkPhysicalDeviceProperties2, which was added in
VK_KHR_get_physical_device_properties2 and included in Vulkan 1.1. When limits
are added in future Vulkan versions or extensions, each extension should
introduce one new limit structure, if needed. This structure can be added to the
pNext chain of the VkPhysicalDeviceProperties2 structure.

The VkPhysicalDeviceLimits structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceLimits {
 uint32_t maxImageDimension1D;
 uint32_t maxImageDimension2D;
 uint32_t maxImageDimension3D;
 uint32_t maxImageDimensionCube;
 uint32_t maxImageArrayLayers;
 uint32_t maxTexelBufferElements;
 uint32_t maxUniformBufferRange;
 uint32_t maxStorageBufferRange;
 uint32_t maxPushConstantsSize;
 uint32_t maxMemoryAllocationCount;
 uint32_t maxSamplerAllocationCount;
 VkDeviceSize bufferImageGranularity;
 VkDeviceSize sparseAddressSpaceSize;
 uint32_t maxBoundDescriptorSets;
 uint32_t maxPerStageDescriptorSamplers;
 uint32_t maxPerStageDescriptorUniformBuffers;
 uint32_t maxPerStageDescriptorStorageBuffers;
 uint32_t maxPerStageDescriptorSampledImages;
 uint32_t maxPerStageDescriptorStorageImages;
 uint32_t maxPerStageDescriptorInputAttachments;
 uint32_t maxPerStageResources;
 uint32_t maxDescriptorSetSamplers;
 uint32_t maxDescriptorSetUniformBuffers;
 uint32_t maxDescriptorSetUniformBuffersDynamic;
 uint32_t maxDescriptorSetStorageBuffers;
 uint32_t maxDescriptorSetStorageBuffersDynamic;
 uint32_t maxDescriptorSetSampledImages;
 uint32_t maxDescriptorSetStorageImages;
 uint32_t maxDescriptorSetInputAttachments;
 uint32_t maxVertexInputAttributes;
 uint32_t maxVertexInputBindings;
 uint32_t maxVertexInputAttributeOffset;

3864

 uint32_t maxVertexInputBindingStride;
 uint32_t maxVertexOutputComponents;
 uint32_t maxTessellationGenerationLevel;
 uint32_t maxTessellationPatchSize;
 uint32_t maxTessellationControlPerVertexInputComponents;
 uint32_t maxTessellationControlPerVertexOutputComponents;
 uint32_t maxTessellationControlPerPatchOutputComponents;
 uint32_t maxTessellationControlTotalOutputComponents;
 uint32_t maxTessellationEvaluationInputComponents;
 uint32_t maxTessellationEvaluationOutputComponents;
 uint32_t maxGeometryShaderInvocations;
 uint32_t maxGeometryInputComponents;
 uint32_t maxGeometryOutputComponents;
 uint32_t maxGeometryOutputVertices;
 uint32_t maxGeometryTotalOutputComponents;
 uint32_t maxFragmentInputComponents;
 uint32_t maxFragmentOutputAttachments;
 uint32_t maxFragmentDualSrcAttachments;
 uint32_t maxFragmentCombinedOutputResources;
 uint32_t maxComputeSharedMemorySize;
 uint32_t maxComputeWorkGroupCount[3];
 uint32_t maxComputeWorkGroupInvocations;
 uint32_t maxComputeWorkGroupSize[3];
 uint32_t subPixelPrecisionBits;
 uint32_t subTexelPrecisionBits;
 uint32_t mipmapPrecisionBits;
 uint32_t maxDrawIndexedIndexValue;
 uint32_t maxDrawIndirectCount;
 float maxSamplerLodBias;
 float maxSamplerAnisotropy;
 uint32_t maxViewports;
 uint32_t maxViewportDimensions[2];
 float viewportBoundsRange[2];
 uint32_t viewportSubPixelBits;
 size_t minMemoryMapAlignment;
 VkDeviceSize minTexelBufferOffsetAlignment;
 VkDeviceSize minUniformBufferOffsetAlignment;
 VkDeviceSize minStorageBufferOffsetAlignment;
 int32_t minTexelOffset;
 uint32_t maxTexelOffset;
 int32_t minTexelGatherOffset;
 uint32_t maxTexelGatherOffset;
 float minInterpolationOffset;
 float maxInterpolationOffset;
 uint32_t subPixelInterpolationOffsetBits;
 uint32_t maxFramebufferWidth;
 uint32_t maxFramebufferHeight;
 uint32_t maxFramebufferLayers;
 VkSampleCountFlags framebufferColorSampleCounts;
 VkSampleCountFlags framebufferDepthSampleCounts;
 VkSampleCountFlags framebufferStencilSampleCounts;

3865

 VkSampleCountFlags framebufferNoAttachmentsSampleCounts;
 uint32_t maxColorAttachments;
 VkSampleCountFlags sampledImageColorSampleCounts;
 VkSampleCountFlags sampledImageIntegerSampleCounts;
 VkSampleCountFlags sampledImageDepthSampleCounts;
 VkSampleCountFlags sampledImageStencilSampleCounts;
 VkSampleCountFlags storageImageSampleCounts;
 uint32_t maxSampleMaskWords;
 VkBool32 timestampComputeAndGraphics;
 float timestampPeriod;
 uint32_t maxClipDistances;
 uint32_t maxCullDistances;
 uint32_t maxCombinedClipAndCullDistances;
 uint32_t discreteQueuePriorities;
 float pointSizeRange[2];
 float lineWidthRange[2];
 float pointSizeGranularity;
 float lineWidthGranularity;
 VkBool32 strictLines;
 VkBool32 standardSampleLocations;
 VkDeviceSize optimalBufferCopyOffsetAlignment;
 VkDeviceSize optimalBufferCopyRowPitchAlignment;
 VkDeviceSize nonCoherentAtomSize;
} VkPhysicalDeviceLimits;

The VkPhysicalDeviceLimits are properties of the physical device. These are available in the limits
member of the VkPhysicalDeviceProperties structure which is returned from
vkGetPhysicalDeviceProperties.

• maxImageDimension1D is the largest dimension (width) that is guaranteed to be supported for all
images created with an imageType of VK_IMAGE_TYPE_1D. Some combinations of image parameters
(format, usage, etc.) may allow support for larger dimensions, which can be queried using
vkGetPhysicalDeviceImageFormatProperties.

• maxImageDimension2D is the largest dimension (width or height) that is guaranteed to be supported
for all images created with an imageType of VK_IMAGE_TYPE_2D and without
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set in flags. Some combinations of image parameters
(format, usage, etc.) may allow support for larger dimensions, which can be queried using
vkGetPhysicalDeviceImageFormatProperties.

• maxImageDimension3D is the largest dimension (width, height, or depth) that is guaranteed to be
supported for all images created with an imageType of VK_IMAGE_TYPE_3D. Some combinations of
image parameters (format, usage, etc.) may allow support for larger dimensions, which can be
queried using vkGetPhysicalDeviceImageFormatProperties.

• maxImageDimensionCube is the largest dimension (width or height) that is guaranteed to be
supported for all images created with an imageType of VK_IMAGE_TYPE_2D and with
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set in flags. Some combinations of image parameters
(format, usage, etc.) may allow support for larger dimensions, which can be queried using
vkGetPhysicalDeviceImageFormatProperties.

3866

• maxImageArrayLayers is the maximum number of layers (arrayLayers) for an image.

• maxTexelBufferElements is the maximum number of addressable texels for a buffer view created
on a buffer which was created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT set in the usage member of the VkBufferCreateInfo
structure.

• maxUniformBufferRange is the maximum value that can be specified in the range member of a
VkDescriptorBufferInfo structure passed to vkUpdateDescriptorSets for descriptors of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• maxStorageBufferRange is the maximum value that can be specified in the range member of a
VkDescriptorBufferInfo structure passed to vkUpdateDescriptorSets for descriptors of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• maxPushConstantsSize is the maximum size, in bytes, of the pool of push constant memory. For
each of the push constant ranges indicated by the pPushConstantRanges member of the
VkPipelineLayoutCreateInfo structure, (offset + size) must be less than or equal to this limit.

• maxMemoryAllocationCount is the maximum number of device memory allocations, as created by
vkAllocateMemory, which can simultaneously exist.

• maxSamplerAllocationCount is the maximum number of sampler objects, as created by
vkCreateSampler, which can simultaneously exist on a device.

• bufferImageGranularity is the granularity, in bytes, at which buffer or linear image resources,
and optimal image resources can be bound to adjacent offsets in the same VkDeviceMemory object
without aliasing. See Buffer-Image Granularity for more details.

• sparseAddressSpaceSize is the total amount of address space available, in bytes, for sparse
memory resources. This is an upper bound on the sum of the sizes of all sparse resources,
regardless of whether any memory is bound to them. If the extendedSparseAddressSpace feature
is enabled, then the difference between extendedSparseAddressSpaceSize and
sparseAddressSpaceSize can also be used, by VkImage created with the usage member of
VkImageCreateInfo only containing bits in extendedSparseImageUsageFlags and VkBuffer created
with the usage member of VkBufferCreateInfo only containing bits in
extendedSparseBufferUsageFlags.

• maxBoundDescriptorSets is the maximum number of descriptor sets that can be simultaneously
used by a pipeline. All DescriptorSet decorations in shader modules must have a value less than
maxBoundDescriptorSets. See Descriptor Sets.

• maxPerStageDescriptorSamplers is the maximum number of samplers that can be accessible to a
single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. A
descriptor is accessible to a shader stage when the stageFlags member of the
VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Sampler and
Combined Image Sampler.

• maxPerStageDescriptorUniformBuffers is the maximum number of uniform buffers that can be
accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against

3867

this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. A
descriptor is accessible to a shader stage when the stageFlags member of the
VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Uniform Buffer
and Dynamic Uniform Buffer.

• maxPerStageDescriptorStorageBuffers is the maximum number of storage buffers that can be
accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against
this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. A
descriptor is accessible to a pipeline shader stage when the stageFlags member of the
VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Storage Buffer
and Dynamic Storage Buffer.

• maxPerStageDescriptorSampledImages is the maximum number of sampled images that can be
accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against this limit. Only descriptors in descriptor
set layouts created without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit
set count against this limit. A descriptor is accessible to a pipeline shader stage when the
stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader
stage set. See Combined Image Sampler, Sampled Image, and Uniform Texel Buffer.

• maxPerStageDescriptorStorageImages is the maximum number of storage images that can be
accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against
this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. A
descriptor is accessible to a pipeline shader stage when the stageFlags member of the
VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Storage Image,
and Storage Texel Buffer.

• maxPerStageDescriptorInputAttachments is the maximum number of input attachments that can
be accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count against this limit. Only descriptors in descriptor set
layouts created without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set
count against this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags
member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set.
These are only supported for the fragment stage. See Input Attachment.

• maxPerStageResources is the maximum number of resources that can be accessible to a single
shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count
against this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. For
the fragment shader stage the framebuffer color attachments also count against this limit.

3868

• maxDescriptorSetSamplers is the maximum number of samplers that can be included in a
pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Sampler and Combined Image Sampler.

• maxDescriptorSetUniformBuffers is the maximum number of uniform buffers that can be
included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Uniform Buffer and Dynamic Uniform Buffer.

• maxDescriptorSetUniformBuffersDynamic is the maximum number of dynamic uniform buffers
that can be included in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Dynamic Uniform Buffer.

• maxDescriptorSetStorageBuffers is the maximum number of storage buffers that can be included
in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Storage Buffer and Dynamic Storage Buffer.

• maxDescriptorSetStorageBuffersDynamic is the maximum number of dynamic storage buffers that
can be included in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Dynamic Storage Buffer.

• maxDescriptorSetSampledImages is the maximum number of sampled images that can be included
in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against
this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Combined Image Sampler, Sampled Image, and Uniform Texel Buffer.

• maxDescriptorSetStorageImages is the maximum number of storage images that can be included
in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against this limit. Only descriptors in descriptor
set layouts created without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit
set count against this limit. See Storage Image, and Storage Texel Buffer.

• maxDescriptorSetInputAttachments is the maximum number of input attachments that can be
included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT
count against this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See

3869

Input Attachment.

• maxVertexInputAttributes is the maximum number of vertex input attributes that can be
specified for a graphics pipeline. These are described in the array of
VkVertexInputAttributeDescription structures that are provided at graphics pipeline creation
time via the pVertexAttributeDescriptions member of the VkPipelineVertexInputStateCreateInfo
structure. See Vertex Attributes and Vertex Input Description.

• maxVertexInputBindings is the maximum number of vertex buffers that can be specified for
providing vertex attributes to a graphics pipeline. These are described in the array of
VkVertexInputBindingDescription structures that are provided at graphics pipeline creation time
via the pVertexBindingDescriptions member of the VkPipelineVertexInputStateCreateInfo
structure. The binding member of VkVertexInputBindingDescription must be less than this limit.
See Vertex Input Description.

• maxVertexInputAttributeOffset is the maximum vertex input attribute offset that can be added
to the vertex input binding stride. The offset member of the VkVertexInputAttributeDescription
structure must be less than or equal to this limit. See Vertex Input Description.

• maxVertexInputBindingStride is the maximum vertex input binding stride that can be specified
in a vertex input binding. The stride member of the VkVertexInputBindingDescription structure
must be less than or equal to this limit. See Vertex Input Description.

• maxVertexOutputComponents is the maximum number of components of output variables which
can be output by a vertex shader. See Vertex Shaders.

• maxTessellationGenerationLevel is the maximum tessellation generation level supported by the
fixed-function tessellation primitive generator. See Tessellation.

• maxTessellationPatchSize is the maximum patch size, in vertices, of patches that can be
processed by the tessellation control shader and tessellation primitive generator. The
patchControlPoints member of the VkPipelineTessellationStateCreateInfo structure specified at
pipeline creation time and the value provided in the OutputVertices execution mode of shader
modules must be less than or equal to this limit. See Tessellation.

• maxTessellationControlPerVertexInputComponents is the maximum number of components of
input variables which can be provided as per-vertex inputs to the tessellation control shader
stage.

• maxTessellationControlPerVertexOutputComponents is the maximum number of components of
per-vertex output variables which can be output from the tessellation control shader stage.

• maxTessellationControlPerPatchOutputComponents is the maximum number of components of per-
patch output variables which can be output from the tessellation control shader stage.

• maxTessellationControlTotalOutputComponents is the maximum total number of components of
per-vertex and per-patch output variables which can be output from the tessellation control
shader stage.

• maxTessellationEvaluationInputComponents is the maximum number of components of input
variables which can be provided as per-vertex inputs to the tessellation evaluation shader
stage.

• maxTessellationEvaluationOutputComponents is the maximum number of components of per-
vertex output variables which can be output from the tessellation evaluation shader stage.

3870

• maxGeometryShaderInvocations is the maximum invocation count supported for instanced
geometry shaders. The value provided in the Invocations execution mode of shader modules
must be less than or equal to this limit. See Geometry Shading.

• maxGeometryInputComponents is the maximum number of components of input variables which
can be provided as inputs to the geometry shader stage.

• maxGeometryOutputComponents is the maximum number of components of output variables which
can be output from the geometry shader stage.

• maxGeometryOutputVertices is the maximum number of vertices which can be emitted by any
geometry shader.

• maxGeometryTotalOutputComponents is the maximum total number of components of output
variables, across all emitted vertices, which can be output from the geometry shader stage.

• maxFragmentInputComponents is the maximum number of components of input variables which
can be provided as inputs to the fragment shader stage.

• maxFragmentOutputAttachments is the maximum number of output attachments which can be
written to by the fragment shader stage.

• maxFragmentDualSrcAttachments is the maximum number of output attachments which can be
written to by the fragment shader stage when blending is enabled and one of the dual source
blend modes is in use. See Dual-Source Blending and dualSrcBlend.

• maxFragmentCombinedOutputResources is the total number of storage buffers, storage images, and
output Location decorated color attachments (described in Fragment Output Interface) which
can be used in the fragment shader stage.

• maxComputeSharedMemorySize is the maximum total storage size, in bytes, available for variables
declared with the Workgroup storage class in shader modules (or with the shared storage qualifier
in GLSL) in the compute shader stage.

• maxComputeWorkGroupCount[3] is the maximum number of local workgroups that can be
dispatched by a single dispatching command. These three values represent the maximum
number of local workgroups for the X, Y, and Z dimensions, respectively. The workgroup count
parameters to the dispatching commands must be less than or equal to the corresponding limit.
See Dispatching Commands.

• maxComputeWorkGroupInvocations is the maximum total number of compute shader invocations in
a single local workgroup. The product of the X, Y, and Z sizes, as specified by the LocalSize or
LocalSizeId execution mode in shader modules or by the object decorated by the WorkgroupSize
decoration, must be less than or equal to this limit.

• maxComputeWorkGroupSize[3] is the maximum size of a local compute workgroup, per dimension.
These three values represent the maximum local workgroup size in the X, Y, and Z dimensions,
respectively. The x, y, and z sizes, as specified by the LocalSize or LocalSizeId execution mode or
by the object decorated by the WorkgroupSize decoration in shader modules, must be less than or
equal to the corresponding limit.

• subPixelPrecisionBits is the number of bits of subpixel precision in framebuffer coordinates xf

and yf. See Rasterization.

• subTexelPrecisionBits is the number of bits of precision in the division along an axis of an
image used for minification and magnification filters. 2subTexelPrecisionBits is the actual number of

3871

divisions along each axis of the image represented. Sub-texel values calculated during image
sampling will snap to these locations when generating the filtered results.

• mipmapPrecisionBits is the number of bits of division that the LOD calculation for mipmap
fetching get snapped to when determining the contribution from each mip level to the mip
filtered results. 2mipmapPrecisionBits is the actual number of divisions.

• maxDrawIndexedIndexValue is the maximum index value that can be used for indexed draw calls
when using 32-bit indices. This excludes the primitive restart index value of 0xFFFFFFFF. See
fullDrawIndexUint32.

• maxDrawIndirectCount is the maximum draw count that is supported for indirect drawing calls.
See multiDrawIndirect.

• maxSamplerLodBias is the maximum absolute sampler LOD bias. The sum of the mipLodBias
member of the VkSamplerCreateInfo structure and the Bias operand of image sampling
operations in shader modules (or 0 if no Bias operand is provided to an image sampling
operation) are clamped to the range [-maxSamplerLodBias,+maxSamplerLodBias]. See [samplers-
mipLodBias].

• maxSamplerAnisotropy is the maximum degree of sampler anisotropy. The maximum degree of
anisotropic filtering used for an image sampling operation is the minimum of the maxAnisotropy
member of the VkSamplerCreateInfo structure and this limit. See [samplers-maxAnisotropy].

• maxViewports is the maximum number of active viewports. The viewportCount member of the
VkPipelineViewportStateCreateInfo structure that is provided at pipeline creation must be less
than or equal to this limit.

• maxViewportDimensions[2] are the maximum viewport dimensions in the X (width) and Y (height)
dimensions, respectively. The maximum viewport dimensions must be greater than or equal to
the largest image which can be created and used as a framebuffer attachment. See Controlling
the Viewport.

• viewportBoundsRange[2] is the [minimum, maximum] range that the corners of a viewport must
be contained in. This range must be at least [-2 × size, 2 × size - 1], where size =
max(maxViewportDimensions[0], maxViewportDimensions[1]). See Controlling the Viewport.

Note

The intent of the viewportBoundsRange limit is to allow a maximum sized
viewport to be arbitrarily shifted relative to the output target as long as at least
some portion intersects. This would give a bounds limit of [-size + 1, 2 × size -
1] which would allow all possible non-empty-set intersections of the output
target and the viewport. Since these numbers are typically powers of two,
picking the signed number range using the smallest possible number of bits
ends up with the specified range.

• viewportSubPixelBits is the number of bits of subpixel precision for viewport bounds. The
subpixel precision that floating-point viewport bounds are interpreted at is given by this limit.

• minMemoryMapAlignment is the minimum required alignment, in bytes, of host visible memory
allocations within the host address space. When mapping a memory allocation with
vkMapMemory, subtracting offset bytes from the returned pointer will always produce an
integer multiple of this limit. See Host Access to Device Memory Objects. The value must be a

3872

power of two.

• minTexelBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset
member of the VkBufferViewCreateInfo structure for texel buffers. The value must be a power
of two. If texelBufferAlignment is enabled, this limit is equivalent to the maximum of the
uniformTexelBufferOffsetAlignmentBytes and storageTexelBufferOffsetAlignmentBytes members
of VkPhysicalDeviceTexelBufferAlignmentProperties, but smaller alignment is optionally
allowed by storageTexelBufferOffsetSingleTexelAlignment and
uniformTexelBufferOffsetSingleTexelAlignment. If texelBufferAlignment is not enabled,
VkBufferViewCreateInfo::offset must be a multiple of this value.

• minUniformBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset
member of the VkDescriptorBufferInfo structure for uniform buffers. When a descriptor of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC is updated,
the offset must be an integer multiple of this limit. Similarly, dynamic offsets for uniform
buffers must be multiples of this limit. The value must be a power of two.

• minStorageBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset
member of the VkDescriptorBufferInfo structure for storage buffers. When a descriptor of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC is updated,
the offset must be an integer multiple of this limit. Similarly, dynamic offsets for storage
buffers must be multiples of this limit. The value must be a power of two.

• minTexelOffset is the minimum offset value for the ConstOffset image operand of any of the
OpImageSample* or OpImageFetch* image instructions.

• maxTexelOffset is the maximum offset value for the ConstOffset image operand of any of the
OpImageSample* or OpImageFetch* image instructions.

• minTexelGatherOffset is the minimum offset value for the Offset, ConstOffset, or ConstOffsets
image operands of any of the OpImage*Gather image instructions.

• maxTexelGatherOffset is the maximum offset value for the Offset, ConstOffset, or ConstOffsets
image operands of any of the OpImage*Gather image instructions.

• minInterpolationOffset is the base minimum (inclusive) negative offset value for the Offset
operand of the InterpolateAtOffset extended instruction.

• maxInterpolationOffset is the base maximum (inclusive) positive offset value for the Offset
operand of the InterpolateAtOffset extended instruction.

• subPixelInterpolationOffsetBits is the number of fractional bits that the x and y offsets to the
InterpolateAtOffset extended instruction may be rounded to as fixed-point values.

• maxFramebufferWidth is the maximum width for a framebuffer. The width member of the
VkFramebufferCreateInfo structure must be less than or equal to this limit.

• maxFramebufferHeight is the maximum height for a framebuffer. The height member of the
VkFramebufferCreateInfo structure must be less than or equal to this limit.

• maxFramebufferLayers is the maximum layer count for a layered framebuffer. The layers
member of the VkFramebufferCreateInfo structure must be less than or equal to this limit.

• framebufferColorSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the color
sample counts that are supported for all framebuffer color attachments with floating- or fixed-
point formats. For color attachments with integer formats, see

3873

framebufferIntegerColorSampleCounts.

• framebufferDepthSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the supported
depth sample counts for all framebuffer depth/stencil attachments, when the format includes a
depth component.

• framebufferStencilSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the
supported stencil sample counts for all framebuffer depth/stencil attachments, when the format
includes a stencil component.

• framebufferNoAttachmentsSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the
supported sample counts for a subpass which uses no attachments.

• maxColorAttachments is the maximum number of color attachments that can be used by a
subpass in a render pass. The colorAttachmentCount member of the VkSubpassDescription or
VkSubpassDescription2 structure must be less than or equal to this limit.

• sampledImageColorSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing
VK_IMAGE_USAGE_SAMPLED_BIT, and a non-integer color format.

• sampledImageIntegerSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing
VK_IMAGE_USAGE_SAMPLED_BIT, and an integer color format.

• sampledImageDepthSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing
VK_IMAGE_USAGE_SAMPLED_BIT, and a depth format.

• sampledImageStencilSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing
VK_IMAGE_USAGE_SAMPLED_BIT, and a stencil format.

• storageImageSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample counts
supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, and usage containing
VK_IMAGE_USAGE_STORAGE_BIT.

• maxSampleMaskWords is the maximum number of array elements of a variable decorated with the
SampleMask built-in decoration.

• timestampComputeAndGraphics specifies support for timestamps on all graphics and compute
queues. If this limit is set to VK_TRUE, all queues that advertise the VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT in the VkQueueFamilyProperties::queueFlags support
VkQueueFamilyProperties::timestampValidBits of at least 36. See Timestamp Queries.

• timestampPeriod is the number of nanoseconds required for a timestamp query to be
incremented by 1. See Timestamp Queries.

• maxClipDistances is the maximum number of clip distances that can be used in a single shader
stage. The size of any array declared with the ClipDistance built-in decoration in a shader
module must be less than or equal to this limit.

• maxCullDistances is the maximum number of cull distances that can be used in a single shader
stage. The size of any array declared with the CullDistance built-in decoration in a shader
module must be less than or equal to this limit.

• maxCombinedClipAndCullDistances is the maximum combined number of clip and cull distances

3874

that can be used in a single shader stage. The sum of the sizes of all arrays declared with the
ClipDistance and CullDistance built-in decoration used by a single shader stage in a shader
module must be less than or equal to this limit.

• discreteQueuePriorities is the number of discrete priorities that can be assigned to a queue
based on the value of each member of VkDeviceQueueCreateInfo::pQueuePriorities. This must
be at least 2, and levels must be spread evenly over the range, with at least one level at 1.0, and
another at 0.0. See Queue Priority.

• pointSizeRange[2] is the range [minimum,maximum] of supported sizes for points. Values written to
variables decorated with the PointSize built-in decoration are clamped to this range.

• lineWidthRange[2] is the range [minimum,maximum] of supported widths for lines. Values specified
by the lineWidth member of the VkPipelineRasterizationStateCreateInfo or the lineWidth
parameter to vkCmdSetLineWidth are clamped to this range.

• pointSizeGranularity is the granularity of supported point sizes. Not all point sizes in the range
defined by pointSizeRange are supported. This limit specifies the granularity (or increment)
between successive supported point sizes.

• lineWidthGranularity is the granularity of supported line widths. Not all line widths in the range
defined by lineWidthRange are supported. This limit specifies the granularity (or increment)
between successive supported line widths.

• strictLines specifies whether lines are rasterized according to the preferred method of
rasterization. If set to VK_FALSE, lines may be rasterized under a relaxed set of rules. If set to
VK_TRUE, lines are rasterized as per the strict definition. See Basic Line Segment Rasterization.

• standardSampleLocations specifies whether rasterization uses the standard sample locations as
documented in Multisampling. If set to VK_TRUE, the implementation uses the documented
sample locations. If set to VK_FALSE, the implementation may use different sample locations.

• optimalBufferCopyOffsetAlignment is the optimal buffer offset alignment in bytes for
vkCmdCopyBufferToImage2, vkCmdCopyBufferToImage, vkCmdCopyImageToBuffer2, and
vkCmdCopyImageToBuffer. This value is also the optimal host memory offset alignment in bytes
for vkCopyMemoryToImageEXT and vkCopyImageToMemoryEXT. The per texel alignment
requirements are enforced, but applications should use the optimal alignment for optimal
performance and power use. The value must be a power of two.

• optimalBufferCopyRowPitchAlignment is the optimal buffer row pitch alignment in bytes for
vkCmdCopyBufferToImage2, vkCmdCopyBufferToImage, vkCmdCopyImageToBuffer2, and
vkCmdCopyImageToBuffer. This value is also the optimal host memory row pitch alignment in
bytes for vkCopyMemoryToImageEXT and vkCopyImageToMemoryEXT. Row pitch is the
number of bytes between texels with the same X coordinate in adjacent rows (Y coordinates
differ by one). The per texel alignment requirements are enforced, but applications should use
the optimal alignment for optimal performance and power use. The value must be a power of
two.

• nonCoherentAtomSize is the size and alignment in bytes that bounds concurrent access to host-
mapped device memory. The value must be a power of two.

1

For all bitmasks of VkSampleCountFlagBits, the sample count limits defined above represent
the minimum supported sample counts for each image type. Individual images may support

3875

additional sample counts, which are queried using
vkGetPhysicalDeviceImageFormatProperties as described in Supported Sample Counts.

Bits which may be set in the sample count limits returned by VkPhysicalDeviceLimits, as well as in
other queries and structures representing image sample counts, are:

// Provided by VK_VERSION_1_0
typedef enum VkSampleCountFlagBits {
 VK_SAMPLE_COUNT_1_BIT = 0x00000001,
 VK_SAMPLE_COUNT_2_BIT = 0x00000002,
 VK_SAMPLE_COUNT_4_BIT = 0x00000004,
 VK_SAMPLE_COUNT_8_BIT = 0x00000008,
 VK_SAMPLE_COUNT_16_BIT = 0x00000010,
 VK_SAMPLE_COUNT_32_BIT = 0x00000020,
 VK_SAMPLE_COUNT_64_BIT = 0x00000040,
} VkSampleCountFlagBits;

• VK_SAMPLE_COUNT_1_BIT specifies an image with one sample per pixel.

• VK_SAMPLE_COUNT_2_BIT specifies an image with 2 samples per pixel.

• VK_SAMPLE_COUNT_4_BIT specifies an image with 4 samples per pixel.

• VK_SAMPLE_COUNT_8_BIT specifies an image with 8 samples per pixel.

• VK_SAMPLE_COUNT_16_BIT specifies an image with 16 samples per pixel.

• VK_SAMPLE_COUNT_32_BIT specifies an image with 32 samples per pixel.

• VK_SAMPLE_COUNT_64_BIT specifies an image with 64 samples per pixel.

// Provided by VK_VERSION_1_0
typedef VkFlags VkSampleCountFlags;

VkSampleCountFlags is a bitmask type for setting a mask of zero or more VkSampleCountFlagBits.

The VkPhysicalDevicePushDescriptorPropertiesKHR structure is defined as:

// Provided by VK_KHR_push_descriptor
typedef struct VkPhysicalDevicePushDescriptorPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t maxPushDescriptors;
} VkPhysicalDevicePushDescriptorPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxPushDescriptors is the maximum number of descriptors that can be used in a descriptor set
layout created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR set.

3876

If the VkPhysicalDevicePushDescriptorPropertiesKHR structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePushDescriptorPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR

The VkPhysicalDeviceMultiviewProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceMultiviewProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t maxMultiviewViewCount;
 uint32_t maxMultiviewInstanceIndex;
} VkPhysicalDeviceMultiviewProperties;

or the equivalent

// Provided by VK_KHR_multiview
typedef VkPhysicalDeviceMultiviewProperties VkPhysicalDeviceMultiviewPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxMultiviewViewCount is one greater than the maximum view index that can be used in a
subpass.

• maxMultiviewInstanceIndex is the maximum valid value of instance index allowed to be
generated by a drawing command recorded within a subpass of a multiview render pass
instance.

If the VkPhysicalDeviceMultiviewProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiviewProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES

The VkPhysicalDeviceFloatControlsProperties structure is defined as:

3877

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceFloatControlsProperties {
 VkStructureType sType;
 void* pNext;
 VkShaderFloatControlsIndependence denormBehaviorIndependence;
 VkShaderFloatControlsIndependence roundingModeIndependence;
 VkBool32 shaderSignedZeroInfNanPreserveFloat16;
 VkBool32 shaderSignedZeroInfNanPreserveFloat32;
 VkBool32 shaderSignedZeroInfNanPreserveFloat64;
 VkBool32 shaderDenormPreserveFloat16;
 VkBool32 shaderDenormPreserveFloat32;
 VkBool32 shaderDenormPreserveFloat64;
 VkBool32 shaderDenormFlushToZeroFloat16;
 VkBool32 shaderDenormFlushToZeroFloat32;
 VkBool32 shaderDenormFlushToZeroFloat64;
 VkBool32 shaderRoundingModeRTEFloat16;
 VkBool32 shaderRoundingModeRTEFloat32;
 VkBool32 shaderRoundingModeRTEFloat64;
 VkBool32 shaderRoundingModeRTZFloat16;
 VkBool32 shaderRoundingModeRTZFloat32;
 VkBool32 shaderRoundingModeRTZFloat64;
} VkPhysicalDeviceFloatControlsProperties;

or the equivalent

// Provided by VK_KHR_shader_float_controls
typedef VkPhysicalDeviceFloatControlsProperties
VkPhysicalDeviceFloatControlsPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• denormBehaviorIndependence is a VkShaderFloatControlsIndependence value indicating whether,
and how, denorm behavior can be set independently for different bit widths.

• roundingModeIndependence is a VkShaderFloatControlsIndependence value indicating whether,
and how, rounding modes can be set independently for different bit widths.

• shaderSignedZeroInfNanPreserveFloat16 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 16-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 16-bit floating-point types.

• shaderSignedZeroInfNanPreserveFloat32 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 32-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 32-bit floating-point types.

• shaderSignedZeroInfNanPreserveFloat64 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 64-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 64-bit floating-point types.

3878

• shaderDenormPreserveFloat16 is a boolean value indicating whether denormals can be preserved
in 16-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 16-bit floating-point types.

• shaderDenormPreserveFloat32 is a boolean value indicating whether denormals can be preserved
in 32-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 32-bit floating-point types.

• shaderDenormPreserveFloat64 is a boolean value indicating whether denormals can be preserved
in 64-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 64-bit floating-point types.

• shaderDenormFlushToZeroFloat16 is a boolean value indicating whether denormals can be flushed
to zero in 16-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 16-bit floating-point types.

• shaderDenormFlushToZeroFloat32 is a boolean value indicating whether denormals can be flushed
to zero in 32-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 32-bit floating-point types.

• shaderDenormFlushToZeroFloat64 is a boolean value indicating whether denormals can be flushed
to zero in 64-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 64-bit floating-point types.

• shaderRoundingModeRTEFloat16 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 16-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 16-bit floating-point types.

• shaderRoundingModeRTEFloat32 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 32-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 32-bit floating-point types.

• shaderRoundingModeRTEFloat64 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 64-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 64-bit floating-point types.

• shaderRoundingModeRTZFloat16 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 16-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 16-bit floating-point types.

• shaderRoundingModeRTZFloat32 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 32-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 32-bit floating-point types.

• shaderRoundingModeRTZFloat64 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 64-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 64-bit floating-point types.

If the VkPhysicalDeviceFloatControlsProperties structure is included in the pNext chain of the

3879

VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFloatControlsProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES

Values which may be returned in the denormBehaviorIndependence and roundingModeIndependence
fields of VkPhysicalDeviceFloatControlsProperties are:

// Provided by VK_VERSION_1_2
typedef enum VkShaderFloatControlsIndependence {
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY = 0,
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL = 1,
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE = 2,
 // Provided by VK_KHR_shader_float_controls
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY,
 // Provided by VK_KHR_shader_float_controls
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL,
 // Provided by VK_KHR_shader_float_controls
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE,
} VkShaderFloatControlsIndependence;

or the equivalent

// Provided by VK_KHR_shader_float_controls
typedef VkShaderFloatControlsIndependence VkShaderFloatControlsIndependenceKHR;

• VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY specifies that shader float controls for 32-bit
floating point can be set independently; other bit widths must be set identically to each other.

• VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL specifies that shader float controls for all bit widths
can be set independently.

• VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE specifies that shader float controls for all bit widths
must be set identically.

The VkPhysicalDeviceDiscardRectanglePropertiesEXT structure is defined as:

// Provided by VK_EXT_discard_rectangles
typedef struct VkPhysicalDeviceDiscardRectanglePropertiesEXT {
 VkStructureType sType;
 void* pNext;

3880

 uint32_t maxDiscardRectangles;
} VkPhysicalDeviceDiscardRectanglePropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxDiscardRectangles is the maximum number of active discard rectangles that can be specified.

If the VkPhysicalDeviceDiscardRectanglePropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDiscardRectanglePropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT

The VkPhysicalDeviceSampleLocationsPropertiesEXT structure is defined as:

// Provided by VK_EXT_sample_locations
typedef struct VkPhysicalDeviceSampleLocationsPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkSampleCountFlags sampleLocationSampleCounts;
 VkExtent2D maxSampleLocationGridSize;
 float sampleLocationCoordinateRange[2];
 uint32_t sampleLocationSubPixelBits;
 VkBool32 variableSampleLocations;
} VkPhysicalDeviceSampleLocationsPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• sampleLocationSampleCounts is a bitmask of VkSampleCountFlagBits indicating the sample counts
supporting custom sample locations.

• maxSampleLocationGridSize is the maximum size of the pixel grid in which sample locations can
vary that is supported for all sample counts in sampleLocationSampleCounts.

• sampleLocationCoordinateRange[2] is the range of supported sample location coordinates.

• sampleLocationSubPixelBits is the number of bits of subpixel precision for sample locations.

• variableSampleLocations specifies whether the sample locations used by all pipelines that will be
bound to a command buffer during a subpass must match. If set to VK_TRUE, the implementation
supports variable sample locations in a subpass. If set to VK_FALSE, then the sample locations
must stay constant in each subpass.

If the VkPhysicalDeviceSampleLocationsPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with

3881

each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSampleLocationsPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT

The VkPhysicalDeviceExternalMemoryHostPropertiesEXT structure is defined as:

// Provided by VK_EXT_external_memory_host
typedef struct VkPhysicalDeviceExternalMemoryHostPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize minImportedHostPointerAlignment;
} VkPhysicalDeviceExternalMemoryHostPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minImportedHostPointerAlignment is the minimum required alignment, in bytes, for the base
address and size of host pointers that can be imported to a Vulkan memory object. The value
must be a power of two.

If the VkPhysicalDeviceExternalMemoryHostPropertiesEXT structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalMemoryHostPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT

The VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX structure is defined as:

// Provided by VK_NVX_multiview_per_view_attributes
typedef struct VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX {
 VkStructureType sType;
 void* pNext;
 VkBool32 perViewPositionAllComponents;
} VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• perViewPositionAllComponents is VK_TRUE if the implementation supports per-view position values
that differ in components other than the X component.

3882

If the VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX

The VkPhysicalDevicePointClippingProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDevicePointClippingProperties {
 VkStructureType sType;
 void* pNext;
 VkPointClippingBehavior pointClippingBehavior;
} VkPhysicalDevicePointClippingProperties;

or the equivalent

// Provided by VK_KHR_maintenance2
typedef VkPhysicalDevicePointClippingProperties
VkPhysicalDevicePointClippingPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pointClippingBehavior is a VkPointClippingBehavior value specifying the point clipping
behavior supported by the implementation.

If the VkPhysicalDevicePointClippingProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePointClippingProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES

The VkPhysicalDeviceSubgroupProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceSubgroupProperties {
 VkStructureType sType;

3883

 void* pNext;
 uint32_t subgroupSize;
 VkShaderStageFlags supportedStages;
 VkSubgroupFeatureFlags supportedOperations;
 VkBool32 quadOperationsInAllStages;
} VkPhysicalDeviceSubgroupProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• subgroupSize is the default number of invocations in each subgroup. subgroupSize is at least 1 if
any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.
subgroupSize is a power-of-two.

• supportedStages is a bitfield of VkShaderStageFlagBits describing the shader stages that group
operations with subgroup scope are supported in. supportedStages will have the
VK_SHADER_STAGE_COMPUTE_BIT bit set if any of the physical device’s queues support
VK_QUEUE_COMPUTE_BIT.

• supportedOperations is a bitmask of VkSubgroupFeatureFlagBits specifying the sets of group
operations with subgroup scope supported on this device. supportedOperations will have the
VK_SUBGROUP_FEATURE_BASIC_BIT bit set if any of the physical device’s queues support
VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.

• quadOperationsInAllStages is a boolean specifying whether quad group operations are available
in all stages, or are restricted to fragment and compute stages.

If the VkPhysicalDeviceSubgroupProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

If supportedOperations includes VK_SUBGROUP_FEATURE_QUAD_BIT, or shaderSubgroupUniformControlFlow
is enabled, subgroupSize must be greater than or equal to 4.

If the shaderQuadControl feature is supported, supportedOperations must include
VK_SUBGROUP_FEATURE_QUAD_BIT.

If VK_KHR_shader_subgroup_rotate is supported, and the implementation advertises support with a
VkExtensionProperties::specVersion greater than or equal to 2, and shaderSubgroupRotate is
supported, VK_SUBGROUP_FEATURE_ROTATE_BIT_KHR must be returned in subgroupSupportedOperations. If
VK_KHR_shader_subgroup_rotate is supported, and the implementation advertises support with a
VkExtensionProperties::specVersion greater than or equal to 2, and shaderSubgroupRotateClustered is
supported, VK_SUBGROUP_FEATURE_ROTATE_CLUSTERED_BIT_KHR must be returned in
subgroupSupportedOperations.

Note

VK_SUBGROUP_FEATURE_ROTATE_BIT_KHR and
VK_SUBGROUP_FEATURE_ROTATE_CLUSTERED_BIT_KHR were added in version 2 of the
VK_KHR_shader_subgroup_rotate extension, after the initial release, so there are
implementations that do not advertise these bits. Applications should use the

3884

shaderSubgroupRotate and shaderSubgroupRotateClustered features to determine and
enable support. These bits are advertised here for consistency and for future
dependencies.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubgroupProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES

Bits which can be set in VkPhysicalDeviceSubgroupProperties::supportedOperations and
VkPhysicalDeviceVulkan11Properties::subgroupSupportedOperations to specify supported group
operations with subgroup scope are:

// Provided by VK_VERSION_1_1
typedef enum VkSubgroupFeatureFlagBits {
 VK_SUBGROUP_FEATURE_BASIC_BIT = 0x00000001,
 VK_SUBGROUP_FEATURE_VOTE_BIT = 0x00000002,
 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT = 0x00000004,
 VK_SUBGROUP_FEATURE_BALLOT_BIT = 0x00000008,
 VK_SUBGROUP_FEATURE_SHUFFLE_BIT = 0x00000010,
 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT = 0x00000020,
 VK_SUBGROUP_FEATURE_CLUSTERED_BIT = 0x00000040,
 VK_SUBGROUP_FEATURE_QUAD_BIT = 0x00000080,
 // Provided by VK_NV_shader_subgroup_partitioned
 VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV = 0x00000100,
 // Provided by VK_KHR_shader_subgroup_rotate
 VK_SUBGROUP_FEATURE_ROTATE_BIT_KHR = 0x00000200,
 // Provided by VK_KHR_shader_subgroup_rotate
 VK_SUBGROUP_FEATURE_ROTATE_CLUSTERED_BIT_KHR = 0x00000400,
} VkSubgroupFeatureFlagBits;

• VK_SUBGROUP_FEATURE_BASIC_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniform capability.

• VK_SUBGROUP_FEATURE_VOTE_BIT specifies the device will accept SPIR-V shader modules containing
the GroupNonUniformVote capability.

• VK_SUBGROUP_FEATURE_ARITHMETIC_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformArithmetic capability.

• VK_SUBGROUP_FEATURE_BALLOT_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformBallot capability.

• VK_SUBGROUP_FEATURE_SHUFFLE_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformShuffle capability.

• VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT specifies the device will accept SPIR-V shader
modules containing the GroupNonUniformShuffleRelative capability.

• VK_SUBGROUP_FEATURE_CLUSTERED_BIT specifies the device will accept SPIR-V shader modules

3885

containing the GroupNonUniformClustered capability.

• VK_SUBGROUP_FEATURE_QUAD_BIT specifies the device will accept SPIR-V shader modules containing
the GroupNonUniformQuad capability.

• VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformPartitionedNV capability.

• VK_SUBGROUP_FEATURE_ROTATE_BIT_KHR specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformRotateKHR capability.

• VK_SUBGROUP_FEATURE_ROTATE_CLUSTERED_BIT_KHR specifies the device will accept SPIR-V shader
modules that use the ClusterSize operand to OpGroupNonUniformRotateKHR.

// Provided by VK_VERSION_1_1
typedef VkFlags VkSubgroupFeatureFlags;

VkSubgroupFeatureFlags is a bitmask type for setting a mask of zero or more
VkSubgroupFeatureFlagBits.

The VkPhysicalDeviceSubgroupSizeControlProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceSubgroupSizeControlProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t minSubgroupSize;
 uint32_t maxSubgroupSize;
 uint32_t maxComputeWorkgroupSubgroups;
 VkShaderStageFlags requiredSubgroupSizeStages;
} VkPhysicalDeviceSubgroupSizeControlProperties;

or the equivalent

// Provided by VK_EXT_subgroup_size_control
typedef VkPhysicalDeviceSubgroupSizeControlProperties
VkPhysicalDeviceSubgroupSizeControlPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minSubgroupSize is the minimum subgroup size supported by this device. minSubgroupSize is at
least one if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT. minSubgroupSize is a power-of-two. minSubgroupSize is less than or equal to
maxSubgroupSize. minSubgroupSize is less than or equal to subgroupSize.

• maxSubgroupSize is the maximum subgroup size supported by this device. maxSubgroupSize is at
least one if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT. maxSubgroupSize is a power-of-two. maxSubgroupSize is greater than or

3886

equal to minSubgroupSize. maxSubgroupSize is greater than or equal to subgroupSize.

• maxComputeWorkgroupSubgroups is the maximum number of subgroups supported by the
implementation within a workgroup.

• requiredSubgroupSizeStages is a bitfield of what shader stages support having a required
subgroup size specified.

If the VkPhysicalDeviceSubgroupSizeControlProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

If VkPhysicalDeviceSubgroupProperties::supportedOperations includes
VK_SUBGROUP_FEATURE_QUAD_BIT, minSubgroupSize must be greater than or equal to 4.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubgroupSizeControlProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES

The VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT structure is defined as:

// Provided by VK_EXT_blend_operation_advanced
typedef struct VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t advancedBlendMaxColorAttachments;
 VkBool32 advancedBlendIndependentBlend;
 VkBool32 advancedBlendNonPremultipliedSrcColor;
 VkBool32 advancedBlendNonPremultipliedDstColor;
 VkBool32 advancedBlendCorrelatedOverlap;
 VkBool32 advancedBlendAllOperations;
} VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• advancedBlendMaxColorAttachments is one greater than the highest color attachment index that
can be used in a subpass, for a pipeline that uses an advanced blend operation.

• advancedBlendIndependentBlend specifies whether advanced blend operations can vary per-
attachment.

• advancedBlendNonPremultipliedSrcColor specifies whether the source color can be treated as
non-premultiplied. If this is VK_FALSE, then VkPipelineColorBlendAdvancedStateCreateInfoEXT
::srcPremultiplied must be VK_TRUE.

• advancedBlendNonPremultipliedDstColor specifies whether the destination color can be treated as
non-premultiplied. If this is VK_FALSE, then VkPipelineColorBlendAdvancedStateCreateInfoEXT
::dstPremultiplied must be VK_TRUE.

3887

• advancedBlendCorrelatedOverlap specifies whether the overlap mode can be treated as
correlated. If this is VK_FALSE, then VkPipelineColorBlendAdvancedStateCreateInfoEXT
::blendOverlap must be VK_BLEND_OVERLAP_UNCORRELATED_EXT.

• advancedBlendAllOperations specifies whether all advanced blend operation enums are
supported. See the valid usage of VkPipelineColorBlendAttachmentState.

If the VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT structure is included in the pNext chain
of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled
in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT

The VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT structure is defined as:

// Provided by VK_EXT_vertex_attribute_divisor
typedef struct VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t maxVertexAttribDivisor;
} VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxVertexAttribDivisor is the maximum value of the number of instances that will repeat the
value of vertex attribute data when instanced rendering is enabled.

If the VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT structure is included in the pNext chain
of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled
in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT

The VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR structure is defined as:

// Provided by VK_KHR_vertex_attribute_divisor
typedef struct VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR {

3888

 VkStructureType sType;
 void* pNext;
 uint32_t maxVertexAttribDivisor;
 VkBool32 supportsNonZeroFirstInstance;
} VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxVertexAttribDivisor is the maximum value of the number of instances that will repeat the
value of vertex attribute data when instanced rendering is enabled.

• supportsNonZeroFirstInstance specifies whether a non-zero value for the firstInstance
parameter of drawing commands is supported when
VkVertexInputBindingDivisorDescriptionKHR::divisor is not 1.

If the VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR structure is included in the pNext chain
of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled
in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_KHR

The VkPhysicalDeviceSamplerFilterMinmaxProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceSamplerFilterMinmaxProperties {
 VkStructureType sType;
 void* pNext;
 VkBool32 filterMinmaxSingleComponentFormats;
 VkBool32 filterMinmaxImageComponentMapping;
} VkPhysicalDeviceSamplerFilterMinmaxProperties;

or the equivalent

// Provided by VK_EXT_sampler_filter_minmax
typedef VkPhysicalDeviceSamplerFilterMinmaxProperties
VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• filterMinmaxSingleComponentFormats is a boolean value indicating whether a minimum set of

3889

required formats support min/max filtering.

• filterMinmaxImageComponentMapping is a boolean value indicating whether the implementation
supports non-identity component mapping of the image when doing min/max filtering.

If the VkPhysicalDeviceSamplerFilterMinmaxProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

If filterMinmaxSingleComponentFormats is VK_TRUE, the following formats must support the
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT feature with VK_IMAGE_TILING_OPTIMAL, if they
support VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT:

• VK_FORMAT_R8_UNORM

• VK_FORMAT_R8_SNORM

• VK_FORMAT_R16_UNORM

• VK_FORMAT_R16_SNORM

• VK_FORMAT_R16_SFLOAT

• VK_FORMAT_R32_SFLOAT

• VK_FORMAT_D16_UNORM

• VK_FORMAT_X8_D24_UNORM_PACK32

• VK_FORMAT_D32_SFLOAT

• VK_FORMAT_D16_UNORM_S8_UINT

• VK_FORMAT_D24_UNORM_S8_UINT

• VK_FORMAT_D32_SFLOAT_S8_UINT

If the format is a depth/stencil format, this bit only specifies that the depth aspect (not the stencil
aspect) of an image of this format supports min/max filtering, and that min/max filtering of the
depth aspect is supported when depth compare is disabled in the sampler.

If filterMinmaxImageComponentMapping is VK_FALSE the component mapping of the image view used
with min/max filtering must have been created with the r component set to the identity swizzle.
Only the r component of the sampled image value is defined and the other component values are
undefined. If filterMinmaxImageComponentMapping is VK_TRUE this restriction does not apply and image
component mapping works as normal.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSamplerFilterMinmaxProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES

The VkPhysicalDeviceProtectedMemoryProperties structure is defined as:

// Provided by VK_VERSION_1_1

3890

typedef struct VkPhysicalDeviceProtectedMemoryProperties {
 VkStructureType sType;
 void* pNext;
 VkBool32 protectedNoFault;
} VkPhysicalDeviceProtectedMemoryProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• protectedNoFault specifies how an implementation behaves when an application attempts to
write to unprotected memory in a protected queue operation, read from protected memory in
an unprotected queue operation, or perform a query in a protected queue operation. If this limit
is VK_TRUE, such writes will be discarded or have undefined values written, reads and queries
will return undefined values. If this limit is VK_FALSE, applications must not perform these
operations. See Protected Memory Access Rules for more information.

If the VkPhysicalDeviceProtectedMemoryProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceProtectedMemoryProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES

The VkPhysicalDeviceMaintenance3Properties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceMaintenance3Properties {
 VkStructureType sType;
 void* pNext;
 uint32_t maxPerSetDescriptors;
 VkDeviceSize maxMemoryAllocationSize;
} VkPhysicalDeviceMaintenance3Properties;

or the equivalent

// Provided by VK_KHR_maintenance3
typedef VkPhysicalDeviceMaintenance3Properties
VkPhysicalDeviceMaintenance3PropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxPerSetDescriptors is a maximum number of descriptors (summed over all descriptor types)

3891

in a single descriptor set that is guaranteed to satisfy any implementation-dependent
constraints on the size of a descriptor set itself. Applications can query whether a descriptor set
that goes beyond this limit is supported using vkGetDescriptorSetLayoutSupport.

• maxMemoryAllocationSize is the maximum size of a memory allocation that can be created, even
if there is more space available in the heap.

If the VkPhysicalDeviceMaintenance3Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance3Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES

The VkPhysicalDeviceMaintenance4Properties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceMaintenance4Properties {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize maxBufferSize;
} VkPhysicalDeviceMaintenance4Properties;

or the equivalent

// Provided by VK_KHR_maintenance4
typedef VkPhysicalDeviceMaintenance4Properties
VkPhysicalDeviceMaintenance4PropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxBufferSize is the maximum size VkBuffer that can be created.

If the VkPhysicalDeviceMaintenance4Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance4Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES

The VkPhysicalDeviceMaintenance5PropertiesKHR structure is defined as:

3892

// Provided by VK_KHR_maintenance5
typedef struct VkPhysicalDeviceMaintenance5PropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 earlyFragmentMultisampleCoverageAfterSampleCounting;
 VkBool32 earlyFragmentSampleMaskTestBeforeSampleCounting;
 VkBool32 depthStencilSwizzleOneSupport;
 VkBool32 polygonModePointSize;
 VkBool32 nonStrictSinglePixelWideLinesUseParallelogram;
 VkBool32 nonStrictWideLinesUseParallelogram;
} VkPhysicalDeviceMaintenance5PropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• earlyFragmentMultisampleCoverageAfterSampleCounting is a boolean value indicating whether the
fragment shading and multisample coverage operations are performed after sample counting
for fragment shaders with EarlyFragmentTests execution mode.

• earlyFragmentSampleMaskTestBeforeSampleCounting is a boolean value indicating whether the
sample mask test operation is performed before sample counting for fragment shaders using
the EarlyFragmentTests execution mode.

• depthStencilSwizzleOneSupport is a boolean indicating that depth/stencil texturing operations
with VK_COMPONENT_SWIZZLE_ONE have defined behavior.

• polygonModePointSize is a boolean value indicating whether the point size of the final
rasterization of polygons with VK_POLYGON_MODE_POINT is controlled by PointSize.

• nonStrictSinglePixelWideLinesUseParallelogram is a boolean value indicating whether non-strict
lines with a width of 1.0 are rasterized as parallelograms or using Bresenham’s algorithm.

• nonStrictWideLinesUseParallelogram is a boolean value indicating whether non-strict lines with a
width greater than 1.0 are rasterized as parallelograms or using Bresenham’s algorithm.

If the VkPhysicalDeviceMaintenance5PropertiesKHR structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance5PropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_5_PROPERTIES_KHR

The VkPhysicalDeviceMaintenance6PropertiesKHR structure is defined as:

// Provided by VK_KHR_maintenance6
typedef struct VkPhysicalDeviceMaintenance6PropertiesKHR {
 VkStructureType sType;
 void* pNext;

3893

 VkBool32 blockTexelViewCompatibleMultipleLayers;
 uint32_t maxCombinedImageSamplerDescriptorCount;
 VkBool32 fragmentShadingRateClampCombinerInputs;
} VkPhysicalDeviceMaintenance6PropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• blockTexelViewCompatibleMultipleLayers is a boolean value indicating that an implementation
supports creating image views with VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT where the
layerCount member of subresourceRange is greater than 1.

• maxCombinedImageSamplerDescriptorCount is the maximum number of combined image sampler
descriptors that the implementation uses to access any of the formats that require a sampler
Y′CBCR conversion supported by the implementation.

• fragmentShadingRateClampCombinerInputs is a boolean value indicating that an implementation
clamps the inputs to combiner operations.

If the VkPhysicalDeviceMaintenance6PropertiesKHR structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance6PropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_6_PROPERTIES_KHR

The VkPhysicalDeviceMeshShaderPropertiesNV structure is defined as:

// Provided by VK_NV_mesh_shader
typedef struct VkPhysicalDeviceMeshShaderPropertiesNV {
 VkStructureType sType;
 void* pNext;
 uint32_t maxDrawMeshTasksCount;
 uint32_t maxTaskWorkGroupInvocations;
 uint32_t maxTaskWorkGroupSize[3];
 uint32_t maxTaskTotalMemorySize;
 uint32_t maxTaskOutputCount;
 uint32_t maxMeshWorkGroupInvocations;
 uint32_t maxMeshWorkGroupSize[3];
 uint32_t maxMeshTotalMemorySize;
 uint32_t maxMeshOutputVertices;
 uint32_t maxMeshOutputPrimitives;
 uint32_t maxMeshMultiviewViewCount;
 uint32_t meshOutputPerVertexGranularity;
 uint32_t meshOutputPerPrimitiveGranularity;
} VkPhysicalDeviceMeshShaderPropertiesNV;

3894

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxDrawMeshTasksCount is the maximum number of local workgroups that can be launched by a
single draw mesh tasks command. See Programmable Mesh Shading.

• maxTaskWorkGroupInvocations is the maximum total number of task shader invocations in a
single local workgroup. The product of the X, Y, and Z sizes, as specified by the LocalSize or
LocalSizeId execution mode in shader modules or by the object decorated by the WorkgroupSize
decoration, must be less than or equal to this limit.

• maxTaskWorkGroupSize[3] is the maximum size of a local task workgroup. These three values
represent the maximum local workgroup size in the X, Y, and Z dimensions, respectively. The x,
y, and z sizes, as specified by the LocalSize or LocalSizeId execution mode or by the object
decorated by the WorkgroupSize decoration in shader modules, must be less than or equal to the
corresponding limit.

• maxTaskTotalMemorySize is the maximum number of bytes that the task shader can use in total
for shared and output memory combined.

• maxTaskOutputCount is the maximum number of output tasks a single task shader workgroup can
emit.

• maxMeshWorkGroupInvocations is the maximum total number of mesh shader invocations in a
single local workgroup. The product of the X, Y, and Z sizes, as specified by the LocalSize or
LocalSizeId execution mode in shader modules or by the object decorated by the WorkgroupSize
decoration, must be less than or equal to this limit.

• maxMeshWorkGroupSize[3] is the maximum size of a local mesh workgroup. These three values
represent the maximum local workgroup size in the X, Y, and Z dimensions, respectively. The x,
y, and z sizes, as specified by the LocalSize or LocalSizeId execution mode or by the object
decorated by the WorkgroupSize decoration in shader modules, must be less than or equal to the
corresponding limit.

• maxMeshTotalMemorySize is the maximum number of bytes that the mesh shader can use in total
for shared and output memory combined.

• maxMeshOutputVertices is the maximum number of vertices a mesh shader output can store.

• maxMeshOutputPrimitives is the maximum number of primitives a mesh shader output can store.

• maxMeshMultiviewViewCount is the maximum number of multiview views a mesh shader can use.

• meshOutputPerVertexGranularity is the granularity with which mesh vertex outputs are allocated.
The value can be used to compute the memory size used by the mesh shader, which must be
less than or equal to maxMeshTotalMemorySize.

• meshOutputPerPrimitiveGranularity is the granularity with which mesh outputs qualified as per-
primitive are allocated. The value can be used to compute the memory size used by the mesh
shader, which must be less than or equal to maxMeshTotalMemorySize.

If the VkPhysicalDeviceMeshShaderPropertiesNV structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

3895

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMeshShaderPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV

The VkPhysicalDeviceMeshShaderPropertiesEXT structure is defined as:

// Provided by VK_EXT_mesh_shader
typedef struct VkPhysicalDeviceMeshShaderPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t maxTaskWorkGroupTotalCount;
 uint32_t maxTaskWorkGroupCount[3];
 uint32_t maxTaskWorkGroupInvocations;
 uint32_t maxTaskWorkGroupSize[3];
 uint32_t maxTaskPayloadSize;
 uint32_t maxTaskSharedMemorySize;
 uint32_t maxTaskPayloadAndSharedMemorySize;
 uint32_t maxMeshWorkGroupTotalCount;
 uint32_t maxMeshWorkGroupCount[3];
 uint32_t maxMeshWorkGroupInvocations;
 uint32_t maxMeshWorkGroupSize[3];
 uint32_t maxMeshSharedMemorySize;
 uint32_t maxMeshPayloadAndSharedMemorySize;
 uint32_t maxMeshOutputMemorySize;
 uint32_t maxMeshPayloadAndOutputMemorySize;
 uint32_t maxMeshOutputComponents;
 uint32_t maxMeshOutputVertices;
 uint32_t maxMeshOutputPrimitives;
 uint32_t maxMeshOutputLayers;
 uint32_t maxMeshMultiviewViewCount;
 uint32_t meshOutputPerVertexGranularity;
 uint32_t meshOutputPerPrimitiveGranularity;
 uint32_t maxPreferredTaskWorkGroupInvocations;
 uint32_t maxPreferredMeshWorkGroupInvocations;
 VkBool32 prefersLocalInvocationVertexOutput;
 VkBool32 prefersLocalInvocationPrimitiveOutput;
 VkBool32 prefersCompactVertexOutput;
 VkBool32 prefersCompactPrimitiveOutput;
} VkPhysicalDeviceMeshShaderPropertiesEXT;

The members of the VkPhysicalDeviceMeshShaderPropertiesEXT structure describe the following
implementation-dependent limits:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxTaskWorkGroupTotalCount is the maximum number of total local workgroups that can be

3896

launched by a single mesh tasks drawing command. See Programmable Mesh Shading.

• maxTaskWorkGroupCount[3] is the maximum number of local workgroups that can be launched by
a single mesh tasks drawing command. These three values represent the maximum number of
local workgroups for the X, Y, and Z dimensions, respectively. The workgroup count parameters
to the drawing commands must be less than or equal to the corresponding limit. The product of
these dimensions must be less than or equal to maxTaskWorkGroupTotalCount.

• maxTaskWorkGroupInvocations is the maximum total number of task shader invocations in a
single local workgroup. The product of the X, Y, and Z sizes, as specified by the LocalSize or
LocalSizeId execution mode in shader modules or by the object decorated by the WorkgroupSize
decoration, must be less than or equal to this limit.

• maxTaskWorkGroupSize[3] is the maximum size of a local task workgroup, per dimension. These
three values represent the maximum local workgroup size in the X, Y, and Z dimensions,
respectively. The x, y, and z sizes, as specified by the LocalSize or LocalSizeId execution mode or
by the object decorated by the WorkgroupSize decoration in shader modules, must be less than or
equal to the corresponding limit.

• maxTaskPayloadSize is the maximum total storage size, in bytes, available for variables declared
with the TaskPayloadWorkgroupEXT storage class in shader modules in the task shader stage.

• maxTaskSharedMemorySize is the maximum total storage size, in bytes, available for variables
declared with the Workgroup storage class in shader modules in the task shader stage.

• maxTaskPayloadAndSharedMemorySize is the maximum total storage size, in bytes, available for
variables that are declared with the TaskPayloadWorkgroupEXT or Workgroup storage class, in
shader modules in the task shader stage.

• maxMeshWorkGroupTotalCount is the maximum number of local output tasks a single task shader
workgroup can emit.

• maxMeshWorkGroupCount[3] is the maximum number of local output tasks a single task shader
workgroup can emit, per dimension. These three values represent the maximum number of
local output tasks for the X, Y, and Z dimensions, respectively. The workgroup count parameters
to the OpEmitMeshTasksEXT must be less than or equal to the corresponding limit. The product of
these dimensions must be less than or equal to maxMeshWorkGroupTotalCount.

• maxMeshWorkGroupInvocations is the maximum total number of mesh shader invocations in a
single local workgroup. The product of the X, Y, and Z sizes, as specified by the LocalSize or
LocalSizeId execution mode in shader modules or by the object decorated by the WorkgroupSize
decoration, must be less than or equal to this limit.

• maxMeshWorkGroupSize[3] is the maximum size of a local mesh workgroup, per dimension. These
three values represent the maximum local workgroup size in the X, Y, and Z dimensions,
respectively. The x, y, and z sizes, as specified by the LocalSize or LocalSizeId execution mode or
by the object decorated by the WorkgroupSize decoration in shader modules, must be less than or
equal to the corresponding limit.

• maxMeshSharedMemorySize is the maximum total storage size, in bytes, available for variables
declared with the Workgroup storage class in shader modules in the mesh shader stage.

• maxMeshPayloadAndSharedMemorySize is the maximum total storage size, in bytes, available for
variables that are declared with the TaskPayloadWorkgroupEXT or Workgroup storage class in
shader modules in the mesh shader stage.

3897

• maxMeshOutputMemorySize is the maximum total storage size, in bytes, available for output
variables in shader modules in the mesh shader stage, according to the formula in Mesh Shader
Output.

• maxMeshPayloadAndOutputMemorySize is the maximum total storage size, in bytes, available for
variables that are declared with the TaskPayloadWorkgroupEXT storage class, or output variables
in shader modules in the mesh shader stage, according to the formula in Mesh Shader Output.

• maxMeshOutputComponents is the maximum number of components of output variables which can
be output from the mesh shader stage.

• maxMeshOutputVertices is the maximum number of vertices which can be emitted by a single
mesh shader workgroup.

• maxMeshOutputPrimitives is the maximum number of primitives which can be emitted by a
single mesh shader workgroup.

• maxMeshOutputLayers is one greater than the maximum layer index that can be output from the
mesh shader stage.

• maxMeshMultiviewViewCount is one greater than the maximum view index that can be used by any
mesh shader.

• meshOutputPerVertexGranularity is the granularity of vertex allocation. The number of output
vertices allocated for the mesh shader stage is padded to a multiple of this number. The value
can be used to calculate the required storage size for output variables in shader modules in the
mesh shader stage, which must be less than or equal to maxMeshOutputMemorySize.

• meshOutputPerPrimitiveGranularity is the granularity of primitive allocation. The number of
output primitives allocated for the mesh shader stage is padded to a multiple of this number.
The value can be used to calculate the required storage size for output variables in shader
modules in the mesh shader stage, which must be less than or equal to maxMeshOutputMemorySize.

• maxPreferredTaskWorkGroupInvocations is the maximum number of task shader invocations in a
single workgroup that is preferred by the implementation for optimal performance. The value
is guaranteed to be a multiple of a supported subgroup size for the task shader stage.

• maxPreferredMeshWorkGroupInvocations is the maximum number of mesh shader invocations in a
single workgroup that is preferred by the implementation for optimal performance. The value
is guaranteed to be a multiple of a supported subgroup size for the mesh shader stage.

• prefersLocalInvocationVertexOutput specifies whether writes to the vertex output array in a
mesh shader yield best performance when the array index matches LocalInvocationIndex.

• prefersLocalInvocationPrimitiveOutput specifies whether writes to the primitive output array in
a mesh shader yield best performance when the array index matches LocalInvocationIndex.

• prefersCompactVertexOutput specifies whether output vertices should be compacted after custom
culling in the mesh shader for best performance, otherwise keeping the vertices at their original
location may be better.

• prefersCompactPrimitiveOutput specifies whether output primitives should be compacted after
custom culling in the mesh shader for best performance, otherwise the use of CullPrimitiveEXT
may be better.

If the VkPhysicalDeviceMeshShaderPropertiesEXT structure is included in the pNext chain of

3898

VkPhysicalDeviceProperties2, it is filled with the implementation-dependent limits.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMeshShaderPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_EXT

The VkPhysicalDeviceDescriptorIndexingProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceDescriptorIndexingProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t maxUpdateAfterBindDescriptorsInAllPools;
 VkBool32 shaderUniformBufferArrayNonUniformIndexingNative;
 VkBool32 shaderSampledImageArrayNonUniformIndexingNative;
 VkBool32 shaderStorageBufferArrayNonUniformIndexingNative;
 VkBool32 shaderStorageImageArrayNonUniformIndexingNative;
 VkBool32 shaderInputAttachmentArrayNonUniformIndexingNative;
 VkBool32 robustBufferAccessUpdateAfterBind;
 VkBool32 quadDivergentImplicitLod;
 uint32_t maxPerStageDescriptorUpdateAfterBindSamplers;
 uint32_t maxPerStageDescriptorUpdateAfterBindUniformBuffers;
 uint32_t maxPerStageDescriptorUpdateAfterBindStorageBuffers;
 uint32_t maxPerStageDescriptorUpdateAfterBindSampledImages;
 uint32_t maxPerStageDescriptorUpdateAfterBindStorageImages;
 uint32_t maxPerStageDescriptorUpdateAfterBindInputAttachments;
 uint32_t maxPerStageUpdateAfterBindResources;
 uint32_t maxDescriptorSetUpdateAfterBindSamplers;
 uint32_t maxDescriptorSetUpdateAfterBindUniformBuffers;
 uint32_t maxDescriptorSetUpdateAfterBindUniformBuffersDynamic;
 uint32_t maxDescriptorSetUpdateAfterBindStorageBuffers;
 uint32_t maxDescriptorSetUpdateAfterBindStorageBuffersDynamic;
 uint32_t maxDescriptorSetUpdateAfterBindSampledImages;
 uint32_t maxDescriptorSetUpdateAfterBindStorageImages;
 uint32_t maxDescriptorSetUpdateAfterBindInputAttachments;
} VkPhysicalDeviceDescriptorIndexingProperties;

or the equivalent

// Provided by VK_EXT_descriptor_indexing
typedef VkPhysicalDeviceDescriptorIndexingProperties
VkPhysicalDeviceDescriptorIndexingPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3899

• maxUpdateAfterBindDescriptorsInAllPools is the maximum number of descriptors (summed over
all descriptor types) that can be created across all pools that are created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit set. Pool creation may fail when this limit
is exceeded, or when the space this limit represents is unable to satisfy a pool creation due to
fragmentation.

• shaderUniformBufferArrayNonUniformIndexingNative is a boolean value indicating whether
uniform buffer descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of uniform
buffers may execute multiple times in order to access all the descriptors.

• shaderSampledImageArrayNonUniformIndexingNative is a boolean value indicating whether
sampler and image descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of samplers or
images may execute multiple times in order to access all the descriptors.

• shaderStorageBufferArrayNonUniformIndexingNative is a boolean value indicating whether
storage buffer descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of storage buffers
may execute multiple times in order to access all the descriptors.

• shaderStorageImageArrayNonUniformIndexingNative is a boolean value indicating whether storage
image descriptors natively support nonuniform indexing. If this is VK_FALSE, then a single
dynamic instance of an instruction that nonuniformly indexes an array of storage images may
execute multiple times in order to access all the descriptors.

• shaderInputAttachmentArrayNonUniformIndexingNative is a boolean value indicating whether
input attachment descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of input
attachments may execute multiple times in order to access all the descriptors.

• robustBufferAccessUpdateAfterBind is a boolean value indicating whether robustBufferAccess
can be enabled on a device simultaneously with
descriptorBindingUniformBufferUpdateAfterBind, descriptorBindingStorageBufferUpdateAfterBind,
descriptorBindingUniformTexelBufferUpdateAfterBind, and/or
descriptorBindingStorageTexelBufferUpdateAfterBind. If this is VK_FALSE, then either
robustBufferAccess must be disabled or all of these update-after-bind features must be disabled.

• quadDivergentImplicitLod is a boolean value indicating whether implicit LOD calculations for
image operations have well-defined results when the image and/or sampler objects used for the
instruction are not uniform within a quad. See Derivative Image Operations.

• maxPerStageDescriptorUpdateAfterBindSamplers is similar to maxPerStageDescriptorSamplers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindUniformBuffers is similar to
maxPerStageDescriptorUniformBuffers but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindStorageBuffers is similar to
maxPerStageDescriptorStorageBuffers but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

3900

• maxPerStageDescriptorUpdateAfterBindSampledImages is similar to
maxPerStageDescriptorSampledImages but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindStorageImages is similar to
maxPerStageDescriptorStorageImages but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindInputAttachments is similar to
maxPerStageDescriptorInputAttachments but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageUpdateAfterBindResources is similar to maxPerStageResources but counts descriptors
from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindSamplers is similar to maxDescriptorSetSamplers but counts
descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindUniformBuffers is similar to maxDescriptorSetUniformBuffers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindUniformBuffersDynamic is similar to
maxDescriptorSetUniformBuffersDynamic but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set. While an
application can allocate dynamic uniform buffer descriptors from a pool created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, bindings for these descriptors
must not be present in any descriptor set layout that includes bindings created with
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT.

• maxDescriptorSetUpdateAfterBindStorageBuffers is similar to maxDescriptorSetStorageBuffers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindStorageBuffersDynamic is similar to
maxDescriptorSetStorageBuffersDynamic but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set. While an
application can allocate dynamic storage buffer descriptors from a pool created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, bindings for these descriptors
must not be present in any descriptor set layout that includes bindings created with
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT.

• maxDescriptorSetUpdateAfterBindSampledImages is similar to maxDescriptorSetSampledImages but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindStorageImages is similar to maxDescriptorSetStorageImages but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindInputAttachments is similar to maxDescriptorSetInputAttachments
but counts descriptors from descriptor sets created with or without the

3901

VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

If the VkPhysicalDeviceDescriptorIndexingProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorIndexingProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES

The VkPhysicalDeviceInlineUniformBlockProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceInlineUniformBlockProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t maxInlineUniformBlockSize;
 uint32_t maxPerStageDescriptorInlineUniformBlocks;
 uint32_t maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks;
 uint32_t maxDescriptorSetInlineUniformBlocks;
 uint32_t maxDescriptorSetUpdateAfterBindInlineUniformBlocks;
} VkPhysicalDeviceInlineUniformBlockProperties;

or the equivalent

// Provided by VK_EXT_inline_uniform_block
typedef VkPhysicalDeviceInlineUniformBlockProperties
VkPhysicalDeviceInlineUniformBlockPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxInlineUniformBlockSize is the maximum size in bytes of an inline uniform block binding.

• maxPerStageDescriptorInlineUniformBlocks is the maximum number of inline uniform block
bindings that can be accessible to a single shader stage in a pipeline layout. Descriptor bindings
with a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit. Only
descriptor bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks is similar to
maxPerStageDescriptorInlineUniformBlocks but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetInlineUniformBlocks is the maximum number of inline uniform block bindings
that can be included in descriptor bindings in a pipeline layout across all pipeline shader stages
and descriptor set numbers. Descriptor bindings with a descriptor type of

3902

VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit. Only descriptor bindings in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxDescriptorSetUpdateAfterBindInlineUniformBlocks is similar to
maxDescriptorSetInlineUniformBlocks but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

If the VkPhysicalDeviceInlineUniformBlockProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceInlineUniformBlockProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES

The VkPhysicalDeviceConservativeRasterizationPropertiesEXT structure is defined as:

// Provided by VK_EXT_conservative_rasterization
typedef struct VkPhysicalDeviceConservativeRasterizationPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 float primitiveOverestimationSize;
 float maxExtraPrimitiveOverestimationSize;
 float extraPrimitiveOverestimationSizeGranularity;
 VkBool32 primitiveUnderestimation;
 VkBool32 conservativePointAndLineRasterization;
 VkBool32 degenerateTrianglesRasterized;
 VkBool32 degenerateLinesRasterized;
 VkBool32 fullyCoveredFragmentShaderInputVariable;
 VkBool32 conservativeRasterizationPostDepthCoverage;
} VkPhysicalDeviceConservativeRasterizationPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• primitiveOverestimationSize is the size in pixels the generating primitive is increased at each of
its edges during conservative rasterization overestimation mode. Even with a size of 0.0,
conservative rasterization overestimation rules still apply and if any part of the pixel rectangle
is covered by the generating primitive, fragments are generated for the entire pixel. However
implementations may make the pixel coverage area even more conservative by increasing the
size of the generating primitive.

• maxExtraPrimitiveOverestimationSize is the maximum size in pixels of extra overestimation the
implementation supports in the pipeline state. A value of 0.0 means the implementation does
not support any additional overestimation of the generating primitive during conservative
rasterization. A value above 0.0 allows the application to further increase the size of the

3903

generating primitive during conservative rasterization overestimation.

• extraPrimitiveOverestimationSizeGranularity is the granularity of extra overestimation that can
be specified in the pipeline state between 0.0 and maxExtraPrimitiveOverestimationSize
inclusive. A value of 0.0 means the implementation can use the smallest representable non-zero
value in the screen space pixel fixed-point grid.

• primitiveUnderestimation is VK_TRUE if the implementation supports the
VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT conservative rasterization mode in
addition to VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT. Otherwise the
implementation only supports VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT.

• conservativePointAndLineRasterization is VK_TRUE if the implementation supports conservative
rasterization of point and line primitives as well as triangle primitives. Otherwise the
implementation only supports triangle primitives.

• degenerateTrianglesRasterized is VK_FALSE if the implementation culls primitives generated from
triangles that become zero area after they are quantized to the fixed-point rasterization pixel
grid. degenerateTrianglesRasterized is VK_TRUE if these primitives are not culled and the
provoking vertex attributes and depth value are used for the fragments. The primitive area
calculation is done on the primitive generated from the clipped triangle if applicable. Zero area
primitives are backfacing and the application can enable backface culling if desired.

• degenerateLinesRasterized is VK_FALSE if the implementation culls lines that become zero length
after they are quantized to the fixed-point rasterization pixel grid. degenerateLinesRasterized is
VK_TRUE if zero length lines are not culled and the provoking vertex attributes and depth value
are used for the fragments.

• fullyCoveredFragmentShaderInputVariable is VK_TRUE if the implementation supports the SPIR-V
builtin fragment shader input variable FullyCoveredEXT specifying that conservative
rasterization is enabled and the fragment area is fully covered by the generating primitive.

• conservativeRasterizationPostDepthCoverage is VK_TRUE if the implementation supports
conservative rasterization with the PostDepthCoverage execution mode enabled. Otherwise the
PostDepthCoverage execution mode must not be used when conservative rasterization is
enabled.

If the VkPhysicalDeviceConservativeRasterizationPropertiesEXT structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceConservativeRasterizationPropertiesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT

The VkPhysicalDeviceFragmentDensityMapPropertiesEXT structure is defined as:

// Provided by VK_EXT_fragment_density_map
typedef struct VkPhysicalDeviceFragmentDensityMapPropertiesEXT {

3904

 VkStructureType sType;
 void* pNext;
 VkExtent2D minFragmentDensityTexelSize;
 VkExtent2D maxFragmentDensityTexelSize;
 VkBool32 fragmentDensityInvocations;
} VkPhysicalDeviceFragmentDensityMapPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minFragmentDensityTexelSize is the minimum fragment density texel size.

• maxFragmentDensityTexelSize is the maximum fragment density texel size.

• fragmentDensityInvocations specifies whether the implementation may invoke additional
fragment shader invocations for each covered sample.

If the VkPhysicalDeviceFragmentDensityMapPropertiesEXT structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentDensityMapPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_PROPERTIES_EXT

The VkPhysicalDeviceFragmentDensityMap2PropertiesEXT structure is defined as:

// Provided by VK_EXT_fragment_density_map2
typedef struct VkPhysicalDeviceFragmentDensityMap2PropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 subsampledLoads;
 VkBool32 subsampledCoarseReconstructionEarlyAccess;
 uint32_t maxSubsampledArrayLayers;
 uint32_t maxDescriptorSetSubsampledSamplers;
} VkPhysicalDeviceFragmentDensityMap2PropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• subsampledLoads specifies if performing image data read with load operations on subsampled
attachments will be resampled to the fragment density of the render pass

• subsampledCoarseReconstructionEarlyAccess specifies if performing image data read with
samplers created with flags containing
VK_SAMPLER_CREATE_SUBSAMPLED_COARSE_RECONSTRUCTION_BIT_EXT in fragment shader will trigger
additional reads during VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

• maxSubsampledArrayLayers is the maximum number of VkImageView array layers for usages

3905

supporting subsampled samplers

• maxDescriptorSetSubsampledSamplers is the maximum number of subsampled samplers that can
be included in a VkPipelineLayout

If the VkPhysicalDeviceFragmentDensityMap2PropertiesEXT structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentDensityMap2PropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_2_PROPERTIES_EXT

The VkPhysicalDeviceFragmentDensityMapOffsetPropertiesQCOM structure is defined as:

// Provided by VK_QCOM_fragment_density_map_offset
typedef struct VkPhysicalDeviceFragmentDensityMapOffsetPropertiesQCOM {
 VkStructureType sType;
 void* pNext;
 VkExtent2D fragmentDensityOffsetGranularity;
} VkPhysicalDeviceFragmentDensityMapOffsetPropertiesQCOM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• fragmentDensityOffsetGranularity is the granularity for fragment density offsets.

If the VkPhysicalDeviceFragmentDensityMapOffsetPropertiesQCOM structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentDensityMapOffsetPropertiesQCOM-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_OFFSET_PROPERTIES_QCOM

The VkPhysicalDeviceShaderCorePropertiesAMD structure is defined as:

// Provided by VK_AMD_shader_core_properties
typedef struct VkPhysicalDeviceShaderCorePropertiesAMD {
 VkStructureType sType;
 void* pNext;
 uint32_t shaderEngineCount;
 uint32_t shaderArraysPerEngineCount;
 uint32_t computeUnitsPerShaderArray;

3906

 uint32_t simdPerComputeUnit;
 uint32_t wavefrontsPerSimd;
 uint32_t wavefrontSize;
 uint32_t sgprsPerSimd;
 uint32_t minSgprAllocation;
 uint32_t maxSgprAllocation;
 uint32_t sgprAllocationGranularity;
 uint32_t vgprsPerSimd;
 uint32_t minVgprAllocation;
 uint32_t maxVgprAllocation;
 uint32_t vgprAllocationGranularity;
} VkPhysicalDeviceShaderCorePropertiesAMD;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderEngineCount is an unsigned integer value indicating the number of shader engines found
inside the shader core of the physical device.

• shaderArraysPerEngineCount is an unsigned integer value indicating the number of shader arrays
inside a shader engine. Each shader array has its own scan converter, set of compute units, and
a render back end (color and depth attachments). Shader arrays within a shader engine share
shader processor input (wave launcher) and shader export (export buffer) units. Currently, a
shader engine can have one or two shader arrays.

• computeUnitsPerShaderArray is an unsigned integer value indicating the physical number of
compute units within a shader array. The active number of compute units in a shader array
may be lower. A compute unit houses a set of SIMDs along with a sequencer module and a local
data store.

• simdPerComputeUnit is an unsigned integer value indicating the number of SIMDs inside a
compute unit. Each SIMD processes a single instruction at a time.

• wavefrontSize is an unsigned integer value indicating the maximum size of a subgroup.

• sgprsPerSimd is an unsigned integer value indicating the number of physical Scalar General-
Purpose Registers (SGPRs) per SIMD.

• minSgprAllocation is an unsigned integer value indicating the minimum number of SGPRs
allocated for a wave.

• maxSgprAllocation is an unsigned integer value indicating the maximum number of SGPRs
allocated for a wave.

• sgprAllocationGranularity is an unsigned integer value indicating the granularity of SGPR
allocation for a wave.

• vgprsPerSimd is an unsigned integer value indicating the number of physical Vector General-
Purpose Registers (VGPRs) per SIMD.

• minVgprAllocation is an unsigned integer value indicating the minimum number of VGPRs
allocated for a wave.

• maxVgprAllocation is an unsigned integer value indicating the maximum number of VGPRs
allocated for a wave.

3907

• vgprAllocationGranularity is an unsigned integer value indicating the granularity of VGPR
allocation for a wave.

If the VkPhysicalDeviceShaderCorePropertiesAMD structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderCorePropertiesAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD

The VkPhysicalDeviceShaderCoreProperties2AMD structure is defined as:

// Provided by VK_AMD_shader_core_properties2
typedef struct VkPhysicalDeviceShaderCoreProperties2AMD {
 VkStructureType sType;
 void* pNext;
 VkShaderCorePropertiesFlagsAMD shaderCoreFeatures;
 uint32_t activeComputeUnitCount;
} VkPhysicalDeviceShaderCoreProperties2AMD;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderCoreFeatures is a bitmask of VkShaderCorePropertiesFlagBitsAMD indicating the set of
features supported by the shader core.

• activeComputeUnitCount is an unsigned integer value indicating the number of compute units
that have been enabled.

If the VkPhysicalDeviceShaderCoreProperties2AMD structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderCoreProperties2AMD-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD

Bits for this type may be defined by future extensions, or new versions of the
VK_AMD_shader_core_properties2 extension. Possible values of the flags member of
VkShaderCorePropertiesFlagsAMD are:

// Provided by VK_AMD_shader_core_properties2
typedef enum VkShaderCorePropertiesFlagBitsAMD {

3908

} VkShaderCorePropertiesFlagBitsAMD;

// Provided by VK_AMD_shader_core_properties2
typedef VkFlags VkShaderCorePropertiesFlagsAMD;

VkShaderCorePropertiesFlagsAMD is a bitmask type for providing zero or more
VkShaderCorePropertiesFlagBitsAMD.

The VkPhysicalDeviceDepthStencilResolveProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceDepthStencilResolveProperties {
 VkStructureType sType;
 void* pNext;
 VkResolveModeFlags supportedDepthResolveModes;
 VkResolveModeFlags supportedStencilResolveModes;
 VkBool32 independentResolveNone;
 VkBool32 independentResolve;
} VkPhysicalDeviceDepthStencilResolveProperties;

or the equivalent

// Provided by VK_KHR_depth_stencil_resolve
typedef VkPhysicalDeviceDepthStencilResolveProperties
VkPhysicalDeviceDepthStencilResolvePropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• supportedDepthResolveModes is a bitmask of VkResolveModeFlagBits indicating the set of
supported depth resolve modes. VK_RESOLVE_MODE_SAMPLE_ZERO_BIT must be included in the set
but implementations may support additional modes.

• supportedStencilResolveModes is a bitmask of VkResolveModeFlagBits indicating the set of
supported stencil resolve modes. VK_RESOLVE_MODE_SAMPLE_ZERO_BIT must be included in the set
but implementations may support additional modes. VK_RESOLVE_MODE_AVERAGE_BIT must not be
included in the set.

• independentResolveNone is VK_TRUE if the implementation supports setting the depth and stencil
resolve modes to different values when one of those modes is VK_RESOLVE_MODE_NONE. Otherwise
the implementation only supports setting both modes to the same value.

• independentResolve is VK_TRUE if the implementation supports all combinations of the supported
depth and stencil resolve modes, including setting either depth or stencil resolve mode to
VK_RESOLVE_MODE_NONE. An implementation that supports independentResolve must also support
independentResolveNone.

3909

If the VkPhysicalDeviceDepthStencilResolveProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDepthStencilResolveProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES

The VkPhysicalDevicePerformanceQueryPropertiesKHR structure is defined as:

// Provided by VK_KHR_performance_query
typedef struct VkPhysicalDevicePerformanceQueryPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 allowCommandBufferQueryCopies;
} VkPhysicalDevicePerformanceQueryPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• allowCommandBufferQueryCopies is VK_TRUE if the performance query pools are allowed to be used
with vkCmdCopyQueryPoolResults.

If the VkPhysicalDevicePerformanceQueryPropertiesKHR structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePerformanceQueryPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR

The VkPhysicalDeviceShadingRateImagePropertiesNV structure is defined as:

// Provided by VK_NV_shading_rate_image
typedef struct VkPhysicalDeviceShadingRateImagePropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkExtent2D shadingRateTexelSize;
 uint32_t shadingRatePaletteSize;
 uint32_t shadingRateMaxCoarseSamples;
} VkPhysicalDeviceShadingRateImagePropertiesNV;

• sType is a VkStructureType value identifying this structure.

3910

• pNext is NULL or a pointer to a structure extending this structure.

• shadingRateTexelSize indicates the width and height of the portion of the framebuffer
corresponding to each texel in the shading rate image.

• shadingRatePaletteSize indicates the maximum number of palette entries supported for the
shading rate image.

• shadingRateMaxCoarseSamples specifies the maximum number of coverage samples supported in
a single fragment. If the product of the fragment size derived from the base shading rate and
the number of coverage samples per pixel exceeds this limit, the final shading rate will be
adjusted so that its product does not exceed the limit.

If the VkPhysicalDeviceShadingRateImagePropertiesNV structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These properties are related to the shading rate image feature.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShadingRateImagePropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_PROPERTIES_NV

The VkPhysicalDeviceMemoryDecompressionPropertiesNV structure is defined as:

// Provided by VK_NV_memory_decompression
typedef struct VkPhysicalDeviceMemoryDecompressionPropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkMemoryDecompressionMethodFlagsNV decompressionMethods;
 uint64_t maxDecompressionIndirectCount;
} VkPhysicalDeviceMemoryDecompressionPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• decompressionMethods is a bitmask of VkMemoryDecompressionMethodFlagBitsNV specifying
memory decompression methods supported by the implementation.

• maxDecompressionIndirectCount specifies the maximum supported count value in the countBuffer
of vkCmdDecompressMemoryIndirectCountNV

If the VkPhysicalDeviceMemoryDecompressionPropertiesNV structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

3911

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMemoryDecompressionPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_DECOMPRESSION_PROPERTIES_NV

The VkPhysicalDeviceTransformFeedbackPropertiesEXT structure is defined as:

// Provided by VK_EXT_transform_feedback
typedef struct VkPhysicalDeviceTransformFeedbackPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t maxTransformFeedbackStreams;
 uint32_t maxTransformFeedbackBuffers;
 VkDeviceSize maxTransformFeedbackBufferSize;
 uint32_t maxTransformFeedbackStreamDataSize;
 uint32_t maxTransformFeedbackBufferDataSize;
 uint32_t maxTransformFeedbackBufferDataStride;
 VkBool32 transformFeedbackQueries;
 VkBool32 transformFeedbackStreamsLinesTriangles;
 VkBool32 transformFeedbackRasterizationStreamSelect;
 VkBool32 transformFeedbackDraw;
} VkPhysicalDeviceTransformFeedbackPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxTransformFeedbackStreams is the maximum number of vertex streams that can be output from
geometry shaders declared with the GeometryStreams capability. If the implementation does not
support VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams then
maxTransformFeedbackStreams must be set to 1.

• maxTransformFeedbackBuffers is the maximum number of transform feedback buffers that can be
bound for capturing shader outputs from the last pre-rasterization shader stage.

• maxTransformFeedbackBufferSize is the maximum size that can be specified when binding a
buffer for transform feedback in vkCmdBindTransformFeedbackBuffersEXT.

• maxTransformFeedbackStreamDataSize is the maximum amount of data in bytes for each vertex
that captured to one or more transform feedback buffers associated with a specific vertex
stream.

• maxTransformFeedbackBufferDataSize is the maximum amount of data in bytes for each vertex
that can be captured to a specific transform feedback buffer.

• maxTransformFeedbackBufferDataStride is the maximum stride between each capture of vertex
data to the buffer.

• transformFeedbackQueries is VK_TRUE if the implementation supports the
VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT query type. transformFeedbackQueries is VK_FALSE if
queries of this type cannot be created.

3912

• transformFeedbackStreamsLinesTriangles is VK_TRUE if the implementation supports the geometry
shader OpExecutionMode of OutputLineStrip and OutputTriangleStrip in addition to OutputPoints
when more than one vertex stream is output. If transformFeedbackStreamsLinesTriangles is
VK_FALSE the implementation only supports an OpExecutionMode of OutputPoints when more than
one vertex stream is output from the geometry shader.

• transformFeedbackRasterizationStreamSelect is VK_TRUE if the implementation supports the
GeometryStreams SPIR-V capability and the application can use
VkPipelineRasterizationStateStreamCreateInfoEXT to modify which vertex stream output is
used for rasterization. Otherwise vertex stream 0 must always be used for rasterization.

• transformFeedbackDraw is VK_TRUE if the implementation supports the
vkCmdDrawIndirectByteCountEXT function otherwise the function must not be called.

If the VkPhysicalDeviceTransformFeedbackPropertiesEXT structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTransformFeedbackPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT

The VkPhysicalDeviceCopyMemoryIndirectPropertiesNV structure is defined as:

// Provided by VK_NV_copy_memory_indirect
typedef struct VkPhysicalDeviceCopyMemoryIndirectPropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkQueueFlags supportedQueues;
} VkPhysicalDeviceCopyMemoryIndirectPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• supportedQueues is a bitmask of VkQueueFlagBits indicating the queues on which indirect copy
commands are supported.

If the indirectCopy feature is supported, supportedQueues must return at least one supported queue.

If the VkPhysicalDeviceCopyMemoryIndirectPropertiesNV structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCopyMemoryIndirectPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COPY_MEMORY_INDIRECT_PROPERTIES_NV

3913

The VkPhysicalDeviceRayTracingPropertiesNV structure is defined as:

// Provided by VK_NV_ray_tracing
typedef struct VkPhysicalDeviceRayTracingPropertiesNV {
 VkStructureType sType;
 void* pNext;
 uint32_t shaderGroupHandleSize;
 uint32_t maxRecursionDepth;
 uint32_t maxShaderGroupStride;
 uint32_t shaderGroupBaseAlignment;
 uint64_t maxGeometryCount;
 uint64_t maxInstanceCount;
 uint64_t maxTriangleCount;
 uint32_t maxDescriptorSetAccelerationStructures;
} VkPhysicalDeviceRayTracingPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderGroupHandleSize is the size in bytes of the shader header.

• maxRecursionDepth is the maximum number of levels of recursion allowed in a trace command.

• maxShaderGroupStride is the maximum stride in bytes allowed between shader groups in the
shader binding table.

• shaderGroupBaseAlignment is the required alignment in bytes for the base of the shader binding
table.

• maxGeometryCount is the maximum number of geometries in the bottom level acceleration
structure.

• maxInstanceCount is the maximum number of instances in the top level acceleration structure.

• maxTriangleCount is the maximum number of triangles in all geometries in the bottom level
acceleration structure.

• maxDescriptorSetAccelerationStructures is the maximum number of acceleration structure
descriptors that are allowed in a descriptor set.

Due to the fact that the geometry, instance, and triangle counts are specified at acceleration
structure creation as 32-bit values, maxGeometryCount, maxInstanceCount, and maxTriangleCount must
not exceed 232-1.

If the VkPhysicalDeviceRayTracingPropertiesNV structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Limits specified by this structure must match those specified with the same name in
VkPhysicalDeviceAccelerationStructurePropertiesKHR and
VkPhysicalDeviceRayTracingPipelinePropertiesKHR.

3914

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PROPERTIES_NV

The VkPhysicalDeviceAccelerationStructurePropertiesKHR structure is defined as:

// Provided by VK_KHR_acceleration_structure
typedef struct VkPhysicalDeviceAccelerationStructurePropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint64_t maxGeometryCount;
 uint64_t maxInstanceCount;
 uint64_t maxPrimitiveCount;
 uint32_t maxPerStageDescriptorAccelerationStructures;
 uint32_t maxPerStageDescriptorUpdateAfterBindAccelerationStructures;
 uint32_t maxDescriptorSetAccelerationStructures;
 uint32_t maxDescriptorSetUpdateAfterBindAccelerationStructures;
 uint32_t minAccelerationStructureScratchOffsetAlignment;
} VkPhysicalDeviceAccelerationStructurePropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxGeometryCount is the maximum number of geometries in the bottom level acceleration
structure.

• maxInstanceCount is the maximum number of instances in the top level acceleration structure.

• maxPrimitiveCount is the maximum number of triangles or AABBs in all geometries in the
bottom level acceleration structure.

• maxPerStageDescriptorAccelerationStructures is the maximum number of acceleration structure
bindings that can be accessible to a single shader stage in a pipeline layout. Descriptor bindings
with a descriptor type of VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR count against this
limit. Only descriptor bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxPerStageDescriptorUpdateAfterBindAccelerationStructures is similar to
maxPerStageDescriptorAccelerationStructures but counts descriptor bindings from descriptor
sets created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT
bit set.

• maxDescriptorSetAccelerationStructures is the maximum number of acceleration structure
descriptors that can be included in descriptor bindings in a pipeline layout across all pipeline
shader stages and descriptor set numbers. Descriptor bindings with a descriptor type of
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR count against this limit. Only descriptor
bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

3915

• maxDescriptorSetUpdateAfterBindAccelerationStructures is similar to
maxDescriptorSetAccelerationStructures but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• minAccelerationStructureScratchOffsetAlignment is the minimum required alignment, in bytes,
for scratch data passed in to an acceleration structure build command. The value must be a
power of two.

Due to the fact that the geometry, instance, and primitive counts are specified at acceleration
structure creation as 32-bit values, maxGeometryCount, maxInstanceCount, and maxPrimitiveCount must
not exceed 232-1.

If the VkPhysicalDeviceAccelerationStructurePropertiesKHR structure is included in the pNext chain
of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled
in with each corresponding implementation-dependent property.

Limits specified by this structure must match those specified with the same name in
VkPhysicalDeviceRayTracingPropertiesNV.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceAccelerationStructurePropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR

The VkPhysicalDeviceRayTracingPipelinePropertiesKHR structure is defined as:

// Provided by VK_KHR_ray_tracing_pipeline
typedef struct VkPhysicalDeviceRayTracingPipelinePropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t shaderGroupHandleSize;
 uint32_t maxRayRecursionDepth;
 uint32_t maxShaderGroupStride;
 uint32_t shaderGroupBaseAlignment;
 uint32_t shaderGroupHandleCaptureReplaySize;
 uint32_t maxRayDispatchInvocationCount;
 uint32_t shaderGroupHandleAlignment;
 uint32_t maxRayHitAttributeSize;
} VkPhysicalDeviceRayTracingPipelinePropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderGroupHandleSize is the size in bytes of the shader header.

• maxRayRecursionDepth is the maximum number of levels of ray recursion allowed in a trace
command.

• maxShaderGroupStride is the maximum stride in bytes allowed between shader groups in the

3916

shader binding table.

• shaderGroupBaseAlignment is the required alignment in bytes for the base of the shader binding
table.

• shaderGroupHandleCaptureReplaySize is the number of bytes for the information required to do
capture and replay for shader group handles.

• maxRayDispatchInvocationCount is the maximum number of ray generation shader invocations
which may be produced by a single vkCmdTraceRaysIndirectKHR or vkCmdTraceRaysKHR
command.

• shaderGroupHandleAlignment is the required alignment in bytes for each shader binding table
entry. The value must be a power of two.

• maxRayHitAttributeSize is the maximum size in bytes for a ray attribute structure

If the VkPhysicalDeviceRayTracingPipelinePropertiesKHR structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Limits specified by this structure must match those specified with the same name in
VkPhysicalDeviceRayTracingPropertiesNV.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingPipelinePropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR

The VkPhysicalDeviceCooperativeMatrixPropertiesNV structure is defined as:

// Provided by VK_NV_cooperative_matrix
typedef struct VkPhysicalDeviceCooperativeMatrixPropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkShaderStageFlags cooperativeMatrixSupportedStages;
} VkPhysicalDeviceCooperativeMatrixPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• cooperativeMatrixSupportedStages is a bitfield of VkShaderStageFlagBits describing the shader
stages that cooperative matrix instructions are supported in. cooperativeMatrixSupportedStages
will have the VK_SHADER_STAGE_COMPUTE_BIT bit set if any of the physical device’s queues support
VK_QUEUE_COMPUTE_BIT.

If the VkPhysicalDeviceCooperativeMatrixPropertiesNV structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

3917

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCooperativeMatrixPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_PROPERTIES_NV

The VkPhysicalDeviceCooperativeMatrixPropertiesKHR structure is defined as:

// Provided by VK_KHR_cooperative_matrix
typedef struct VkPhysicalDeviceCooperativeMatrixPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkShaderStageFlags cooperativeMatrixSupportedStages;
} VkPhysicalDeviceCooperativeMatrixPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• cooperativeMatrixSupportedStages is a bitfield of VkShaderStageFlagBits describing the shader
stages that cooperative matrix instructions are supported in. cooperativeMatrixSupportedStages
will have the VK_SHADER_STAGE_COMPUTE_BIT bit set if any of the physical device’s queues support
VK_QUEUE_COMPUTE_BIT.

cooperativeMatrixSupportedStages must not have any bits other than VK_SHADER_STAGE_COMPUTE_BIT
set.

If the VkPhysicalDeviceCooperativeMatrixPropertiesKHR structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCooperativeMatrixPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_PROPERTIES_KHR

The VkPhysicalDeviceShaderSMBuiltinsPropertiesNV structure is defined as:

// Provided by VK_NV_shader_sm_builtins
typedef struct VkPhysicalDeviceShaderSMBuiltinsPropertiesNV {
 VkStructureType sType;
 void* pNext;
 uint32_t shaderSMCount;
 uint32_t shaderWarpsPerSM;
} VkPhysicalDeviceShaderSMBuiltinsPropertiesNV;

• sType is a VkStructureType value identifying this structure.

3918

• pNext is NULL or a pointer to a structure extending this structure.

• shaderSMCount is the number of SMs on the device.

• shaderWarpsPerSM is the maximum number of simultaneously executing warps on an SM.

If the VkPhysicalDeviceShaderSMBuiltinsPropertiesNV structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderSMBuiltinsPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SM_BUILTINS_PROPERTIES_NV

The VkPhysicalDeviceTexelBufferAlignmentProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceTexelBufferAlignmentProperties {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize storageTexelBufferOffsetAlignmentBytes;
 VkBool32 storageTexelBufferOffsetSingleTexelAlignment;
 VkDeviceSize uniformTexelBufferOffsetAlignmentBytes;
 VkBool32 uniformTexelBufferOffsetSingleTexelAlignment;
} VkPhysicalDeviceTexelBufferAlignmentProperties;

or the equivalent

// Provided by VK_EXT_texel_buffer_alignment
typedef VkPhysicalDeviceTexelBufferAlignmentProperties
VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageTexelBufferOffsetAlignmentBytes is a byte alignment that is sufficient for a storage texel
buffer of any format. The value must be a power of two.

• storageTexelBufferOffsetSingleTexelAlignment indicates whether single texel alignment is
sufficient for a storage texel buffer of any format.

• uniformTexelBufferOffsetAlignmentBytes is a byte alignment that is sufficient for a uniform texel
buffer of any format. The value must be a power of two.

• uniformTexelBufferOffsetSingleTexelAlignment indicates whether single texel alignment is
sufficient for a uniform texel buffer of any format.

If the VkPhysicalDeviceTexelBufferAlignmentProperties structure is included in the pNext chain of

3919

the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

If the single texel alignment property is VK_FALSE, then the buffer view’s offset must be aligned to
the corresponding byte alignment value. If the single texel alignment property is VK_TRUE, then the
buffer view’s offset must be aligned to the lesser of the corresponding byte alignment value or the
size of a single texel, based on VkBufferViewCreateInfo::format. If the size of a single texel is a
multiple of three bytes, then the size of a single component of the format is used instead.

These limits must not advertise a larger alignment than the required maximum minimum value of
VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment, for any format that supports use as a texel
buffer.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTexelBufferAlignmentProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES

The VkPhysicalDeviceTimelineSemaphoreProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceTimelineSemaphoreProperties {
 VkStructureType sType;
 void* pNext;
 uint64_t maxTimelineSemaphoreValueDifference;
} VkPhysicalDeviceTimelineSemaphoreProperties;

or the equivalent

// Provided by VK_KHR_timeline_semaphore
typedef VkPhysicalDeviceTimelineSemaphoreProperties
VkPhysicalDeviceTimelineSemaphorePropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxTimelineSemaphoreValueDifference indicates the maximum difference allowed by the
implementation between the current value of a timeline semaphore and any pending signal or
wait operations.

If the VkPhysicalDeviceTimelineSemaphoreProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

3920

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTimelineSemaphoreProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES

The VkPhysicalDeviceLineRasterizationPropertiesKHR structure is defined as:

// Provided by VK_KHR_line_rasterization
typedef struct VkPhysicalDeviceLineRasterizationPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t lineSubPixelPrecisionBits;
} VkPhysicalDeviceLineRasterizationPropertiesKHR;

or the equivalent

// Provided by VK_EXT_line_rasterization
typedef VkPhysicalDeviceLineRasterizationPropertiesKHR
VkPhysicalDeviceLineRasterizationPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• lineSubPixelPrecisionBits is the number of bits of subpixel precision in framebuffer
coordinates xf and yf when rasterizing line segments.

If the VkPhysicalDeviceLineRasterizationPropertiesKHR structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceLineRasterizationPropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_KHR

The VkPhysicalDeviceRobustness2PropertiesEXT structure is defined as:

// Provided by VK_EXT_robustness2
typedef struct VkPhysicalDeviceRobustness2PropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize robustStorageBufferAccessSizeAlignment;
 VkDeviceSize robustUniformBufferAccessSizeAlignment;
} VkPhysicalDeviceRobustness2PropertiesEXT;

3921

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• robustStorageBufferAccessSizeAlignment is the number of bytes that the range of a storage
buffer descriptor is rounded up to when used for bounds-checking when the
robustBufferAccess2 feature is enabled. This value must be either 1 or 4.

• robustUniformBufferAccessSizeAlignment is the number of bytes that the range of a uniform
buffer descriptor is rounded up to when used for bounds-checking when the
robustBufferAccess2 feature is enabled. This value must be a power of two in the range [1, 256].

If the VkPhysicalDeviceRobustness2PropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRobustness2PropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT

The VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV structure is defined as:

// Provided by VK_NV_device_generated_commands
typedef struct VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV {
 VkStructureType sType;
 void* pNext;
 uint32_t maxGraphicsShaderGroupCount;
 uint32_t maxIndirectSequenceCount;
 uint32_t maxIndirectCommandsTokenCount;
 uint32_t maxIndirectCommandsStreamCount;
 uint32_t maxIndirectCommandsTokenOffset;
 uint32_t maxIndirectCommandsStreamStride;
 uint32_t minSequencesCountBufferOffsetAlignment;
 uint32_t minSequencesIndexBufferOffsetAlignment;
 uint32_t minIndirectCommandsBufferOffsetAlignment;
} VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxGraphicsShaderGroupCount is the maximum number of shader groups in
VkGraphicsPipelineShaderGroupsCreateInfoNV.

• maxIndirectSequenceCount is the maximum number of sequences in
VkGeneratedCommandsInfoNV and in VkGeneratedCommandsMemoryRequirementsInfoNV.

• maxIndirectCommandsTokenCount is the maximum number of tokens in
VkIndirectCommandsLayoutCreateInfoNV.

• maxIndirectCommandsStreamCount is the maximum number of streams in

3922

VkIndirectCommandsLayoutCreateInfoNV.

• maxIndirectCommandsTokenOffset is the maximum offset in VkIndirectCommandsLayoutTokenNV.

• maxIndirectCommandsStreamStride is the maximum stream stride in
VkIndirectCommandsLayoutCreateInfoNV.

• minSequencesCountBufferOffsetAlignment is the minimum alignment for memory addresses
which can be used in VkGeneratedCommandsInfoNV.

• minSequencesIndexBufferOffsetAlignment is the minimum alignment for memory addresses
which can be used in VkGeneratedCommandsInfoNV.

• minIndirectCommandsBufferOffsetAlignment is the minimum alignment for memory addresses
used in VkIndirectCommandsStreamNV, and as preprocess buffer in
VkGeneratedCommandsInfoNV.

If the VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV structure is included in the pNext chain
of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled
in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_PROPERTIES_NV

The VkPhysicalDevicePortabilitySubsetPropertiesKHR structure is defined as:

// Provided by VK_KHR_portability_subset
typedef struct VkPhysicalDevicePortabilitySubsetPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 uint32_t minVertexInputBindingStrideAlignment;
} VkPhysicalDevicePortabilitySubsetPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minVertexInputBindingStrideAlignment indicates the minimum alignment for vertex input
strides. VkVertexInputBindingDescription::stride must be a multiple of, and at least as large as,
this value. The value must be a power of two.

If the VkPhysicalDevicePortabilitySubsetPropertiesKHR structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePortabilitySubsetPropertiesKHR-sType-sType

3923

sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PORTABILITY_SUBSET_PROPERTIES_KHR

The VkPhysicalDeviceFragmentShadingRatePropertiesKHR structure is defined as:

// Provided by VK_KHR_fragment_shading_rate
typedef struct VkPhysicalDeviceFragmentShadingRatePropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkExtent2D minFragmentShadingRateAttachmentTexelSize;
 VkExtent2D maxFragmentShadingRateAttachmentTexelSize;
 uint32_t maxFragmentShadingRateAttachmentTexelSizeAspectRatio;
 VkBool32 primitiveFragmentShadingRateWithMultipleViewports;
 VkBool32 layeredShadingRateAttachments;
 VkBool32 fragmentShadingRateNonTrivialCombinerOps;
 VkExtent2D maxFragmentSize;
 uint32_t maxFragmentSizeAspectRatio;
 uint32_t maxFragmentShadingRateCoverageSamples;
 VkSampleCountFlagBits maxFragmentShadingRateRasterizationSamples;
 VkBool32 fragmentShadingRateWithShaderDepthStencilWrites;
 VkBool32 fragmentShadingRateWithSampleMask;
 VkBool32 fragmentShadingRateWithShaderSampleMask;
 VkBool32 fragmentShadingRateWithConservativeRasterization;
 VkBool32 fragmentShadingRateWithFragmentShaderInterlock;
 VkBool32 fragmentShadingRateWithCustomSampleLocations;
 VkBool32 fragmentShadingRateStrictMultiplyCombiner;
} VkPhysicalDeviceFragmentShadingRatePropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minFragmentShadingRateAttachmentTexelSize indicates minimum supported width and height of
the portion of the framebuffer corresponding to each texel in a fragment shading rate
attachment. Each value must be less than or equal to the values in
maxFragmentShadingRateAttachmentTexelSize. Each value must be a power-of-two. It must be (0,0)
if the attachmentFragmentShadingRate feature is not supported.

• maxFragmentShadingRateAttachmentTexelSize indicates maximum supported width and height of
the portion of the framebuffer corresponding to each texel in a fragment shading rate
attachment. Each value must be greater than or equal to the values in
minFragmentShadingRateAttachmentTexelSize. Each value must be a power-of-two. It must be (0,0)
if the attachmentFragmentShadingRate feature is not supported.

• maxFragmentShadingRateAttachmentTexelSizeAspectRatio indicates the maximum ratio between
the width and height of the portion of the framebuffer corresponding to each texel in a
fragment shading rate attachment. maxFragmentShadingRateAttachmentTexelSizeAspectRatio must
be a power-of-two value, and must be less than or equal to
max(maxFragmentShadingRateAttachmentTexelSize.width /
minFragmentShadingRateAttachmentTexelSize.height,
maxFragmentShadingRateAttachmentTexelSize.height /

3924

minFragmentShadingRateAttachmentTexelSize.width). It must be 0 if the
attachmentFragmentShadingRate feature is not supported.

• primitiveFragmentShadingRateWithMultipleViewports specifies whether the primitive fragment
shading rate can be used when multiple viewports are used. If this value is VK_FALSE, only a
single viewport must be used, and applications must not write to the ViewportMaskNV or
ViewportIndex built-in when setting PrimitiveShadingRateKHR. It must be VK_FALSE if the
shaderOutputViewportIndex feature, the VK_EXT_shader_viewport_index_layer extension, or the
geometryShader feature is not supported, or if the primitiveFragmentShadingRate feature is not
supported.

• layeredShadingRateAttachments specifies whether a shading rate attachment image view can be
created with multiple layers. If this value is VK_FALSE, when creating an image view with a usage
that includes VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR, layerCount must be 1. It
must be VK_FALSE if the multiview feature, the shaderOutputViewportIndex feature, the
VK_EXT_shader_viewport_index_layer extension, or the geometryShader feature is not supported, or
if the attachmentFragmentShadingRate feature is not supported.

• fragmentShadingRateNonTrivialCombinerOps specifies whether
VkFragmentShadingRateCombinerOpKHR enums other than
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR or
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR can be used. It must be VK_FALSE unless
either the primitiveFragmentShadingRate or attachmentFragmentShadingRate feature is supported.

• maxFragmentSize indicates the maximum supported width and height of a fragment. Its width and
height members must both be power-of-two values. This limit is purely informational, and is
not validated.

• maxFragmentSizeAspectRatio indicates the maximum ratio between the width and height of a
fragment. maxFragmentSizeAspectRatio must be a power-of-two value, and must be less than or
equal to the maximum of the width and height members of maxFragmentSize. This limit is purely
informational, and is not validated.

• maxFragmentShadingRateCoverageSamples specifies the maximum number of coverage samples
supported in a single fragment. maxFragmentShadingRateCoverageSamples must be less than or
equal to the product of the width and height members of maxFragmentSize, and the sample count
reported by maxFragmentShadingRateRasterizationSamples.
maxFragmentShadingRateCoverageSamples must be less than or equal to maxSampleMaskWords × 32 if
fragmentShadingRateWithShaderSampleMask is supported. This limit is purely informational, and is
not validated.

• maxFragmentShadingRateRasterizationSamples is a VkSampleCountFlagBits value specifying the
maximum sample rate supported when a fragment covers multiple pixels. This limit is purely
informational, and is not validated.

• fragmentShadingRateWithShaderDepthStencilWrites specifies whether the implementation
supports writing FragDepth or FragStencilRefEXT from a fragment shader for multi-pixel
fragments. If this value is VK_FALSE, writing to those built-ins will clamp the fragment shading
rate to (1,1).

• fragmentShadingRateWithSampleMask specifies whether the implementation supports setting valid
bits of VkPipelineMultisampleStateCreateInfo::pSampleMask to 0 for multi-pixel fragments. If this
value is VK_FALSE, zeroing valid bits in the sample mask will clamp the fragment shading rate to

3925

(1,1).

• fragmentShadingRateWithShaderSampleMask specifies whether the implementation supports
reading or writing SampleMask for multi-pixel fragments. If this value is VK_FALSE, using that built-
in will clamp the fragment shading rate to (1,1).

• fragmentShadingRateWithConservativeRasterization specifies whether conservative rasterization
is supported for multi-pixel fragments. It must be VK_FALSE if VK_EXT_conservative_rasterization
is not supported. If this value is VK_FALSE, using conservative rasterization will clamp the
fragment shading rate to (1,1).

• fragmentShadingRateWithFragmentShaderInterlock specifies whether fragment shader interlock is
supported for multi-pixel fragments. It must be VK_FALSE if VK_EXT_fragment_shader_interlock is
not supported. If this value is VK_FALSE, using fragment shader interlock will clamp the fragment
shading rate to (1,1).

• fragmentShadingRateWithCustomSampleLocations specifies whether custom sample locations are
supported for multi-pixel fragments. It must be VK_FALSE if VK_EXT_sample_locations is not
supported. If this value is VK_FALSE, using custom sample locations will clamp the fragment
shading rate to (1,1).

• fragmentShadingRateStrictMultiplyCombiner specifies whether
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MUL_KHR accurately performs a multiplication or not.
Implementations where this value is VK_FALSE will instead combine rates with an addition. If
fragmentShadingRateNonTrivialCombinerOps is VK_FALSE, implementations must report this as
VK_FALSE. If fragmentShadingRateNonTrivialCombinerOps is VK_TRUE, implementations should
report this as VK_TRUE.

Note

Multiplication of the combiner rates using the fragment width/height in linear
space is equivalent to an addition of those values in log2 space. Some
implementations inadvertently implemented an addition in linear space due to
unclear requirements originating outside of this specification. This resulted in
fragmentShadingRateStrictMultiplyCombiner being added. Fortunately, this only
affects situations where a rate of 1 in either dimension is combined with another
rate of 1. All other combinations result in the exact same result as if multiplication
was performed in linear space due to the clamping logic, and the fact that both the
sum and product of 2 and 2 are equal. In many cases, this limit will not affect the
correct operation of applications.

If the VkPhysicalDeviceFragmentShadingRatePropertiesKHR structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

These properties are related to fragment shading rates.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentShadingRatePropertiesKHR-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR

3926

The VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV structure is defined as:

// Provided by VK_NV_fragment_shading_rate_enums
typedef struct VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkSampleCountFlagBits maxFragmentShadingRateInvocationCount;
} VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxFragmentShadingRateInvocationCount is a VkSampleCountFlagBits value indicating the
maximum number of fragment shader invocations per fragment supported in pipeline,
primitive, and attachment fragment shading rates.

If the VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

These properties are related to fragment shading rates.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_ENUMS_PROPERTIES_NV

• VUID-VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV-
maxFragmentShadingRateInvocationCount-parameter
maxFragmentShadingRateInvocationCount must be a valid VkSampleCountFlagBits value

The VkPhysicalDeviceCustomBorderColorPropertiesEXT structure is defined as:

// Provided by VK_EXT_custom_border_color
typedef struct VkPhysicalDeviceCustomBorderColorPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t maxCustomBorderColorSamplers;
} VkPhysicalDeviceCustomBorderColorPropertiesEXT;

• maxCustomBorderColorSamplers indicates the maximum number of samplers with custom border
colors which can simultaneously exist on a device.

If the VkPhysicalDeviceCustomBorderColorPropertiesEXT structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

3927

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCustomBorderColorPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT

The VkPhysicalDeviceProvokingVertexPropertiesEXT structure is defined as:

// Provided by VK_EXT_provoking_vertex
typedef struct VkPhysicalDeviceProvokingVertexPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 provokingVertexModePerPipeline;
 VkBool32 transformFeedbackPreservesTriangleFanProvokingVertex;
} VkPhysicalDeviceProvokingVertexPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• provokingVertexModePerPipeline indicates whether the implementation supports graphics
pipelines with different provoking vertex modes within the same render pass instance.

• transformFeedbackPreservesTriangleFanProvokingVertex indicates whether the implementation
can preserve the provoking vertex order when writing triangle fan vertices to transform
feedback.

If the VkPhysicalDeviceProvokingVertexPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceProvokingVertexPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT

The VkPhysicalDeviceDescriptorBufferPropertiesEXT structure is defined as:

// Provided by VK_EXT_descriptor_buffer
typedef struct VkPhysicalDeviceDescriptorBufferPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 combinedImageSamplerDescriptorSingleArray;
 VkBool32 bufferlessPushDescriptors;
 VkBool32 allowSamplerImageViewPostSubmitCreation;
 VkDeviceSize descriptorBufferOffsetAlignment;
 uint32_t maxDescriptorBufferBindings;
 uint32_t maxResourceDescriptorBufferBindings;
 uint32_t maxSamplerDescriptorBufferBindings;

3928

 uint32_t maxEmbeddedImmutableSamplerBindings;
 uint32_t maxEmbeddedImmutableSamplers;
 size_t bufferCaptureReplayDescriptorDataSize;
 size_t imageCaptureReplayDescriptorDataSize;
 size_t imageViewCaptureReplayDescriptorDataSize;
 size_t samplerCaptureReplayDescriptorDataSize;
 size_t accelerationStructureCaptureReplayDescriptorDataSize;
 size_t samplerDescriptorSize;
 size_t combinedImageSamplerDescriptorSize;
 size_t sampledImageDescriptorSize;
 size_t storageImageDescriptorSize;
 size_t uniformTexelBufferDescriptorSize;
 size_t robustUniformTexelBufferDescriptorSize;
 size_t storageTexelBufferDescriptorSize;
 size_t robustStorageTexelBufferDescriptorSize;
 size_t uniformBufferDescriptorSize;
 size_t robustUniformBufferDescriptorSize;
 size_t storageBufferDescriptorSize;
 size_t robustStorageBufferDescriptorSize;
 size_t inputAttachmentDescriptorSize;
 size_t accelerationStructureDescriptorSize;
 VkDeviceSize maxSamplerDescriptorBufferRange;
 VkDeviceSize maxResourceDescriptorBufferRange;
 VkDeviceSize samplerDescriptorBufferAddressSpaceSize;
 VkDeviceSize resourceDescriptorBufferAddressSpaceSize;
 VkDeviceSize descriptorBufferAddressSpaceSize;
} VkPhysicalDeviceDescriptorBufferPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• combinedImageSamplerDescriptorSingleArray indicates that the implementation does not require
an array of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptors to be written into a
descriptor buffer as an array of image descriptors, immediately followed by an array of sampler
descriptors.

• bufferlessPushDescriptors indicates that the implementation does not require a buffer created
with VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT to be bound when using push
descriptors.

• allowSamplerImageViewPostSubmitCreation indicates that the implementation does not restrict
when the VkSampler or VkImageView objects used to retrieve descriptor data can be created in
relation to command buffer submission. If this value is VK_FALSE, then the application must
create any VkSampler or VkImageView objects whose descriptor data is accessed during the
execution of a command buffer, before the vkQueueSubmit , or vkQueueSubmit2, call that
submits that command buffer.

• descriptorBufferOffsetAlignment indicates the required alignment in bytes when setting offsets
into the descriptor buffer.

• maxDescriptorBufferBindings indicates the maximum sum total number of descriptor buffers
and embedded immutable sampler sets that can be bound.

3929

• maxResourceDescriptorBufferBindings indicates the maximum number of resource descriptor
buffers that can be bound.

• maxSamplerDescriptorBufferBindings indicates the maximum number of sampler descriptor
buffers that can be bound.

• maxEmbeddedImmutableSamplerBindings indicates the maximum number of embedded immutable
sampler sets that can be bound.

• maxEmbeddedImmutableSamplers indicates the maximum number of unique immutable samplers in
descriptor set layouts created with
VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT, and pipeline layouts
created from them, which can simultaneously exist on a device.

• bufferCaptureReplayDescriptorDataSize indicates the maximum size in bytes of the opaque data
used for capture and replay with buffers.

• imageCaptureReplayDescriptorDataSize indicates the maximum size in bytes of the opaque data
used for capture and replay with images.

• imageViewCaptureReplayDescriptorDataSize indicates the maximum size in bytes of the opaque
data used for capture and replay with image views.

• samplerCaptureReplayDescriptorDataSize indicates the maximum size in bytes of the opaque data
used for capture and replay with samplers.

• accelerationStructureCaptureReplayDescriptorDataSize indicates the maximum size in bytes of
the opaque data used for capture and replay with acceleration structures.

• samplerDescriptorSize indicates the size in bytes of a VK_DESCRIPTOR_TYPE_SAMPLER descriptor.

• combinedImageSamplerDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor.

• sampledImageDescriptorSize indicates the size in bytes of a VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE
descriptor.

• storageImageDescriptorSize indicates the size in bytes of a VK_DESCRIPTOR_TYPE_STORAGE_IMAGE
descriptor.

• uniformTexelBufferDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER descriptor if the robustBufferAccess feature is not
enabled.

• robustUniformTexelBufferDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER descriptor if the robustBufferAccess feature is enabled.

• storageTexelBufferDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor if the robustBufferAccess feature is not
enabled.

• robustStorageTexelBufferDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor if the robustBufferAccess feature is enabled.

• uniformBufferDescriptorSize indicates the size in bytes of a VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER
descriptor.

• robustUniformBufferDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER descriptor if the robustBufferAccess feature is enabled.

3930

• storageBufferDescriptorSize indicates the size in bytes of a VK_DESCRIPTOR_TYPE_STORAGE_BUFFER
descriptor.

• robustStorageBufferDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER descriptor if the robustBufferAccess feature is enabled.

• inputAttachmentDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT descriptor.

• accelerationStructureDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR or
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV descriptor.

• maxSamplerDescriptorBufferRange indicates the maximum range in bytes from the address of a
sampler descriptor buffer binding that is accessible to a shader.

• maxResourceDescriptorBufferRange indicates the maximum range in bytes from the address of a
resource descriptor buffer binding that is accessible to a shader.

• samplerDescriptorBufferAddressSpaceSize indicates the total size in bytes of the address space
available for descriptor buffers created with
VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT.

• resourceDescriptorBufferAddressSpaceSize indicates the total size in bytes of the address space
available for descriptor buffers created with
VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT.

• descriptorBufferAddressSpaceSize indicates the total size in bytes of the address space available
for descriptor buffers created with both VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT and
VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT.

A descriptor binding with type VK_DESCRIPTOR_TYPE_MUTABLE_VALVE has a descriptor size which is
implied by the descriptor types included in the VkMutableDescriptorTypeCreateInfoVALVE
::pDescriptorTypes list. The descriptor size is equal to the maximum size of any descriptor type
included in the pDescriptorTypes list.

As there is no way to request robust and non-robust descriptors separately, or specify robust/non-
robust descriptors in the set layout, if robustBufferAccess is enabled then robust descriptors are
always used.

If the VkPhysicalDeviceDescriptorBufferPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorBufferPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_PROPERTIES_EXT

The VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT structure is defined as:

// Provided by VK_EXT_descriptor_buffer

3931

typedef struct VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 size_t combinedImageSamplerDensityMapDescriptorSize;
} VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• combinedImageSamplerDensityMapDescriptorSize indicates the size in bytes of a
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor when creating the descriptor with
VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT set.

If the VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_DENSITY_MAP_PROPERTIES_EXT

The VkPhysicalDeviceHostImageCopyPropertiesEXT structure is defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkPhysicalDeviceHostImageCopyPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t copySrcLayoutCount;
 VkImageLayout* pCopySrcLayouts;
 uint32_t copyDstLayoutCount;
 VkImageLayout* pCopyDstLayouts;
 uint8_t optimalTilingLayoutUUID[VK_UUID_SIZE];
 VkBool32 identicalMemoryTypeRequirements;
} VkPhysicalDeviceHostImageCopyPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• copySrcLayoutCount is an integer related to the number of image layouts for host copies from
images available or queried, as described below.

• pCopySrcLayouts is a pointer to an array of VkImageLayout in which supported image layouts for
use with host copy operations from images are returned.

• copyDstLayoutCount is an integer related to the number of image layouts for host copies to
images available or queried, as described below.

3932

• pCopyDstLayouts is a pointer to an array of VkImageLayout in which supported image layouts for
use with host copy operations to images are returned.

• optimalTilingLayoutUUID is an array of VK_UUID_SIZE uint8_t values representing a universally
unique identifier for the implementation’s swizzling layout of images created with
VK_IMAGE_TILING_OPTIMAL.

• identicalMemoryTypeRequirements indicates that specifying the
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT flag in VkImageCreateInfo::usage does not affect the
memory type requirements of the image.

If the VkPhysicalDeviceHostImageCopyPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

If pCopyDstLayouts is NULL, then the number of image layouts that are supported in
VkCopyMemoryToImageInfoEXT::dstImageLayout and VkCopyImageToImageInfoEXT
::dstImageLayout is returned in copyDstLayoutCount. Otherwise, copyDstLayoutCount must be set by
the user to the number of elements in the pCopyDstLayouts array, and on return the variable is
overwritten with the number of values actually written to pCopyDstLayouts. If the value of
copyDstLayoutCount is less than the number of image layouts that are supported, at most
copyDstLayoutCount values will be written to pCopyDstLayouts. The implementation must include the
VK_IMAGE_LAYOUT_GENERAL image layout in pCopyDstLayouts.

If pCopySrcLayouts is NULL, then the number of image layouts that are supported in
VkCopyImageToMemoryInfoEXT::srcImageLayout and VkCopyImageToImageInfoEXT
::srcImageLayout is returned in copySrcLayoutCount. Otherwise, copySrcLayoutCount must be set by
the user to the number of elements in the pCopySrcLayouts array, and on return the variable is
overwritten with the number of values actually written to pCopySrcLayouts. If the value of
copySrcLayoutCount is less than the number of image layouts that are supported, at most
copySrcLayoutCount values will be written to pCopySrcLayouts. The implementation must include the
VK_IMAGE_LAYOUT_GENERAL image layout in pCopySrcLayouts.

The optimalTilingLayoutUUID value can be used to ensure compatible data layouts when using the
VK_HOST_IMAGE_COPY_MEMCPY_EXT flag in vkCopyMemoryToImageEXT and
vkCopyImageToMemoryEXT.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceHostImageCopyPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_PROPERTIES_EXT

• VUID-VkPhysicalDeviceHostImageCopyPropertiesEXT-pCopySrcLayouts-parameter
If copySrcLayoutCount is not 0, and pCopySrcLayouts is not NULL, pCopySrcLayouts must be a
valid pointer to an array of copySrcLayoutCount VkImageLayout values

• VUID-VkPhysicalDeviceHostImageCopyPropertiesEXT-pCopyDstLayouts-parameter
If copyDstLayoutCount is not 0, and pCopyDstLayouts is not NULL, pCopyDstLayouts must be a
valid pointer to an array of copyDstLayoutCount VkImageLayout values

3933

The VkPhysicalDeviceSubpassShadingPropertiesHUAWEI structure is defined as:

// Provided by VK_HUAWEI_subpass_shading
typedef struct VkPhysicalDeviceSubpassShadingPropertiesHUAWEI {
 VkStructureType sType;
 void* pNext;
 uint32_t maxSubpassShadingWorkgroupSizeAspectRatio;
} VkPhysicalDeviceSubpassShadingPropertiesHUAWEI;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxSubpassShadingWorkgroupSizeAspectRatio indicates the maximum ratio between the width and
height of the portion of the subpass shading shader workgroup size.
maxSubpassShadingWorkgroupSizeAspectRatio must be a power-of-two value, and must be less
than or equal to max(WorkgroupSize.x / WorkgroupSize.y, WorkgroupSize.y / WorkgroupSize.x).

If the VkPhysicalDeviceSubpassShadingPropertiesHUAWEI structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubpassShadingPropertiesHUAWEI-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_SHADING_PROPERTIES_HUAWEI

The VkPhysicalDeviceMultiDrawPropertiesEXT structure is defined as:

// Provided by VK_EXT_multi_draw
typedef struct VkPhysicalDeviceMultiDrawPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t maxMultiDrawCount;
} VkPhysicalDeviceMultiDrawPropertiesEXT;

The members of the VkPhysicalDeviceMultiDrawPropertiesEXT structure describe the following
features:

• maxMultiDrawCount indicates the maximum number of draw calls which can be batched into a
single multidraw.

If the VkPhysicalDeviceMultiDrawPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

3934

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiDrawPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT

The VkPhysicalDeviceNestedCommandBufferPropertiesEXT structure is defined as:

// Provided by VK_EXT_nested_command_buffer
typedef struct VkPhysicalDeviceNestedCommandBufferPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t maxCommandBufferNestingLevel;
} VkPhysicalDeviceNestedCommandBufferPropertiesEXT;

The members of the VkPhysicalDeviceNestedCommandBufferPropertiesEXT structure describe the
following features:

• maxCommandBufferNestingLevel indicates the maximum nesting level of calls to
vkCmdExecuteCommands from Secondary Command Buffers. A maxCommandBufferNestingLevel
of UINT32_MAX means there is no limit to the nesting level.

If the VkPhysicalDeviceNestedCommandBufferPropertiesEXT structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceNestedCommandBufferPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NESTED_COMMAND_BUFFER_PROPERTIES_EXT

The VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT structure is defined as:

// Provided by VK_EXT_graphics_pipeline_library
typedef struct VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 graphicsPipelineLibraryFastLinking;
 VkBool32 graphicsPipelineLibraryIndependentInterpolationDecoration;
} VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT;

• graphicsPipelineLibraryFastLinking indicates whether fast linking of graphics pipelines is
supported. If it is VK_TRUE, creating a graphics pipeline entirely from pipeline libraries without
VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT is comparable in cost to recording a
command in a command buffer.

• graphicsPipelineLibraryIndependentInterpolationDecoration indicates whether NoPerspective

3935

and Flat interpolation decorations in the last vertex processing stage and the fragment shader
are required to match when using graphics pipeline libraries. If it is VK_TRUE, the interpolation
decorations do not need to match. If it is VK_FALSE, these decorations must either be present in
both stages or neither stage in order for a given interface variable to match.

If the VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_PROPERTIES_EXT

The VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR structure is defined as:

// Provided by VK_KHR_fragment_shader_barycentric
typedef struct VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 triStripVertexOrderIndependentOfProvokingVertex;
} VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR;

• When the provoking vertex mode is VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT, and the
primitive order is odd in a triangle strip, the ordering of vertices is defined in last vertex table.
triStripVertexOrderIndependentOfProvokingVertex equal to VK_TRUE indicates that the
implementation ignores this and uses the vertex order defined by
VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT instead.

If the VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_PROPERTIES_KHR

The VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT structure is defined as:

// Provided by VK_EXT_shader_module_identifier
typedef struct VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT {
 VkStructureType sType;
 void* pNext;

3936

 uint8_t shaderModuleIdentifierAlgorithmUUID[VK_UUID_SIZE];
} VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT;

The members of the VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT structure describe the
following:

• shaderModuleIdentifierAlgorithmUUID is an array of VK_UUID_SIZE uint8_t values which uniquely
represents the algorithm used to compute an identifier in vkGetShaderModuleIdentifierEXT
and vkGetShaderModuleCreateInfoIdentifierEXT. Implementations should not change this
value in different driver versions if the algorithm used to compute an identifier is the same.

Note

The algorithm UUID may be the same in different ICDs if the algorithms are
guaranteed to produce the same results. This may happen in driver stacks which
support different kinds of hardware with shared code.

Khronos' conformance testing can not guarantee that
shaderModuleIdentifierAlgorithmUUID values are actually unique, so implementors
should make their own best efforts to ensure that their UUID is unlikely to conflict
with other implementations which may use a different algorithm. In particular,
hard-coded values which easily conflict, such as all-0 bits, should never be used.
Hard-coded values are acceptable if best effort is ensured that the value will not
accidentally conflict.

If the VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT structure is included in the pNext chain
of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled
in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT

The VkPhysicalDevicePipelineRobustnessPropertiesEXT structure is defined as:

// Provided by VK_EXT_pipeline_robustness
typedef struct VkPhysicalDevicePipelineRobustnessPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkPipelineRobustnessBufferBehaviorEXT defaultRobustnessStorageBuffers;
 VkPipelineRobustnessBufferBehaviorEXT defaultRobustnessUniformBuffers;
 VkPipelineRobustnessBufferBehaviorEXT defaultRobustnessVertexInputs;
 VkPipelineRobustnessImageBehaviorEXT defaultRobustnessImages;
} VkPhysicalDevicePipelineRobustnessPropertiesEXT;

3937

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• defaultRobustnessStorageBuffers describes the behaviour of out of bounds accesses made to
storage buffers when no robustness features are enabled

• defaultRobustnessUniformBuffers describes the behaviour of out of bounds accesses made to
uniform buffers when no robustness features are enabled

• defaultRobustnessVertexInputs describes the behaviour of out of bounds accesses made to
vertex input attributes when no robustness features are enabled

• defaultRobustnessImages describes the behaviour of out of bounds accesses made to images
when no robustness features are enabled

Some implementations of Vulkan may be able to guarantee that certain types of accesses are always
performed with robustness even when the Vulkan API’s robustness features are not explicitly
enabled.

Even when an implementation reports that accesses to a given resource type are robust by default,
it remains invalid to make an out of bounds access without requesting the appropriate robustness
feature.

If the VkPhysicalDevicePipelineRobustnessPropertiesEXT structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePipelineRobustnessPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_PROPERTIES_EXT

The VkPhysicalDeviceExtendedDynamicState3PropertiesEXT structure is defined as:

// Provided by VK_EXT_extended_dynamic_state3
typedef struct VkPhysicalDeviceExtendedDynamicState3PropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 dynamicPrimitiveTopologyUnrestricted;
} VkPhysicalDeviceExtendedDynamicState3PropertiesEXT;

• dynamicPrimitiveTopologyUnrestricted indicates that the implementation allows
vkCmdSetPrimitiveTopology to use a different primitive topology class to the one specified in the
active graphics pipeline.

If the VkPhysicalDeviceExtendedDynamicState3PropertiesEXT structure is included in the pNext chain
of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled
in with each corresponding implementation-dependent property.

3938

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExtendedDynamicState3PropertiesEXT-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_PROPERTIES_EXT

The VkPhysicalDeviceOpticalFlowPropertiesNV structure is defined as:

// Provided by VK_NV_optical_flow
typedef struct VkPhysicalDeviceOpticalFlowPropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkOpticalFlowGridSizeFlagsNV supportedOutputGridSizes;
 VkOpticalFlowGridSizeFlagsNV supportedHintGridSizes;
 VkBool32 hintSupported;
 VkBool32 costSupported;
 VkBool32 bidirectionalFlowSupported;
 VkBool32 globalFlowSupported;
 uint32_t minWidth;
 uint32_t minHeight;
 uint32_t maxWidth;
 uint32_t maxHeight;
 uint32_t maxNumRegionsOfInterest;
} VkPhysicalDeviceOpticalFlowPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• supportedOutputGridSizes are the supported VkOpticalFlowGridSizeFlagsNV which can be
specified in VkOpticalFlowSessionCreateInfoNV::outputGridSize.

• supportedHintGridSizes are the supported VkOpticalFlowGridSizeFlagsNV which can be
specified in VkOpticalFlowSessionCreateInfoNV::hintGridSize.

• hintSupported is a boolean describing whether using hint flow vector map is supported in an
optical flow session.

• costSupported is a boolean describing whether cost map generation is supported in an optical
flow session.

• bidirectionalFlowSupported is a boolean describing whether bi-directional flow generation is
supported in an optical flow session.

• globalFlowSupported is a boolean describing whether global flow vector map generation is
supported in an optical flow session.

• minWidth is the minimum width in pixels for images used in an optical flow session.

• minHeight is the minimum height in pixels for images used in an optical flow session.

• maxWidth is the maximum width in pixels for images used in an optical flow session.

3939

• maxHeight is the maximum height in pixels for images used in an optical flow session.

• maxNumRegionsOfInterest is the maximum number of regions of interest which can be used in an
optical flow session. If this maxNumRegionsOfInterest is 0, regions of interest are not supported in
an optical flow session.

If the VkPhysicalDeviceOpticalFlowPropertiesNV structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceOpticalFlowPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPTICAL_FLOW_PROPERTIES_NV

The VkPhysicalDeviceOpacityMicromapPropertiesEXT structure is defined as:

// Provided by VK_EXT_opacity_micromap
typedef struct VkPhysicalDeviceOpacityMicromapPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t maxOpacity2StateSubdivisionLevel;
 uint32_t maxOpacity4StateSubdivisionLevel;
} VkPhysicalDeviceOpacityMicromapPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxOpacity2StateSubdivisionLevel is the maximum allowed subdivisionLevel when format is
VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT

• maxOpacity4StateSubdivisionLevel is the maximum allowed subdivisionLevel when format is
VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT

If the VkPhysicalDeviceOpacityMicromapPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceOpacityMicromapPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPACITY_MICROMAP_PROPERTIES_EXT

The VkPhysicalDeviceDisplacementMicromapPropertiesNV structure is defined as:

// Provided by VK_NV_displacement_micromap
typedef struct VkPhysicalDeviceDisplacementMicromapPropertiesNV {

3940

 VkStructureType sType;
 void* pNext;
 uint32_t maxDisplacementMicromapSubdivisionLevel;
} VkPhysicalDeviceDisplacementMicromapPropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxDisplacementMicromapSubdivisionLevel is the maximum allowed subdivisionLevel for
displacement micromaps.

If the VkPhysicalDeviceDisplacementMicromapPropertiesNV structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDisplacementMicromapPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISPLACEMENT_MICROMAP_PROPERTIES_NV

The VkPhysicalDeviceShaderCoreBuiltinsPropertiesARM structure is defined as:

// Provided by VK_ARM_shader_core_builtins
typedef struct VkPhysicalDeviceShaderCoreBuiltinsPropertiesARM {
 VkStructureType sType;
 void* pNext;
 uint64_t shaderCoreMask;
 uint32_t shaderCoreCount;
 uint32_t shaderWarpsPerCore;
} VkPhysicalDeviceShaderCoreBuiltinsPropertiesARM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderCoreMask is a bitfield where each bit set represents the presence of a shader core whose ID
is the bit position. The highest ID for any shader core on the device is the position of the most
significant bit set.

• shaderCoreCount is the number of shader cores on the device.

• shaderWarpsPerCore is the maximum number of simultaneously executing warps on a shader
core.

If the VkPhysicalDeviceShaderCoreBuiltinsPropertiesARM structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

3941

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderCoreBuiltinsPropertiesARM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_BUILTINS_PROPERTIES_ARM

Values which may be returned in the rayTracingInvocationReorderReorderingHint field of
VkPhysicalDeviceRayTracingInvocationReorderPropertiesNV are:

// Provided by VK_NV_ray_tracing_invocation_reorder
typedef enum VkRayTracingInvocationReorderModeNV {
 VK_RAY_TRACING_INVOCATION_REORDER_MODE_NONE_NV = 0,
 VK_RAY_TRACING_INVOCATION_REORDER_MODE_REORDER_NV = 1,
} VkRayTracingInvocationReorderModeNV;

• VK_RAY_TRACING_INVOCATION_REORDER_MODE_NONE_NV indicates that the implementation is likely to
not reorder at reorder calls.

• VK_RAY_TRACING_INVOCATION_REORDER_MODE_REORDER_NV indicates that the implementation is likely
to reorder at reorder calls.

The VkPhysicalDeviceRayTracingInvocationReorderPropertiesNV structure is defined as:

// Provided by VK_NV_ray_tracing_invocation_reorder
typedef struct VkPhysicalDeviceRayTracingInvocationReorderPropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkRayTracingInvocationReorderModeNV rayTracingInvocationReorderReorderingHint;
} VkPhysicalDeviceRayTracingInvocationReorderPropertiesNV;

• rayTracingInvocationReorderReorderingHint is a hint indicating if the implementation will
actually reorder at the reorder calls.

Note

Because the extension changes how hits are managed there is a compatibility
reason to expose the extension even when an implementation does not have
sorting active.

If the VkPhysicalDeviceRayTracingInvocationReorderPropertiesNV structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRayTracingInvocationReorderPropertiesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_INVOCATION_REORDER_PROPERTIES_NV

3942

The VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI structure is defined as:

// Provided by VK_HUAWEI_cluster_culling_shader
typedef struct VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI {
 VkStructureType sType;
 void* pNext;
 uint32_t maxWorkGroupCount[3];
 uint32_t maxWorkGroupSize[3];
 uint32_t maxOutputClusterCount;
 VkDeviceSize indirectBufferOffsetAlignment;
} VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxWorkGroupCount[3] is the maximum number of local workgroups that can be launched by a
single command. These three value represent the maximum local workgroup count in the X, Y
and Z dimensions, respectively. In the current implementation, the values of Y and Z are both
implicitly set as one. groupCountX of DrawCluster command must be less than or equal to
maxWorkGroupCount[0].

• maxWorkGroupSize[3] is the maximum size of a local workgroup. These three value represent the
maximum local workgroup size in the X, Y and Z dimensions, respectively. The x, y and z sizes,
as specified by the LocalSize or LocalSizeId execution mode or by the object decorated by the
WorkgroupSize decoration in shader modules, must be less than or equal to the corresponding
limit. In the current implementation, the maximum workgroup size of the X dimension is 32,
the others are 1.

• maxOutputClusterCount is the maximum number of output cluster a single cluster culling shader
workgroup can emit.

• indirectBufferOffsetAlignment indicates the alignment for cluster drawing command buffer
stride. vkCmdDrawClusterIndirectHUAWEI::offset must be a multiple of this value.

If the VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_PROPERTIES_HUAWEI

The VkPhysicalDeviceShaderCorePropertiesARM structure is defined as:

// Provided by VK_ARM_shader_core_properties
typedef struct VkPhysicalDeviceShaderCorePropertiesARM {
 VkStructureType sType;

3943

 void* pNext;
 uint32_t pixelRate;
 uint32_t texelRate;
 uint32_t fmaRate;
} VkPhysicalDeviceShaderCorePropertiesARM;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pixelRate is an unsigned integer value indicating the maximum number of pixels output per
clock per shader core.

• texelRate is an unsigned integer value indicating the maximum number of texels per clock per
shader core.

• fmaRate is an unsigned integer value indicating the maximum number of single-precision fused
multiply-add operations per clock per shader core.

If a throughput rate cannot be determined on the physical device, the value 0 will be returned for
that rate.

If the VkPhysicalDeviceShaderCorePropertiesARM structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderCorePropertiesARM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_ARM

The VkPhysicalDeviceShaderObjectPropertiesEXT structure is defined as:

// Provided by VK_EXT_shader_object
typedef struct VkPhysicalDeviceShaderObjectPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 uint8_t shaderBinaryUUID[VK_UUID_SIZE];
 uint32_t shaderBinaryVersion;
} VkPhysicalDeviceShaderObjectPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderBinaryUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for one or more implementations whose shader binaries are guaranteed to be
compatible with each other.

• shaderBinaryVersion is an unsigned integer incremented to represent backwards compatible
differences between implementations with the same shaderBinaryUUID.

3944

The purpose and usage of the values of this structure are described in greater detail in Binary
Shader Compatibility.

If the VkPhysicalDeviceShaderObjectPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderObjectPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_PROPERTIES_EXT

The VkPhysicalDeviceShaderEnqueuePropertiesAMDX structure is defined as:

// Provided by VK_AMDX_shader_enqueue
typedef struct VkPhysicalDeviceShaderEnqueuePropertiesAMDX {
 VkStructureType sType;
 void* pNext;
 uint32_t maxExecutionGraphDepth;
 uint32_t maxExecutionGraphShaderOutputNodes;
 uint32_t maxExecutionGraphShaderPayloadSize;
 uint32_t maxExecutionGraphShaderPayloadCount;
 uint32_t executionGraphDispatchAddressAlignment;
} VkPhysicalDeviceShaderEnqueuePropertiesAMDX;

The members of the VkPhysicalDeviceShaderEnqueuePropertiesAMDX structure describe the following
limits:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxExecutionGraphDepth defines the maximum node chain depth in the graph. The dispatched
node is at depth 1 and the node enqueued by it is at depth 2, and so on. If a node enqueues itself,
each recursive enqueue increases the depth by 1 as well.

• maxExecutionGraphShaderOutputNodes specifies the maximum number of unique nodes that can
be dispatched from a single shader, and must be at least 256.

• maxExecutionGraphShaderPayloadSize specifies the maximum total size of payload declarations in
a shader. For any payload declarations that share resources, indicated by
NodeSharesPayloadLimitsWithAMDX decorations, the maximum size of each set of shared payload
declarations is taken. The sum of each shared set’s maximum size and the size of each unshared
payload is counted against this limit.

• maxExecutionGraphShaderPayloadCount specifies the maximum number of output payloads that
can be initialized in a single workgroup.

• executionGraphDispatchAddressAlignment specifies the alignment of non-scratch
VkDeviceAddress arguments consumed by graph dispatch commands.

3945

If the VkPhysicalDeviceShaderEnqueuePropertiesAMDX structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderEnqueuePropertiesAMDX-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ENQUEUE_PROPERTIES_AMDX

The VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV structure is defined as:

// Provided by VK_NV_extended_sparse_address_space
typedef struct VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize extendedSparseAddressSpaceSize;
 VkImageUsageFlags extendedSparseImageUsageFlags;
 VkBufferUsageFlags extendedSparseBufferUsageFlags;
} VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• extendedSparseAddressSpaceSize is the total amount of address space available, in bytes, for
sparse memory resources of all usages if the extendedSparseAddressSpace feature is enabled. This
must be greater than or equal to VkPhysicalDeviceLimits::sparseAddressSpaceSize, and the
difference in space must only be used with usages allowed below. This is an upper bound on the
sum of the sizes of all sparse resources, regardless of whether any memory is bound to them.

• extendedSparseImageUsageFlags is a bitmask of VkImageUsageFlagBits of usages which may
allow an implementation to use the full extendedSparseAddressSpaceSize space.

• extendedSparseBufferUsageFlags is a bitmask of VkBufferUsageFlagBits of usages which may
allow an implementation to use the full extendedSparseAddressSpaceSize space.

If the VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_SPARSE_ADDRESS_SPACE_PROPERTIES_NV

The VkPhysicalDeviceCudaKernelLaunchPropertiesNV structure is defined as:

3946

// Provided by VK_NV_cuda_kernel_launch
typedef struct VkPhysicalDeviceCudaKernelLaunchPropertiesNV {
 VkStructureType sType;
 void* pNext;
 uint32_t computeCapabilityMinor;
 uint32_t computeCapabilityMajor;
} VkPhysicalDeviceCudaKernelLaunchPropertiesNV;

The members of the VkPhysicalDeviceCudaKernelLaunchPropertiesNV structure describe the following
features:

• computeCapabilityMinor indicates the minor version number of the compute code.

• computeCapabilityMajor indicates the major version number of the compute code.

If the VkPhysicalDeviceCudaKernelLaunchPropertiesNV structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceCudaKernelLaunchPropertiesNV-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUDA_KERNEL_LAUNCH_PROPERTIES_NV

The VkPhysicalDeviceExternalFormatResolvePropertiesANDROID structure is defined as:

// Provided by VK_ANDROID_external_format_resolve
typedef struct VkPhysicalDeviceExternalFormatResolvePropertiesANDROID {
 VkStructureType sType;
 void* pNext;
 VkBool32 nullColorAttachmentWithExternalFormatResolve;
 VkChromaLocation externalFormatResolveChromaOffsetX;
 VkChromaLocation externalFormatResolveChromaOffsetY;
} VkPhysicalDeviceExternalFormatResolvePropertiesANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• nullColorAttachmentWithExternalFormatResolve indicates that there must be no color attachment
image when performing external format resolves if it is VK_TRUE.

• externalFormatResolveChromaOffsetX indicates the VkChromaLocation that an implementation
uses in the X axis for accesses to an external format image as a resolve attachment. This must
be consistent between external format resolves and load operations from external format
resolve attachments to color attachments when nullColorAttachmentWithExternalFormatResolve
is VK_TRUE.

• externalFormatResolveChromaOffsetY indicates the VkChromaLocation that an implementation

3947

uses in the Y axis for accesses to an external format image as a resolve attachment. This must
be consistent between external format resolves and load operations from external format
resolve attachments to color attachments when nullColorAttachmentWithExternalFormatResolve
is VK_TRUE.

If the VkPhysicalDeviceExternalFormatResolvePropertiesANDROID structure is included in the pNext
chain of the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is
filled in with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalFormatResolvePropertiesANDROID-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FORMAT_RESOLVE_PROPERTIES_ANDROID

The VkPhysicalDeviceRenderPassStripedPropertiesARM structure is defined as:

// Provided by VK_ARM_render_pass_striped
typedef struct VkPhysicalDeviceRenderPassStripedPropertiesARM {
 VkStructureType sType;
 void* pNext;
 VkExtent2D renderPassStripeGranularity;
 uint32_t maxRenderPassStripes;
} VkPhysicalDeviceRenderPassStripedPropertiesARM;

The members of the VkPhysicalDeviceRenderPassStripedPropertiesARM structure describe the
following limits:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• renderPassStripeGranularity indicates the minimum supported granularity of striped render
pass regions.

• maxRenderPassStripes indicates the maximum number of stripes supported in striped rendering.

If the VkPhysicalDeviceRenderPassStripedPropertiesARM structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceRenderPassStripedPropertiesARM-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RENDER_PASS_STRIPED_PROPERTIES_ARM

The VkPhysicalDeviceMapMemoryPlacedPropertiesEXT structure is defined as:

3948

// Provided by VK_EXT_map_memory_placed
typedef struct VkPhysicalDeviceMapMemoryPlacedPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize minPlacedMemoryMapAlignment;
} VkPhysicalDeviceMapMemoryPlacedPropertiesEXT;

The members of the VkPhysicalDeviceMapMemoryPlacedPropertiesEXT structure describe the
following:

• minPlacedMemoryMapAlignment is the minimum alignment required for memory object offsets and
virtual address ranges when using placed memory mapping.

If the VkPhysicalDeviceMapMemoryPlacedPropertiesEXT structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMapMemoryPlacedPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAP_MEMORY_PLACED_PROPERTIES_EXT

48.1. Limit Requirements
The following table specifies the required minimum/maximum for all Vulkan graphics
implementations. Where a limit corresponds to a fine-grained device feature which is optional, the
feature name is listed with two required limits, one when the feature is supported and one when it
is not supported. If an implementation supports a feature, the limits reported are the same whether
or not the feature is enabled.

Table 64. Required Limit Types

Type Limit Feature

uint32_t maxImageDimension1D -

uint32_t maxImageDimension2D -

uint32_t maxImageDimension3D -

uint32_t maxImageDimensionCube -

uint32_t maxImageArrayLayers -

uint32_t maxTexelBufferElements -

uint32_t maxUniformBufferRange -

uint32_t maxStorageBufferRange -

uint32_t maxPushConstantsSize -

uint32_t maxMemoryAllocationCount -

3949

Type Limit Feature

uint32_t maxSamplerAllocationCount -

VkDeviceSize bufferImageGranularity -

VkDeviceSize sparseAddressSpaceSize sparseBinding

uint32_t maxBoundDescriptorSets -

uint32_t maxPerStageDescriptorSamplers -

uint32_t maxPerStageDescriptorUniformBuffers -

uint32_t maxPerStageDescriptorStorageBuffers -

uint32_t maxPerStageDescriptorSampledImages -

uint32_t maxPerStageDescriptorStorageImages -

uint32_t maxPerStageDescriptorInputAttachments -

uint32_t maxPerStageResources -

uint32_t maxDescriptorSetSamplers -

uint32_t maxDescriptorSetUniformBuffers -

uint32_t maxDescriptorSetUniformBuffersDynamic -

uint32_t maxDescriptorSetStorageBuffers -

uint32_t maxDescriptorSetStorageBuffersDynamic -

uint32_t maxDescriptorSetSampledImages -

uint32_t maxDescriptorSetStorageImages -

uint32_t maxDescriptorSetInputAttachments -

uint32_t maxVertexInputAttributes -

uint32_t maxVertexInputBindings -

uint32_t maxVertexInputAttributeOffset -

uint32_t maxVertexInputBindingStride -

uint32_t maxVertexOutputComponents -

uint32_t maxTessellationGenerationLevel tessellationShader

uint32_t maxTessellationPatchSize tessellationShader

uint32_t maxTessellationControlPerVertexInputComponents tessellationShader

uint32_t maxTessellationControlPerVertexOutputComponent
s

tessellationShader

uint32_t maxTessellationControlPerPatchOutputComponents tessellationShader

uint32_t maxTessellationControlTotalOutputComponents tessellationShader

uint32_t maxTessellationEvaluationInputComponents tessellationShader

uint32_t maxTessellationEvaluationOutputComponents tessellationShader

uint32_t maxGeometryShaderInvocations geometryShader

uint32_t maxGeometryInputComponents geometryShader

3950

Type Limit Feature

uint32_t maxGeometryOutputComponents geometryShader

uint32_t maxGeometryOutputVertices geometryShader

uint32_t maxGeometryTotalOutputComponents geometryShader

uint32_t maxFragmentInputComponents -

uint32_t maxFragmentOutputAttachments -

uint32_t maxFragmentDualSrcAttachments dualSrcBlend

uint32_t maxFragmentCombinedOutputResources -

uint32_t maxComputeSharedMemorySize -

3 × uint32_t maxComputeWorkGroupCount -

uint32_t maxComputeWorkGroupInvocations -

3 × uint32_t maxComputeWorkGroupSize -

uint32_t subPixelPrecisionBits -

uint32_t subTexelPrecisionBits -

uint32_t mipmapPrecisionBits -

uint32_t maxDrawIndexedIndexValue fullDrawIndexUint32

uint32_t maxDrawIndirectCount multiDrawIndirect

float maxSamplerLodBias -

float maxSamplerAnisotropy samplerAnisotropy

uint32_t maxViewports multiViewport

2 × uint32_t maxViewportDimensions -

2 × float viewportBoundsRange -

uint32_t viewportSubPixelBits -

size_t minMemoryMapAlignment -

VkDeviceSize minTexelBufferOffsetAlignment -

VkDeviceSize minUniformBufferOffsetAlignment -

VkDeviceSize minStorageBufferOffsetAlignment -

int32_t minTexelOffset -

uint32_t maxTexelOffset -

int32_t minTexelGatherOffset shaderImageGatherExtended

uint32_t maxTexelGatherOffset shaderImageGatherExtended

float minInterpolationOffset sampleRateShading

float maxInterpolationOffset sampleRateShading

uint32_t subPixelInterpolationOffsetBits sampleRateShading

uint32_t maxFramebufferWidth -

uint32_t maxFramebufferHeight -

3951

Type Limit Feature

uint32_t maxFramebufferLayers -

VkSampleCountFl
ags

framebufferColorSampleCounts -

VkSampleCountFl
ags

framebufferIntegerColorSampleCounts -

VkSampleCountFl
ags

framebufferDepthSampleCounts -

VkSampleCountFl
ags

framebufferStencilSampleCounts -

VkSampleCountFl
ags

framebufferNoAttachmentsSampleCounts -

uint32_t maxColorAttachments -

VkSampleCountFl
ags

sampledImageColorSampleCounts -

VkSampleCountFl
ags

sampledImageIntegerSampleCounts -

VkSampleCountFl
ags

sampledImageDepthSampleCounts -

VkSampleCountFl
ags

sampledImageStencilSampleCounts -

VkSampleCountFl
ags

storageImageSampleCounts shaderStorageImageMultisamp
le

uint32_t maxSampleMaskWords -

VkBool32 timestampComputeAndGraphics -

float timestampPeriod -

uint32_t maxClipDistances shaderClipDistance

uint32_t maxCullDistances shaderCullDistance

uint32_t maxCombinedClipAndCullDistances shaderCullDistance

uint32_t discreteQueuePriorities -

2 × float pointSizeRange largePoints

2 × float lineWidthRange wideLines

float pointSizeGranularity largePoints

float lineWidthGranularity wideLines

VkBool32 strictLines -

VkBool32 standardSampleLocations -

VkDeviceSize optimalBufferCopyOffsetAlignment -

VkDeviceSize optimalBufferCopyRowPitchAlignment -

3952

Type Limit Feature

VkDeviceSize nonCoherentAtomSize -

uint32_t maxDiscardRectangles VK_EXT_discard_rectangles

VkBool32 filterMinmaxSingleComponentFormats samplerFilterMinmax
VK_EXT_sampler_filter_minma
x

VkBool32 filterMinmaxImageComponentMapping samplerFilterMinmax
VK_EXT_sampler_filter_minma
x

VkDeviceSize maxBufferSize maintenance4

float primitiveOverestimationSize VK_EXT_conservative_rasteri
zation

VkBool32 maxExtraPrimitiveOverestimationSize VK_EXT_conservative_rasteri
zation

float extraPrimitiveOverestimationSizeGranularity VK_EXT_conservative_rasteri
zation

VkBool32 degenerateTriangleRasterized VK_EXT_conservative_rasteri
zation

float degenerateLinesRasterized VK_EXT_conservative_rasteri
zation

VkBool32 fullyCoveredFragmentShaderInputVariable VK_EXT_conservative_rasteri
zation

VkBool32 conservativeRasterizationPostDepthCoverage VK_EXT_conservative_rasteri
zation

uint32_t maxUpdateAfterBindDescriptorsInAllPools descriptorIndexing

VkBool32 shaderUniformBufferArrayNonUniformIndexingNati
ve

-

VkBool32 shaderSampledImageArrayNonUniformIndexingNativ
e

-

VkBool32 shaderStorageBufferArrayNonUniformIndexingNati
ve

-

VkBool32 shaderStorageImageArrayNonUniformIndexingNativ
e

-

VkBool32 shaderInputAttachmentArrayNonUniformIndexingNa
tive

-

uint32_t maxPerStageDescriptorUpdateAfterBindSamplers descriptorIndexing

uint32_t maxPerStageDescriptorUpdateAfterBindUniformBuf
fers

descriptorIndexing

uint32_t maxPerStageDescriptorUpdateAfterBindStorageBuf
fers

descriptorIndexing

uint32_t maxPerStageDescriptorUpdateAfterBindSampledIma
ges

descriptorIndexing

uint32_t maxPerStageDescriptorUpdateAfterBindStorageIma
ges

descriptorIndexing

3953

Type Limit Feature

uint32_t maxPerStageDescriptorUpdateAfterBindInputAttac
hments

descriptorIndexing

uint32_t maxPerStageUpdateAfterBindResources descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindSamplers descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindUniformBuffers descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindUniformBuffersD
ynamic

descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindStorageBuffers descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindStorageBuffersD
ynamic

descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindSampledImages descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindStorageImages descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindInputAttachment
s

descriptorIndexing

uint32_t maxInlineUniformBlockSize inlineUniformBlock

uint32_t maxPerStageDescriptorInlineUniformBlocks inlineUniformBlock

uint32_t maxPerStageDescriptorUpdateAfterBindInlineUnif
ormBlocks

inlineUniformBlock

uint32_t maxDescriptorSetInlineUniformBlocks inlineUniformBlock

uint32_t maxDescriptorSetUpdateAfterBindInlineUniformBl
ocks

inlineUniformBlock

uint32_t maxInlineUniformTotalSize inlineUniformBlock

uint32_t maxVertexAttribDivisor VK_KHR_vertex_attribute_div
isor

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxD
rawMeshTasksCount

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxT
askWorkGroupInvocations

VK_NV_mesh_shader

3 × uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxT
askWorkGroupSize

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxT
askTotalMemorySize

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxT
askOutputCount

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshWorkGroupInvocations

VK_NV_mesh_shader

3 × uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshWorkGroupSize

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshTotalMemorySize

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshOutputVertices

VK_NV_mesh_shader

3954

Type Limit Feature

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshOutputPrimitives

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshMultiviewViewCount

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::mesh
OutputPerVertexGranularity

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesNV::mesh
OutputPerPrimitiveGranularity

VK_NV_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskWorkGroupTotalCount

VK_EXT_mesh_shader

3 × uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskWorkGroupCount

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskWorkGroupInvocations

VK_EXT_mesh_shader

3 × uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskWorkGroupSize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskPayloadSize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskSharedMemorySize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskPayloadAndSharedMemorySize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshWorkGroupTotalCount

VK_EXT_mesh_shader

3 × uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshWorkGroupCount

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshWorkGroupInvocations

VK_EXT_mesh_shader

3 × uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshWorkGroupSize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshSharedMemorySize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshPayloadAndSharedMemorySize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputMemorySize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshPayloadAndOutputMemorySize

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputComponents

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputVertices

VK_EXT_mesh_shader

3955

Type Limit Feature

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputPrimitives

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputLayers

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshMultiviewViewCount

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::mes
hOutputPerVertexGranularity

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::mes
hOutputPerPrimitiveGranularity

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
PreferredTaskWorkGroupInvocations

VK_EXT_mesh_shader

uint32_t VkPhysicalDeviceMeshShaderPropertiesEXT::max
PreferredMeshWorkGroupInvocations

VK_EXT_mesh_shader

VkBool32 VkPhysicalDeviceMeshShaderPropertiesEXT::pre
fersLocalInvocationVertexOutput

VK_EXT_mesh_shader

VkBool32 VkPhysicalDeviceMeshShaderPropertiesEXT::pre
fersLocalInvocationPrimitiveOutput

VK_EXT_mesh_shader

VkBool32 VkPhysicalDeviceMeshShaderPropertiesEXT::pre
fersCompactVertexOutput

VK_EXT_mesh_shader

VkBool32 VkPhysicalDeviceMeshShaderPropertiesEXT::pre
fersCompactPrimitiveOutput

VK_EXT_mesh_shader

uint32_t maxTransformFeedbackStreams VK_EXT_transform_feedback

uint32_t maxTransformFeedbackBuffers VK_EXT_transform_feedback

VkDeviceSize maxTransformFeedbackBufferSize VK_EXT_transform_feedback

uint32_t maxTransformFeedbackStreamDataSize VK_EXT_transform_feedback

uint32_t maxTransformFeedbackBufferDataSize VK_EXT_transform_feedback

uint32_t maxTransformFeedbackBufferDataStride VK_EXT_transform_feedback

VkBool32 transformFeedbackQueries VK_EXT_transform_feedback

VkBool32 transformFeedbackStreamsLinesTriangles VK_EXT_transform_feedback

VkBool32 transformFeedbackRasterizationStreamSelect VK_EXT_transform_feedback

VkBool32 transformFeedbackDraw VK_EXT_transform_feedback

VkExtent2D minFragmentDensityTexelSize fragmentDensityMap

VkExtent2D maxFragmentDensityTexelSize fragmentDensityMap

VkBool32 fragmentDensityInvocations fragmentDensityMap

VkBool32 subsampledLoads VK_EXT_fragment_density_map
2

VkBool32 subsampledCoarseReconstructionEarlyAccess VK_EXT_fragment_density_map
2

3956

Type Limit Feature

uint32_t maxSubsampledArrayLayers VK_EXT_fragment_density_map
2

uint32_t maxDescriptorSetSubsampledSamplers VK_EXT_fragment_density_map
2

VkExtent2D fragmentDensityOffsetGranularity fragmentDensityMapOffset

uint32_t maxGeometryCount VK_NV_ray_tracing,
VK_KHR_acceleration_structu
re

uint32_t maxInstanceCount VK_NV_ray_tracing,
VK_KHR_acceleration_structu
re

uint32_t shaderGroupHandleSize VK_NV_ray_tracing,
VK_KHR_ray_tracing_pipeline

uint32_t maxShaderGroupStride VK_NV_ray_tracing,
VK_KHR_ray_tracing_pipeline

uint32_t shaderGroupBaseAlignment VK_NV_ray_tracing,
VK_KHR_ray_tracing_pipeline

uint32_t maxRecursionDepth VK_NV_ray_tracing

uint32_t maxTriangleCount VK_NV_ray_tracing

uint32_t maxPerStageDescriptorAccelerationStructures VK_KHR_acceleration_structu
re

uint32_t maxPerStageDescriptorUpdateAfterBindAccelerati
onStructures

VK_KHR_acceleration_structu
re

uint32_t maxDescriptorSetAccelerationStructures VK_NV_ray_tracing,
VK_KHR_acceleration_structu
re

uint32_t maxDescriptorSetUpdateAfterBindAccelerationStr
uctures

VK_KHR_acceleration_structu
re

uint32_t minAccelerationStructureScratchOffsetAlignment VK_KHR_acceleration_structu
re

uint32_t maxRayRecursionDepth VK_KHR_ray_tracing_pipeline

uint32_t shaderGroupHandleCaptureReplaySize VK_KHR_ray_tracing_pipeline

uint32_t maxRayDispatchInvocationCount VK_KHR_ray_tracing_pipeline

uint32_t shaderGroupHandleAlignment VK_KHR_ray_tracing_pipeline

uint32_t maxRayHitAttributeSize VK_KHR_ray_tracing_pipeline

uint64_t maxTimelineSemaphoreValueDifference timelineSemaphore

uint32_t lineSubPixelPrecisionBits VK_KHR_line_rasterization,
VK_EXT_line_rasterization

uint32_t maxCustomBorderColorSamplers VK_EXT_custom_border_color

VkDeviceSize robustStorageBufferAccessSizeAlignment VK_EXT_robustness2

VkDeviceSize robustUniformBufferAccessSizeAlignment VK_EXT_robustness2

3957

Type Limit Feature

2 × uint32_t minFragmentShadingRateAttachmentTexelSize attachmentFragmentShadingRa
te

2 × uint32_t maxFragmentShadingRateAttachmentTexelSize attachmentFragmentShadingRa
te

uint32_t maxFragmentShadingRateAttachmentTexelSizeAspec
tRatio

attachmentFragmentShadingRa
te

VkBool32 primitiveFragmentShadingRateWithMultipleViewpo
rts

primitiveFragmentShadingRat
e

VkBool32 layeredShadingRateAttachments attachmentFragmentShadingRa
te

VkBool32 fragmentShadingRateNonTrivialCombinerOps pipelineFragmentShadingRate

2 × uint32_t maxFragmentSize pipelineFragmentShadingRate

uint32_t maxFragmentSizeAspectRatio pipelineFragmentShadingRate

uint32_t maxFragmentShadingRateCoverageSamples pipelineFragmentShadingRate

VkSampleCountFl
agBits

maxFragmentShadingRateRasterizationSamples pipelineFragmentShadingRate

VkBool32 fragmentShadingRateWithShaderDepthStencilWrite
s

pipelineFragmentShadingRate

VkBool32 fragmentShadingRateWithSampleMask pipelineFragmentShadingRate

VkBool32 fragmentShadingRateWithShaderSampleMask pipelineFragmentShadingRate

VkBool32 fragmentShadingRateWithConservativeRasterizati
on

pipelineFragmentShadingRate

VkBool32 fragmentShadingRateWithFragmentShaderInterlock pipelineFragmentShadingRate

VkBool32 fragmentShadingRateWithCustomSampleLocations pipelineFragmentShadingRate

VkBool32 fragmentShadingRateStrictMultiplyCombiner pipelineFragmentShadingRate

VkSampleCountFl
agBits

maxFragmentShadingRateInvocationCount supersampleFragmentShadingR
ates

VkBool32 combinedImageSamplerDescriptorSingleArray VK_EXT_descriptor_buffer

VkBool32 bufferlessPushDescriptors VK_EXT_descriptor_buffer

VkBool32 allowSamplerImageViewPostSubmitCreation VK_EXT_descriptor_buffer

VkDeviceSize descriptorBufferOffsetAlignment VK_EXT_descriptor_buffer

uint32_t maxDescriptorBufferBindings VK_EXT_descriptor_buffer

uint32_t maxResourceDescriptorBufferBindings VK_EXT_descriptor_buffer

uint32_t maxSamplerDescriptorBufferBindings VK_EXT_descriptor_buffer

uint32_t maxEmbeddedImmutableSamplerBindings VK_EXT_descriptor_buffer

uint32_t maxEmbeddedImmutableSamplers VK_EXT_descriptor_buffer

size_t bufferCaptureReplayDescriptorDataSize VK_EXT_descriptor_buffer

size_t imageCaptureReplayDescriptorDataSize VK_EXT_descriptor_buffer

size_t imageViewCaptureReplayDescriptorDataSize VK_EXT_descriptor_buffer

3958

Type Limit Feature

size_t samplerCaptureReplayDescriptorDataSize VK_EXT_descriptor_buffer

size_t accelerationStructureCaptureReplayDescriptorDa
taSize

VK_EXT_descriptor_buffer

size_t samplerDescriptorSize VK_EXT_descriptor_buffer

size_t combinedImageSamplerDescriptorSize VK_EXT_descriptor_buffer

size_t sampledImageDescriptorSize VK_EXT_descriptor_buffer

size_t storageImageDescriptorSize VK_EXT_descriptor_buffer

size_t uniformTexelBufferDescriptorSize VK_EXT_descriptor_buffer

size_t robustUniformTexelBufferDescriptorSize VK_EXT_descriptor_buffer

size_t storageTexelBufferDescriptorSize VK_EXT_descriptor_buffer

size_t robustStorageTexelBufferDescriptorSize VK_EXT_descriptor_buffer

size_t uniformBufferDescriptorSize VK_EXT_descriptor_buffer

size_t robustUniformBufferDescriptorSize VK_EXT_descriptor_buffer

size_t storageBufferDescriptorSize VK_EXT_descriptor_buffer

size_t robustStorageBufferDescriptorSize VK_EXT_descriptor_buffer

size_t inputAttachmentDescriptorSize VK_EXT_descriptor_buffer

size_t accelerationStructureDescriptorSize VK_EXT_descriptor_buffer

VkDeviceSize maxSamplerDescriptorBufferRange VK_EXT_descriptor_buffer

VkDeviceSize maxResourceDescriptorBufferRange VK_EXT_descriptor_buffer

VkDeviceSize samplerDescriptorBufferAddressSpaceSize VK_EXT_descriptor_buffer

VkDeviceSize resourceDescriptorBufferAddressSpaceSize VK_EXT_descriptor_buffer

VkDeviceSize descriptorBufferAddressSpaceSize VK_EXT_descriptor_buffer

size_t combinedImageSamplerDensityMapDescriptorSize VK_EXT_descriptor_buffer

uint32_t maxSubpassShadingWorkgroupSizeAspectRatio subpassShading

VkBool32 graphicsPipelineLibraryFastLinking graphicsPipelineLibrary

VkBool32 graphicsPipelineLibraryIndependentInterpolatio
nDecoration

graphicsPipelineLibrary

VkBool32 triStripVertexOrderIndependentOfProvokingVerte
x

-

uint32_t maxWeightFilterPhases textureSampleWeighted

2 × uint32_t maxWeightFilterDimension textureSampleWeighted

2 × uint32_t maxBlockMatchRegion textureBlockMatch

2 × uint32_t maxBoxFilterBlockSize textureBoxFilter

VkBool32 dynamicPrimitiveTopologyUnrestricted VK_EXT_extended_dynamic_sta
te3

uint32_t maxOpacity2StateSubdivisionLevel VK_EXT_opacity_micromap

uint32_t maxOpacity4StateSubdivisionLevel VK_EXT_opacity_micromap

uint64_t maxDecompressionIndirectCount VK_NV_memory_decompression

3959

Type Limit Feature

3 × uint32_t maxWorkGroupCount VK_HUAWEI_cluster_culling_s
hader

3 × uint32_t maxWorkGroupSize VK_HUAWEI_cluster_culling_s
hader

uint32_t maxOutputClusterCount VK_HUAWEI_cluster_culling_s
hader

VkDeviceSize indirectBufferOffsetAlignment VK_HUAWEI_cluster_culling_s
hader

uint32_t maxExecutionGraphDepth shaderEnqueue

uint32_t maxExecutionGraphShaderOutputNodes shaderEnqueue

uint32_t maxExecutionGraphShaderPayloadSize shaderEnqueue

uint32_t maxExecutionGraphShaderPayloadCount shaderEnqueue

uint32_t executionGraphDispatchAddressAlignment shaderEnqueue

VkDeviceSize extendedSparseAddressSpaceSize sparseBinding,
extendedSparseAddressSpace

Table 65. Required Limits

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxImageDimension1D - 4096 min

maxImageDimension2D - 4096 min

maxImageDimension3D - 256 min

maxImageDimensionCube - 4096 min

maxImageArrayLayers - 256 min

maxTexelBufferElements - 65536 min

maxUniformBufferRange - 16384 min

maxStorageBufferRange - 227 min

maxPushConstantsSize - 128 min

maxMemoryAllocationCount - 4096 min

maxSamplerAllocationCount - 4000 min

bufferImageGranularity - 131072 max

sparseAddressSpaceSize 0 231 min

maxBoundDescriptorSets - 4 min

maxPerStageDescriptorSamplers - 16 min

maxPerStageDescriptorUniformBuffers - 12 min

maxPerStageDescriptorStorageBuffers - 4 min

maxPerStageDescriptorSampledImages - 16 min

3960

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxPerStageDescriptorStorageImages - 4 min

maxPerStageDescriptorInputAttachments - 4 min

maxPerStageResources - 128 2 min

maxDescriptorSetSamplers - 96 8 min, n ×
PerStage

maxDescriptorSetUniformBuffers - 72 8 min, n ×
PerStage

maxDescriptorSetUniformBuffersDynamic - 8 min

maxDescriptorSetStorageBuffers - 24 8 min, n ×
PerStage

maxDescriptorSetStorageBuffersDynamic - 4 min

maxDescriptorSetSampledImages - 96 8 min, n ×
PerStage

maxDescriptorSetStorageImages - 24 8 min, n ×
PerStage

maxDescriptorSetInputAttachments - 4 min

maxVertexInputAttributes - 16 min

maxVertexInputBindings - 16 10 min

maxVertexInputAttributeOffset - 2047 min

maxVertexInputBindingStride - 2048 min

maxVertexOutputComponents - 64 min

maxTessellationGenerationLevel 0 64 min

maxTessellationPatchSize 0 32 min

maxTessellationControlPerVertexInputComponents 0 64 min

maxTessellationControlPerVertexOutputComponents 0 64 min

maxTessellationControlPerPatchOutputComponents 0 120 min

maxTessellationControlTotalOutputComponents 0 2048 min

maxTessellationEvaluationInputComponents 0 64 min

maxTessellationEvaluationOutputComponents 0 64 min

maxGeometryShaderInvocations 0 32 min

maxGeometryInputComponents 0 64 min

maxGeometryOutputComponents 0 64 min

maxGeometryOutputVertices 0 256 min

maxGeometryTotalOutputComponents 0 1024 min

3961

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxFragmentInputComponents - 64 min

maxFragmentOutputAttachments - 4 min

maxFragmentDualSrcAttachments 0 1 min

maxFragmentCombinedOutputResources - 4 min

maxComputeSharedMemorySize - 16384 min

maxComputeWorkGroupCount - (65535,65535,6553
5)

min

maxComputeWorkGroupInvocations - 128 min

maxComputeWorkGroupSize - (128,128,64) min

subPixelPrecisionBits - 4 min

subTexelPrecisionBits - 4 min

mipmapPrecisionBits - 4 min

maxDrawIndexedIndexValue 224-1 232-1 min

maxDrawIndirectCount 1 216-1 min

maxSamplerLodBias - 2 min

maxSamplerAnisotropy 1 16 min

maxViewports 1 16 min

maxViewportDimensions - (4096,4096) 3 min

viewportBoundsRange - (-8192,8191) 4 (max,min)

viewportSubPixelBits - 0 min

minMemoryMapAlignment - 64 min

minTexelBufferOffsetAlignment - 256 max

minUniformBufferOffsetAlignment - 256 max

minStorageBufferOffsetAlignment - 256 max

minTexelOffset - -8 max

maxTexelOffset - 7 min

minTexelGatherOffset 0 -8 max

maxTexelGatherOffset 0 7 min

minInterpolationOffset 0.0 -0.5 5 max

maxInterpolationOffset 0.0 0.5 - (1 ULP) 5 min

subPixelInterpolationOffsetBits 0 4 5 min

maxFramebufferWidth - 4096 min

maxFramebufferHeight - 4096 min

3962

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxFramebufferLayers - 256 min

framebufferColorSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

framebufferIntegerColorSampleCounts - (VK_SAMPLE_COUNT_1
_BIT)

min

framebufferDepthSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

framebufferStencilSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

framebufferNoAttachmentsSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

maxColorAttachments - 4 min

sampledImageColorSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

sampledImageIntegerSampleCounts - VK_SAMPLE_COUNT_1_
BIT

min

sampledImageDepthSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

sampledImageStencilSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

storageImageSampleCounts VK_SAMPLE_C
OUNT_1_BIT

(VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

maxSampleMaskWords - 1 min

timestampComputeAndGraphics - - implementatio
n-dependent

3963

Limit Unsupport
ed Limit

Supported Limit Limit Type1

timestampPeriod - - duration

maxClipDistances 0 8 min

maxCullDistances 0 8 min

maxCombinedClipAndCullDistances 0 8 min

discreteQueuePriorities - 2 min

pointSizeRange (1.0,1.0) (1.0,64.0 - ULP)6 (max,min)

lineWidthRange (1.0,1.0) (1.0,8.0 - ULP)7 (max,min)

pointSizeGranularity 0.0 1.0 6 max, fixed
point
increment

lineWidthGranularity 0.0 1.0 7 max, fixed
point
increment

strictLines - - implementatio
n-dependent

standardSampleLocations - - implementatio
n-dependent

optimalBufferCopyOffsetAlignment - - recommendati
on

optimalBufferCopyRowPitchAlignment - - recommendati
on

nonCoherentAtomSize - 256 max

maxPushDescriptors - 32 min

maxMultiviewViewCount - 6 min

maxMultiviewInstanceIndex - 227-1 min

maxDiscardRectangles 0 4 min

sampleLocationSampleCounts - VK_SAMPLE_COUNT_4_
BIT

min

maxSampleLocationGridSize - (1,1) min

sampleLocationCoordinateRange - (0.0, 0.9375) (max,min)

sampleLocationSubPixelBits - 4 min

variableSampleLocations - false implementatio
n-dependent

minImportedHostPointerAlignment - 65536 max

perViewPositionAllComponents - - implementatio
n-dependent

3964

Limit Unsupport
ed Limit

Supported Limit Limit Type1

filterMinmaxSingleComponentFormats - - implementatio
n-dependent

filterMinmaxImageComponentMapping - - implementatio
n-dependent

advancedBlendMaxColorAttachments - 1 min

advancedBlendIndependentBlend - false implementatio
n-dependent

advancedBlendNonPremultipliedSrcColor - false implementatio
n-dependent

advancedBlendNonPremultipliedDstColor - false implementatio
n-dependent

advancedBlendCorrelatedOverlap - false implementatio
n-dependent

advancedBlendAllOperations - false implementatio
n-dependent

maxPerSetDescriptors - 1024 min

maxMemoryAllocationSize - 230 min

maxBufferSize - 230 min

primitiveOverestimationSize - 0.0 min

maxExtraPrimitiveOverestimationSize - 0.0 min

extraPrimitiveOverestimationSizeGranularity - 0.0 min

primitiveUnderestimation - false implementatio
n-dependent

conservativePointAndLineRasterization - false implementatio
n-dependent

degenerateTrianglesRasterized - false implementatio
n-dependent

degenerateLinesRasterized - false implementatio
n-dependent

fullyCoveredFragmentShaderInputVariable - false implementatio
n-dependent

conservativeRasterizationPostDepthCoverage - false implementatio
n-dependent

maxUpdateAfterBindDescriptorsInAllPools 0 500000 min

shaderUniformBufferArrayNonUniformIndexingNativ
e

- false implementatio
n-dependent

3965

Limit Unsupport
ed Limit

Supported Limit Limit Type1

shaderSampledImageArrayNonUniformIndexingNative - false implementatio
n-dependent

shaderStorageBufferArrayNonUniformIndexingNativ
e

- false implementatio
n-dependent

shaderStorageImageArrayNonUniformIndexingNative - false implementatio
n-dependent

shaderInputAttachmentArrayNonUniformIndexingNat
ive

- false implementatio
n-dependent

maxPerStageDescriptorUpdateAfterBindSamplers 09 500000 9 min

maxPerStageDescriptorUpdateAfterBindUniformBuff
ers

09 12 9 min

maxPerStageDescriptorUpdateAfterBindStorageBuff
ers

09 500000 9 min

maxPerStageDescriptorUpdateAfterBindSampledImag
es

09 500000 9 min

maxPerStageDescriptorUpdateAfterBindStorageImag
es

09 500000 9 min

maxPerStageDescriptorUpdateAfterBindInputAttach
ments

09 4 9 min

maxPerStageUpdateAfterBindResources 09 500000 9 min

maxDescriptorSetUpdateAfterBindSamplers 09 500000 9 min

maxDescriptorSetUpdateAfterBindUniformBuffers 09 72 8 9 min, n ×
PerStage

maxDescriptorSetUpdateAfterBindUniformBuffersDy
namic

09 8 9 min

maxDescriptorSetUpdateAfterBindStorageBuffers 09 500000 9 min

maxDescriptorSetUpdateAfterBindStorageBuffersDy
namic

09 4 9 min

maxDescriptorSetUpdateAfterBindSampledImages 09 500000 9 min

maxDescriptorSetUpdateAfterBindStorageImages 09 500000 9 min

maxDescriptorSetUpdateAfterBindInputAttachments 09 4 9 min

maxInlineUniformBlockSize - 256 min

maxPerStageDescriptorInlineUniformBlocks - 4 min

maxPerStageDescriptorUpdateAfterBindInlineUnifo
rmBlocks

- 4 min

maxDescriptorSetInlineUniformBlocks - 4 min

maxDescriptorSetUpdateAfterBindInlineUniformBlo
cks

- 4 min

maxInlineUniformTotalSize - 256 min

3966

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxVertexAttribDivisor - 216-1 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxD
rawMeshTasksCount

- 216-1 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxT
askWorkGroupInvocations

- 32 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxT
askWorkGroupSize

- (32,1,1) min

VkPhysicalDeviceMeshShaderPropertiesNV::maxT
askTotalMemorySize

- 16384 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxT
askOutputCount

- 216-1 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshWorkGroupInvocations

- 32 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshWorkGroupSize

- (32,1,1) min

VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshTotalMemorySize

- 16384 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshOutputVertices

- 256 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshOutputPrimitives

- 256 min

VkPhysicalDeviceMeshShaderPropertiesNV::maxM
eshMultiviewViewCount

- 1 min

VkPhysicalDeviceMeshShaderPropertiesNV::mesh
OutputPerVertexGranularity

- - implementatio
n-dependent

VkPhysicalDeviceMeshShaderPropertiesNV::mesh
OutputPerPrimitiveGranularity

- - implementatio
n-dependent

VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskWorkGroupTotalCount

- 2^22 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskWorkGroupCount

- (65535,65535,6553
5)

min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskWorkGroupInvocations

- 128 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskWorkGroupSize

- (128,128,128) min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskPayloadSize

- 16384 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskSharedMemorySize

- 32768 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
TaskPayloadAndSharedMemorySize

- 32768 min

3967

Limit Unsupport
ed Limit

Supported Limit Limit Type1

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshWorkGroupTotalCount

- 2^22 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshWorkGroupCount

- (65535,65535,6553
5)

min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshWorkGroupInvocations

- 128 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshWorkGroupSize

- (128,128,128) min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshSharedMemorySize

- 28672 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshPayloadAndSharedMemorySize

- 28672 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputMemorySize

- 32768 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshPayloadAndOutputMemorySize

- 48128 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputComponents

- 128 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputVertices

- 256 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputPrimitives

- 256 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshOutputLayers

- 8 min

VkPhysicalDeviceMeshShaderPropertiesEXT::max
MeshMultiviewViewCount

- 1 min

VkPhysicalDeviceMeshShaderPropertiesEXT::mes
hOutputPerVertexGranularity

0 32 max

VkPhysicalDeviceMeshShaderPropertiesEXT::mes
hOutputPerPrimitiveGranularity

0 32 max

VkPhysicalDeviceMeshShaderPropertiesEXT::max
PreferredTaskWorkGroupInvocations

- - implementatio
n-dependent

VkPhysicalDeviceMeshShaderPropertiesEXT::max
PreferredMeshWorkGroupInvocations

- - implementatio
n-dependent

VkPhysicalDeviceMeshShaderPropertiesEXT::pre
fersLocalInvocationVertexOutput

- - implementatio
n-dependent

VkPhysicalDeviceMeshShaderPropertiesEXT::pre
fersLocalInvocationPrimitiveOutput

- - implementatio
n-dependent

VkPhysicalDeviceMeshShaderPropertiesEXT::pre
fersCompactVertexOutput

- - implementatio
n-dependent

3968

Limit Unsupport
ed Limit

Supported Limit Limit Type1

VkPhysicalDeviceMeshShaderPropertiesEXT::pre
fersCompactPrimitiveOutput

- - implementatio
n-dependent

maxTransformFeedbackStreams - 1 min

maxTransformFeedbackBuffers - 1 min

maxTransformFeedbackBufferSize - 227 min

maxTransformFeedbackStreamDataSize - 512 min

maxTransformFeedbackBufferDataSize - 512 min

maxTransformFeedbackBufferDataStride - 512 min

transformFeedbackQueries - false implementatio
n-dependent

transformFeedbackStreamsLinesTriangles - false implementatio
n-dependent

transformFeedbackRasterizationStreamSelect - false implementatio
n-dependent

transformFeedbackDraw - false implementatio
n-dependent

minFragmentDensityTexelSize - (1,1) min

maxFragmentDensityTexelSize - (1,1) min

fragmentDensityInvocations - - implementatio
n-dependent

subsampledLoads true false implementatio
n-dependent

subsampledCoarseReconstructionEarlyAccess false false implementatio
n-dependent

maxSubsampledArrayLayers 2 2 min

maxDescriptorSetSubsampledSamplers 1 1 min

fragmentDensityOffsetGranularity - (1024,1024) max

VkPhysicalDeviceRayTracingPropertiesNV::shade
rGroupHandleSize

- 16 min

VkPhysicalDeviceRayTracingPropertiesNV::maxRe
cursionDepth

- 31 min

VkPhysicalDeviceRayTracingPipelinePropertiesK
HR::shaderGroupHandleSize

- 32 exact

VkPhysicalDeviceRayTracingPipelinePropertiesK
HR::maxRayRecursionDepth

- 1 min

maxShaderGroupStride - 4096 min

3969

Limit Unsupport
ed Limit

Supported Limit Limit Type1

shaderGroupBaseAlignment - 64 max

maxGeometryCount - 224-1 min

maxInstanceCount - 224-1 min

maxTriangleCount - 229-1 min

maxPrimitiveCount - 229-1 min

maxPerStageDescriptorAccelerationStructures - 16 min

maxPerStageDescriptorUpdateAfterBindAcceleratio
nStructures

- 500000 9 min

maxDescriptorSetAccelerationStructures - 16 min

maxDescriptorSetUpdateAfterBindAccelerationStru
ctures

- 500000 9 min

minAccelerationStructureScratchOffsetAlignment - 256 max

shaderGroupHandleCaptureReplaySize - 64 max

maxRayDispatchInvocationCount - 230 min

shaderGroupHandleAlignment - 32 max

maxRayHitAttributeSize - 32 min

maxTimelineSemaphoreValueDifference - 231-1 min

lineSubPixelPrecisionBits - 4 min

maxGraphicsShaderGroupCount - 212 min

maxIndirectSequenceCount - 220 min

maxIndirectCommandsTokenCount - 16 min

maxIndirectCommandsStreamCount - 16 min

maxIndirectCommandsTokenOffset - 2047 min

maxIndirectCommandsStreamStride - 2048 min

minSequencesCountBufferOffsetAlignment - 256 max

minSequencesIndexBufferOffsetAlignment - 256 max

minIndirectCommandsBufferOffsetAlignment - 256 max

maxCustomBorderColorSamplers - 32 min

robustStorageBufferAccessSizeAlignment - 4 max

robustUniformBufferAccessSizeAlignment - 256 max

minFragmentShadingRateAttachmentTexelSize (0,0) (32,32) max

maxFragmentShadingRateAttachmentTexelSize (0,0) (8,8) min

maxFragmentShadingRateAttachmentTexelSizeAspect
Ratio

0 1 min

3970

Limit Unsupport
ed Limit

Supported Limit Limit Type1

primitiveFragmentShadingRateWithMultipleViewpor
ts

false false implementatio
n-dependent

layeredShadingRateAttachments false false implementatio
n-dependent

fragmentShadingRateNonTrivialCombinerOps - false implementatio
n-dependent

maxFragmentSize - (2,2) min

maxFragmentSizeAspectRatio - 2 min

maxFragmentShadingRateCoverageSamples - 16 min

maxFragmentShadingRateRasterizationSamples - VK_SAMPLE_COUNT_4_
BIT

min

fragmentShadingRateWithShaderDepthStencilWrites - false implementatio
n-dependent

fragmentShadingRateWithSampleMask - false implementatio
n-dependent

fragmentShadingRateWithShaderSampleMask - false implementatio
n-dependent

fragmentShadingRateWithConservativeRasterizatio
n

- false implementatio
n-dependent

fragmentShadingRateWithFragmentShaderInterlock - false implementatio
n-dependent

fragmentShadingRateWithCustomSampleLocations - false implementatio
n-dependent

fragmentShadingRateStrictMultiplyCombiner - false implementatio
n-dependent

maxFragmentShadingRateInvocationCount - VK_SAMPLE_COUNT_4_
BIT

min

combinedImageSamplerDescriptorSingleArray - false implementatio
n-dependent

bufferlessPushDescriptors - false implementatio
n-dependent

allowSamplerImageViewPostSubmitCreation - false implementatio
n-dependent

descriptorBufferOffsetAlignment - 256 max

maxDescriptorBufferBindings - 3 min

maxResourceDescriptorBufferBindings - 1 min

maxSamplerDescriptorBufferBindings - 1 min

3971

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxEmbeddedImmutableSamplerBindings - 1 min

maxEmbeddedImmutableSamplers - 2032 min

bufferCaptureReplayDescriptorDataSize - 64 max

imageCaptureReplayDescriptorDataSize - 64 max

imageViewCaptureReplayDescriptorDataSize - 64 max

samplerCaptureReplayDescriptorDataSize - 64 max

accelerationStructureCaptureReplayDescriptorDat
aSize

- 64 max

samplerDescriptorSize - 256 max

combinedImageSamplerDescriptorSize - 256 max

sampledImageDescriptorSize - 256 max

storageImageDescriptorSize - 256 max

uniformTexelBufferDescriptorSize - 256 max

robustUniformTexelBufferDescriptorSize - 256 max

storageTexelBufferDescriptorSize - 256 max

robustStorageTexelBufferDescriptorSize - 256 max

uniformBufferDescriptorSize - 256 max

robustUniformBufferDescriptorSize - 256 max

storageBufferDescriptorSize - 256 max

robustStorageBufferDescriptorSize - 256 max

inputAttachmentDescriptorSize - 256 max

accelerationStructureDescriptorSize - 256 max

maxSamplerDescriptorBufferRange - 211 ×
samplerDescriptorS
ize

min

maxResourceDescriptorBufferRange - (220 - 215) ×
maxResourceDescrip
torSize 12

min

samplerDescriptorBufferAddressSpaceSize - 227 min

resourceDescriptorBufferAddressSpaceSize - 227 min

descriptorBufferAddressSpaceSize - 227 min

combinedImageSamplerDensityMapDescriptorSize - 256 max

maxSubpassShadingWorkgroupSizeAspectRatio 0 1 min

maxMultiDrawCount - 1024 min

maxCommandBufferNestingLevel - 1 min

3972

Limit Unsupport
ed Limit

Supported Limit Limit Type1

graphicsPipelineLibraryFastLinking - false implementatio
n-dependent

graphicsPipelineLibraryIndependentInterpolation
Decoration

- false implementatio
n-dependent

triStripVertexOrderIndependentOfProvokingVertex - false implementatio
n-dependent

maxWeightFilterPhases - 1024 min

maxWeightFilterDimension - (64,64) min

maxBlockMatchRegion - (64,64) min

maxBoxFilterBlockSize - (64,64) min

dynamicPrimitiveTopologyUnrestricted - - implementatio
n-dependent

maxOpacity2StateSubdivisionLevel - 3 min

maxOpacity4StateSubdivisionLevel - 3 min

maxDecompressionIndirectCount 1 216-1 min

maxWorkGroupCount - (65536,1,1) min

maxWorkGroupSize - (32,1,1) min

maxOutputClusterCount - 1024 min

indirectBufferOffsetAlignment - - implementatio
n-dependent

maxExecutionGraphDepth - 32 min

maxExecutionGraphShaderOutputNodes - 256 min

maxExecutionGraphShaderPayloadSize - 32768 min

maxExecutionGraphShaderPayloadCount - 256 min

executionGraphDispatchAddressAlignment - 4 max

extendedSparseAddressSpaceSize 0 sparseAddressSpace
Size

min

renderPassStripeGranularity - (64,64) max

maxRenderPassStripes - 32 min

minPlacedMemoryMapAlignment - 65536 max

1

The Limit Type column specifies the limit is either the minimum limit all implementations must
support, the maximum limit all implementations must support, or the exact value all
implementations must support. For bitmasks a minimum limit is the least bits all
implementations must set, but they may have additional bits set beyond this minimum.

3973

2

The maxPerStageResources must be at least the smallest of the following:

• the sum of the maxPerStageDescriptorUniformBuffers, maxPerStageDescriptorStorageBuffers,
maxPerStageDescriptorSampledImages, maxPerStageDescriptorStorageImages,
maxPerStageDescriptorInputAttachments, maxColorAttachments limits, or

• 128.

It may not be possible to reach this limit in every stage.

3

See maxViewportDimensions for the required relationship to other limits.

4

See viewportBoundsRange for the required relationship to other limits.

5

The values minInterpolationOffset and maxInterpolationOffset describe the closed interval of
supported interpolation offsets: [minInterpolationOffset, maxInterpolationOffset]. The ULP is
determined by subPixelInterpolationOffsetBits. If subPixelInterpolationOffsetBits is 4, this
provides increments of (1/24) = 0.0625, and thus the range of supported interpolation offsets
would be [-0.5, 0.4375].

6

The point size ULP is determined by pointSizeGranularity. If the pointSizeGranularity is 0.125,
the range of supported point sizes must be at least [1.0, 63.875].

7

The line width ULP is determined by lineWidthGranularity. If the lineWidthGranularity is 0.0625,
the range of supported line widths must be at least [1.0, 7.9375].

8

The minimum maxDescriptorSet* limit is n times the corresponding specification minimum
maxPerStageDescriptor* limit, where n is the number of shader stages supported by the
VkPhysicalDevice. If all shader stages are supported, n = 6 (vertex, tessellation control,
tessellation evaluation, geometry, fragment, compute).

9

The UpdateAfterBind descriptor limits must each be greater than or equal to the corresponding
non-UpdateAfterBind limit.

10

If the VK_KHR_portability_subset extension is enabled, the required minimum value of
maxVertexInputBindings is 8.

12

maxResourceDescriptorSize is defined as the maximum value of storageImageDescriptorSize,
sampledImageDescriptorSize, robustUniformTexelBufferDescriptorSize,

3974

robustStorageTexelBufferDescriptorSize, robustUniformBufferDescriptorSize,
robustStorageBufferDescriptorSize, inputAttachmentDescriptorSize, and
accelerationStructureDescriptorSize.

48.2. Additional Multisampling Capabilities
To query additional multisampling capabilities which may be supported for a specific sample
count, beyond the minimum capabilities described for Limits above, call:

// Provided by VK_EXT_sample_locations
void vkGetPhysicalDeviceMultisamplePropertiesEXT(
 VkPhysicalDevice physicalDevice,
 VkSampleCountFlagBits samples,
 VkMultisamplePropertiesEXT* pMultisampleProperties);

• physicalDevice is the physical device from which to query the additional multisampling
capabilities.

• samples is a VkSampleCountFlagBits value specifying the sample count to query capabilities for.

• pMultisampleProperties is a pointer to a VkMultisamplePropertiesEXT structure in which
information about additional multisampling capabilities specific to the sample count is
returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceMultisamplePropertiesEXT-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceMultisamplePropertiesEXT-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-vkGetPhysicalDeviceMultisamplePropertiesEXT-pMultisampleProperties-parameter
pMultisampleProperties must be a valid pointer to a VkMultisamplePropertiesEXT
structure

The VkMultisamplePropertiesEXT structure is defined as

// Provided by VK_EXT_sample_locations
typedef struct VkMultisamplePropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkExtent2D maxSampleLocationGridSize;
} VkMultisamplePropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

3975

• maxSampleLocationGridSize is the maximum size of the pixel grid in which sample locations can
vary.

Valid Usage (Implicit)

• VUID-VkMultisamplePropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT

• VUID-VkMultisamplePropertiesEXT-pNext-pNext
pNext must be NULL

If the sample count for which additional multisampling capabilities are requested using
vkGetPhysicalDeviceMultisamplePropertiesEXT is set in sampleLocationSampleCounts the width and
height members of VkMultisamplePropertiesEXT::maxSampleLocationGridSize must be greater than or
equal to the corresponding members of maxSampleLocationGridSize, respectively, otherwise both
members must be 0.

48.3. Profile Limits

48.3.1. Roadmap 2022

Implementations that claim support for the Roadmap 2022 profile must satisfy the following
additional limit requirements:

Limit Supported Limit Limit Type1

maxImageDimension1D 8192 min

maxImageDimension2D 8192 min

maxImageDimensionCube 8192 min

maxImageArrayLayers 2048 min

maxUniformBufferRange 65536 min

bufferImageGranularity 4096 max

maxPerStageDescriptorSamplers 64 min

maxPerStageDescriptorUniformBuffers 15 min

maxPerStageDescriptorStorageBuffers 30 min

maxPerStageDescriptorSampledImages 200 min

maxPerStageDescriptorStorageImages 16 min

maxPerStageResources 200 min

maxDescriptorSetSamplers 576 min

maxDescriptorSetUniformBuffers 90 min

maxDescriptorSetStorageBuffers 96 min

maxDescriptorSetSampledImages 1800 min

3976

Limit Supported Limit Limit Type1

maxDescriptorSetStorageImages 144 min

maxFragmentCombinedOutputResources 16 min

maxComputeWorkGroupInvocations 256 min

maxComputeWorkGroupSize (256,256,64) min

subTexelPrecisionBits 8 min

mipmapPrecisionBits 6 min

maxSamplerLodBias 14 min

pointSizeGranularity 0.125 max

lineWidthGranularity 0.5 max

standardSampleLocations VK_TRUE Boolean

maxColorAttachments 7 min

subgroupSize 4 min

subgroupSupportedStages VK_SHADER_STAGE_COMPU
TE_BIT
VK_SHADER_STAGE_FRAGM
ENT_BIT

bitfield

subgroupSupportedOperations VK_SUBGROUP_FEATURE_B
ASIC_BIT
VK_SUBGROUP_FEATURE_V
OTE_BIT
VK_SUBGROUP_FEATURE_A
RITHMETIC_BIT
VK_SUBGROUP_FEATURE_B
ALLOT_BIT
VK_SUBGROUP_FEATURE_S
HUFFLE_BIT
VK_SUBGROUP_FEATURE_S
HUFFLE_RELATIVE_BIT
VK_SUBGROUP_FEATURE_Q
UAD_BIT

bitfield

shaderSignedZeroInfNanPreserveFloat16 VK_TRUE Boolean

shaderSignedZeroInfNanPreserveFloat32 VK_TRUE Boolean

maxSubgroupSize 4 min

maxPerStageDescriptorUpdateAfterBindInputAttachments 7 min

48.3.2. Roadmap 2024

Implementations that claim support for the Roadmap 2024 profile must satisfy the following
additional limit requirements:

3977

Limit Supported Limit Limit Type1

shaderRoundingModeRTEFloat16 VK_TRUE Boolean

shaderRoundingModeRTEFloat32 VK_TRUE Boolean

timestampComputeAndGraphics VK_TRUE Boolean

maxColorAttachments 8 min

maxBoundDescriptorSets 7 min

3978

Chapter 49. Formats
Supported buffer and image formats may vary across implementations. A minimum set of format
features are guaranteed, but others must be explicitly queried before use to ensure they are
supported by the implementation.

The features for the set of formats (VkFormat) supported by the implementation are queried
individually using the vkGetPhysicalDeviceFormatProperties command.

49.1. Format Definition
The following image formats can be passed to, and may be returned from Vulkan commands. The
memory required to store each format is discussed with that format, and also summarized in the
Representation and Texel Block Size section and the Compatible formats table.

// Provided by VK_VERSION_1_0
typedef enum VkFormat {
 VK_FORMAT_UNDEFINED = 0,
 VK_FORMAT_R4G4_UNORM_PACK8 = 1,
 VK_FORMAT_R4G4B4A4_UNORM_PACK16 = 2,
 VK_FORMAT_B4G4R4A4_UNORM_PACK16 = 3,
 VK_FORMAT_R5G6B5_UNORM_PACK16 = 4,
 VK_FORMAT_B5G6R5_UNORM_PACK16 = 5,
 VK_FORMAT_R5G5B5A1_UNORM_PACK16 = 6,
 VK_FORMAT_B5G5R5A1_UNORM_PACK16 = 7,
 VK_FORMAT_A1R5G5B5_UNORM_PACK16 = 8,
 VK_FORMAT_R8_UNORM = 9,
 VK_FORMAT_R8_SNORM = 10,
 VK_FORMAT_R8_USCALED = 11,
 VK_FORMAT_R8_SSCALED = 12,
 VK_FORMAT_R8_UINT = 13,
 VK_FORMAT_R8_SINT = 14,
 VK_FORMAT_R8_SRGB = 15,
 VK_FORMAT_R8G8_UNORM = 16,
 VK_FORMAT_R8G8_SNORM = 17,
 VK_FORMAT_R8G8_USCALED = 18,
 VK_FORMAT_R8G8_SSCALED = 19,
 VK_FORMAT_R8G8_UINT = 20,
 VK_FORMAT_R8G8_SINT = 21,
 VK_FORMAT_R8G8_SRGB = 22,
 VK_FORMAT_R8G8B8_UNORM = 23,
 VK_FORMAT_R8G8B8_SNORM = 24,
 VK_FORMAT_R8G8B8_USCALED = 25,
 VK_FORMAT_R8G8B8_SSCALED = 26,
 VK_FORMAT_R8G8B8_UINT = 27,
 VK_FORMAT_R8G8B8_SINT = 28,
 VK_FORMAT_R8G8B8_SRGB = 29,
 VK_FORMAT_B8G8R8_UNORM = 30,
 VK_FORMAT_B8G8R8_SNORM = 31,

3979

 VK_FORMAT_B8G8R8_USCALED = 32,
 VK_FORMAT_B8G8R8_SSCALED = 33,
 VK_FORMAT_B8G8R8_UINT = 34,
 VK_FORMAT_B8G8R8_SINT = 35,
 VK_FORMAT_B8G8R8_SRGB = 36,
 VK_FORMAT_R8G8B8A8_UNORM = 37,
 VK_FORMAT_R8G8B8A8_SNORM = 38,
 VK_FORMAT_R8G8B8A8_USCALED = 39,
 VK_FORMAT_R8G8B8A8_SSCALED = 40,
 VK_FORMAT_R8G8B8A8_UINT = 41,
 VK_FORMAT_R8G8B8A8_SINT = 42,
 VK_FORMAT_R8G8B8A8_SRGB = 43,
 VK_FORMAT_B8G8R8A8_UNORM = 44,
 VK_FORMAT_B8G8R8A8_SNORM = 45,
 VK_FORMAT_B8G8R8A8_USCALED = 46,
 VK_FORMAT_B8G8R8A8_SSCALED = 47,
 VK_FORMAT_B8G8R8A8_UINT = 48,
 VK_FORMAT_B8G8R8A8_SINT = 49,
 VK_FORMAT_B8G8R8A8_SRGB = 50,
 VK_FORMAT_A8B8G8R8_UNORM_PACK32 = 51,
 VK_FORMAT_A8B8G8R8_SNORM_PACK32 = 52,
 VK_FORMAT_A8B8G8R8_USCALED_PACK32 = 53,
 VK_FORMAT_A8B8G8R8_SSCALED_PACK32 = 54,
 VK_FORMAT_A8B8G8R8_UINT_PACK32 = 55,
 VK_FORMAT_A8B8G8R8_SINT_PACK32 = 56,
 VK_FORMAT_A8B8G8R8_SRGB_PACK32 = 57,
 VK_FORMAT_A2R10G10B10_UNORM_PACK32 = 58,
 VK_FORMAT_A2R10G10B10_SNORM_PACK32 = 59,
 VK_FORMAT_A2R10G10B10_USCALED_PACK32 = 60,
 VK_FORMAT_A2R10G10B10_SSCALED_PACK32 = 61,
 VK_FORMAT_A2R10G10B10_UINT_PACK32 = 62,
 VK_FORMAT_A2R10G10B10_SINT_PACK32 = 63,
 VK_FORMAT_A2B10G10R10_UNORM_PACK32 = 64,
 VK_FORMAT_A2B10G10R10_SNORM_PACK32 = 65,
 VK_FORMAT_A2B10G10R10_USCALED_PACK32 = 66,
 VK_FORMAT_A2B10G10R10_SSCALED_PACK32 = 67,
 VK_FORMAT_A2B10G10R10_UINT_PACK32 = 68,
 VK_FORMAT_A2B10G10R10_SINT_PACK32 = 69,
 VK_FORMAT_R16_UNORM = 70,
 VK_FORMAT_R16_SNORM = 71,
 VK_FORMAT_R16_USCALED = 72,
 VK_FORMAT_R16_SSCALED = 73,
 VK_FORMAT_R16_UINT = 74,
 VK_FORMAT_R16_SINT = 75,
 VK_FORMAT_R16_SFLOAT = 76,
 VK_FORMAT_R16G16_UNORM = 77,
 VK_FORMAT_R16G16_SNORM = 78,
 VK_FORMAT_R16G16_USCALED = 79,
 VK_FORMAT_R16G16_SSCALED = 80,
 VK_FORMAT_R16G16_UINT = 81,
 VK_FORMAT_R16G16_SINT = 82,

3980

 VK_FORMAT_R16G16_SFLOAT = 83,
 VK_FORMAT_R16G16B16_UNORM = 84,
 VK_FORMAT_R16G16B16_SNORM = 85,
 VK_FORMAT_R16G16B16_USCALED = 86,
 VK_FORMAT_R16G16B16_SSCALED = 87,
 VK_FORMAT_R16G16B16_UINT = 88,
 VK_FORMAT_R16G16B16_SINT = 89,
 VK_FORMAT_R16G16B16_SFLOAT = 90,
 VK_FORMAT_R16G16B16A16_UNORM = 91,
 VK_FORMAT_R16G16B16A16_SNORM = 92,
 VK_FORMAT_R16G16B16A16_USCALED = 93,
 VK_FORMAT_R16G16B16A16_SSCALED = 94,
 VK_FORMAT_R16G16B16A16_UINT = 95,
 VK_FORMAT_R16G16B16A16_SINT = 96,
 VK_FORMAT_R16G16B16A16_SFLOAT = 97,
 VK_FORMAT_R32_UINT = 98,
 VK_FORMAT_R32_SINT = 99,
 VK_FORMAT_R32_SFLOAT = 100,
 VK_FORMAT_R32G32_UINT = 101,
 VK_FORMAT_R32G32_SINT = 102,
 VK_FORMAT_R32G32_SFLOAT = 103,
 VK_FORMAT_R32G32B32_UINT = 104,
 VK_FORMAT_R32G32B32_SINT = 105,
 VK_FORMAT_R32G32B32_SFLOAT = 106,
 VK_FORMAT_R32G32B32A32_UINT = 107,
 VK_FORMAT_R32G32B32A32_SINT = 108,
 VK_FORMAT_R32G32B32A32_SFLOAT = 109,
 VK_FORMAT_R64_UINT = 110,
 VK_FORMAT_R64_SINT = 111,
 VK_FORMAT_R64_SFLOAT = 112,
 VK_FORMAT_R64G64_UINT = 113,
 VK_FORMAT_R64G64_SINT = 114,
 VK_FORMAT_R64G64_SFLOAT = 115,
 VK_FORMAT_R64G64B64_UINT = 116,
 VK_FORMAT_R64G64B64_SINT = 117,
 VK_FORMAT_R64G64B64_SFLOAT = 118,
 VK_FORMAT_R64G64B64A64_UINT = 119,
 VK_FORMAT_R64G64B64A64_SINT = 120,
 VK_FORMAT_R64G64B64A64_SFLOAT = 121,
 VK_FORMAT_B10G11R11_UFLOAT_PACK32 = 122,
 VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 = 123,
 VK_FORMAT_D16_UNORM = 124,
 VK_FORMAT_X8_D24_UNORM_PACK32 = 125,
 VK_FORMAT_D32_SFLOAT = 126,
 VK_FORMAT_S8_UINT = 127,
 VK_FORMAT_D16_UNORM_S8_UINT = 128,
 VK_FORMAT_D24_UNORM_S8_UINT = 129,
 VK_FORMAT_D32_SFLOAT_S8_UINT = 130,
 VK_FORMAT_BC1_RGB_UNORM_BLOCK = 131,
 VK_FORMAT_BC1_RGB_SRGB_BLOCK = 132,
 VK_FORMAT_BC1_RGBA_UNORM_BLOCK = 133,

3981

 VK_FORMAT_BC1_RGBA_SRGB_BLOCK = 134,
 VK_FORMAT_BC2_UNORM_BLOCK = 135,
 VK_FORMAT_BC2_SRGB_BLOCK = 136,
 VK_FORMAT_BC3_UNORM_BLOCK = 137,
 VK_FORMAT_BC3_SRGB_BLOCK = 138,
 VK_FORMAT_BC4_UNORM_BLOCK = 139,
 VK_FORMAT_BC4_SNORM_BLOCK = 140,
 VK_FORMAT_BC5_UNORM_BLOCK = 141,
 VK_FORMAT_BC5_SNORM_BLOCK = 142,
 VK_FORMAT_BC6H_UFLOAT_BLOCK = 143,
 VK_FORMAT_BC6H_SFLOAT_BLOCK = 144,
 VK_FORMAT_BC7_UNORM_BLOCK = 145,
 VK_FORMAT_BC7_SRGB_BLOCK = 146,
 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK = 147,
 VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK = 148,
 VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK = 149,
 VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK = 150,
 VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK = 151,
 VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK = 152,
 VK_FORMAT_EAC_R11_UNORM_BLOCK = 153,
 VK_FORMAT_EAC_R11_SNORM_BLOCK = 154,
 VK_FORMAT_EAC_R11G11_UNORM_BLOCK = 155,
 VK_FORMAT_EAC_R11G11_SNORM_BLOCK = 156,
 VK_FORMAT_ASTC_4x4_UNORM_BLOCK = 157,
 VK_FORMAT_ASTC_4x4_SRGB_BLOCK = 158,
 VK_FORMAT_ASTC_5x4_UNORM_BLOCK = 159,
 VK_FORMAT_ASTC_5x4_SRGB_BLOCK = 160,
 VK_FORMAT_ASTC_5x5_UNORM_BLOCK = 161,
 VK_FORMAT_ASTC_5x5_SRGB_BLOCK = 162,
 VK_FORMAT_ASTC_6x5_UNORM_BLOCK = 163,
 VK_FORMAT_ASTC_6x5_SRGB_BLOCK = 164,
 VK_FORMAT_ASTC_6x6_UNORM_BLOCK = 165,
 VK_FORMAT_ASTC_6x6_SRGB_BLOCK = 166,
 VK_FORMAT_ASTC_8x5_UNORM_BLOCK = 167,
 VK_FORMAT_ASTC_8x5_SRGB_BLOCK = 168,
 VK_FORMAT_ASTC_8x6_UNORM_BLOCK = 169,
 VK_FORMAT_ASTC_8x6_SRGB_BLOCK = 170,
 VK_FORMAT_ASTC_8x8_UNORM_BLOCK = 171,
 VK_FORMAT_ASTC_8x8_SRGB_BLOCK = 172,
 VK_FORMAT_ASTC_10x5_UNORM_BLOCK = 173,
 VK_FORMAT_ASTC_10x5_SRGB_BLOCK = 174,
 VK_FORMAT_ASTC_10x6_UNORM_BLOCK = 175,
 VK_FORMAT_ASTC_10x6_SRGB_BLOCK = 176,
 VK_FORMAT_ASTC_10x8_UNORM_BLOCK = 177,
 VK_FORMAT_ASTC_10x8_SRGB_BLOCK = 178,
 VK_FORMAT_ASTC_10x10_UNORM_BLOCK = 179,
 VK_FORMAT_ASTC_10x10_SRGB_BLOCK = 180,
 VK_FORMAT_ASTC_12x10_UNORM_BLOCK = 181,
 VK_FORMAT_ASTC_12x10_SRGB_BLOCK = 182,
 VK_FORMAT_ASTC_12x12_UNORM_BLOCK = 183,
 VK_FORMAT_ASTC_12x12_SRGB_BLOCK = 184,

3982

 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8B8G8R8_422_UNORM = 1000156000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_B8G8R8G8_422_UNORM = 1000156001,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM = 1000156002,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM = 1000156003,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM = 1000156004,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8R8_2PLANE_422_UNORM = 1000156005,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM = 1000156006,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R10X6_UNORM_PACK16 = 1000156007,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R10X6G10X6_UNORM_2PACK16 = 1000156008,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 = 1000156009,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16 = 1000156010,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16 = 1000156011,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16 = 1000156012,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16 = 1000156013,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16 = 1000156014,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16 = 1000156015,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16 = 1000156016,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R12X4_UNORM_PACK16 = 1000156017,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R12X4G12X4_UNORM_2PACK16 = 1000156018,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16 = 1000156019,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16 = 1000156020,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16 = 1000156021,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16 = 1000156022,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16 = 1000156023,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16 = 1000156024,
 // Provided by VK_VERSION_1_1

3983

 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16 = 1000156025,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16 = 1000156026,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16B16G16R16_422_UNORM = 1000156027,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_B16G16R16G16_422_UNORM = 1000156028,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM = 1000156029,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16R16_2PLANE_420_UNORM = 1000156030,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM = 1000156031,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16R16_2PLANE_422_UNORM = 1000156032,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM = 1000156033,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_G8_B8R8_2PLANE_444_UNORM = 1000330000,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16 = 1000330001,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16 = 1000330002,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_G16_B16R16_2PLANE_444_UNORM = 1000330003,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_A4R4G4B4_UNORM_PACK16 = 1000340000,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_A4B4G4R4_UNORM_PACK16 = 1000340001,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK = 1000066000,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK = 1000066001,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK = 1000066002,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK = 1000066003,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK = 1000066004,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK = 1000066005,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK = 1000066006,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK = 1000066007,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK = 1000066008,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK = 1000066009,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK = 1000066010,

3984

 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK = 1000066011,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK = 1000066012,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK = 1000066013,
 // Provided by VK_IMG_format_pvrtc
 VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG = 1000054000,
 // Provided by VK_IMG_format_pvrtc
 VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG = 1000054001,
 // Provided by VK_IMG_format_pvrtc
 VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG = 1000054002,
 // Provided by VK_IMG_format_pvrtc
 VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG = 1000054003,
 // Provided by VK_IMG_format_pvrtc
 VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG = 1000054004,
 // Provided by VK_IMG_format_pvrtc
 VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG = 1000054005,
 // Provided by VK_IMG_format_pvrtc
 VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG = 1000054006,
 // Provided by VK_IMG_format_pvrtc
 VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG = 1000054007,
 // Provided by VK_NV_optical_flow
 VK_FORMAT_R16G16_S10_5_NV = 1000464000,
 // Provided by VK_KHR_maintenance5
 VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR = 1000470000,
 // Provided by VK_KHR_maintenance5
 VK_FORMAT_A8_UNORM_KHR = 1000470001,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr

3985

 VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK,
 // Provided by VK_EXT_texture_compression_astc_hdr
 VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK_EXT = VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G8B8G8R8_422_UNORM_KHR = VK_FORMAT_G8B8G8R8_422_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_B8G8R8G8_422_UNORM_KHR = VK_FORMAT_B8G8R8G8_422_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM_KHR = VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G8_B8R8_2PLANE_422_UNORM_KHR = VK_FORMAT_G8_B8R8_2PLANE_422_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM_KHR = VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_R10X6_UNORM_PACK16_KHR = VK_FORMAT_R10X6_UNORM_PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_R10X6G10X6_UNORM_2PACK16_KHR = VK_FORMAT_R10X6G10X6_UNORM_2PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16_KHR =
VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16_KHR =
VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16_KHR =
VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16_KHR =
VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16_KHR =
VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16_KHR =
VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16_KHR =
VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16_KHR =
VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_R12X4_UNORM_PACK16_KHR = VK_FORMAT_R12X4_UNORM_PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_R12X4G12X4_UNORM_2PACK16_KHR = VK_FORMAT_R12X4G12X4_UNORM_2PACK16,

3986

 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16_KHR =
VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16_KHR =
VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16_KHR =
VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16_KHR =
VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16_KHR =
VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16_KHR =
VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16_KHR =
VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16_KHR =
VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G16B16G16R16_422_UNORM_KHR = VK_FORMAT_G16B16G16R16_422_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_B16G16R16G16_422_UNORM_KHR = VK_FORMAT_B16G16R16G16_422_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM_KHR =
VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G16_B16R16_2PLANE_420_UNORM_KHR = VK_FORMAT_G16_B16R16_2PLANE_420_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM_KHR =
VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G16_B16R16_2PLANE_422_UNORM_KHR = VK_FORMAT_G16_B16R16_2PLANE_422_UNORM,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM_KHR =
VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM,
 // Provided by VK_EXT_ycbcr_2plane_444_formats
 VK_FORMAT_G8_B8R8_2PLANE_444_UNORM_EXT = VK_FORMAT_G8_B8R8_2PLANE_444_UNORM,
 // Provided by VK_EXT_ycbcr_2plane_444_formats
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16_EXT =
VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16,
 // Provided by VK_EXT_ycbcr_2plane_444_formats
 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16_EXT =
VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16,
 // Provided by VK_EXT_ycbcr_2plane_444_formats
 VK_FORMAT_G16_B16R16_2PLANE_444_UNORM_EXT = VK_FORMAT_G16_B16R16_2PLANE_444_UNORM,

3987

 // Provided by VK_EXT_4444_formats
 VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT = VK_FORMAT_A4R4G4B4_UNORM_PACK16,
 // Provided by VK_EXT_4444_formats
 VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT = VK_FORMAT_A4B4G4R4_UNORM_PACK16,
} VkFormat;

• VK_FORMAT_UNDEFINED specifies that the format is not specified.

• VK_FORMAT_R4G4_UNORM_PACK8 specifies a two-component, 8-bit packed unsigned normalized
format that has a 4-bit R component in bits 4..7, and a 4-bit G component in bits 0..3.

• VK_FORMAT_R4G4B4A4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 4-bit R component in bits 12..15, a 4-bit G component in bits 8..11,
a 4-bit B component in bits 4..7, and a 4-bit A component in bits 0..3.

• VK_FORMAT_B4G4R4A4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 4-bit B component in bits 12..15, a 4-bit G component in bits 8..11,
a 4-bit R component in bits 4..7, and a 4-bit A component in bits 0..3.

• VK_FORMAT_A4R4G4B4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 4-bit A component in bits 12..15, a 4-bit R component in bits 8..11,
a 4-bit G component in bits 4..7, and a 4-bit B component in bits 0..3.

• VK_FORMAT_A4B4G4R4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 4-bit A component in bits 12..15, a 4-bit B component in bits 8..11,
a 4-bit G component in bits 4..7, and a 4-bit R component in bits 0..3.

• VK_FORMAT_R5G6B5_UNORM_PACK16 specifies a three-component, 16-bit packed unsigned normalized
format that has a 5-bit R component in bits 11..15, a 6-bit G component in bits 5..10, and a 5-bit B
component in bits 0..4.

• VK_FORMAT_B5G6R5_UNORM_PACK16 specifies a three-component, 16-bit packed unsigned normalized
format that has a 5-bit B component in bits 11..15, a 6-bit G component in bits 5..10, and a 5-bit R
component in bits 0..4.

• VK_FORMAT_R5G5B5A1_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 5-bit R component in bits 11..15, a 5-bit G component in bits 6..10,
a 5-bit B component in bits 1..5, and a 1-bit A component in bit 0.

• VK_FORMAT_B5G5R5A1_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 5-bit B component in bits 11..15, a 5-bit G component in bits 6..10,
a 5-bit R component in bits 1..5, and a 1-bit A component in bit 0.

• VK_FORMAT_A1R5G5B5_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 1-bit A component in bit 15, a 5-bit R component in bits 10..14, a 5-
bit G component in bits 5..9, and a 5-bit B component in bits 0..4.

• VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR specifies a four-component, 16-bit packed unsigned
normalized format that has a 1-bit A component in bit 15, a 5-bit B component in bits 10..14, a 5-
bit G component in bits 5..9, and a 5-bit R component in bits 0..4.

• VK_FORMAT_A8_UNORM_KHR specifies a one-component, 8-bit unsigned normalized format that has a
single 8-bit A component.

• VK_FORMAT_R8_UNORM specifies a one-component, 8-bit unsigned normalized format that has a

3988

single 8-bit R component.

• VK_FORMAT_R8_SNORM specifies a one-component, 8-bit signed normalized format that has a single
8-bit R component.

• VK_FORMAT_R8_USCALED specifies a one-component, 8-bit unsigned scaled integer format that has a
single 8-bit R component.

• VK_FORMAT_R8_SSCALED specifies a one-component, 8-bit signed scaled integer format that has a
single 8-bit R component.

• VK_FORMAT_R8_UINT specifies a one-component, 8-bit unsigned integer format that has a single 8-
bit R component.

• VK_FORMAT_R8_SINT specifies a one-component, 8-bit signed integer format that has a single 8-bit
R component.

• VK_FORMAT_R8_SRGB specifies a one-component, 8-bit unsigned normalized format that has a
single 8-bit R component stored with sRGB nonlinear encoding.

• VK_FORMAT_R8G8_UNORM specifies a two-component, 16-bit unsigned normalized format that has an
8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SNORM specifies a two-component, 16-bit signed normalized format that has an 8-
bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_USCALED specifies a two-component, 16-bit unsigned scaled integer format that
has an 8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SSCALED specifies a two-component, 16-bit signed scaled integer format that has
an 8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_UINT specifies a two-component, 16-bit unsigned integer format that has an 8-bit
R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SINT specifies a two-component, 16-bit signed integer format that has an 8-bit R
component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SRGB specifies a two-component, 16-bit unsigned normalized format that has an
8-bit R component stored with sRGB nonlinear encoding in byte 0, and an 8-bit G component
stored with sRGB nonlinear encoding in byte 1.

• VK_FORMAT_R8G8B8_UNORM specifies a three-component, 24-bit unsigned normalized format that
has an 8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in
byte 2.

• VK_FORMAT_R8G8B8_SNORM specifies a three-component, 24-bit signed normalized format that has
an 8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in
byte 2.

• VK_FORMAT_R8G8B8_USCALED specifies a three-component, 24-bit unsigned scaled format that has an
8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_SSCALED specifies a three-component, 24-bit signed scaled format that has an 8-
bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_UINT specifies a three-component, 24-bit unsigned integer format that has an
8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

3989

• VK_FORMAT_R8G8B8_SINT specifies a three-component, 24-bit signed integer format that has an 8-
bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_SRGB specifies a three-component, 24-bit unsigned normalized format that has
an 8-bit R component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component
stored with sRGB nonlinear encoding in byte 1, and an 8-bit B component stored with sRGB
nonlinear encoding in byte 2.

• VK_FORMAT_B8G8R8_UNORM specifies a three-component, 24-bit unsigned normalized format that
has an 8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in
byte 2.

• VK_FORMAT_B8G8R8_SNORM specifies a three-component, 24-bit signed normalized format that has
an 8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in
byte 2.

• VK_FORMAT_B8G8R8_USCALED specifies a three-component, 24-bit unsigned scaled format that has an
8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SSCALED specifies a three-component, 24-bit signed scaled format that has an 8-
bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_UINT specifies a three-component, 24-bit unsigned integer format that has an
8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SINT specifies a three-component, 24-bit signed integer format that has an 8-
bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SRGB specifies a three-component, 24-bit unsigned normalized format that has
an 8-bit B component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component
stored with sRGB nonlinear encoding in byte 1, and an 8-bit R component stored with sRGB
nonlinear encoding in byte 2.

• VK_FORMAT_R8G8B8A8_UNORM specifies a four-component, 32-bit unsigned normalized format that
has an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte
2, and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SNORM specifies a four-component, 32-bit signed normalized format that has
an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2,
and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_USCALED specifies a four-component, 32-bit unsigned scaled format that has
an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2,
and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SSCALED specifies a four-component, 32-bit signed scaled format that has an
8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_UINT specifies a four-component, 32-bit unsigned integer format that has an
8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SINT specifies a four-component, 32-bit signed integer format that has an 8-
bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and
an 8-bit A component in byte 3.

3990

• VK_FORMAT_R8G8B8A8_SRGB specifies a four-component, 32-bit unsigned normalized format that
has an 8-bit R component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component
stored with sRGB nonlinear encoding in byte 1, an 8-bit B component stored with sRGB
nonlinear encoding in byte 2, and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_UNORM specifies a four-component, 32-bit unsigned normalized format that
has an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte
2, and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SNORM specifies a four-component, 32-bit signed normalized format that has
an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2,
and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_USCALED specifies a four-component, 32-bit unsigned scaled format that has
an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2,
and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SSCALED specifies a four-component, 32-bit signed scaled format that has an
8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_UINT specifies a four-component, 32-bit unsigned integer format that has an
8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SINT specifies a four-component, 32-bit signed integer format that has an 8-
bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SRGB specifies a four-component, 32-bit unsigned normalized format that
has an 8-bit B component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component
stored with sRGB nonlinear encoding in byte 1, an 8-bit R component stored with sRGB
nonlinear encoding in byte 2, and an 8-bit A component in byte 3.

• VK_FORMAT_A8B8G8R8_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned
normalized format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits
16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SNORM_PACK32 specifies a four-component, 32-bit packed signed normalized
format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit
G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned scaled
integer format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23,
an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled
integer format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23,
an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer
format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit
G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SINT_PACK32 specifies a four-component, 32-bit packed signed integer format
that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit G

3991

component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SRGB_PACK32 specifies a four-component, 32-bit packed unsigned normalized
format that has an 8-bit A component in bits 24..31, an 8-bit B component stored with sRGB
nonlinear encoding in bits 16..23, an 8-bit G component stored with sRGB nonlinear encoding in
bits 8..15, and an 8-bit R component stored with sRGB nonlinear encoding in bits 0..7.

• VK_FORMAT_A2R10G10B10_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned
normalized format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SNORM_PACK32 specifies a four-component, 32-bit packed signed
normalized format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned
scaled integer format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled
integer format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a
10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer
format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a 10-bit G
component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SINT_PACK32 specifies a four-component, 32-bit packed signed integer
format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a 10-bit G
component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2B10G10R10_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned
normalized format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SNORM_PACK32 specifies a four-component, 32-bit packed signed
normalized format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned
scaled integer format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled
integer format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a
10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer
format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a 10-bit G
component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SINT_PACK32 specifies a four-component, 32-bit packed signed integer
format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a 10-bit G
component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_R16_UNORM specifies a one-component, 16-bit unsigned normalized format that has a

3992

single 16-bit R component.

• VK_FORMAT_R16_SNORM specifies a one-component, 16-bit signed normalized format that has a
single 16-bit R component.

• VK_FORMAT_R16_USCALED specifies a one-component, 16-bit unsigned scaled integer format that has
a single 16-bit R component.

• VK_FORMAT_R16_SSCALED specifies a one-component, 16-bit signed scaled integer format that has a
single 16-bit R component.

• VK_FORMAT_R16_UINT specifies a one-component, 16-bit unsigned integer format that has a single
16-bit R component.

• VK_FORMAT_R16_SINT specifies a one-component, 16-bit signed integer format that has a single 16-
bit R component.

• VK_FORMAT_R16_SFLOAT specifies a one-component, 16-bit signed floating-point format that has a
single 16-bit R component.

• VK_FORMAT_R16G16_UNORM specifies a two-component, 32-bit unsigned normalized format that has
a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SNORM specifies a two-component, 32-bit signed normalized format that has a
16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_USCALED specifies a two-component, 32-bit unsigned scaled integer format that
has a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SSCALED specifies a two-component, 32-bit signed scaled integer format that
has a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_UINT specifies a two-component, 32-bit unsigned integer format that has a 16-
bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SINT specifies a two-component, 32-bit signed integer format that has a 16-bit
R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SFLOAT specifies a two-component, 32-bit signed floating-point format that has
a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16B16_UNORM specifies a three-component, 48-bit unsigned normalized format that
has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16_SNORM specifies a three-component, 48-bit signed normalized format that
has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16_USCALED specifies a three-component, 48-bit unsigned scaled integer format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16_SSCALED specifies a three-component, 48-bit signed scaled integer format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16_UINT specifies a three-component, 48-bit unsigned integer format that has a
16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B component in

3993

bytes 4..5.

• VK_FORMAT_R16G16B16_SINT specifies a three-component, 48-bit signed integer format that has a
16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B component in
bytes 4..5.

• VK_FORMAT_R16G16B16_SFLOAT specifies a three-component, 48-bit signed floating-point format that
has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16A16_UNORM specifies a four-component, 64-bit unsigned normalized format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B
component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SNORM specifies a four-component, 64-bit signed normalized format that
has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component
in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_USCALED specifies a four-component, 64-bit unsigned scaled integer
format that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B
component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SSCALED specifies a four-component, 64-bit signed scaled integer format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B
component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_UINT specifies a four-component, 64-bit unsigned integer format that has
a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component in
bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SINT specifies a four-component, 64-bit signed integer format that has a
16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component in
bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SFLOAT specifies a four-component, 64-bit signed floating-point format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B
component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R32_UINT specifies a one-component, 32-bit unsigned integer format that has a single
32-bit R component.

• VK_FORMAT_R32_SINT specifies a one-component, 32-bit signed integer format that has a single 32-
bit R component.

• VK_FORMAT_R32_SFLOAT specifies a one-component, 32-bit signed floating-point format that has a
single 32-bit R component.

• VK_FORMAT_R32G32_UINT specifies a two-component, 64-bit unsigned integer format that has a 32-
bit R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32_SINT specifies a two-component, 64-bit signed integer format that has a 32-bit
R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32_SFLOAT specifies a two-component, 64-bit signed floating-point format that has
a 32-bit R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32B32_UINT specifies a three-component, 96-bit unsigned integer format that has a

3994

32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B component in
bytes 8..11.

• VK_FORMAT_R32G32B32_SINT specifies a three-component, 96-bit signed integer format that has a
32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B component in
bytes 8..11.

• VK_FORMAT_R32G32B32_SFLOAT specifies a three-component, 96-bit signed floating-point format that
has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B
component in bytes 8..11.

• VK_FORMAT_R32G32B32A32_UINT specifies a four-component, 128-bit unsigned integer format that
has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B component
in bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R32G32B32A32_SINT specifies a four-component, 128-bit signed integer format that has
a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B component in
bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R32G32B32A32_SFLOAT specifies a four-component, 128-bit signed floating-point format
that has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B
component in bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R64_UINT specifies a one-component, 64-bit unsigned integer format that has a single
64-bit R component.

• VK_FORMAT_R64_SINT specifies a one-component, 64-bit signed integer format that has a single 64-
bit R component.

• VK_FORMAT_R64_SFLOAT specifies a one-component, 64-bit signed floating-point format that has a
single 64-bit R component.

• VK_FORMAT_R64G64_UINT specifies a two-component, 128-bit unsigned integer format that has a 64-
bit R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64_SINT specifies a two-component, 128-bit signed integer format that has a 64-bit
R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64_SFLOAT specifies a two-component, 128-bit signed floating-point format that
has a 64-bit R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64B64_UINT specifies a three-component, 192-bit unsigned integer format that has
a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B component
in bytes 16..23.

• VK_FORMAT_R64G64B64_SINT specifies a three-component, 192-bit signed integer format that has a
64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B component
in bytes 16..23.

• VK_FORMAT_R64G64B64_SFLOAT specifies a three-component, 192-bit signed floating-point format
that has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B
component in bytes 16..23.

• VK_FORMAT_R64G64B64A64_UINT specifies a four-component, 256-bit unsigned integer format that
has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B component
in bytes 16..23, and a 64-bit A component in bytes 24..31.

3995

• VK_FORMAT_R64G64B64A64_SINT specifies a four-component, 256-bit signed integer format that has
a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B component in
bytes 16..23, and a 64-bit A component in bytes 24..31.

• VK_FORMAT_R64G64B64A64_SFLOAT specifies a four-component, 256-bit signed floating-point format
that has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B
component in bytes 16..23, and a 64-bit A component in bytes 24..31.

• VK_FORMAT_B10G11R11_UFLOAT_PACK32 specifies a three-component, 32-bit packed unsigned
floating-point format that has a 10-bit B component in bits 22..31, an 11-bit G component in bits
11..21, an 11-bit R component in bits 0..10. See Unsigned 10-Bit Floating-Point Numbers and
Unsigned 11-Bit Floating-Point Numbers.

• VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 specifies a three-component, 32-bit packed unsigned floating-
point format that has a 5-bit shared exponent in bits 27..31, a 9-bit B component mantissa in bits
18..26, a 9-bit G component mantissa in bits 9..17, and a 9-bit R component mantissa in bits 0..8.

• VK_FORMAT_D16_UNORM specifies a one-component, 16-bit unsigned normalized format that has a
single 16-bit depth component.

• VK_FORMAT_X8_D24_UNORM_PACK32 specifies a two-component, 32-bit format that has 24 unsigned
normalized bits in the depth component and, optionally, 8 bits that are unused.

• VK_FORMAT_D32_SFLOAT specifies a one-component, 32-bit signed floating-point format that has 32
bits in the depth component.

• VK_FORMAT_S8_UINT specifies a one-component, 8-bit unsigned integer format that has 8 bits in the
stencil component.

• VK_FORMAT_D16_UNORM_S8_UINT specifies a two-component, 24-bit format that has 16 unsigned
normalized bits in the depth component and 8 unsigned integer bits in the stencil component.

• VK_FORMAT_D24_UNORM_S8_UINT specifies a two-component, 32-bit packed format that has 8
unsigned integer bits in the stencil component, and 24 unsigned normalized bits in the depth
component.

• VK_FORMAT_D32_SFLOAT_S8_UINT specifies a two-component format that has 32 signed float bits in
the depth component and 8 unsigned integer bits in the stencil component. There are
optionally 24 bits that are unused.

• VK_FORMAT_BC1_RGB_UNORM_BLOCK specifies a three-component, block-compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data. This format has no alpha and is considered opaque.

• VK_FORMAT_BC1_RGB_SRGB_BLOCK specifies a three-component, block-compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data with sRGB nonlinear encoding. This format has no alpha and is considered opaque.

• VK_FORMAT_BC1_RGBA_UNORM_BLOCK specifies a four-component, block-compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data, and provides 1 bit of alpha.

• VK_FORMAT_BC1_RGBA_SRGB_BLOCK specifies a four-component, block-compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data with sRGB nonlinear encoding, and provides 1 bit of alpha.

• VK_FORMAT_BC2_UNORM_BLOCK specifies a four-component, block-compressed format where each

3996

128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values.

• VK_FORMAT_BC2_SRGB_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values with sRGB
nonlinear encoding.

• VK_FORMAT_BC3_UNORM_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values.

• VK_FORMAT_BC3_SRGB_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values with sRGB
nonlinear encoding.

• VK_FORMAT_BC4_UNORM_BLOCK specifies a one-component, block-compressed format where each 64-
bit compressed texel block encodes a 4×4 rectangle of unsigned normalized red texel data.

• VK_FORMAT_BC4_SNORM_BLOCK specifies a one-component, block-compressed format where each 64-
bit compressed texel block encodes a 4×4 rectangle of signed normalized red texel data.

• VK_FORMAT_BC5_UNORM_BLOCK specifies a two-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RG texel data
with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_BC5_SNORM_BLOCK specifies a two-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of signed normalized RG texel data with
the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_BC6H_UFLOAT_BLOCK specifies a three-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned floating-point RGB texel
data.

• VK_FORMAT_BC6H_SFLOAT_BLOCK specifies a three-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of signed floating-point RGB texel data.

• VK_FORMAT_BC7_UNORM_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_BC7_SRGB_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK specifies a three-component, ETC2 compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB
texel data. This format has no alpha and is considered opaque.

• VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK specifies a three-component, ETC2 compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data with sRGB nonlinear encoding. This format has no alpha and is considered opaque.

• VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK specifies a four-component, ETC2 compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB

3997

texel data, and provides 1 bit of alpha.

• VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK specifies a four-component, ETC2 compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB
texel data with sRGB nonlinear encoding, and provides 1 bit of alpha.

• VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK specifies a four-component, ETC2 compressed format
where each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized
RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding RGB
values.

• VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK specifies a four-component, ETC2 compressed format
where each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized
RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding RGB
values with sRGB nonlinear encoding applied.

• VK_FORMAT_EAC_R11_UNORM_BLOCK specifies a one-component, ETC2 compressed format where each
64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized red texel data.

• VK_FORMAT_EAC_R11_SNORM_BLOCK specifies a one-component, ETC2 compressed format where each
64-bit compressed texel block encodes a 4×4 rectangle of signed normalized red texel data.

• VK_FORMAT_EAC_R11G11_UNORM_BLOCK specifies a two-component, ETC2 compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RG texel
data with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_EAC_R11G11_SNORM_BLOCK specifies a two-component, ETC2 compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of signed normalized RG texel data
with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_ASTC_4x4_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_4x4_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_5x4_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×4 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_5x4_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×4 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×4 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_5x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×5 rectangle of unsigned normalized RGBA texel

3998

data.

• VK_FORMAT_ASTC_5x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×5 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×5 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_6x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×5 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_6x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×5 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×5 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_6x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×6 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_6x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×6 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×6 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_8x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×5 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_8x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×5 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 8×5 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_8x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×6 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_8x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×6 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 8×6 rectangle of signed floating-point RGBA texel

3999

data.

• VK_FORMAT_ASTC_8x8_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×8 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_8x8_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×8 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 8×8 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_10x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×5 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_10x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×5 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×5 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_10x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×6 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_10x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×6 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×6 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_10x8_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×8 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_10x8_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×8 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×8 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_10x10_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×10 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_10x10_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×10 rectangle of unsigned normalized RGBA

4000

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×10 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_12x10_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×10 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_12x10_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×10 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×10 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_12x12_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×12 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_12x12_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×12 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×12 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_G8B8G8R8_422_UNORM specifies a four-component, 32-bit format containing a pair of G
components, an R component, and a B component, collectively encoding a 2×1 rectangle of
unsigned normalized RGB texel data. One G value is present at each i coordinate, with the B and
R values shared across both G values and thus recorded at half the horizontal resolution of the
image. This format has an 8-bit G component for the even i coordinate in byte 0, an 8-bit B
component in byte 1, an 8-bit G component for the odd i coordinate in byte 2, and an 8-bit R
component in byte 3. This format only supports images with a width that is a multiple of two.
For the purposes of the constraints on copy extents, this format is treated as a compressed
format with a 2×1 compressed texel block.

• VK_FORMAT_B8G8R8G8_422_UNORM specifies a four-component, 32-bit format containing a pair of G
components, an R component, and a B component, collectively encoding a 2×1 rectangle of
unsigned normalized RGB texel data. One G value is present at each i coordinate, with the B and
R values shared across both G values and thus recorded at half the horizontal resolution of the
image. This format has an 8-bit B component in byte 0, an 8-bit G component for the even i
coordinate in byte 1, an 8-bit R component in byte 2, and an 8-bit G component for the odd i
coordinate in byte 3. This format only supports images with a width that is a multiple of two.
For the purposes of the constraints on copy extents, this format is treated as a compressed
format with a 2×1 compressed texel block.

• VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, an 8-bit B component in plane 1, and an 8-bit R component
in plane 2. The horizontal and vertical dimensions of the R and B planes are halved relative to
the image dimensions, and each R and B component is shared with the G components for which

4001

 and . The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and
VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width and
height that is a multiple of two.

• VK_FORMAT_G8_B8R8_2PLANE_420_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, and a two-component, 16-bit BR plane 1 consisting of an 8-
bit B component in byte 0 and an 8-bit R component in byte 1. The horizontal and vertical
dimensions of the BR plane are halved relative to the image dimensions, and each R and B value
is shared with the G components for which and . The location
of each plane when this image is in linear layout can be determined via
vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and
VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane. This format only supports images with a width
and height that is a multiple of two.

• VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, an 8-bit B component in plane 1, and an 8-bit R component
in plane 2. The horizontal dimension of the R and B plane is halved relative to the image
dimensions, and each R and B value is shared with the G components for which

. The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R
plane. This format only supports images with a width that is a multiple of two.

• VK_FORMAT_G8_B8R8_2PLANE_422_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, and a two-component, 16-bit BR plane 1 consisting of an 8-
bit B component in byte 0 and an 8-bit R component in byte 1. The horizontal dimension of the
BR plane is halved relative to the image dimensions, and each R and B value is shared with the
G components for which . The location of each plane when this image is in
linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.
This format only supports images with a width that is a multiple of two.

• VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, an 8-bit B component in plane 1, and an 8-bit R component
in plane 2. Each plane has the same dimensions and each R, G and B component contributes to a
single texel. The location of each plane when this image is in linear layout can be determined
via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane,
VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane.

• VK_FORMAT_R10X6_UNORM_PACK16 specifies a one-component, 16-bit unsigned normalized format
that has a single 10-bit R component in the top 10 bits of a 16-bit word, with the bottom 6 bits
unused.

• VK_FORMAT_R10X6G10X6_UNORM_2PACK16 specifies a two-component, 32-bit unsigned normalized
format that has a 10-bit R component in the top 10 bits of the word in bytes 0..1, and a 10-bit G
component in the top 10 bits of the word in bytes 2..3, with the bottom 6 bits of each word
unused.

• VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 specifies a four-component, 64-bit unsigned
normalized format that has a 10-bit R component in the top 10 bits of the word in bytes 0..1, a

4002

10-bit G component in the top 10 bits of the word in bytes 2..3, a 10-bit B component in the top
10 bits of the word in bytes 4..5, and a 10-bit A component in the top 10 bits of the word in bytes
6..7, with the bottom 6 bits of each word unused.

• VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16 specifies a four-component, 64-bit format
containing a pair of G components, an R component, and a B component, collectively encoding a
2×1 rectangle of unsigned normalized RGB texel data. One G value is present at each i
coordinate, with the B and R values shared across both G values and thus recorded at half the
horizontal resolution of the image. This format has a 10-bit G component for the even i
coordinate in the top 10 bits of the word in bytes 0..1, a 10-bit B component in the top 10 bits of
the word in bytes 2..3, a 10-bit G component for the odd i coordinate in the top 10 bits of the
word in bytes 4..5, and a 10-bit R component in the top 10 bits of the word in bytes 6..7, with the
bottom 6 bits of each word unused. This format only supports images with a width that is a
multiple of two. For the purposes of the constraints on copy extents, this format is treated as a
compressed format with a 2×1 compressed texel block.

• VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16 specifies a four-component, 64-bit format
containing a pair of G components, an R component, and a B component, collectively encoding a
2×1 rectangle of unsigned normalized RGB texel data. One G value is present at each i
coordinate, with the B and R values shared across both G values and thus recorded at half the
horizontal resolution of the image. This format has a 10-bit B component in the top 10 bits of the
word in bytes 0..1, a 10-bit G component for the even i coordinate in the top 10 bits of the word
in bytes 2..3, a 10-bit R component in the top 10 bits of the word in bytes 4..5, and a 10-bit G
component for the odd i coordinate in the top 10 bits of the word in bytes 6..7, with the bottom 6
bits of each word unused. This format only supports images with a width that is a multiple of
two. For the purposes of the constraints on copy extents, this format is treated as a compressed
format with a 2×1 compressed texel block.

• VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0, a
10-bit B component in the top 10 bits of each 16-bit word of plane 1, and a 10-bit R component in
the top 10 bits of each 16-bit word of plane 2, with the bottom 6 bits of each word unused. The
horizontal and vertical dimensions of the R and B planes are halved relative to the image
dimensions, and each R and B component is shared with the G components for which

 and . The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and
VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width and
height that is a multiple of two.

• VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 10-bit B component in the top 10 bits of
the word in bytes 0..1, and a 10-bit R component in the top 10 bits of the word in bytes 2..3, with
the bottom 6 bits of each word unused. The horizontal and vertical dimensions of the BR plane
are halved relative to the image dimensions, and each R and B value is shared with the G
components for which and . The location of each plane when
this image is in linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.
This format only supports images with a width and height that is a multiple of two.

4003

• VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0, a
10-bit B component in the top 10 bits of each 16-bit word of plane 1, and a 10-bit R component in
the top 10 bits of each 16-bit word of plane 2, with the bottom 6 bits of each word unused. The
horizontal dimension of the R and B plane is halved relative to the image dimensions, and each
R and B value is shared with the G components for which . The location of each
plane when this image is in linear layout can be determined via vkGetImageSubresourceLayout,
using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane,
and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width
that is a multiple of two.

• VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 10-bit B component in the top 10 bits of
the word in bytes 0..1, and a 10-bit R component in the top 10 bits of the word in bytes 2..3, with
the bottom 6 bits of each word unused. The horizontal dimension of the BR plane is halved
relative to the image dimensions, and each R and B value is shared with the G components for
which . The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane. This format only supports images with
a width that is a multiple of two.

• VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0, a
10-bit B component in the top 10 bits of each 16-bit word of plane 1, and a 10-bit R component in
the top 10 bits of each 16-bit word of plane 2, with the bottom 6 bits of each word unused. Each
plane has the same dimensions and each R, G and B component contributes to a single texel.
The location of each plane when this image is in linear layout can be determined via
vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane,
VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane.

• VK_FORMAT_R12X4_UNORM_PACK16 specifies a one-component, 16-bit unsigned normalized format
that has a single 12-bit R component in the top 12 bits of a 16-bit word, with the bottom 4 bits
unused.

• VK_FORMAT_R12X4G12X4_UNORM_2PACK16 specifies a two-component, 32-bit unsigned normalized
format that has a 12-bit R component in the top 12 bits of the word in bytes 0..1, and a 12-bit G
component in the top 12 bits of the word in bytes 2..3, with the bottom 4 bits of each word
unused.

• VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16 specifies a four-component, 64-bit unsigned
normalized format that has a 12-bit R component in the top 12 bits of the word in bytes 0..1, a
12-bit G component in the top 12 bits of the word in bytes 2..3, a 12-bit B component in the top
12 bits of the word in bytes 4..5, and a 12-bit A component in the top 12 bits of the word in bytes
6..7, with the bottom 4 bits of each word unused.

• VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16 specifies a four-component, 64-bit format
containing a pair of G components, an R component, and a B component, collectively encoding a
2×1 rectangle of unsigned normalized RGB texel data. One G value is present at each i
coordinate, with the B and R values shared across both G values and thus recorded at half the
horizontal resolution of the image. This format has a 12-bit G component for the even i

4004

coordinate in the top 12 bits of the word in bytes 0..1, a 12-bit B component in the top 12 bits of
the word in bytes 2..3, a 12-bit G component for the odd i coordinate in the top 12 bits of the
word in bytes 4..5, and a 12-bit R component in the top 12 bits of the word in bytes 6..7, with the
bottom 4 bits of each word unused. This format only supports images with a width that is a
multiple of two. For the purposes of the constraints on copy extents, this format is treated as a
compressed format with a 2×1 compressed texel block.

• VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16 specifies a four-component, 64-bit format
containing a pair of G components, an R component, and a B component, collectively encoding a
2×1 rectangle of unsigned normalized RGB texel data. One G value is present at each i
coordinate, with the B and R values shared across both G values and thus recorded at half the
horizontal resolution of the image. This format has a 12-bit B component in the top 12 bits of the
word in bytes 0..1, a 12-bit G component for the even i coordinate in the top 12 bits of the word
in bytes 2..3, a 12-bit R component in the top 12 bits of the word in bytes 4..5, and a 12-bit G
component for the odd i coordinate in the top 12 bits of the word in bytes 6..7, with the bottom 4
bits of each word unused. This format only supports images with a width that is a multiple of
two. For the purposes of the constraints on copy extents, this format is treated as a compressed
format with a 2×1 compressed texel block.

• VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0, a
12-bit B component in the top 12 bits of each 16-bit word of plane 1, and a 12-bit R component in
the top 12 bits of each 16-bit word of plane 2, with the bottom 4 bits of each word unused. The
horizontal and vertical dimensions of the R and B planes are halved relative to the image
dimensions, and each R and B component is shared with the G components for which

 and . The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and
VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width and
height that is a multiple of two.

• VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 12-bit B component in the top 12 bits of
the word in bytes 0..1, and a 12-bit R component in the top 12 bits of the word in bytes 2..3, with
the bottom 4 bits of each word unused. The horizontal and vertical dimensions of the BR plane
are halved relative to the image dimensions, and each R and B value is shared with the G
components for which and . The location of each plane when
this image is in linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.
This format only supports images with a width and height that is a multiple of two.

• VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0, a
12-bit B component in the top 12 bits of each 16-bit word of plane 1, and a 12-bit R component in
the top 12 bits of each 16-bit word of plane 2, with the bottom 4 bits of each word unused. The
horizontal dimension of the R and B plane is halved relative to the image dimensions, and each
R and B value is shared with the G components for which . The location of each
plane when this image is in linear layout can be determined via vkGetImageSubresourceLayout,
using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane,

4005

and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width
that is a multiple of two.

• VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 12-bit B component in the top 12 bits of
the word in bytes 0..1, and a 12-bit R component in the top 12 bits of the word in bytes 2..3, with
the bottom 4 bits of each word unused. The horizontal dimension of the BR plane is halved
relative to the image dimensions, and each R and B value is shared with the G components for
which . The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane. This format only supports images with
a width that is a multiple of two.

• VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0, a
12-bit B component in the top 12 bits of each 16-bit word of plane 1, and a 12-bit R component in
the top 12 bits of each 16-bit word of plane 2, with the bottom 4 bits of each word unused. Each
plane has the same dimensions and each R, G and B component contributes to a single texel.
The location of each plane when this image is in linear layout can be determined via
vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane,
VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane.

• VK_FORMAT_G16B16G16R16_422_UNORM specifies a four-component, 64-bit format containing a pair of
G components, an R component, and a B component, collectively encoding a 2×1 rectangle of
unsigned normalized RGB texel data. One G value is present at each i coordinate, with the B and
R values shared across both G values and thus recorded at half the horizontal resolution of the
image. This format has a 16-bit G component for the even i coordinate in the word in bytes 0..1,
a 16-bit B component in the word in bytes 2..3, a 16-bit G component for the odd i coordinate in
the word in bytes 4..5, and a 16-bit R component in the word in bytes 6..7. This format only
supports images with a width that is a multiple of two. For the purposes of the constraints on
copy extents, this format is treated as a compressed format with a 2×1 compressed texel block.

• VK_FORMAT_B16G16R16G16_422_UNORM specifies a four-component, 64-bit format containing a pair of
G components, an R component, and a B component, collectively encoding a 2×1 rectangle of
unsigned normalized RGB texel data. One G value is present at each i coordinate, with the B and
R values shared across both G values and thus recorded at half the horizontal resolution of the
image. This format has a 16-bit B component in the word in bytes 0..1, a 16-bit G component for
the even i coordinate in the word in bytes 2..3, a 16-bit R component in the word in bytes 4..5,
and a 16-bit G component for the odd i coordinate in the word in bytes 6..7. This format only
supports images with a width that is a multiple of two. For the purposes of the constraints on
copy extents, this format is treated as a compressed format with a 2×1 compressed texel block.

• VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, a 16-bit B component in each 16-
bit word of plane 1, and a 16-bit R component in each 16-bit word of plane 2. The horizontal and
vertical dimensions of the R and B planes are halved relative to the image dimensions, and each
R and B component is shared with the G components for which and

. The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R

4006

plane. This format only supports images with a width and height that is a multiple of two.

• VK_FORMAT_G16_B16R16_2PLANE_420_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, and a two-component, 32-bit BR
plane 1 consisting of a 16-bit B component in the word in bytes 0..1, and a 16-bit R component in
the word in bytes 2..3. The horizontal and vertical dimensions of the BR plane are halved
relative to the image dimensions, and each R and B value is shared with the G components for
which and . The location of each plane when this image is in
linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.
This format only supports images with a width and height that is a multiple of two.

• VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, a 16-bit B component in each 16-
bit word of plane 1, and a 16-bit R component in each 16-bit word of plane 2. The horizontal
dimension of the R and B plane is halved relative to the image dimensions, and each R and B
value is shared with the G components for which . The location of each plane
when this image is in linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and
VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width that
is a multiple of two.

• VK_FORMAT_G16_B16R16_2PLANE_422_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, and a two-component, 32-bit BR
plane 1 consisting of a 16-bit B component in the word in bytes 0..1, and a 16-bit R component in
the word in bytes 2..3. The horizontal dimension of the BR plane is halved relative to the image
dimensions, and each R and B value is shared with the G components for which

. The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane. This format only supports images with
a width that is a multiple of two.

• VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, a 16-bit B component in each 16-
bit word of plane 1, and a 16-bit R component in each 16-bit word of plane 2. Each plane has the
same dimensions and each R, G and B component contributes to a single texel. The location of
each plane when this image is in linear layout can be determined via
vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane,
VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane.

• VK_FORMAT_G8_B8R8_2PLANE_444_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, and a two-component, 16-bit BR plane 1 consisting of an 8-
bit B component in byte 0 and an 8-bit R component in byte 1. Both planes have the same
dimensions and each R, G and B component contributes to a single texel. The location of each
plane when this image is in linear layout can be determined via vkGetImageSubresourceLayout,
using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR
plane.

• VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 10-bit B component in the top 10 bits of

4007

the word in bytes 0..1, and a 10-bit R component in the top 10 bits of the word in bytes 2..3, the
bottom 6 bits of each word unused. Both planes have the same dimensions and each R, G and B
component contributes to a single texel. The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.

• VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 12-bit B component in the top 12 bits of
the word in bytes 0..1, and a 12-bit R component in the top 12 bits of the word in bytes 2..3, the
bottom 4 bits of each word unused. Both planes have the same dimensions and each R, G and B
component contributes to a single texel. The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.

• VK_FORMAT_G16_B16R16_2PLANE_444_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, and a two-component, 32-bit BR
plane 1 consisting of a 16-bit B component in the word in bytes 0..1, and a 16-bit R component in
the word in bytes 2..3. Both planes have the same dimensions and each R, G and B component
contributes to a single texel. The location of each plane when this image is in linear layout can
be determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.

• VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG specifies a four-component, PVRTC compressed format
where each 64-bit compressed texel block encodes an 8×4 rectangle of unsigned normalized
RGBA texel data.

• VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG specifies a four-component, PVRTC compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized
RGBA texel data.

• VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG specifies a four-component, PVRTC compressed format
where each 64-bit compressed texel block encodes an 8×4 rectangle of unsigned normalized
RGBA texel data.

• VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG specifies a four-component, PVRTC compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized
RGBA texel data.

• VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG specifies a four-component, PVRTC compressed format
where each 64-bit compressed texel block encodes an 8×4 rectangle of unsigned normalized
RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG specifies a four-component, PVRTC compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized
RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG specifies a four-component, PVRTC compressed format
where each 64-bit compressed texel block encodes an 8×4 rectangle of unsigned normalized
RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG specifies a four-component, PVRTC compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized
RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

4008

• VK_FORMAT_R16G16_S10_5_NV specifies a two-component, 16-bit signed fixed-point format with
linear encoding. The components are signed two’s-complement integers where the most
significant bit specifies the sign bit, the next 10 bits specify the integer value, and the last 5 bits
represent the fractional value. The signed 16-bit values can be converted to floats in the range [-
1024,1023.96875] by dividing the value by 32 (25).

49.1.1. Compatible Formats of Planes of Multi-Planar Formats

Individual planes of multi-planar formats are size-compatible with single-plane color formats if
they occupy the same number of bits per texel block, and are compatible with those formats if they
have the same block extent.

In the following table, individual planes of a multi-planar format are compatible with the format
listed against the relevant plane index for that multi-planar format, and any format compatible
with the listed single-plane format according to Format Compatibility Classes. These planes are also
size-compatible with any format that is size-compatible with the listed single-plane format.

Table 66. Plane Format Compatibility Table

Plane Compatible format for plane Width relative to
the width w of the

plane with the
largest dimensions

Height relative to
the height h of the

plane with the
largest dimensions

VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8_UNORM w/2 h/2

2 VK_FORMAT_R8_UNORM w/2 h/2

VK_FORMAT_G8_B8R8_2PLANE_420_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8G8_UNORM w/2 h/2

VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8_UNORM w/2 h

2 VK_FORMAT_R8_UNORM w/2 h

VK_FORMAT_G8_B8R8_2PLANE_422_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8G8_UNORM w/2 h

VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8_UNORM w h

2 VK_FORMAT_R8_UNORM w h

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16

4009

Plane Compatible format for plane Width relative to
the width w of the

plane with the
largest dimensions

Height relative to
the height h of the

plane with the
largest dimensions

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6_UNORM_PACK16 w/2 h/2

2 VK_FORMAT_R10X6_UNORM_PACK16 w/2 h/2

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6G10X6_UNORM_2PACK16 w/2 h/2

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6_UNORM_PACK16 w/2 h

2 VK_FORMAT_R10X6_UNORM_PACK16 w/2 h

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6G10X6_UNORM_2PACK16 w/2 h

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6_UNORM_PACK16 w h

2 VK_FORMAT_R10X6_UNORM_PACK16 w h

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4_UNORM_PACK16 w/2 h/2

2 VK_FORMAT_R12X4_UNORM_PACK16 w/2 h/2

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4G12X4_UNORM_2PACK16 w/2 h/2

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4_UNORM_PACK16 w/2 h

2 VK_FORMAT_R12X4_UNORM_PACK16 w/2 h

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4G12X4_UNORM_2PACK16 w/2 h

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16

4010

Plane Compatible format for plane Width relative to
the width w of the

plane with the
largest dimensions

Height relative to
the height h of the

plane with the
largest dimensions

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4_UNORM_PACK16 w h

2 VK_FORMAT_R12X4_UNORM_PACK16 w h

VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16_UNORM w/2 h/2

2 VK_FORMAT_R16_UNORM w/2 h/2

VK_FORMAT_G16_B16R16_2PLANE_420_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16G16_UNORM w/2 h/2

VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16_UNORM w/2 h

2 VK_FORMAT_R16_UNORM w/2 h

VK_FORMAT_G16_B16R16_2PLANE_422_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16G16_UNORM w/2 h

VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16_UNORM w h

2 VK_FORMAT_R16_UNORM w h

VK_FORMAT_G8_B8R8_2PLANE_444_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8G8_UNORM w h

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6G10X6_UNORM_2PACK16 w h

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4G12X4_UNORM_2PACK16 w h

VK_FORMAT_G16_B16R16_2PLANE_444_UNORM

0 VK_FORMAT_R16_UNORM w h

4011

Plane Compatible format for plane Width relative to
the width w of the

plane with the
largest dimensions

Height relative to
the height h of the

plane with the
largest dimensions

1 VK_FORMAT_R16G16_UNORM w h

49.1.2. Multi-planar Format Image Aspect

When using VkImageAspectFlagBits to select a plane of a multi-planar format, the following are the
valid options:

• Two planes

◦ VK_IMAGE_ASPECT_PLANE_0_BIT

◦ VK_IMAGE_ASPECT_PLANE_1_BIT

• Three planes

◦ VK_IMAGE_ASPECT_PLANE_0_BIT

◦ VK_IMAGE_ASPECT_PLANE_1_BIT

◦ VK_IMAGE_ASPECT_PLANE_2_BIT

49.1.3. Packed Formats

For the purposes of address alignment when accessing buffer memory containing vertex attribute
or texel data, the following formats are considered packed - components of the texels or attributes
are stored in bitfields packed into one or more 8-, 16-, or 32-bit fundamental data type.

• Packed into 8-bit data types:

◦ VK_FORMAT_R4G4_UNORM_PACK8

• Packed into 16-bit data types:

◦ VK_FORMAT_R4G4B4A4_UNORM_PACK16

◦ VK_FORMAT_B4G4R4A4_UNORM_PACK16

◦ VK_FORMAT_R5G6B5_UNORM_PACK16

◦ VK_FORMAT_B5G6R5_UNORM_PACK16

◦ VK_FORMAT_R5G5B5A1_UNORM_PACK16

◦ VK_FORMAT_B5G5R5A1_UNORM_PACK16

◦ VK_FORMAT_A1R5G5B5_UNORM_PACK16

◦ VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR

◦ VK_FORMAT_R10X6_UNORM_PACK16

◦ VK_FORMAT_R10X6G10X6_UNORM_2PACK16

◦ VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16

◦ VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16

4012

◦ VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_R12X4_UNORM_PACK16

◦ VK_FORMAT_R12X4G12X4_UNORM_2PACK16

◦ VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16

◦ VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16

◦ VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_A4R4G4B4_UNORM_PACK16

◦ VK_FORMAT_A4B4G4R4_UNORM_PACK16

• Packed into 32-bit data types:

◦ VK_FORMAT_A8B8G8R8_UNORM_PACK32

◦ VK_FORMAT_A8B8G8R8_SNORM_PACK32

◦ VK_FORMAT_A8B8G8R8_USCALED_PACK32

◦ VK_FORMAT_A8B8G8R8_SSCALED_PACK32

◦ VK_FORMAT_A8B8G8R8_UINT_PACK32

◦ VK_FORMAT_A8B8G8R8_SINT_PACK32

◦ VK_FORMAT_A8B8G8R8_SRGB_PACK32

◦ VK_FORMAT_A2R10G10B10_UNORM_PACK32

◦ VK_FORMAT_A2R10G10B10_SNORM_PACK32

◦ VK_FORMAT_A2R10G10B10_USCALED_PACK32

◦ VK_FORMAT_A2R10G10B10_SSCALED_PACK32

◦ VK_FORMAT_A2R10G10B10_UINT_PACK32

◦ VK_FORMAT_A2R10G10B10_SINT_PACK32

◦ VK_FORMAT_A2B10G10R10_UNORM_PACK32

4013

◦ VK_FORMAT_A2B10G10R10_SNORM_PACK32

◦ VK_FORMAT_A2B10G10R10_USCALED_PACK32

◦ VK_FORMAT_A2B10G10R10_SSCALED_PACK32

◦ VK_FORMAT_A2B10G10R10_UINT_PACK32

◦ VK_FORMAT_A2B10G10R10_SINT_PACK32

◦ VK_FORMAT_B10G11R11_UFLOAT_PACK32

◦ VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

◦ VK_FORMAT_X8_D24_UNORM_PACK32

49.1.4. Identification of Formats

A “format” is represented by a single enum value. The name of a format is usually built up by using
the following pattern:

 VK_FORMAT_{component-format|compression-scheme}_{numeric-format}

The component-format indicates either the size of the R, G, B, and A components (if they are
present) in the case of a color format, or the size of the depth (D) and stencil (S) components (if they
are present) in the case of a depth/stencil format (see below). An X indicates a component that is
unused, but may be present for padding.

4014

Table 67. Interpretation of Numeric Format

Numeric
format

Type-
Declaration
instructions

Numeric type Description

UNORM OpTypeFloat floating-point The components are unsigned normalized values
in the range [0,1]

SNORM OpTypeFloat floating-point The components are signed normalized values in
the range [-1,1]

USCALED OpTypeFloat floating-point The components are unsigned integer values that
get converted to floating-point in the range [0,2n-1]

SSCALED OpTypeFloat floating-point The components are signed integer values that get
converted to floating-point in the range [-2n-1,2n-1-1]

UINT OpTypeInt unsigned
integer

The components are unsigned integer values in the
range [0,2n-1]

SINT OpTypeInt signed integer The components are signed integer values in the
range [-2n-1,2n-1-1]

UFLOAT OpTypeFloat floating-point The components are unsigned floating-point
numbers (used by packed, shared exponent, and
some compressed formats)

SFLOAT OpTypeFloat floating-point The components are signed floating-point numbers

SRGB OpTypeFloat floating-point The R, G, and B components are unsigned
normalized values that represent values using
sRGB nonlinear encoding, while the A component
(if one exists) is a regular unsigned normalized
value

n is the number of bits in the component.

The suffix _PACKnn indicates that the format is packed into an underlying type with nn bits. The
suffix _mPACKnn is a short-hand that indicates that the format has m groups of components (which
may or may not be stored in separate planes) that are each packed into an underlying type with nn
bits.

The suffix _BLOCK indicates that the format is a block-compressed format, with the representation of
multiple pixels encoded interdependently within a region.

Table 68. Interpretation of Compression Scheme

Compression
scheme

Description

BC Block Compression. See Block-Compressed Image Formats.

ETC2 Ericsson Texture Compression. See ETC Compressed Image Formats.

EAC ETC2 Alpha Compression. See ETC Compressed Image Formats.

4015

Compression
scheme

Description

ASTC Adaptive Scalable Texture Compression (LDR Profile). See ASTC Compressed
Image Formats.

For multi-planar images, the components in separate planes are separated by underscores, and the
number of planes is indicated by the addition of a _2PLANE or _3PLANE suffix. Similarly, the separate
aspects of depth-stencil formats are separated by underscores, although these are not considered
separate planes. Formats are suffixed by _422 to indicate that planes other than the first are
reduced in size by a factor of two horizontally or that the R and B values appear at half the
horizontal frequency of the G values, _420 to indicate that planes other than the first are reduced in
size by a factor of two both horizontally and vertically, and _444 for consistency to indicate that all
three planes of a three-planar image are the same size.

Note

No common format has a single plane containing both R and B components but
does not store these components at reduced horizontal resolution.

49.1.5. Representation and Texel Block Size

Color formats must be represented in memory in exactly the form indicated by the format’s name.
This means that promoting one format to another with more bits per component and/or additional
components must not occur for color formats. Depth/stencil formats have more relaxed
requirements as discussed below.

Each format has a texel block size, the number of bytes used to store one texel block (a single
addressable element of an uncompressed image, or a single compressed block of a compressed
image). The texel block size for each format is shown in the Compatible formats table.

The representation of non-packed formats is that the first component specified in the name of the
format is in the lowest memory addresses and the last component specified is in the highest
memory addresses. See Byte mappings for non-packed/compressed color formats. The in-memory
ordering of bytes within a component is determined by the host endianness.

Table 69. Byte mappings for non-packed/compressed color formats

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ← Byte

R VK_FORMAT_R8_*

R G VK_FORMAT_R8G8_*

R G B VK_FORMAT_R8G8B8_*

B G R VK_FORMAT_B8G8R8_*

R G B A VK_FORMAT_R8G8B8A8_*

B G R A VK_FORMAT_B8G8R8A8_*

A VK_FORMAT_A8_UNORM_KHR

G0 B G1 R VK_FORMAT_G8B8G8R8_422_UNORM

4016

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ← Byte

B G0 R G1
VK_FORMAT_B8G8R8G8_422_UNORM

R VK_FORMAT_R16_*

R G VK_FORMAT_R16G16_*

R G B VK_FORMAT_R16G16B16_*

R G B A VK_FORMAT_R16G16B16A16_*

G0 B G1 R VK_FORMAT_G10X6B10X6G10X6R10X6_4PACK16_422_UNORM
VK_FORMAT_G12X4B12X4G12X4R12X4_4PACK16_422_UNORM

VK_FORMAT_G16B16G16R16_UNORM

B G0 R G1 VK_FORMAT_B10X6G10X6R10X6G10X6_4PACK16_422_UNORM
VK_FORMAT_B12X4G12X4R12X4G12X4_4PACK16_422_UNORM

VK_FORMAT_B16G16R16G16_422_UNORM

R VK_FORMAT_R32_*

R G VK_FORMAT_R32G32_*

R G B VK_FORMAT_R32G32B32_*

R G B A VK_FORMAT_R32G32B32A32_*

R VK_FORMAT_R64_*

R G VK_FORMAT_R64G64_*

VK_FORMAT_R64G64B64_* as VK_FORMAT_R64G64_* but with B in bytes 16-23

VK_FORMAT_R64G64B64A64_* as VK_FORMAT_R64G64B64_* but with A in bytes 24-31

Packed formats store multiple components within one underlying type. The bit representation is
that the first component specified in the name of the format is in the most-significant bits and the
last component specified is in the least-significant bits of the underlying type. The in-memory
ordering of bytes comprising the underlying type is determined by the host endianness.

Table 70. Bit mappings for packed 8-bit formats

Bit

7 6 5 4 3 2 1 0

VK_FORMAT_R4G4_UNORM_PACK8

R G

3 2 1 0 3 2 1 0

Table 71. Bit mappings for packed 16-bit formats

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_R4G4B4A4_UNORM_PACK16

R G B A

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_B4G4R4A4_UNORM_PACK16

4017

Bit

B G R A

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_A4R4G4B4_UNORM_PACK16

A R G B

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_A4B4G4R4_UNORM_PACK16

A B G R

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_R5G6B5_UNORM_PACK16

R G B

4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_B5G6R5_UNORM_PACK16

B G R

4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_R5G5B5A1_UNORM_PACK16

R G B A

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 0

VK_FORMAT_B5G5R5A1_UNORM_PACK16

B G R A

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 0

VK_FORMAT_A1R5G5B5_UNORM_PACK16

A R G B

0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR

A B G R

0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_R10X6_UNORM_PACK16

R X

9 8 7 6 5 4 3 2 1 0 5 4 3 2 1 0

VK_FORMAT_R12X4_UNORM_PACK16

R X

11 10 9 8 7 6 5 4 3 2 1 0 3 2 1 0

Table 72. Bit mappings for packed 32-bit formats

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_A8B8G8R8_*_PACK32

A B G R

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

4018

Bit

VK_FORMAT_A2R10G10B10_*_PACK32

A R G B

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_A2B10G10R10_*_PACK32

A B G R

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_B10G11R11_UFLOAT_PACK32

B G R

9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

E B G R

4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0

VK_FORMAT_X8_D24_UNORM_PACK32

X D

7 6 5 4 3 2 1 0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

49.1.6. Depth/Stencil Formats

Depth/stencil formats are considered opaque and need not be stored in the exact number of bits per
texel or component ordering indicated by the format enum. However, implementations must not
substitute a different depth or stencil precision than is described in the format (e.g. D16 must not
be implemented as D24 or D32).

49.1.7. Format Compatibility Classes

Uncompressed color formats are compatible with each other if they occupy the same number of bits
per texel block as long as neither or both are alpha formats (e.g., VK_FORMAT_A8_UNORM_KHR) .
Compressed color formats are compatible with each other if the only difference between them is
the numeric format of the uncompressed pixels. Each depth/stencil format is only compatible with
itself. In the following table, all the formats in the same row are compatible. Each format has a
defined texel block extent specifying how many texels each texel block represents in each
dimension.

Table 73. Compatible Formats

4019

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

8-bit
Block size 1 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R4G4_UNORM_PACK8,
VK_FORMAT_R8_UNORM,
VK_FORMAT_R8_SNORM,
VK_FORMAT_R8_USCALED,
VK_FORMAT_R8_SSCALED,
VK_FORMAT_R8_UINT,
VK_FORMAT_R8_SINT,
VK_FORMAT_R8_SRGB

16-bit
Block size 2 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR,
VK_FORMAT_R10X6_UNORM_PACK16,
VK_FORMAT_R12X4_UNORM_PACK16,
VK_FORMAT_A4R4G4B4_UNORM_PACK16,
VK_FORMAT_A4B4G4R4_UNORM_PACK16,
VK_FORMAT_R4G4B4A4_UNORM_PACK16,
VK_FORMAT_B4G4R4A4_UNORM_PACK16,
VK_FORMAT_R5G6B5_UNORM_PACK16,
VK_FORMAT_B5G6R5_UNORM_PACK16,
VK_FORMAT_R5G5B5A1_UNORM_PACK16,
VK_FORMAT_B5G5R5A1_UNORM_PACK16,
VK_FORMAT_A1R5G5B5_UNORM_PACK16,
VK_FORMAT_R8G8_UNORM,
VK_FORMAT_R8G8_SNORM,
VK_FORMAT_R8G8_USCALED,
VK_FORMAT_R8G8_SSCALED,
VK_FORMAT_R8G8_UINT,
VK_FORMAT_R8G8_SINT,
VK_FORMAT_R8G8_SRGB,
VK_FORMAT_R16_UNORM,
VK_FORMAT_R16_SNORM,
VK_FORMAT_R16_USCALED,
VK_FORMAT_R16_SSCALED,
VK_FORMAT_R16_UINT,
VK_FORMAT_R16_SINT,
VK_FORMAT_R16_SFLOAT

8-bit alpha
Block size 1 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_A8_UNORM_KHR

4020

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

24-bit
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R8G8B8_UNORM,
VK_FORMAT_R8G8B8_SNORM,
VK_FORMAT_R8G8B8_USCALED,
VK_FORMAT_R8G8B8_SSCALED,
VK_FORMAT_R8G8B8_UINT,
VK_FORMAT_R8G8B8_SINT,
VK_FORMAT_R8G8B8_SRGB,
VK_FORMAT_B8G8R8_UNORM,
VK_FORMAT_B8G8R8_SNORM,
VK_FORMAT_B8G8R8_USCALED,
VK_FORMAT_B8G8R8_SSCALED,
VK_FORMAT_B8G8R8_UINT,
VK_FORMAT_B8G8R8_SINT,
VK_FORMAT_B8G8R8_SRGB

4021

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

32-bit
Block size 4 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R10X6G10X6_UNORM_2PACK16,
VK_FORMAT_R12X4G12X4_UNORM_2PACK16,
VK_FORMAT_R16G16_S10_5_NV,
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R8G8B8A8_SNORM,
VK_FORMAT_R8G8B8A8_USCALED,
VK_FORMAT_R8G8B8A8_SSCALED,
VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT,
VK_FORMAT_R8G8B8A8_SRGB,
VK_FORMAT_B8G8R8A8_UNORM,
VK_FORMAT_B8G8R8A8_SNORM,
VK_FORMAT_B8G8R8A8_USCALED,
VK_FORMAT_B8G8R8A8_SSCALED,
VK_FORMAT_B8G8R8A8_UINT,
VK_FORMAT_B8G8R8A8_SINT,
VK_FORMAT_B8G8R8A8_SRGB,
VK_FORMAT_A8B8G8R8_UNORM_PACK32,
VK_FORMAT_A8B8G8R8_SNORM_PACK32,
VK_FORMAT_A8B8G8R8_USCALED_PACK32,
VK_FORMAT_A8B8G8R8_SSCALED_PACK32,
VK_FORMAT_A8B8G8R8_UINT_PACK32,
VK_FORMAT_A8B8G8R8_SINT_PACK32,
VK_FORMAT_A8B8G8R8_SRGB_PACK32,
VK_FORMAT_A2R10G10B10_UNORM_PACK32,
VK_FORMAT_A2R10G10B10_SNORM_PACK32,
VK_FORMAT_A2R10G10B10_USCALED_PACK32,
VK_FORMAT_A2R10G10B10_SSCALED_PACK32,
VK_FORMAT_A2R10G10B10_UINT_PACK32,
VK_FORMAT_A2R10G10B10_SINT_PACK32,
VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_FORMAT_A2B10G10R10_SNORM_PACK32,
VK_FORMAT_A2B10G10R10_USCALED_PACK32,
VK_FORMAT_A2B10G10R10_SSCALED_PACK32,
VK_FORMAT_A2B10G10R10_UINT_PACK32,
VK_FORMAT_A2B10G10R10_SINT_PACK32,
VK_FORMAT_R16G16_UNORM,
VK_FORMAT_R16G16_SNORM,
VK_FORMAT_R16G16_USCALED,
VK_FORMAT_R16G16_SSCALED,
VK_FORMAT_R16G16_UINT,
VK_FORMAT_R16G16_SINT,
VK_FORMAT_R16G16_SFLOAT,
VK_FORMAT_R32_UINT,
VK_FORMAT_R32_SINT,
VK_FORMAT_R32_SFLOAT,
VK_FORMAT_B10G11R11_UFLOAT_PACK32,
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

4022

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

48-bit
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R16G16B16_UNORM,
VK_FORMAT_R16G16B16_SNORM,
VK_FORMAT_R16G16B16_USCALED,
VK_FORMAT_R16G16B16_SSCALED,
VK_FORMAT_R16G16B16_UINT,
VK_FORMAT_R16G16B16_SINT,
VK_FORMAT_R16G16B16_SFLOAT

64-bit
Block size 8 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16B16A16_SNORM,
VK_FORMAT_R16G16B16A16_USCALED,
VK_FORMAT_R16G16B16A16_SSCALED,
VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT,
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_FORMAT_R32G32_UINT,
VK_FORMAT_R32G32_SINT,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R64_UINT,
VK_FORMAT_R64_SINT,
VK_FORMAT_R64_SFLOAT

96-bit
Block size 12 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R32G32B32_UINT,
VK_FORMAT_R32G32B32_SINT,
VK_FORMAT_R32G32B32_SFLOAT

128-bit
Block size 16 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R32G32B32A32_UINT,
VK_FORMAT_R32G32B32A32_SINT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R64G64_UINT,
VK_FORMAT_R64G64_SINT,
VK_FORMAT_R64G64_SFLOAT

192-bit
Block size 24 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R64G64B64_UINT,
VK_FORMAT_R64G64B64_SINT,
VK_FORMAT_R64G64B64_SFLOAT

256-bit
Block size 32 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R64G64B64A64_UINT,
VK_FORMAT_R64G64B64A64_SINT,
VK_FORMAT_R64G64B64A64_SFLOAT

4023

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

D16
Block size 2 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D16_UNORM

D24
Block size 4 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_X8_D24_UNORM_PACK32

D32
Block size 4 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D32_SFLOAT

S8
Block size 1 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_S8_UINT

D16S8
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D16_UNORM_S8_UINT

D24S8
Block size 4 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D24_UNORM_S8_UINT

D32S8
Block size 5 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D32_SFLOAT_S8_UINT

BC1_RGB
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC1_RGB_UNORM_BLOCK,
VK_FORMAT_BC1_RGB_SRGB_BLOCK

BC1_RGBA
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
VK_FORMAT_BC1_RGBA_SRGB_BLOCK

BC2
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC2_UNORM_BLOCK,
VK_FORMAT_BC2_SRGB_BLOCK

4024

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

BC3
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC3_UNORM_BLOCK,
VK_FORMAT_BC3_SRGB_BLOCK

BC4
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC4_UNORM_BLOCK,
VK_FORMAT_BC4_SNORM_BLOCK

BC5
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC5_UNORM_BLOCK,
VK_FORMAT_BC5_SNORM_BLOCK

BC6H
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC6H_UFLOAT_BLOCK,
VK_FORMAT_BC6H_SFLOAT_BLOCK

BC7
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC7_UNORM_BLOCK,
VK_FORMAT_BC7_SRGB_BLOCK

ETC2_RGB
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK

ETC2_RGBA
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK

ETC2_EAC_RGBA
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK

EAC_R
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_EAC_R11_UNORM_BLOCK,
VK_FORMAT_EAC_R11_SNORM_BLOCK

EAC_RG
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_EAC_R11G11_UNORM_BLOCK,
VK_FORMAT_EAC_R11G11_SNORM_BLOCK

4025

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

ASTC_4x4
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK,
VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
VK_FORMAT_ASTC_4x4_SRGB_BLOCK

ASTC_5x4
Block size 16 byte
5x4x1 block extent
20 texel/block

VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK,
VK_FORMAT_ASTC_5x4_UNORM_BLOCK,
VK_FORMAT_ASTC_5x4_SRGB_BLOCK

ASTC_5x5
Block size 16 byte
5x5x1 block extent
25 texel/block

VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK,
VK_FORMAT_ASTC_5x5_UNORM_BLOCK,
VK_FORMAT_ASTC_5x5_SRGB_BLOCK

ASTC_6x5
Block size 16 byte
6x5x1 block extent
30 texel/block

VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK,
VK_FORMAT_ASTC_6x5_UNORM_BLOCK,
VK_FORMAT_ASTC_6x5_SRGB_BLOCK

ASTC_6x6
Block size 16 byte
6x6x1 block extent
36 texel/block

VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK,
VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
VK_FORMAT_ASTC_6x6_SRGB_BLOCK

ASTC_8x5
Block size 16 byte
8x5x1 block extent
40 texel/block

VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK,
VK_FORMAT_ASTC_8x5_UNORM_BLOCK,
VK_FORMAT_ASTC_8x5_SRGB_BLOCK

ASTC_8x6
Block size 16 byte
8x6x1 block extent
48 texel/block

VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK,
VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
VK_FORMAT_ASTC_8x6_SRGB_BLOCK

ASTC_8x8
Block size 16 byte
8x8x1 block extent
64 texel/block

VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK,
VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
VK_FORMAT_ASTC_8x8_SRGB_BLOCK

ASTC_10x5
Block size 16 byte
10x5x1 block extent
50 texel/block

VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK,
VK_FORMAT_ASTC_10x5_UNORM_BLOCK,
VK_FORMAT_ASTC_10x5_SRGB_BLOCK

ASTC_10x6
Block size 16 byte
10x6x1 block extent
60 texel/block

VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK,
VK_FORMAT_ASTC_10x6_UNORM_BLOCK,
VK_FORMAT_ASTC_10x6_SRGB_BLOCK

4026

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

ASTC_10x8
Block size 16 byte
10x8x1 block extent
80 texel/block

VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK,
VK_FORMAT_ASTC_10x8_UNORM_BLOCK,
VK_FORMAT_ASTC_10x8_SRGB_BLOCK

ASTC_10x10
Block size 16 byte
10x10x1 block extent
100 texel/block

VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK,
VK_FORMAT_ASTC_10x10_UNORM_BLOCK,
VK_FORMAT_ASTC_10x10_SRGB_BLOCK

ASTC_12x10
Block size 16 byte
12x10x1 block extent
120 texel/block

VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK,
VK_FORMAT_ASTC_12x10_UNORM_BLOCK,
VK_FORMAT_ASTC_12x10_SRGB_BLOCK

ASTC_12x12
Block size 16 byte
12x12x1 block extent
144 texel/block

VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK,
VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
VK_FORMAT_ASTC_12x12_SRGB_BLOCK

32-bit G8B8G8R8
Block size 4 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_G8B8G8R8_422_UNORM

32-bit B8G8R8G8
Block size 4 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_B8G8R8G8_422_UNORM

8-bit 3-plane 420
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM

8-bit 2-plane 420
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8R8_2PLANE_420_UNORM

8-bit 3-plane 422
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM

8-bit 2-plane 422
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8R8_2PLANE_422_UNORM

4027

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

8-bit 3-plane 444
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM

64-bit R10G10B10A10
Block size 8 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16

64-bit G10B10G10R10
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16

64-bit B10G10R10G10
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16

10-bit 3-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16

10-bit 2-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16

10-bit 3-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16

10-bit 2-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16

10-bit 3-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16

64-bit R12G12B12A12
Block size 8 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16

4028

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

64-bit G12B12G12R12
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16

64-bit B12G12R12G12
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16

12-bit 3-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16

12-bit 2-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16

12-bit 3-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16

12-bit 2-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16

12-bit 3-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16

64-bit G16B16G16R16
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_G16B16G16R16_422_UNORM

64-bit B16G16R16G16
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_B16G16R16G16_422_UNORM

16-bit 3-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM

4029

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

16-bit 2-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16R16_2PLANE_420_UNORM

16-bit 3-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM

16-bit 2-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16R16_2PLANE_422_UNORM

16-bit 3-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM

PVRTC1_2BPP
Block size 8 byte
8x4x1 block extent
1 texel/block

VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG,
VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG

PVRTC1_4BPP
Block size 8 byte
4x4x1 block extent
1 texel/block

VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG,
VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG

PVRTC2_2BPP
Block size 8 byte
8x4x1 block extent
1 texel/block

VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG,
VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG

PVRTC2_4BPP
Block size 8 byte
4x4x1 block extent
1 texel/block

VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG,
VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG

8-bit 2-plane 444
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8R8_2PLANE_444_UNORM

10-bit 2-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

4030

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

12-bit 2-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

16-bit 2-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16R16_2PLANE_444_UNORM

Size Compatibility

Color formats with the same texel block size are considered size-compatible as long as neither or
both are alpha formats (e.g., VK_FORMAT_A8_UNORM_KHR). If two size-compatible formats have different
block extents (i.e. for compressed formats), then an image with size A × B × C in one format with a
block extent of a × b × c can be represented as an image with size X × Y × Z in the other format with
block extent x × y × z at the ratio between the block extents for each format, where

⌈A/a⌉ = ⌈X/x⌉

⌈B/b⌉ = ⌈Y/y⌉

⌈C/c⌉ = ⌈Z/z⌉

Note

For example, a 7x3 image in the VK_FORMAT_ASTC_8x5_UNORM_BLOCK format can be
represented as a 1x1 VK_FORMAT_R64G64_UINT image.

Images created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag can have size-
compatible views created from them to enable access via different size-compatible formats. Image
views created in this way will be sized to match the expectations of the block extents noted above.

Copy operations are able to copy between size-compatible formats in different resources to enable
manipulation of data in different formats. The extent used in these copy operations always matches
the source image, and is resized to the expectations of the block extents noted above for the
destination image.

49.2. Format Properties
To query supported format features which are properties of the physical device, call:

4031

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceFormatProperties(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkFormatProperties* pFormatProperties);

• physicalDevice is the physical device from which to query the format properties.

• format is the format whose properties are queried.

• pFormatProperties is a pointer to a VkFormatProperties structure in which physical device
properties for format are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFormatProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceFormatProperties-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceFormatProperties-pFormatProperties-parameter
pFormatProperties must be a valid pointer to a VkFormatProperties structure

The VkFormatProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkFormatProperties {
 VkFormatFeatureFlags linearTilingFeatures;
 VkFormatFeatureFlags optimalTilingFeatures;
 VkFormatFeatureFlags bufferFeatures;
} VkFormatProperties;

• linearTilingFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported by
images created with a tiling parameter of VK_IMAGE_TILING_LINEAR.

• optimalTilingFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported
by images created with a tiling parameter of VK_IMAGE_TILING_OPTIMAL.

• bufferFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported by
buffers.

Note

If no format feature flags are supported, the format itself is not supported, and
images of that format cannot be created.

If format is a block-compressed format, then bufferFeatures must not support any features for the
format.

4032

If format is not a multi-plane format then linearTilingFeatures and optimalTilingFeatures must not
contain VK_FORMAT_FEATURE_DISJOINT_BIT.

Bits which can be set in the VkFormatProperties features linearTilingFeatures,
optimalTilingFeatures, VkDrmFormatModifierPropertiesEXT::drmFormatModifierTilingFeatures, and
bufferFeatures are:

// Provided by VK_VERSION_1_0
typedef enum VkFormatFeatureFlagBits {
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT = 0x00000001,
 VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT = 0x00000002,
 VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT = 0x00000004,
 VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000008,
 VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT = 0x00000010,
 VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT = 0x00000020,
 VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT = 0x00000040,
 VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT = 0x00000080,
 VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT = 0x00000100,
 VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000200,
 VK_FORMAT_FEATURE_BLIT_SRC_BIT = 0x00000400,
 VK_FORMAT_FEATURE_BLIT_DST_BIT = 0x00000800,
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT = 0x00001000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_TRANSFER_SRC_BIT = 0x00004000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_TRANSFER_DST_BIT = 0x00008000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT = 0x00020000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT = 0x00040000,
 // Provided by VK_VERSION_1_1

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT =
0x00080000,
 // Provided by VK_VERSION_1_1

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT =
0x00100000,
 // Provided by VK_VERSION_1_1

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEA
BLE_BIT = 0x00200000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_DISJOINT_BIT = 0x00400000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT = 0x00800000,
 // Provided by VK_VERSION_1_2
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT = 0x00010000,
 // Provided by VK_KHR_video_decode_queue
 VK_FORMAT_FEATURE_VIDEO_DECODE_OUTPUT_BIT_KHR = 0x02000000,

4033

 // Provided by VK_KHR_video_decode_queue
 VK_FORMAT_FEATURE_VIDEO_DECODE_DPB_BIT_KHR = 0x04000000,
 // Provided by VK_KHR_acceleration_structure
 VK_FORMAT_FEATURE_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR = 0x20000000,
 // Provided by VK_EXT_filter_cubic
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT = 0x00002000,
 // Provided by VK_EXT_fragment_density_map
 VK_FORMAT_FEATURE_FRAGMENT_DENSITY_MAP_BIT_EXT = 0x01000000,
 // Provided by VK_KHR_fragment_shading_rate
 VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR = 0x40000000,
 // Provided by VK_KHR_video_encode_queue
 VK_FORMAT_FEATURE_VIDEO_ENCODE_INPUT_BIT_KHR = 0x08000000,
 // Provided by VK_KHR_video_encode_queue
 VK_FORMAT_FEATURE_VIDEO_ENCODE_DPB_BIT_KHR = 0x10000000,
 // Provided by VK_IMG_filter_cubic
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT,
 // Provided by VK_KHR_maintenance1
 VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT,
 // Provided by VK_KHR_maintenance1
 VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR = VK_FORMAT_FEATURE_TRANSFER_DST_BIT,
 // Provided by VK_EXT_sampler_filter_minmax
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT_KHR =
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KH
R =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KH
R =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEA
BLE_BIT_KHR =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEA
BLE_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_FEATURE_DISJOINT_BIT_KHR = VK_FORMAT_FEATURE_DISJOINT_BIT,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR =
VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT,

4034

} VkFormatFeatureFlagBits;

These values all have the same meaning as the equivalently named values for
VkFormatFeatureFlags2 and may be set in linearTilingFeatures, optimalTilingFeatures, and
VkDrmFormatModifierPropertiesEXT::drmFormatModifierTilingFeatures, specifying that the features
are supported by images or image views or sampler Y′CBCR conversion objects created with the
queried vkGetPhysicalDeviceFormatProperties::format:

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT specifies that an image view can be sampled from.

• VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT specifies that an image view can be used as a storage
image.

• VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT specifies that an image view can be used as storage
image that supports atomic operations.

• VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT specifies that an image view can be used as a
framebuffer color attachment and as an input attachment.

• VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT specifies that an image view can be used as a
framebuffer color attachment that supports blending.

• VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT specifies that an image view can be used as a
framebuffer depth/stencil attachment and as an input attachment.

• VK_FORMAT_FEATURE_BLIT_SRC_BIT specifies that an image can be used as srcImage for the
vkCmdBlitImage2 and vkCmdBlitImage commands.

• VK_FORMAT_FEATURE_BLIT_DST_BIT specifies that an image can be used as dstImage for the
vkCmdBlitImage2 and vkCmdBlitImage commands.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT specifies that if
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT is also set, an image view can be used with a sampler that
has either of magFilter or minFilter set to VK_FILTER_LINEAR, or mipmapMode set to
VK_SAMPLER_MIPMAP_MODE_LINEAR. If VK_FORMAT_FEATURE_BLIT_SRC_BIT is also set, an image can be
used as the srcImage to vkCmdBlitImage2 and vkCmdBlitImage with a filter of VK_FILTER_LINEAR.
This bit must only be exposed for formats that also support the
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT or VK_FORMAT_FEATURE_BLIT_SRC_BIT.

If the format being queried is a depth/stencil format, this bit only specifies that the depth aspect
(not the stencil aspect) of an image of this format supports linear filtering, and that linear
filtering of the depth aspect is supported whether depth compare is enabled in the sampler or
not. Where depth comparison is supported it may be linear filtered whether this bit is present
or not, but where this bit is not present the filtered value may be computed in an
implementation-dependent manner which differs from the normal rules of linear filtering. The
resulting value must be in the range [0,1] and should be proportional to, or a weighted average
of, the number of comparison passes or failures.

• VK_FORMAT_FEATURE_TRANSFER_SRC_BIT specifies that an image can be used as a source image for
copy commands. If the application apiVersion is Vulkan 1.0 and VK_KHR_maintenance1 is not
supported, VK_FORMAT_FEATURE_TRANSFER_SRC_BIT is implied to be set when the format feature flag
is not 0.

4035

• VK_FORMAT_FEATURE_TRANSFER_DST_BIT specifies that an image can be used as a destination image
for copy commands and clear commands. If the application apiVersion is Vulkan 1.0 and
VK_KHR_maintenance1 is not supported, VK_FORMAT_FEATURE_TRANSFER_DST_BIT is implied to be set
when the format feature flag is not 0.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT specifies VkImage can be used as a sampled
image with a min or max VkSamplerReductionMode. This bit must only be exposed for formats
that also support the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT specifies that VkImage can be used with a
sampler that has either of magFilter or minFilter set to VK_FILTER_CUBIC_EXT, or be the source
image for a blit with filter set to VK_FILTER_CUBIC_EXT. This bit must only be exposed for
formats that also support the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT. If the format being queried
is a depth/stencil format, this only specifies that the depth aspect is cubic filterable.

• VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT specifies that an application can define a
sampler Y′CBCR conversion using this format as a source, and that an image of this format can be
used with a VkSamplerYcbcrConversionCreateInfo xChromaOffset and/or yChromaOffset of
VK_CHROMA_LOCATION_MIDPOINT. Otherwise both xChromaOffset and yChromaOffset must be
VK_CHROMA_LOCATION_COSITED_EVEN. If a format does not incorporate chroma downsampling (it is
not a “422” or “420” format) but the implementation supports sampler Y′CBCR conversion for this
format, the implementation must set VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT.

• VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT specifies that an application can define a
sampler Y′CBCR conversion using this format as a source, and that an image of this format can be
used with a VkSamplerYcbcrConversionCreateInfo xChromaOffset and/or yChromaOffset of
VK_CHROMA_LOCATION_COSITED_EVEN. Otherwise both xChromaOffset and yChromaOffset must be
VK_CHROMA_LOCATION_MIDPOINT. If neither VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT nor
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT is set, the application must not define a sampler
Y′CBCR conversion using this format as a source.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT specifies that an
application can define a sampler Y′CBCR conversion using this format as a source with
chromaFilter set to VK_FILTER_LINEAR.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT
specifies that the format can have different chroma, min, and mag filters.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT
specifies that reconstruction is explicit, as described in Chroma Reconstruction. If this bit is not
present, reconstruction is implicit by default.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_B
IT specifies that reconstruction can be forcibly made explicit by setting
VkSamplerYcbcrConversionCreateInfo::forceExplicitReconstruction to VK_TRUE. If the format
being queried supports
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT it must
also support
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_B
IT.

• VK_FORMAT_FEATURE_DISJOINT_BIT specifies that a multi-planar image can have the
VK_IMAGE_CREATE_DISJOINT_BIT set during image creation. An implementation must not set

4036

VK_FORMAT_FEATURE_DISJOINT_BIT for single-plane formats.

• VK_FORMAT_FEATURE_FRAGMENT_DENSITY_MAP_BIT_EXT specifies that an image view can be used as a
fragment density map attachment.

• VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR specifies that an image view can
be used as a fragment shading rate attachment. An implementation must not set this feature for
formats with a numeric format other than UINT, or set it as a buffer feature.

• VK_FORMAT_FEATURE_VIDEO_DECODE_OUTPUT_BIT_KHR specifies that an image view with this format
can be used as a decode output picture in video decode operations.

• VK_FORMAT_FEATURE_VIDEO_DECODE_DPB_BIT_KHR specifies that an image view with this format can
be used as an output reconstructed picture or an input reference picture in video decode
operations.

• VK_FORMAT_FEATURE_VIDEO_ENCODE_INPUT_BIT_KHR specifies that an image view with this format can
be used as an encode input picture in video encode operations.

• VK_FORMAT_FEATURE_VIDEO_ENCODE_DPB_BIT_KHR specifies that an image view with this format can
be used as an output reconstructed picture or an input reference picture in video encode
operations.

Note

Specific video profiles may have additional restrictions on the format and
other image creation parameters corresponding to image views used by video
coding operations that can be enumerated using the
vkGetPhysicalDeviceVideoFormatPropertiesKHR command.

The following bits may be set in bufferFeatures, specifying that the features are supported by
buffers or buffer views created with the queried vkGetPhysicalDeviceFormatProperties::format:

• VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT specifies that the format can be used to create a
buffer view that can be bound to a VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT specifies that the format can be used to create a
buffer view that can be bound to a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT specifies that atomic operations are
supported on VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER with this format.

• VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT specifies that the format can be used as a vertex attribute
format (VkVertexInputAttributeDescription::format).

• VK_FORMAT_FEATURE_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR specifies that the format can
be used as the vertex format when creating an acceleration structure
(VkAccelerationStructureGeometryTrianglesDataKHR::vertexFormat). This format can also be used
as the vertex format in host memory when doing host acceleration structure builds.

Note

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT and
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT are only intended to be
advertised for single-component formats, since SPIR-V atomic operations require a

4037

scalar type.

// Provided by VK_VERSION_1_0
typedef VkFlags VkFormatFeatureFlags;

VkFormatFeatureFlags is a bitmask type for setting a mask of zero or more VkFormatFeatureFlagBits.

To query supported format features which are properties of the physical device, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceFormatProperties2(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkFormatProperties2* pFormatProperties);

or the equivalent command

// Provided by VK_KHR_get_physical_device_properties2
void vkGetPhysicalDeviceFormatProperties2KHR(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkFormatProperties2* pFormatProperties);

• physicalDevice is the physical device from which to query the format properties.

• format is the format whose properties are queried.

• pFormatProperties is a pointer to a VkFormatProperties2 structure in which physical device
properties for format are returned.

vkGetPhysicalDeviceFormatProperties2 behaves similarly to vkGetPhysicalDeviceFormatProperties,
with the ability to return extended information in a pNext chain of output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFormatProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceFormatProperties2-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceFormatProperties2-pFormatProperties-parameter
pFormatProperties must be a valid pointer to a VkFormatProperties2 structure

The VkFormatProperties2 structure is defined as:

// Provided by VK_VERSION_1_1

4038

typedef struct VkFormatProperties2 {
 VkStructureType sType;
 void* pNext;
 VkFormatProperties formatProperties;
} VkFormatProperties2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkFormatProperties2 VkFormatProperties2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• formatProperties is a VkFormatProperties structure describing features supported by the
requested format.

Valid Usage (Implicit)

• VUID-VkFormatProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2

• VUID-VkFormatProperties2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDrmFormatModifierPropertiesList2EXT,
VkDrmFormatModifierPropertiesListEXT, VkFormatProperties3, or
VkSubpassResolvePerformanceQueryEXT

• VUID-VkFormatProperties2-sType-unique
The sType value of each struct in the pNext chain must be unique

To obtain the list of Linux DRM format modifiers compatible with a VkFormat, add a
VkDrmFormatModifierPropertiesListEXT structure to the pNext chain of VkFormatProperties2.

The VkDrmFormatModifierPropertiesListEXT structure is defined as:

// Provided by VK_EXT_image_drm_format_modifier
typedef struct VkDrmFormatModifierPropertiesListEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t drmFormatModifierCount;
 VkDrmFormatModifierPropertiesEXT* pDrmFormatModifierProperties;
} VkDrmFormatModifierPropertiesListEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

4039

• drmFormatModifierCount is an inout parameter related to the number of modifiers compatible
with the format, as described below.

• pDrmFormatModifierProperties is either NULL or a pointer to an array of
VkDrmFormatModifierPropertiesEXT structures.

If pDrmFormatModifierProperties is NULL, then the function returns in drmFormatModifierCount the
number of modifiers compatible with the queried format. Otherwise, the application must set
drmFormatModifierCount to the length of the array pDrmFormatModifierProperties; the function will
write at most drmFormatModifierCount elements to the array, and will return in
drmFormatModifierCount the number of elements written.

Among the elements in array pDrmFormatModifierProperties, each returned drmFormatModifier must
be unique.

Valid Usage (Implicit)

• VUID-VkDrmFormatModifierPropertiesListEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_EXT

The VkDrmFormatModifierPropertiesEXT structure describes properties of a VkFormat when that
format is combined with a Linux DRM format modifier. These properties, like those of
VkFormatProperties2, are independent of any particular image.

The VkDrmFormatModifierPropertiesEXT structure is defined as:

// Provided by VK_EXT_image_drm_format_modifier
typedef struct VkDrmFormatModifierPropertiesEXT {
 uint64_t drmFormatModifier;
 uint32_t drmFormatModifierPlaneCount;
 VkFormatFeatureFlags drmFormatModifierTilingFeatures;
} VkDrmFormatModifierPropertiesEXT;

• drmFormatModifier is a Linux DRM format modifier.

• drmFormatModifierPlaneCount is the number of memory planes in any image created with format
and drmFormatModifier. An image’s memory planecount is distinct from its format planecount, as
explained below.

• drmFormatModifierTilingFeatures is a bitmask of VkFormatFeatureFlagBits that are supported by
any image created with format and drmFormatModifier.

The returned drmFormatModifierTilingFeatures must contain at least one bit.

The implementation must not return DRM_FORMAT_MOD_INVALID in drmFormatModifier.

An image’s memory planecount (as returned by drmFormatModifierPlaneCount) is distinct from its
format planecount (in the sense of multi-planar Y′CBCR formats). In VkImageAspectFlags, each
VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT represents a memory plane and each

4040

VK_IMAGE_ASPECT_PLANE_i_BIT a format plane.

An image’s set of format planes is an ordered partition of the image’s content into separable groups
of format components. The ordered partition is encoded in the name of each VkFormat. For
example, VK_FORMAT_G8_B8R8_2PLANE_420_UNORM contains two format planes; the first plane contains
the green component and the second plane contains the blue component and red component. If the
format name does not contain PLANE, then the format contains a single plane; for example,
VK_FORMAT_R8G8B8A8_UNORM. Some commands, such as vkCmdCopyBufferToImage, do not operate on
all format components in the image, but instead operate only on the format planes explicitly chosen
by the application and operate on each format plane independently.

An image’s set of memory planes is an ordered partition of the image’s memory rather than the
image’s content. Each memory plane is a contiguous range of memory. The union of an image’s
memory planes is not necessarily contiguous.

If an image is linear, then the partition is the same for memory planes and for format planes.
Therefore, if the returned drmFormatModifier is DRM_FORMAT_MOD_LINEAR, then
drmFormatModifierPlaneCount must equal the format planecount, and
drmFormatModifierTilingFeatures must be identical to the VkFormatProperties2
::linearTilingFeatures returned in the same pNext chain.

If an image is non-linear, then the partition of the image’s memory into memory planes is
implementation-specific and may be unrelated to the partition of the image’s content into format
planes. For example, consider an image whose format is VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, whose drmFormatModifier is not
DRM_FORMAT_MOD_LINEAR, and flags lacks VK_IMAGE_CREATE_DISJOINT_BIT. The image has 3 format
planes, and commands such vkCmdCopyBufferToImage act on each format plane independently as
if the data of each format plane were separable from the data of the other planes. In a
straightforward implementation, the implementation may store the image’s content in 3 adjacent
memory planes where each memory plane corresponds exactly to a format plane. However, the
implementation may also store the image’s content in a single memory plane where all format
components are combined using an implementation-private block-compressed format; or the
implementation may store the image’s content in a collection of 7 adjacent memory planes using an
implementation-private sharding technique. Because the image is non-linear and non-disjoint, the
implementation has much freedom when choosing the image’s placement in memory.

The memory planecount applies to function parameters and structures only when the API specifies
an explicit requirement on drmFormatModifierPlaneCount. In all other cases, the memory planecount
is ignored.

The list of Linux DRM format modifiers compatible with a VkFormat can be obtained by adding a
VkDrmFormatModifierPropertiesList2EXT structure to the pNext chain of VkFormatProperties2.

The VkDrmFormatModifierPropertiesList2EXT structure is defined as:

// Provided by VK_KHR_format_feature_flags2 with VK_EXT_image_drm_format_modifier
typedef struct VkDrmFormatModifierPropertiesList2EXT {
 VkStructureType sType;
 void* pNext;

4041

 uint32_t drmFormatModifierCount;
 VkDrmFormatModifierProperties2EXT* pDrmFormatModifierProperties;
} VkDrmFormatModifierPropertiesList2EXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• drmFormatModifierCount is an inout parameter related to the number of modifiers compatible
with the format, as described below.

• pDrmFormatModifierProperties is either NULL or a pointer to an array of
VkDrmFormatModifierProperties2EXT structures.

If pDrmFormatModifierProperties is NULL, the number of modifiers compatible with the queried format
is returned in drmFormatModifierCount. Otherwise, the application must set drmFormatModifierCount
to the length of the array pDrmFormatModifierProperties; the function will write at most
drmFormatModifierCount elements to the array, and will return in drmFormatModifierCount the number
of elements written.

Among the elements in array pDrmFormatModifierProperties, each returned drmFormatModifier must
be unique.

Among the elements in array pDrmFormatModifierProperties, the bits reported in
drmFormatModifierTilingFeatures must include the bits reported in the corresponding element of
VkDrmFormatModifierPropertiesListEXT::pDrmFormatModifierProperties.

Valid Usage (Implicit)

• VUID-VkDrmFormatModifierPropertiesList2EXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_2_EXT

The VkDrmFormatModifierProperties2EXT structure describes properties of a VkFormat when that
format is combined with a Linux DRM format modifier. These properties, like those of
VkFormatProperties2, are independent of any particular image.

The VkDrmFormatModifierPropertiesEXT structure is defined as:

// Provided by VK_KHR_format_feature_flags2 with VK_EXT_image_drm_format_modifier
typedef struct VkDrmFormatModifierProperties2EXT {
 uint64_t drmFormatModifier;
 uint32_t drmFormatModifierPlaneCount;
 VkFormatFeatureFlags2 drmFormatModifierTilingFeatures;
} VkDrmFormatModifierProperties2EXT;

• drmFormatModifier is a Linux DRM format modifier.

• drmFormatModifierPlaneCount is the number of memory planes in any image created with format
and drmFormatModifier. An image’s memory planecount is distinct from its format planecount, as

4042

explained below.

• drmFormatModifierTilingFeatures is a bitmask of VkFormatFeatureFlagBits2 that are supported
by any image created with format and drmFormatModifier.

To query supported format extended features which are properties of the physical device, add
VkFormatProperties3 structure to the pNext chain of VkFormatProperties2.

The VkFormatProperties3 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkFormatProperties3 {
 VkStructureType sType;
 void* pNext;
 VkFormatFeatureFlags2 linearTilingFeatures;
 VkFormatFeatureFlags2 optimalTilingFeatures;
 VkFormatFeatureFlags2 bufferFeatures;
} VkFormatProperties3;

or the equivalent

// Provided by VK_KHR_format_feature_flags2
typedef VkFormatProperties3 VkFormatProperties3KHR;

• linearTilingFeatures is a bitmask of VkFormatFeatureFlagBits2 specifying features supported
by images created with a tiling parameter of VK_IMAGE_TILING_LINEAR.

• optimalTilingFeatures is a bitmask of VkFormatFeatureFlagBits2 specifying features supported
by images created with a tiling parameter of VK_IMAGE_TILING_OPTIMAL.

• bufferFeatures is a bitmask of VkFormatFeatureFlagBits2 specifying features supported by
buffers.

The bits reported in linearTilingFeatures, optimalTilingFeatures and bufferFeatures must include
the bits reported in the corresponding fields of VkFormatProperties2::formatProperties.

Valid Usage (Implicit)

• VUID-VkFormatProperties3-sType-sType
sType must be VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3

Bits which can be set in the VkFormatProperties3 features linearTilingFeatures,
optimalTilingFeatures, and bufferFeatures are:

// Provided by VK_VERSION_1_3
// Flag bits for VkFormatFeatureFlagBits2
typedef VkFlags64 VkFormatFeatureFlagBits2;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT =

4043

0x00000001ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT_KHR =
0x00000001ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT =
0x00000002ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT_KHR =
0x00000002ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BIT =
0x00000004ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BIT_KHR
= 0x00000004ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BIT =
0x00000008ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BIT_KHR
= 0x00000008ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BIT =
0x00000010ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BIT_KHR
= 0x00000010ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BIT = 0x00000020ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BIT_KHR = 0x00000020ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BIT =
0x00000040ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BIT_KHR =
0x00000040ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT =
0x00000080ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT_KHR =
0x00000080ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BIT =
0x00000100ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BIT_KHR = 0x00000100ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BIT
= 0x00000200ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BIT_KHR = 0x00000200ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_SRC_BIT =
0x00000400ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_SRC_BIT_KHR =
0x00000400ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_DST_BIT =
0x00000800ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_DST_BIT_KHR =
0x00000800ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BIT = 0x00001000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BIT_KHR = 0x00001000ULL;

4044

static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_CUBIC_BIT = 0x00002000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT = 0x00002000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT =
0x00004000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT_KHR =
0x00004000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT =
0x00008000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT_KHR =
0x00008000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BIT = 0x00010000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BIT_KHR = 0x00010000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT
= 0x00020000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT_KHR = 0x00020000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT = 0x00040000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR =
0x00040000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT
= 0x00080000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_
KHR = 0x00080000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT
= 0x00100000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_
KHR = 0x00100000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORC
EABLE_BIT = 0x00200000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORC
EABLE_BIT_KHR = 0x00200000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DISJOINT_BIT =
0x00400000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DISJOINT_BIT_KHR =
0x00400000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT =
0x00800000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT_KHR = 0x00800000ULL;

4045

static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT = 0x80000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT_KHR = 0x80000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT = 0x100000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT_KHR = 0x100000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT = 0x200000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT_KHR = 0x200000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_KHR_video_decode_queue
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_DECODE_OUTPUT_BIT_KHR
= 0x02000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_KHR_video_decode_queue
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_DECODE_DPB_BIT_KHR =
0x04000000ULL;
// Provided by VK_KHR_acceleration_structure with VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR = 0x20000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_EXT_fragment_density_map
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_FRAGMENT_DENSITY_MAP_BIT_EXT
= 0x01000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_KHR_fragment_shading_rate
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR = 0x40000000ULL;
// Provided by VK_EXT_host_image_copy
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT_EXT
= 0x400000000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_KHR_video_encode_queue
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_ENCODE_INPUT_BIT_KHR =
0x08000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_KHR_video_encode_queue
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_ENCODE_DPB_BIT_KHR =
0x10000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_NV_linear_color_attachment
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV = 0x4000000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_QCOM_image_processing
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM =
0x400000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_QCOM_image_processing
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM = 0x800000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_QCOM_image_processing
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM =
0x1000000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_QCOM_image_processing
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM
= 0x2000000000ULL;

4046

// Provided by VK_NV_optical_flow
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_OPTICAL_FLOW_IMAGE_BIT_NV =
0x10000000000ULL;
// Provided by VK_NV_optical_flow
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_OPTICAL_FLOW_VECTOR_BIT_NV =
0x20000000000ULL;
// Provided by VK_NV_optical_flow
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_OPTICAL_FLOW_COST_BIT_NV =
0x40000000000ULL;

or the equivalent

// Provided by VK_KHR_format_feature_flags2
typedef VkFormatFeatureFlagBits2 VkFormatFeatureFlagBits2KHR;

The following bits may be set in linearTilingFeatures and optimalTilingFeatures, specifying that
the features are supported by images or image views or sampler Y′CBCR conversion objects created
with the queried vkGetPhysicalDeviceFormatProperties2::format:

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT specifies that an image view can be sampled from.

• VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT specifies that an image view can be used as a storage
image.

• VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BIT specifies that an image view can be used as
storage image that supports atomic operations.

• VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT specifies that an image view can be used as a
framebuffer color attachment and as an input attachment.

• VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BIT specifies that an image view can be used as a
framebuffer color attachment that supports blending.

• VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BIT specifies that an image view can be used as a
framebuffer depth/stencil attachment and as an input attachment.

• VK_FORMAT_FEATURE_2_BLIT_SRC_BIT specifies that an image can be used as the srcImage for
vkCmdBlitImage2 and vkCmdBlitImage.

• VK_FORMAT_FEATURE_2_BLIT_DST_BIT specifies that an image can be used as the dstImage for
vkCmdBlitImage2 and vkCmdBlitImage.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BIT specifies that if
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT is also set, an image view can be used with a sampler
that has either of magFilter or minFilter set to VK_FILTER_LINEAR, or mipmapMode set to
VK_SAMPLER_MIPMAP_MODE_LINEAR. If VK_FORMAT_FEATURE_2_BLIT_SRC_BIT is also set, an image can be
used as the srcImage for vkCmdBlitImage2 and vkCmdBlitImage with a filter of VK_FILTER_LINEAR.
This bit must only be exposed for formats that also support the
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT or VK_FORMAT_FEATURE_2_BLIT_SRC_BIT.

If the format being queried is a depth/stencil format, this bit only specifies that the depth aspect
(not the stencil aspect) of an image of this format supports linear filtering. Where depth

4047

comparison is supported it may be linear filtered whether this bit is present or not, but where
this bit is not present the filtered value may be computed in an implementation-dependent
manner which differs from the normal rules of linear filtering. The resulting value must be in
the range [0,1] and should be proportional to, or a weighted average of, the number of
comparison passes or failures.

• VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT specifies that an image can be used as a source image for
copy commands.

• VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT specifies that an image can be used as a destination
image for copy commands and clear commands.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BIT specifies VkImage can be used as a
sampled image with a min or max VkSamplerReductionMode. This bit must only be exposed for
formats that also support the VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_CUBIC_BIT specifies that VkImage can be used with a
sampler that has either of magFilter or minFilter set to VK_FILTER_CUBIC_EXT, or be the source
image for a blit with filter set to VK_FILTER_CUBIC_EXT. This bit must only be exposed for
formats that also support the VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT. If the format being
queried is a depth/stencil format, this only specifies that the depth aspect is cubic filterable.

• VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT specifies that an application can define a
sampler Y′CBCR conversion using this format as a source, and that an image of this format can be
used with a VkSamplerYcbcrConversionCreateInfo xChromaOffset and/or yChromaOffset of
VK_CHROMA_LOCATION_MIDPOINT. Otherwise both xChromaOffset and yChromaOffset must be
VK_CHROMA_LOCATION_COSITED_EVEN. If a format does not incorporate chroma downsampling (it is
not a “422” or “420” format) but the implementation supports sampler Y′CBCR conversion for this
format, the implementation must set VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT.

• VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT specifies that an application can define a
sampler Y′CBCR conversion using this format as a source, and that an image of this format can be
used with a VkSamplerYcbcrConversionCreateInfo xChromaOffset and/or yChromaOffset of
VK_CHROMA_LOCATION_COSITED_EVEN. Otherwise both xChromaOffset and yChromaOffset must be
VK_CHROMA_LOCATION_MIDPOINT. If neither VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT nor
VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT is set, the application must not define a
sampler Y′CBCR conversion using this format as a source.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT specifies that an
application can define a sampler Y′CBCR conversion using this format as a source with
chromaFilter set to VK_FILTER_LINEAR.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT
specifies that the format can have different chroma, min, and mag filters.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT
specifies that reconstruction is explicit, as described in Chroma Reconstruction. If this bit is not
present, reconstruction is implicit by default.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE
_BIT specifies that reconstruction can be forcibly made explicit by setting
VkSamplerYcbcrConversionCreateInfo::forceExplicitReconstruction to VK_TRUE. If the format
being queried supports

4048

VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT it
must also support
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE
_BIT.

• VK_FORMAT_FEATURE_2_DISJOINT_BIT specifies that a multi-planar image can have the
VK_IMAGE_CREATE_DISJOINT_BIT set during image creation. An implementation must not set
VK_FORMAT_FEATURE_2_DISJOINT_BIT for single-plane formats.

• VK_FORMAT_FEATURE_2_FRAGMENT_DENSITY_MAP_BIT_EXT specifies that an image view can be used as a
fragment density map attachment.

• VK_FORMAT_FEATURE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR specifies that an image view can
be used as a fragment shading rate attachment. An implementation must not set this feature for
formats with a numeric format other than UINT, or set it as a buffer feature.

• VK_FORMAT_FEATURE_2_VIDEO_DECODE_OUTPUT_BIT_KHR specifies that an image view with this format
can be used as a decode output picture in video decode operations.

• VK_FORMAT_FEATURE_2_VIDEO_DECODE_DPB_BIT_KHR specifies that an image view with this format can
be used as an output reconstructed picture or an input reference picture in video decode
operations.

• VK_FORMAT_FEATURE_2_VIDEO_ENCODE_INPUT_BIT_KHR specifies that an image view with this format
can be used as an encode input picture in video encode operations.

• VK_FORMAT_FEATURE_2_VIDEO_ENCODE_DPB_BIT_KHR specifies that an image view with this format can
be used as an output reconstructed picture or an input reference picture in video encode
operations.

Note

Specific video profiles may have additional restrictions on the format and
other image creation parameters corresponding to image views used by video
coding operations that can be enumerated using the
vkGetPhysicalDeviceVideoFormatPropertiesKHR command.

• VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT specifies that image views or buffer views
created with this format can be used as storage images or storage texel buffers respectively for
read operations without specifying a format.

• VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT specifies that image views or buffer
views created with this format can be used as storage images or storage texel buffers
respectively for write operations without specifying a format.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT specifies that image views created
with this format can be used for depth comparison performed by OpImage*Dref* instructions.

• VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV specifies that the format is supported as a
renderable Linear Color Attachment. This bit will be set for renderable color formats in the
linearTilingFeatures. This must not be set in the optimalTilingFeatures or bufferFeatures
members.

• VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM specifies that image views created with this format
can be used as the weight image input to weight image sampling operations.

4049

• VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM specifies that image views created with this
format can be sampled in weight image sampling operations.

• VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM specifies that image views created with this
format can be used in block matching operations.

• VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM specifies that image views created with this
format can be sampled in box filter sampling operations.

• VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT_EXT specifies that an image can be created with
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT.

The following bits may be set in bufferFeatures, specifying that the features are supported by
buffers or buffer views created with the queried vkGetPhysicalDeviceFormatProperties2::format:

• VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BIT specifies that the format can be used to create a
buffer view that can be bound to a VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BIT specifies that the format can be used to create a
buffer view that can be bound to a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BIT specifies that atomic operations are
supported on VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER with this format.

• VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BIT specifies that the format can be used as a vertex
attribute format (VkVertexInputAttributeDescription::format).

• VK_FORMAT_FEATURE_2_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR specifies that the format
can be used as the vertex format when creating an acceleration structure
(VkAccelerationStructureGeometryTrianglesDataKHR::vertexFormat). This format can also be used
as the vertex format in host memory when doing host acceleration structure builds.

• VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT specifies that buffer views created with
this format can be used as storage texel buffers for read operations without specifying a format.

• VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT specifies that buffer views created with
this format can be used as storage texel buffers for write operations without specifying a
format.

• VK_FORMAT_FEATURE_2_OPTICAL_FLOW_IMAGE_BIT_NV specifies that an image view with this format
can be used as an input or reference to optical flow operations

• VK_FORMAT_FEATURE_2_OPTICAL_FLOW_VECTOR_BIT_NV specifies that an image view with this format
can be used as a flow vector map (either as hint, output or global flow) for optical flow
operations

• VK_FORMAT_FEATURE_2_OPTICAL_FLOW_COST_BIT_NV specifies that an image view with this format can
be used as an output cost map for optical flow operations

// Provided by VK_VERSION_1_3
typedef VkFlags64 VkFormatFeatureFlags2;

or the equivalent

4050

// Provided by VK_KHR_format_feature_flags2
typedef VkFormatFeatureFlags2 VkFormatFeatureFlags2KHR;

VkFormatFeatureFlags2 is a bitmask type for setting a mask of zero or more
VkFormatFeatureFlagBits2.

To query the performance characteristics of a subpass resolve operation for an attachment with a
VkFormat, add a VkSubpassResolvePerformanceQueryEXT structure to the pNext chain of
VkFormatProperties2.

The VkSubpassResolvePerformanceQueryEXT structure is defined as:

// Provided by VK_EXT_multisampled_render_to_single_sampled
typedef struct VkSubpassResolvePerformanceQueryEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 optimal;
} VkSubpassResolvePerformanceQueryEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• optimal specifies that a subpass resolve operation is optimally performed.

If optimal is VK_FALSE for a VkFormat, using a subpass resolve operation on a multisampled
attachment with this format can incur additional costs, including additional memory bandwidth
usage and a higher memory footprint. If an attachment with such a format is used in a
multisampled-render-to-single-sampled subpass, the additional memory and memory bandwidth
usage can nullify the benefits of using the VK_EXT_multisampled_render_to_single_sampled extension.

Valid Usage (Implicit)

• VUID-VkSubpassResolvePerformanceQueryEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_RESOLVE_PERFORMANCE_QUERY_EXT

49.2.1. Potential Format Features

Some valid usage conditions depend on the format features supported by a VkImage whose
VkImageTiling is unknown. In such cases the exact VkFormatFeatureFlagBits supported by the
VkImage cannot be determined, so the valid usage conditions are expressed in terms of the
potential format features of the VkImage format.

The potential format features of a VkFormat are defined as follows:

• The union of VkFormatFeatureFlagBits and VkFormatFeatureFlagBits2, supported when the
VkImageTiling is VK_IMAGE_TILING_OPTIMAL , VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, or
VK_IMAGE_TILING_LINEAR if VkFormat is not VK_FORMAT_UNDEFINED

4051

• VkAndroidHardwareBufferFormatPropertiesANDROID::formatFeatures and
VkAndroidHardwareBufferFormatProperties2ANDROID::formatFeatures of a valid external
format if VkFormat is VK_FORMAT_UNDEFINED

• VkScreenBufferFormatPropertiesQNX::formatFeatures of a valid external format if VkFormat is
VK_FORMAT_UNDEFINED

49.3. Required Format Support
Implementations must support at least the following set of features on the listed formats. For
images, these features must be supported for every VkImageType (including arrayed and cube
variants) unless otherwise noted. These features are supported on existing formats without needing
to advertise an extension or needing to explicitly enable them. Support for additional functionality
beyond the requirements listed here is queried using the vkGetPhysicalDeviceFormatProperties
command.

Note

Unless otherwise excluded below, the required formats are supported for all
VkImageCreateFlags values as long as those flag values are otherwise allowed.

The following tables show which feature bits must be supported for each format. Formats that are
required to support VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT must also support
VK_FORMAT_FEATURE_TRANSFER_SRC_BIT and VK_FORMAT_FEATURE_TRANSFER_DST_BIT.

Table 74. Key for format feature tables

✓ This feature must be supported on the named format

† This feature must be supported on at least some of the named
formats, with more information in the table where the symbol
appears

‡ This feature must be supported with some caveats or
preconditions, with more information in the table where the
symbol appears

§ This feature must be supported with some caveats or
preconditions, with more information in the table where the
symbol appears

Table 75. Feature bits in optimalTilingFeatures

VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

VK_FORMAT_FEATURE_TRANSFER_DST_BIT

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

VK_FORMAT_FEATURE_BLIT_SRC_BIT

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

4052

VK_FORMAT_FEATURE_BLIT_DST_BIT

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

Table 76. Feature bits in bufferFeatures

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

4053

Table 77. Mandatory format support: sub-byte components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_UNDEFINED

VK_FORMAT_R4G4_UNORM_PACK8

VK_FORMAT_R4G4B4A4_UNORM_PACK16

VK_FORMAT_B4G4R4A4_UNORM_PACK16 ✓ ✓ ✓

VK_FORMAT_R5G6B5_UNORM_PACK16 ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B5G6R5_UNORM_PACK16

VK_FORMAT_R5G5B5A1_UNORM_PACK16

VK_FORMAT_B5G5R5A1_UNORM_PACK16

VK_FORMAT_A1R5G5B5_UNORM_PACK16 ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR

VK_FORMAT_A4R4G4B4_UNORM_PACK16 † † †

VK_FORMAT_A4B4G4R4_UNORM_PACK16 ‡ ‡ ‡

Format features marked † must be supported for optimalTilingFeatures if the VkPhysicalDevice
supports the VkPhysicalDevice4444FormatsFeaturesEXT::formatA4R4G4B4 feature.

Format features marked ‡ must be supported for optimalTilingFeatures if the VkPhysicalDevice
supports the VkPhysicalDevice4444FormatsFeaturesEXT::formatA4B4G4R4 feature.

4054

Table 78. Mandatory format support: 1-3 byte-sized components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R8_UNORM ✓ ✓ ✓ ‡ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SNORM ✓ ✓ ✓ ‡ ✓ ✓

VK_FORMAT_R8_USCALED

VK_FORMAT_R8_SSCALED

VK_FORMAT_R8_UINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SRGB

VK_FORMAT_R8G8_UNORM ✓ ✓ ✓ ‡ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SNORM ✓ ✓ ✓ ‡ ✓ ✓

VK_FORMAT_R8G8_USCALED

VK_FORMAT_R8G8_SSCALED

VK_FORMAT_R8G8_UINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SRGB

VK_FORMAT_R8G8B8_UNORM

VK_FORMAT_R8G8B8_SNORM

VK_FORMAT_R8G8B8_USCALED

VK_FORMAT_R8G8B8_SSCALED

VK_FORMAT_R8G8B8_UINT

VK_FORMAT_R8G8B8_SINT

VK_FORMAT_R8G8B8_SRGB

VK_FORMAT_B8G8R8_UNORM

VK_FORMAT_B8G8R8_SNORM

4055

VK_FORMAT_B8G8R8_USCALED

VK_FORMAT_B8G8R8_SSCALED

VK_FORMAT_B8G8R8_UINT

VK_FORMAT_B8G8R8_SINT

VK_FORMAT_B8G8R8_SRGB

VK_FORMAT_A8_UNORM_KHR

Format features marked with ‡ must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderStorageImageExtendedFormats feature.

4056

Table 79. Mandatory format support: 4 byte-sized components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R8G8B8A8_UNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_USCALED

VK_FORMAT_R8G8B8A8_SSCALED

VK_FORMAT_R8G8B8A8_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SRGB ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B8G8R8A8_UNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B8G8R8A8_SNORM

VK_FORMAT_B8G8R8A8_USCALED

VK_FORMAT_B8G8R8A8_SSCALED

VK_FORMAT_B8G8R8A8_UINT

VK_FORMAT_B8G8R8A8_SINT

VK_FORMAT_B8G8R8A8_SRGB ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_UNORM_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SNORM_PACK32 ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_USCALED_PACK32

VK_FORMAT_A8B8G8R8_SSCALED_PACK32

VK_FORMAT_A8B8G8R8_UINT_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SINT_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SRGB_PACK32 ✓ ✓ ✓ ✓ ✓ ✓

4057

Table 80. Mandatory format support: 10- and 12-bit components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_A2R10G10B10_UNORM_PACK32

VK_FORMAT_A2R10G10B10_SNORM_PACK32

VK_FORMAT_A2R10G10B10_USCALED_PACK32

VK_FORMAT_A2R10G10B10_SSCALED_PACK32

VK_FORMAT_A2R10G10B10_UINT_PACK32

VK_FORMAT_A2R10G10B10_SINT_PACK32

VK_FORMAT_A2B10G10R10_UNORM_PACK32 ✓ ✓ ✓ ‡ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A2B10G10R10_SNORM_PACK32

VK_FORMAT_A2B10G10R10_USCALED_PACK32

VK_FORMAT_A2B10G10R10_SSCALED_PACK32

VK_FORMAT_A2B10G10R10_UINT_PACK32 ✓ ✓ ‡ ✓ ✓ ✓

VK_FORMAT_A2B10G10R10_SINT_PACK32

VK_FORMAT_R10X6_UNORM_PACK16

VK_FORMAT_R10X6G10X6_UNORM_2PACK16

VK_FORMAT_R12X4_UNORM_PACK16

VK_FORMAT_R12X4G12X4_UNORM_2PACK16

Format features marked with ‡ must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderStorageImageExtendedFormats feature.

4058

Table 81. Mandatory format support: 16-bit components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R16_UNORM ‡ ✓

VK_FORMAT_R16_SNORM ‡ ✓

VK_FORMAT_R16_USCALED

VK_FORMAT_R16_SSCALED

VK_FORMAT_R16_UINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R16_SINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R16_SFLOAT ✓ ✓ ✓ ‡ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_UNORM ‡ ✓

VK_FORMAT_R16G16_SNORM ‡ ✓

VK_FORMAT_R16G16_USCALED

VK_FORMAT_R16G16_SSCALED

VK_FORMAT_R16G16_UINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_SINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_SFLOAT ✓ ✓ ✓ ‡ § ✓ ✓ ✓ ✓ ✓ § §

VK_FORMAT_R16G16B16_UNORM

VK_FORMAT_R16G16B16_SNORM

VK_FORMAT_R16G16B16_USCALED

VK_FORMAT_R16G16B16_SSCALED

VK_FORMAT_R16G16B16_UINT

VK_FORMAT_R16G16B16_SINT

VK_FORMAT_R16G16B16_SFLOAT

VK_FORMAT_R16G16B16A16_UNORM ‡ ✓

VK_FORMAT_R16G16B16A16_SNORM ‡ ✓

4059

VK_FORMAT_R16G16B16A16_USCALED

VK_FORMAT_R16G16B16A16_SSCALED

VK_FORMAT_R16G16B16A16_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16B16A16_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16B16A16_SFLOAT ✓ ✓ ✓ ✓ § ✓ ✓ ✓ ✓ ✓ ✓ §

Format features marked with ‡ must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderStorageImageExtendedFormats feature.

Format features marked with § must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderFloat16VectorAtomics feature.

4060

Table 82. Mandatory format support: 32-bit components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32_SFLOAT ✓ ✓ ✓ † ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32_UINT ✓

VK_FORMAT_R32G32B32_SINT ✓

VK_FORMAT_R32G32B32_SFLOAT ✓

VK_FORMAT_R32G32B32A32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32A32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32A32_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Format features marked with † must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderImageFloat32Atomics or the shaderImageFloat32AtomicAdd or the
shaderImageFloat32AtomicMinMax feature.

4061

Table 83. Mandatory format support: 64-bit/uneven components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R64_UINT † †

VK_FORMAT_R64_SINT † †

VK_FORMAT_R64_SFLOAT

VK_FORMAT_R64G64_UINT

VK_FORMAT_R64G64_SINT

VK_FORMAT_R64G64_SFLOAT

VK_FORMAT_R64G64B64_UINT

VK_FORMAT_R64G64B64_SINT

VK_FORMAT_R64G64B64_SFLOAT

VK_FORMAT_R64G64B64A64_UINT

VK_FORMAT_R64G64B64A64_SINT

VK_FORMAT_R64G64B64A64_SFLOAT

VK_FORMAT_B10G11R11_UFLOAT_PACK32 ✓ ✓ ✓ ‡ ✓

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 ✓ ✓ ✓

Format features marked with ‡ must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderStorageImageExtendedFormats feature.

If the shaderImageInt64Atomics feature is supported, VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT and
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT must be advertised in optimalTilingFeatures for both
VK_FORMAT_R64_UINT and VK_FORMAT_R64_SINT.

4062

Table 84. Mandatory format support: depth/stencil with VkImageType VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_D16_UNORM ✓ ✓ ✓

VK_FORMAT_X8_D24_UNORM_PACK32 †

VK_FORMAT_D32_SFLOAT ✓ ✓ †

VK_FORMAT_S8_UINT

VK_FORMAT_D16_UNORM_S8_UINT

VK_FORMAT_D24_UNORM_S8_UINT †

VK_FORMAT_D32_SFLOAT_S8_UINT †

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT feature must be supported for at least one of
VK_FORMAT_X8_D24_UNORM_PACK32 and VK_FORMAT_D32_SFLOAT, and must be supported for at least one
of VK_FORMAT_D24_UNORM_S8_UINT and VK_FORMAT_D32_SFLOAT_S8_UINT.

bufferFeatures must not support any features for these formats

4063

Table 85. Mandatory format support: BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and
VK_IMAGE_TYPE_3D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_BC1_RGB_UNORM_BLOCK † † †

VK_FORMAT_BC1_RGB_SRGB_BLOCK † † †

VK_FORMAT_BC1_RGBA_UNORM_BLOCK † † †

VK_FORMAT_BC1_RGBA_SRGB_BLOCK † † †

VK_FORMAT_BC2_UNORM_BLOCK † † †

VK_FORMAT_BC2_SRGB_BLOCK † † †

VK_FORMAT_BC3_UNORM_BLOCK † † †

VK_FORMAT_BC3_SRGB_BLOCK † † †

VK_FORMAT_BC4_UNORM_BLOCK † † †

VK_FORMAT_BC4_SNORM_BLOCK † † †

VK_FORMAT_BC5_UNORM_BLOCK † † †

VK_FORMAT_BC5_SNORM_BLOCK † † †

VK_FORMAT_BC6H_UFLOAT_BLOCK † † †

VK_FORMAT_BC6H_SFLOAT_BLOCK † † †

VK_FORMAT_BC7_UNORM_BLOCK † † †

VK_FORMAT_BC7_SRGB_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:
ETC2 and EAC compressed formats with VkImageType VK_IMAGE_TYPE_2D, or Mandatory format
support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D.

4064

Table 86. Mandatory format support: ETC2 and EAC compressed formats with VkImageType
VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK † † †

VK_FORMAT_EAC_R11_UNORM_BLOCK † † †

VK_FORMAT_EAC_R11_SNORM_BLOCK † † †

VK_FORMAT_EAC_R11G11_UNORM_BLOCK † † †

VK_FORMAT_EAC_R11G11_SNORM_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:
BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and VK_IMAGE_TYPE_3D, or Mandatory
format support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D.

4065

Table 87. Mandatory format support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_ASTC_4x4_UNORM_BLOCK † † †

VK_FORMAT_ASTC_4x4_SRGB_BLOCK † † †

VK_FORMAT_ASTC_5x4_UNORM_BLOCK † † †

VK_FORMAT_ASTC_5x4_SRGB_BLOCK † † †

VK_FORMAT_ASTC_5x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_5x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_6x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_6x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_6x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_6x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x8_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x8_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x8_UNORM_BLOCK † † †

4066

VK_FORMAT_ASTC_10x8_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x10_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x10_SRGB_BLOCK † † †

VK_FORMAT_ASTC_12x10_UNORM_BLOCK † † †

VK_FORMAT_ASTC_12x10_SRGB_BLOCK † † †

VK_FORMAT_ASTC_12x12_UNORM_BLOCK † † †

VK_FORMAT_ASTC_12x12_SRGB_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:
BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and VK_IMAGE_TYPE_3D, or Mandatory
format support: ETC2 and EAC compressed formats with VkImageType VK_IMAGE_TYPE_2D.

If cubic filtering is supported, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT must be
supported for the following image view types:

• VK_IMAGE_VIEW_TYPE_2D

• VK_IMAGE_VIEW_TYPE_2D_ARRAY

for the following formats:

• VK_FORMAT_R4G4_UNORM_PACK8

• VK_FORMAT_R4G4B4A4_UNORM_PACK16

• VK_FORMAT_B4G4R4A4_UNORM_PACK16

• VK_FORMAT_R5G6B5_UNORM_PACK16

• VK_FORMAT_B5G6R5_UNORM_PACK16

• VK_FORMAT_R5G5B5A1_UNORM_PACK16

• VK_FORMAT_B5G5R5A1_UNORM_PACK16

• VK_FORMAT_A1R5G5B5_UNORM_PACK16

• VK_FORMAT_R8_UNORM

• VK_FORMAT_R8_SNORM

• VK_FORMAT_R8_SRGB

• VK_FORMAT_R8G8_UNORM

• VK_FORMAT_R8G8_SNORM

• VK_FORMAT_R8G8_SRGB

• VK_FORMAT_R8G8B8_UNORM

• VK_FORMAT_R8G8B8_SNORM

• VK_FORMAT_R8G8B8_SRGB

• VK_FORMAT_B8G8R8_UNORM

4067

• VK_FORMAT_B8G8R8_SNORM

• VK_FORMAT_B8G8R8_SRGB

• VK_FORMAT_R8G8B8A8_UNORM

• VK_FORMAT_R8G8B8A8_SNORM

• VK_FORMAT_R8G8B8A8_SRGB

• VK_FORMAT_B8G8R8A8_UNORM

• VK_FORMAT_B8G8R8A8_SNORM

• VK_FORMAT_B8G8R8A8_SRGB

• VK_FORMAT_A8B8G8R8_UNORM_PACK32

• VK_FORMAT_A8B8G8R8_SNORM_PACK32

• VK_FORMAT_A8B8G8R8_SRGB_PACK32

If ETC compressed formats are supported, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT
must be supported for the following image view types:

• VK_IMAGE_VIEW_TYPE_2D

• VK_IMAGE_VIEW_TYPE_2D_ARRAY

for the following additional formats:

• VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK

• VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK

• VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK

• VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK

• VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK

• VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK

If cubic filtering is supported for any other formats, the following image view types must be
supported for those formats:

• VK_IMAGE_VIEW_TYPE_2D

• VK_IMAGE_VIEW_TYPE_2D_ARRAY

To be used with VkImageView with subresourceRange.aspectMask equal to VK_IMAGE_ASPECT_COLOR_BIT,
sampler Y′CBCR conversion must be enabled for the following formats:

4068

Table 88. Formats requiring sampler Y′CBCR conversion for VK_IMAGE_ASPECT_COLOR_BIT image views

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_
BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT

↓

VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT

↓

VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT

↓

VK_FORMAT_FEATURE_TRANSFER_DST_BIT

↓

VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

↓
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

↓VK_FORMAT_FEATURE_DISJOINT_BIT
↓

Format Planes

VK_FORMAT_G8B8G8R8_422_UNORM 1

VK_FORMAT_B8G8R8G8_422_UNORM 1

VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM 3 † † † †

VK_FORMAT_G8_B8R8_2PLANE_420_UNORM 2 † † † †

VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM 3

VK_FORMAT_G8_B8R8_2PLANE_422_UNORM 2

VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM 3

VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 ‡ 1

VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16 1

VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16 1

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16 3

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16 2

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16 3

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16 2

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16 3

VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16 1

VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16 1

VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16 1

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16 3

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16 2

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16 3

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16 2

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16 3

4069

VK_FORMAT_G16B16G16R16_422_UNORM 1

VK_FORMAT_B16G16R16G16_422_UNORM 1

VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM 3

VK_FORMAT_G16_B16R16_2PLANE_420_UNORM 2

VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM 3

VK_FORMAT_G16_B16R16_2PLANE_422_UNORM 2

VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM 3

VK_FORMAT_G8_B8R8_2PLANE_444_UNORM 2

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16 2

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16 2

VK_FORMAT_G16_B16R16_2PLANE_444_UNORM 2

Format features marked † must be supported for optimalTilingFeatures with VkImageType
VK_IMAGE_TYPE_2D if the VkPhysicalDevice supports the
VkPhysicalDeviceSamplerYcbcrConversionFeatures feature.

Formats marked ‡ do not require a sampler Y′CBCR conversion for VK_IMAGE_ASPECT_COLOR_BIT image
views if the VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT::formatRgba10x6WithoutYCbCrSampler
feature is enabled.

Implementations are not required to support the VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or VK_IMAGE_CREATE_SPARSE_ALIASED_BIT VkImageCreateFlags
for the above formats that require sampler Y′CBCR conversion. To determine whether the
implementation supports sparse image creation flags with these formats use
vkGetPhysicalDeviceImageFormatProperties or vkGetPhysicalDeviceImageFormatProperties2.

VK_FORMAT_FEATURE_FRAGMENT_DENSITY_MAP_BIT_EXT must be supported for the following formats if the
fragmentDensityMap feature is enabled:

• VK_FORMAT_R8G8_UNORM

VK_FORMAT_FEATURE_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR must be supported in
bufferFeatures for the following formats if the accelerationStructure feature is supported:

• VK_FORMAT_R32G32_SFLOAT

• VK_FORMAT_R32G32B32_SFLOAT

• VK_FORMAT_R16G16_SFLOAT

• VK_FORMAT_R16G16B16A16_SFLOAT

• VK_FORMAT_R16G16_SNORM

• VK_FORMAT_R16G16B16A16_SNORM

VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR must be supported for the following
formats if the attachmentFragmentShadingRate feature is supported:

• VK_FORMAT_R8_UINT

4070

If VK_EXT_host_image_copy is supported and VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT is supported in
optimalTilingFeatures or linearTilingFeatures for a color format,
VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT_EXT must also be supported in optimalTilingFeatures
or linearTilingFeatures respectively.

49.3.1. Formats Without Shader Storage Format

The device-level features for using a storage image or a storage texel buffer with an image format
of Unknown, shaderStorageImageReadWithoutFormat and shaderStorageImageWriteWithoutFormat, only
apply to the following formats:

• VK_FORMAT_R8G8B8A8_UNORM

• VK_FORMAT_R8G8B8A8_SNORM

• VK_FORMAT_R8G8B8A8_UINT

• VK_FORMAT_R8G8B8A8_SINT

• VK_FORMAT_R32_UINT

• VK_FORMAT_R32_SINT

• VK_FORMAT_R32_SFLOAT

• VK_FORMAT_R32G32_UINT

• VK_FORMAT_R32G32_SINT

• VK_FORMAT_R32G32_SFLOAT

• VK_FORMAT_R32G32B32A32_UINT

• VK_FORMAT_R32G32B32A32_SINT

• VK_FORMAT_R32G32B32A32_SFLOAT

• VK_FORMAT_R16G16B16A16_UINT

• VK_FORMAT_R16G16B16A16_SINT

• VK_FORMAT_R16G16B16A16_SFLOAT

• VK_FORMAT_R16G16_SFLOAT

• VK_FORMAT_B10G11R11_UFLOAT_PACK32

• VK_FORMAT_R16_SFLOAT

• VK_FORMAT_R16G16B16A16_UNORM

• VK_FORMAT_A2B10G10R10_UNORM_PACK32

• VK_FORMAT_R16G16_UNORM

• VK_FORMAT_R8G8_UNORM

• VK_FORMAT_R16_UNORM

• VK_FORMAT_R8_UNORM

• VK_FORMAT_R16G16B16A16_SNORM

• VK_FORMAT_R16G16_SNORM

4071

• VK_FORMAT_R8G8_SNORM

• VK_FORMAT_R16_SNORM

• VK_FORMAT_R8_SNORM

• VK_FORMAT_R16G16_SINT

• VK_FORMAT_R8G8_SINT

• VK_FORMAT_R16_SINT

• VK_FORMAT_R8_SINT

• VK_FORMAT_A2B10G10R10_UINT_PACK32

• VK_FORMAT_R16G16_UINT

• VK_FORMAT_R8G8_UINT

• VK_FORMAT_R16_UINT

• VK_FORMAT_R8_UINT

• VK_FORMAT_A8_UNORM_KHR

Note

This list of formats is the union of required storage formats from Required Format
Support section and formats listed in shaderStorageImageExtendedFormats.

An implementation that supports VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT for any format from the
given list of formats and supports shaderStorageImageReadWithoutFormat must support
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT for that same format if Vulkan 1.3 or the
VK_KHR_format_feature_flags2 extension is supported.

An implementation that supports VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT for any format from the
given list of formats and supports shaderStorageImageWriteWithoutFormat must support
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT for that same format if Vulkan 1.3 or the
VK_KHR_format_feature_flags2 extension is supported.

An implementation that does not support either of
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT or
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT for a format must not report support for
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT or VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT for that format
if it is not listed in the SPIR-V and Vulkan Image Format Compatibility table.

Note

Some older implementations do not follow this restriction. They report support for
formats as storage images even though they do not support access without the
Format qualifier and there is no matching Format token. Such images cannot be
either read from or written to.

Drivers which pass Vulkan conformance test suite version 1.3.9.0, or any
subsequent version will conform to the requirement above.

4072

49.3.2. Depth Comparison Format Support

If Vulkan 1.3 or the VK_KHR_format_feature_flags2 extension is supported, a depth/stencil format
with a depth component supporting VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT must support
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT.

49.3.3. Format Feature Dependent Usage Flags

Certain resource usage flags depend on support for the corresponding format feature flag for the
format in question. The following tables list the VkBufferUsageFlagBits and VkImageUsageFlagBits
that have such dependencies, and the format feature flags they depend on. Additional restrictions,
including, but not limited to, further required format feature flags specific to the particular use of
the resource may apply, as described in the respective sections of this specification.

Table 89. Format feature dependent buffer usage flags

Buffer usage flag Required format feature flag

VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

VK_BUFFER_USAGE_VERTEX_BUFFER_BIT VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

Table 90. Format feature dependent image usage flags

Image usage flag Required format feature flag

VK_IMAGE_USAGE_SAMPLED_BIT VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

VK_IMAGE_USAGE_STORAGE_BIT VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMEN
T_BIT_KHR

VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACH
MENT_BIT_KHR

VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR VK_FORMAT_FEATURE_VIDEO_DECODE_OUTPUT_BIT_KHR

VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR VK_FORMAT_FEATURE_VIDEO_DECODE_DPB_BIT_KHR

VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR VK_FORMAT_FEATURE_VIDEO_ENCODE_INPUT_BIT_KHR

VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR VK_FORMAT_FEATURE_VIDEO_ENCODE_DPB_BIT_KHR

4073

Chapter 50. Additional Capabilities
This chapter describes additional capabilities beyond the minimum capabilities described in the
Limits and Formats chapters, including:

• Additional Image Capabilities

• Additional Buffer Capabilities

• Optional Semaphore Capabilities

• Optional Fence Capabilities

• Timestamp Calibration Capabilities

50.1. Additional Image Capabilities
Additional image capabilities, such as larger dimensions or additional sample counts for certain
image types, or additional capabilities for linear tiling format images, are described in this section.

To query additional capabilities specific to image types, call:

// Provided by VK_VERSION_1_0
VkResult vkGetPhysicalDeviceImageFormatProperties(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkImageType type,
 VkImageTiling tiling,
 VkImageUsageFlags usage,
 VkImageCreateFlags flags,
 VkImageFormatProperties* pImageFormatProperties);

• physicalDevice is the physical device from which to query the image capabilities.

• format is a VkFormat value specifying the image format, corresponding to VkImageCreateInfo
::format.

• type is a VkImageType value specifying the image type, corresponding to VkImageCreateInfo
::imageType.

• tiling is a VkImageTiling value specifying the image tiling, corresponding to
VkImageCreateInfo::tiling.

• usage is a bitmask of VkImageUsageFlagBits specifying the intended usage of the image,
corresponding to VkImageCreateInfo::usage.

• flags is a bitmask of VkImageCreateFlagBits specifying additional parameters of the image,
corresponding to VkImageCreateInfo::flags.

• pImageFormatProperties is a pointer to a VkImageFormatProperties structure in which
capabilities are returned.

The format, type, tiling, usage, and flags parameters correspond to parameters that would be

4074

consumed by vkCreateImage (as members of VkImageCreateInfo).

If format is not a supported image format, or if the combination of format, type, tiling, usage, and
flags is not supported for images, then vkGetPhysicalDeviceImageFormatProperties returns
VK_ERROR_FORMAT_NOT_SUPPORTED.

The limitations on an image format that are reported by vkGetPhysicalDeviceImageFormatProperties
have the following property: if usage1 and usage2 of type VkImageUsageFlags are such that the bits
set in usage1 are a subset of the bits set in usage2, and flags1 and flags2 of type VkImageCreateFlags
are such that the bits set in flags1 are a subset of the bits set in flags2, then the limitations for
usage1 and flags1 must be no more strict than the limitations for usage2 and flags2, for all values of
format, type, and tiling.

If VK_EXT_host_image_copy is supported, usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and flags does
not include either of VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT, then the result of calls to
vkGetPhysicalDeviceImageFormatProperties with identical parameters except for the inclusion of
VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT in usage must be identical.

Valid Usage

• VUID-vkGetPhysicalDeviceImageFormatProperties-tiling-02248
tiling must not be VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT. (Use
vkGetPhysicalDeviceImageFormatProperties2 instead)

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceImageFormatProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceImageFormatProperties-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceImageFormatProperties-type-parameter
type must be a valid VkImageType value

• VUID-vkGetPhysicalDeviceImageFormatProperties-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-vkGetPhysicalDeviceImageFormatProperties-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-vkGetPhysicalDeviceImageFormatProperties-usage-requiredbitmask
usage must not be 0

• VUID-vkGetPhysicalDeviceImageFormatProperties-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

• VUID-vkGetPhysicalDeviceImageFormatProperties-pImageFormatProperties-parameter
pImageFormatProperties must be a valid pointer to a VkImageFormatProperties structure

4075

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

The VkImageFormatProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageFormatProperties {
 VkExtent3D maxExtent;
 uint32_t maxMipLevels;
 uint32_t maxArrayLayers;
 VkSampleCountFlags sampleCounts;
 VkDeviceSize maxResourceSize;
} VkImageFormatProperties;

• maxExtent are the maximum image dimensions. See the Allowed Extent Values section below for
how these values are constrained by type.

• maxMipLevels is the maximum number of mipmap levels. maxMipLevels must be equal to the
number of levels in the complete mipmap chain based on the maxExtent.width, maxExtent.height,
and maxExtent.depth, except when one of the following conditions is true, in which case it may
instead be 1:

◦ vkGetPhysicalDeviceImageFormatProperties::tiling was VK_IMAGE_TILING_LINEAR

◦ VkPhysicalDeviceImageFormatInfo2::tiling was VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT

◦ the VkPhysicalDeviceImageFormatInfo2::pNext chain included a
VkPhysicalDeviceExternalImageFormatInfo structure with a handle type included in the
handleTypes member for which mipmap image support is not required

◦ image format is one of the formats that require a sampler Y′CBCR conversion

◦ flags contains VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• maxArrayLayers is the maximum number of array layers. maxArrayLayers must be no less than
VkPhysicalDeviceLimits::maxImageArrayLayers, except when one of the following conditions is
true, in which case it may instead be 1:

◦ tiling is VK_IMAGE_TILING_LINEAR

◦ tiling is VK_IMAGE_TILING_OPTIMAL and type is VK_IMAGE_TYPE_3D

◦ format is one of the formats that require a sampler Y′CBCR conversion

• If tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, then maxArrayLayers must not be 0.

4076

• sampleCounts is a bitmask of VkSampleCountFlagBits specifying all the supported sample counts
for this image as described below.

• maxResourceSize is an upper bound on the total image size in bytes, inclusive of all image
subresources. Implementations may have an address space limit on total size of a resource,
which is advertised by this property. maxResourceSize must be at least 231.

Note

There is no mechanism to query the size of an image before creating it, to compare
that size against maxResourceSize. If an application attempts to create an image that
exceeds this limit, the creation will fail and vkCreateImage will return
VK_ERROR_OUT_OF_DEVICE_MEMORY. While the advertised limit must be at least 231, it
may not be possible to create an image that approaches that size, particularly for
VK_IMAGE_TYPE_1D.

If the combination of parameters to vkGetPhysicalDeviceImageFormatProperties is not supported by
the implementation for use in vkCreateImage, then all members of VkImageFormatProperties will be
filled with zero.

Note

Filling VkImageFormatProperties with zero for unsupported formats is an exception
to the usual rule that output structures have undefined contents on error. This
exception was unintentional, but is preserved for backwards compatibility.

To determine the image capabilities compatible with an external memory handle type, call:

// Provided by VK_NV_external_memory_capabilities
VkResult vkGetPhysicalDeviceExternalImageFormatPropertiesNV(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkImageType type,
 VkImageTiling tiling,
 VkImageUsageFlags usage,
 VkImageCreateFlags flags,
 VkExternalMemoryHandleTypeFlagsNV externalHandleType,
 VkExternalImageFormatPropertiesNV* pExternalImageFormatProperties);

• physicalDevice is the physical device from which to query the image capabilities

• format is the image format, corresponding to VkImageCreateInfo::format.

• type is the image type, corresponding to VkImageCreateInfo::imageType.

• tiling is the image tiling, corresponding to VkImageCreateInfo::tiling.

• usage is the intended usage of the image, corresponding to VkImageCreateInfo::usage.

• flags is a bitmask describing additional parameters of the image, corresponding to
VkImageCreateInfo::flags.

• externalHandleType is either one of the bits from VkExternalMemoryHandleTypeFlagBitsNV, or

4077

0.

• pExternalImageFormatProperties is a pointer to a VkExternalImageFormatPropertiesNV structure
in which capabilities are returned.

If externalHandleType is 0, pExternalImageFormatProperties->imageFormatProperties will return the
same values as a call to vkGetPhysicalDeviceImageFormatProperties, and the other members of
pExternalImageFormatProperties will all be 0. Otherwise, they are filled in as described for
VkExternalImageFormatPropertiesNV.

Valid Usage

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-externalHandleType-07721
externalHandleType must not have more than one bit set

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-type-parameter
type must be a valid VkImageType value

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-usage-requiredbitmask
usage must not be 0

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-externalHandleType-
parameter
externalHandleType must be a valid combination of
VkExternalMemoryHandleTypeFlagBitsNV values

• VUID-vkGetPhysicalDeviceExternalImageFormatPropertiesNV-
pExternalImageFormatProperties-parameter
pExternalImageFormatProperties must be a valid pointer to a
VkExternalImageFormatPropertiesNV structure

4078

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

The VkExternalImageFormatPropertiesNV structure is defined as:

// Provided by VK_NV_external_memory_capabilities
typedef struct VkExternalImageFormatPropertiesNV {
 VkImageFormatProperties imageFormatProperties;
 VkExternalMemoryFeatureFlagsNV externalMemoryFeatures;
 VkExternalMemoryHandleTypeFlagsNV exportFromImportedHandleTypes;
 VkExternalMemoryHandleTypeFlagsNV compatibleHandleTypes;
} VkExternalImageFormatPropertiesNV;

• imageFormatProperties will be filled in as when calling
vkGetPhysicalDeviceImageFormatProperties, but the values returned may vary depending on
the external handle type requested.

• externalMemoryFeatures is a bitmask of VkExternalMemoryFeatureFlagBitsNV, indicating
properties of the external memory handle type
(vkGetPhysicalDeviceExternalImageFormatPropertiesNV::externalHandleType) being queried, or
0 if the external memory handle type is 0.

• exportFromImportedHandleTypes is a bitmask of VkExternalMemoryHandleTypeFlagBitsNV
containing a bit set for every external handle type that may be used to create memory from
which the handles of the type specified in
vkGetPhysicalDeviceExternalImageFormatPropertiesNV::externalHandleType can be exported,
or 0 if the external memory handle type is 0.

• compatibleHandleTypes is a bitmask of VkExternalMemoryHandleTypeFlagBitsNV containing a
bit set for every external handle type that may be specified simultaneously with the handle type
specified by vkGetPhysicalDeviceExternalImageFormatPropertiesNV::externalHandleType when
calling vkAllocateMemory, or 0 if the external memory handle type is 0. compatibleHandleTypes
will always contain vkGetPhysicalDeviceExternalImageFormatPropertiesNV::externalHandleType

Bits which can be set in VkExternalImageFormatPropertiesNV::externalMemoryFeatures, indicating
properties of the external memory handle type, are:

// Provided by VK_NV_external_memory_capabilities
typedef enum VkExternalMemoryFeatureFlagBitsNV {
 VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV = 0x00000001,

4079

 VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV = 0x00000002,
 VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV = 0x00000004,
} VkExternalMemoryFeatureFlagBitsNV;

• VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV specifies that external memory of the
specified type must be created as a dedicated allocation when used in the manner specified.

• VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV specifies that the implementation supports
exporting handles of the specified type.

• VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV specifies that the implementation supports
importing handles of the specified type.

// Provided by VK_NV_external_memory_capabilities
typedef VkFlags VkExternalMemoryFeatureFlagsNV;

VkExternalMemoryFeatureFlagsNV is a bitmask type for setting a mask of zero or more
VkExternalMemoryFeatureFlagBitsNV.

To query additional capabilities specific to image types, call:

// Provided by VK_VERSION_1_1
VkResult vkGetPhysicalDeviceImageFormatProperties2(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
 VkImageFormatProperties2* pImageFormatProperties);

or the equivalent command

// Provided by VK_KHR_get_physical_device_properties2
VkResult vkGetPhysicalDeviceImageFormatProperties2KHR(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
 VkImageFormatProperties2* pImageFormatProperties);

• physicalDevice is the physical device from which to query the image capabilities.

• pImageFormatInfo is a pointer to a VkPhysicalDeviceImageFormatInfo2 structure describing the
parameters that would be consumed by vkCreateImage.

• pImageFormatProperties is a pointer to a VkImageFormatProperties2 structure in which
capabilities are returned.

vkGetPhysicalDeviceImageFormatProperties2 behaves similarly to
vkGetPhysicalDeviceImageFormatProperties, with the ability to return extended information in a
pNext chain of output structures.

If the pNext chain of pImageFormatInfo includes a VkVideoProfileListInfoKHR structure with a
profileCount member greater than 0, then this command returns format capabilities specific to

4080

image types used in conjunction with the specified video profiles. In this case, this command will
return one of the video-profile-specific error codes if any of the profiles specified via
VkVideoProfileListInfoKHR::pProfiles are not supported. Furthermore, if
VkPhysicalDeviceImageFormatInfo2::usage includes any image usage flag not supported by the
specified video profiles, then this command returns VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR.

Valid Usage

• VUID-vkGetPhysicalDeviceImageFormatProperties2-pNext-01868
If the pNext chain of pImageFormatProperties includes a
VkAndroidHardwareBufferUsageANDROID structure, the pNext chain of pImageFormatInfo
must include a VkPhysicalDeviceExternalImageFormatInfo structure with handleType set
to VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID

• VUID-vkGetPhysicalDeviceImageFormatProperties2-pNext-09004
If the pNext chain of pImageFormatProperties includes a
VkHostImageCopyDevicePerformanceQueryEXT structure, pImageFormatInfo->usage must
contain VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceImageFormatProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceImageFormatProperties2-pImageFormatInfo-parameter
pImageFormatInfo must be a valid pointer to a valid VkPhysicalDeviceImageFormatInfo2
structure

• VUID-vkGetPhysicalDeviceImageFormatProperties2-pImageFormatProperties-parameter
pImageFormatProperties must be a valid pointer to a VkImageFormatProperties2 structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

• VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR

• VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR

4081

The VkPhysicalDeviceImageFormatInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceImageFormatInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkFormat format;
 VkImageType type;
 VkImageTiling tiling;
 VkImageUsageFlags usage;
 VkImageCreateFlags flags;
} VkPhysicalDeviceImageFormatInfo2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkPhysicalDeviceImageFormatInfo2 VkPhysicalDeviceImageFormatInfo2KHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure. The pNext chain of
VkPhysicalDeviceImageFormatInfo2 is used to provide additional image parameters to
vkGetPhysicalDeviceImageFormatProperties2.

• format is a VkFormat value indicating the image format, corresponding to VkImageCreateInfo
::format.

• type is a VkImageType value indicating the image type, corresponding to VkImageCreateInfo
::imageType.

• tiling is a VkImageTiling value indicating the image tiling, corresponding to
VkImageCreateInfo::tiling.

• usage is a bitmask of VkImageUsageFlagBits indicating the intended usage of the image,
corresponding to VkImageCreateInfo::usage.

• flags is a bitmask of VkImageCreateFlagBits indicating additional parameters of the image,
corresponding to VkImageCreateInfo::flags.

The members of VkPhysicalDeviceImageFormatInfo2 correspond to the arguments to
vkGetPhysicalDeviceImageFormatProperties, with sType and pNext added for extensibility.

Valid Usage

• VUID-VkPhysicalDeviceImageFormatInfo2-tiling-02249
tiling must be VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT if and only if the pNext chain
includes VkPhysicalDeviceImageDrmFormatModifierInfoEXT

• VUID-VkPhysicalDeviceImageFormatInfo2-tiling-02313
If tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT and flags contains
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, then the pNext chain must include a

4082

VkImageFormatListCreateInfo structure with non-zero viewFormatCount

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageFormatInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2

• VUID-VkPhysicalDeviceImageFormatInfo2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkImageCompressionControlEXT,
VkImageFormatListCreateInfo, VkImageStencilUsageCreateInfo,
VkOpticalFlowImageFormatInfoNV, VkPhysicalDeviceExternalImageFormatInfo,
VkPhysicalDeviceImageDrmFormatModifierInfoEXT,
VkPhysicalDeviceImageViewImageFormatInfoEXT, or VkVideoProfileListInfoKHR

• VUID-VkPhysicalDeviceImageFormatInfo2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPhysicalDeviceImageFormatInfo2-format-parameter
format must be a valid VkFormat value

• VUID-VkPhysicalDeviceImageFormatInfo2-type-parameter
type must be a valid VkImageType value

• VUID-VkPhysicalDeviceImageFormatInfo2-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-VkPhysicalDeviceImageFormatInfo2-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkPhysicalDeviceImageFormatInfo2-usage-requiredbitmask
usage must not be 0

• VUID-VkPhysicalDeviceImageFormatInfo2-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

The VkImageFormatProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImageFormatProperties2 {
 VkStructureType sType;
 void* pNext;
 VkImageFormatProperties imageFormatProperties;
} VkImageFormatProperties2;

or the equivalent

// Provided by VK_KHR_get_physical_device_properties2
typedef VkImageFormatProperties2 VkImageFormatProperties2KHR;

4083

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure. The pNext chain of
VkImageFormatProperties2 is used to allow the specification of additional capabilities to be
returned from vkGetPhysicalDeviceImageFormatProperties2.

• imageFormatProperties is a VkImageFormatProperties structure in which capabilities are
returned.

If the combination of parameters to vkGetPhysicalDeviceImageFormatProperties2 is not supported by
the implementation for use in vkCreateImage, then all members of imageFormatProperties will be
filled with zero.

Note

Filling imageFormatProperties with zero for unsupported formats is an exception to
the usual rule that output structures have undefined contents on error. This
exception was unintentional, but is preserved for backwards compatibility. This
exception only applies to imageFormatProperties, not sType, pNext, or any structures
chained from pNext.

Valid Usage (Implicit)

• VUID-VkImageFormatProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2

• VUID-VkImageFormatProperties2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkAndroidHardwareBufferUsageANDROID,
VkExternalImageFormatProperties, VkFilterCubicImageViewImageFormatPropertiesEXT,
VkHostImageCopyDevicePerformanceQueryEXT, VkImageCompressionPropertiesEXT,
VkSamplerYcbcrConversionImageFormatProperties, or
VkTextureLODGatherFormatPropertiesAMD

• VUID-VkImageFormatProperties2-sType-unique
The sType value of each struct in the pNext chain must be unique

To determine if texture gather functions that take explicit LOD and/or bias argument values can be
used with a given image format, add a VkTextureLODGatherFormatPropertiesAMD structure to the
pNext chain of the VkImageFormatProperties2 structure in a call to
vkGetPhysicalDeviceImageFormatProperties2.

The VkTextureLODGatherFormatPropertiesAMD structure is defined as:

// Provided by VK_AMD_texture_gather_bias_lod
typedef struct VkTextureLODGatherFormatPropertiesAMD {
 VkStructureType sType;
 void* pNext;
 VkBool32 supportsTextureGatherLODBiasAMD;

4084

} VkTextureLODGatherFormatPropertiesAMD;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• supportsTextureGatherLODBiasAMD tells if the image format can be used with texture gather
bias/LOD functions, as introduced by the VK_AMD_texture_gather_bias_lod extension. This field is
set by the implementation. User-specified value is ignored.

Valid Usage (Implicit)

• VUID-VkTextureLODGatherFormatPropertiesAMD-sType-sType
sType must be VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD

To determine the image capabilities compatible with an external memory handle type, add a
VkPhysicalDeviceExternalImageFormatInfo structure to the pNext chain of the
VkPhysicalDeviceImageFormatInfo2 structure and a VkExternalImageFormatProperties structure to
the pNext chain of the VkImageFormatProperties2 structure.

The VkPhysicalDeviceExternalImageFormatInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceExternalImageFormatInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagBits handleType;
} VkPhysicalDeviceExternalImageFormatInfo;

or the equivalent

// Provided by VK_KHR_external_memory_capabilities
typedef VkPhysicalDeviceExternalImageFormatInfo
VkPhysicalDeviceExternalImageFormatInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the memory handle
type that will be used with the memory associated with the image.

If handleType is 0, vkGetPhysicalDeviceImageFormatProperties2 will behave as if
VkPhysicalDeviceExternalImageFormatInfo was not present, and
VkExternalImageFormatProperties will be ignored.

If handleType is not compatible with the format, type, tiling, usage, and flags specified in
VkPhysicalDeviceImageFormatInfo2, then vkGetPhysicalDeviceImageFormatProperties2 returns

4085

VK_ERROR_FORMAT_NOT_SUPPORTED.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalImageFormatInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO

• VUID-VkPhysicalDeviceExternalImageFormatInfo-handleType-parameter
If handleType is not 0, handleType must be a valid VkExternalMemoryHandleTypeFlagBits
value

Possible values of VkPhysicalDeviceExternalImageFormatInfo::handleType, specifying an external
memory handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalMemoryHandleTypeFlagBits {
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT = 0x00000001,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT = 0x00000002,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT = 0x00000004,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT = 0x00000008,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT = 0x00000010,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT = 0x00000020,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT = 0x00000040,
 // Provided by VK_EXT_external_memory_dma_buf
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT = 0x00000200,
 // Provided by VK_ANDROID_external_memory_android_hardware_buffer
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID = 0x00000400,
 // Provided by VK_EXT_external_memory_host
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT = 0x00000080,
 // Provided by VK_EXT_external_memory_host
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT = 0x00000100,
 // Provided by VK_FUCHSIA_external_memory
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA = 0x00000800,
 // Provided by VK_NV_external_memory_rdma
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_RDMA_ADDRESS_BIT_NV = 0x00001000,
 // Provided by VK_QNX_external_memory_screen_buffer
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX = 0x00004000,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT_KHR =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT,

4086

 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT_KHR =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT_KHR =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT_KHR =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT,
} VkExternalMemoryHandleTypeFlagBits;

or the equivalent

// Provided by VK_KHR_external_memory_capabilities
typedef VkExternalMemoryHandleTypeFlagBits VkExternalMemoryHandleTypeFlagBitsKHR;

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT specifies a POSIX file descriptor handle that has
only limited valid usage outside of Vulkan and other compatible APIs. It must be compatible
with the POSIX system calls dup, dup2, close, and the non-standard system call dup3. Additionally,
it must be transportable over a socket using an SCM_RIGHTS control message. It owns a reference
to the underlying memory resource represented by its Vulkan memory object.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT specifies an NT handle that has only limited
valid usage outside of Vulkan and other compatible APIs. It must be compatible with the
functions DuplicateHandle, CloseHandle, CompareObjectHandles, GetHandleInformation, and
SetHandleInformation. It owns a reference to the underlying memory resource represented by its
Vulkan memory object.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT specifies a global share handle that has
only limited valid usage outside of Vulkan and other compatible APIs. It is not compatible with
any native APIs. It does not own a reference to the underlying memory resource represented by
its Vulkan memory object, and will therefore become invalid when all Vulkan memory objects
associated with it are destroyed.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT specifies an NT handle returned by
IDXGIResource1::CreateSharedHandle referring to a Direct3D 10 or 11 texture resource. It owns a
reference to the memory used by the Direct3D resource.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT specifies a global share handle returned
by IDXGIResource::GetSharedHandle referring to a Direct3D 10 or 11 texture resource. It does not
own a reference to the underlying Direct3D resource, and will therefore become invalid when
all Vulkan memory objects and Direct3D resources associated with it are destroyed.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 heap resource. It owns a reference
to the resources used by the Direct3D heap.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 committed resource. It owns a
reference to the memory used by the Direct3D resource.

4087

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT specifies a host pointer returned by a
host memory allocation command. It does not own a reference to the underlying memory
resource, and will therefore become invalid if the host memory is freed.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT specifies a host pointer to
host mapped foreign memory. It does not own a reference to the underlying memory resource,
and will therefore become invalid if the foreign memory is unmapped or otherwise becomes no
longer available.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT is a file descriptor for a Linux dma_buf. It
owns a reference to the underlying memory resource represented by its Vulkan memory object.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID specifies an
AHardwareBuffer object defined by the Android NDK. See Android Hardware Buffers for more
details of this handle type.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA is a Zircon handle to a virtual memory
object.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_RDMA_ADDRESS_BIT_NV is a handle to an allocation accessible by
remote devices. It owns a reference to the underlying memory resource represented by its
Vulkan memory object.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX specifies a _screen_buffer object defined
by the QNX SDP. See QNX Screen Buffer for more details of this handle type.

4088

Some external memory handle types can only be shared within the same underlying physical
device and/or the same driver version, as defined in the following table:

Table 91. External memory handle types compatibility

Handle type VkPhysicalDeviceIDProperties::d
riverUUID

VkPhysicalDeviceIDProperties::d
eviceUUID

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_OPAQUE_FD_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_OPAQUE_WIN32_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_OPAQUE_WIN32_KMT_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_D3D11_TEXTURE_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_D3D11_TEXTURE_KMT_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_D3D12_HEAP_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_D3D12_RESOURCE_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_HOST_ALLOCATION_BIT_EXT

No restriction No restriction

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_HOST_MAPPED_FOREIGN_MEMORY_BI
T_EXT

No restriction No restriction

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_DMA_BUF_BIT_EXT

No restriction No restriction

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_ANDROID_HARDWARE_BUFFER_BIT_A
NDROID

No restriction No restriction

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_ZIRCON_VMO_BIT_FUCHSIA

No restriction No restriction

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_RDMA_ADDRESS_BIT_NV

No restriction No restriction

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_SCREEN_BUFFER_BIT_QNX

No restriction No restriction

Note

The above table does not restrict the drivers and devices with which
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT and
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT may be
shared, as these handle types inherently mean memory that does not come from
the same device, as they import memory from the host or a foreign device,
respectively.

Note

Even though the above table does not restrict the drivers and devices with which

4089

VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT may be shared, query
mechanisms exist in the Vulkan API that prevent the import of incompatible dma-
bufs (such as vkGetMemoryFdPropertiesKHR) and that prevent incompatible
usage of dma-bufs (such as VkPhysicalDeviceExternalBufferInfo and
VkPhysicalDeviceExternalImageFormatInfo).

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalMemoryHandleTypeFlags;

or the equivalent

// Provided by VK_KHR_external_memory_capabilities
typedef VkExternalMemoryHandleTypeFlags VkExternalMemoryHandleTypeFlagsKHR;

VkExternalMemoryHandleTypeFlags is a bitmask type for setting a mask of zero or more
VkExternalMemoryHandleTypeFlagBits.

The VkExternalImageFormatProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalImageFormatProperties {
 VkStructureType sType;
 void* pNext;
 VkExternalMemoryProperties externalMemoryProperties;
} VkExternalImageFormatProperties;

or the equivalent

// Provided by VK_KHR_external_memory_capabilities
typedef VkExternalImageFormatProperties VkExternalImageFormatPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• externalMemoryProperties is a VkExternalMemoryProperties structure specifying various
capabilities of the external handle type when used with the specified image creation
parameters.

Valid Usage (Implicit)

• VUID-VkExternalImageFormatProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES

The VkExternalMemoryProperties structure is defined as:

4090

// Provided by VK_VERSION_1_1
typedef struct VkExternalMemoryProperties {
 VkExternalMemoryFeatureFlags externalMemoryFeatures;
 VkExternalMemoryHandleTypeFlags exportFromImportedHandleTypes;
 VkExternalMemoryHandleTypeFlags compatibleHandleTypes;
} VkExternalMemoryProperties;

or the equivalent

// Provided by VK_KHR_external_memory_capabilities
typedef VkExternalMemoryProperties VkExternalMemoryPropertiesKHR;

• externalMemoryFeatures is a bitmask of VkExternalMemoryFeatureFlagBits specifying the
features of handleType.

• exportFromImportedHandleTypes is a bitmask of VkExternalMemoryHandleTypeFlagBits
specifying which types of imported handle handleType can be exported from.

• compatibleHandleTypes is a bitmask of VkExternalMemoryHandleTypeFlagBits specifying handle
types which can be specified at the same time as handleType when creating an image compatible
with external memory.

compatibleHandleTypes must include at least handleType. Inclusion of a handle type in
compatibleHandleTypes does not imply the values returned in VkImageFormatProperties2 will be the
same when VkPhysicalDeviceExternalImageFormatInfo::handleType is set to that type. The
application is responsible for querying the capabilities of all handle types intended for concurrent
use in a single image and intersecting them to obtain the compatible set of capabilities.

Bits which may be set in VkExternalMemoryProperties::externalMemoryFeatures, specifying features
of an external memory handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalMemoryFeatureFlagBits {
 VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT = 0x00000001,
 VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT = 0x00000002,
 VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT = 0x00000004,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_KHR =
VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_KHR =
VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT,
 // Provided by VK_KHR_external_memory_capabilities
 VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_KHR =
VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT,
} VkExternalMemoryFeatureFlagBits;

or the equivalent

4091

// Provided by VK_KHR_external_memory_capabilities
typedef VkExternalMemoryFeatureFlagBits VkExternalMemoryFeatureFlagBitsKHR;

• VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT specifies that images or buffers created with the
specified parameters and handle type must use the mechanisms defined by
VkMemoryDedicatedRequirements and VkMemoryDedicatedAllocateInfo to create (or import) a
dedicated allocation for the image or buffer.

• VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT specifies that handles of this type can be exported
from Vulkan memory objects.

• VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT specifies that handles of this type can be imported
as Vulkan memory objects.

Because their semantics in external APIs roughly align with that of an image or buffer with a
dedicated allocation in Vulkan, implementations are required to report
VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT for the following external handle types:

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID for images only

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX for images only

Implementations must not report VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT for buffers with
external handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID.
Implementations must not report VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT for buffers with
external handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX. Implementations
must not report VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT for images or buffers with external
handle type VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, or
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT.

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalMemoryFeatureFlags;

or the equivalent

// Provided by VK_KHR_external_memory_capabilities
typedef VkExternalMemoryFeatureFlags VkExternalMemoryFeatureFlagsKHR;

VkExternalMemoryFeatureFlags is a bitmask type for setting a mask of zero or more
VkExternalMemoryFeatureFlagBits.

To query the image capabilities that are compatible with a Linux DRM format modifier, set
VkPhysicalDeviceImageFormatInfo2::tiling to VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT and add a
VkPhysicalDeviceImageDrmFormatModifierInfoEXT structure to the pNext chain of

4092

VkPhysicalDeviceImageFormatInfo2.

The VkPhysicalDeviceImageDrmFormatModifierInfoEXT structure is defined as:

// Provided by VK_EXT_image_drm_format_modifier
typedef struct VkPhysicalDeviceImageDrmFormatModifierInfoEXT {
 VkStructureType sType;
 const void* pNext;
 uint64_t drmFormatModifier;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
} VkPhysicalDeviceImageDrmFormatModifierInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• drmFormatModifier is the image’s Linux DRM format modifier, corresponding to
VkImageDrmFormatModifierExplicitCreateInfoEXT::modifier or to
VkImageDrmFormatModifierListCreateInfoEXT::pModifiers.

• sharingMode specifies how the image will be accessed by multiple queue families.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a pointer to an array of queue families that will access the image. It is
ignored if sharingMode is not VK_SHARING_MODE_CONCURRENT.

If the drmFormatModifier is incompatible with the parameters specified in
VkPhysicalDeviceImageFormatInfo2 and its pNext chain, then
vkGetPhysicalDeviceImageFormatProperties2 returns VK_ERROR_FORMAT_NOT_SUPPORTED. The
implementation must support the query of any drmFormatModifier, including unknown and invalid
modifier values.

Valid Usage

• VUID-VkPhysicalDeviceImageDrmFormatModifierInfoEXT-sharingMode-02314
If sharingMode is VK_SHARING_MODE_CONCURRENT, then pQueueFamilyIndices must be a valid
pointer to an array of queueFamilyIndexCount uint32_t values

• VUID-VkPhysicalDeviceImageDrmFormatModifierInfoEXT-sharingMode-02315
If sharingMode is VK_SHARING_MODE_CONCURRENT, then queueFamilyIndexCount must be greater
than 1

• VUID-VkPhysicalDeviceImageDrmFormatModifierInfoEXT-sharingMode-02316
If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be
unique and must be less than the pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties2 for the physicalDevice that was used to
create device

4093

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageDrmFormatModifierInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT

• VUID-VkPhysicalDeviceImageDrmFormatModifierInfoEXT-sharingMode-parameter
sharingMode must be a valid VkSharingMode value

To determine the number of combined image samplers required to support a multi-planar format,
add VkSamplerYcbcrConversionImageFormatProperties to the pNext chain of the
VkImageFormatProperties2 structure in a call to vkGetPhysicalDeviceImageFormatProperties2.

The VkSamplerYcbcrConversionImageFormatProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkSamplerYcbcrConversionImageFormatProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t combinedImageSamplerDescriptorCount;
} VkSamplerYcbcrConversionImageFormatProperties;

or the equivalent

// Provided by VK_KHR_sampler_ycbcr_conversion
typedef VkSamplerYcbcrConversionImageFormatProperties
VkSamplerYcbcrConversionImageFormatPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• combinedImageSamplerDescriptorCount is the number of combined image sampler descriptors that
the implementation uses to access the format.

Valid Usage (Implicit)

• VUID-VkSamplerYcbcrConversionImageFormatProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES

combinedImageSamplerDescriptorCount is a number between 1 and the number of planes in the
format. A descriptor set layout binding with immutable Y′CBCR conversion samplers will have a
maximum combinedImageSamplerDescriptorCount which is the maximum across all formats
supported by its samplers of the combinedImageSamplerDescriptorCount for each format. Descriptor
sets with that layout will internally use that maximum combinedImageSamplerDescriptorCount
descriptors for each descriptor in the binding. This expanded number of descriptors will be
consumed from the descriptor pool when a descriptor set is allocated, and counts towards the

4094

maxDescriptorSetSamplers, maxDescriptorSetSampledImages, maxPerStageDescriptorSamplers, and
maxPerStageDescriptorSampledImages limits.

Note

All descriptors in a binding use the same maximum
combinedImageSamplerDescriptorCount descriptors to allow implementations to use a
uniform stride for dynamic indexing of the descriptors in the binding.

For example, consider a descriptor set layout binding with two descriptors and
immutable samplers for multi-planar formats that have
VkSamplerYcbcrConversionImageFormatProperties::combinedImageSamplerDescriptorCo
unt values of 2 and 3 respectively. There are two descriptors in the binding and the
maximum combinedImageSamplerDescriptorCount is 3, so descriptor sets with this
layout consume 6 descriptors from the descriptor pool. To create a descriptor pool
that allows allocating four descriptor sets with this layout, descriptorCount must be
at least 24.

Instead of querying all the potential formats that the application might use in the descriptor layout,
the application can use the VkPhysicalDeviceMaintenance6PropertiesKHR
::maxCombinedImageSamplerDescriptorCount property to determine the maximum descriptor size that
that will accommodate any and all formats that require a sampler Y′CBCR conversion supported by
the implementation.

To obtain optimal Android hardware buffer usage flags for specific image creation parameters, add
a VkAndroidHardwareBufferUsageANDROID structure to the pNext chain of a VkImageFormatProperties2
structure passed to vkGetPhysicalDeviceImageFormatProperties2. This structure is defined as:

// Provided by VK_ANDROID_external_memory_android_hardware_buffer
typedef struct VkAndroidHardwareBufferUsageANDROID {
 VkStructureType sType;
 void* pNext;
 uint64_t androidHardwareBufferUsage;
} VkAndroidHardwareBufferUsageANDROID;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• androidHardwareBufferUsage returns the Android hardware buffer usage flags.

The androidHardwareBufferUsage field must include Android hardware buffer usage flags listed in
the AHardwareBuffer Usage Equivalence table when the corresponding Vulkan image usage or
image creation flags are included in the usage or flags fields of
VkPhysicalDeviceImageFormatInfo2. It must include at least one GPU usage flag
(AHARDWAREBUFFER_USAGE_GPU_*), even if none of the corresponding Vulkan usages or flags are
requested.

Note

Requiring at least one GPU usage flag ensures that Android hardware buffer

4095

memory will be allocated in a memory pool accessible to the Vulkan
implementation, and that specializing the memory layout based on usage flags
does not prevent it from being compatible with Vulkan. Implementations may
avoid unnecessary restrictions caused by this requirement by using vendor usage
flags to indicate that only the Vulkan uses indicated in VkImageFormatProperties2
are required.

Valid Usage (Implicit)

• VUID-VkAndroidHardwareBufferUsageANDROID-sType-sType
sType must be VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID

To query if using VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT has a negative impact on device
performance when accessing an image, add VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT to
VkPhysicalDeviceImageFormatInfo2::usage, and add a VkHostImageCopyDevicePerformanceQueryEXT
structure to the pNext chain of a VkImageFormatProperties2 structure passed to
vkGetPhysicalDeviceImageFormatProperties2. This structure is defined as:

// Provided by VK_EXT_host_image_copy
typedef struct VkHostImageCopyDevicePerformanceQueryEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 optimalDeviceAccess;
 VkBool32 identicalMemoryLayout;
} VkHostImageCopyDevicePerformanceQueryEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• optimalDeviceAccess returns VK_TRUE if use of host image copy has no adverse effect on device
access performance, compared to an image that is created with exact same creation parameters,
and bound to the same VkDeviceMemory, except that VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT is
replaced with VK_IMAGE_USAGE_TRANSFER_SRC_BIT and VK_IMAGE_USAGE_TRANSFER_DST_BIT.

• identicalMemoryLayout returns VK_TRUE if use of host image copy has no impact on memory
layout compared to an image that is created with exact same creation parameters, and bound to
the same VkDeviceMemory, except that VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT is replaced with
VK_IMAGE_USAGE_TRANSFER_SRC_BIT and VK_IMAGE_USAGE_TRANSFER_DST_BIT.

The implementation may return VK_FALSE in optimalDeviceAccess if identicalMemoryLayout is
VK_FALSE. If identicalMemoryLayout is VK_TRUE, optimalDeviceAccess must be VK_TRUE.

The implementation may return VK_TRUE in optimalDeviceAccess while identicalMemoryLayout is
VK_FALSE. In this situation, any device performance impact should not be measurable.

If VkPhysicalDeviceImageFormatInfo2::format is a block-compressed format and
vkGetPhysicalDeviceImageFormatProperties2 returns VK_SUCCESS, the implementation must return
VK_TRUE in optimalDeviceAccess.

4096

Note

Applications can make use of optimalDeviceAccess to determine their resource
copying strategy. If a resource is expected to be accessed more on device than on
the host, and the implementation considers the resource sub-optimally accessed, it
is likely better to use device copies instead.

Note

Layout not being identical yet still considered optimal for device access could
happen if the implementation has different memory layout patterns, some of
which are easier to access on the host.

Note

The most practical reason for optimalDeviceAccess to be VK_FALSE is that host image
access may disable framebuffer compression where it would otherwise have been
enabled. This represents far more efficient host image access since no compression
algorithm is required to read or write to the image, but it would impact device
access performance. Some implementations may only set optimalDeviceAccess to
VK_FALSE if certain conditions are met, such as specific image usage flags or
creation flags.

Valid Usage (Implicit)

• VUID-VkHostImageCopyDevicePerformanceQueryEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_HOST_IMAGE_COPY_DEVICE_PERFORMANCE_QUERY_EXT

To determine if cubic filtering can be used with a given image format and a given image view type
add a VkPhysicalDeviceImageViewImageFormatInfoEXT structure to the pNext chain of the
VkPhysicalDeviceImageFormatInfo2 structure, and a
VkFilterCubicImageViewImageFormatPropertiesEXT structure to the pNext chain of the
VkImageFormatProperties2 structure.

The VkPhysicalDeviceImageViewImageFormatInfoEXT structure is defined as:

// Provided by VK_EXT_filter_cubic
typedef struct VkPhysicalDeviceImageViewImageFormatInfoEXT {
 VkStructureType sType;
 void* pNext;
 VkImageViewType imageViewType;
} VkPhysicalDeviceImageViewImageFormatInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageViewType is a VkImageViewType value specifying the type of the image view.

4097

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageViewImageFormatInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_IMAGE_FORMAT_INFO_EXT

• VUID-VkPhysicalDeviceImageViewImageFormatInfoEXT-imageViewType-parameter
imageViewType must be a valid VkImageViewType value

The VkFilterCubicImageViewImageFormatPropertiesEXT structure is defined as:

// Provided by VK_EXT_filter_cubic
typedef struct VkFilterCubicImageViewImageFormatPropertiesEXT {
 VkStructureType sType;
 void* pNext;
 VkBool32 filterCubic;
 VkBool32 filterCubicMinmax;
} VkFilterCubicImageViewImageFormatPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• filterCubic tells if image format, image type and image view type can be used with cubic
filtering. This field is set by the implementation. User-specified value is ignored.

• filterCubicMinmax tells if image format, image type and image view type can be used with cubic
filtering and minmax filtering. This field is set by the implementation. User-specified value is
ignored.

Valid Usage (Implicit)

• VUID-VkFilterCubicImageViewImageFormatPropertiesEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_FILTER_CUBIC_IMAGE_VIEW_IMAGE_FORMAT_PROPERTIES_EXT

Valid Usage

• VUID-VkFilterCubicImageViewImageFormatPropertiesEXT-pNext-02627
If the pNext chain of the VkImageFormatProperties2 structure includes a
VkFilterCubicImageViewImageFormatPropertiesEXT structure, the pNext chain of the
VkPhysicalDeviceImageFormatInfo2 structure must include a
VkPhysicalDeviceImageViewImageFormatInfoEXT structure with an imageViewType that is
compatible with imageType

50.1.1. Supported Sample Counts

vkGetPhysicalDeviceImageFormatProperties returns a bitmask of VkSampleCountFlagBits in

4098

sampleCounts specifying the supported sample counts for the image parameters.

sampleCounts will be set to VK_SAMPLE_COUNT_1_BIT if at least one of the following conditions is true:

• tiling is VK_IMAGE_TILING_LINEAR

• type is not VK_IMAGE_TYPE_2D

• flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

• Neither the VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag nor the
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT flag in VkFormatProperties
::optimalTilingFeatures returned by vkGetPhysicalDeviceFormatProperties is set

• VkPhysicalDeviceExternalImageFormatInfo::handleType is an external handle type for which
multisampled image support is not required.

• format is one of the formats that require a sampler Y′CBCR conversion

• usage contains VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• usage contains VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT

Otherwise, the bits set in sampleCounts will be the sample counts supported for the specified values
of usage and format. For each bit set in usage, the supported sample counts relate to the limits in
VkPhysicalDeviceLimits as follows:

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT and format is a floating- or fixed-point
color format, a superset of VkPhysicalDeviceLimits::framebufferColorSampleCounts

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT and format is an integer format, a
superset of VkPhysicalDeviceVulkan12Properties::framebufferIntegerColorSampleCounts

• If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a depth
component, a superset of VkPhysicalDeviceLimits::framebufferDepthSampleCounts

• If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a stencil
component, a superset of VkPhysicalDeviceLimits::framebufferStencilSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a color component, a superset
of VkPhysicalDeviceLimits::sampledImageColorSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a depth component, a superset
of VkPhysicalDeviceLimits::sampledImageDepthSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format is an integer format, a superset of
VkPhysicalDeviceLimits::sampledImageIntegerSampleCounts

• If usage includes VK_IMAGE_USAGE_STORAGE_BIT, a superset of VkPhysicalDeviceLimits
::storageImageSampleCounts

If multiple bits are set in usage, sampleCounts will be the intersection of the per-usage values
described above.

If none of the bits described above are set in usage, then there is no corresponding limit in
VkPhysicalDeviceLimits. In this case, sampleCounts must include at least VK_SAMPLE_COUNT_1_BIT.

4099

50.1.2. Allowed Extent Values Based on Image Type

Implementations may support extent values larger than the required minimum/maximum values
for certain types of images. VkImageFormatProperties::maxExtent for each type is subject to the
constraints below.

Note

Implementations must support images with dimensions up to the required
minimum/maximum values for all types of images. It follows that the query for
additional capabilities must return extent values that are at least as large as the
required values.

For VK_IMAGE_TYPE_1D:

• maxExtent.width ≥ VkPhysicalDeviceLimits::maxImageDimension1D

• maxExtent.height = 1

• maxExtent.depth = 1

For VK_IMAGE_TYPE_2D when flags does not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:

• maxExtent.width ≥ VkPhysicalDeviceLimits::maxImageDimension2D

• maxExtent.height ≥ VkPhysicalDeviceLimits::maxImageDimension2D

• maxExtent.depth = 1

For VK_IMAGE_TYPE_2D when flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:

• maxExtent.width ≥ VkPhysicalDeviceLimits::maxImageDimensionCube

• maxExtent.height ≥ VkPhysicalDeviceLimits::maxImageDimensionCube

• maxExtent.depth = 1

For VK_IMAGE_TYPE_3D:

• maxExtent.width ≥ VkPhysicalDeviceLimits::maxImageDimension3D

• maxExtent.height ≥ VkPhysicalDeviceLimits::maxImageDimension3D

• maxExtent.depth ≥ VkPhysicalDeviceLimits::maxImageDimension3D

50.2. Additional Buffer Capabilities
To query the external handle types supported by buffers, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceExternalBufferProperties(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo,
 VkExternalBufferProperties* pExternalBufferProperties);

4100

or the equivalent command

// Provided by VK_KHR_external_memory_capabilities
void vkGetPhysicalDeviceExternalBufferPropertiesKHR(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo,
 VkExternalBufferProperties* pExternalBufferProperties);

• physicalDevice is the physical device from which to query the buffer capabilities.

• pExternalBufferInfo is a pointer to a VkPhysicalDeviceExternalBufferInfo structure describing
the parameters that would be consumed by vkCreateBuffer.

• pExternalBufferProperties is a pointer to a VkExternalBufferProperties structure in which
capabilities are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceExternalBufferProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceExternalBufferProperties-pExternalBufferInfo-parameter
pExternalBufferInfo must be a valid pointer to a valid
VkPhysicalDeviceExternalBufferInfo structure

• VUID-vkGetPhysicalDeviceExternalBufferProperties-pExternalBufferProperties-
parameter
pExternalBufferProperties must be a valid pointer to a VkExternalBufferProperties
structure

The VkPhysicalDeviceExternalBufferInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceExternalBufferInfo {
 VkStructureType sType;
 const void* pNext;
 VkBufferCreateFlags flags;
 VkBufferUsageFlags usage;
 VkExternalMemoryHandleTypeFlagBits handleType;
} VkPhysicalDeviceExternalBufferInfo;

or the equivalent

// Provided by VK_KHR_external_memory_capabilities
typedef VkPhysicalDeviceExternalBufferInfo VkPhysicalDeviceExternalBufferInfoKHR;

• sType is a VkStructureType value identifying this structure.

4101

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkBufferCreateFlagBits describing additional parameters of the buffer,
corresponding to VkBufferCreateInfo::flags.

• usage is a bitmask of VkBufferUsageFlagBits describing the intended usage of the buffer,
corresponding to VkBufferCreateInfo::usage.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the memory handle
type that will be used with the memory associated with the buffer.

Only usage flags representable in VkBufferUsageFlagBits are returned in this structure’s usage. If a
VkBufferUsageFlags2CreateInfoKHR structure is present in the pNext chain, all usage flags of the
buffer are returned in VkBufferUsageFlags2CreateInfoKHR::usage.

Valid Usage

• VUID-VkPhysicalDeviceExternalBufferInfo-None-09499
If the pNext chain does not include a VkBufferUsageFlags2CreateInfoKHR structure, usage
must be a valid combination of VkBufferUsageFlagBits values

• VUID-VkPhysicalDeviceExternalBufferInfo-None-09500
If the pNext chain does not include a VkBufferUsageFlags2CreateInfoKHR structure, usage
must not be 0

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalBufferInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO

• VUID-VkPhysicalDeviceExternalBufferInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkBufferUsageFlags2CreateInfoKHR

• VUID-VkPhysicalDeviceExternalBufferInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPhysicalDeviceExternalBufferInfo-flags-parameter
flags must be a valid combination of VkBufferCreateFlagBits values

• VUID-VkPhysicalDeviceExternalBufferInfo-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

The VkExternalBufferProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalBufferProperties {
 VkStructureType sType;
 void* pNext;
 VkExternalMemoryProperties externalMemoryProperties;
} VkExternalBufferProperties;

4102

or the equivalent

// Provided by VK_KHR_external_memory_capabilities
typedef VkExternalBufferProperties VkExternalBufferPropertiesKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• externalMemoryProperties is a VkExternalMemoryProperties structure specifying various
capabilities of the external handle type when used with the specified buffer creation
parameters.

Valid Usage (Implicit)

• VUID-VkExternalBufferProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES

• VUID-VkExternalBufferProperties-pNext-pNext
pNext must be NULL

50.3. Optional Semaphore Capabilities
Semaphores may support import and export of their payload to external handles. To query the
external handle types supported by semaphores, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceExternalSemaphoreProperties(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo,
 VkExternalSemaphoreProperties* pExternalSemaphoreProperties);

or the equivalent command

// Provided by VK_KHR_external_semaphore_capabilities
void vkGetPhysicalDeviceExternalSemaphorePropertiesKHR(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo,
 VkExternalSemaphoreProperties* pExternalSemaphoreProperties);

• physicalDevice is the physical device from which to query the semaphore capabilities.

• pExternalSemaphoreInfo is a pointer to a VkPhysicalDeviceExternalSemaphoreInfo structure
describing the parameters that would be consumed by vkCreateSemaphore.

• pExternalSemaphoreProperties is a pointer to a VkExternalSemaphoreProperties structure in
which capabilities are returned.

4103

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceExternalSemaphoreProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceExternalSemaphoreProperties-pExternalSemaphoreInfo-
parameter
pExternalSemaphoreInfo must be a valid pointer to a valid
VkPhysicalDeviceExternalSemaphoreInfo structure

• VUID-vkGetPhysicalDeviceExternalSemaphoreProperties-pExternalSemaphoreProperties-
parameter
pExternalSemaphoreProperties must be a valid pointer to a
VkExternalSemaphoreProperties structure

The VkPhysicalDeviceExternalSemaphoreInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceExternalSemaphoreInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalSemaphoreHandleTypeFlagBits handleType;
} VkPhysicalDeviceExternalSemaphoreInfo;

or the equivalent

// Provided by VK_KHR_external_semaphore_capabilities
typedef VkPhysicalDeviceExternalSemaphoreInfo
VkPhysicalDeviceExternalSemaphoreInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalSemaphoreHandleTypeFlagBits value specifying the external
semaphore handle type for which capabilities will be returned.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalSemaphoreInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO

• VUID-VkPhysicalDeviceExternalSemaphoreInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkSemaphoreTypeCreateInfo

• VUID-VkPhysicalDeviceExternalSemaphoreInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPhysicalDeviceExternalSemaphoreInfo-handleType-parameter

4104

handleType must be a valid VkExternalSemaphoreHandleTypeFlagBits value

Bits which may be set in VkPhysicalDeviceExternalSemaphoreInfo::handleType, specifying an
external semaphore handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalSemaphoreHandleTypeFlagBits {
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT = 0x00000001,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT = 0x00000002,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT = 0x00000004,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT = 0x00000008,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT = 0x00000010,
 // Provided by VK_FUCHSIA_external_semaphore
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_ZIRCON_EVENT_BIT_FUCHSIA = 0x00000080,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE_BIT =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT_KHR =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT,
} VkExternalSemaphoreHandleTypeFlagBits;

or the equivalent

// Provided by VK_KHR_external_semaphore_capabilities
typedef VkExternalSemaphoreHandleTypeFlagBits
VkExternalSemaphoreHandleTypeFlagBitsKHR;

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT specifies a POSIX file descriptor handle that
has only limited valid usage outside of Vulkan and other compatible APIs. It must be compatible
with the POSIX system calls dup, dup2, close, and the non-standard system call dup3. Additionally,
it must be transportable over a socket using an SCM_RIGHTS control message. It owns a reference
to the underlying synchronization primitive represented by its Vulkan semaphore object.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT specifies an NT handle that has only
limited valid usage outside of Vulkan and other compatible APIs. It must be compatible with the
functions DuplicateHandle, CloseHandle, CompareObjectHandles, GetHandleInformation, and

4105

SetHandleInformation. It owns a reference to the underlying synchronization primitive
represented by its Vulkan semaphore object.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT specifies a global share handle that
has only limited valid usage outside of Vulkan and other compatible APIs. It is not compatible
with any native APIs. It does not own a reference to the underlying synchronization primitive
represented by its Vulkan semaphore object, and will therefore become invalid when all Vulkan
semaphore objects associated with it are destroyed.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 fence, or ID3D11Device5::CreateFence
referring to a Direct3D 11 fence. It owns a reference to the underlying synchronization
primitive associated with the Direct3D fence.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE_BIT is an alias of
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT with the same meaning. It is provided for
convenience and code clarity when interacting with D3D11 fences.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT specifies a POSIX file descriptor handle to a
Linux Sync File or Android Fence object. It can be used with any native API accepting a valid
sync file or fence as input. It owns a reference to the underlying synchronization primitive
associated with the file descriptor. Implementations which support importing this handle type
must accept any type of sync or fence FD supported by the native system they are running on.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_ZIRCON_EVENT_BIT_FUCHSIA specifies a handle to a Zircon
event object. It can be used with any native API that accepts a Zircon event handle. Zircon event
handles are created with ZX_RIGHTS_BASIC and ZX_RIGHTS_SIGNAL rights. Vulkan on Fuchsia uses
only the ZX_EVENT_SIGNALED bit when signaling or waiting.

Note

Handles of type VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT generated by the
implementation may represent either Linux Sync Files or Android Fences at the
implementation’s discretion. Applications should only use operations defined for
both types of file descriptors, unless they know via means external to Vulkan the
type of the file descriptor, or are prepared to deal with the system-defined
operation failures resulting from using the wrong type.

4106

Some external semaphore handle types can only be shared within the same underlying physical
device and/or the same driver version, as defined in the following table:

Table 92. External semaphore handle types compatibility

Handle type VkPhysicalDeviceIDProperties::d
riverUUID

VkPhysicalDeviceIDProperties::d
eviceUUID

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_OPAQUE_FD_BIT

Must match Must match

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_OPAQUE_WIN32_BIT

Must match Must match

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_OPAQUE_WIN32_KMT_BIT

Must match Must match

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_D3D12_FENCE_BIT

Must match Must match

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_SYNC_FD_BIT

No restriction No restriction

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_ZIRCON_EVENT_BIT_FUCHSIA

No restriction No restriction

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalSemaphoreHandleTypeFlags;

or the equivalent

// Provided by VK_KHR_external_semaphore_capabilities
typedef VkExternalSemaphoreHandleTypeFlags VkExternalSemaphoreHandleTypeFlagsKHR;

VkExternalSemaphoreHandleTypeFlags is a bitmask type for setting a mask of zero or more
VkExternalSemaphoreHandleTypeFlagBits.

The VkExternalSemaphoreProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalSemaphoreProperties {
 VkStructureType sType;
 void* pNext;
 VkExternalSemaphoreHandleTypeFlags exportFromImportedHandleTypes;
 VkExternalSemaphoreHandleTypeFlags compatibleHandleTypes;
 VkExternalSemaphoreFeatureFlags externalSemaphoreFeatures;
} VkExternalSemaphoreProperties;

or the equivalent

// Provided by VK_KHR_external_semaphore_capabilities
typedef VkExternalSemaphoreProperties VkExternalSemaphorePropertiesKHR;

4107

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• exportFromImportedHandleTypes is a bitmask of VkExternalSemaphoreHandleTypeFlagBits
specifying which types of imported handle handleType can be exported from.

• compatibleHandleTypes is a bitmask of VkExternalSemaphoreHandleTypeFlagBits specifying
handle types which can be specified at the same time as handleType when creating a semaphore.

• externalSemaphoreFeatures is a bitmask of VkExternalSemaphoreFeatureFlagBits describing the
features of handleType.

If handleType is not supported by the implementation, then VkExternalSemaphoreProperties
::externalSemaphoreFeatures will be set to zero.

Valid Usage (Implicit)

• VUID-VkExternalSemaphoreProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES

• VUID-VkExternalSemaphoreProperties-pNext-pNext
pNext must be NULL

Bits which may be set in VkExternalSemaphoreProperties::externalSemaphoreFeatures, specifying
the features of an external semaphore handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalSemaphoreFeatureFlagBits {
 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT = 0x00000001,
 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT = 0x00000002,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR =
VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT,
 // Provided by VK_KHR_external_semaphore_capabilities
 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR =
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT,
} VkExternalSemaphoreFeatureFlagBits;

or the equivalent

// Provided by VK_KHR_external_semaphore_capabilities
typedef VkExternalSemaphoreFeatureFlagBits VkExternalSemaphoreFeatureFlagBitsKHR;

• VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT specifies that handles of this type can be
exported from Vulkan semaphore objects.

• VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT specifies that handles of this type can be
imported as Vulkan semaphore objects.

4108

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalSemaphoreFeatureFlags;

or the equivalent

// Provided by VK_KHR_external_semaphore_capabilities
typedef VkExternalSemaphoreFeatureFlags VkExternalSemaphoreFeatureFlagsKHR;

VkExternalSemaphoreFeatureFlags is a bitmask type for setting a mask of zero or more
VkExternalSemaphoreFeatureFlagBits.

50.4. Optional Fence Capabilities
Fences may support import and export of their payload to external handles. To query the external
handle types supported by fences, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceExternalFenceProperties(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo,
 VkExternalFenceProperties* pExternalFenceProperties);

or the equivalent command

// Provided by VK_KHR_external_fence_capabilities
void vkGetPhysicalDeviceExternalFencePropertiesKHR(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo,
 VkExternalFenceProperties* pExternalFenceProperties);

• physicalDevice is the physical device from which to query the fence capabilities.

• pExternalFenceInfo is a pointer to a VkPhysicalDeviceExternalFenceInfo structure describing the
parameters that would be consumed by vkCreateFence.

• pExternalFenceProperties is a pointer to a VkExternalFenceProperties structure in which
capabilities are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceExternalFenceProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceExternalFenceProperties-pExternalFenceInfo-parameter
pExternalFenceInfo must be a valid pointer to a valid VkPhysicalDeviceExternalFenceInfo
structure

4109

• VUID-vkGetPhysicalDeviceExternalFenceProperties-pExternalFenceProperties-parameter
pExternalFenceProperties must be a valid pointer to a VkExternalFenceProperties
structure

The VkPhysicalDeviceExternalFenceInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceExternalFenceInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalFenceHandleTypeFlagBits handleType;
} VkPhysicalDeviceExternalFenceInfo;

or the equivalent

// Provided by VK_KHR_external_fence_capabilities
typedef VkPhysicalDeviceExternalFenceInfo VkPhysicalDeviceExternalFenceInfoKHR;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalFenceHandleTypeFlagBits value specifying an external fence handle
type for which capabilities will be returned.

Note

Handles of type VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT generated by the
implementation may represent either Linux Sync Files or Android Fences at the
implementation’s discretion. Applications should only use operations defined for
both types of file descriptors, unless they know via means external to Vulkan the
type of the file descriptor, or are prepared to deal with the system-defined
operation failures resulting from using the wrong type.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalFenceInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO

• VUID-VkPhysicalDeviceExternalFenceInfo-pNext-pNext
pNext must be NULL

• VUID-VkPhysicalDeviceExternalFenceInfo-handleType-parameter
handleType must be a valid VkExternalFenceHandleTypeFlagBits value

Bits which may be set in

• VkPhysicalDeviceExternalFenceInfo::handleType

4110

• VkExternalFenceProperties::exportFromImportedHandleTypes

• VkExternalFenceProperties::compatibleHandleTypes

indicate external fence handle types, and are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalFenceHandleTypeFlagBits {
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT = 0x00000001,
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT = 0x00000002,
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT = 0x00000004,
 VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT = 0x00000008,
 // Provided by VK_KHR_external_fence_capabilities
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR =
VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT,
 // Provided by VK_KHR_external_fence_capabilities
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR =
VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT,
 // Provided by VK_KHR_external_fence_capabilities
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR =
VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT,
 // Provided by VK_KHR_external_fence_capabilities
 VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR =
VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT,
} VkExternalFenceHandleTypeFlagBits;

or the equivalent

// Provided by VK_KHR_external_fence_capabilities
typedef VkExternalFenceHandleTypeFlagBits VkExternalFenceHandleTypeFlagBitsKHR;

• VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT specifies a POSIX file descriptor handle that has
only limited valid usage outside of Vulkan and other compatible APIs. It must be compatible
with the POSIX system calls dup, dup2, close, and the non-standard system call dup3. Additionally,
it must be transportable over a socket using an SCM_RIGHTS control message. It owns a reference
to the underlying synchronization primitive represented by its Vulkan fence object.

• VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT specifies an NT handle that has only limited
valid usage outside of Vulkan and other compatible APIs. It must be compatible with the
functions DuplicateHandle, CloseHandle, CompareObjectHandles, GetHandleInformation, and
SetHandleInformation. It owns a reference to the underlying synchronization primitive
represented by its Vulkan fence object.

• VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT specifies a global share handle that has
only limited valid usage outside of Vulkan and other compatible APIs. It is not compatible with
any native APIs. It does not own a reference to the underlying synchronization primitive
represented by its Vulkan fence object, and will therefore become invalid when all Vulkan fence
objects associated with it are destroyed.

• VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT specifies a POSIX file descriptor handle to a Linux

4111

Sync File or Android Fence. It can be used with any native API accepting a valid sync file or
fence as input. It owns a reference to the underlying synchronization primitive associated with
the file descriptor. Implementations which support importing this handle type must accept any
type of sync or fence FD supported by the native system they are running on.

4112

Some external fence handle types can only be shared within the same underlying physical device
and/or the same driver version, as defined in the following table:

Table 93. External fence handle types compatibility

Handle type VkPhysicalDeviceIDProperties::d
riverUUID

VkPhysicalDeviceIDProperties::d
eviceUUID

VK_EXTERNAL_FENCE_HANDLE_TYPE_
OPAQUE_FD_BIT

Must match Must match

VK_EXTERNAL_FENCE_HANDLE_TYPE_
OPAQUE_WIN32_BIT

Must match Must match

VK_EXTERNAL_FENCE_HANDLE_TYPE_
OPAQUE_WIN32_KMT_BIT

Must match Must match

VK_EXTERNAL_FENCE_HANDLE_TYPE_
SYNC_FD_BIT

No restriction No restriction

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalFenceHandleTypeFlags;

or the equivalent

// Provided by VK_KHR_external_fence_capabilities
typedef VkExternalFenceHandleTypeFlags VkExternalFenceHandleTypeFlagsKHR;

VkExternalFenceHandleTypeFlags is a bitmask type for setting a mask of zero or more
VkExternalFenceHandleTypeFlagBits.

The VkExternalFenceProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalFenceProperties {
 VkStructureType sType;
 void* pNext;
 VkExternalFenceHandleTypeFlags exportFromImportedHandleTypes;
 VkExternalFenceHandleTypeFlags compatibleHandleTypes;
 VkExternalFenceFeatureFlags externalFenceFeatures;
} VkExternalFenceProperties;

or the equivalent

// Provided by VK_KHR_external_fence_capabilities
typedef VkExternalFenceProperties VkExternalFencePropertiesKHR;

• exportFromImportedHandleTypes is a bitmask of VkExternalFenceHandleTypeFlagBits indicating
which types of imported handle handleType can be exported from.

4113

• compatibleHandleTypes is a bitmask of VkExternalFenceHandleTypeFlagBits specifying handle
types which can be specified at the same time as handleType when creating a fence.

• externalFenceFeatures is a bitmask of VkExternalFenceFeatureFlagBits indicating the features of
handleType.

If handleType is not supported by the implementation, then VkExternalFenceProperties
::externalFenceFeatures will be set to zero.

Valid Usage (Implicit)

• VUID-VkExternalFenceProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES

• VUID-VkExternalFenceProperties-pNext-pNext
pNext must be NULL

Bits which may be set in VkExternalFenceProperties::externalFenceFeatures, indicating features of a
fence external handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalFenceFeatureFlagBits {
 VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT = 0x00000001,
 VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT = 0x00000002,
 // Provided by VK_KHR_external_fence_capabilities
 VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT_KHR =
VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT,
 // Provided by VK_KHR_external_fence_capabilities
 VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT_KHR =
VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT,
} VkExternalFenceFeatureFlagBits;

or the equivalent

// Provided by VK_KHR_external_fence_capabilities
typedef VkExternalFenceFeatureFlagBits VkExternalFenceFeatureFlagBitsKHR;

• VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT specifies handles of this type can be exported from
Vulkan fence objects.

• VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT specifies handles of this type can be imported to
Vulkan fence objects.

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalFenceFeatureFlags;

or the equivalent

4114

// Provided by VK_KHR_external_fence_capabilities
typedef VkExternalFenceFeatureFlags VkExternalFenceFeatureFlagsKHR;

VkExternalFenceFeatureFlags is a bitmask type for setting a mask of zero or more
VkExternalFenceFeatureFlagBits.

50.5. Timestamp Calibration Capabilities
To query the set of time domains for which a physical device supports timestamp calibration, call:

// Provided by VK_KHR_calibrated_timestamps
VkResult vkGetPhysicalDeviceCalibrateableTimeDomainsKHR(
 VkPhysicalDevice physicalDevice,
 uint32_t* pTimeDomainCount,
 VkTimeDomainKHR* pTimeDomains);

or the equivalent command

// Provided by VK_EXT_calibrated_timestamps
VkResult vkGetPhysicalDeviceCalibrateableTimeDomainsEXT(
 VkPhysicalDevice physicalDevice,
 uint32_t* pTimeDomainCount,
 VkTimeDomainKHR* pTimeDomains);

• physicalDevice is the physical device from which to query the set of calibrateable time domains.

• pTimeDomainCount is a pointer to an integer related to the number of calibrateable time domains
available or queried, as described below.

• pTimeDomains is either NULL or a pointer to an array of VkTimeDomainKHR values, indicating the
supported calibrateable time domains.

If pTimeDomains is NULL, then the number of calibrateable time domains supported for the given
physicalDevice is returned in pTimeDomainCount. Otherwise, pTimeDomainCount must point to a
variable set by the user to the number of elements in the pTimeDomains array, and on return the
variable is overwritten with the number of values actually written to pTimeDomains. If the value of
pTimeDomainCount is less than the number of calibrateable time domains supported, at most
pTimeDomainCount values will be written to pTimeDomains, and VK_INCOMPLETE will be returned instead
of VK_SUCCESS, to indicate that not all the available time domains were returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceCalibrateableTimeDomainsKHR-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceCalibrateableTimeDomainsKHR-pTimeDomainCount-
parameter

4115

pTimeDomainCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceCalibrateableTimeDomainsKHR-pTimeDomains-parameter
If the value referenced by pTimeDomainCount is not 0, and pTimeDomains is not NULL,
pTimeDomains must be a valid pointer to an array of pTimeDomainCount VkTimeDomainKHR
values

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

4116

Chapter 51. Debugging
To aid developers in tracking down errors in the application’s use of Vulkan, particularly in
combination with an external debugger or profiler, debugging extensions may be available.

The VkObjectType enumeration defines values, each of which corresponds to a specific Vulkan
handle type. These values can be used to associate debug information with a particular type of
object through one or more extensions.

// Provided by VK_VERSION_1_0
typedef enum VkObjectType {
 VK_OBJECT_TYPE_UNKNOWN = 0,
 VK_OBJECT_TYPE_INSTANCE = 1,
 VK_OBJECT_TYPE_PHYSICAL_DEVICE = 2,
 VK_OBJECT_TYPE_DEVICE = 3,
 VK_OBJECT_TYPE_QUEUE = 4,
 VK_OBJECT_TYPE_SEMAPHORE = 5,
 VK_OBJECT_TYPE_COMMAND_BUFFER = 6,
 VK_OBJECT_TYPE_FENCE = 7,
 VK_OBJECT_TYPE_DEVICE_MEMORY = 8,
 VK_OBJECT_TYPE_BUFFER = 9,
 VK_OBJECT_TYPE_IMAGE = 10,
 VK_OBJECT_TYPE_EVENT = 11,
 VK_OBJECT_TYPE_QUERY_POOL = 12,
 VK_OBJECT_TYPE_BUFFER_VIEW = 13,
 VK_OBJECT_TYPE_IMAGE_VIEW = 14,
 VK_OBJECT_TYPE_SHADER_MODULE = 15,
 VK_OBJECT_TYPE_PIPELINE_CACHE = 16,
 VK_OBJECT_TYPE_PIPELINE_LAYOUT = 17,
 VK_OBJECT_TYPE_RENDER_PASS = 18,
 VK_OBJECT_TYPE_PIPELINE = 19,
 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT = 20,
 VK_OBJECT_TYPE_SAMPLER = 21,
 VK_OBJECT_TYPE_DESCRIPTOR_POOL = 22,
 VK_OBJECT_TYPE_DESCRIPTOR_SET = 23,
 VK_OBJECT_TYPE_FRAMEBUFFER = 24,
 VK_OBJECT_TYPE_COMMAND_POOL = 25,
 // Provided by VK_VERSION_1_1
 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION = 1000156000,
 // Provided by VK_VERSION_1_1
 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE = 1000085000,
 // Provided by VK_VERSION_1_3
 VK_OBJECT_TYPE_PRIVATE_DATA_SLOT = 1000295000,
 // Provided by VK_KHR_surface
 VK_OBJECT_TYPE_SURFACE_KHR = 1000000000,
 // Provided by VK_KHR_swapchain
 VK_OBJECT_TYPE_SWAPCHAIN_KHR = 1000001000,
 // Provided by VK_KHR_display
 VK_OBJECT_TYPE_DISPLAY_KHR = 1000002000,
 // Provided by VK_KHR_display

4117

 VK_OBJECT_TYPE_DISPLAY_MODE_KHR = 1000002001,
 // Provided by VK_EXT_debug_report
 VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT = 1000011000,
 // Provided by VK_KHR_video_queue
 VK_OBJECT_TYPE_VIDEO_SESSION_KHR = 1000023000,
 // Provided by VK_KHR_video_queue
 VK_OBJECT_TYPE_VIDEO_SESSION_PARAMETERS_KHR = 1000023001,
 // Provided by VK_NVX_binary_import
 VK_OBJECT_TYPE_CU_MODULE_NVX = 1000029000,
 // Provided by VK_NVX_binary_import
 VK_OBJECT_TYPE_CU_FUNCTION_NVX = 1000029001,
 // Provided by VK_EXT_debug_utils
 VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT = 1000128000,
 // Provided by VK_KHR_acceleration_structure
 VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR = 1000150000,
 // Provided by VK_EXT_validation_cache
 VK_OBJECT_TYPE_VALIDATION_CACHE_EXT = 1000160000,
 // Provided by VK_NV_ray_tracing
 VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV = 1000165000,
 // Provided by VK_INTEL_performance_query
 VK_OBJECT_TYPE_PERFORMANCE_CONFIGURATION_INTEL = 1000210000,
 // Provided by VK_KHR_deferred_host_operations
 VK_OBJECT_TYPE_DEFERRED_OPERATION_KHR = 1000268000,
 // Provided by VK_NV_device_generated_commands
 VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NV = 1000277000,
 // Provided by VK_NV_cuda_kernel_launch
 VK_OBJECT_TYPE_CUDA_MODULE_NV = 1000307000,
 // Provided by VK_NV_cuda_kernel_launch
 VK_OBJECT_TYPE_CUDA_FUNCTION_NV = 1000307001,
 // Provided by VK_FUCHSIA_buffer_collection
 VK_OBJECT_TYPE_BUFFER_COLLECTION_FUCHSIA = 1000366000,
 // Provided by VK_EXT_opacity_micromap
 VK_OBJECT_TYPE_MICROMAP_EXT = 1000396000,
 // Provided by VK_NV_optical_flow
 VK_OBJECT_TYPE_OPTICAL_FLOW_SESSION_NV = 1000464000,
 // Provided by VK_EXT_shader_object
 VK_OBJECT_TYPE_SHADER_EXT = 1000482000,
 // Provided by VK_KHR_descriptor_update_template
 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR =
VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE,
 // Provided by VK_KHR_sampler_ycbcr_conversion
 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR =
VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION,
 // Provided by VK_EXT_private_data
 VK_OBJECT_TYPE_PRIVATE_DATA_SLOT_EXT = VK_OBJECT_TYPE_PRIVATE_DATA_SLOT,
} VkObjectType;

Table 94. VkObjectType and Vulkan Handle Relationship

4118

VkObjectType Vulkan Handle Type

VK_OBJECT_TYPE_UNKNOWN Unknown/Undefined Handle

VK_OBJECT_TYPE_INSTANCE VkInstance

VK_OBJECT_TYPE_PHYSICAL_DEVICE VkPhysicalDevice

VK_OBJECT_TYPE_DEVICE VkDevice

VK_OBJECT_TYPE_QUEUE VkQueue

VK_OBJECT_TYPE_SEMAPHORE VkSemaphore

VK_OBJECT_TYPE_COMMAND_BUFFER VkCommandBuffer

VK_OBJECT_TYPE_FENCE VkFence

VK_OBJECT_TYPE_DEVICE_MEMORY VkDeviceMemory

VK_OBJECT_TYPE_BUFFER VkBuffer

VK_OBJECT_TYPE_IMAGE VkImage

VK_OBJECT_TYPE_EVENT VkEvent

VK_OBJECT_TYPE_QUERY_POOL VkQueryPool

VK_OBJECT_TYPE_BUFFER_VIEW VkBufferView

VK_OBJECT_TYPE_IMAGE_VIEW VkImageView

VK_OBJECT_TYPE_SHADER_MODULE VkShaderModule

VK_OBJECT_TYPE_PIPELINE_CACHE VkPipelineCache

VK_OBJECT_TYPE_PIPELINE_LAYOUT VkPipelineLayout

VK_OBJECT_TYPE_RENDER_PASS VkRenderPass

VK_OBJECT_TYPE_PIPELINE VkPipeline

VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT VkDescriptorSetLayout

VK_OBJECT_TYPE_SAMPLER VkSampler

VK_OBJECT_TYPE_DESCRIPTOR_POOL VkDescriptorPool

VK_OBJECT_TYPE_DESCRIPTOR_SET VkDescriptorSet

VK_OBJECT_TYPE_FRAMEBUFFER VkFramebuffer

VK_OBJECT_TYPE_COMMAND_POOL VkCommandPool

VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION VkSamplerYcbcrConversion

VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE VkDescriptorUpdateTemplate

VK_OBJECT_TYPE_PRIVATE_DATA_SLOT VkPrivateDataSlot

VK_OBJECT_TYPE_SURFACE_KHR VkSurfaceKHR

VK_OBJECT_TYPE_SWAPCHAIN_KHR VkSwapchainKHR

VK_OBJECT_TYPE_DISPLAY_KHR VkDisplayKHR

VK_OBJECT_TYPE_DISPLAY_MODE_KHR VkDisplayModeKHR

4119

VkObjectType Vulkan Handle Type

VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT VkDebugReportCallbackEXT

VK_OBJECT_TYPE_VIDEO_SESSION_KHR VkVideoSessionKHR

VK_OBJECT_TYPE_VIDEO_SESSION_PARAMETERS_KHR VkVideoSessionParametersKH
R

VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT VkDebugUtilsMessengerEXT

VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR VkAccelerationStructureKHR

VK_OBJECT_TYPE_VALIDATION_CACHE_EXT VkValidationCacheEXT

VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV VkAccelerationStructureNV

VK_OBJECT_TYPE_PERFORMANCE_CONFIGURATION_INT
EL

VkPerformanceConfigurationI
NTEL

VK_OBJECT_TYPE_DEFERRED_OPERATION_KHR VkDeferredOperationKHR

VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NV VkIndirectCommandsLayoutN
V

VK_OBJECT_TYPE_BUFFER_COLLECTION_FUCHSIA VkBufferCollectionFUCHSIA

VK_OBJECT_TYPE_MICROMAP_EXT VkMicromapEXT

VK_OBJECT_TYPE_OPTICAL_FLOW_SESSION_NV VkOpticalFlowSessionNV

VK_OBJECT_TYPE_SHADER_EXT VkShaderEXT

If this Specification was generated with any such extensions included, they will be described in the
remainder of this chapter.

51.1. Debug Utilities
Vulkan provides flexible debugging utilities for debugging an application.

The Object Debug Annotation section describes how to associate either a name or binary data with
a specific Vulkan object.

The Queue Labels section describes how to annotate and group the work submitted to a queue.

The Command Buffer Labels section describes how to associate logical elements of the scene with
commands in a VkCommandBuffer.

The Debug Messengers section describes how to create debug messenger objects associated with an
application supplied callback to capture debug messages from a variety of Vulkan components.

51.1.1. Object Debug Annotation

It can be useful for an application to provide its own content relative to a specific Vulkan object.

The following commands allow application developers to associate user-defined information with
Vulkan objects. These commands are device-level commands but they may reference instance-level

4120

objects (such as VkInstance) and physical device-level objects (such as VkPhysicalDevice) with a few
restrictions: * The data for the corresponding object may still be available after the VkDevice used
in the corresponding API call to set it is destroyed, but access to this data is not guaranteed and
should be avoided. * Subsequent calls to change the data of the same object across multiple
VkDevice objects, may result in the data being changed to the most recent version for all VkDevice
objects and not just the VkDevice used in the most recent API call.

Object Naming

An object can be provided a user-defined name by calling vkSetDebugUtilsObjectNameEXT as defined
below.

// Provided by VK_EXT_debug_utils
VkResult vkSetDebugUtilsObjectNameEXT(
 VkDevice device,
 const VkDebugUtilsObjectNameInfoEXT* pNameInfo);

• device is the device that is associated with the named object passed in via objectHandle.

• pNameInfo is a pointer to a VkDebugUtilsObjectNameInfoEXT structure specifying parameters of
the name to set on the object.

Valid Usage

• VUID-vkSetDebugUtilsObjectNameEXT-pNameInfo-02587
pNameInfo->objectType must not be VK_OBJECT_TYPE_UNKNOWN

• VUID-vkSetDebugUtilsObjectNameEXT-pNameInfo-02588
pNameInfo->objectHandle must not be VK_NULL_HANDLE

• VUID-vkSetDebugUtilsObjectNameEXT-pNameInfo-07872
If pNameInfo->objectHandle is the valid handle of an instance-level object, the VkDevice
identified by device must be a descendent of the same VkInstance as the object identified
by pNameInfo->objectHandle

• VUID-vkSetDebugUtilsObjectNameEXT-pNameInfo-07873
If pNameInfo->objectHandle is the valid handle of a physical-device-level object, the
VkDevice identified by device must be a descendant of the same VkPhysicalDevice as the
object identified by pNameInfo->objectHandle

• VUID-vkSetDebugUtilsObjectNameEXT-pNameInfo-07874
If pNameInfo->objectHandle is the valid handle of a device-level object, that object must be
a descendent of the VkDevice identified by device

Valid Usage (Implicit)

• VUID-vkSetDebugUtilsObjectNameEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetDebugUtilsObjectNameEXT-pNameInfo-parameter

4121

pNameInfo must be a valid pointer to a valid VkDebugUtilsObjectNameInfoEXT structure

Host Synchronization

• Host access to pNameInfo->objectHandle must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDebugUtilsObjectNameInfoEXT structure is defined as:

// Provided by VK_EXT_debug_utils
typedef struct VkDebugUtilsObjectNameInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkObjectType objectType;
 uint64_t objectHandle;
 const char* pObjectName;
} VkDebugUtilsObjectNameInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• objectType is a VkObjectType specifying the type of the object to be named.

• objectHandle is the object to be named.

• pObjectName is either NULL or a null-terminated UTF-8 string specifying the name to apply to
objectHandle.

Applications may change the name associated with an object simply by calling
vkSetDebugUtilsObjectNameEXT again with a new string. If pObjectName is either NULL or an empty
string, then any previously set name is removed.

The graphicsPipelineLibrary feature allows the specification of pipelines without the creation of
VkShaderModule objects beforehand. In order to continue to allow naming these shaders
independently, VkDebugUtilsObjectNameInfoEXT can be included in the pNext chain of
VkPipelineShaderStageCreateInfo, which associates a static name with that particular shader.

4122

Valid Usage

• VUID-VkDebugUtilsObjectNameInfoEXT-objectType-02589
If objectType is VK_OBJECT_TYPE_UNKNOWN, objectHandle must not be VK_NULL_HANDLE

• VUID-VkDebugUtilsObjectNameInfoEXT-objectType-02590
If objectType is not VK_OBJECT_TYPE_UNKNOWN, objectHandle must be VK_NULL_HANDLE or a
valid Vulkan handle of the type associated with objectType as defined in the VkObjectType
and Vulkan Handle Relationship table

Valid Usage (Implicit)

• VUID-VkDebugUtilsObjectNameInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT

• VUID-VkDebugUtilsObjectNameInfoEXT-objectType-parameter
objectType must be a valid VkObjectType value

• VUID-VkDebugUtilsObjectNameInfoEXT-pObjectName-parameter
If pObjectName is not NULL, pObjectName must be a null-terminated UTF-8 string

Object Data Association

In addition to setting a name for an object, debugging and validation layers may have uses for
additional binary data on a per-object basis that have no other place in the Vulkan API.

For example, a VkShaderModule could have additional debugging data attached to it to aid in offline
shader tracing.

Additional data can be attached to an object by calling vkSetDebugUtilsObjectTagEXT as defined
below.

// Provided by VK_EXT_debug_utils
VkResult vkSetDebugUtilsObjectTagEXT(
 VkDevice device,
 const VkDebugUtilsObjectTagInfoEXT* pTagInfo);

• device is the device that created the object.

• pTagInfo is a pointer to a VkDebugUtilsObjectTagInfoEXT structure specifying parameters of the
tag to attach to the object.

Valid Usage

• VUID-vkSetDebugUtilsObjectTagEXT-pNameInfo-07875
If pNameInfo->objectHandle is the valid handle of an instance-level object, the VkDevice
identified by device must be a descendent of the same VkInstance as the object identified

4123

by pNameInfo->objectHandle

• VUID-vkSetDebugUtilsObjectTagEXT-pNameInfo-07876
If pNameInfo->objectHandle is the valid handle of a physical-device-level object, the
VkDevice identified by device must be a descendant of the same VkPhysicalDevice as the
object identified by pNameInfo->objectHandle

• VUID-vkSetDebugUtilsObjectTagEXT-pNameInfo-07877
If pNameInfo->objectHandle is the valid handle of a device-level object, that object must be
a descendent of the VkDevice identified by device

Valid Usage (Implicit)

• VUID-vkSetDebugUtilsObjectTagEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetDebugUtilsObjectTagEXT-pTagInfo-parameter
pTagInfo must be a valid pointer to a valid VkDebugUtilsObjectTagInfoEXT structure

Host Synchronization

• Host access to pTagInfo->objectHandle must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDebugUtilsObjectTagInfoEXT structure is defined as:

// Provided by VK_EXT_debug_utils
typedef struct VkDebugUtilsObjectTagInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkObjectType objectType;
 uint64_t objectHandle;
 uint64_t tagName;
 size_t tagSize;
 const void* pTag;
} VkDebugUtilsObjectTagInfoEXT;

4124

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• objectType is a VkObjectType specifying the type of the object to be named.

• objectHandle is the object to be tagged.

• tagName is a numerical identifier of the tag.

• tagSize is the number of bytes of data to attach to the object.

• pTag is a pointer to an array of tagSize bytes containing the data to be associated with the object.

The tagName parameter gives a name or identifier to the type of data being tagged. This can be used
by debugging layers to easily filter for only data that can be used by that implementation.

Valid Usage

• VUID-VkDebugUtilsObjectTagInfoEXT-objectType-01908
objectType must not be VK_OBJECT_TYPE_UNKNOWN

• VUID-VkDebugUtilsObjectTagInfoEXT-objectHandle-01910
objectHandle must be a valid Vulkan handle of the type associated with objectType as
defined in the VkObjectType and Vulkan Handle Relationship table

Valid Usage (Implicit)

• VUID-VkDebugUtilsObjectTagInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_TAG_INFO_EXT

• VUID-VkDebugUtilsObjectTagInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDebugUtilsObjectTagInfoEXT-objectType-parameter
objectType must be a valid VkObjectType value

• VUID-VkDebugUtilsObjectTagInfoEXT-pTag-parameter
pTag must be a valid pointer to an array of tagSize bytes

• VUID-VkDebugUtilsObjectTagInfoEXT-tagSize-arraylength
tagSize must be greater than 0

51.1.2. Queue Labels

All Vulkan work must be submitted using queues. It is possible for an application to use multiple
queues, each containing multiple command buffers, when performing work. It can be useful to
identify which queue, or even where in a queue, something has occurred.

To begin identifying a region using a debug label inside a queue, you may use the
vkQueueBeginDebugUtilsLabelEXT command.

Then, when the region of interest has passed, you may end the label region using

4125

vkQueueEndDebugUtilsLabelEXT.

Additionally, a single debug label may be inserted at any time using
vkQueueInsertDebugUtilsLabelEXT.

A queue debug label region is opened by calling:

// Provided by VK_EXT_debug_utils
void vkQueueBeginDebugUtilsLabelEXT(
 VkQueue queue,
 const VkDebugUtilsLabelEXT* pLabelInfo);

• queue is the queue in which to start a debug label region.

• pLabelInfo is a pointer to a VkDebugUtilsLabelEXT structure specifying parameters of the label
region to open.

Valid Usage (Implicit)

• VUID-vkQueueBeginDebugUtilsLabelEXT-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueBeginDebugUtilsLabelEXT-pLabelInfo-parameter
pLabelInfo must be a valid pointer to a valid VkDebugUtilsLabelEXT structure

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

The VkDebugUtilsLabelEXT structure is defined as:

// Provided by VK_EXT_debug_utils
typedef struct VkDebugUtilsLabelEXT {
 VkStructureType sType;
 const void* pNext;
 const char* pLabelName;
 float color[4];
} VkDebugUtilsLabelEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pLabelName is a pointer to a null-terminated UTF-8 string containing the name of the label.

4126

• color is an optional RGBA color value that can be associated with the label. A particular
implementation may choose to ignore this color value. The values contain RGBA values in
order, in the range 0.0 to 1.0. If all elements in color are set to 0.0 then it is ignored.

Valid Usage (Implicit)

• VUID-VkDebugUtilsLabelEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT

• VUID-VkDebugUtilsLabelEXT-pNext-pNext
pNext must be NULL

• VUID-VkDebugUtilsLabelEXT-pLabelName-parameter
pLabelName must be a null-terminated UTF-8 string

A queue debug label region is closed by calling:

// Provided by VK_EXT_debug_utils
void vkQueueEndDebugUtilsLabelEXT(
 VkQueue queue);

• queue is the queue in which a debug label region should be closed.

The calls to vkQueueBeginDebugUtilsLabelEXT and vkQueueEndDebugUtilsLabelEXT must be
matched and balanced.

Valid Usage

• VUID-vkQueueEndDebugUtilsLabelEXT-None-01911
There must be an outstanding vkQueueBeginDebugUtilsLabelEXT command prior to the
vkQueueEndDebugUtilsLabelEXT on the queue

Valid Usage (Implicit)

• VUID-vkQueueEndDebugUtilsLabelEXT-queue-parameter
queue must be a valid VkQueue handle

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

A single label can be inserted into a queue by calling:

4127

// Provided by VK_EXT_debug_utils
void vkQueueInsertDebugUtilsLabelEXT(
 VkQueue queue,
 const VkDebugUtilsLabelEXT* pLabelInfo);

• queue is the queue into which a debug label will be inserted.

• pLabelInfo is a pointer to a VkDebugUtilsLabelEXT structure specifying parameters of the label
to insert.

Valid Usage (Implicit)

• VUID-vkQueueInsertDebugUtilsLabelEXT-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueInsertDebugUtilsLabelEXT-pLabelInfo-parameter
pLabelInfo must be a valid pointer to a valid VkDebugUtilsLabelEXT structure

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

- - - Any -

51.1.3. Command Buffer Labels

Typical Vulkan applications will submit many command buffers in each frame, with each
command buffer containing a large number of individual commands. Being able to logically
annotate regions of command buffers that belong together as well as hierarchically subdivide the
frame is important to a developer’s ability to navigate the commands viewed holistically.

To identify the beginning of a debug label region in a command buffer,
vkCmdBeginDebugUtilsLabelEXT can be used as defined below.

To indicate the end of a debug label region in a command buffer, vkCmdEndDebugUtilsLabelEXT
can be used.

To insert a single command buffer debug label inside of a command buffer,
vkCmdInsertDebugUtilsLabelEXT can be used as defined below.

A command buffer debug label region can be opened by calling:

// Provided by VK_EXT_debug_utils
void vkCmdBeginDebugUtilsLabelEXT(
 VkCommandBuffer commandBuffer,

4128

 const VkDebugUtilsLabelEXT* pLabelInfo);

• commandBuffer is the command buffer into which the command is recorded.

• pLabelInfo is a pointer to a VkDebugUtilsLabelEXT structure specifying parameters of the label
region to open.

Valid Usage (Implicit)

• VUID-vkCmdBeginDebugUtilsLabelEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginDebugUtilsLabelEXT-pLabelInfo-parameter
pLabelInfo must be a valid pointer to a valid VkDebugUtilsLabelEXT structure

• VUID-vkCmdBeginDebugUtilsLabelEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginDebugUtilsLabelEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBeginDebugUtilsLabelEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action
State

A command buffer label region can be closed by calling:

// Provided by VK_EXT_debug_utils
void vkCmdEndDebugUtilsLabelEXT(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer into which the command is recorded.

4129

An application may open a debug label region in one command buffer and close it in another, or
otherwise split debug label regions across multiple command buffers or multiple queue
submissions. When viewed from the linear series of submissions to a single queue, the calls to
vkCmdBeginDebugUtilsLabelEXT and vkCmdEndDebugUtilsLabelEXT must be matched and
balanced.

There can be problems reporting command buffer debug labels during the recording process
because command buffers may be recorded out of sequence with the resulting execution order.
Since the recording order may be different, a solitary command buffer may have an inconsistent
view of the debug label regions by itself. Therefore, if an issue occurs during the recording of a
command buffer, and the environment requires returning debug labels, the implementation may
return only those labels it is aware of. This is true even if the implementation is aware of only the
debug labels within the command buffer being actively recorded.

Valid Usage

• VUID-vkCmdEndDebugUtilsLabelEXT-commandBuffer-01912
There must be an outstanding vkCmdBeginDebugUtilsLabelEXT command prior to the
vkCmdEndDebugUtilsLabelEXT on the queue that commandBuffer is submitted to

• VUID-vkCmdEndDebugUtilsLabelEXT-commandBuffer-01913
If commandBuffer is a secondary command buffer, there must be an outstanding
vkCmdBeginDebugUtilsLabelEXT command recorded to commandBuffer that has not previously
been ended by a call to vkCmdEndDebugUtilsLabelEXT

Valid Usage (Implicit)

• VUID-vkCmdEndDebugUtilsLabelEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndDebugUtilsLabelEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndDebugUtilsLabelEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdEndDebugUtilsLabelEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

4130

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action
State

A single debug label can be inserted into a command buffer by calling:

// Provided by VK_EXT_debug_utils
void vkCmdInsertDebugUtilsLabelEXT(
 VkCommandBuffer commandBuffer,
 const VkDebugUtilsLabelEXT* pLabelInfo);

• commandBuffer is the command buffer into which the command is recorded.

• pInfo is a pointer to a VkDebugUtilsLabelEXT structure specifying parameters of the label to
insert.

Valid Usage (Implicit)

• VUID-vkCmdInsertDebugUtilsLabelEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdInsertDebugUtilsLabelEXT-pLabelInfo-parameter
pLabelInfo must be a valid pointer to a valid VkDebugUtilsLabelEXT structure

• VUID-vkCmdInsertDebugUtilsLabelEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdInsertDebugUtilsLabelEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdInsertDebugUtilsLabelEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

4131

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action

51.1.4. Debug Messengers

Vulkan allows an application to register multiple callbacks with any Vulkan component wishing to
report debug information. Some callbacks may log the information to a file, others may cause a
debug break point or other application defined behavior. A primary producer of callback messages
are the validation layers. An application can register callbacks even when no validation layers are
enabled, but they will only be called for the Vulkan loader and, if implemented, other layer and
driver events.

A VkDebugUtilsMessengerEXT is a messenger object which handles passing along debug messages to a
provided debug callback.

// Provided by VK_EXT_debug_utils
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDebugUtilsMessengerEXT)

The debug messenger will provide detailed feedback on the application’s use of Vulkan when
events of interest occur. When an event of interest does occur, the debug messenger will submit a
debug message to the debug callback that was provided during its creation. Additionally, the debug
messenger is responsible with filtering out debug messages that the callback is not interested in
and will only provide desired debug messages.

A debug messenger triggers a debug callback with a debug message when an event of interest
occurs. To create a debug messenger which will trigger a debug callback, call:

// Provided by VK_EXT_debug_utils
VkResult vkCreateDebugUtilsMessengerEXT(
 VkInstance instance,
 const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDebugUtilsMessengerEXT* pMessenger);

• instance is the instance the messenger will be used with.

• pCreateInfo is a pointer to a VkDebugUtilsMessengerCreateInfoEXT structure containing the
callback pointer, as well as defining conditions under which this messenger will trigger the
callback.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pMessenger is a pointer to a VkDebugUtilsMessengerEXT handle in which the created object is

4132

returned.

Valid Usage (Implicit)

• VUID-vkCreateDebugUtilsMessengerEXT-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateDebugUtilsMessengerEXT-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDebugUtilsMessengerCreateInfoEXT
structure

• VUID-vkCreateDebugUtilsMessengerEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDebugUtilsMessengerEXT-pMessenger-parameter
pMessenger must be a valid pointer to a VkDebugUtilsMessengerEXT handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The application must ensure that vkCreateDebugUtilsMessengerEXT is not executed in parallel
with any Vulkan command that is also called with instance or child of instance as the dispatchable
argument.

The definition of VkDebugUtilsMessengerCreateInfoEXT is:

// Provided by VK_EXT_debug_utils
typedef struct VkDebugUtilsMessengerCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDebugUtilsMessengerCreateFlagsEXT flags;
 VkDebugUtilsMessageSeverityFlagsEXT messageSeverity;
 VkDebugUtilsMessageTypeFlagsEXT messageType;
 PFN_vkDebugUtilsMessengerCallbackEXT pfnUserCallback;
 void* pUserData;
} VkDebugUtilsMessengerCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is 0 and is reserved for future use.

• messageSeverity is a bitmask of VkDebugUtilsMessageSeverityFlagBitsEXT specifying which

4133

severity of event(s) will cause this callback to be called.

• messageType is a bitmask of VkDebugUtilsMessageTypeFlagBitsEXT specifying which type of
event(s) will cause this callback to be called.

• pfnUserCallback is the application callback function to call.

• pUserData is user data to be passed to the callback.

For each VkDebugUtilsMessengerEXT that is created the VkDebugUtilsMessengerCreateInfoEXT
::messageSeverity and VkDebugUtilsMessengerCreateInfoEXT::messageType determine when that
VkDebugUtilsMessengerCreateInfoEXT::pfnUserCallback is called. The process to determine if the
user’s pfnUserCallback is triggered when an event occurs is as follows:

1. The implementation will perform a bitwise AND of the event’s
VkDebugUtilsMessageSeverityFlagBitsEXT with the messageSeverity provided during creation of
the VkDebugUtilsMessengerEXT object.

a. If the value is 0, the message is skipped.

2. The implementation will perform bitwise AND of the event’s
VkDebugUtilsMessageTypeFlagBitsEXT with the messageType provided during the creation of the
VkDebugUtilsMessengerEXT object.

a. If the value is 0, the message is skipped.

3. The callback will trigger a debug message for the current event

The callback will come directly from the component that detected the event, unless some other
layer intercepts the calls for its own purposes (filter them in a different way, log to a system error
log, etc.).

An application can receive multiple callbacks if multiple VkDebugUtilsMessengerEXT objects are
created. A callback will always be executed in the same thread as the originating Vulkan call.

A callback can be called from multiple threads simultaneously (if the application is making Vulkan
calls from multiple threads).

Valid Usage (Implicit)

• VUID-VkDebugUtilsMessengerCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT

• VUID-VkDebugUtilsMessengerCreateInfoEXT-flags-zerobitmask
flags must be 0

• VUID-VkDebugUtilsMessengerCreateInfoEXT-messageSeverity-parameter
messageSeverity must be a valid combination of
VkDebugUtilsMessageSeverityFlagBitsEXT values

• VUID-VkDebugUtilsMessengerCreateInfoEXT-messageSeverity-requiredbitmask
messageSeverity must not be 0

• VUID-VkDebugUtilsMessengerCreateInfoEXT-messageType-parameter
messageType must be a valid combination of VkDebugUtilsMessageTypeFlagBitsEXT values

4134

• VUID-VkDebugUtilsMessengerCreateInfoEXT-messageType-requiredbitmask
messageType must not be 0

• VUID-VkDebugUtilsMessengerCreateInfoEXT-pfnUserCallback-parameter
pfnUserCallback must be a valid PFN_vkDebugUtilsMessengerCallbackEXT value

// Provided by VK_EXT_debug_utils
typedef VkFlags VkDebugUtilsMessengerCreateFlagsEXT;

VkDebugUtilsMessengerCreateFlagsEXT is a bitmask type for setting a mask, but is currently reserved
for future use.

Bits which can be set in VkDebugUtilsMessengerCreateInfoEXT::messageSeverity, specifying event
severities which cause a debug messenger to call the callback, are:

// Provided by VK_EXT_debug_utils
typedef enum VkDebugUtilsMessageSeverityFlagBitsEXT {
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT = 0x00000001,
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT = 0x00000010,
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT = 0x00000100,
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT = 0x00001000,
} VkDebugUtilsMessageSeverityFlagBitsEXT;

• VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT specifies the most verbose output indicating
all diagnostic messages from the Vulkan loader, layers, and drivers should be captured.

• VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT specifies an informational message such as
resource details that may be handy when debugging an application.

• VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT specifies use of Vulkan that may expose an
app bug. Such cases may not be immediately harmful, such as a fragment shader outputting to a
location with no attachment. Other cases may point to behavior that is almost certainly bad
when unintended such as using an image whose memory has not been filled. In general if you
see a warning but you know that the behavior is intended/desired, then simply ignore the
warning.

• VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT specifies that the application has violated a
valid usage condition of the specification.

Note

The values of VkDebugUtilsMessageSeverityFlagBitsEXT are sorted based on
severity. The higher the flag value, the more severe the message. This allows for
simple boolean operation comparisons when looking at
VkDebugUtilsMessageSeverityFlagBitsEXT values.

For example:

 if (messageSeverity >=

4135

VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) {
 // Do something for warnings and errors
 }

In addition, space has been left between the enums to allow for later addition of
new severities in between the existing values.

// Provided by VK_EXT_debug_utils
typedef VkFlags VkDebugUtilsMessageSeverityFlagsEXT;

VkDebugUtilsMessageSeverityFlagsEXT is a bitmask type for setting a mask of zero or more
VkDebugUtilsMessageSeverityFlagBitsEXT.

Bits which can be set in VkDebugUtilsMessengerCreateInfoEXT::messageType, specifying event types
which cause a debug messenger to call the callback, are:

// Provided by VK_EXT_debug_utils
typedef enum VkDebugUtilsMessageTypeFlagBitsEXT {
 VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT = 0x00000001,
 VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT = 0x00000002,
 VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT = 0x00000004,
 // Provided by VK_EXT_device_address_binding_report
 VK_DEBUG_UTILS_MESSAGE_TYPE_DEVICE_ADDRESS_BINDING_BIT_EXT = 0x00000008,
} VkDebugUtilsMessageTypeFlagBitsEXT;

• VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT specifies that some general event has occurred.
This is typically a non-specification, non-performance event.

• VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT specifies that something has occurred during
validation against the Vulkan specification that may indicate invalid behavior.

• VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT specifies a potentially non-optimal use of
Vulkan, e.g. using vkCmdClearColorImage when setting VkAttachmentDescription::loadOp to
VK_ATTACHMENT_LOAD_OP_CLEAR would have worked.

• VK_DEBUG_UTILS_MESSAGE_TYPE_DEVICE_ADDRESS_BINDING_BIT_EXT specifies that the implementation
has modified the set of GPU-visible virtual addresses associated with a Vulkan object.

// Provided by VK_EXT_debug_utils
typedef VkFlags VkDebugUtilsMessageTypeFlagsEXT;

VkDebugUtilsMessageTypeFlagsEXT is a bitmask type for setting a mask of zero or more
VkDebugUtilsMessageTypeFlagBitsEXT.

The prototype for the VkDebugUtilsMessengerCreateInfoEXT::pfnUserCallback function
implemented by the application is:

4136

// Provided by VK_EXT_debug_utils
typedef VkBool32 (VKAPI_PTR *PFN_vkDebugUtilsMessengerCallbackEXT)(
 VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
 VkDebugUtilsMessageTypeFlagsEXT messageTypes,
 const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
 void* pUserData);

• messageSeverity specifies the VkDebugUtilsMessageSeverityFlagBitsEXT that triggered this
callback.

• messageTypes is a bitmask of VkDebugUtilsMessageTypeFlagBitsEXT specifying which type of
event(s) triggered this callback.

• pCallbackData contains all the callback related data in the
VkDebugUtilsMessengerCallbackDataEXT structure.

• pUserData is the user data provided when the VkDebugUtilsMessengerEXT was created.

The callback returns a VkBool32, which is interpreted in a layer-specified manner. The application
should always return VK_FALSE. The VK_TRUE value is reserved for use in layer development.

Valid Usage

• VUID-PFN_vkDebugUtilsMessengerCallbackEXT-None-04769
The callback must not make calls to any Vulkan commands

The definition of VkDebugUtilsMessengerCallbackDataEXT is:

// Provided by VK_EXT_debug_utils
typedef struct VkDebugUtilsMessengerCallbackDataEXT {
 VkStructureType sType;
 const void* pNext;
 VkDebugUtilsMessengerCallbackDataFlagsEXT flags;
 const char* pMessageIdName;
 int32_t messageIdNumber;
 const char* pMessage;
 uint32_t queueLabelCount;
 const VkDebugUtilsLabelEXT* pQueueLabels;
 uint32_t cmdBufLabelCount;
 const VkDebugUtilsLabelEXT* pCmdBufLabels;
 uint32_t objectCount;
 const VkDebugUtilsObjectNameInfoEXT* pObjects;
} VkDebugUtilsMessengerCallbackDataEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is 0 and is reserved for future use.

4137

• pMessageIdName is NULL or a null-terminated UTF-8 string that identifies the particular message ID
that is associated with the provided message. If the message corresponds to a validation layer
message, then this string may contain the portion of the Vulkan specification that is believed to
have been violated.

• messageIdNumber is the ID number of the triggering message. If the message corresponds to a
validation layer message, then this number is related to the internal number associated with
the message being triggered.

• pMessage is NULL if messageTypes is equal to
VK_DEBUG_UTILS_MESSAGE_TYPE_DEVICE_ADDRESS_BINDING_BIT_EXT, or a null-terminated UTF-8 string
detailing the trigger conditions.

• queueLabelCount is a count of items contained in the pQueueLabels array.

• pQueueLabels is NULL or a pointer to an array of VkDebugUtilsLabelEXT active in the current
VkQueue at the time the callback was triggered. Refer to Queue Labels for more information.

• cmdBufLabelCount is a count of items contained in the pCmdBufLabels array.

• pCmdBufLabels is NULL or a pointer to an array of VkDebugUtilsLabelEXT active in the current
VkCommandBuffer at the time the callback was triggered. Refer to Command Buffer Labels for
more information.

• objectCount is a count of items contained in the pObjects array.

• pObjects is a pointer to an array of VkDebugUtilsObjectNameInfoEXT objects related to the
detected issue. The array is roughly in order or importance, but the 0th element is always
guaranteed to be the most important object for this message.

Note

This structure should only be considered valid during the lifetime of the triggered
callback.

Since adding queue and command buffer labels behaves like pushing and popping onto a stack, the
order of both pQueueLabels and pCmdBufLabels is based on the order the labels were defined. The
result is that the first label in either pQueueLabels or pCmdBufLabels will be the first defined (and
therefore the oldest) while the last label in each list will be the most recent.

Note

pQueueLabels will only be non-NULL if one of the objects in pObjects can be related
directly to a defined VkQueue which has had one or more labels associated with it.

Likewise, pCmdBufLabels will only be non-NULL if one of the objects in pObjects can
be related directly to a defined VkCommandBuffer which has had one or more labels
associated with it. Additionally, while command buffer labels allow for beginning
and ending across different command buffers, the debug messaging framework
cannot guarantee that labels in pCmdBufLables will contain those defined outside of
the associated command buffer. This is partially due to the fact that the association
of one command buffer with another may not have been defined at the time the
debug message is triggered.

4138

Valid Usage (Implicit)

• VUID-VkDebugUtilsMessengerCallbackDataEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT

• VUID-VkDebugUtilsMessengerCallbackDataEXT-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDeviceAddressBindingCallbackDataEXT

• VUID-VkDebugUtilsMessengerCallbackDataEXT-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkDebugUtilsMessengerCallbackDataEXT-flags-zerobitmask
flags must be 0

• VUID-VkDebugUtilsMessengerCallbackDataEXT-pMessageIdName-parameter
If pMessageIdName is not NULL, pMessageIdName must be a null-terminated UTF-8 string

• VUID-VkDebugUtilsMessengerCallbackDataEXT-pMessage-parameter
If pMessage is not NULL, pMessage must be a null-terminated UTF-8 string

• VUID-VkDebugUtilsMessengerCallbackDataEXT-pQueueLabels-parameter
If queueLabelCount is not 0, pQueueLabels must be a valid pointer to an array of
queueLabelCount valid VkDebugUtilsLabelEXT structures

• VUID-VkDebugUtilsMessengerCallbackDataEXT-pCmdBufLabels-parameter
If cmdBufLabelCount is not 0, pCmdBufLabels must be a valid pointer to an array of
cmdBufLabelCount valid VkDebugUtilsLabelEXT structures

• VUID-VkDebugUtilsMessengerCallbackDataEXT-pObjects-parameter
If objectCount is not 0, pObjects must be a valid pointer to an array of objectCount valid
VkDebugUtilsObjectNameInfoEXT structures

// Provided by VK_EXT_debug_utils
typedef VkFlags VkDebugUtilsMessengerCallbackDataFlagsEXT;

VkDebugUtilsMessengerCallbackDataFlagsEXT is a bitmask type for setting a mask, but is currently
reserved for future use.

The definition of VkDeviceAddressBindingCallbackDataEXT is:

// Provided by VK_EXT_device_address_binding_report
typedef struct VkDeviceAddressBindingCallbackDataEXT {
 VkStructureType sType;
 void* pNext;
 VkDeviceAddressBindingFlagsEXT flags;
 VkDeviceAddress baseAddress;
 VkDeviceSize size;
 VkDeviceAddressBindingTypeEXT bindingType;
} VkDeviceAddressBindingCallbackDataEXT;

4139

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkDeviceAddressBindingFlagBitsEXT specifying additional information
about the binding event that caused the callback to be called.

• baseAddress is a GPU-accessible virtual address identifying the start of a region of the virtual
address space associated with a Vulkan object, as identified by the pObjects member of
VkDebugUtilsMessengerCallbackDataEXT.

• size is the size in bytes of a region of GPU-accessible virtual address space.

• bindingType is a VkDeviceAddressBindingTypeEXT specifying the type of binding event that
caused the callback to be called.

If the reportAddressBinding feature is enabled and the implementation binds or unbinds a region of
virtual address space associated with a Vulkan object, the implementation must submit a debug
message with the following properties:

• messageSeverity equal to VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT

• messageTypes equal to VK_DEBUG_UTILS_MESSAGE_TYPE_DEVICE_ADDRESS_BINDING_BIT_EXT

• VkDebugUtilsMessengerCallbackDataEXT::pObjects must identify the associated Vulkan object

• VkDeviceAddressBindingCallbackDataEXT must be included in the pNext chain of
VkDebugUtilsMessengerCallbackDataEXT

These debug messages must be emitted both for GPU virtual address space regions that are
explicitly bound to a Vulkan object via the vkBind*Memory/vkBind*Memory2 functions, and for
those that are implicitly generated via memory allocation or importing external memory.

An implementation may report binding events associated with a Vulkan object via
VkDebugUtilsMessengerEXT prior to the object becoming visible to an application via other Vulkan
commands. For example, object creation functions may report binding events that occur during an
objects creation. In such cases, VkDeviceAddressBindingCallbackDataEXT::flags must include
VK_DEVICE_ADDRESS_BINDING_INTERNAL_OBJECT_BIT_EXT.

Object handles reported in this manner are not valid object handles, and must not be used as an
input parameter to any Vulkan command.

Any valid object handle returned by an object creation function must match the handle specified
via any previously reported binding events associated with the object’s creation.

Valid Usage (Implicit)

• VUID-VkDeviceAddressBindingCallbackDataEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_ADDRESS_BINDING_CALLBACK_DATA_EXT

• VUID-VkDeviceAddressBindingCallbackDataEXT-flags-parameter
flags must be a valid combination of VkDeviceAddressBindingFlagBitsEXT values

• VUID-VkDeviceAddressBindingCallbackDataEXT-bindingType-parameter
bindingType must be a valid VkDeviceAddressBindingTypeEXT value

4140

Bits which can be set in VkDeviceAddressBindingCallbackDataEXT::flags specifying additional
information about a binding event are:

// Provided by VK_EXT_device_address_binding_report
typedef enum VkDeviceAddressBindingFlagBitsEXT {
 VK_DEVICE_ADDRESS_BINDING_INTERNAL_OBJECT_BIT_EXT = 0x00000001,
} VkDeviceAddressBindingFlagBitsEXT;

• VK_DEVICE_ADDRESS_BINDING_INTERNAL_OBJECT_BIT_EXT specifies that
VkDeviceAddressBindingCallbackDataEXT describes a Vulkan object that has not been made
visible to the application via a Vulkan command.

// Provided by VK_EXT_device_address_binding_report
typedef VkFlags VkDeviceAddressBindingFlagsEXT;

VkDeviceAddressBindingFlagsEXT is a bitmask type for setting a mask of zero or more
VkDeviceAddressBindingFlagBitsEXT.

The VkDeviceAddressBindingTypeEXT enum is defined as:

// Provided by VK_EXT_device_address_binding_report
typedef enum VkDeviceAddressBindingTypeEXT {
 VK_DEVICE_ADDRESS_BINDING_TYPE_BIND_EXT = 0,
 VK_DEVICE_ADDRESS_BINDING_TYPE_UNBIND_EXT = 1,
} VkDeviceAddressBindingTypeEXT;

• VK_DEVICE_ADDRESS_BINDING_TYPE_BIND_EXT specifies that a new GPU-accessible virtual address
range has been bound.

• VK_DEVICE_ADDRESS_BINDING_TYPE_UNBIND_EXT specifies that a GPU-accessible virtual address range
has been unbound.

There may be times that a user wishes to intentionally submit a debug message. To do this, call:

// Provided by VK_EXT_debug_utils
void vkSubmitDebugUtilsMessageEXT(
 VkInstance instance,
 VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
 VkDebugUtilsMessageTypeFlagsEXT messageTypes,
 const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData);

• instance is the debug stream’s VkInstance.

• messageSeverity is a VkDebugUtilsMessageSeverityFlagBitsEXT value specifying the severity of
this event/message.

• messageTypes is a bitmask of VkDebugUtilsMessageTypeFlagBitsEXT specifying which type of

4141

event(s) to identify with this message.

• pCallbackData contains all the callback related data in the
VkDebugUtilsMessengerCallbackDataEXT structure.

The call will propagate through the layers and generate callback(s) as indicated by the message’s
flags. The parameters are passed on to the callback in addition to the pUserData value that was
defined at the time the messenger was registered.

Valid Usage

• VUID-vkSubmitDebugUtilsMessageEXT-objectType-02591
The objectType member of each element of pCallbackData->pObjects must not be
VK_OBJECT_TYPE_UNKNOWN

Valid Usage (Implicit)

• VUID-vkSubmitDebugUtilsMessageEXT-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkSubmitDebugUtilsMessageEXT-messageSeverity-parameter
messageSeverity must be a valid VkDebugUtilsMessageSeverityFlagBitsEXT value

• VUID-vkSubmitDebugUtilsMessageEXT-messageTypes-parameter
messageTypes must be a valid combination of VkDebugUtilsMessageTypeFlagBitsEXT
values

• VUID-vkSubmitDebugUtilsMessageEXT-messageTypes-requiredbitmask
messageTypes must not be 0

• VUID-vkSubmitDebugUtilsMessageEXT-pCallbackData-parameter
pCallbackData must be a valid pointer to a valid VkDebugUtilsMessengerCallbackDataEXT
structure

To destroy a VkDebugUtilsMessengerEXT object, call:

// Provided by VK_EXT_debug_utils
void vkDestroyDebugUtilsMessengerEXT(
 VkInstance instance,
 VkDebugUtilsMessengerEXT messenger,
 const VkAllocationCallbacks* pAllocator);

• instance is the instance where the callback was created.

• messenger is the VkDebugUtilsMessengerEXT object to destroy. messenger is an externally
synchronized object and must not be used on more than one thread at a time. This means that
vkDestroyDebugUtilsMessengerEXT must not be called when a callback is active.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

4142

Valid Usage

• VUID-vkDestroyDebugUtilsMessengerEXT-messenger-01915
If VkAllocationCallbacks were provided when messenger was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyDebugUtilsMessengerEXT-messenger-01916
If no VkAllocationCallbacks were provided when messenger was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyDebugUtilsMessengerEXT-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkDestroyDebugUtilsMessengerEXT-messenger-parameter
If messenger is not VK_NULL_HANDLE, messenger must be a valid
VkDebugUtilsMessengerEXT handle

• VUID-vkDestroyDebugUtilsMessengerEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDebugUtilsMessengerEXT-messenger-parent
If messenger is a valid handle, it must have been created, allocated, or retrieved from
instance

Host Synchronization

• Host access to messenger must be externally synchronized

The application must ensure that vkDestroyDebugUtilsMessengerEXT is not executed in parallel
with any Vulkan command that is also called with instance or child of instance as the dispatchable
argument.

51.2. Debug Markers
Debug markers provide a flexible way for debugging and validation layers to receive annotation
and debug information.

The Object Annotation section describes how to associate a name or binary data with a Vulkan
object.

The Command Buffer Markers section describes how to associate logical elements of the scene with
commands in the command buffer.

4143

51.2.1. Object Annotation

The commands in this section allow application developers to associate user-defined information
with Vulkan objects at will.

An object can be given a user-friendly name by calling:

// Provided by VK_EXT_debug_marker
VkResult vkDebugMarkerSetObjectNameEXT(
 VkDevice device,
 const VkDebugMarkerObjectNameInfoEXT* pNameInfo);

• device is the device that created the object.

• pNameInfo is a pointer to a VkDebugMarkerObjectNameInfoEXT structure specifying the
parameters of the name to set on the object.

Valid Usage (Implicit)

• VUID-vkDebugMarkerSetObjectNameEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkDebugMarkerSetObjectNameEXT-pNameInfo-parameter
pNameInfo must be a valid pointer to a valid VkDebugMarkerObjectNameInfoEXT
structure

Host Synchronization

• Host access to pNameInfo->object must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDebugMarkerObjectNameInfoEXT structure is defined as:

// Provided by VK_EXT_debug_marker
typedef struct VkDebugMarkerObjectNameInfoEXT {
 VkStructureType sType;
 const void* pNext;

4144

 VkDebugReportObjectTypeEXT objectType;
 uint64_t object;
 const char* pObjectName;
} VkDebugMarkerObjectNameInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• objectType is a VkDebugReportObjectTypeEXT specifying the type of the object to be named.

• object is the object to be named.

• pObjectName is a null-terminated UTF-8 string specifying the name to apply to object.

Applications may change the name associated with an object simply by calling
vkDebugMarkerSetObjectNameEXT again with a new string. To remove a previously set name,
pObjectName should be set to an empty string.

Valid Usage

• VUID-VkDebugMarkerObjectNameInfoEXT-objectType-01490
objectType must not be VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT

• VUID-VkDebugMarkerObjectNameInfoEXT-object-01491
object must not be VK_NULL_HANDLE

• VUID-VkDebugMarkerObjectNameInfoEXT-object-01492
object must be a Vulkan object of the type associated with objectType as defined in
VkDebugReportObjectTypeEXT and Vulkan Handle Relationship

Valid Usage (Implicit)

• VUID-VkDebugMarkerObjectNameInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT

• VUID-VkDebugMarkerObjectNameInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDebugMarkerObjectNameInfoEXT-objectType-parameter
objectType must be a valid VkDebugReportObjectTypeEXT value

• VUID-VkDebugMarkerObjectNameInfoEXT-pObjectName-parameter
pObjectName must be a null-terminated UTF-8 string

In addition to setting a name for an object, debugging and validation layers may have uses for
additional binary data on a per-object basis that has no other place in the Vulkan API. For example,
a VkShaderModule could have additional debugging data attached to it to aid in offline shader tracing.
To attach data to an object, call:

// Provided by VK_EXT_debug_marker

4145

VkResult vkDebugMarkerSetObjectTagEXT(
 VkDevice device,
 const VkDebugMarkerObjectTagInfoEXT* pTagInfo);

• device is the device that created the object.

• pTagInfo is a pointer to a VkDebugMarkerObjectTagInfoEXT structure specifying the parameters
of the tag to attach to the object.

Valid Usage (Implicit)

• VUID-vkDebugMarkerSetObjectTagEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkDebugMarkerSetObjectTagEXT-pTagInfo-parameter
pTagInfo must be a valid pointer to a valid VkDebugMarkerObjectTagInfoEXT structure

Host Synchronization

• Host access to pTagInfo->object must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDebugMarkerObjectTagInfoEXT structure is defined as:

// Provided by VK_EXT_debug_marker
typedef struct VkDebugMarkerObjectTagInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDebugReportObjectTypeEXT objectType;
 uint64_t object;
 uint64_t tagName;
 size_t tagSize;
 const void* pTag;
} VkDebugMarkerObjectTagInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

4146

• objectType is a VkDebugReportObjectTypeEXT specifying the type of the object to be named.

• object is the object to be tagged.

• tagName is a numerical identifier of the tag.

• tagSize is the number of bytes of data to attach to the object.

• pTag is a pointer to an array of tagSize bytes containing the data to be associated with the object.

The tagName parameter gives a name or identifier to the type of data being tagged. This can be used
by debugging layers to easily filter for only data that can be used by that implementation.

Valid Usage

• VUID-VkDebugMarkerObjectTagInfoEXT-objectType-01493
objectType must not be VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT

• VUID-VkDebugMarkerObjectTagInfoEXT-object-01494
object must not be VK_NULL_HANDLE

• VUID-VkDebugMarkerObjectTagInfoEXT-object-01495
object must be a Vulkan object of the type associated with objectType as defined in
VkDebugReportObjectTypeEXT and Vulkan Handle Relationship

Valid Usage (Implicit)

• VUID-VkDebugMarkerObjectTagInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT

• VUID-VkDebugMarkerObjectTagInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDebugMarkerObjectTagInfoEXT-objectType-parameter
objectType must be a valid VkDebugReportObjectTypeEXT value

• VUID-VkDebugMarkerObjectTagInfoEXT-pTag-parameter
pTag must be a valid pointer to an array of tagSize bytes

• VUID-VkDebugMarkerObjectTagInfoEXT-tagSize-arraylength
tagSize must be greater than 0

51.2.2. Command Buffer Markers

Typical Vulkan applications will submit many command buffers in each frame, with each
command buffer containing a large number of individual commands. Being able to logically
annotate regions of command buffers that belong together as well as hierarchically subdivide the
frame is important to a developer’s ability to navigate the commands viewed holistically.

The marker commands vkCmdDebugMarkerBeginEXT and vkCmdDebugMarkerEndEXT define regions of a
series of commands that are grouped together, and they can be nested to create a hierarchy. The
vkCmdDebugMarkerInsertEXT command allows insertion of a single label within a command buffer.

4147

A marker region can be opened by calling:

// Provided by VK_EXT_debug_marker
void vkCmdDebugMarkerBeginEXT(
 VkCommandBuffer commandBuffer,
 const VkDebugMarkerMarkerInfoEXT* pMarkerInfo);

• commandBuffer is the command buffer into which the command is recorded.

• pMarkerInfo is a pointer to a VkDebugMarkerMarkerInfoEXT structure specifying the
parameters of the marker region to open.

Valid Usage (Implicit)

• VUID-vkCmdDebugMarkerBeginEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDebugMarkerBeginEXT-pMarkerInfo-parameter
pMarkerInfo must be a valid pointer to a valid VkDebugMarkerMarkerInfoEXT structure

• VUID-vkCmdDebugMarkerBeginEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDebugMarkerBeginEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdDebugMarkerBeginEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action

The VkDebugMarkerMarkerInfoEXT structure is defined as:

4148

// Provided by VK_EXT_debug_marker
typedef struct VkDebugMarkerMarkerInfoEXT {
 VkStructureType sType;
 const void* pNext;
 const char* pMarkerName;
 float color[4];
} VkDebugMarkerMarkerInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pMarkerName is a pointer to a null-terminated UTF-8 string containing the name of the marker.

• color is an optional RGBA color value that can be associated with the marker. A particular
implementation may choose to ignore this color value. The values contain RGBA values in
order, in the range 0.0 to 1.0. If all elements in color are set to 0.0 then it is ignored.

Valid Usage (Implicit)

• VUID-VkDebugMarkerMarkerInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT

• VUID-VkDebugMarkerMarkerInfoEXT-pNext-pNext
pNext must be NULL

• VUID-VkDebugMarkerMarkerInfoEXT-pMarkerName-parameter
pMarkerName must be a null-terminated UTF-8 string

A marker region can be closed by calling:

// Provided by VK_EXT_debug_marker
void vkCmdDebugMarkerEndEXT(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer into which the command is recorded.

An application may open a marker region in one command buffer and close it in another, or
otherwise split marker regions across multiple command buffers or multiple queue submissions.
When viewed from the linear series of submissions to a single queue, the calls to
vkCmdDebugMarkerBeginEXT and vkCmdDebugMarkerEndEXT must be matched and balanced.

Valid Usage

• VUID-vkCmdDebugMarkerEndEXT-commandBuffer-01239
There must be an outstanding vkCmdDebugMarkerBeginEXT command prior to the
vkCmdDebugMarkerEndEXT on the queue that commandBuffer is submitted to

• VUID-vkCmdDebugMarkerEndEXT-commandBuffer-01240

4149

If commandBuffer is a secondary command buffer, there must be an outstanding
vkCmdDebugMarkerBeginEXT command recorded to commandBuffer that has not
previously been ended by a call to vkCmdDebugMarkerEndEXT

Valid Usage (Implicit)

• VUID-vkCmdDebugMarkerEndEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDebugMarkerEndEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDebugMarkerEndEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdDebugMarkerEndEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action

A single marker label can be inserted into a command buffer by calling:

// Provided by VK_EXT_debug_marker
void vkCmdDebugMarkerInsertEXT(
 VkCommandBuffer commandBuffer,
 const VkDebugMarkerMarkerInfoEXT* pMarkerInfo);

• commandBuffer is the command buffer into which the command is recorded.

• pMarkerInfo is a pointer to a VkDebugMarkerMarkerInfoEXT structure specifying the
parameters of the marker to insert.

4150

Valid Usage (Implicit)

• VUID-vkCmdDebugMarkerInsertEXT-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDebugMarkerInsertEXT-pMarkerInfo-parameter
pMarkerInfo must be a valid pointer to a valid VkDebugMarkerMarkerInfoEXT structure

• VUID-vkCmdDebugMarkerInsertEXT-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDebugMarkerInsertEXT-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdDebugMarkerInsertEXT-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action

51.3. Debug Report Callbacks
Debug report callbacks are represented by VkDebugReportCallbackEXT handles:

// Provided by VK_EXT_debug_report
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDebugReportCallbackEXT)

Debug report callbacks give more detailed feedback on the application’s use of Vulkan when events
of interest occur.

To register a debug report callback, an application uses vkCreateDebugReportCallbackEXT.

// Provided by VK_EXT_debug_report

4151

VkResult vkCreateDebugReportCallbackEXT(
 VkInstance instance,
 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDebugReportCallbackEXT* pCallback);

• instance is the instance the callback will be logged on.

• pCreateInfo is a pointer to a VkDebugReportCallbackCreateInfoEXT structure defining the
conditions under which this callback will be called.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pCallback is a pointer to a VkDebugReportCallbackEXT handle in which the created object is
returned.

Valid Usage (Implicit)

• VUID-vkCreateDebugReportCallbackEXT-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkCreateDebugReportCallbackEXT-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDebugReportCallbackCreateInfoEXT
structure

• VUID-vkCreateDebugReportCallbackEXT-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDebugReportCallbackEXT-pCallback-parameter
pCallback must be a valid pointer to a VkDebugReportCallbackEXT handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The definition of VkDebugReportCallbackCreateInfoEXT is:

// Provided by VK_EXT_debug_report
typedef struct VkDebugReportCallbackCreateInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkDebugReportFlagsEXT flags;
 PFN_vkDebugReportCallbackEXT pfnCallback;
 void* pUserData;

4152

} VkDebugReportCallbackCreateInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkDebugReportFlagBitsEXT specifying which event(s) will cause this
callback to be called.

• pfnCallback is the application callback function to call.

• pUserData is user data to be passed to the callback.

For each VkDebugReportCallbackEXT that is created the VkDebugReportCallbackCreateInfoEXT::flags
determine when that VkDebugReportCallbackCreateInfoEXT::pfnCallback is called. When an event
happens, the implementation will do a bitwise AND of the event’s VkDebugReportFlagBitsEXT flags
to each VkDebugReportCallbackEXT object’s flags. For each non-zero result the corresponding callback
will be called. The callback will come directly from the component that detected the event, unless
some other layer intercepts the calls for its own purposes (filter them in a different way, log to a
system error log, etc.).

An application may receive multiple callbacks if multiple VkDebugReportCallbackEXT objects were
created. A callback will always be executed in the same thread as the originating Vulkan call.

A callback may be called from multiple threads simultaneously (if the application is making Vulkan
calls from multiple threads).

Valid Usage (Implicit)

• VUID-VkDebugReportCallbackCreateInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT

• VUID-VkDebugReportCallbackCreateInfoEXT-flags-parameter
flags must be a valid combination of VkDebugReportFlagBitsEXT values

• VUID-VkDebugReportCallbackCreateInfoEXT-pfnCallback-parameter
pfnCallback must be a valid PFN_vkDebugReportCallbackEXT value

Bits which can be set in VkDebugReportCallbackCreateInfoEXT::flags, specifying events which
cause a debug report, are:

// Provided by VK_EXT_debug_report
typedef enum VkDebugReportFlagBitsEXT {
 VK_DEBUG_REPORT_INFORMATION_BIT_EXT = 0x00000001,
 VK_DEBUG_REPORT_WARNING_BIT_EXT = 0x00000002,
 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT = 0x00000004,
 VK_DEBUG_REPORT_ERROR_BIT_EXT = 0x00000008,
 VK_DEBUG_REPORT_DEBUG_BIT_EXT = 0x00000010,
} VkDebugReportFlagBitsEXT;

4153

• VK_DEBUG_REPORT_ERROR_BIT_EXT specifies that the application has violated a valid usage condition
of the specification.

• VK_DEBUG_REPORT_WARNING_BIT_EXT specifies use of Vulkan that may expose an app bug. Such
cases may not be immediately harmful, such as a fragment shader outputting to a location with
no attachment. Other cases may point to behavior that is almost certainly bad when unintended
such as using an image whose memory has not been filled. In general if you see a warning but
you know that the behavior is intended/desired, then simply ignore the warning.

• VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT specifies a potentially non-optimal use of Vulkan,
e.g. using vkCmdClearColorImage when setting VkAttachmentDescription::loadOp to
VK_ATTACHMENT_LOAD_OP_CLEAR would have worked.

• VK_DEBUG_REPORT_INFORMATION_BIT_EXT specifies an informational message such as resource
details that may be handy when debugging an application.

• VK_DEBUG_REPORT_DEBUG_BIT_EXT specifies diagnostic information from the implementation and
layers.

// Provided by VK_EXT_debug_report
typedef VkFlags VkDebugReportFlagsEXT;

VkDebugReportFlagsEXT is a bitmask type for setting a mask of zero or more
VkDebugReportFlagBitsEXT.

The prototype for the VkDebugReportCallbackCreateInfoEXT::pfnCallback function implemented by
the application is:

// Provided by VK_EXT_debug_report
typedef VkBool32 (VKAPI_PTR *PFN_vkDebugReportCallbackEXT)(
 VkDebugReportFlagsEXT flags,
 VkDebugReportObjectTypeEXT objectType,
 uint64_t object,
 size_t location,
 int32_t messageCode,
 const char* pLayerPrefix,
 const char* pMessage,
 void* pUserData);

• flags specifies the VkDebugReportFlagBitsEXT that triggered this callback.

• objectType is a VkDebugReportObjectTypeEXT value specifying the type of object being used or
created at the time the event was triggered.

• object is the object where the issue was detected. If objectType is
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, object is undefined.

• location is a component (layer, driver, loader) defined value specifying the location of the
trigger. This is an optional value.

• messageCode is a layer-defined value indicating what test triggered this callback.

4154

• pLayerPrefix is a null-terminated UTF-8 string that is an abbreviation of the name of the
component making the callback. pLayerPrefix is only valid for the duration of the callback.

• pMessage is a null-terminated UTF-8 string detailing the trigger conditions. pMessage is only valid
for the duration of the callback.

• pUserData is the user data given when the VkDebugReportCallbackEXT was created.

The callback must not call vkDestroyDebugReportCallbackEXT.

The callback returns a VkBool32, which is interpreted in a layer-specified manner. The application
should always return VK_FALSE. The VK_TRUE value is reserved for use in layer development.

object must be a Vulkan object or VK_NULL_HANDLE. If objectType is not
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT and object is not VK_NULL_HANDLE, object must be a
Vulkan object of the corresponding type associated with objectType as defined in
VkDebugReportObjectTypeEXT and Vulkan Handle Relationship.

Possible values passed to the objectType parameter of the callback function specified by
VkDebugReportCallbackCreateInfoEXT::pfnCallback, specifying the type of object handle being
reported, are:

// Provided by VK_EXT_debug_marker, VK_EXT_debug_report
typedef enum VkDebugReportObjectTypeEXT {
 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT = 0,
 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT = 1,
 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT = 2,
 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT = 3,
 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT = 4,
 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT = 5,
 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT = 6,
 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT = 7,
 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT = 8,
 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT = 9,
 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT = 10,
 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT = 11,
 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT = 12,
 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT = 13,
 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT = 14,
 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT = 15,
 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT = 16,
 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT = 17,
 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT = 18,
 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT = 19,
 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT = 20,
 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT = 21,
 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT = 22,
 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT = 23,
 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT = 24,
 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT = 25,
 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT = 26,

4155

 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT = 27,
 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT = 28,
 VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_KHR_EXT = 29,
 VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_MODE_KHR_EXT = 30,
 VK_DEBUG_REPORT_OBJECT_TYPE_VALIDATION_CACHE_EXT_EXT = 33,
 // Provided by VK_VERSION_1_1 with VK_EXT_debug_report,
VK_KHR_sampler_ycbcr_conversion with VK_EXT_debug_report
 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_EXT = 1000156000,
 // Provided by VK_VERSION_1_1 with VK_EXT_debug_report
 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_EXT = 1000085000,
 // Provided by VK_EXT_debug_report with VK_NVX_binary_import
 VK_DEBUG_REPORT_OBJECT_TYPE_CU_MODULE_NVX_EXT = 1000029000,
 // Provided by VK_EXT_debug_report with VK_NVX_binary_import
 VK_DEBUG_REPORT_OBJECT_TYPE_CU_FUNCTION_NVX_EXT = 1000029001,
 // Provided by VK_KHR_acceleration_structure with VK_EXT_debug_report
 VK_DEBUG_REPORT_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR_EXT = 1000150000,
 // Provided by VK_EXT_debug_report with VK_NV_ray_tracing
 VK_DEBUG_REPORT_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV_EXT = 1000165000,
 // Provided by VK_EXT_debug_report with VK_NV_cuda_kernel_launch
 VK_DEBUG_REPORT_OBJECT_TYPE_CUDA_MODULE_NV_EXT = 1000307000,
 // Provided by VK_EXT_debug_report with VK_NV_cuda_kernel_launch
 VK_DEBUG_REPORT_OBJECT_TYPE_CUDA_FUNCTION_NV_EXT = 1000307001,
 // Provided by VK_EXT_debug_report with VK_FUCHSIA_buffer_collection
 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_COLLECTION_FUCHSIA_EXT = 1000366000,
 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_EXT =
VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT,
 VK_DEBUG_REPORT_OBJECT_TYPE_VALIDATION_CACHE_EXT =
VK_DEBUG_REPORT_OBJECT_TYPE_VALIDATION_CACHE_EXT_EXT,
 // Provided by VK_KHR_descriptor_update_template with VK_EXT_debug_report
 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR_EXT =
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_EXT,
 // Provided by VK_KHR_sampler_ycbcr_conversion with VK_EXT_debug_report
 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR_EXT =
VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_EXT,
} VkDebugReportObjectTypeEXT;

Table 95. VkDebugReportObjectTypeEXT and Vulkan Handle Relationship

VkDebugReportObjectTypeEXT Vulkan Handle Type

VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT Unknown/Undefined Handle

VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT VkInstance

VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_
EXT

VkPhysicalDevice

VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT VkDevice

VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT VkQueue

VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT VkSemaphore

VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_E
XT

VkCommandBuffer

4156

VkDebugReportObjectTypeEXT Vulkan Handle Type

VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT VkFence

VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EX
T

VkDeviceMemory

VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT VkBuffer

VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT VkImage

VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT VkEvent

VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT VkQueryPool

VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT VkBufferView

VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT VkImageView

VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EX
T

VkShaderModule

VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_E
XT

VkPipelineCache

VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_
EXT

VkPipelineLayout

VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT VkRenderPass

VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT VkPipeline

VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_L
AYOUT_EXT

VkDescriptorSetLayout

VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT VkSampler

VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_
EXT

VkDescriptorPool

VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_E
XT

VkDescriptorSet

VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT VkFramebuffer

VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT VkCommandPool

VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT VkSurfaceKHR

VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EX
T

VkSwapchainKHR

VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CAL
LBACK_EXT_EXT

VkDebugReportCallbackEXT

VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_KHR_EXT VkDisplayKHR

VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_MODE_KHR
_EXT

VkDisplayModeKHR

VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDAT
E_TEMPLATE_EXT

VkDescriptorUpdateTemplate

Note

The primary expected use of VK_ERROR_VALIDATION_FAILED_EXT is for validation layer
testing. It is not expected that an application would see this error code during

4157

normal use of the validation layers.

To inject its own messages into the debug stream, call:

// Provided by VK_EXT_debug_report
void vkDebugReportMessageEXT(
 VkInstance instance,
 VkDebugReportFlagsEXT flags,
 VkDebugReportObjectTypeEXT objectType,
 uint64_t object,
 size_t location,
 int32_t messageCode,
 const char* pLayerPrefix,
 const char* pMessage);

• instance is the debug stream’s VkInstance.

• flags specifies the VkDebugReportFlagBitsEXT classification of this event/message.

• objectType is a VkDebugReportObjectTypeEXT specifying the type of object being used or
created at the time the event was triggered.

• object is the object where the issue was detected. object can be VK_NULL_HANDLE if there is
no object associated with the event.

• location is an application defined value.

• messageCode is an application defined value.

• pLayerPrefix is the abbreviation of the component making this event/message.

• pMessage is a null-terminated UTF-8 string detailing the trigger conditions.

The call will propagate through the layers and generate callback(s) as indicated by the message’s
flags. The parameters are passed on to the callback in addition to the pUserData value that was
defined at the time the callback was registered.

Valid Usage

• VUID-vkDebugReportMessageEXT-object-01241
object must be a Vulkan object or VK_NULL_HANDLE

• VUID-vkDebugReportMessageEXT-objectType-01498
If objectType is not VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT and object is not
VK_NULL_HANDLE, object must be a Vulkan object of the corresponding type associated
with objectType as defined in VkDebugReportObjectTypeEXT and Vulkan Handle Relationship

Valid Usage (Implicit)

• VUID-vkDebugReportMessageEXT-instance-parameter
instance must be a valid VkInstance handle

4158

• VUID-vkDebugReportMessageEXT-flags-parameter
flags must be a valid combination of VkDebugReportFlagBitsEXT values

• VUID-vkDebugReportMessageEXT-flags-requiredbitmask
flags must not be 0

• VUID-vkDebugReportMessageEXT-objectType-parameter
objectType must be a valid VkDebugReportObjectTypeEXT value

• VUID-vkDebugReportMessageEXT-pLayerPrefix-parameter
pLayerPrefix must be a null-terminated UTF-8 string

• VUID-vkDebugReportMessageEXT-pMessage-parameter
pMessage must be a null-terminated UTF-8 string

To destroy a VkDebugReportCallbackEXT object, call:

// Provided by VK_EXT_debug_report
void vkDestroyDebugReportCallbackEXT(
 VkInstance instance,
 VkDebugReportCallbackEXT callback,
 const VkAllocationCallbacks* pAllocator);

• instance is the instance where the callback was created.

• callback is the VkDebugReportCallbackEXT object to destroy. callback is an externally
synchronized object and must not be used on more than one thread at a time. This means that
vkDestroyDebugReportCallbackEXT must not be called when a callback is active.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyDebugReportCallbackEXT-instance-01242
If VkAllocationCallbacks were provided when callback was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyDebugReportCallbackEXT-instance-01243
If no VkAllocationCallbacks were provided when callback was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyDebugReportCallbackEXT-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkDestroyDebugReportCallbackEXT-callback-parameter
If callback is not VK_NULL_HANDLE, callback must be a valid
VkDebugReportCallbackEXT handle

• VUID-vkDestroyDebugReportCallbackEXT-pAllocator-parameter

4159

If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDebugReportCallbackEXT-callback-parent
If callback is a valid handle, it must have been created, allocated, or retrieved from
instance

Host Synchronization

• Host access to callback must be externally synchronized

51.4. Device Loss Debugging

51.4.1. Device Diagnostic Checkpoints

Device execution progress can be tracked for the purposes of debugging a device loss by annotating
the command stream with application-defined diagnostic checkpoints.

Device diagnostic checkpoints are inserted into the command stream by calling
vkCmdSetCheckpointNV.

// Provided by VK_NV_device_diagnostic_checkpoints
void vkCmdSetCheckpointNV(
 VkCommandBuffer commandBuffer,
 const void* pCheckpointMarker);

• commandBuffer is the command buffer that will receive the marker

• pCheckpointMarker is an opaque application-provided value that will be associated with the
checkpoint.

Valid Usage (Implicit)

• VUID-vkCmdSetCheckpointNV-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCheckpointNV-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCheckpointNV-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
or transfer operations

• VUID-vkCmdSetCheckpointNV-videocoding
This command must only be called outside of a video coding scope

4160

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute
Transfer

Action

Note that pCheckpointMarker is treated as an opaque value. It does not need to be a valid pointer and
will not be dereferenced by the implementation.

If the device encounters an error during execution, the implementation will return a
VK_ERROR_DEVICE_LOST error to the application at some point during host execution. When this
happens, the application can call vkGetQueueCheckpointData2NV to retrieve information on the
most recent diagnostic checkpoints that were executed by the device.

// Provided by VK_KHR_synchronization2 with VK_NV_device_diagnostic_checkpoints
void vkGetQueueCheckpointData2NV(
 VkQueue queue,
 uint32_t* pCheckpointDataCount,
 VkCheckpointData2NV* pCheckpointData);

• queue is the VkQueue object the caller would like to retrieve checkpoint data for

• pCheckpointDataCount is a pointer to an integer related to the number of checkpoint markers
available or queried, as described below.

• pCheckpointData is either NULL or a pointer to an array of VkCheckpointData2NV structures.

If pCheckpointData is NULL, then the number of checkpoint markers available is returned in
pCheckpointDataCount. Otherwise, pCheckpointDataCount must point to a variable set by the user to
the number of elements in the pCheckpointData array, and on return the variable is overwritten with
the number of structures actually written to pCheckpointData.

If pCheckpointDataCount is less than the number of checkpoint markers available, at most
pCheckpointDataCount structures will be written.

4161

Valid Usage

• VUID-vkGetQueueCheckpointData2NV-queue-03892
The device that queue belongs to must be in the lost state

Valid Usage (Implicit)

• VUID-vkGetQueueCheckpointData2NV-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkGetQueueCheckpointData2NV-pCheckpointDataCount-parameter
pCheckpointDataCount must be a valid pointer to a uint32_t value

• VUID-vkGetQueueCheckpointData2NV-pCheckpointData-parameter
If the value referenced by pCheckpointDataCount is not 0, and pCheckpointData is not NULL,
pCheckpointData must be a valid pointer to an array of pCheckpointDataCount
VkCheckpointData2NV structures

The VkCheckpointData2NV structure is defined as:

// Provided by VK_KHR_synchronization2 with VK_NV_device_diagnostic_checkpoints
typedef struct VkCheckpointData2NV {
 VkStructureType sType;
 void* pNext;
 VkPipelineStageFlags2 stage;
 void* pCheckpointMarker;
} VkCheckpointData2NV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stage indicates a single pipeline stage which the checkpoint marker data refers to.

• pCheckpointMarker contains the value of the last checkpoint marker executed in the stage that
stage refers to.

Valid Usage (Implicit)

• VUID-VkCheckpointData2NV-sType-sType
sType must be VK_STRUCTURE_TYPE_CHECKPOINT_DATA_2_NV

• VUID-VkCheckpointData2NV-pNext-pNext
pNext must be NULL

The stages at which a checkpoint marker can be executed are implementation-defined and can be
queried by calling vkGetPhysicalDeviceQueueFamilyProperties2.

4162

If the device encounters an error during execution, the implementation will return a
VK_ERROR_DEVICE_LOST error to the application at a certain point during host execution. When this
happens, the application can call vkGetQueueCheckpointDataNV to retrieve information on the
most recent diagnostic checkpoints that were executed by the device.

// Provided by VK_NV_device_diagnostic_checkpoints
void vkGetQueueCheckpointDataNV(
 VkQueue queue,
 uint32_t* pCheckpointDataCount,
 VkCheckpointDataNV* pCheckpointData);

• queue is the VkQueue object the caller would like to retrieve checkpoint data for

• pCheckpointDataCount is a pointer to an integer related to the number of checkpoint markers
available or queried, as described below.

• pCheckpointData is either NULL or a pointer to an array of VkCheckpointDataNV structures.

If pCheckpointData is NULL, then the number of checkpoint markers available is returned in
pCheckpointDataCount.

Otherwise, pCheckpointDataCount must point to a variable set by the user to the number of elements
in the pCheckpointData array, and on return the variable is overwritten with the number of
structures actually written to pCheckpointData.

If pCheckpointDataCount is less than the number of checkpoint markers available, at most
pCheckpointDataCount structures will be written.

Valid Usage

• VUID-vkGetQueueCheckpointDataNV-queue-02025
The device that queue belongs to must be in the lost state

Valid Usage (Implicit)

• VUID-vkGetQueueCheckpointDataNV-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkGetQueueCheckpointDataNV-pCheckpointDataCount-parameter
pCheckpointDataCount must be a valid pointer to a uint32_t value

• VUID-vkGetQueueCheckpointDataNV-pCheckpointData-parameter
If the value referenced by pCheckpointDataCount is not 0, and pCheckpointData is not NULL,
pCheckpointData must be a valid pointer to an array of pCheckpointDataCount
VkCheckpointDataNV structures

The VkCheckpointDataNV structure is defined as:

4163

// Provided by VK_NV_device_diagnostic_checkpoints
typedef struct VkCheckpointDataNV {
 VkStructureType sType;
 void* pNext;
 VkPipelineStageFlagBits stage;
 void* pCheckpointMarker;
} VkCheckpointDataNV;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stage is a VkPipelineStageFlagBits value specifying which pipeline stage the checkpoint marker
data refers to.

• pCheckpointMarker contains the value of the last checkpoint marker executed in the stage that
stage refers to.

The stages at which a checkpoint marker can be executed are implementation-defined and can be
queried by calling vkGetPhysicalDeviceQueueFamilyProperties2.

Valid Usage (Implicit)

• VUID-VkCheckpointDataNV-sType-sType
sType must be VK_STRUCTURE_TYPE_CHECKPOINT_DATA_NV

• VUID-VkCheckpointDataNV-pNext-pNext
pNext must be NULL

51.4.2. Device Fault Diagnosis

To retrieve diagnostic information about faults that may have caused device loss, call:

// Provided by VK_EXT_device_fault
VkResult vkGetDeviceFaultInfoEXT(
 VkDevice device,
 VkDeviceFaultCountsEXT* pFaultCounts,
 VkDeviceFaultInfoEXT* pFaultInfo);

• device is the logical device from which to query the diagnostic fault information.

• pFaultCounts is a pointer to a VkDeviceFaultCountsEXT structure in which counts for structures
describing additional fault information are returned.

• pFaultInfo is NULL or a pointer to a VkDeviceFaultInfoEXT structure in which fault information is
returned.

If pFaultInfo is NULL, then the counts of corresponding additional fault information structures
available are returned in the addressInfoCount and vendorInfoCount members of pFaultCounts.
Additionally, the size of any vendor-specific binary crash dump is returned in the vendorBinarySize

4164

member of pFaultCounts.

If pFaultInfo is not NULL, pFaultCounts must point to a VkDeviceFaultCountsEXT structure with each
structure count or size member (addressInfoCount, vendorInfoCount, vendorBinarySize) set by the
user to the number of elements in the corresponding output array member of pFaultInfo
(pAddressInfos and pVendorInfos), or to the size of the output buffer in bytes (pVendorBinaryData). On
return, each structure count member is overwritten with the number of structures actually written
to the corresponding output array member of pFaultInfo. Similarly, vendorBinarySize is overwritten
with the number of bytes actually written to the pVendorBinaryData member of pFaultInfo.

If the vendor-specific crash dumps feature is not enabled, then implementations must set
pFaultCounts->vendorBinarySize to zero and must not modify pFaultInfo->pVendorBinaryData.

If any pFaultCounts structure count member is less than the number of corresponding fault
properties available, at most structure count (addressInfoCount, vendorInfoCount) elements will be
written to the associated pFaultInfo output array. Similarly, if vendorBinarySize is less than the size
in bytes of the available crash dump data, at most vendorBinarySize elements will be written to
pVendorBinaryData.

If pFaultInfo is NULL, then subsequent calls to vkGetDeviceFaultInfoEXT for the same device must
return identical values in the addressInfoCount, vendorInfoCount and vendorBinarySize members of
pFaultCounts.

If pFaultInfo is not NULL, then subsequent calls to vkGetDeviceFaultInfoEXT for the same device
must return identical values in the output members of pFaultInfo (pAddressInfos, pVendorInfos,
pVendorBinaryData), up to the limits described by the structure count and buffer size members of
pFaultCounts (addressInfoCount, vendorInfoCount, vendorBinarySize). If the sizes of the output
members of pFaultInfo increase for a subsequent call to vkGetDeviceFaultInfoEXT, then
supplementary information may be returned in the additional available space.

If any pFaultCounts structure count member is smaller than the number of corresponding fault
properties available, or if pFaultCounts->vendorBinarySize is smaller than the size in bytes of the
generated binary crash dump data, VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate
that not all the available properties were returned.

If pFaultCounts->vendorBinarySize is less than what is necessary to store the binary crash dump
header, nothing will be written to pFaultInfo->pVendorBinaryData and zero will be written to
pFaultCounts->vendorBinarySize.

Valid Usage

• VUID-vkGetDeviceFaultInfoEXT-device-07336
device must be in the lost state

• VUID-vkGetDeviceFaultInfoEXT-pFaultCounts-07337
If the value referenced by pFaultCounts->addressInfoCount is not 0, and pFaultInfo-
>pAddressInfos is not NULL, pFaultInfo->pAddressInfos must be a valid pointer to an array
of pFaultCounts->addressInfoCount VkDeviceFaultAddressInfoEXT structures

• VUID-vkGetDeviceFaultInfoEXT-pFaultCounts-07338

4165

If the value referenced by pFaultCounts->vendorInfoCount is not 0, and pFaultInfo-
>pVendorInfos is not NULL, pFaultInfo->pVendorInfos must be a valid pointer to an array of
pFaultCounts->vendorInfoCount VkDeviceFaultVendorInfoEXT structures

• VUID-vkGetDeviceFaultInfoEXT-pFaultCounts-07339
If the value referenced by pFaultCounts->vendorBinarySize is not 0, and pFaultInfo-
>pVendorBinaryData is not NULL, pFaultInfo->pVendorBinaryData must be a valid pointer to
an array of pFaultCounts->vendorBinarySize bytes

Valid Usage (Implicit)

• VUID-vkGetDeviceFaultInfoEXT-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceFaultInfoEXT-pFaultCounts-parameter
pFaultCounts must be a valid pointer to a VkDeviceFaultCountsEXT structure

• VUID-vkGetDeviceFaultInfoEXT-pFaultInfo-parameter
If pFaultInfo is not NULL, pFaultInfo must be a valid pointer to a VkDeviceFaultInfoEXT
structure

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkDeviceFaultCountsEXT structure is defined as:

// Provided by VK_EXT_device_fault
typedef struct VkDeviceFaultCountsEXT {
 VkStructureType sType;
 void* pNext;
 uint32_t addressInfoCount;
 uint32_t vendorInfoCount;
 VkDeviceSize vendorBinarySize;
} VkDeviceFaultCountsEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• addressInfoCount is the number of VkDeviceFaultAddressInfoEXT structures describing either
memory accesses which may have caused a page fault, or the addresses of active instructions at

4166

the time of the fault.

• vendorInfoCount is the number of VkDeviceFaultVendorInfoEXT structures describing vendor-
specific fault information.

• vendorBinarySize is the size in bytes of a vendor-specific binary crash dump, which may provide
additional information when imported into external tools.

Valid Usage (Implicit)

• VUID-VkDeviceFaultCountsEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_FAULT_COUNTS_EXT

• VUID-VkDeviceFaultCountsEXT-pNext-pNext
pNext must be NULL

The VkDeviceFaultInfoEXT structure is defined as:

// Provided by VK_EXT_device_fault
typedef struct VkDeviceFaultInfoEXT {
 VkStructureType sType;
 void* pNext;
 char description[VK_MAX_DESCRIPTION_SIZE];
 VkDeviceFaultAddressInfoEXT* pAddressInfos;
 VkDeviceFaultVendorInfoEXT* pVendorInfos;
 void* pVendorBinaryData;
} VkDeviceFaultInfoEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• description is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8
string which is a human readable description of the fault.

• pAddressInfos is NULL or a pointer to an array of VkDeviceFaultAddressInfoEXT structures
describing either memory accesses which may have caused a page fault, or describing active
instruction pointers at the time of the fault. If not NULL, each element of pAddressInfos describes
the a bounded region of GPU virtual address space containing either the GPU virtual address
accessed, or the value of an active instruction pointer.

• pVendorInfos is NULL or a pointer to an array of VkDeviceFaultVendorInfoEXT structures
describing vendor-specific fault information.

• pVendorBinaryData is NULL or a pointer to vendorBinarySize number of bytes of data, which will be
populated with a vendor-specific binary crash dump, as described in Vendor Binary Crash
Dumps.

An implementation should populate as many members of VkDeviceFaultInfoEXT as possible, given
the information available at the time of the fault and the constraints of the implementation itself.

Due to hardware limitations, pAddressInfos describes ranges of GPU virtual address space, rather

4167

than precise addresses. The precise memory address accessed or the precise value of the
instruction pointer must lie within the region described.

Note

Each element of pAddressInfos describes either:

• A memory access which may have triggered a page fault and may have
contributed to device loss

• The value of an active instruction pointer at the time a fault occurred. This
value may be indicative of the active pipeline or shader at the time of device
loss

Comparison of the GPU virtual addresses described by pAddressInfos to GPU
virtual address ranges reported by the VK_EXT_device_address_binding_report
extension may allow applications to correlate between these addresses and Vulkan
objects. Applications should be aware that these addresses may also correspond to
resources internal to an implementation, which will not be reported via the
VK_EXT_device_address_binding_report extension.

Valid Usage (Implicit)

• VUID-VkDeviceFaultInfoEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_FAULT_INFO_EXT

• VUID-VkDeviceFaultInfoEXT-pNext-pNext
pNext must be NULL

The VkDeviceFaultAddressInfoEXT structure is defined as:

// Provided by VK_EXT_device_fault
typedef struct VkDeviceFaultAddressInfoEXT {
 VkDeviceFaultAddressTypeEXT addressType;
 VkDeviceAddress reportedAddress;
 VkDeviceSize addressPrecision;
} VkDeviceFaultAddressInfoEXT;

• addressType is either the type of memory operation that triggered a page fault, or the type of
association between an instruction pointer and a fault.

• reportedAddress is the GPU virtual address recorded by the device.

• addressPrecision is a power of two value that specifies how precisely the device can report the
address.

The combination of reportedAddress and addressPrecision allow the possible range of addresses to
be calculated, such that:

lower_address = (pInfo->reportedAddress & ~(pInfo->addressPrecision-1))

4168

upper_address = (pInfo->reportedAddress | (pInfo->addressPrecision-1))

Note

It is valid for the reportedAddress to contain a more precise address than indicated
by addressPrecision. In this case, the value of reportedAddress should be treated as
an additional hint as to the value of the address that triggered the page fault, or to
the value of an instruction pointer.

Valid Usage (Implicit)

• VUID-VkDeviceFaultAddressInfoEXT-addressType-parameter
addressType must be a valid VkDeviceFaultAddressTypeEXT value

Possible values of VkDeviceFaultAddressInfoEXT::addressType are:

// Provided by VK_EXT_device_fault
typedef enum VkDeviceFaultAddressTypeEXT {
 VK_DEVICE_FAULT_ADDRESS_TYPE_NONE_EXT = 0,
 VK_DEVICE_FAULT_ADDRESS_TYPE_READ_INVALID_EXT = 1,
 VK_DEVICE_FAULT_ADDRESS_TYPE_WRITE_INVALID_EXT = 2,
 VK_DEVICE_FAULT_ADDRESS_TYPE_EXECUTE_INVALID_EXT = 3,
 VK_DEVICE_FAULT_ADDRESS_TYPE_INSTRUCTION_POINTER_UNKNOWN_EXT = 4,
 VK_DEVICE_FAULT_ADDRESS_TYPE_INSTRUCTION_POINTER_INVALID_EXT = 5,
 VK_DEVICE_FAULT_ADDRESS_TYPE_INSTRUCTION_POINTER_FAULT_EXT = 6,
} VkDeviceFaultAddressTypeEXT;

• VK_DEVICE_FAULT_ADDRESS_TYPE_NONE_EXT specifies that VkDeviceFaultAddressInfoEXT does not
describe a page fault, or an instruction address.

• VK_DEVICE_FAULT_ADDRESS_TYPE_READ_INVALID_EXT specifies that VkDeviceFaultAddressInfoEXT
describes a page fault triggered by an invalid read operation.

• VK_DEVICE_FAULT_ADDRESS_TYPE_WRITE_INVALID_EXT specifies that VkDeviceFaultAddressInfoEXT
describes a page fault triggered by an invalid write operation.

• VK_DEVICE_FAULT_ADDRESS_TYPE_EXECUTE_INVALID_EXT describes a page fault triggered by an
attempt to execute non-executable memory.

• VK_DEVICE_FAULT_ADDRESS_TYPE_INSTRUCTION_POINTER_UNKNOWN_EXT specifies an instruction pointer
value at the time the fault occurred. This may or may not be related to a fault.

• VK_DEVICE_FAULT_ADDRESS_TYPE_INSTRUCTION_POINTER_INVALID_EXT specifies an instruction pointer
value associated with an invalid instruction fault.

• VK_DEVICE_FAULT_ADDRESS_TYPE_INSTRUCTION_POINTER_FAULT_EXT specifies an instruction pointer
value associated with a fault.

Note

The instruction pointer values recorded may not identify the specific instruction(s)

4169

that triggered the fault. The relationship between the instruction pointer reported
and triggering instruction will be vendor-specific.

The VkDeviceFaultVendorInfoEXT structure is defined as:

// Provided by VK_EXT_device_fault
typedef struct VkDeviceFaultVendorInfoEXT {
 char description[VK_MAX_DESCRIPTION_SIZE];
 uint64_t vendorFaultCode;
 uint64_t vendorFaultData;
} VkDeviceFaultVendorInfoEXT;

• description is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8
string which is a human readable description of the fault.

• vendorFaultCode is the vendor-specific fault code for this fault.

• vendorFaultData is the vendor-specific fault data associated with this fault.

Vendor Binary Crash Dumps

Applications can store the vendor-specific binary crash dump data retrieved by calling
vkGetDeviceFaultInfoEXT for later analysis using external tools.

However, the format of this data may depend on the vendor ID, device ID, driver version, and other
details of the device. To enable external applications to identify the original device from which a
crash dump was generated, the initial bytes written to VkDeviceFaultInfoEXT::pVendorBinaryData
must begin with a valid crash dump header.

Version one of the crash dump header is defined as:

// Provided by VK_EXT_device_fault
typedef struct VkDeviceFaultVendorBinaryHeaderVersionOneEXT {
 uint32_t headerSize;
 VkDeviceFaultVendorBinaryHeaderVersionEXT headerVersion;
 uint32_t vendorID;
 uint32_t deviceID;
 uint32_t driverVersion;
 uint8_t pipelineCacheUUID[VK_UUID_SIZE];
 uint32_t applicationNameOffset;
 uint32_t applicationVersion;
 uint32_t engineNameOffset;
 uint32_t engineVersion;
 uint32_t apiVersion;
} VkDeviceFaultVendorBinaryHeaderVersionOneEXT;

• headerSize is the length in bytes of the crash dump header.

• headerVersion is a VkDeviceFaultVendorBinaryHeaderVersionEXT enum value specifying the
version of the header. A consumer of the crash dump should use the header version to

4170

interpret the remainder of the header.

• vendorID is the VkPhysicalDeviceProperties::vendorID of the implementation.

• deviceID is the VkPhysicalDeviceProperties::deviceID of the implementation.

• driverVersion is the VkPhysicalDeviceProperties::driverVersion of the implementation.

• pipelineCacheUUID is an array of VK_UUID_SIZE uint8_t values matching the
VkPhysicalDeviceProperties::pipelineCacheUUID property of the implementation.

• applicationNameOffset is zero, or an offset from the base address of the crash dump header to a
null-terminated UTF-8 string containing the name of the application. If applicationNameOffset is
non-zero, this string must match the application name specified via VkApplicationInfo
::pApplicationName during instance creation.

• applicationVersion must be zero or the value specified by VkApplicationInfo
::applicationVersion during instance creation.

• engineNameOffset is zero, or an offset from the base address of the crash dump header to a null-
terminated UTF-8 string containing the name of the engine (if any) used to create the
application. If engineNameOffset is non-zero, this string must match the engine name specified
via VkApplicationInfo::pEngineName during instance creation.

• engineVersion must be zero or the value specified by VkApplicationInfo::engineVersion during
instance creation.

• apiVersion must be zero or the value specified by VkApplicationInfo::apiVersion during instance
creation.

Unlike most structures declared by the Vulkan API, all fields of this structure are written with the
least significant byte first, regardless of host byte-order.

The C language specification does not define the packing of structure members. This layout
assumes tight structure member packing, with members laid out in the order listed in the structure,
and the intended size of the structure is 56 bytes. If a compiler produces code that diverges from
that pattern, applications must employ another method to set values at the correct offsets.

Valid Usage

• VUID-VkDeviceFaultVendorBinaryHeaderVersionOneEXT-headerSize-07340
headerSize must be 56

• VUID-VkDeviceFaultVendorBinaryHeaderVersionOneEXT-headerVersion-07341
headerVersion must be VK_DEVICE_FAULT_VENDOR_BINARY_HEADER_VERSION_ONE_EXT

Valid Usage (Implicit)

• VUID-VkDeviceFaultVendorBinaryHeaderVersionOneEXT-headerVersion-parameter
headerVersion must be a valid VkDeviceFaultVendorBinaryHeaderVersionEXT value

Possible values of the headerVersion value of the crash dump header are:

4171

// Provided by VK_EXT_device_fault
typedef enum VkDeviceFaultVendorBinaryHeaderVersionEXT {
 VK_DEVICE_FAULT_VENDOR_BINARY_HEADER_VERSION_ONE_EXT = 1,
} VkDeviceFaultVendorBinaryHeaderVersionEXT;

• VK_DEVICE_FAULT_VENDOR_BINARY_HEADER_VERSION_ONE_EXT specifies version one of the binary crash
dump header.

51.5. Active Tooling Information
Information about tools providing debugging, profiling, or similar services, active for a given
physical device, can be obtained by calling:

// Provided by VK_VERSION_1_3
VkResult vkGetPhysicalDeviceToolProperties(
 VkPhysicalDevice physicalDevice,
 uint32_t* pToolCount,
 VkPhysicalDeviceToolProperties* pToolProperties);

or the equivalent command

// Provided by VK_EXT_tooling_info
VkResult vkGetPhysicalDeviceToolPropertiesEXT(
 VkPhysicalDevice physicalDevice,
 uint32_t* pToolCount,
 VkPhysicalDeviceToolProperties* pToolProperties);

• physicalDevice is the handle to the physical device to query for active tools.

• pToolCount is a pointer to an integer describing the number of tools active on physicalDevice.

• pToolProperties is either NULL or a pointer to an array of VkPhysicalDeviceToolProperties
structures.

If pToolProperties is NULL, then the number of tools currently active on physicalDevice is returned in
pToolCount. Otherwise, pToolCount must point to a variable set by the user to the number of
elements in the pToolProperties array, and on return the variable is overwritten with the number of
structures actually written to pToolProperties. If pToolCount is less than the number of currently
active tools, at most pToolCount structures will be written.

The count and properties of active tools may change in response to events outside the scope of the
specification. An application should assume these properties might change at any given time.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceToolProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

4172

• VUID-vkGetPhysicalDeviceToolProperties-pToolCount-parameter
pToolCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceToolProperties-pToolProperties-parameter
If the value referenced by pToolCount is not 0, and pToolProperties is not NULL,
pToolProperties must be a valid pointer to an array of pToolCount
VkPhysicalDeviceToolProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPhysicalDeviceToolProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceToolProperties {
 VkStructureType sType;
 void* pNext;
 char name[VK_MAX_EXTENSION_NAME_SIZE];
 char version[VK_MAX_EXTENSION_NAME_SIZE];
 VkToolPurposeFlags purposes;
 char description[VK_MAX_DESCRIPTION_SIZE];
 char layer[VK_MAX_EXTENSION_NAME_SIZE];
} VkPhysicalDeviceToolProperties;

or the equivalent

// Provided by VK_EXT_tooling_info
typedef VkPhysicalDeviceToolProperties VkPhysicalDeviceToolPropertiesEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• name is a null-terminated UTF-8 string containing the name of the tool.

• version is a null-terminated UTF-8 string containing the version of the tool.

• purposes is a bitmask of VkToolPurposeFlagBits which is populated with purposes supported by
the tool.

• description is a null-terminated UTF-8 string containing a description of the tool.

• layer is a null-terminated UTF-8 string containing the name of the layer implementing the tool,

4173

if the tool is implemented in a layer - otherwise it may be an empty string.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceToolProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES

• VUID-VkPhysicalDeviceToolProperties-pNext-pNext
pNext must be NULL

Bits which can be set in VkPhysicalDeviceToolProperties::purposes, specifying the purposes of an
active tool, are:

// Provided by VK_VERSION_1_3
typedef enum VkToolPurposeFlagBits {
 VK_TOOL_PURPOSE_VALIDATION_BIT = 0x00000001,
 VK_TOOL_PURPOSE_PROFILING_BIT = 0x00000002,
 VK_TOOL_PURPOSE_TRACING_BIT = 0x00000004,
 VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT = 0x00000008,
 VK_TOOL_PURPOSE_MODIFYING_FEATURES_BIT = 0x00000010,
 // Provided by VK_EXT_debug_report with VK_EXT_tooling_info, VK_EXT_debug_utils with
VK_EXT_tooling_info
 VK_TOOL_PURPOSE_DEBUG_REPORTING_BIT_EXT = 0x00000020,
 // Provided by VK_EXT_debug_marker with VK_EXT_tooling_info, VK_EXT_debug_utils with
VK_EXT_tooling_info
 VK_TOOL_PURPOSE_DEBUG_MARKERS_BIT_EXT = 0x00000040,
 VK_TOOL_PURPOSE_VALIDATION_BIT_EXT = VK_TOOL_PURPOSE_VALIDATION_BIT,
 VK_TOOL_PURPOSE_PROFILING_BIT_EXT = VK_TOOL_PURPOSE_PROFILING_BIT,
 VK_TOOL_PURPOSE_TRACING_BIT_EXT = VK_TOOL_PURPOSE_TRACING_BIT,
 VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT_EXT =
VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT,
 VK_TOOL_PURPOSE_MODIFYING_FEATURES_BIT_EXT =
VK_TOOL_PURPOSE_MODIFYING_FEATURES_BIT,
} VkToolPurposeFlagBits;

or the equivalent

// Provided by VK_EXT_tooling_info
typedef VkToolPurposeFlagBits VkToolPurposeFlagBitsEXT;

• VK_TOOL_PURPOSE_VALIDATION_BIT specifies that the tool provides validation of API usage.

• VK_TOOL_PURPOSE_PROFILING_BIT specifies that the tool provides profiling of API usage.

• VK_TOOL_PURPOSE_TRACING_BIT specifies that the tool is capturing data about the application’s API
usage, including anything from simple logging to capturing data for later replay.

• VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT specifies that the tool provides additional API
features/extensions on top of the underlying implementation.

4174

• VK_TOOL_PURPOSE_MODIFYING_FEATURES_BIT specifies that the tool modifies the API
features/limits/extensions presented to the application.

• VK_TOOL_PURPOSE_DEBUG_REPORTING_BIT_EXT specifies that the tool reports additional information
to the application via callbacks specified by vkCreateDebugReportCallbackEXT or
vkCreateDebugUtilsMessengerEXT

• VK_TOOL_PURPOSE_DEBUG_MARKERS_BIT_EXT specifies that the tool consumes debug markers or object
debug annotation, queue labels, or command buffer labels

// Provided by VK_VERSION_1_3
typedef VkFlags VkToolPurposeFlags;

or the equivalent

// Provided by VK_EXT_tooling_info
typedef VkToolPurposeFlags VkToolPurposeFlagsEXT;

VkToolPurposeFlags is a bitmask type for setting a mask of zero or more VkToolPurposeFlagBits.

51.6. Frame Boundary
The VkFrameBoundaryEXT structure is defined as:

// Provided by VK_EXT_frame_boundary
typedef struct VkFrameBoundaryEXT {
 VkStructureType sType;
 const void* pNext;
 VkFrameBoundaryFlagsEXT flags;
 uint64_t frameID;
 uint32_t imageCount;
 const VkImage* pImages;
 uint32_t bufferCount;
 const VkBuffer* pBuffers;
 uint64_t tagName;
 size_t tagSize;
 const void* pTag;
} VkFrameBoundaryEXT;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkFrameBoundaryFlagBitsEXT that can flag the last submission of a frame
identifier.

• frameID is the frame identifier.

• imageCount is the number of images that store frame results.

4175

• pImages is a pointer to an array of VkImage objects with imageCount entries.

• bufferCount is the number of buffers the store the frame results.

• pBuffers is a pointer to an array of VkBuffer objects with bufferCount entries.

• tagName is a numerical identifier for tag data.

• tagSize is the number of bytes of tag data.

• pTag is a pointer to an array of tagSize bytes containing tag data.

The application can associate frame boundary information to a queue submission call by adding a
VkFrameBoundaryEXT structure to the pNext chain of queue submission, VkPresentInfoKHR, or
VkBindSparseInfo.

The frame identifier is used to associate one or more queue submission to a frame, it is thus meant
to be unique within a frame lifetime, i.e. it is possible (but not recommended) to reuse frame
identifiers, as long as any two frames with any chance of having overlapping queue submissions (as
in the example above) use two different frame identifiers.

Note

Since the concept of frame is application-dependent, there is no way to validate the
use of frame identifier. It is good practice to use a monotonically increasing
counter as the frame identifier and not reuse identifiers between frames.

The pImages and pBuffers arrays contain a list of images and buffers which store the "end result" of
the frame. As the concept of frame is application-dependent, not all frames may produce their
results in images or buffers, yet this is a sufficiently common case to be handled by
VkFrameBoundaryEXT. Note that no extra information, such as image layout is being provided, since
the images are meant to be used by tools which would already be tracking this required
information. Having the possibility of passing a list of end-result images makes VkFrameBoundaryEXT
as expressive as vkQueuePresentKHR, which is often the default frame boundary delimiter.

The application can also associate arbitrary extra information via tag data using tagName, tagSize
and pTag. This extra information is typically tool-specific.

Valid Usage (Implicit)

• VUID-VkFrameBoundaryEXT-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAME_BOUNDARY_EXT

• VUID-VkFrameBoundaryEXT-flags-parameter
flags must be a valid combination of VkFrameBoundaryFlagBitsEXT values

• VUID-VkFrameBoundaryEXT-pImages-parameter
If imageCount is not 0, and pImages is not NULL, pImages must be a valid pointer to an array
of imageCount valid VkImage handles

• VUID-VkFrameBoundaryEXT-pBuffers-parameter
If bufferCount is not 0, and pBuffers is not NULL, pBuffers must be a valid pointer to an
array of bufferCount valid VkBuffer handles

4176

• VUID-VkFrameBoundaryEXT-pTag-parameter
If tagSize is not 0, and pTag is not NULL, pTag must be a valid pointer to an array of tagSize
bytes

• VUID-VkFrameBoundaryEXT-commonparent
Both of the elements of pBuffers, and the elements of pImages that are valid handles of
non-ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

The bit which can be set in VkFrameBoundaryEXT::flags is:

// Provided by VK_EXT_frame_boundary
typedef enum VkFrameBoundaryFlagBitsEXT {
 VK_FRAME_BOUNDARY_FRAME_END_BIT_EXT = 0x00000001,
} VkFrameBoundaryFlagBitsEXT;

• VK_FRAME_BOUNDARY_FRAME_END_BIT_EXT specifies that this queue submission is the last one for this
frame, i.e. once this queue submission has terminated, then the work for this frame is
completed.

Note that in the presence of timeline semaphores, the last queue submission might not be the last
one to be submitted, as timeline semaphores allow for wait-before-signal submissions. In the
context of frame boundary, the queue submission that should be done flagged as the last one is the
one that is meant to be executed last, even if it may not be the last one to be submitted.

// Provided by VK_EXT_frame_boundary
typedef VkFlags VkFrameBoundaryFlagsEXT;

VkFrameBoundaryFlagsEXT is a bitmask type for setting a mask of zero or more
VkFrameBoundaryFlagBitsEXT.

4177

Appendix A: Vulkan Environment for SPIR-V
Shaders for Vulkan are defined by the Khronos SPIR-V Specification as well as the Khronos SPIR-V
Extended Instructions for GLSL Specification. This appendix defines additional SPIR-V
requirements applying to Vulkan shaders.

Versions and Formats
A Vulkan 1.3 implementation must support the 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6 versions of SPIR-V
and the 1.0 version of the SPIR-V Extended Instructions for GLSL.

A SPIR-V module passed into vkCreateShaderModule is interpreted as a series of 32-bit words in
host endianness, with literal strings packed as described in section 2.2 of the SPIR-V Specification.
The first few words of the SPIR-V module must be a magic number and a SPIR-V version number,
as described in section 2.3 of the SPIR-V Specification.

Capabilities
The table below lists the set of SPIR-V capabilities that may be supported in Vulkan
implementations. The application must not use any of these capabilities in SPIR-V passed to
vkCreateShaderModule unless one of the following conditions is met for the VkDevice specified in
the device parameter of vkCreateShaderModule:

• The corresponding field in the table is blank.

• Any corresponding Vulkan feature is enabled.

• Any corresponding Vulkan extension is enabled.

• Any corresponding Vulkan property is supported.

• The corresponding core version is supported (as returned by VkPhysicalDeviceProperties
::apiVersion).

Table 96. List of SPIR-V Capabilities and corresponding Vulkan features, extensions, or core version

SPIR-V OpCapability
 Vulkan feature, extension, or core version

Matrix
 VK_VERSION_1_0

Shader
 VK_VERSION_1_0

InputAttachment
 VK_VERSION_1_0

Sampled1D
 VK_VERSION_1_0

Image1D
 VK_VERSION_1_0

4178

SPIR-V OpCapability
 Vulkan feature, extension, or core version

SampledBuffer
 VK_VERSION_1_0

ImageBuffer
 VK_VERSION_1_0

ImageQuery
 VK_VERSION_1_0

DerivativeControl
 VK_VERSION_1_0

Geometry
 VkPhysicalDeviceFeatures::geometryShader

Tessellation
 VkPhysicalDeviceFeatures::tessellationShader

Float64
 VkPhysicalDeviceFeatures::shaderFloat64

Int64
 VkPhysicalDeviceFeatures::shaderInt64

Int64Atomics
 VkPhysicalDeviceVulkan12Features::shaderBufferInt64Atomics
 VkPhysicalDeviceVulkan12Features::shaderSharedInt64Atomics
 VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT::shaderImageInt64Atomics

AtomicFloat16AddEXT
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderBufferFloat16AtomicAdd
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderSharedFloat16AtomicAdd

AtomicFloat32AddEXT
 VkPhysicalDeviceShaderAtomicFloatFeaturesEXT::shaderBufferFloat32AtomicAdd
 VkPhysicalDeviceShaderAtomicFloatFeaturesEXT::shaderSharedFloat32AtomicAdd
 VkPhysicalDeviceShaderAtomicFloatFeaturesEXT::shaderImageFloat32AtomicAdd

AtomicFloat64AddEXT
 VkPhysicalDeviceShaderAtomicFloatFeaturesEXT::shaderBufferFloat64AtomicAdd
 VkPhysicalDeviceShaderAtomicFloatFeaturesEXT::shaderSharedFloat64AtomicAdd

AtomicFloat16MinMaxEXT
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderBufferFloat16AtomicMinMax
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderSharedFloat16AtomicMinMax

AtomicFloat32MinMaxEXT
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderBufferFloat32AtomicMinMax
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderSharedFloat32AtomicMinMax
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderImageFloat32AtomicMinMax

4179

SPIR-V OpCapability
 Vulkan feature, extension, or core version

AtomicFloat64MinMaxEXT
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderBufferFloat64AtomicMinMax
 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT::shaderSharedFloat64AtomicMinMax

AtomicFloat16VectorNV
 VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV::shaderFloat16VectorAtomics

Int64ImageEXT
 VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT::shaderImageInt64Atomics

Int16
 VkPhysicalDeviceFeatures::shaderInt16

TessellationPointSize
 VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize

GeometryPointSize
 VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize

ImageGatherExtended
 VkPhysicalDeviceFeatures::shaderImageGatherExtended

StorageImageMultisample
 VkPhysicalDeviceFeatures::shaderStorageImageMultisample

UniformBufferArrayDynamicIndexing
 VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing

SampledImageArrayDynamicIndexing
 VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing

StorageBufferArrayDynamicIndexing
 VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing

StorageImageArrayDynamicIndexing
 VkPhysicalDeviceFeatures::shaderStorageImageArrayDynamicIndexing

ClipDistance
 VkPhysicalDeviceFeatures::shaderClipDistance

CullDistance
 VkPhysicalDeviceFeatures::shaderCullDistance

ImageCubeArray
 VkPhysicalDeviceFeatures::imageCubeArray

SampleRateShading
 VkPhysicalDeviceFeatures::sampleRateShading

SparseResidency
 VkPhysicalDeviceFeatures::shaderResourceResidency

MinLod
 VkPhysicalDeviceFeatures::shaderResourceMinLod

4180

SPIR-V OpCapability
 Vulkan feature, extension, or core version

SampledCubeArray
 VkPhysicalDeviceFeatures::imageCubeArray

ImageMSArray
 VkPhysicalDeviceFeatures::shaderStorageImageMultisample

StorageImageExtendedFormats
 VK_VERSION_1_0

InterpolationFunction
 VkPhysicalDeviceFeatures::sampleRateShading

StorageImageReadWithoutFormat
 VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat
 VK_VERSION_1_3
 VK_KHR_format_feature_flags2

StorageImageWriteWithoutFormat
 VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat
 VK_VERSION_1_3
 VK_KHR_format_feature_flags2

MultiViewport
 VkPhysicalDeviceFeatures::multiViewport

DrawParameters
 VkPhysicalDeviceVulkan11Features::shaderDrawParameters
 VkPhysicalDeviceShaderDrawParametersFeatures::shaderDrawParameters
 VK_KHR_shader_draw_parameters

MultiView
 VkPhysicalDeviceVulkan11Features::multiview
 VkPhysicalDeviceMultiviewFeatures::multiview

DeviceGroup
 VK_VERSION_1_1
 VK_KHR_device_group

VariablePointersStorageBuffer
 VkPhysicalDeviceVulkan11Features::variablePointersStorageBuffer
 VkPhysicalDeviceVariablePointersFeatures::variablePointersStorageBuffer

VariablePointers
 VkPhysicalDeviceVulkan11Features::variablePointers
 VkPhysicalDeviceVariablePointersFeatures::variablePointers

ShaderClockKHR
 VK_KHR_shader_clock

StencilExportEXT
 VK_EXT_shader_stencil_export

4181

SPIR-V OpCapability
 Vulkan feature, extension, or core version

SubgroupBallotKHR
 VK_EXT_shader_subgroup_ballot

SubgroupVoteKHR
 VK_EXT_shader_subgroup_vote

ImageReadWriteLodAMD
 VK_AMD_shader_image_load_store_lod

ImageGatherBiasLodAMD
 VK_AMD_texture_gather_bias_lod

FragmentMaskAMD
 VK_AMD_shader_fragment_mask

SampleMaskOverrideCoverageNV
 VK_NV_sample_mask_override_coverage

GeometryShaderPassthroughNV
 VK_NV_geometry_shader_passthrough

ShaderViewportIndex
 VkPhysicalDeviceVulkan12Features::shaderOutputViewportIndex

ShaderLayer
 VkPhysicalDeviceVulkan12Features::shaderOutputLayer

ShaderViewportIndexLayerEXT
 VK_EXT_shader_viewport_index_layer

ShaderViewportIndexLayerNV
 VK_NV_viewport_array2

ShaderViewportMaskNV
 VK_NV_viewport_array2

PerViewAttributesNV
 VK_NVX_multiview_per_view_attributes

StorageBuffer16BitAccess
 VkPhysicalDeviceVulkan11Features::storageBuffer16BitAccess
 VkPhysicalDevice16BitStorageFeatures::storageBuffer16BitAccess

UniformAndStorageBuffer16BitAccess
 VkPhysicalDeviceVulkan11Features::uniformAndStorageBuffer16BitAccess
 VkPhysicalDevice16BitStorageFeatures::uniformAndStorageBuffer16BitAccess

StoragePushConstant16
 VkPhysicalDeviceVulkan11Features::storagePushConstant16
 VkPhysicalDevice16BitStorageFeatures::storagePushConstant16

StorageInputOutput16
 VkPhysicalDeviceVulkan11Features::storageInputOutput16
 VkPhysicalDevice16BitStorageFeatures::storageInputOutput16

4182

SPIR-V OpCapability
 Vulkan feature, extension, or core version

GroupNonUniform
 VK_SUBGROUP_FEATURE_BASIC_BIT

GroupNonUniformVote
 VK_SUBGROUP_FEATURE_VOTE_BIT

GroupNonUniformArithmetic
 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT

GroupNonUniformBallot
 VK_SUBGROUP_FEATURE_BALLOT_BIT

GroupNonUniformShuffle
 VK_SUBGROUP_FEATURE_SHUFFLE_BIT

GroupNonUniformShuffleRelative
 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT

GroupNonUniformClustered
 VK_SUBGROUP_FEATURE_CLUSTERED_BIT

GroupNonUniformQuad
 VK_SUBGROUP_FEATURE_QUAD_BIT

GroupNonUniformPartitionedNV
 VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV

SampleMaskPostDepthCoverage
 VK_EXT_post_depth_coverage

ShaderNonUniform
 VK_VERSION_1_2
 VK_EXT_descriptor_indexing

RuntimeDescriptorArray
 VkPhysicalDeviceVulkan12Features::runtimeDescriptorArray

InputAttachmentArrayDynamicIndexing
 VkPhysicalDeviceVulkan12Features::shaderInputAttachmentArrayDynamicIndexing

UniformTexelBufferArrayDynamicIndexing
 VkPhysicalDeviceVulkan12Features::shaderUniformTexelBufferArrayDynamicIndexing

StorageTexelBufferArrayDynamicIndexing
 VkPhysicalDeviceVulkan12Features::shaderStorageTexelBufferArrayDynamicIndexing

UniformBufferArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderUniformBufferArrayNonUniformIndexing

SampledImageArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderSampledImageArrayNonUniformIndexing

StorageBufferArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderStorageBufferArrayNonUniformIndexing

4183

SPIR-V OpCapability
 Vulkan feature, extension, or core version

StorageImageArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderStorageImageArrayNonUniformIndexing

InputAttachmentArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderInputAttachmentArrayNonUniformIndexing

UniformTexelBufferArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderUniformTexelBufferArrayNonUniformIndexing

StorageTexelBufferArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderStorageTexelBufferArrayNonUniformIndexing

FragmentFullyCoveredEXT
 VK_EXT_conservative_rasterization

Float16
 VkPhysicalDeviceVulkan12Features::shaderFloat16
 VK_AMD_gpu_shader_half_float

Int8
 VkPhysicalDeviceVulkan12Features::shaderInt8

StorageBuffer8BitAccess
 VkPhysicalDeviceVulkan12Features::storageBuffer8BitAccess

UniformAndStorageBuffer8BitAccess
 VkPhysicalDeviceVulkan12Features::uniformAndStorageBuffer8BitAccess

StoragePushConstant8
 VkPhysicalDeviceVulkan12Features::storagePushConstant8

VulkanMemoryModel
 VkPhysicalDeviceVulkan12Features::vulkanMemoryModel

VulkanMemoryModelDeviceScope
 VkPhysicalDeviceVulkan12Features::vulkanMemoryModelDeviceScope

DenormPreserve
 VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat16
 VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat32
 VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat64

DenormFlushToZero
 VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat16
 VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat32
 VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat64

SignedZeroInfNanPreserve
 VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat16
 VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat32
 VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat64

4184

SPIR-V OpCapability
 Vulkan feature, extension, or core version

RoundingModeRTE
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat16
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat32
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat64

RoundingModeRTZ
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat16
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat32
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat64

ComputeDerivativeGroupQuadsNV
 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV::computeDerivativeGroupQuads

ComputeDerivativeGroupLinearNV
 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV::computeDerivativeGroupLinear

FragmentBarycentricNV
 VkPhysicalDeviceFragmentShaderBarycentricFeaturesNV::fragmentShaderBarycentric

ImageFootprintNV
 VkPhysicalDeviceShaderImageFootprintFeaturesNV::imageFootprint

ShadingRateNV
 VkPhysicalDeviceShadingRateImageFeaturesNV::shadingRateImage

MeshShadingNV
 VK_NV_mesh_shader

RayTracingKHR
 VkPhysicalDeviceRayTracingPipelineFeaturesKHR::rayTracingPipeline

RayQueryKHR
 VkPhysicalDeviceRayQueryFeaturesKHR::rayQuery

RayTraversalPrimitiveCullingKHR
 VkPhysicalDeviceRayTracingPipelineFeaturesKHR::rayTraversalPrimitiveCulling
 VkPhysicalDeviceRayQueryFeaturesKHR::rayQuery

RayCullMaskKHR
 VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR::rayTracingMaintenance1

RayTracingNV
 VK_NV_ray_tracing

RayTracingMotionBlurNV
 VkPhysicalDeviceRayTracingMotionBlurFeaturesNV::rayTracingMotionBlur

TransformFeedback
 VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback

GeometryStreams
 VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams

FragmentDensityEXT
 VkPhysicalDeviceFragmentDensityMapFeaturesEXT::fragmentDensityMap

4185

SPIR-V OpCapability
 Vulkan feature, extension, or core version

PhysicalStorageBufferAddresses
 VkPhysicalDeviceVulkan12Features::bufferDeviceAddress
 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT::bufferDeviceAddress

CooperativeMatrixNV
 VkPhysicalDeviceCooperativeMatrixFeaturesNV::cooperativeMatrix

IntegerFunctions2INTEL
 VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL::shaderIntegerFunctions2

ShaderSMBuiltinsNV
 VkPhysicalDeviceShaderSMBuiltinsFeaturesNV::shaderSMBuiltins

FragmentShaderSampleInterlockEXT
 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderSampleInterlock

FragmentShaderPixelInterlockEXT
 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderPixelInterlock

FragmentShaderShadingRateInterlockEXT
 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderShadingRateInterlock
 VkPhysicalDeviceShadingRateImageFeaturesNV::shadingRateImage

DemoteToHelperInvocationEXT
 VkPhysicalDeviceVulkan13Features::shaderDemoteToHelperInvocation
 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT
::shaderDemoteToHelperInvocation

FragmentShadingRateKHR
 VkPhysicalDeviceFragmentShadingRateFeaturesKHR::pipelineFragmentShadingRate
 VkPhysicalDeviceFragmentShadingRateFeaturesKHR::primitiveFragmentShadingRate
 VkPhysicalDeviceFragmentShadingRateFeaturesKHR::attachmentFragmentShadingRate

WorkgroupMemoryExplicitLayoutKHR
 VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR
::workgroupMemoryExplicitLayout

WorkgroupMemoryExplicitLayout8BitAccessKHR
 VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR
::workgroupMemoryExplicitLayout8BitAccess

WorkgroupMemoryExplicitLayout16BitAccessKHR
 VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR
::workgroupMemoryExplicitLayout16BitAccess

DotProductInputAllKHR
 VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct
 VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR::shaderIntegerDotProduct

DotProductInput4x8BitKHR
 VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct
 VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR::shaderIntegerDotProduct

4186

SPIR-V OpCapability
 Vulkan feature, extension, or core version

DotProductInput4x8BitPackedKHR
 VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct
 VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR::shaderIntegerDotProduct

DotProductKHR
 VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct
 VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR::shaderIntegerDotProduct

FragmentBarycentricKHR
 VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR::fragmentShaderBarycentric

TextureSampleWeightedQCOM
 VkPhysicalDeviceImageProcessingFeaturesQCOM::textureSampleWeighted

TextureBoxFilterQCOM
 VkPhysicalDeviceImageProcessingFeaturesQCOM::textureBoxFilter

TextureBlockMatchQCOM
 VkPhysicalDeviceImageProcessingFeaturesQCOM::textureBlockMatch

TextureBlockMatch2QCOM
 VkPhysicalDeviceImageProcessing2FeaturesQCOM::textureBlockMatch2

MeshShadingEXT
 VK_EXT_mesh_shader

RayTracingOpacityMicromapEXT
 VK_EXT_opacity_micromap

CoreBuiltinsARM
 VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM::shaderCoreBuiltins

ShaderInvocationReorderNV
 VK_NV_ray_tracing_invocation_reorder

ClusterCullingShadingHUAWEI
 VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI::clustercullingShader

RayTracingPositionFetchKHR
 VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR::rayTracingPositionFetch

TileImageColorReadAccessEXT
 VkPhysicalDeviceShaderTileImageFeaturesEXT::shaderTileImageColorReadAccess

TileImageDepthReadAccessEXT
 VkPhysicalDeviceShaderTileImageFeaturesEXT::shaderTileImageDepthReadAccess

TileImageStencilReadAccessEXT
 VkPhysicalDeviceShaderTileImageFeaturesEXT::shaderTileImageStencilReadAccess

CooperativeMatrixKHR
 VkPhysicalDeviceCooperativeMatrixFeaturesKHR::cooperativeMatrix

ShaderEnqueueAMDX
 VkPhysicalDeviceShaderEnqueueFeaturesAMDX::shaderEnqueue

4187

SPIR-V OpCapability
 Vulkan feature, extension, or core version

GroupNonUniformRotateKHR
 VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR::shaderSubgroupRotate

ExpectAssumeKHR
 VkPhysicalDeviceShaderExpectAssumeFeaturesKHR::shaderExpectAssume

FloatControls2
 VkPhysicalDeviceShaderFloatControls2FeaturesKHR::shaderFloatControls2

QuadControlKHR
 VkPhysicalDeviceShaderQuadControlFeaturesKHR::shaderQuadControl

MaximallyReconvergesKHR
 VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR::shaderMaximalReconvergence

RawAccessChainsNV
 VkPhysicalDeviceRawAccessChainsFeaturesNV::shaderRawAccessChains

The application must not pass a SPIR-V module containing any of the following to
vkCreateShaderModule:

• any OpCapability not listed above,

• an unsupported capability, or

• a capability which corresponds to a Vulkan feature or extension which has not been enabled.

SPIR-V Extensions

The following table lists SPIR-V extensions that implementations may support. The application
must not pass a SPIR-V module to vkCreateShaderModule that uses the following SPIR-V extensions
unless one of the following conditions is met for the VkDevice specified in the device parameter of
vkCreateShaderModule:

• Any corresponding Vulkan extension is enabled.

• The corresponding core version is supported (as returned by VkPhysicalDeviceProperties
::apiVersion).

Table 97. List of SPIR-V Extensions and corresponding Vulkan extensions or core version

SPIR-V OpExtension
 Vulkan extension or core version

SPV_KHR_variable_pointers
 VK_VERSION_1_1
 VK_KHR_variable_pointers

SPV_AMD_shader_explicit_vertex_parameter
 VK_AMD_shader_explicit_vertex_parameter

SPV_AMD_gcn_shader
 VK_AMD_gcn_shader

4188

SPIR-V OpExtension
 Vulkan extension or core version

SPV_AMD_gpu_shader_half_float
 VK_AMD_gpu_shader_half_float

SPV_AMD_gpu_shader_int16
 VK_AMD_gpu_shader_int16

SPV_AMD_shader_ballot
 VK_AMD_shader_ballot

SPV_AMD_shader_fragment_mask
 VK_AMD_shader_fragment_mask

SPV_AMD_shader_image_load_store_lod
 VK_AMD_shader_image_load_store_lod

SPV_AMD_shader_trinary_minmax
 VK_AMD_shader_trinary_minmax

SPV_AMD_texture_gather_bias_lod
 VK_AMD_texture_gather_bias_lod

SPV_AMD_shader_early_and_late_fragment_tests
 VK_AMD_shader_early_and_late_fragment_tests

SPV_KHR_shader_draw_parameters
 VK_VERSION_1_1
 VK_KHR_shader_draw_parameters

SPV_KHR_8bit_storage
 VK_VERSION_1_2
 VK_KHR_8bit_storage

SPV_KHR_16bit_storage
 VK_VERSION_1_1
 VK_KHR_16bit_storage

SPV_KHR_shader_clock
 VK_KHR_shader_clock

SPV_KHR_float_controls
 VK_VERSION_1_2
 VK_KHR_shader_float_controls

SPV_KHR_storage_buffer_storage_class
 VK_VERSION_1_1
 VK_KHR_storage_buffer_storage_class

SPV_KHR_post_depth_coverage
 VK_EXT_post_depth_coverage

SPV_EXT_shader_stencil_export
 VK_EXT_shader_stencil_export

SPV_KHR_shader_ballot
 VK_EXT_shader_subgroup_ballot

4189

SPIR-V OpExtension
 Vulkan extension or core version

SPV_KHR_subgroup_vote
 VK_EXT_shader_subgroup_vote

SPV_NV_sample_mask_override_coverage
 VK_NV_sample_mask_override_coverage

SPV_NV_geometry_shader_passthrough
 VK_NV_geometry_shader_passthrough

SPV_NV_mesh_shader
 VK_NV_mesh_shader

SPV_NV_viewport_array2
 VK_NV_viewport_array2

SPV_NV_shader_subgroup_partitioned
 VK_NV_shader_subgroup_partitioned

SPV_NV_shader_invocation_reorder
 VK_NV_ray_tracing_invocation_reorder

SPV_EXT_shader_viewport_index_layer
 VK_VERSION_1_2
 VK_EXT_shader_viewport_index_layer

SPV_NVX_multiview_per_view_attributes
 VK_NVX_multiview_per_view_attributes

SPV_EXT_descriptor_indexing
 VK_VERSION_1_2
 VK_EXT_descriptor_indexing

SPV_KHR_vulkan_memory_model
 VK_VERSION_1_2
 VK_KHR_vulkan_memory_model

SPV_NV_compute_shader_derivatives
 VK_NV_compute_shader_derivatives

SPV_NV_fragment_shader_barycentric
 VK_NV_fragment_shader_barycentric

SPV_NV_shader_image_footprint
 VK_NV_shader_image_footprint

SPV_NV_shading_rate
 VK_NV_shading_rate_image

SPV_NV_ray_tracing
 VK_NV_ray_tracing

SPV_KHR_ray_tracing
 VK_KHR_ray_tracing_pipeline

4190

SPIR-V OpExtension
 Vulkan extension or core version

SPV_KHR_ray_query
 VK_KHR_ray_query

SPV_KHR_ray_cull_mask
 VK_KHR_ray_tracing_maintenance1

SPV_GOOGLE_hlsl_functionality1
 VK_GOOGLE_hlsl_functionality1

SPV_GOOGLE_user_type
 VK_GOOGLE_user_type

SPV_GOOGLE_decorate_string
 VK_GOOGLE_decorate_string

SPV_EXT_fragment_invocation_density
 VK_EXT_fragment_density_map

SPV_KHR_physical_storage_buffer
 VK_VERSION_1_2
 VK_KHR_buffer_device_address

SPV_EXT_physical_storage_buffer
 VK_EXT_buffer_device_address

SPV_NV_cooperative_matrix
 VK_NV_cooperative_matrix

SPV_NV_shader_sm_builtins
 VK_NV_shader_sm_builtins

SPV_EXT_fragment_shader_interlock
 VK_EXT_fragment_shader_interlock

SPV_EXT_demote_to_helper_invocation
 VK_VERSION_1_3
 VK_EXT_shader_demote_to_helper_invocation

SPV_KHR_fragment_shading_rate
 VK_KHR_fragment_shading_rate

SPV_KHR_non_semantic_info
 VK_VERSION_1_3
 VK_KHR_shader_non_semantic_info

SPV_EXT_shader_image_int64
 VK_EXT_shader_image_atomic_int64

SPV_KHR_terminate_invocation
 VK_VERSION_1_3
 VK_KHR_shader_terminate_invocation

SPV_KHR_multiview
 VK_VERSION_1_1
 VK_KHR_multiview

4191

SPIR-V OpExtension
 Vulkan extension or core version

SPV_KHR_workgroup_memory_explicit_layout
 VK_KHR_workgroup_memory_explicit_layout

SPV_EXT_shader_atomic_float_add
 VK_EXT_shader_atomic_float

SPV_KHR_fragment_shader_barycentric
 VK_KHR_fragment_shader_barycentric

SPV_KHR_subgroup_uniform_control_flow
 VK_VERSION_1_3
 VK_KHR_shader_subgroup_uniform_control_flow

SPV_EXT_shader_atomic_float_min_max
 VK_EXT_shader_atomic_float2

SPV_EXT_shader_atomic_float16_add
 VK_EXT_shader_atomic_float2

SPV_NV_shader_atomic_fp16_vector
 VK_NV_shader_atomic_float16_vector

SPV_EXT_fragment_fully_covered
 VK_EXT_conservative_rasterization

SPV_KHR_integer_dot_product
 VK_VERSION_1_3
 VK_KHR_shader_integer_dot_product

SPV_INTEL_shader_integer_functions2
 VK_INTEL_shader_integer_functions2

SPV_KHR_device_group
 VK_VERSION_1_1
 VK_KHR_device_group

SPV_QCOM_image_processing
 VK_QCOM_image_processing

SPV_QCOM_image_processing2
 VK_QCOM_image_processing2

SPV_EXT_mesh_shader
 VK_EXT_mesh_shader

SPV_KHR_ray_tracing_position_fetch
 VK_KHR_ray_tracing_position_fetch

SPV_EXT_shader_tile_image
 VK_EXT_shader_tile_image

SPV_EXT_opacity_micromap
 VK_EXT_opacity_micromap

4192

SPIR-V OpExtension
 Vulkan extension or core version

SPV_KHR_cooperative_matrix
 VK_KHR_cooperative_matrix

SPV_ARM_core_builtins
 VK_ARM_shader_core_builtins

SPV_AMDX_shader_enqueue
 VK_AMDX_shader_enqueue

SPV_HUAWEI_cluster_culling_shader
 VK_HUAWEI_cluster_culling_shader

SPV_HUAWEI_subpass_shading
 VK_HUAWEI_subpass_shading

SPV_NV_ray_tracing_motion_blur
 VK_NV_ray_tracing_motion_blur

SPV_KHR_maximal_reconvergence
 VK_KHR_shader_maximal_reconvergence

SPV_KHR_subgroup_rotate
 VK_KHR_shader_subgroup_rotate

SPV_KHR_expect_assume
 VK_KHR_shader_expect_assume

SPV_KHR_float_controls2
 VK_KHR_shader_float_controls2

SPV_KHR_quad_control
 VK_KHR_shader_quad_control

SPV_NV_raw_access_chains
 VK_NV_raw_access_chains

Validation Rules Within a Module
A SPIR-V module passed to vkCreateShaderModule must conform to the following rules:

Standalone SPIR-V Validation

The following rules can be validated with only the SPIR-V module itself. They do not depend on
knowledge of the implementation and its capabilities or knowledge of runtime information, such as
enabled features.

Valid Usage

• VUID-StandaloneSpirv-None-04633
Every entry point must have no return value and accept no arguments

• VUID-StandaloneSpirv-None-04634

4193

The static function-call graph for an entry point must not contain cycles; that is, static
recursion is not allowed

• VUID-StandaloneSpirv-None-04635
The Logical or PhysicalStorageBuffer64 addressing model must be selected

• VUID-StandaloneSpirv-None-04636
Scope for execution must be limited to Workgroup or Subgroup

• VUID-StandaloneSpirv-None-04637
If the Scope for execution is Workgroup, then it must only be used in the task, mesh,
tessellation control, or compute Execution Model

• VUID-StandaloneSpirv-None-04638
Scope for memory must be limited to Device, QueueFamily, Workgroup, ShaderCallKHR,
Subgroup, or Invocation

• VUID-StandaloneSpirv-ExecutionModel-07320
If the Execution Model is TessellationControl, and the MemoryModel is GLSL450, the Scope for
memory must not be Workgroup

• VUID-StandaloneSpirv-None-07321
If the Scope for memory is Workgroup, then it must only be used in the task, mesh,
tessellation control, or compute Execution Model

• VUID-StandaloneSpirv-None-04640
If the Scope for memory is ShaderCallKHR, then it must only be used in ray generation,
intersection, closest hit, any-hit, miss, and callable Execution Model

• VUID-StandaloneSpirv-None-04641
If the Scope for memory is Invocation, then memory semantics must be None

• VUID-StandaloneSpirv-None-04642
Scope for group operations must be limited to Subgroup

• VUID-StandaloneSpirv-SubgroupVoteKHR-07951
If none of the SubgroupVoteKHR, GroupNonUniform, or SubgroupBallotKHR capabilities are
declared, Scope for memory must not be Subgroup

• VUID-StandaloneSpirv-None-04643
Storage Class must be limited to UniformConstant, Input, Uniform, Output, Workgroup, Private,
Function, PushConstant, Image, StorageBuffer, RayPayloadKHR, IncomingRayPayloadKHR,
HitAttributeKHR, CallableDataKHR, IncomingCallableDataKHR, ShaderRecordBufferKHR,
PhysicalStorageBuffer, or TileImageEXT

• VUID-StandaloneSpirv-None-04644
If the Storage Class is Output, then it must not be used in the GlCompute, RayGenerationKHR,
IntersectionKHR, AnyHitKHR, ClosestHitKHR, MissKHR, or CallableKHR Execution Model

• VUID-StandaloneSpirv-None-04645
If the Storage Class is Workgroup, then it must only be used in the task, mesh, or compute
Execution Model

• VUID-StandaloneSpirv-None-08720
If the Storage Class is TileImageEXT, then it must only be used in the fragment execution
model

4194

• VUID-StandaloneSpirv-OpAtomicStore-04730
OpAtomicStore must not use Acquire, AcquireRelease, or SequentiallyConsistent memory
semantics

• VUID-StandaloneSpirv-OpAtomicLoad-04731
OpAtomicLoad must not use Release, AcquireRelease, or SequentiallyConsistent memory
semantics

• VUID-StandaloneSpirv-OpMemoryBarrier-04732
OpMemoryBarrier must use one of Acquire, Release, AcquireRelease, or
SequentiallyConsistent memory semantics

• VUID-StandaloneSpirv-OpMemoryBarrier-04733
OpMemoryBarrier must include at least one Storage Class

• VUID-StandaloneSpirv-OpControlBarrier-04650
If the semantics for OpControlBarrier includes one of Acquire, Release, AcquireRelease, or
SequentiallyConsistent memory semantics, then it must include at least one Storage Class

• VUID-StandaloneSpirv-OpVariable-04651
Any OpVariable with an Initializer operand must have Output, Private, Function, or
Workgroup as its Storage Class operand

• VUID-StandaloneSpirv-OpVariable-04734
Any OpVariable with an Initializer operand and Workgroup as its Storage Class operand
must use OpConstantNull as the initializer

• VUID-StandaloneSpirv-OpReadClockKHR-04652
Scope for OpReadClockKHR must be limited to Subgroup or Device

• VUID-StandaloneSpirv-OriginLowerLeft-04653
The OriginLowerLeft Execution Mode must not be used; fragment entry points must declare
OriginUpperLeft

• VUID-StandaloneSpirv-PixelCenterInteger-04654
The PixelCenterInteger Execution Mode must not be used (pixels are always centered at
half-integer coordinates)

• VUID-StandaloneSpirv-UniformConstant-04655
Any variable in the UniformConstant Storage Class must be typed as either OpTypeImage,
OpTypeSampler, OpTypeSampledImage, OpTypeAccelerationStructureKHR, or an array of one of
these types

• VUID-StandaloneSpirv-Uniform-06807
Any variable in the Uniform or StorageBuffer Storage Class must be typed as OpTypeStruct
or an array of this type

• VUID-StandaloneSpirv-PushConstant-06808
Any variable in the PushConstant Storage Class must be typed as OpTypeStruct

• VUID-StandaloneSpirv-OpTypeImage-04656
OpTypeImage must declare a scalar 32-bit float, 64-bit integer, or 32-bit integer type for the
“Sampled Type” (RelaxedPrecision can be applied to a sampling instruction and to the
variable holding the result of a sampling instruction)

• VUID-StandaloneSpirv-OpTypeImage-04657

4195

OpTypeImage must have a “Sampled” operand of 1 (sampled image) or 2 (storage image)

• VUID-StandaloneSpirv-OpTypeSampledImage-06671
OpTypeSampledImage must have a OpTypeImage with a “Sampled” operand of 1 (sampled
image)

• VUID-StandaloneSpirv-Image-04965
The SPIR-V Type of the Image Format operand of an OpTypeImage must match the Sampled
Type, as defined in Image Format and Type Matching

• VUID-StandaloneSpirv-OpImageTexelPointer-04658
If an OpImageTexelPointer is used in an atomic operation, the image type of the image
parameter to OpImageTexelPointer must have an image format of R64i, R64ui, R32f, R32i, or
R32ui

• VUID-StandaloneSpirv-OpImageQuerySizeLod-04659
OpImageQuerySizeLod, OpImageQueryLod, and OpImageQueryLevels must only consume an
“Image” operand whose type has its “Sampled” operand set to 1

• VUID-StandaloneSpirv-OpTypeImage-06214
An OpTypeImage with a “Dim” operand of SubpassData must have an “Arrayed” operand of 0
(non-arrayed) and a “Sampled” operand of 2 (storage image)

• VUID-StandaloneSpirv-SubpassData-04660
The (u,v) coordinates used for a SubpassData must be the <id> of a constant vector (0,0), or
if a layer coordinate is used, must be a vector that was formed with constant 0 for the u
and v components

• VUID-StandaloneSpirv-OpTypeImage-06924
Objects of types OpTypeImage, OpTypeSampler, OpTypeSampledImage,
OpTypeAccelerationStructureKHR, and arrays of these types must not be stored to or
modified

• VUID-StandaloneSpirv-Uniform-06925
Any variable in the Uniform Storage Class decorated as Block must not be stored to or
modified

• VUID-StandaloneSpirv-Offset-04663
Image operand Offset must only be used with OpImage*Gather instructions

• VUID-StandaloneSpirv-Offset-04865
Any image instruction which uses an Offset, ConstOffset, or ConstOffsets image operand,
must only consume a “Sampled Image” operand whose type has its “Sampled” operand set
to 1

• VUID-StandaloneSpirv-OpImageGather-04664
The “Component” operand of OpImageGather, and OpImageSparseGather must be the <id> of
a constant instruction

• VUID-StandaloneSpirv-OpImage-04777
OpImage*Dref* instructions must not consume an image whose Dim is 3D

• VUID-StandaloneSpirv-None-04667
Structure types must not contain opaque types

• VUID-StandaloneSpirv-BuiltIn-04668

4196

Any BuiltIn decoration not listed in Built-In Variables must not be used

• VUID-StandaloneSpirv-Location-06672
The Location or Component decorations must only be used with the Input, Output,
RayPayloadKHR, IncomingRayPayloadKHR, HitAttributeKHR, HitObjectAttributeNV,
CallableDataKHR, IncomingCallableDataKHR, or ShaderRecordBufferKHR storage classes

• VUID-StandaloneSpirv-Location-04915
The Location or Component decorations must not be used with BuiltIn

• VUID-StandaloneSpirv-Location-04916
The Location decorations must be used on user-defined variables

• VUID-StandaloneSpirv-Location-04917
If a user-defined variable is not a pointer to a Block decorated OpTypeStruct, then the
OpVariable must have a Location decoration

• VUID-StandaloneSpirv-Location-04918
If a user-defined variable has a Location decoration, and the variable is a pointer to a
OpTypeStruct, then the members of that structure must not have Location decorations

• VUID-StandaloneSpirv-Location-04919
If a user-defined variable does not have a Location decoration, and the variable is a
pointer to a Block decorated OpTypeStruct, then each member of the struct must have a
Location decoration

• VUID-StandaloneSpirv-Component-04920
The Component decoration value must not be greater than 3

• VUID-StandaloneSpirv-Component-04921
If the Component decoration is used on an OpVariable that has a OpTypeVector type with a
Component Type with a Width that is less than or equal to 32, the sum of its Component Count
and the Component decoration value must be less than or equal to 4

• VUID-StandaloneSpirv-Component-04922
If the Component decoration is used on an OpVariable that has a OpTypeVector type with a
Component Type with a Width that is equal to 64, the sum of two times its Component Count and
the Component decoration value must be less than or equal to 4

• VUID-StandaloneSpirv-Component-04923
The Component decorations value must not be 1 or 3 for scalar or two-component 64-bit
data types

• VUID-StandaloneSpirv-Component-04924
The Component decorations must not be used with any type that is not a scalar or vector, or
an array of such a type

• VUID-StandaloneSpirv-Component-07703
The Component decorations must not be used for a 64-bit vector type with more than two
components

• VUID-StandaloneSpirv-Input-09557
The pointers of any Input or Output Interface user-defined variables must not contain any
PhysicalStorageBuffer Storage Class pointers

• VUID-StandaloneSpirv-GLSLShared-04669

4197

The GLSLShared and GLSLPacked decorations must not be used

• VUID-StandaloneSpirv-Flat-04670
The Flat, NoPerspective, Sample, and Centroid decorations must only be used on variables
with the Output or Input Storage Class

• VUID-StandaloneSpirv-Flat-06201
The Flat, NoPerspective, Sample, and Centroid decorations must not be used on variables
with the Output storage class in a fragment shader

• VUID-StandaloneSpirv-Flat-06202
The Flat, NoPerspective, Sample, and Centroid decorations must not be used on variables
with the Input storage class in a vertex shader

• VUID-StandaloneSpirv-PerVertexKHR-06777
The PerVertexKHR decoration must only be used on variables with the Input Storage Class
in a fragment shader

• VUID-StandaloneSpirv-Flat-04744
Any variable with integer or double-precision floating-point type and with Input Storage
Class in a fragment shader, must be decorated Flat

• VUID-StandaloneSpirv-ViewportRelativeNV-04672
The ViewportRelativeNV decoration must only be used on a variable decorated with Layer
in the vertex, tessellation evaluation, or geometry shader stages

• VUID-StandaloneSpirv-ViewportRelativeNV-04673
The ViewportRelativeNV decoration must not be used unless a variable decorated with one
of ViewportIndex or ViewportMaskNV is also statically used by the same OpEntryPoint

• VUID-StandaloneSpirv-ViewportMaskNV-04674
The ViewportMaskNV and ViewportIndex decorations must not both be statically used by one
or more OpEntryPoint’s that form the pre-rasterization shader stages of a graphics pipeline

• VUID-StandaloneSpirv-FPRoundingMode-04675
Rounding modes other than round-to-nearest-even and round-towards-zero must not be
used for the FPRoundingMode decoration

• VUID-StandaloneSpirv-Invariant-04677
Variables decorated with Invariant and variables with structure types that have any
members decorated with Invariant must be in the Output or Input Storage Class, Invariant
used on an Input Storage Class variable or structure member has no effect

• VUID-StandaloneSpirv-VulkanMemoryModel-04678
If the VulkanMemoryModel capability is not declared, the Volatile decoration must be used
on any variable declaration that includes one of the SMIDNV, WarpIDNV, SubgroupSize,
SubgroupLocalInvocationId, SubgroupEqMask, SubgroupGeMask, SubgroupGtMask, SubgroupLeMask,
or SubgroupLtMask BuiltIn decorations when used in the ray generation, closest hit, miss,
intersection, or callable shaders, or with the RayTmaxKHR Builtin decoration when used in
an intersection shader

• VUID-StandaloneSpirv-VulkanMemoryModel-04679
If the VulkanMemoryModel capability is declared, the OpLoad instruction must use the
Volatile memory semantics when it accesses into any variable that includes one of the
SMIDNV, WarpIDNV, SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask, SubgroupGeMask,

4198

SubgroupGtMask, SubgroupLeMask, or SubgroupLtMask BuiltIn decorations when used in the
ray generation, closest hit, miss, intersection, or callable shaders, or with the RayTmaxKHR
Builtin decoration when used in an intersection shader

• VUID-StandaloneSpirv-OpTypeRuntimeArray-04680
OpTypeRuntimeArray must only be used for:

◦ the last member of a Block-decorated OpTypeStruct in StorageBuffer or
PhysicalStorageBuffer storage Storage Class

◦ BufferBlock-decorated OpTypeStruct in the Uniform storage Storage Class

◦ the outermost dimension of an arrayed variable in the StorageBuffer, Uniform, or
UniformConstant storage Storage Class

◦ variables in the NodePayloadAMDX storage Storage Class when the CoalescingAMDX
Execution Mode is specified

• VUID-StandaloneSpirv-Function-04681
A type T that is an array sized with a specialization constant must neither be, nor be
contained in, the type T2 of a variable V, unless either: a) T is equal to T2, b) V is declared
in the Function, or Private Storage Class, c) V is a non-Block variable in the Workgroup
Storage Class, or d) V is an interface variable with an additional level of arrayness, as
described in interface matching, and T is the member type of the array type T2

• VUID-StandaloneSpirv-OpControlBarrier-04682
If OpControlBarrier is used in ray generation, intersection, any-hit, closest hit, miss,
fragment, vertex, tessellation evaluation, or geometry shaders, the execution Scope must
be Subgroup

• VUID-StandaloneSpirv-LocalSize-06426
For each compute shader entry point, either a LocalSize or LocalSizeId Execution Mode, or
an object decorated with the WorkgroupSize decoration must be specified

• VUID-StandaloneSpirv-DerivativeGroupQuadsNV-04684
For compute shaders using the DerivativeGroupQuadsNV execution mode, the first two
dimensions of the local workgroup size must be a multiple of two

• VUID-StandaloneSpirv-DerivativeGroupLinearNV-04778
For compute shaders using the DerivativeGroupLinearNV execution mode, the product of
the dimensions of the local workgroup size must be a multiple of four

• VUID-StandaloneSpirv-OpGroupNonUniformBallotBitCount-04685
If OpGroupNonUniformBallotBitCount is used, the group operation must be limited to Reduce,
InclusiveScan, or ExclusiveScan

• VUID-StandaloneSpirv-None-04686
The Pointer operand of all atomic instructions must have a Storage Class limited to
Uniform, Workgroup, Image, StorageBuffer, PhysicalStorageBuffer, or TaskPayloadWorkgroupEXT

• VUID-StandaloneSpirv-Offset-04687
Output variables or block members decorated with Offset that have a 64-bit type, or a
composite type containing a 64-bit type, must specify an Offset value aligned to a 8 byte
boundary

• VUID-StandaloneSpirv-Offset-04689

4199

The size of any output block containing any member decorated with Offset that is a 64-bit
type must be a multiple of 8

• VUID-StandaloneSpirv-Offset-04690
The first member of an output block specifying a Offset decoration must specify a Offset
value that is aligned to an 8 byte boundary if that block contains any member decorated
with Offset and is a 64-bit type

• VUID-StandaloneSpirv-Offset-04691
Output variables or block members decorated with Offset that have a 32-bit type, or a
composite type contains a 32-bit type, must specify an Offset value aligned to a 4 byte
boundary

• VUID-StandaloneSpirv-Offset-04692
Output variables, blocks or block members decorated with Offset must only contain base
types that have components that are either 32-bit or 64-bit in size

• VUID-StandaloneSpirv-Offset-04716
Only variables or block members in the output interface decorated with Offset can be
captured for transform feedback, and those variables or block members must also be
decorated with XfbBuffer and XfbStride, or inherit XfbBuffer and XfbStride decorations
from a block containing them

• VUID-StandaloneSpirv-XfbBuffer-04693
All variables or block members in the output interface of the entry point being compiled
decorated with a specific XfbBuffer value must all be decorated with identical XfbStride
values

• VUID-StandaloneSpirv-Stream-04694
If any variables or block members in the output interface of the entry point being
compiled are decorated with Stream, then all variables belonging to the same XfbBuffer
must specify the same Stream value

• VUID-StandaloneSpirv-XfbBuffer-04696
For any two variables or block members in the output interface of the entry point being
compiled with the same XfbBuffer value, the ranges determined by the Offset decoration
and the size of the type must not overlap

• VUID-StandaloneSpirv-XfbBuffer-04697
All block members in the output interface of the entry point being compiled that are in
the same block and have a declared or inherited XfbBuffer decoration must specify the
same XfbBuffer value

• VUID-StandaloneSpirv-RayPayloadKHR-04698
RayPayloadKHR Storage Class must only be used in ray generation, closest hit or miss
shaders

• VUID-StandaloneSpirv-IncomingRayPayloadKHR-04699
IncomingRayPayloadKHR Storage Class must only be used in closest hit, any-hit, or miss
shaders

• VUID-StandaloneSpirv-IncomingRayPayloadKHR-04700
There must be at most one variable with the IncomingRayPayloadKHR Storage Class in the
input interface of an entry point

4200

• VUID-StandaloneSpirv-HitAttributeKHR-04701
HitAttributeKHR Storage Class must only be used in intersection, any-hit, or closest hit
shaders

• VUID-StandaloneSpirv-HitAttributeKHR-04702
There must be at most one variable with the HitAttributeKHR Storage Class in the input
interface of an entry point

• VUID-StandaloneSpirv-HitAttributeKHR-04703
A variable with HitAttributeKHR Storage Class must only be written to in an intersection
shader

• VUID-StandaloneSpirv-CallableDataKHR-04704
CallableDataKHR Storage Class must only be used in ray generation, closest hit, miss, and
callable shaders

• VUID-StandaloneSpirv-IncomingCallableDataKHR-04705
IncomingCallableDataKHR Storage Class must only be used in callable shaders

• VUID-StandaloneSpirv-IncomingCallableDataKHR-04706
There must be at most one variable with the IncomingCallableDataKHR Storage Class in the
input interface of an entry point

• VUID-StandaloneSpirv-ShaderRecordBufferKHR-07119
ShaderRecordBufferKHR Storage Class must only be used in ray generation, intersection,
any-hit, closest hit, callable, or miss shaders

• VUID-StandaloneSpirv-Base-07650
The Base operand of OpPtrAccessChain must have a storage class of Workgroup,
StorageBuffer, or PhysicalStorageBuffer

• VUID-StandaloneSpirv-Base-07651
If the Base operand of OpPtrAccessChain has a Workgroup Storage Class, then the
VariablePointers capability must be declared

• VUID-StandaloneSpirv-Base-07652
If the Base operand of OpPtrAccessChain has a StorageBuffer Storage Class, then the
VariablePointers or VariablePointersStorageBuffer capability must be declared

• VUID-StandaloneSpirv-PhysicalStorageBuffer64-04708
If the PhysicalStorageBuffer64 addressing model is enabled, all instructions that support
memory access operands and that use a physical pointer must include the Aligned
operand

• VUID-StandaloneSpirv-PhysicalStorageBuffer64-04709
If the PhysicalStorageBuffer64 addressing model is enabled, any access chain instruction
that accesses into a RowMajor matrix must only be used as the Pointer operand to OpLoad or
OpStore

• VUID-StandaloneSpirv-PhysicalStorageBuffer64-04710
If the PhysicalStorageBuffer64 addressing model is enabled, OpConvertUToPtr and
OpConvertPtrToU must use an integer type whose Width is 64

• VUID-StandaloneSpirv-OpTypeForwardPointer-04711
OpTypeForwardPointer must have a Storage Class of PhysicalStorageBuffer

4201

• VUID-StandaloneSpirv-None-04745
All block members in a variable with a Storage Class of PushConstant declared as an array
must only be accessed by dynamically uniform indices

• VUID-StandaloneSpirv-OpVariable-06673
There must not be more than one OpVariable in the PushConstant Storage Class listed in
the Interface for each OpEntryPoint

• VUID-StandaloneSpirv-OpEntryPoint-06674
Each OpEntryPoint must not statically use more than one OpVariable in the PushConstant
Storage Class

• VUID-StandaloneSpirv-OpEntryPoint-08721
Each OpEntryPoint must not have more than one Input variable assigned the same
Component word inside a Location slot, either explicitly or implicitly

• VUID-StandaloneSpirv-OpEntryPoint-08722
Each OpEntryPoint must not have more than one Output variable assigned the same
Component word inside a Location slot, either explicitly or implicitly

• VUID-StandaloneSpirv-Result-04780
The Result Type operand of any OpImageRead or OpImageSparseRead instruction must be a
vector of four components

• VUID-StandaloneSpirv-Base-04781
The Base operand of any OpBitCount, OpBitReverse, OpBitFieldInsert, OpBitFieldSExtract, or
OpBitFieldUExtract instruction must be a 32-bit integer scalar or a vector of 32-bit
integers

• VUID-StandaloneSpirv-PushConstant-06675
Any variable in the PushConstant or StorageBuffer storage class must be decorated as Block

• VUID-StandaloneSpirv-Uniform-06676
Any variable in the Uniform Storage Class must be decorated as Block or BufferBlock

• VUID-StandaloneSpirv-UniformConstant-06677
Any variable in the UniformConstant, StorageBuffer, or Uniform Storage Class must be
decorated with DescriptorSet and Binding

• VUID-StandaloneSpirv-InputAttachmentIndex-06678
Variables decorated with InputAttachmentIndex must be in the UniformConstant Storage
Class

• VUID-StandaloneSpirv-DescriptorSet-06491
If a variable is decorated by DescriptorSet or Binding, the Storage Class must correspond
to an entry in Shader Resource and Storage Class Correspondence

• VUID-StandaloneSpirv-Input-06778
Variables with a Storage Class of Input in a fragment shader stage that are decorated with
PerVertexKHR must be declared as arrays

• VUID-StandaloneSpirv-MeshEXT-07102
The module must not contain both an entry point that uses the TaskEXT or MeshEXT
Execution Model and an entry point that uses the TaskNV or MeshNV Execution Model

• VUID-StandaloneSpirv-MeshEXT-07106

4202

In mesh shaders using the MeshEXT Execution Model OpSetMeshOutputsEXT must be called
before any outputs are written

• VUID-StandaloneSpirv-MeshEXT-07107
In mesh shaders using the MeshEXT Execution Model all variables declared as output must
not be read from

• VUID-StandaloneSpirv-MeshEXT-07108
In mesh shaders using the MeshEXT Execution Model for OpSetMeshOutputsEXT instructions,
the “Vertex Count” and “Primitive Count” operands must not depend on ViewIndex

• VUID-StandaloneSpirv-MeshEXT-07109
In mesh shaders using the MeshEXT Execution Model variables decorated with
PrimitivePointIndicesEXT, PrimitiveLineIndicesEXT, or PrimitiveTriangleIndicesEXT
declared as an array must not be accessed by indices that depend on ViewIndex

• VUID-StandaloneSpirv-MeshEXT-07110
In mesh shaders using the MeshEXT Execution Model any values stored in variables
decorated with PrimitivePointIndicesEXT, PrimitiveLineIndicesEXT, or
PrimitiveTriangleIndicesEXT must not depend on ViewIndex

• VUID-StandaloneSpirv-MeshEXT-07111
In mesh shaders using the MeshEXT Execution Model variables in workgroup or private
Storage Class declared as or containing a composite type must not be accessed by indices
that depend on ViewIndex

• VUID-StandaloneSpirv-MeshEXT-07330
In mesh shaders using the MeshEXT Execution Model the OutputVertices Execution Mode must
be greater than 0

• VUID-StandaloneSpirv-MeshEXT-07331
In mesh shaders using the MeshEXT Execution Model the OutputPrimitivesEXT Execution Mode
must be greater than 0

• VUID-StandaloneSpirv-Input-07290
Variables with a Storage Class of Input or Output and a type of OpTypeBool must be
decorated with the BuiltIn decoration

• VUID-StandaloneSpirv-TileImageEXT-08723
The tile image variable declarations must obey the constraints on the TileImageEXT
Storage Class and the Location decoration described in Fragment Tile Image Interface

• VUID-StandaloneSpirv-None-08724
The TileImageEXT Storage Class must only be used for declaring tile image variables.

• VUID-StandaloneSpirv-Pointer-08973
The Storage Class of the Pointer operand to OpCooperativeMatrixLoadKHR or
OpCooperativeMatrixStoreKHR must be limited to Workgroup, StorageBuffer, or
PhysicalStorageBuffer.

Runtime SPIR-V Validation

The following rules must be validated at runtime. These rules depend on knowledge of the
implementation and its capabilities and knowledge of runtime information, such as enabled

4203

features.

Valid Usage

• VUID-RuntimeSpirv-vulkanMemoryModel-06265
If vulkanMemoryModel is enabled and vulkanMemoryModelDeviceScope is not enabled, Device
memory scope must not be used

• VUID-RuntimeSpirv-vulkanMemoryModel-06266
If vulkanMemoryModel is not enabled, QueueFamily memory scope must not be used

• VUID-RuntimeSpirv-shaderSubgroupClock-06267
If shaderSubgroupClock is not enabled, the Subgroup scope must not be used for
OpReadClockKHR

• VUID-RuntimeSpirv-shaderDeviceClock-06268
If shaderDeviceClock is not enabled, the Device scope must not be used for OpReadClockKHR

• VUID-RuntimeSpirv-None-09558
If dynamicRenderingLocalRead is not enabled, any variable created with a “Type” of
OpTypeImage that has a “Dim” operand of SubpassData must be decorated with
InputAttachmentIndex

• VUID-RuntimeSpirv-apiVersion-07954
If VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.3, the
VK_KHR_format_feature_flags2 extension is not supported, and
shaderStorageImageWriteWithoutFormat is not enabled, any variable created with a “Type”
of OpTypeImage that has a “Sampled” operand of 2 and an “Image Format” operand of
Unknown must be decorated with NonWritable

• VUID-RuntimeSpirv-apiVersion-07955
If VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.3, the
VK_KHR_format_feature_flags2 extension is not supported, and
shaderStorageImageReadWithoutFormat is not enabled, any variable created with a “Type” of
OpTypeImage that has a “Sampled” operand of 2 and an “Image Format” operand of Unknown
must be decorated with NonReadable

• VUID-RuntimeSpirv-OpImageWrite-07112
OpImageWrite to any Image whose Image Format is not Unknown must have the Texel operand
contain at least as many components as the corresponding VkFormat as given in the SPIR-
V Image Format compatibility table

• VUID-RuntimeSpirv-Location-06272
The sum of Location and the number of locations the variable it decorates consumes must
be less than or equal to the value for the matching Execution Model defined in Shader
Input and Output Locations

• VUID-RuntimeSpirv-Location-06428
The maximum number of storage buffers, storage images, and output Location decorated
color attachments written to in the Fragment Execution Model must be less than or equal to
maxFragmentCombinedOutputResources

• VUID-RuntimeSpirv-NonUniform-06274

4204

If an instruction loads from or stores to a resource (including atomics and image
instructions) and the resource descriptor being accessed is not dynamically uniform, then
the operand corresponding to that resource (e.g. the pointer or sampled image operand)
must be decorated with NonUniform

• VUID-RuntimeSpirv-None-06275
shaderSubgroupExtendedTypes must be enabled for group operations to use 8-bit integer,
16-bit integer, 64-bit integer, 16-bit floating-point, and vectors of these types

• VUID-RuntimeSpirv-subgroupBroadcastDynamicId-06276
If subgroupBroadcastDynamicId is VK_TRUE, and the shader module version is 1.5 or higher,
the “Index” for OpGroupNonUniformQuadBroadcast must be dynamically uniform within the
derivative group. Otherwise, “Index” must be a constant

• VUID-RuntimeSpirv-subgroupBroadcastDynamicId-06277
If subgroupBroadcastDynamicId is VK_TRUE, and the shader module version is 1.5 or higher,
the “Id” for OpGroupNonUniformBroadcast must be dynamically uniform within the
subgroup. Otherwise, “Id” must be a constant

• VUID-RuntimeSpirv-None-06278
shaderBufferInt64Atomics must be enabled for 64-bit integer atomic operations to be
supported on a Pointer with a Storage Class of StorageBuffer or Uniform

• VUID-RuntimeSpirv-None-06279
shaderSharedInt64Atomics must be enabled for 64-bit integer atomic operations to be
supported on a Pointer with a Storage Class of Workgroup

• VUID-RuntimeSpirv-None-06284
shaderBufferFloat32Atomics, or shaderBufferFloat32AtomicAdd, or
shaderBufferFloat64Atomics, or shaderBufferFloat64AtomicAdd, or
shaderBufferFloat16Atomics, or shaderBufferFloat16AtomicAdd, or
shaderBufferFloat16AtomicMinMax, or shaderBufferFloat32AtomicMinMax, or
shaderBufferFloat64AtomicMinMax, or shaderFloat16VectorAtomics must be enabled for
floating-point atomic operations to be supported on a Pointer with a Storage Class of
StorageBuffer

• VUID-RuntimeSpirv-None-06285
shaderSharedFloat32Atomics, or shaderSharedFloat32AtomicAdd, or
shaderSharedFloat64Atomics, or shaderSharedFloat64AtomicAdd, or
shaderSharedFloat16Atomics, or shaderSharedFloat16AtomicAdd, or
shaderSharedFloat16AtomicMinMax, or shaderSharedFloat32AtomicMinMax, or
shaderSharedFloat64AtomicMinMax, or shaderFloat16VectorAtomics, must be enabled for
floating-point atomic operations to be supported on a Pointer with a Storage Class of
Workgroup

• VUID-RuntimeSpirv-None-06286
shaderImageFloat32Atomics, or shaderImageFloat32AtomicAdd, or
shaderImageFloat32AtomicMinMax, must be enabled for 32-bit floating-point atomic
operations to be supported on a Pointer with a Storage Class of Image

• VUID-RuntimeSpirv-None-06287
sparseImageFloat32Atomics, or sparseImageFloat32AtomicAdd, or
sparseImageFloat32AtomicMinMax, must be enabled for 32-bit floating-point atomics to be

4205

supported on sparse images

• VUID-RuntimeSpirv-None-06288
shaderImageInt64Atomics must be enabled for 64-bit integer atomic operations to be
supported on a Pointer with a Storage Class of Image

• VUID-RuntimeSpirv-denormBehaviorIndependence-06289
If denormBehaviorIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY, then
the entry point must use the same denormals Execution Mode for both 16-bit and 64-bit
floating-point types

• VUID-RuntimeSpirv-denormBehaviorIndependence-06290
If denormBehaviorIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE, then the
entry point must use the same denormals Execution Mode for all floating-point types

• VUID-RuntimeSpirv-roundingModeIndependence-06291
If roundingModeIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY, then
the entry point must use the same rounding Execution Mode for both 16-bit and 64-bit
floating-point types

• VUID-RuntimeSpirv-roundingModeIndependence-06292
If roundingModeIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE, then the entry
point must use the same rounding Execution Mode for all floating-point types

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat16-06293
If shaderSignedZeroInfNanPreserveFloat16 is VK_FALSE, then SignedZeroInfNanPreserve for
16-bit floating-point type must not be used

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat32-06294
If shaderSignedZeroInfNanPreserveFloat32 is VK_FALSE, then SignedZeroInfNanPreserve for
32-bit floating-point type must not be used

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat64-06295
If shaderSignedZeroInfNanPreserveFloat64 is VK_FALSE, then SignedZeroInfNanPreserve for
64-bit floating-point type must not be used

• VUID-RuntimeSpirv-shaderDenormPreserveFloat16-06296
If shaderDenormPreserveFloat16 is VK_FALSE, then DenormPreserve for 16-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderDenormPreserveFloat32-06297
If shaderDenormPreserveFloat32 is VK_FALSE, then DenormPreserve for 32-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderDenormPreserveFloat64-06298
If shaderDenormPreserveFloat64 is VK_FALSE, then DenormPreserve for 64-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat16-06299
If shaderDenormFlushToZeroFloat16 is VK_FALSE, then DenormFlushToZero for 16-bit floating-
point type must not be used

• VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat32-06300
If shaderDenormFlushToZeroFloat32 is VK_FALSE, then DenormFlushToZero for 32-bit floating-
point type must not be used

4206

• VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat64-06301
If shaderDenormFlushToZeroFloat64 is VK_FALSE, then DenormFlushToZero for 64-bit floating-
point type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTEFloat16-06302
If shaderRoundingModeRTEFloat16 is VK_FALSE, then RoundingModeRTE for 16-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTEFloat32-06303
If shaderRoundingModeRTEFloat32 is VK_FALSE, then RoundingModeRTE for 32-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTEFloat64-06304
If shaderRoundingModeRTEFloat64 is VK_FALSE, then RoundingModeRTE for 64-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTZFloat16-06305
If shaderRoundingModeRTZFloat16 is VK_FALSE, then RoundingModeRTZ for 16-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTZFloat32-06306
If shaderRoundingModeRTZFloat32 is VK_FALSE, then RoundingModeRTZ for 32-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTZFloat64-06307
If shaderRoundingModeRTZFloat64 is VK_FALSE, then RoundingModeRTZ for 64-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat16-09559
If shaderSignedZeroInfNanPreserveFloat16 is VK_FALSE then any FPFastMathDefault execution
mode with a type of 16-bit float must include the NSZ, NotInf, and NotNaN flags

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat16-09560
If shaderSignedZeroInfNanPreserveFloat16 is VK_FALSE then any FPFastMathMode decoration
on an instruction with result type or any operand type that includes a 16-bit float must
include the NSZ, NotInf, and NotNaN flags

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat32-09561
If shaderSignedZeroInfNanPreserveFloat32 is VK_FALSE then any FPFastMathDefault execution
mode with a type of 32-bit float must include the NSZ, NotInf, and NotNaN flags

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat32-09562
If shaderSignedZeroInfNanPreserveFloat32 is VK_FALSE then any FPFastMathMode decoration
on an instruction with result type or any operand type that includes a 32-bit float must
include the NSZ, NotInf, and NotNaN flags

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat64-09563
If shaderSignedZeroInfNanPreserveFloat64 is VK_FALSE then any FPFastMathDefault execution
mode with a type of 64-bit float must include the NSZ, NotInf, and NotNaN flags

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat64-09564
If shaderSignedZeroInfNanPreserveFloat64 is VK_FALSE then any FPFastMathMode decoration
on an instruction with result type or any operand type that includes a 64-bit float must
include the NSZ, NotInf, and NotNaN flags

• VUID-RuntimeSpirv-Offset-06308

4207

The Offset plus size of the type of each variable, in the output interface of the entry point
being compiled, decorated with XfbBuffer must not be greater than
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBufferDataSize

• VUID-RuntimeSpirv-XfbBuffer-06309
For any given XfbBuffer value, define the buffer data size to be smallest number of bytes
such that, for all outputs decorated with the same XfbBuffer value, the size of the output
interface variable plus the Offset is less than or equal to the buffer data size. For a given
Stream, the sum of all the buffer data sizes for all buffers writing to that stream the must
not exceed VkPhysicalDeviceTransformFeedbackPropertiesEXT
::maxTransformFeedbackStreamDataSize

• VUID-RuntimeSpirv-OpEmitStreamVertex-06310
The Stream value to OpEmitStreamVertex and OpEndStreamPrimitive must be less than
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreams

• VUID-RuntimeSpirv-transformFeedbackStreamsLinesTriangles-06311
If the geometry shader emits to more than one vertex stream and
VkPhysicalDeviceTransformFeedbackPropertiesEXT::transformFeedbackStreamsLinesTriang
les is VK_FALSE, then Execution Mode must be OutputPoints

• VUID-RuntimeSpirv-Stream-06312
The stream number value to Stream must be less than
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreams

• VUID-RuntimeSpirv-XfbStride-06313
The XFB Stride value to XfbStride must be less than or equal to
VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBufferDataStrid
e

• VUID-RuntimeSpirv-PhysicalStorageBuffer64-06314
If the PhysicalStorageBuffer64 addressing model is enabled any load or store through a
physical pointer type must be aligned to a multiple of the size of the largest scalar type in
the pointed-to type

• VUID-RuntimeSpirv-PhysicalStorageBuffer64-06315
If the PhysicalStorageBuffer64 addressing model is enabled the pointer value of a memory
access instruction must be at least as aligned as specified by the Aligned memory access
operand

• VUID-RuntimeSpirv-OpTypeCooperativeMatrixNV-06316
For OpTypeCooperativeMatrixNV, the component type, scope, number of rows, and number
of columns must match one of the matrices in any of the supported
VkCooperativeMatrixPropertiesNV

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddNV-06317
For OpCooperativeMatrixMulAddNV, the type of A must have
VkCooperativeMatrixPropertiesNV::MSize rows and VkCooperativeMatrixPropertiesNV
::KSize columns and have a component type that matches
VkCooperativeMatrixPropertiesNV::AType

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddNV-06318
For OpCooperativeMatrixMulAddNV, the type of B must have
VkCooperativeMatrixPropertiesNV::KSize rows and VkCooperativeMatrixPropertiesNV

4208

::NSize columns and have a component type that matches
VkCooperativeMatrixPropertiesNV::BType

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddNV-06319
For OpCooperativeMatrixMulAddNV, the type of C must have
VkCooperativeMatrixPropertiesNV::MSize rows and VkCooperativeMatrixPropertiesNV
::NSize columns and have a component type that matches
VkCooperativeMatrixPropertiesNV::CType

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddNV-06320
For OpCooperativeMatrixMulAddNV, the type of Result must have
VkCooperativeMatrixPropertiesNV::MSize rows and VkCooperativeMatrixPropertiesNV
::NSize columns and have a component type that matches
VkCooperativeMatrixPropertiesNV::DType

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddNV-06321
For OpCooperativeMatrixMulAddNV, the type of A, B, C, and Result must all have a scope of
scope

• VUID-RuntimeSpirv-OpTypeCooperativeMatrixNV-06322
OpTypeCooperativeMatrixNV and OpCooperativeMatrix* instructions must not be used in
shader stages not included in VkPhysicalDeviceCooperativeMatrixPropertiesNV
::cooperativeMatrixSupportedStages

• VUID-RuntimeSpirv-OpTypeCooperativeMatrixKHR-08974
For OpTypeCooperativeMatrixKHR, the component type, scope, number of rows, and number
of columns must match one of the matrices in any of the supported
VkCooperativeMatrixPropertiesKHR.

• VUID-RuntimeSpirv-MSize-08975
For OpCooperativeMatrixMulAddKHR, the type of A must have
VkCooperativeMatrixPropertiesKHR::MSize rows and
VkCooperativeMatrixPropertiesKHR::KSize columns and have a component type that
matches VkCooperativeMatrixPropertiesKHR::AType.

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddKHR-08976
For OpCooperativeMatrixMulAddKHR, when the component type of A is a signed integer type,
the MatrixASignedComponents cooperative matrix operand must be present.

• VUID-RuntimeSpirv-KSize-08977
For OpCooperativeMatrixMulAddKHR, the type of B must have
VkCooperativeMatrixPropertiesKHR::KSize rows and
VkCooperativeMatrixPropertiesKHR::NSize columns and have a component type that
matches VkCooperativeMatrixPropertiesKHR::BType.

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddKHR-08978
For OpCooperativeMatrixMulAddKHR, when the component type of B is a signed integer type,
the MatrixBSignedComponents cooperative matrix operand must be present.

• VUID-RuntimeSpirv-MSize-08979
For OpCooperativeMatrixMulAddKHR, the type of C must have
VkCooperativeMatrixPropertiesKHR::MSize rows and
VkCooperativeMatrixPropertiesKHR::NSize columns and have a component type that
matches VkCooperativeMatrixPropertiesKHR::CType.

4209

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddKHR-08980
For OpCooperativeMatrixMulAddKHR, when the component type of C is a signed integer type,
the MatrixCSignedComponents cooperative matrix operand must be present.

• VUID-RuntimeSpirv-MSize-08981
For OpCooperativeMatrixMulAddKHR, the type of Result must have
VkCooperativeMatrixPropertiesKHR::MSize rows and
VkCooperativeMatrixPropertiesKHR::NSize columns and have a component type that
matches VkCooperativeMatrixPropertiesKHR::ResultType.

• VUID-RuntimeSpirv-OpCooperativeMatrixMulAddKHR-08982
For OpCooperativeMatrixMulAddKHR, when the component type of Result is a signed integer
type, the MatrixResultSignedComponents cooperative matrix operand must be present.

• VUID-RuntimeSpirv-saturatingAccumulation-08983
For OpCooperativeMatrixMulAddKHR, the SaturatingAccumulation cooperative matrix operand
must be present if and only if VkCooperativeMatrixPropertiesKHR
::saturatingAccumulation is VK_TRUE.

• VUID-RuntimeSpirv-scope-08984
For OpCooperativeMatrixMulAddKHR, the type of A, B, C, and Result must all have a scope of
scope.

• VUID-RuntimeSpirv-cooperativeMatrixSupportedStages-08985
OpTypeCooperativeMatrixKHR and OpCooperativeMatrix* instructions must not be used in
shader stages not included in VkPhysicalDeviceCooperativeMatrixPropertiesKHR
::cooperativeMatrixSupportedStages.

• VUID-RuntimeSpirv-DescriptorSet-06323
DescriptorSet and Binding decorations must obey the constraints on Storage Class, type,
and descriptor type described in DescriptorSet and Binding Assignment

• VUID-RuntimeSpirv-OpCooperativeMatrixLoadNV-06324
For OpCooperativeMatrixLoadNV and OpCooperativeMatrixStoreNV instructions, the Pointer
and Stride operands must be aligned to at least the lesser of 16 bytes or the natural
alignment of a row or column (depending on ColumnMajor) of the matrix (where the
natural alignment is the number of columns/rows multiplied by the component size)

• VUID-RuntimeSpirv-MeshNV-07113
For mesh shaders using the MeshNV Execution Model the OutputVertices OpExecutionMode
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesNV
::maxMeshOutputVertices

• VUID-RuntimeSpirv-MeshNV-07114
For mesh shaders using the MeshNV Execution Model the OutputPrimitivesNV OpExecutionMode
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesNV
::maxMeshOutputPrimitives

• VUID-RuntimeSpirv-MeshEXT-07115
For mesh shaders using the MeshEXT Execution Model the OutputVertices OpExecutionMode
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxMeshOutputVertices

• VUID-RuntimeSpirv-MeshEXT-07332

4210

For mesh shaders using the MeshEXT Execution Model the “Vertex Count” operand of
OpSetMeshOutputsEXT must be less than or equal to OutputVertices OpExecutionMode

• VUID-RuntimeSpirv-MeshEXT-07116
For mesh shaders using the MeshEXT Execution Model the OutputPrimitivesEXT
OpExecutionMode must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshOutputPrimitives

• VUID-RuntimeSpirv-MeshEXT-07333
For mesh shaders using the MeshEXT Execution Model the “Primitive Count” operand of
OpSetMeshOutputsEXT must be less than or equal to OutputPrimitivesEXT OpExecutionMode

• VUID-RuntimeSpirv-TaskEXT-07117
In task shaders using the TaskEXT Execution Model OpEmitMeshTasksEXT must be called
exactly once under dynamically uniform conditions

• VUID-RuntimeSpirv-MeshEXT-07118
In mesh shaders using the MeshEXT Execution Model OpSetMeshOutputsEXT must be called at
most once under dynamically uniform conditions

• VUID-RuntimeSpirv-TaskEXT-07291
In task shaders using the TaskEXT Execution Model the x size in LocalSize or LocalSizeId
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxTaskWorkGroupSize[0]

• VUID-RuntimeSpirv-TaskEXT-07292
In task shaders using the TaskEXT Execution Model the y size in LocalSize or LocalSizeId
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxTaskWorkGroupSize[1]

• VUID-RuntimeSpirv-TaskEXT-07293
In task shaders using the TaskEXT Execution Model the z size in LocalSize or LocalSizeId
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxTaskWorkGroupSize[2]

• VUID-RuntimeSpirv-TaskEXT-07294
In task shaders using the TaskEXT Execution Model the product of x size, y size, and z size in
LocalSize or LocalSizeId must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxTaskWorkGroupInvocations

• VUID-RuntimeSpirv-MeshEXT-07295
For mesh shaders using the MeshEXT Execution Model the x size in LocalSize or LocalSizeId
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxMeshWorkGroupSize[0]

• VUID-RuntimeSpirv-MeshEXT-07296
For mesh shaders using the MeshEXT Execution Model the y size in LocalSize or LocalSizeId
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxMeshWorkGroupSize[1]

• VUID-RuntimeSpirv-MeshEXT-07297
For mesh shaders using the MeshEXT Execution Model the z size in LocalSize or LocalSizeId
must be less than or equal to VkPhysicalDeviceMeshShaderPropertiesEXT
::maxMeshWorkGroupSize[2]

4211

• VUID-RuntimeSpirv-MeshEXT-07298
For mesh shaders using the MeshEXT Execution Model the product of x size, y size, and z size
in LocalSize or LocalSizeId must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupInvocations

• VUID-RuntimeSpirv-TaskEXT-07299
In task shaders using the TaskEXT Execution Model the value of the “Group Count X”
operand of OpEmitMeshTasksEXT must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[0]

• VUID-RuntimeSpirv-TaskEXT-07300
In task shaders using the TaskEXT Execution Model the value of the “Group Count Y”
operand of OpEmitMeshTasksEXT must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[1]

• VUID-RuntimeSpirv-TaskEXT-07301
In task shaders using the TaskEXT Execution Model the value of the “Group Count Z”
operand of OpEmitMeshTasksEXT must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupCount[2]

• VUID-RuntimeSpirv-TaskEXT-07302
In task shaders using the TaskEXT Execution Model the product of the “Group Count”
operands of OpEmitMeshTasksEXT must be less than or equal to
VkPhysicalDeviceMeshShaderPropertiesEXT::maxMeshWorkGroupTotalCount

• VUID-RuntimeSpirv-maxMeshSharedMemorySize-08754
The sum of size in bytes for variables and padding in the Workgroup Storage Class in the
MeshEXT Execution Model must be less than or equal to maxMeshSharedMemorySize

• VUID-RuntimeSpirv-maxMeshPayloadAndSharedMemorySize-08755
The sum of size in bytes for variables and padding in the TaskPayloadWorkgroupEXT or
Workgroup Storage Class in the MeshEXT Execution Model must be less than or equal to
maxMeshPayloadAndSharedMemorySize

• VUID-RuntimeSpirv-maxMeshOutputMemorySize-08756
The sum of size in bytes for variables in the Output Storage Class in the MeshEXT Execution
Model must be less than or equal to maxMeshOutputMemorySize according to the formula in
Mesh Shader Output

• VUID-RuntimeSpirv-maxMeshPayloadAndOutputMemorySize-08757
The sum of size in bytes for variables and in the TaskPayloadWorkgroupEXT or Output Storage
Class in the MeshEXT Execution Model must be less than or equal to
maxMeshPayloadAndOutputMemorySize according to the formula in Mesh Shader Output

• VUID-RuntimeSpirv-maxTaskPayloadSize-08758
The sum of size in bytes for variables and in the TaskPayloadWorkgroupEXT Storage Class in
the TaskEXT Execution Model must be less than or equal to maxTaskPayloadSize

• VUID-RuntimeSpirv-maxTaskSharedMemorySize-08759
The sum of size in bytes for variables and padding in the Workgroup Storage Class in the
TaskEXT Execution Model must be less than or equal to maxTaskSharedMemorySize

• VUID-RuntimeSpirv-maxTaskPayloadAndSharedMemorySize-08760
The sum of size in bytes for variables and padding in the TaskPayloadWorkgroupEXT or

4212

Workgroup Storage Class in the TaskEXT Execution Model must be less than or equal to
maxTaskPayloadAndSharedMemorySize

• VUID-RuntimeSpirv-OpCooperativeMatrixLoadKHR-08986
For OpCooperativeMatrixLoadKHR and OpCooperativeMatrixStoreKHR instructions, the Pointer
and Stride operands must be aligned to at least the lesser of 16 bytes or the natural
alignment of a row or column (depending on ColumnMajor) of the matrix (where the
natural alignment is the number of columns/rows multiplied by the component size).

• VUID-RuntimeSpirv-shaderSampleRateInterpolationFunctions-06325
If the VK_KHR_portability_subset extension is enabled, and
VkPhysicalDevicePortabilitySubsetFeaturesKHR::shaderSampleRateInterpolationFunctions
is VK_FALSE, then GLSL.std.450 fragment interpolation functions are not supported by the
implementation and OpCapability must not be set to InterpolationFunction

• VUID-RuntimeSpirv-tessellationShader-06326
If tessellationShader is enabled, and the VK_KHR_portability_subset extension is enabled,
and VkPhysicalDevicePortabilitySubsetFeaturesKHR::tessellationIsolines is VK_FALSE,
then OpExecutionMode must not be set to IsoLines

• VUID-RuntimeSpirv-tessellationShader-06327
If tessellationShader is enabled, and the VK_KHR_portability_subset extension is enabled,
and VkPhysicalDevicePortabilitySubsetFeaturesKHR::tessellationPointMode is VK_FALSE,
then OpExecutionMode must not be set to PointMode

• VUID-RuntimeSpirv-storageBuffer8BitAccess-06328
If storageBuffer8BitAccess is VK_FALSE, then objects containing an 8-bit integer element
must not have Storage Class of StorageBuffer, ShaderRecordBufferKHR, or
PhysicalStorageBuffer

• VUID-RuntimeSpirv-uniformAndStorageBuffer8BitAccess-06329
If uniformAndStorageBuffer8BitAccess is VK_FALSE, then objects in the Uniform Storage Class
with the Block decoration must not have an 8-bit integer member

• VUID-RuntimeSpirv-storagePushConstant8-06330
If storagePushConstant8 is VK_FALSE, then objects containing an 8-bit integer element must
not have Storage Class of PushConstant

• VUID-RuntimeSpirv-storageBuffer16BitAccess-06331
If storageBuffer16BitAccess is VK_FALSE, then objects containing 16-bit integer or 16-bit
floating-point elements must not have Storage Class of StorageBuffer,
ShaderRecordBufferKHR, or PhysicalStorageBuffer

• VUID-RuntimeSpirv-uniformAndStorageBuffer16BitAccess-06332
If uniformAndStorageBuffer16BitAccess is VK_FALSE, then objects in the Uniform Storage Class
with the Block decoration must not have 16-bit integer or 16-bit floating-point members

• VUID-RuntimeSpirv-storagePushConstant16-06333
If storagePushConstant16 is VK_FALSE, then objects containing 16-bit integer or 16-bit
floating-point elements must not have Storage Class of PushConstant

• VUID-RuntimeSpirv-storageInputOutput16-06334
If storageInputOutput16 is VK_FALSE, then objects containing 16-bit integer or 16-bit
floating-point elements must not have Storage Class of Input or Output

4213

• VUID-RuntimeSpirv-None-06337
shaderBufferFloat16Atomics, or shaderBufferFloat16AtomicAdd, or
shaderBufferFloat16AtomicMinMax, or shaderSharedFloat16Atomics, or
shaderSharedFloat16AtomicAdd, or shaderSharedFloat16AtomicMinMax must be enabled for
16-bit floating point atomic operations

• VUID-RuntimeSpirv-None-06338
shaderBufferFloat32Atomics, or shaderBufferFloat32AtomicAdd, or
shaderSharedFloat32Atomics, or shaderSharedFloat32AtomicAdd, or
shaderImageFloat32Atomics, or shaderImageFloat32AtomicAdd or
shaderBufferFloat32AtomicMinMax, or shaderSharedFloat32AtomicMinMax, or
shaderImageFloat32AtomicMinMax must be enabled for 32-bit floating point atomic
operations

• VUID-RuntimeSpirv-None-06339
shaderBufferFloat64Atomics, or shaderBufferFloat64AtomicAdd, or
shaderSharedFloat64Atomics, or shaderSharedFloat64AtomicAdd, or
shaderBufferFloat64AtomicMinMax, or shaderSharedFloat64AtomicMinMax, must be enabled
for 64-bit floating point atomic operations

• VUID-RuntimeSpirv-shaderFloat16VectorAtomics-09581
shaderFloat16VectorAtomics, must be enabled for 16-bit floating-point, 2- and 4-component
vector atomic operations to be supported

• VUID-RuntimeSpirv-NonWritable-06340
If fragmentStoresAndAtomics is not enabled, then all storage image, storage texel buffer,
and storage buffer variables in the fragment stage must be decorated with the
NonWritable decoration

• VUID-RuntimeSpirv-NonWritable-06341
If vertexPipelineStoresAndAtomics is not enabled, then all storage image, storage texel
buffer, and storage buffer variables in the vertex, tessellation, and geometry stages must
be decorated with the NonWritable decoration

• VUID-RuntimeSpirv-None-06342
If subgroupQuadOperationsInAllStages is VK_FALSE, then quad subgroup operations must not
be used except for in fragment and compute stages

• VUID-RuntimeSpirv-None-06343
Group operations with subgroup scope must not be used if the shader stage is not in
subgroupSupportedStages

• VUID-RuntimeSpirv-Offset-06344
The first element of the Offset operand of InterpolateAtOffset must be greater than or
equal to:
fragwidth × minInterpolationOffset
where fragwidth is the width of the current fragment in pixels

• VUID-RuntimeSpirv-Offset-06345
The first element of the Offset operand of InterpolateAtOffset must be less than or equal
to
fragwidth × (maxInterpolationOffset + ULP) - ULP
where fragwidth is the width of the current fragment in pixels and ULP = 1 /

4214

2^subPixelInterpolationOffsetBits^

• VUID-RuntimeSpirv-Offset-06346
The second element of the Offset operand of InterpolateAtOffset must be greater than or
equal to
fragheight × minInterpolationOffset
where fragheight is the height of the current fragment in pixels

• VUID-RuntimeSpirv-Offset-06347
The second element of the Offset operand of InterpolateAtOffset must be less than or
equal to
fragheight × (maxInterpolationOffset + ULP) - ULP
where fragheight is the height of the current fragment in pixels and ULP = 1 /
2^subPixelInterpolationOffsetBits^.

• VUID-RuntimeSpirv-OpRayQueryInitializeKHR-06348
For OpRayQueryInitializeKHR instructions, all components of the RayOrigin and
RayDirection operands must be finite floating-point values

• VUID-RuntimeSpirv-OpRayQueryInitializeKHR-06349
For OpRayQueryInitializeKHR instructions, the RayTmin and RayTmax operands must be non-
negative floating-point values

• VUID-RuntimeSpirv-OpRayQueryInitializeKHR-06350
For OpRayQueryInitializeKHR instructions, the RayTmin operand must be less than or equal
to the RayTmax operand

• VUID-RuntimeSpirv-OpRayQueryInitializeKHR-06351
For OpRayQueryInitializeKHR instructions, RayOrigin, RayDirection, RayTmin, and RayTmax
operands must not contain NaNs

• VUID-RuntimeSpirv-OpRayQueryInitializeKHR-06352
For OpRayQueryInitializeKHR instructions, Acceleration Structure must be an acceleration
structure built as a top-level acceleration structure

• VUID-RuntimeSpirv-OpRayQueryInitializeKHR-06889
For OpRayQueryInitializeKHR instructions, the Rayflags operand must not contain both
SkipTrianglesKHR and SkipAABBsKHR

• VUID-RuntimeSpirv-OpRayQueryInitializeKHR-06890
For OpRayQueryInitializeKHR instructions, the Rayflags operand must not contain more
than one of SkipTrianglesKHR, CullBackFacingTrianglesKHR, and
CullFrontFacingTrianglesKHR

• VUID-RuntimeSpirv-OpRayQueryInitializeKHR-06891
For OpRayQueryInitializeKHR instructions, the Rayflags operand must not contain more
than one of OpaqueKHR, NoOpaqueKHR, CullOpaqueKHR, and CullNoOpaqueKHR

• VUID-RuntimeSpirv-OpRayQueryGenerateIntersectionKHR-06353
For OpRayQueryGenerateIntersectionKHR instructions, Hit T must satisfy the condition
RayTmin ≤ Hit T ≤ RayTmax, where RayTmin is equal to the value returned by
OpRayQueryGetRayTMinKHR with the same ray query object, and RayTmax is equal to the value
of OpRayQueryGetIntersectionTKHR for the current committed intersection with the same
ray query object

4215

• VUID-RuntimeSpirv-OpRayQueryGenerateIntersectionKHR-06354
For OpRayQueryGenerateIntersectionKHR instructions, Acceleration Structure must not be
built with VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV in flags

• VUID-RuntimeSpirv-flags-08761
For OpRayQueryGetIntersectionTriangleVertexPositionsKHR instructions, Acceleration
Structure must have been built with
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DATA_ACCESS_KHR in flags

• VUID-RuntimeSpirv-OpTraceRayKHR-06355
For OpTraceRayKHR instructions, all components of the RayOrigin and RayDirection operands
must be finite floating-point values

• VUID-RuntimeSpirv-OpTraceRayKHR-06356
For OpTraceRayKHR instructions, the RayTmin and RayTmax operands must be non-negative
floating-point values

• VUID-RuntimeSpirv-OpTraceRayKHR-06552
For OpTraceRayKHR instructions, the Rayflags operand must not contain both
SkipTrianglesKHR and SkipAABBsKHR

• VUID-RuntimeSpirv-OpTraceRayKHR-06892
For OpTraceRayKHR instructions, the Rayflags operand must not contain more than one of
SkipTrianglesKHR, CullBackFacingTrianglesKHR, and CullFrontFacingTrianglesKHR

• VUID-RuntimeSpirv-OpTraceRayKHR-06893
For OpTraceRayKHR instructions, the Rayflags operand must not contain more than one of
OpaqueKHR, NoOpaqueKHR, CullOpaqueKHR, and CullNoOpaqueKHR

• VUID-RuntimeSpirv-OpTraceRayKHR-06553
For OpTraceRayKHR instructions, if the Rayflags operand contains SkipTrianglesKHR, the
pipeline must not have been created with
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR set

• VUID-RuntimeSpirv-OpTraceRayKHR-06554
For OpTraceRayKHR instructions, if the Rayflags operand contains SkipAABBsKHR, the pipeline
must not have been created with VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR
set

• VUID-RuntimeSpirv-OpTraceRayKHR-06357
For OpTraceRayKHR instructions, the RayTmin operand must be less than or equal to the
RayTmax operand

• VUID-RuntimeSpirv-OpTraceRayKHR-06358
For OpTraceRayKHR instructions, RayOrigin, RayDirection, RayTmin, and RayTmax operands
must not contain NaNs

• VUID-RuntimeSpirv-OpTraceRayKHR-06359
For OpTraceRayKHR instructions, Acceleration Structure must be an acceleration structure
built as a top-level acceleration structure

• VUID-RuntimeSpirv-OpReportIntersectionKHR-06998
The value of the “Hit Kind” operand of OpReportIntersectionKHR must be in the range
[0,127]

• VUID-RuntimeSpirv-OpTraceRayKHR-06360

4216

For OpTraceRayKHR instructions, if Acceleration Structure was built with
VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV in flags, the pipeline must have been
created with VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV set

• VUID-RuntimeSpirv-OpTraceRayMotionNV-06361
For OpTraceRayMotionNV instructions, all components of the RayOrigin and RayDirection
operands must be finite floating-point values

• VUID-RuntimeSpirv-OpTraceRayMotionNV-06362
For OpTraceRayMotionNV instructions, the RayTmin and RayTmax operands must be non-
negative floating-point values

• VUID-RuntimeSpirv-OpTraceRayMotionNV-06363
For OpTraceRayMotionNV instructions, the RayTmin operand must be less than or equal to the
RayTmax operand

• VUID-RuntimeSpirv-OpTraceRayMotionNV-06364
For OpTraceRayMotionNV instructions, RayOrigin, RayDirection, RayTmin, and RayTmax
operands must not contain NaNs

• VUID-RuntimeSpirv-OpTraceRayMotionNV-06365
For OpTraceRayMotionNV instructions, Acceleration Structure must be an acceleration
structure built as a top-level acceleration structure with
VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV in flags

• VUID-RuntimeSpirv-OpTraceRayMotionNV-06366
For OpTraceRayMotionNV instructions the time operand must be between 0.0 and 1.0

• VUID-RuntimeSpirv-OpTraceRayMotionNV-06367
For OpTraceRayMotionNV instructions the pipeline must have been created with
VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV set

• VUID-RuntimeSpirv-OpHitObjectTraceRayMotionNV-07704
For OpHitObjectTraceRayMotionNV instructions, if Acceleration Structure was built with
VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV in flags, the pipeline must have been
created with VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV set

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07705
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, all components
of the RayOrigin and RayDirection operands must be finite floating-point values

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07706
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, the RayTmin and
RayTmax operands must be non-negative floating-point values

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07707
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, the RayTmin
operand must be less than or equal to the RayTmax operand

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07708
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, RayOrigin,
RayDirection, RayTmin, and RayTmax operands must not contain NaNs

• VUID-RuntimeSpirv-OpHitObjectTraceRayMotionNV-07709
For OpHitObjectTraceRayMotionNV instructions, Acceleration Structure must be an
acceleration structure built as a top-level acceleration structure with

4217

VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV in flags

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07710
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions the time operand
must be between 0.0 and 1.0

• VUID-RuntimeSpirv-OpHitObjectTraceRayMotionNV-07711
For OpHitObjectTraceRayMotionNV instructions the pipeline must have been created with
VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV set

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07712
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, the Rayflags
operand must not contain both SkipTrianglesKHR and SkipAABBsKHR

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07713
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, the Rayflags
operand must not contain more than one of SkipTrianglesKHR,
CullBackFacingTrianglesKHR, and CullFrontFacingTrianglesKHR

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07714
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, the Rayflags
operand must not contain more than one of OpaqueKHR, NoOpaqueKHR, CullOpaqueKHR, and
CullNoOpaqueKHR

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07715
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, if the Rayflags
operand contains SkipTrianglesKHR, the pipeline must not have been created with
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR set

• VUID-RuntimeSpirv-OpHitObjectTraceRayNV-07716
For OpHitObjectTraceRayNV and OpHitObjectTraceRayMotionNV instructions, if the Rayflags
operand contains SkipAABBsKHR, the pipeline must not have been created with
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR set

• VUID-RuntimeSpirv-x-06429
In compute shaders using the GLCompute Execution Model the x size in LocalSize or
LocalSizeId must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupSize[0]

• VUID-RuntimeSpirv-y-06430
In compute shaders using the GLCompute Execution Model the y size in LocalSize or
LocalSizeId must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupSize[1]

• VUID-RuntimeSpirv-z-06431
In compute shaders using the GLCompute Execution Model the z size in LocalSize or
LocalSizeId must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupSize[2]

• VUID-RuntimeSpirv-x-06432
In compute shaders using the GLCompute Execution Model the product of x size, y size, and z
size in LocalSize or LocalSizeId must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupInvocations

• VUID-RuntimeSpirv-LocalSizeId-06434

4218

If Execution Mode LocalSizeId is used, maintenance4 must be enabled

• VUID-RuntimeSpirv-maintenance4-06817
If maintenance4 is not enabled, any OpTypeVector output interface variables must not have
a higher Component Count than a matching OpTypeVector input interface variable

• VUID-RuntimeSpirv-OpEntryPoint-08743
Any user-defined variables shared between the OpEntryPoint of two shader stages, and
declared with Input as its Storage Class for the subsequent shader stage, must have all
Location slots and Component words declared in the preceding shader stage’s OpEntryPoint
with Output as the Storage Class

• VUID-RuntimeSpirv-OpEntryPoint-07754
Any user-defined variables between the OpEntryPoint of two shader stages must have the
same type and width for each Component

• VUID-RuntimeSpirv-OpVariable-08746
Any OpVariable, Block-decorated OpTypeStruct, or Block-decorated OpTypeStruct members
shared between the OpEntryPoint of two shader stages must have matching decorations as
defined in interface matching

• VUID-RuntimeSpirv-Workgroup-06530
The sum of size in bytes for variables and padding in the Workgroup Storage Class in the
GLCompute Execution Model must be less than or equal to maxComputeSharedMemorySize

• VUID-RuntimeSpirv-shaderZeroInitializeWorkgroupMemory-06372
If shaderZeroInitializeWorkgroupMemory is not enabled, any OpVariable with Workgroup as its
Storage Class must not have an Initializer operand

• VUID-RuntimeSpirv-OpImage-06376
If an OpImage*Gather operation has an image operand of Offset, ConstOffset, or
ConstOffsets the offset value must be greater than or equal to minTexelGatherOffset

• VUID-RuntimeSpirv-OpImage-06377
If an OpImage*Gather operation has an image operand of Offset, ConstOffset, or
ConstOffsets the offset value must be less than or equal to maxTexelGatherOffset

• VUID-RuntimeSpirv-OpImageSample-06435
If an OpImageSample* or OpImageFetch* operation has an image operand of ConstOffset then
the offset value must be greater than or equal to minTexelOffset

• VUID-RuntimeSpirv-OpImageSample-06436
If an OpImageSample* or OpImageFetch* operation has an image operand of ConstOffset then
the offset value must be less than or equal to maxTexelOffset

• VUID-RuntimeSpirv-samples-08725
If an OpTypeImage has an MS operand 0, its bound image must have been created with
VkImageCreateInfo::samples as VK_SAMPLE_COUNT_1_BIT

• VUID-RuntimeSpirv-samples-08726
If an OpTypeImage has an MS operand 1, its bound image must not have been created with
VkImageCreateInfo::samples as VK_SAMPLE_COUNT_1_BIT

• VUID-RuntimeSpirv-SampleRateShading-06378
If the subpass description contains VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM, then
the SPIR-V fragment shader Capability SampleRateShading must not be enabled

4219

• VUID-RuntimeSpirv-SubgroupUniformControlFlowKHR-06379
The Execution Mode SubgroupUniformControlFlowKHR must not be applied to an entry point
unless shaderSubgroupUniformControlFlow is enabled and the corresponding shader stage
bit is set in subgroup supportedStages and the entry point does not execute any invocation
repack instructions

• VUID-RuntimeSpirv-shaderEarlyAndLateFragmentTests-06767
If shaderEarlyAndLateFragmentTests is not enabled, the EarlyAndLateFragmentTestsEXT
Execution Mode must not be used

• VUID-RuntimeSpirv-shaderEarlyAndLateFragmentTests-06768
If shaderEarlyAndLateFragmentTests feature is not enabled, the
StencilRefUnchangedFrontEXT Execution Mode must not be used

• VUID-RuntimeSpirv-shaderEarlyAndLateFragmentTests-06769
If shaderEarlyAndLateFragmentTests is not enabled, the StencilRefUnchangedBackEXT
Execution Mode must not be used

• VUID-RuntimeSpirv-shaderEarlyAndLateFragmentTests-06770
If shaderEarlyAndLateFragmentTests is not enabled, the StencilRefGreaterFrontEXT
Execution Mode must not be used

• VUID-RuntimeSpirv-shaderEarlyAndLateFragmentTests-06771
If shaderEarlyAndLateFragmentTests is not enabled, the StencilRefGreaterBackEXT Execution
Mode must not be used

• VUID-RuntimeSpirv-shaderEarlyAndLateFragmentTests-06772
If shaderEarlyAndLateFragmentTests is not enabled, the StencilRefLessFrontEXT Execution
Mode must not be used

• VUID-RuntimeSpirv-shaderEarlyAndLateFragmentTests-06773
If shaderEarlyAndLateFragmentTests is not enabled, the StencilRefLessBackEXT Execution
Mode must not be used

• VUID-RuntimeSpirv-OpImageWeightedSampleQCOM-06979
If an OpImageWeightedSampleQCOM operation is used, then the Texture Sampled Image and
Weight Image parameters must both be dynamically uniform for the quad

• VUID-RuntimeSpirv-OpImageWeightedSampleQCOM-06980
If an OpImageWeightedSampleQCOM operation is used, then the Weight Image parameter must
be of Storage Class UniformConstant and type OpTypeImage with Depth=0, Dim=2D, Arrayed=1,
MS=0, and Sampled=1

• VUID-RuntimeSpirv-OpImageWeightedSampleQCOM-06981
If an OpImageWeightedSampleQCOM operation is used, then the Weight Image parameter must
be decorated with WeightTextureQCOM

• VUID-RuntimeSpirv-OpImageBlockMatchSADQCOM-06982
If an OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM operation is used, then the
target sampled image, reference sampled image, and Block Size parameters must both be
dynamically uniform for the quad

• VUID-RuntimeSpirv-OpImageBlockMatchSSDQCOM-06983
If an OpImageBlockMatchSSDQCOM or OpImageBlockMatchSADQCOM operation is used, then target
sampled image and reference sampled image parameters must be of storage class

4220

UniformConstant and type OpTypeImage with Depth=0, Dim=2D, Arrayed=0, MS=0, and Sampled=1

• VUID-RuntimeSpirv-OpImageBlockMatchSSDQCOM-06984
If an OpImageBlockMatchSSDQCOM or OpImageBlockMatchSADQCOM operation is used, then the
target sampled image and reference sampled image parameters must be decorated with
BlockMatchTextureQCOM

• VUID-RuntimeSpirv-OpImageBlockMatchSSDQCOM-06985
If an OpImageBlockMatchSSDQCOM or OpImageBlockMatchSADQCOM operation is used, then target
sampled image and reference sampled image parameters must have been created using an
identical sampler object

• VUID-RuntimeSpirv-OpImageBlockMatchSSDQCOM-06986
If an OpImageBlockMatchSSDQCOM or OpImageBlockMatchSADQCOM operation is used, then target
sampled image and reference sampled image parameters must have been created with a
sampler object with unnormalizedCoordinates equal to VK_TRUE

• VUID-RuntimeSpirv-OpImageBlockMatchSSDQCOM-06987
If an OpImageBlockMatchSSDQCOM or OpImageBlockMatchSADQCOM operation is used, then target
sampled image and reference sampled image parameters must have been created with a
sampler object with unnormalizedCoordinates equal to VK_TRUE

• VUID-RuntimeSpirv-OpImageBlockMatchSSDQCOM-06988
If an OpImageBlockMatchSSDQCOM or OpImageBlockMatchSADQCOM operation is used, then Block
Size less than or equal to maxBlockMatchRegion

• VUID-RuntimeSpirv-OpImageBoxFilterQCOM-06989
If an OpImageBoxFilterQCOM operation is used, then Box Size.y must be equal to or greater
than 1.0 and less than or equal to maxBoxFilterBlockSize.height

• VUID-RuntimeSpirv-OpImageBoxFilterQCOM-06990
If an OpImageBoxFilterQCOM operation is used, then Sampled Texture Image and Box Size
parameters must be dynamically uniform

• VUID-RuntimeSpirv-OpEntryPoint-08727
Each OpEntryPoint must not have more than one variable decorated with
InputAttachmentIndex per image aspect of the attachment image bound to it, either
explicitly or implicitly as described by input attachment interface

• VUID-RuntimeSpirv-shaderTileImageColorReadAccess-08728
If shaderTileImageColorReadAccess is not enabled, OpColorAttachmentReadEXT operation
must not be used

• VUID-RuntimeSpirv-shaderTileImageDepthReadAccess-08729
If shaderTileImageDepthReadAccess is not enabled, OpDepthAttachmentReadEXT operation
must not be used

• VUID-RuntimeSpirv-shaderTileImageStencilReadAccess-08730
If shaderTileImageStencilReadAccess is not enabled, OpStencilAttachmentReadEXT operation
must not be used

• VUID-RuntimeSpirv-minSampleShading-08731
If sample shading is enabled and minSampleShading is 1.0, the sample operand of any
OpColorAttachmentReadEXT, OpDepthAttachmentReadEXT, or OpStencilAttachmentReadEXT
operation must evaluate to the value of the coverage index for any given fragment

4221

invocation

• VUID-RuntimeSpirv-minSampleShading-08732
If sample shading is enabled and any of the OpColorAttachmentReadEXT,
OpDepthAttachmentReadEXT, or OpStencilAttachmentReadEXT operations are used, then
minSampleShading must be 1.0

• VUID-RuntimeSpirv-MeshEXT-09218
In mesh shaders using the MeshEXT or MeshNV Execution Model and the OutputPoints
Execution Mode, if maintenance5 is not enabled, and if the number of output points is greater
than 0, a PointSize decorated variable must be written to for each output point

• VUID-RuntimeSpirv-maintenance5-09190
If maintenance5 is enabled and a PointSize decorated variable is written to, all execution
paths must write to a PointSize decorated variable

• VUID-RuntimeSpirv-ShaderEnqueueAMDX-09191
The ShaderEnqueueAMDX capability must only be used in shaders with the GLCompute
execution model

• VUID-RuntimeSpirv-NodePayloadAMDX-09192
Variables in the NodePayloadAMDX storage class must only be declared in the GLCompute
execution model

• VUID-RuntimeSpirv-maxExecutionGraphShaderPayloadSize-09193
Variables declared in the NodePayloadAMDX storage class must not be larger than the
maxExecutionGraphShaderPayloadSize limit

• VUID-RuntimeSpirv-maxExecutionGraphShaderPayloadSize-09194
Variables declared in the NodeOutputPayloadAMDX storage class must not be larger than the
maxExecutionGraphShaderPayloadSize limit

• VUID-RuntimeSpirv-maxExecutionGraphShaderPayloadSize-09195
For a given entry point, the sum of the size of any variable in the NodePayloadAMDX storage
class, and the combined size of all statically initialized variables in the
NodeOutputPayloadAMDX storage class must not be greater than
maxExecutionGraphShaderPayloadSize

• VUID-RuntimeSpirv-maxExecutionGraphShaderPayloadCount-09196
Shaders must not statically initialize more than maxExecutionGraphShaderPayloadCount
variables in the NodeOutputPayloadAMDX storage class

• VUID-RuntimeSpirv-maxExecutionGraphShaderOutputNodes-09197
Shaders must not include more than maxExecutionGraphShaderOutputNodes instances of
OpInitializeNodePayloadsAMDX

• VUID-RuntimeSpirv-OpImageBlockMatchWindow-09219
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM operation is used, then
the target sampled image, reference sampled image, and Block Size parameters must both be
dynamically uniform for the quad

• VUID-RuntimeSpirv-OpImageBlockMatchWindow-09220
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM operation is used, then
target sampled image and reference sampled image parameters must be of storage class
UniformConstant and type OpTypeImage with Depth=0, Dim=2D, Arrayed=0, MS=0, and Sampled=1

4222

• VUID-RuntimeSpirv-OpImageBlockMatchWindow-09221
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM operation is used, then
the target sampled image and reference sampled image parameters must be decorated with
BlockMatchTextureQCOM

• VUID-RuntimeSpirv-OpImageBlockMatchWindow-09222
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM operation is used, then
target sampled image and reference sampled image parameters must have been created
using an identical sampler object

• VUID-RuntimeSpirv-OpImageBlockMatchWindow-09223
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM operation is used, then
target sampled image and reference sampled image parameters must have been created with
a sampler object with unnormalizedCoordinates equal to VK_TRUE

• VUID-RuntimeSpirv-OpImageBlockMatchWindow-09224
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM operation is used, then
target sampled image and reference sampled image parameters must have been created with
sampler object with unnormalizedCoordinates equal to VK_TRUE

• VUID-RuntimeSpirv-maxBlockMatchRegion-09225
If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM operation is used, then
Block Size less than or equal to maxBlockMatchRegion

• VUID-RuntimeSpirv-pNext-09226
If a OpImageBlockMatchWindow*QCOM operation is used, then target sampled image must have
been created using asampler object that included
VkSamplerBlockMatchWindowCreateInfoQCOM in the pNext chain.

• VUID-RuntimeSpirv-MaximallyReconvergesKHR-09565
The execution mode MaximallyReconvergesKHR must not be applied to an entry point unless
the entry point does not execute any invocation repack instructions.

• VUID-RuntimeSpirv-shaderSubgroupRotateClustered-09566
If shaderSubgroupRotateClustered is VK_FALSE, then the ClusterSize operand to
OpGroupNonUniformRotateKHR must not be used.

Precision and Operation of SPIR-V Instructions
The following rules apply to half, single, and double-precision floating point instructions:

• Positive and negative infinities and positive and negative zeros are generated as dictated by
IEEE 754, but subject to the precisions allowed in the following table.

• Dividing a non-zero by a zero results in the appropriately signed IEEE 754 infinity.

• Signaling NaNs are not required to be generated and exceptions are never raised. Signaling NaN
may be converted to quiet NaNs values by any floating point instruction.

• The floating-point environment used for an instruction can be determined as follows:

◦ If the SPIR-V specifies it explicitly using the FPFastMath decoration or FPFastMathDefault
Execution Mode then that is used.

4223

◦ If the environment is not specified in the SPIR-V then it is determined as follows:

▪ If the operation is not decorated NoContraction then the flags AllowContract, AllowReassoc,
AllowRecip, and AllowTransform are assumed.

▪ If any of the following conditions are true then the flags NSZ, NotInf, and NotNaN are
assumed:

▪ The entry point does not use the Execution Mode SignedZeroInfNanPreserve with a bit-
width corresponding to one of the operands or to the result type.

▪ The operation is not one of: OpPhi, OpSelect, OpReturnValue, OpVectorExtractDynamic,
OpVectorInsertDynamic, OpVectorShuffle, OpCompositeConstruct, OpCompositeExtract,
OpCompositeInsert, OpCopyObject, OpTranspose, OpFConvert, OpFNegate, OpFAdd, OpFSub,
OpFMul, OpStore, OpLoad.

▪ The operation is an OpLoad from the Input Storage Class in the fragment shader stage.

• The following instructions must not flush denormalized values: OpConstant,
OpConstantComposite, OpSpecConstant, OpSpecConstantComposite, OpLoad, OpStore, OpBitcast, OpPhi,
OpSelect, OpFunctionCall, OpReturnValue, OpVectorExtractDynamic, OpVectorInsertDynamic,
OpVectorShuffle, OpCompositeConstruct, OpCompositeExtract, OpCompositeInsert, OpCopyMemory,
OpCopyObject.

• Denormalized values are supported.

◦ By default, any half, single, or double-precision denormalized value input into a shader or
potentially generated by any instruction (except those listed above) or any extended
instructions for GLSL in a shader may be flushed to zero.

◦ If the entry point is declared with the DenormFlushToZero Execution Mode then for the affected
instructions the denormalized result must be flushed to zero and the denormalized
operands may be flushed to zero. Denormalized values obtained via unpacking an integer
into a vector of values with smaller bit width and interpreting those values as floating-point
numbers must be flushed to zero.

◦ The following core SPIR-V instructions must respect the DenormFlushToZero Execution Mode:
OpSpecConstantOp (with opcode OpFConvert), OpFConvert, OpFNegate, OpFAdd, OpFSub, OpFMul,
OpFDiv, OpFRem, OpFMod, OpVectorTimesScalar, OpMatrixTimesScalar, OpVectorTimesMatrix,
OpMatrixTimesVector, OpMatrixTimesMatrix, OpOuterProduct, OpDot; and the following extended
instructions for GLSL: Round, RoundEven, Trunc, FAbs, Floor, Ceil, Fract, Radians, Degrees, Sin,
Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Tanh, Asinh, Acosh, Atanh, Atan2, Pow, Exp, Log, Exp2, Log2,
Sqrt, InverseSqrt, Determinant, MatrixInverse, Modf, ModfStruct, FMin, FMax, FClamp, FMix, Step,
SmoothStep, Fma, UnpackHalf2x16, UnpackDouble2x32, Length, Distance, Cross, Normalize,
FaceForward, Reflect, Refract, NMin, NMax, NClamp. Other SPIR-V instructions (except those
excluded above) may also flush denormalized values.

◦ The following core SPIR-V instructions must respect the DenormPreserve Execution Mode:
OpTranspose, OpSpecConstantOp, OpFConvert, OpFNegate, OpFAdd, OpFSub, OpFMul,
OpVectorTimesScalar, OpMatrixTimesScalar, OpVectorTimesMatrix, OpMatrixTimesVector,
OpMatrixTimesMatrix, OpOuterProduct, OpDot, OpFOrdEqual, OpFUnordEqual, OpFOrdNotEqual,
OpFUnordNotEqual, OpFOrdLessThan, OpFUnordLessThan, OpFOrdGreaterThan, OpFUnordGreaterThan,
OpFOrdLessThanEqual, OpFUnordLessThanEqual, OpFOrdGreaterThanEqual,
OpFUnordGreaterThanEqual; and the following extended instructions for GLSL: FAbs, FSign,

4224

Radians, Degrees, FMin, FMax, FClamp, FMix, Fma, PackHalf2x16, PackDouble2x32, UnpackHalf2x16,
UnpackDouble2x32, NMin, NMax, NClamp. Other SPIR-V instructions may also preserve denorm
values.

The precision of double-precision instructions is at least that of single precision.

The precision of individual operations is defined in Precision of Individual Operations. Subject to
the constraints below, however, implementations may reorder or combine operations, resulting in
expressions exhibiting different precisions than might be expected from the constituent operations.

Evaluation of Expressions

Implementations may rearrange floating-point operations using any of the mathematical
properties governing the expressions in precise arithmetic, even where the floating- point
operations do not share these properties. This includes, but is not limited to, associativity and
distributivity, and may involve a different number of rounding steps than would occur if the
operations were not rearranged. In shaders that use the SignedZeroInfNanPreserve Execution Mode
the values must be preserved if they are generated after any rearrangement but the Execution Mode
does not change which rearrangements are valid. This rearrangement can be prevented for
particular operations by using the NoContraction decoration.

Note

For example, in the absence of the NoContraction decoration implementations are
allowed to implement a + b - a and as b. The SignedZeroInfNanPreserve does not
prevent these transformations, even though they may overflow to infinity or NaN
when evaluated in floating-point.

If the NoContraction decoration is applied then operations may not be rearranged,
so, for example, a + a - a must account for possible overflow to infinity. If infinities
are not preserved then the expression may be replaced with a, since the
replacement is exact when overflow does not occur and infinities may be replaced
with undefined values. If both NoContraction and SignedZeroInfNanPreserve are
used then the result must be infinity for sufficiently large a.

Precision of Individual Operations

The precision of individual operations is defined either in terms of rounding (correctly rounded), as
an error bound in ULP, or as inherited from a formula as follows:

Correctly Rounded

Operations described as “correctly rounded” will return the infinitely precise result, x, rounded so
as to be representable in floating-point. The rounding mode is not specified, unless the entry point
is declared with the RoundingModeRTE or the RoundingModeRTZ Execution Mode. These execution modes
affect only correctly rounded SPIR-V instructions. These execution modes do not affect
OpQuantizeToF16. If the rounding mode is not specified then this rounding is implementation
specific, subject to the following rules. If x is exactly representable then x will be returned.
Otherwise, either the floating-point value closest to and no less than x or the value closest to and no
greater than x will be returned.

4225

ULP

Where an error bound of n ULP (units in the last place) is given, for an operation with infinitely
precise result x the value returned must be in the range [x - n × ulp(x), x + n × ulp(x)]. The function
ulp(x) is defined as follows:

If there exist non-equal, finite floating-point numbers a and b such that a ≤ x ≤ b then ulp(x) is
the minimum possible distance between such numbers, . If such numbers do
not exist then ulp(x) is defined to be the difference between the two non-equal, finite floating-
point numbers nearest to x.

Where the range of allowed return values includes any value of magnitude larger than that of the
largest representable finite floating-point number, operations may, additionally, return either an
infinity of the appropriate sign or the finite number with the largest magnitude of the appropriate
sign. If the infinitely precise result of the operation is not mathematically defined then the value
returned is undefined.

Inherited From …

Where an operation’s precision is described as being inherited from a formula, the result returned
must be at least as accurate as the result of computing an approximation to x using a formula
equivalent to the given formula applied to the supplied inputs. Specifically, the formula given may
be transformed using the mathematical associativity, commutativity and distributivity of the
operators involved to yield an equivalent formula. The SPIR-V precision rules, when applied to each
such formula and the given input values, define a range of permitted values. If NaN is one of the
permitted values then the operation may return any result, otherwise let the largest permitted
value in any of the ranges be Fmax and the smallest be Fmin. The operation must return a value in the
range [x - E, x + E] where . If the entry point is declared with the
DenormFlushToZero execution mode, then any intermediate denormal value(s) while evaluating the
formula may be flushed to zero. Denormal final results must be flushed to zero. If the entry point is
declared with the DenormPreserve Execution Mode, then denormals must be preserved throughout the
formula.

For half- (16 bit) and single- (32 bit) precision instructions, precisions are required to be at least as
follows:

Table 98. Precision of core SPIR-V Instructions

Instruction Single precision, unless
decorated with
RelaxedPrecision

Half precision

OpFAdd Correctly rounded.

OpFSub Correctly rounded.

OpFMul, OpVectorTimesScalar,
OpMatrixTimesScalar

Correctly rounded.

OpDot(x, y) Inherited from .

OpFOrdEqual, OpFUnordEqual Correct result.

4226

Instruction Single precision, unless
decorated with
RelaxedPrecision

Half precision

OpFOrdLessThan,
OpFUnordLessThan

Correct result.

OpFOrdGreaterThan,
OpFUnordGreaterThan

Correct result.

OpFOrdLessThanEqual,
OpFUnordLessThanEqual

Correct result.

OpFOrdGreaterThanEqual,
OpFUnordGreaterThanEqual

Correct result.

OpFDiv(x,y) 2.5 ULP for |y| in the range [2
-126, 2126].

2.5 ULP for |y| in the range [2-

14, 214].

OpFRem(x,y) Inherited from x - y × trunc(x/y).

OpFMod(x,y) Inherited from x - y × floor(x/y).

conversions between types Correctly rounded.

Note

The OpFRem and OpFMod instructions use cheap approximations of remainder, and
the error can be large due to the discontinuity in trunc() and floor(). This can
produce mathematically unexpected results in some cases, such as FMod(x,x)
computing x rather than 0, and can also cause the result to have a different sign
than the infinitely precise result.

Table 99. Precision of GLSL.std.450 Instructions

Instruction Single precision, unless
decorated with
RelaxedPrecision

Half precision

fma() Inherited from OpFMul followed by OpFAdd.

exp(x), exp2(x) ULP. ULP.

log(), log2() 3 ULP outside the range
. Absolute error <

inside the range .

3 ULP outside the range
. Absolute error <

inside the range .

pow(x, y) Inherited from exp2(y × log2(x)).

sqrt() Inherited from 1.0 / inversesqrt().

inversesqrt() 2 ULP.

radians(x) Inherited from , where is a correctly rounded
approximation to .

degrees(x) Inherited from , where is a correctly rounded
approximation to .

4227

Instruction Single precision, unless
decorated with
RelaxedPrecision

Half precision

sin() Absolute error inside the
range .

Absolute error inside the
range .

cos() Absolute error inside the
range .

Absolute error inside the
range .

tan() Inherited from .

asin(x) Inherited from .

acos(x) Inherited from .

atan(), atan2() 4096 ULP 5 ULP.

sinh(x) Inherited from .

cosh(x) Inherited from .

tanh() Inherited from .

asinh(x) Inherited from .

acosh(x) Inherited from .

atanh(x) Inherited from .

frexp() Correctly rounded.

ldexp() Correctly rounded.

length(x) Inherited from .

distance(x, y) Inherited from .

cross() Inherited from OpFSub(OpFMul, OpFMul).

normalize(x) Inherited from .

faceforward(N, I, NRef) Inherited from dot(NRef, I) < 0.0 ? N : -N.

reflect(x, y) Inherited from x - 2.0 × dot(y, x) × y.

refract(I, N, eta) Inherited from k < 0.0 ? 0.0 : eta × I - (eta × dot(N, I) + sqrt(k)) × N,
where k = 1 - eta × eta × (1.0 - dot(N, I) × dot(N, I)).

round Correctly rounded.

roundEven Correctly rounded.

trunc Correctly rounded.

fabs Correctly rounded.

fsign Correctly rounded.

floor Correctly rounded.

ceil Correctly rounded.

fract Correctly rounded.

modf Correctly rounded.

4228

Instruction Single precision, unless
decorated with
RelaxedPrecision

Half precision

fmin Correctly rounded.

fmax Correctly rounded.

fclamp Correctly rounded.

fmix(x, y, a) Inherited from .

step Correctly rounded.

smoothStep(edge0, edge1, x) Inherited from , where
.

nmin Correctly rounded.

nmax Correctly rounded.

nclamp Correctly rounded.

GLSL.std.450 extended instructions specifically defined in terms of the above instructions inherit
the above errors. GLSL.std.450 extended instructions not listed above and not defined in terms of
the above have undefined precision.

For the OpSRem and OpSMod instructions, if either operand is negative the result is undefined.

Note

While the OpSRem and OpSMod instructions are supported by the Vulkan
environment, they require non-negative values and thus do not enable additional
functionality beyond what OpUMod provides.

OpCooperativeMatrixMulAddNV performs its operations in an implementation-dependent order and
internal precision.

OpCooperativeMatrixMulAddKHR performs its operations in an implementation-dependent order and
internal precision.

Signedness of SPIR-V Image Accesses
SPIR-V associates a signedness with all integer image accesses. This is required in certain parts of
the SPIR-V and the Vulkan image access pipeline to ensure defined results. The signedness is
determined from a combination of the access instruction’s Image Operands and the underlying
image’s Sampled Type as follows:

1. If the instruction’s Image Operands contains the SignExtend operand then the access is signed.

2. If the instruction’s Image Operands contains the ZeroExtend operand then the access is unsigned.

3. Otherwise, the image accesses signedness matches that of the Sampled Type of the OpTypeImage
being accessed.

4229

Image Format and Type Matching
When specifying the Image Format of an OpTypeImage, the converted bit width and type, as shown in
the table below, must match the Sampled Type. The signedness must match the signedness of any
access to the image.

Note

Formatted accesses are always converted from a shader readable type to the
resource’s format or vice versa via Format Conversion for reads and Texel Output
Format Conversion for writes. As such, the bit width and format below do not
necessarily match 1:1 with what might be expected for some formats.

For a given Image Format, the Sampled Type must be the type described in the Type column of the
below table, with its Literal Width set to that in the Bit Width column. Every access that is made to
the image must have a signedness equal to that in the Signedness column (where applicable).

Image Format Type-Declaration instructions Bit Width Signedness

Unknown Any Any Any

Rgba32f OpTypeFloat 32 N/A
Rg32f

R32f

Rgba16f

Rg16f

R16f

Rgba16

Rg16

R16

Rgba16Snorm

Rg16Snorm

R16Snorm

Rgb10A2

R11fG11fB10f

Rgba8

Rg8

R8

Rgba8Snorm

Rg8Snorm

R8Snorm

4230

Image Format Type-Declaration instructions Bit Width Signedness

Rgba32i OpTypeInt 32 1
Rg32i

R32i

Rgba16i

Rg16i

R16i

Rgba8i

Rg8i

R8i

Rgba32ui 0
Rg32ui

R32ui

Rgba16ui

Rg16ui

R16ui

Rgb10a2ui

Rgba8ui

Rg8ui

R8ui

R64i OpTypeInt 64 1

R64ui 0

The SPIR-V Type is defined by an instruction in SPIR-V, declared with the Type-Declaration
Instruction, Bit Width, and Signedness from above.

Compatibility Between SPIR-V Image Formats and
Vulkan Formats
SPIR-V Image Format values are compatible with VkFormat values as defined below:

Table 100. SPIR-V and Vulkan Image Format Compatibility

SPIR-V Image Format Compatible Vulkan Format

Unknown Any

R8 VK_FORMAT_R8_UNORM

R8Snorm VK_FORMAT_R8_SNORM

R8ui VK_FORMAT_R8_UINT

R8i VK_FORMAT_R8_SINT

Rg8 VK_FORMAT_R8G8_UNORM

Rg8Snorm VK_FORMAT_R8G8_SNORM

4231

SPIR-V Image Format Compatible Vulkan Format

Rg8ui VK_FORMAT_R8G8_UINT

Rg8i VK_FORMAT_R8G8_SINT

Rgba8 VK_FORMAT_R8G8B8A8_UNORM

Rgba8Snorm VK_FORMAT_R8G8B8A8_SNORM

Rgba8ui VK_FORMAT_R8G8B8A8_UINT

Rgba8i VK_FORMAT_R8G8B8A8_SINT

Rgb10A2 VK_FORMAT_A2B10G10R10_UNORM_PACK32

Rgb10a2ui VK_FORMAT_A2B10G10R10_UINT_PACK32

R16 VK_FORMAT_R16_UNORM

R16Snorm VK_FORMAT_R16_SNORM

R16ui VK_FORMAT_R16_UINT

R16i VK_FORMAT_R16_SINT

R16f VK_FORMAT_R16_SFLOAT

Rg16 VK_FORMAT_R16G16_UNORM

Rg16Snorm VK_FORMAT_R16G16_SNORM

Rg16ui VK_FORMAT_R16G16_UINT

Rg16i VK_FORMAT_R16G16_SINT

Rg16f VK_FORMAT_R16G16_SFLOAT

Rgba16 VK_FORMAT_R16G16B16A16_UNORM

Rgba16Snorm VK_FORMAT_R16G16B16A16_SNORM

Rgba16ui VK_FORMAT_R16G16B16A16_UINT

Rgba16i VK_FORMAT_R16G16B16A16_SINT

Rgba16f VK_FORMAT_R16G16B16A16_SFLOAT

R32ui VK_FORMAT_R32_UINT

R32i VK_FORMAT_R32_SINT

R32f VK_FORMAT_R32_SFLOAT

Rg32ui VK_FORMAT_R32G32_UINT

Rg32i VK_FORMAT_R32G32_SINT

Rg32f VK_FORMAT_R32G32_SFLOAT

Rgba32ui VK_FORMAT_R32G32B32A32_UINT

Rgba32i VK_FORMAT_R32G32B32A32_SINT

Rgba32f VK_FORMAT_R32G32B32A32_SFLOAT

R64ui VK_FORMAT_R64_UINT

R64i VK_FORMAT_R64_SINT

R11fG11fB10f VK_FORMAT_B10G11R11_UFLOAT_PACK32

Ray Query Precision and Operation
The values returned by OpRayQueryGetIntersectionTriangleVertexPositionsKHR are transformed by

4232

the geometry transform, which is performed at standard floating point precision, but without a
specifically defined order of floating point operations to perform the matrix multiplication.

4233

Appendix B: Memory Model

Note

This memory model describes synchronizations provided by all implementations;
however, some of the synchronizations defined require extra features to be
supported by the implementation. See
VkPhysicalDeviceVulkanMemoryModelFeatures.

Agent
Operation is a general term for any task that is executed on the system.

Note

An operation is by definition something that is executed. Thus if an instruction is
skipped due to control flow, it does not constitute an operation.

Each operation is executed by a particular agent. Possible agents include each shader invocation,
each host thread, and each fixed-function stage of the pipeline.

Memory Location
A memory location identifies unique storage for 8 bits of data. Memory operations access a set of
memory locations consisting of one or more memory locations at a time, e.g. an operation accessing
a 32-bit integer in memory would read/write a set of four memory locations. Memory operations
that access whole aggregates may access any padding bytes between elements or members, but no
padding bytes at the end of the aggregate. Two sets of memory locations overlap if the intersection
of their sets of memory locations is non-empty. A memory operation must not affect memory at a
memory location not within its set of memory locations.

Memory locations for buffers and images are explicitly allocated in VkDeviceMemory objects, and
are implicitly allocated for SPIR-V variables in each shader invocation.

Variables with Workgroup storage class that point to a block-decorated type share a set of memory
locations.

Allocation
The values stored in newly allocated memory locations are determined by a SPIR-V variable’s
initializer, if present, or else are undefined. At the time an allocation is created there have been no
memory operations to any of its memory locations. The initialization is not considered to be a
memory operation.

Note

For tessellation control shader output variables, a consequence of initialization not
being considered a memory operation is that some implementations may need to

4234

insert a barrier between the initialization of the output variables and any reads of
those variables.

Memory Operation
For an operation A and memory location M:

• A reads M if and only if the data stored in M is an input to A.

• A writes M if and only if the data output from A is stored to M.

• A accesses M if and only if it either reads or writes (or both) M.

Note

A write whose value is the same as what was already in those memory locations is
still considered to be a write and has all the same effects.

Reference
A reference is an object that a particular agent can use to access a set of memory locations. On the
host, a reference is a host virtual address. On the device, a reference is:

• The descriptor that a variable is bound to, for variables in Image, Uniform, or StorageBuffer
storage classes. If the variable is an array (or array of arrays, etc.) then each element of the
array may be a unique reference.

• The address range for a buffer in PhysicalStorageBuffer storage class, where the base of the
address range is queried with vkGetBufferDeviceAddress and the length of the range is the size
of the buffer.

• A single common reference for all variables with Workgroup storage class that point to a block-
decorated type.

• The variable itself for non-block-decorated type variables in Workgroup storage class.

• The variable itself for variables in other storage classes.

Two memory accesses through distinct references may require availability and visibility operations
as defined below.

Program-Order
A dynamic instance of an instruction is defined in SPIR-V (https://registry.khronos.org/spir-v/specs/
unified1/SPIRV.html#DynamicInstance) as a way of referring to a particular execution of a static
instruction. Program-order is an ordering on dynamic instances of instructions executed by a single
shader invocation:

• (Basic block): If instructions A and B are in the same basic block, and A is listed in the module
before B, then the n’th dynamic instance of A is program-ordered before the n’th dynamic
instance of B.

4235

https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#DynamicInstance
https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#DynamicInstance

• (Branch): The dynamic instance of a branch or switch instruction is program-ordered before the
dynamic instance of the OpLabel instruction to which it transfers control.

• (Call entry): The dynamic instance of an OpFunctionCall instruction is program-ordered before
the dynamic instances of the OpFunctionParameter instructions and the body of the called
function.

• (Call exit): The dynamic instance of the instruction following an OpFunctionCall instruction is
program-ordered after the dynamic instance of the return instruction executed by the called
function.

• (Transitive Closure): If dynamic instance A of any instruction is program-ordered before
dynamic instance B of any instruction and B is program-ordered before dynamic instance C of
any instruction then A is program-ordered before C.

• (Complete definition): No other dynamic instances are program-ordered.

For instructions executed on the host, the source language defines the program-order relation (e.g.
as “sequenced-before”).

Shader Call Related
Shader-call-related is an equivalence relation on invocations defined as the symmetric and
transitive closure of:

• A is shader-call-related to B if A is created by an shader call instruction executed by B.

Shader Call Order
Shader-call-order is a partial order on dynamic instances of instructions executed by invocations
that are shader-call-related:

• (Program order): If dynamic instance A is program-ordered before B, then A is shader-call-
ordered before B.

• (Shader call entry): If A is a dynamic instance of an shader call instruction and B is a dynamic
instance executed by an invocation that is created by A, then A is shader-call-ordered before B.

• (Shader call exit): If A is a dynamic instance of an shader call instruction, B is the next dynamic
instance executed by the same invocation, and C is a dynamic instance executed by an
invocation that is created by A, then C is shader-call-ordered before B.

• (Transitive closure): If A is shader-call-ordered-before B and B is shader-call-ordered-before C,
then A is shader-call-ordered-before C.

• (Complete definition): No other dynamic instances are shader-call-ordered.

Scope
Atomic and barrier instructions include scopes which identify sets of shader invocations that must
obey the requested ordering and atomicity rules of the operation, as defined below.

The various scopes are described in detail in the Shaders chapter.

4236

Atomic Operation
An atomic operation on the device is any SPIR-V operation whose name begins with OpAtomic. An
atomic operation on the host is any operation performed with an std::atomic typed object.

Each atomic operation has a memory scope and a semantics. Informally, the scope determines
which other agents it is atomic with respect to, and the semantics constrains its ordering against
other memory accesses. Device atomic operations have explicit scopes and semantics. Each host
atomic operation implicitly uses the CrossDevice scope, and uses a memory semantics equivalent to
a C++ std::memory_order value of relaxed, acquire, release, acq_rel, or seq_cst.

Two atomic operations A and B are potentially-mutually-ordered if and only if all of the following
are true:

• They access the same set of memory locations.

• They use the same reference.

• A is in the instance of B’s memory scope.

• B is in the instance of A’s memory scope.

• A and B are not the same operation (irreflexive).

Two atomic operations A and B are mutually-ordered if and only if they are potentially-mutually-
ordered and any of the following are true:

• A and B are both device operations.

• A and B are both host operations.

• A is a device operation, B is a host operation, and the implementation supports concurrent host-
and device-atomics.

Note

If two atomic operations are not mutually-ordered, and if their sets of memory
locations overlap, then each must be synchronized against the other as if they
were non-atomic operations.

Scoped Modification Order
For a given atomic write A, all atomic writes that are mutually-ordered with A occur in an order
known as A’s scoped modification order. A’s scoped modification order relates no other operations.

Note

Invocations outside the instance of A’s memory scope may observe the values at
A’s set of memory locations becoming visible to it in an order that disagrees with
the scoped modification order.

Note

It is valid to have non-atomic operations or atomics in a different scope instance to

4237

the same set of memory locations, as long as they are synchronized against each
other as if they were non-atomic (if they are not, it is treated as a data race). That
means this definition of A’s scoped modification order could include atomic
operations that occur much later, after intervening non-atomics. That is a bit non-
intuitive, but it helps to keep this definition simple and non-circular.

Memory Semantics
Non-atomic memory operations, by default, may be observed by one agent in a different order than
they were written by another agent.

Atomics and some synchronization operations include memory semantics, which are flags that
constrain the order in which other memory accesses (including non-atomic memory accesses and
availability and visibility operations) performed by the same agent can be observed by other
agents, or can observe accesses by other agents.

Device instructions that include semantics are OpAtomic*, OpControlBarrier, OpMemoryBarrier, and
OpMemoryNamedBarrier. Host instructions that include semantics are some std::atomic methods and
memory fences.

SPIR-V supports the following memory semantics:

• Relaxed: No constraints on order of other memory accesses.

• Acquire: A memory read with this semantic performs an acquire operation. A memory barrier
with this semantic is an acquire barrier.

• Release: A memory write with this semantic performs a release operation. A memory barrier
with this semantic is a release barrier.

• AcquireRelease: A memory read-modify-write operation with this semantic performs both an
acquire operation and a release operation, and inherits the limitations on ordering from both of
those operations. A memory barrier with this semantic is both a release and acquire barrier.

Note

SPIR-V does not support “consume” semantics on the device.

The memory semantics operand also includes storage class semantics which indicate which storage
classes are constrained by the synchronization. SPIR-V storage class semantics include:

• UniformMemory

• WorkgroupMemory

• ImageMemory

• OutputMemory

Each SPIR-V memory operation accesses a single storage class. Semantics in synchronization
operations can include a combination of storage classes.

The UniformMemory storage class semantic applies to accesses to memory in the

4238

PhysicalStorageBuffer, ShaderRecordBufferKHR, Uniform and StorageBuffer storage classes. The
WorkgroupMemory storage class semantic applies to accesses to memory in the Workgroup storage
class. The ImageMemory storage class semantic applies to accesses to memory in the Image storage
class. The OutputMemory storage class semantic applies to accesses to memory in the Output
storage class.

Note

Informally, these constraints limit how memory operations can be reordered, and
these limits apply not only to the order of accesses as performed in the agent that
executes the instruction, but also to the order the effects of writes become visible
to all other agents within the same instance of the instruction’s memory scope.

Note

Release and acquire operations in different threads can act as synchronization
operations, to guarantee that writes that happened before the release are visible
after the acquire. (This is not a formal definition, just an Informative forward
reference.)

Note

The OutputMemory storage class semantic is only useful in tessellation control
shaders, which is the only execution model where output variables are shared
between invocations.

The memory semantics operand can also include availability and visibility flags, which apply
availability and visibility operations as described in availability and visibility. The
availability/visibility flags are:

• MakeAvailable: Semantics must be Release or AcquireRelease. Performs an availability
operation before the release operation or barrier.

• MakeVisible: Semantics must be Acquire or AcquireRelease. Performs a visibility operation
after the acquire operation or barrier.

The specifics of these operations are defined in Availability and Visibility Semantics.

Host atomic operations may support a different list of memory semantics and synchronization
operations, depending on the host architecture and source language.

Release Sequence
After an atomic operation A performs a release operation on a set of memory locations M, the
release sequence headed by A is the longest continuous subsequence of A’s scoped modification
order that consists of:

• the atomic operation A as its first element

• atomic read-modify-write operations on M by any agent

4239

Note

The atomics in the last bullet must be mutually-ordered with A by virtue of being
in A’s scoped modification order.

Note

This intentionally omits “atomic writes to M performed by the same agent that
performed A”, which is present in the corresponding C++ definition.

Synchronizes-With
Synchronizes-with is a relation between operations, where each operation is either an atomic
operation or a memory barrier (aka fence on the host).

If A and B are atomic operations, then A synchronizes-with B if and only if all of the following are
true:

• A performs a release operation

• B performs an acquire operation

• A and B are mutually-ordered

• B reads a value written by A or by an operation in the release sequence headed by A

OpControlBarrier, OpMemoryBarrier, and OpMemoryNamedBarrier are memory barrier instructions in
SPIR-V.

If A is a release barrier and B is an atomic operation that performs an acquire operation, then A
synchronizes-with B if and only if all of the following are true:

• there exists an atomic write X (with any memory semantics)

• A is program-ordered before X

• X and B are mutually-ordered

• B reads a value written by X or by an operation in the release sequence headed by X

◦ If X is relaxed, it is still considered to head a hypothetical release sequence for this rule

• A and B are in the instance of each other’s memory scopes

• X’s storage class is in A’s semantics.

If A is an atomic operation that performs a release operation and B is an acquire barrier, then A
synchronizes-with B if and only if all of the following are true:

• there exists an atomic read X (with any memory semantics)

• X is program-ordered before B

• X and A are mutually-ordered

• X reads a value written by A or by an operation in the release sequence headed by A

• A and B are in the instance of each other’s memory scopes

4240

• X’s storage class is in B’s semantics.

If A is a release barrier and B is an acquire barrier, then A synchronizes-with B if all of the
following are true:

• there exists an atomic write X (with any memory semantics)

• A is program-ordered before X

• there exists an atomic read Y (with any memory semantics)

• Y is program-ordered before B

• X and Y are mutually-ordered

• Y reads the value written by X or by an operation in the release sequence headed by X

◦ If X is relaxed, it is still considered to head a hypothetical release sequence for this rule

• A and B are in the instance of each other’s memory scopes

• X’s and Y’s storage class is in A’s and B’s semantics.

◦ NOTE: X and Y must have the same storage class, because they are mutually ordered.

If A is a release barrier, B is an acquire barrier, and C is a control barrier (where A can equal C, and
B can equal C), then A synchronizes-with B if all of the following are true:

• A is program-ordered before (or equals) C

• C is program-ordered before (or equals) B

• A and B are in the instance of each other’s memory scopes

• A and B are in the instance of C’s execution scope

Note

This is similar to the barrier-barrier synchronization above, but with a control
barrier filling the role of the relaxed atomics.

Let F be an ordering of fragment shader invocations, such that invocation F1 is ordered before
invocation F2 if and only if F1 and F2 overlap as described in Fragment Shader Interlock and F1

executes the interlocked code before F2.

If A is an OpEndInvocationInterlockEXT instruction and B is an OpBeginInvocationInterlockEXT
instruction, then A synchronizes-with B if the agent that executes A is ordered before the agent that
executes B in F. A and B are both considered to have FragmentInterlock memory scope and
semantics of UniformMemory and ImageMemory, and A is considered to have Release semantics
and B is considered to have Acquire semantics.

Note

OpBeginInvocationInterlockEXT and OpBeginInvocationInterlockEXT do not perform
implicit availability or visibility operations. Usually, shaders using fragment
shader interlock will declare the relevant resources as coherent to get implicit per-
instruction availability and visibility operations.

4241

If A is a release barrier and B is an acquire barrier, then A synchronizes-with B if all of the
following are true:

• A is shader-call-ordered-before B

• A and B are in the instance of each other’s memory scopes

No other release and acquire barriers synchronize-with each other.

System-Synchronizes-With
System-synchronizes-with is a relation between arbitrary operations on the device or host. Certain
operations system-synchronize-with each other, which informally means the first operation occurs
before the second and that the synchronization is performed without using application-visible
memory accesses.

If there is an execution dependency between two operations A and B, then the operation in the first
synchronization scope system-synchronizes-with the operation in the second synchronization
scope.

Note

This covers all Vulkan synchronization primitives, including device operations
executing before a synchronization primitive is signaled, wait operations
happening before subsequent device operations, signal operations happening
before host operations that wait on them, and host operations happening before
vkQueueSubmit. The list is spread throughout the synchronization chapter, and is
not repeated here.

System-synchronizes-with implicitly includes all storage class semantics and has CrossDevice scope.

If A system-synchronizes-with B, we also say A is system-synchronized-before B and B is system-
synchronized-after A.

Private vs. Non-Private
By default, non-atomic memory operations are treated as private, meaning such a memory
operation is not intended to be used for communication with other agents. Memory operations with
the NonPrivatePointer/NonPrivateTexel bit set are treated as non-private, and are intended to be
used for communication with other agents.

More precisely, for private memory operations to be Location-Ordered between distinct agents
requires using system-synchronizes-with rather than shader-based synchronization. Private
memory operations still obey program-order.

Atomic operations are always considered non-private.

4242

Inter-Thread-Happens-Before
Let SC be a non-empty set of storage class semantics. Then (using template syntax) operation A
inter-thread-happens-before<SC> operation B if and only if any of the following is true:

• A system-synchronizes-with B

• A synchronizes-with B, and both A and B have all of SC in their semantics

• A is an operation on memory in a storage class in SC or that has all of SC in its semantics, B is a
release barrier or release atomic with all of SC in its semantics, and A is program-ordered
before B

• A is an acquire barrier or acquire atomic with all of SC in its semantics, B is an operation on
memory in a storage class in SC or that has all of SC in its semantics, and A is program-ordered
before B

• A and B are both host operations and A inter-thread-happens-before B as defined in the host
language specification

• A inter-thread-happens-before<SC> some X and X inter-thread-happens-before<SC> B

Happens-Before
Operation A happens-before operation B if and only if any of the following is true:

• A is program-ordered before B

• A inter-thread-happens-before<SC> B for some set of storage classes SC

Happens-after is defined similarly.

Note

Unlike C++, happens-before is not always sufficient for a write to be visible to a
read. Additional availability and visibility operations may be required for writes
to be visible-to other memory accesses.

Note

Happens-before is not transitive, but each of program-order and inter-thread-
happens-before<SC> are transitive. These can be thought of as covering the “single-
threaded” case and the “multi-threaded” case, and it is not necessary (and not
valid) to form chains between the two.

Availability and Visibility
Availability and visibility are states of a write operation, which (informally) track how far the write
has permeated the system, i.e. which agents and references are able to observe the write.
Availability state is per memory domain. Visibility state is per (agent,reference) pair. Availability
and visibility states are per-memory location for each write.

4243

Memory domains are named according to the agents whose memory accesses use the domain.
Domains used by shader invocations are organized hierarchically into multiple smaller memory
domains which correspond to the different scopes. Each memory domain is considered the dual of
a scope, and vice versa. The memory domains defined in Vulkan include:

• host - accessible by host agents

• device - accessible by all device agents for a particular device

• shader - accessible by shader agents for a particular device, corresponding to the Device scope

• queue family instance - accessible by shader agents in a single queue family, corresponding to
the QueueFamily scope.

• fragment interlock instance - accessible by fragment shader agents that overlap, corresponding
to the FragmentInterlock scope.

• shader call instance - accessible by shader agents that are shader-call-related, corresponding to
the ShaderCallKHR scope.

• workgroup instance - accessible by shader agents in the same workgroup, corresponding to the
Workgroup scope.

• subgroup instance - accessible by shader agents in the same subgroup, corresponding to the
Subgroup scope.

The memory domains are nested in the order listed above, except for shader call instance domain,
with memory domains later in the list nested in the domains earlier in the list. The shader call
instance domain is at an implementation-dependent location in the list, and is nested according to
that location. The shader call instance domain is not broader than the queue family instance
domain.

Note

Memory domains do not correspond to storage classes or device-local and host-
local VkDeviceMemory allocations, rather they indicate whether a write can be
made visible only to agents in the same subgroup, same workgroup, overlapping
fragment shader invocation, shader-call-related ray tracing invocation, in any
shader invocation, or anywhere on the device, or host. The shader, queue family
instance, fragment interlock instance, shader call instance, workgroup instance,
and subgroup instance domains are only used for shader-based
availability/visibility operations, in other cases writes can be made available
from/visible to the shader via the device domain.

Availability operations, visibility operations, and memory domain operations alter the state of the
write operations that happen-before them, and which are included in their source scope to be
available or visible to their destination scope.

• For an availability operation, the source scope is a set of (agent,reference,memory location)
tuples, and the destination scope is a set of memory domains.

• For a memory domain operation, the source scope is a memory domain and the destination
scope is a memory domain.

• For a visibility operation, the source scope is a set of memory domains and the destination

4244

scope is a set of (agent,reference,memory location) tuples.

How the scopes are determined depends on the specific operation. Availability and memory
domain operations expand the set of memory domains to which the write is available. Visibility
operations expand the set of (agent,reference,memory location) tuples to which the write is visible.

Recall that availability and visibility states are per-memory location, and let W be a write operation
to one or more locations performed by agent A via reference R. Let L be one of the locations
written. (W,L) (the write W to L), is initially not available to any memory domain and only visible to
(A,R,L). An availability operation AV that happens-after W and that includes (A,R,L) in its source
scope makes (W,L) available to the memory domains in its destination scope.

A memory domain operation DOM that happens-after AV and for which (W,L) is available in the
source scope makes (W,L) available in the destination memory domain.

A visibility operation VIS that happens-after AV (or DOM) and for which (W,L) is available in any
domain in the source scope makes (W,L) visible to all (agent,reference,L) tuples included in its
destination scope.

If write W2 happens-after W, and their sets of memory locations overlap, then W will not be
available/visible to all agents/references for those memory locations that overlap (and future
AV/DOM/VIS ops cannot revive W’s write to those locations).

Availability, memory domain, and visibility operations are treated like other non-atomic memory
accesses for the purpose of memory semantics, meaning they can be ordered by release-acquire
sequences or memory barriers.

An availability chain is a sequence of availability operations to increasingly broad memory
domains, where element N+1 of the chain is performed in the dual scope instance of the destination
memory domain of element N and element N happens-before element N+1. An example is an
availability operation with destination scope of the workgroup instance domain that happens-
before an availability operation to the shader domain performed by an invocation in the same
workgroup. An availability chain AVC that happens-after W and that includes (A,R,L) in the source
scope makes (W,L) available to the memory domains in its final destination scope. An availability
chain with a single element is just the availability operation.

Similarly, a visibility chain is a sequence of visibility operations from increasingly narrow memory
domains, where element N of the chain is performed in the dual scope instance of the source
memory domain of element N+1 and element N happens-before element N+1. An example is a
visibility operation with source scope of the shader domain that happens-before a visibility
operation with source scope of the workgroup instance domain performed by an invocation in the
same workgroup. A visibility chain VISC that happens-after AVC (or DOM) and for which (W,L) is
available in any domain in the source scope makes (W,L) visible to all (agent,reference,L) tuples
included in its final destination scope. A visibility chain with a single element is just the visibility
operation.

Availability, Visibility, and Domain Operations
The following operations generate availability, visibility, and domain operations. When multiple

4245

availability/visibility/domain operations are described, they are system-synchronized-with each
other in the order listed.

An operation that performs a memory dependency generates:

• If the source access mask includes VK_ACCESS_HOST_WRITE_BIT, then the dependency includes a
memory domain operation from host domain to device domain.

• An availability operation with source scope of all writes in the first access scope of the
dependency and a destination scope of the device domain.

• A visibility operation with source scope of the device domain and destination scope of the
second access scope of the dependency.

• If the destination access mask includes VK_ACCESS_HOST_READ_BIT or VK_ACCESS_HOST_WRITE_BIT,
then the dependency includes a memory domain operation from device domain to host domain.

vkFlushMappedMemoryRanges performs an availability operation, with a source scope of
(agents,references) = (all host threads, all mapped memory ranges passed to the command), and
destination scope of the host domain.

vkInvalidateMappedMemoryRanges performs a visibility operation, with a source scope of the host
domain and a destination scope of (agents,references) = (all host threads, all mapped memory
ranges passed to the command).

vkQueueSubmit performs a memory domain operation from host to device, and a visibility
operation with source scope of the device domain and destination scope of all agents and
references on the device.

Availability and Visibility Semantics
A memory barrier or atomic operation via agent A that includes MakeAvailable in its semantics
performs an availability operation whose source scope includes agent A and all references in the
storage classes in that instruction’s storage class semantics, and all memory locations, and whose
destination scope is a set of memory domains selected as specified below. The implicit availability
operation is program-ordered between the barrier or atomic and all other operations program-
ordered before the barrier or atomic.

A memory barrier or atomic operation via agent A that includes MakeVisible in its semantics
performs a visibility operation whose source scope is a set of memory domains selected as specified
below, and whose destination scope includes agent A and all references in the storage classes in
that instruction’s storage class semantics, and all memory locations. The implicit visibility operation
is program-ordered between the barrier or atomic and all other operations program-ordered after
the barrier or atomic.

The memory domains are selected based on the memory scope of the instruction as follows:

• Device scope uses the shader domain

• QueueFamily scope uses the queue family instance domain

• FragmentInterlock scope uses the fragment interlock instance domain

4246

• ShaderCallKHR scope uses the shader call instance domain

• Workgroup scope uses the workgroup instance domain

• Subgroup uses the subgroup instance domain

• Invocation perform no availability/visibility operations.

When an availability operation performed by an agent A includes a memory domain D in its
destination scope, where D corresponds to scope instance S, it also includes the memory domains
that correspond to each smaller scope instance S' that is a subset of S and that includes A. Similarly
for visibility operations.

Per-Instruction Availability and Visibility Semantics
A memory write instruction that includes MakePointerAvailable, or an image write instruction that
includes MakeTexelAvailable, performs an availability operation whose source scope includes the
agent and reference used to perform the write and the memory locations written by the
instruction, and whose destination scope is a set of memory domains selected by the Scope operand
specified in Availability and Visibility Semantics. The implicit availability operation is program-
ordered between the write and all other operations program-ordered after the write.

A memory read instruction that includes MakePointerVisible, or an image read instruction that
includes MakeTexelVisible, performs a visibility operation whose source scope is a set of memory
domains selected by the Scope operand as specified in Availability and Visibility Semantics, and
whose destination scope includes the agent and reference used to perform the read and the
memory locations read by the instruction. The implicit visibility operation is program-ordered
between read and all other operations program-ordered before the read.

Note

Although reads with per-instruction visibility only perform visibility ops from the
shader or fragment interlock instance or shader call instance or workgroup
instance or subgroup instance domain, they will also see writes that were made
visible via the device domain, i.e. those writes previously performed by non-
shader agents and made visible via API commands.

Note

It is expected that all invocations in a subgroup execute on the same processor
with the same path to memory, and thus availability and visibility operations with
subgroup scope can be expected to be “free”.

Location-Ordered
Let X and Y be memory accesses to overlapping sets of memory locations M, where X != Y. Let (AX,R

X) be the agent and reference used for X, and (AY,RY) be the agent and reference used for Y. For now,
let “→” denote happens-before and “→rcpo” denote the reflexive closure of program-ordered before.

If D1 and D2 are different memory domains, then let DOM(D1,D2) be a memory domain operation
from D1 to D2. Otherwise, let DOM(D,D) be a placeholder such that X→DOM(D,D)→Y if and only if

4247

X→Y.

X is location-ordered before Y for a location L in M if and only if any of the following is true:

• AX == AY and RX == RY and X→Y

◦ NOTE: this case means no availability/visibility ops are required when it is the same
(agent,reference).

• X is a read, both X and Y are non-private, and X→Y

• X is a read, and X (transitively) system-synchronizes with Y

• If RX == RY and AX and AY access a common memory domain D (e.g. are in the same workgroup
instance if D is the workgroup instance domain), and both X and Y are non-private:

◦ X is a write, Y is a write, AVC(AX,RX,D,L) is an availability chain making (X,L) available to
domain D, and X→rcpoAVC(AX,RX,D,L)→Y

◦ X is a write, Y is a read, AVC(AX,RX,D,L) is an availability chain making (X,L) available to
domain D, VISC(AY,RY,D,L) is a visibility chain making writes to L available in domain D
visible to Y, and X→rcpoAVC(AX,RX,D,L)→VISC(AY,RY,D,L)→rcpoY

◦ If VkPhysicalDeviceVulkanMemoryModelFeatures
::vulkanMemoryModelAvailabilityVisibilityChains is VK_FALSE, then AVC and VISC must each
only have a single element in the chain, in each sub-bullet above.

• Let DX and DY each be either the device domain or the host domain, depending on whether AX

and AY execute on the device or host:

◦ X is a write and Y is a write, and X→AV(AX,RX,DX,L)→DOM(DX,DY)→Y

◦ X is a write and Y is a read, and X→AV(AX,RX,DX,L)→DOM(DX,DY)→VIS(AY,RY,DY,L)→Y

Note

The final bullet (synchronization through device/host domain) requires API-level
synchronization operations, since the device/host domains are not accessible via
shader instructions. And “device domain” is not to be confused with “device
scope”, which synchronizes through the “shader domain”.

Data Race
Let X and Y be operations that access overlapping sets of memory locations M, where X != Y, and at
least one of X and Y is a write, and X and Y are not mutually-ordered atomic operations. If there
does not exist a location-ordered relation between X and Y for each location in M, then there is a
data race.

Applications must ensure that no data races occur during the execution of their application.

Note

Data races can only occur due to instructions that are actually executed. For
example, an instruction skipped due to control flow must not contribute to a data
race.

4248

Visible-To
Let X be a write and Y be a read whose sets of memory locations overlap, and let M be the set of
memory locations that overlap. Let M2 be a non-empty subset of M. Then X is visible-to Y for
memory locations M2 if and only if all of the following are true:

• X is location-ordered before Y for each location L in M2.

• There does not exist another write Z to any location L in M2 such that X is location-ordered
before Z for location L and Z is location-ordered before Y for location L.

If X is visible-to Y, then Y reads the value written by X for locations M2.

Note

It is possible for there to be a write between X and Y that overwrites a subset of the
memory locations, but the remaining memory locations (M2) will still be visible-to
Y.

Acyclicity
Reads-from is a relation between operations, where the first operation is a write, the second
operation is a read, and the second operation reads the value written by the first operation. From-
reads is a relation between operations, where the first operation is a read, the second operation is a
write, and the first operation reads a value written earlier than the second operation in the second
operation’s scoped modification order (or the first operation reads from the initial value, and the
second operation is any write to the same locations).

Then the implementation must guarantee that no cycles exist in the union of the following
relations:

• location-ordered

• scoped modification order (over all atomic writes)

• reads-from

• from-reads

Note

This is a “consistency” axiom, which informally guarantees that sequences of
operations cannot violate causality.

Scoped Modification Order Coherence

Let A and B be mutually-ordered atomic operations, where A is location-ordered before B. Then the
following rules are a consequence of acyclicity:

• If A and B are both reads and A does not read the initial value, then the write that A takes its
value from must be earlier in its own scoped modification order than (or the same as) the write
that B takes its value from (no cycles between location-order, reads-from, and from-reads).

4249

• If A is a read and B is a write and A does not read the initial value, then A must take its value
from a write earlier than B in B’s scoped modification order (no cycles between location-order,
scope modification order, and reads-from).

• If A is a write and B is a read, then B must take its value from A or a write later than A in A’s
scoped modification order (no cycles between location-order, scoped modification order, and
from-reads).

• If A and B are both writes, then A must be earlier than B in A’s scoped modification order (no
cycles between location-order and scoped modification order).

• If A is a write and B is a read-modify-write and B reads the value written by A, then B comes
immediately after A in A’s scoped modification order (no cycles between scoped modification
order and from-reads).

Shader I/O
If a shader invocation A in a shader stage other than Vertex performs a memory read operation X
from an object in storage class CallableDataKHR, IncomingCallableDataKHR, RayPayloadKHR,
HitAttributeKHR, IncomingRayPayloadKHR, or Input, then X is system-synchronized-after all writes to
the corresponding CallableDataKHR, IncomingCallableDataKHR, RayPayloadKHR, HitAttributeKHR,
IncomingRayPayloadKHR, or Output storage variable(s) in the shader invocation(s) that contribute to
generating invocation A, and those writes are all visible-to X.

Note

It is not necessary for the upstream shader invocations to have completed
execution, they only need to have generated the output that is being read.

Deallocation
A call to vkFreeMemory must happen-after all memory operations on all memory locations in that
VkDeviceMemory object.

Note

Normally, device memory operations in a given queue are synchronized with
vkFreeMemory by having a host thread wait on a fence signaled by that queue,
and the wait happens-before the call to vkFreeMemory on the host.

The deallocation of SPIR-V variables is managed by the system and happens-after all operations on
those variables.

Descriptions (Informative)
This subsection offers more easily understandable consequences of the memory model for
app/compiler developers.

Let SC be the storage class(es) specified by a release or acquire operation or barrier.

4250

• An atomic write with release semantics must not be reordered against any read or write to SC
that is program-ordered before it (regardless of the storage class the atomic is in).

• An atomic read with acquire semantics must not be reordered against any read or write to SC
that is program-ordered after it (regardless of the storage class the atomic is in).

• Any write to SC program-ordered after a release barrier must not be reordered against any read
or write to SC program-ordered before that barrier.

• Any read from SC program-ordered before an acquire barrier must not be reordered against
any read or write to SC program-ordered after the barrier.

A control barrier (even if it has no memory semantics) must not be reordered against any memory
barriers.

This memory model allows memory accesses with and without availability and visibility
operations, as well as atomic operations, all to be performed on the same memory location. This is
critical to allow it to reason about memory that is reused in multiple ways, e.g. across the lifetime of
different shader invocations or draw calls. While GLSL (and legacy SPIR-V) applies the “coherent”
decoration to variables (for historical reasons), this model treats each memory access instruction as
having optional implicit availability/visibility operations. GLSL to SPIR-V compilers should map all
(non-atomic) operations on a coherent variable to Make{Pointer,Texel}{Available}{Visible} flags in
this model.

Atomic operations implicitly have availability/visibility operations, and the scope of those
operations is taken from the atomic operation’s scope.

Tessellation Output Ordering
For SPIR-V that uses the Vulkan Memory Model, the OutputMemory storage class is used to
synchronize accesses to tessellation control output variables. For legacy SPIR-V that does not enable
the Vulkan Memory Model via OpMemoryModel, tessellation outputs can be ordered using a control
barrier with no particular memory scope or semantics, as defined below.

Let X and Y be memory operations performed by shader invocations AX and AY. Operation X is
tessellation-output-ordered before operation Y if and only if all of the following are true:

• There is a dynamic instance of an OpControlBarrier instruction C such that X is program-ordered
before C in AX and C is program-ordered before Y in AY.

• AX and AY are in the same instance of C’s execution scope.

If shader invocations AX and AY in the TessellationControl execution model execute memory
operations X and Y, respectively, on the Output storage class, and X is tessellation-output-ordered
before Y with a scope of Workgroup, then X is location-ordered before Y, and if X is a write and Y is a
read then X is visible-to Y.

Cooperative Matrix Memory Access
For each dynamic instance of a cooperative matrix load or store instruction
(OpCooperativeMatrixLoadNV or OpCooperativeMatrixStoreNV), a single implementation-dependent

4251

invocation within the instance of the matrix’s scope performs a non-atomic load or store
(respectively) to each memory location that is defined to be accessed by the instruction.

4252

Appendix C: Compressed Image Formats
The compressed texture formats used by Vulkan are described in the specifically identified sections
of the Khronos Data Format Specification, version 1.3.

Unless otherwise described, the quantities encoded in these compressed formats are treated as
normalized, unsigned values.

Those formats listed as sRGB-encoded have in-memory representations of R, G and B components
which are nonlinearly-encoded as R', G', and B'; any alpha component is unchanged. As part of
filtering, the nonlinear R', G', and B' values are converted to linear R, G, and B components; any
alpha component is unchanged. The conversion between linear and nonlinear encoding is
performed as described in the “KHR_DF_TRANSFER_SRGB” section of the Khronos Data Format
Specification.

4253

Block-Compressed Image Formats
BC1, BC2 and BC3 formats are described in “S3TC Compressed Texture Image Formats” chapter of
the Khronos Data Format Specification. BC4 and BC5 are described in the “RGTC Compressed
Texture Image Formats” chapter. BC6H and BC7 are described in the “BPTC Compressed Texture
Image Formats” chapter.

Table 101. Mapping of Vulkan BC formats to descriptions

VkFormat Khronos Data Format Specification
description

Formats described in the “S3TC Compressed Texture Image Formats” chapter

VK_FORMAT_BC1_RGB_UNORM_BLOCK BC1 with no alpha

VK_FORMAT_BC1_RGB_SRGB_BLOCK BC1 with no alpha, sRGB-encoded

VK_FORMAT_BC1_RGBA_UNORM_BLOCK BC1 with alpha

VK_FORMAT_BC1_RGBA_SRGB_BLOCK BC1 with alpha, sRGB-encoded

VK_FORMAT_BC2_UNORM_BLOCK BC2

VK_FORMAT_BC2_SRGB_BLOCK BC2, sRGB-encoded

VK_FORMAT_BC3_UNORM_BLOCK BC3

VK_FORMAT_BC3_SRGB_BLOCK BC3, sRGB-encoded

Formats described in the “RGTC Compressed Texture Image Formats” chapter

VK_FORMAT_BC4_UNORM_BLOCK BC4 unsigned

VK_FORMAT_BC4_SNORM_BLOCK BC4 signed

VK_FORMAT_BC5_UNORM_BLOCK BC5 unsigned

VK_FORMAT_BC5_SNORM_BLOCK BC5 signed

Formats described in the “BPTC Compressed Texture Image Formats” chapter

VK_FORMAT_BC6H_UFLOAT_BLOCK BC6H (unsigned version)

VK_FORMAT_BC6H_SFLOAT_BLOCK BC6H (signed version)

VK_FORMAT_BC7_UNORM_BLOCK BC7

VK_FORMAT_BC7_SRGB_BLOCK BC7, sRGB-encoded

4254

ETC Compressed Image Formats
The following formats are described in the “ETC2 Compressed Texture Image Formats” chapter of
the Khronos Data Format Specification.

Table 102. Mapping of Vulkan ETC formats to descriptions

VkFormat Khronos Data Format Specification
description

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK RGB ETC2

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK RGB ETC2 with sRGB encoding

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK RGB ETC2 with punch-through alpha

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK RGB ETC2 with punch-through alpha and sRGB

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK RGBA ETC2

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK RGBA ETC2 with sRGB encoding

VK_FORMAT_EAC_R11_UNORM_BLOCK Unsigned R11 EAC

VK_FORMAT_EAC_R11_SNORM_BLOCK Signed R11 EAC

VK_FORMAT_EAC_R11G11_UNORM_BLOCK Unsigned RG11 EAC

VK_FORMAT_EAC_R11G11_SNORM_BLOCK Signed RG11 EAC

4255

ASTC Compressed Image Formats
ASTC formats are described in the “ASTC Compressed Texture Image Formats” chapter of the
Khronos Data Format Specification.

Table 103. Mapping of Vulkan ASTC formats to descriptions

VkFormat Compressed
texel block
dimensions

Requested mode

VK_FORMAT_ASTC_4x4_UNORM_BLOCK 4 × 4 Linear LDR

VK_FORMAT_ASTC_4x4_SRGB_BLOCK 4 × 4 sRGB

VK_FORMAT_ASTC_5x4_UNORM_BLOCK 5 × 4 Linear LDR

VK_FORMAT_ASTC_5x4_SRGB_BLOCK 5 × 4 sRGB

VK_FORMAT_ASTC_5x5_UNORM_BLOCK 5 × 5 Linear LDR

VK_FORMAT_ASTC_5x5_SRGB_BLOCK 5 × 5 sRGB

VK_FORMAT_ASTC_6x5_UNORM_BLOCK 6 × 5 Linear LDR

VK_FORMAT_ASTC_6x5_SRGB_BLOCK 6 × 5 sRGB

VK_FORMAT_ASTC_6x6_UNORM_BLOCK 6 × 6 Linear LDR

VK_FORMAT_ASTC_6x6_SRGB_BLOCK 6 × 6 sRGB

VK_FORMAT_ASTC_8x5_UNORM_BLOCK 8 × 5 Linear LDR

VK_FORMAT_ASTC_8x5_SRGB_BLOCK 8 × 5 sRGB

VK_FORMAT_ASTC_8x6_UNORM_BLOCK 8 × 6 Linear LDR

VK_FORMAT_ASTC_8x6_SRGB_BLOCK 8 × 6 sRGB

VK_FORMAT_ASTC_8x8_UNORM_BLOCK 8 × 8 Linear LDR

VK_FORMAT_ASTC_8x8_SRGB_BLOCK 8 × 8 sRGB

VK_FORMAT_ASTC_10x5_UNORM_BLOCK 10 × 5 Linear LDR

VK_FORMAT_ASTC_10x5_SRGB_BLOCK 10 × 5 sRGB

VK_FORMAT_ASTC_10x6_UNORM_BLOCK 10 × 6 Linear LDR

VK_FORMAT_ASTC_10x6_SRGB_BLOCK 10 × 6 sRGB

VK_FORMAT_ASTC_10x8_UNORM_BLOCK 10 × 8 Linear LDR

VK_FORMAT_ASTC_10x8_SRGB_BLOCK 10 × 8 sRGB

VK_FORMAT_ASTC_10x10_UNORM_BLOCK 10 × 10 Linear LDR

VK_FORMAT_ASTC_10x10_SRGB_BLOCK 10 × 10 sRGB

VK_FORMAT_ASTC_12x10_UNORM_BLOCK 12 × 10 Linear LDR

VK_FORMAT_ASTC_12x10_SRGB_BLOCK 12 × 10 sRGB

VK_FORMAT_ASTC_12x12_UNORM_BLOCK 12 × 12 Linear LDR

4256

VkFormat Compressed
texel block
dimensions

Requested mode

VK_FORMAT_ASTC_12x12_SRGB_BLOCK 12 × 12 sRGB

VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK 4 × 4 HDR

VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK 5 × 4 HDR

VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK 5 × 5 HDR

VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK 6 × 5 HDR

VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK 6 × 6 HDR

VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK 8 × 5 HDR

VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK 8 × 6 HDR

VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK 8 × 8 HDR

VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK 10 × 5 HDR

VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK 10 × 6 HDR

VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK 10 × 8 HDR

VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK 10 × 10 HDR

VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK 12 × 10 HDR

VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK 12 × 12 HDR

ASTC textures containing HDR block encodings should be passed to the API using an ASTC SFLOAT
texture format.

Note

An HDR block in a texture passed using a LDR UNORM format will return the
appropriate ASTC error color if the implementation supports only the ASTC LDR
profile, but may result in either the error color or a decompressed HDR color if the
implementation supports HDR decoding.

ASTC Decode Mode

If the VK_EXT_astc_decode_mode extension is enabled, the decode mode is determined as follows:

Table 104. Mapping of Vulkan ASTC decoding format to ASTC decoding modes

VkFormat Decoding mode

VK_FORMAT_R16G16B16A16_SFLOAT decode_float16

VK_FORMAT_R8G8B8A8_UNORM decode_unorm8

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 decode_rgb9e5

Otherwise, the ASTC decode mode is decode_float16.

4257

Note that an implementation may use HDR mode when linear LDR mode is requested unless the
decode mode is decode_unorm8.

4258

PVRTC Compressed Image Formats
PVRTC formats are described in the “PVRTC Compressed Texture Image Formats” chapter of the
Khronos Data Format Specification.

Table 105. Mapping of Vulkan PVRTC formats to descriptions

VkFormat Compres
sed texel

block
dimensio

ns

sRGB-encoded

VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG 8 × 4 No

VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG 4 × 4 No

VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG 8 × 4 No

VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG 4 × 4 No

VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG 8 × 4 Yes

VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG 4 × 4 Yes

VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG 8 × 4 Yes

VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG 4 × 4 Yes

4259

Appendix D: Core Revisions (Informative)
New minor versions of the Vulkan API are defined periodically by the Khronos Vulkan Working
Group. These consist of some amount of additional functionality added to the core API, potentially
including both new functionality and functionality promoted from extensions.

It is possible to build the specification for earlier versions, but to aid readability of the latest
versions, this appendix gives an overview of the changes as compared to earlier versions.

Version 1.3
Vulkan Version 1.3 promoted a number of key extensions into the core API:

• VK_KHR_copy_commands2

• VK_KHR_dynamic_rendering

• VK_KHR_format_feature_flags2

• VK_KHR_maintenance4

• VK_KHR_shader_integer_dot_product

• VK_KHR_shader_non_semantic_info

• VK_KHR_shader_terminate_invocation

• VK_KHR_synchronization2

• VK_KHR_zero_initialize_workgroup_memory

• VK_EXT_4444_formats

• VK_EXT_extended_dynamic_state

• VK_EXT_extended_dynamic_state2

• VK_EXT_image_robustness

• VK_EXT_inline_uniform_block

• VK_EXT_pipeline_creation_cache_control

• VK_EXT_pipeline_creation_feedback

• VK_EXT_private_data

• VK_EXT_shader_demote_to_helper_invocation

• VK_EXT_subgroup_size_control

• VK_EXT_texel_buffer_alignment

4260

• VK_EXT_texture_compression_astc_hdr

• VK_EXT_tooling_info

• VK_EXT_ycbcr_2plane_444_formats

All differences in behavior between these extensions and the corresponding Vulkan 1.3
functionality are summarized below.

Differences Relative to VK_EXT_4444_formats

If the VK_EXT_4444_formats extension is not supported, support for all formats defined by it are
optional in Vulkan 1.3. There are no members in the VkPhysicalDeviceVulkan13Features structure
corresponding to the VkPhysicalDevice4444FormatsFeaturesEXT structure.

Differences Relative to VK_EXT_extended_dynamic_state

All dynamic state enumerants and entry points defined by VK_EXT_extended_dynamic_state are
required in Vulkan 1.3. There are no members in the VkPhysicalDeviceVulkan13Features structure
corresponding to the VkPhysicalDeviceExtendedDynamicStateFeaturesEXT structure.

Differences Relative to VK_EXT_extended_dynamic_state2

The optional dynamic state enumerants and entry points defined by
VK_EXT_extended_dynamic_state2 for patch control points and logic op are not promoted in Vulkan
1.3. There are no members in the VkPhysicalDeviceVulkan13Features structure corresponding to
the VkPhysicalDeviceExtendedDynamicState2FeaturesEXT structure.

Differences Relative to VK_EXT_texel_buffer_alignment

The more specific alignment requirements defined by
VkPhysicalDeviceTexelBufferAlignmentProperties are required in Vulkan 1.3. There are no
members in the VkPhysicalDeviceVulkan13Features structure corresponding to the
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT structure. The texelBufferAlignment feature is
enabled if using a Vulkan 1.3 instance.

Differences Relative to VK_EXT_texture_compression_astc_hdr

If the VK_EXT_texture_compression_astc_hdr extension is not supported, support for all formats
defined by it are optional in Vulkan 1.3. The textureCompressionASTC_HDR member of
VkPhysicalDeviceVulkan13Features indicates whether a Vulkan 1.3 implementation supports these
formats.

Differences Relative to VK_EXT_ycbcr_2plane_444_formats

If the VK_EXT_ycbcr_2plane_444_formats extension is not supported, support for all formats defined
by it are optional in Vulkan 1.3. There are no members in the VkPhysicalDeviceVulkan13Features
structure corresponding to the VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT structure.

4261

Additional Vulkan 1.3 Feature Support

In addition to the promoted extensions described above, Vulkan 1.3 added required support for:

• SPIR-V version 1.6

◦ SPIR-V 1.6 deprecates (but does not remove) the WorkgroupSize decoration.

• The bufferDeviceAddress feature which indicates support for accessing memory in shaders as
storage buffers via vkGetBufferDeviceAddress.

• The vulkanMemoryModel and vulkanMemoryModelDeviceScope features, which indicate support for
the corresponding Vulkan Memory Model capabilities.

• The maxInlineUniformTotalSize limit is added to provide the total size of all inline uniform block
bindings in a pipeline layout.

New Macros

• VK_API_VERSION_1_3

New Base Types

• VkFlags64

New Object Types

• VkPrivateDataSlot

New Commands

• vkCmdBeginRendering

• vkCmdBindVertexBuffers2

• vkCmdBlitImage2

• vkCmdCopyBuffer2

• vkCmdCopyBufferToImage2

• vkCmdCopyImage2

• vkCmdCopyImageToBuffer2

• vkCmdEndRendering

• vkCmdPipelineBarrier2

• vkCmdResetEvent2

• vkCmdResolveImage2

• vkCmdSetCullMode

• vkCmdSetDepthBiasEnable

• vkCmdSetDepthBoundsTestEnable

• vkCmdSetDepthCompareOp

4262

• vkCmdSetDepthTestEnable

• vkCmdSetDepthWriteEnable

• vkCmdSetEvent2

• vkCmdSetFrontFace

• vkCmdSetPrimitiveRestartEnable

• vkCmdSetPrimitiveTopology

• vkCmdSetRasterizerDiscardEnable

• vkCmdSetScissorWithCount

• vkCmdSetStencilOp

• vkCmdSetStencilTestEnable

• vkCmdSetViewportWithCount

• vkCmdWaitEvents2

• vkCmdWriteTimestamp2

• vkCreatePrivateDataSlot

• vkDestroyPrivateDataSlot

• vkGetDeviceBufferMemoryRequirements

• vkGetDeviceImageMemoryRequirements

• vkGetDeviceImageSparseMemoryRequirements

• vkGetPhysicalDeviceToolProperties

• vkGetPrivateData

• vkQueueSubmit2

• vkSetPrivateData

New Structures

• VkBlitImageInfo2

• VkBufferCopy2

• VkBufferImageCopy2

• VkBufferMemoryBarrier2

• VkCommandBufferSubmitInfo

• VkCopyBufferInfo2

• VkCopyBufferToImageInfo2

• VkCopyImageInfo2

• VkCopyImageToBufferInfo2

• VkDependencyInfo

• VkDeviceBufferMemoryRequirements

4263

• VkDeviceImageMemoryRequirements

• VkImageBlit2

• VkImageCopy2

• VkImageMemoryBarrier2

• VkImageResolve2

• VkPhysicalDeviceToolProperties

• VkPipelineCreationFeedback

• VkPrivateDataSlotCreateInfo

• VkRenderingAttachmentInfo

• VkRenderingInfo

• VkResolveImageInfo2

• VkSemaphoreSubmitInfo

• VkSubmitInfo2

• Extending VkCommandBufferInheritanceInfo:

◦ VkCommandBufferInheritanceRenderingInfo

• Extending VkDescriptorPoolCreateInfo:

◦ VkDescriptorPoolInlineUniformBlockCreateInfo

• Extending VkDeviceCreateInfo:

◦ VkDevicePrivateDataCreateInfo

• Extending VkFormatProperties2:

◦ VkFormatProperties3

• Extending VkGraphicsPipelineCreateInfo:

◦ VkPipelineRenderingCreateInfo

• Extending VkGraphicsPipelineCreateInfo, VkComputePipelineCreateInfo,
VkRayTracingPipelineCreateInfoNV, VkRayTracingPipelineCreateInfoKHR,
VkExecutionGraphPipelineCreateInfoAMDX:

◦ VkPipelineCreationFeedbackCreateInfo

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDynamicRenderingFeatures

◦ VkPhysicalDeviceImageRobustnessFeatures

◦ VkPhysicalDeviceInlineUniformBlockFeatures

◦ VkPhysicalDeviceMaintenance4Features

◦ VkPhysicalDevicePipelineCreationCacheControlFeatures

◦ VkPhysicalDevicePrivateDataFeatures

◦ VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures

4264

◦ VkPhysicalDeviceShaderIntegerDotProductFeatures

◦ VkPhysicalDeviceShaderTerminateInvocationFeatures

◦ VkPhysicalDeviceSubgroupSizeControlFeatures

◦ VkPhysicalDeviceSynchronization2Features

◦ VkPhysicalDeviceTextureCompressionASTCHDRFeatures

◦ VkPhysicalDeviceVulkan13Features

◦ VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceInlineUniformBlockProperties

◦ VkPhysicalDeviceMaintenance4Properties

◦ VkPhysicalDeviceShaderIntegerDotProductProperties

◦ VkPhysicalDeviceSubgroupSizeControlProperties

◦ VkPhysicalDeviceTexelBufferAlignmentProperties

◦ VkPhysicalDeviceVulkan13Properties

• Extending VkPipelineShaderStageCreateInfo, VkShaderCreateInfoEXT:

◦ VkPipelineShaderStageRequiredSubgroupSizeCreateInfo

• Extending VkSubpassDependency2:

◦ VkMemoryBarrier2

• Extending VkWriteDescriptorSet:

◦ VkWriteDescriptorSetInlineUniformBlock

New Enums

• VkAccessFlagBits2

• VkFormatFeatureFlagBits2

• VkPipelineCreationFeedbackFlagBits

• VkPipelineStageFlagBits2

• VkRenderingFlagBits

• VkSubmitFlagBits

• VkToolPurposeFlagBits

New Bitmasks

• VkAccessFlags2

• VkFormatFeatureFlags2

• VkPipelineCreationFeedbackFlags

• VkPipelineStageFlags2

4265

• VkPrivateDataSlotCreateFlags

• VkRenderingFlags

• VkSubmitFlags

• VkToolPurposeFlags

New Enum Constants

• Extending VkAccessFlagBits:

◦ VK_ACCESS_NONE

• Extending VkAttachmentStoreOp:

◦ VK_ATTACHMENT_STORE_OP_NONE

• Extending VkDescriptorType:

◦ VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_CULL_MODE

◦ VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE

◦ VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE

◦ VK_DYNAMIC_STATE_DEPTH_COMPARE_OP

◦ VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE

◦ VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE

◦ VK_DYNAMIC_STATE_FRONT_FACE

◦ VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE

◦ VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY

◦ VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE

◦ VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT

◦ VK_DYNAMIC_STATE_STENCIL_OP

◦ VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE

◦ VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE

◦ VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT

• Extending VkEventCreateFlagBits:

◦ VK_EVENT_CREATE_DEVICE_ONLY_BIT

• Extending VkFormat:

◦ VK_FORMAT_A4B4G4R4_UNORM_PACK16

◦ VK_FORMAT_A4R4G4B4_UNORM_PACK16

◦ VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK

4266

◦ VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G16_B16R16_2PLANE_444_UNORM

◦ VK_FORMAT_G8_B8R8_2PLANE_444_UNORM

• Extending VkImageAspectFlagBits:

◦ VK_IMAGE_ASPECT_NONE

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL

◦ VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_PRIVATE_DATA_SLOT

• Extending VkPipelineCacheCreateFlagBits:

◦ VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

◦ VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT

• Extending VkPipelineShaderStageCreateFlagBits:

◦ VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT

◦ VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_NONE

• Extending VkResult:

◦ VK_PIPELINE_COMPILE_REQUIRED

4267

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2

◦ VK_STRUCTURE_TYPE_BUFFER_COPY_2

◦ VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2

◦ VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO

◦ VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2

◦ VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2

◦ VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2

◦ VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2

◦ VK_STRUCTURE_TYPE_DEPENDENCY_INFO

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS

◦ VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS

◦ VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO

◦ VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3

◦ VK_STRUCTURE_TYPE_IMAGE_BLIT_2

◦ VK_STRUCTURE_TYPE_IMAGE_COPY_2

◦ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2

◦ VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2

◦ VK_STRUCTURE_TYPE_MEMORY_BARRIER_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES

4268

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES

◦ VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO

◦ VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO

◦ VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO

◦ VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO

◦ VK_STRUCTURE_TYPE_RENDERING_INFO

◦ VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2

◦ VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO

◦ VK_STRUCTURE_TYPE_SUBMIT_INFO_2

◦ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK

Version 1.2
Vulkan Version 1.2 promoted a number of key extensions into the core API:

• VK_KHR_8bit_storage

• VK_KHR_buffer_device_address

• VK_KHR_create_renderpass2

• VK_KHR_depth_stencil_resolve

• VK_KHR_draw_indirect_count

• VK_KHR_driver_properties

• VK_KHR_image_format_list

• VK_KHR_imageless_framebuffer

• VK_KHR_sampler_mirror_clamp_to_edge

• VK_KHR_separate_depth_stencil_layouts

4269

• VK_KHR_shader_atomic_int64

• VK_KHR_shader_float16_int8

• VK_KHR_shader_float_controls

• VK_KHR_shader_subgroup_extended_types

• VK_KHR_spirv_1_4

• VK_KHR_timeline_semaphore

• VK_KHR_uniform_buffer_standard_layout

• VK_KHR_vulkan_memory_model

• VK_EXT_descriptor_indexing

• VK_EXT_host_query_reset

• VK_EXT_sampler_filter_minmax

• VK_EXT_scalar_block_layout

• VK_EXT_separate_stencil_usage

• VK_EXT_shader_viewport_index_layer

All differences in behavior between these extensions and the corresponding Vulkan 1.2
functionality are summarized below.

Differences Relative to VK_KHR_8bit_storage

If the VK_KHR_8bit_storage extension is not supported, support for the SPIR-V
storageBuffer8BitAccess capability in shader modules is optional. Support for this feature is defined
by VkPhysicalDeviceVulkan12Features::storageBuffer8BitAccess when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_draw_indirect_count

If the VK_KHR_draw_indirect_count extension is not supported, support for the entry points
vkCmdDrawIndirectCount and vkCmdDrawIndexedIndirectCount is optional. Support for this
feature is defined by VkPhysicalDeviceVulkan12Features::drawIndirectCount when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_sampler_mirror_clamp_to_edge

If the VK_KHR_sampler_mirror_clamp_to_edge extension is not supported, support for the
VkSamplerAddressMode VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE is optional. Support for this
feature is defined by VkPhysicalDeviceVulkan12Features::samplerMirrorClampToEdge when queried
via vkGetPhysicalDeviceFeatures2.

4270

Differences Relative to VK_EXT_descriptor_indexing

If the VK_EXT_descriptor_indexing extension is not supported, support for the descriptorIndexing
feature is optional. Support for this feature is defined by VkPhysicalDeviceVulkan12Features
::descriptorIndexing when queried via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_EXT_scalar_block_layout

If the VK_EXT_scalar_block_layout extension is not supported, support for the scalarBlockLayout
feature is optional. Support for this feature is defined by VkPhysicalDeviceVulkan12Features
::scalarBlockLayout when queried via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_EXT_shader_viewport_index_layer

The ShaderViewportIndexLayerEXT SPIR-V capability was replaced with the ShaderViewportIndex and
ShaderLayer capabilities. Declaring both is equivalent to declaring ShaderViewportIndexLayerEXT. If
the VK_EXT_shader_viewport_index_layer extension is not supported, support for the
ShaderViewportIndexLayerEXT SPIR-V capability is optional. Support for this feature is defined by
VkPhysicalDeviceVulkan12Features::shaderOutputViewportIndex and
VkPhysicalDeviceVulkan12Features::shaderOutputLayer when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_buffer_device_address

If the VK_KHR_buffer_device_address extension is not supported, support for the bufferDeviceAddress
feature is optional. Support for this feature is defined by VkPhysicalDeviceVulkan12Features
::bufferDeviceAddress when queried via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_shader_atomic_int64

If the VK_KHR_shader_atomic_int64 extension is not supported, support for the
shaderBufferInt64Atomics feature is optional. Support for this feature is defined by
VkPhysicalDeviceVulkan12Features::shaderBufferInt64Atomics when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_shader_float16_int8

If the VK_KHR_shader_float16_int8 extension is not supported, support for the shaderFloat16 and
shaderInt8 features is optional. Support for these features are defined by
VkPhysicalDeviceVulkan12Features::shaderFloat16 and VkPhysicalDeviceVulkan12Features
::shaderInt8 when queried via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_vulkan_memory_model

If the VK_KHR_vulkan_memory_model extension is not supported, support for the vulkanMemoryModel
feature is optional. Support for this feature is defined by VkPhysicalDeviceVulkan12Features
::vulkanMemoryModel when queried via vkGetPhysicalDeviceFeatures2.

4271

Additional Vulkan 1.2 Feature Support

In addition to the promoted extensions described above, Vulkan 1.2 added support for:

• SPIR-V version 1.4.

• SPIR-V version 1.5.

• The samplerMirrorClampToEdge feature which indicates whether the implementation supports the
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE sampler address mode.

• The ShaderNonUniform capability in SPIR-V version 1.5.

• The shaderOutputViewportIndex feature which indicates that the ShaderViewportIndex capability
can be used.

• The shaderOutputLayer feature which indicates that the ShaderLayer capability can be used.

• The subgroupBroadcastDynamicId feature which allows the “Id” operand of
OpGroupNonUniformBroadcast to be dynamically uniform within a subgroup, and the “Index”
operand of OpGroupNonUniformQuadBroadcast to be dynamically uniform within a derivative
group, in shader modules of version 1.5 or higher.

• The drawIndirectCount feature which indicates whether the vkCmdDrawIndirectCount and
vkCmdDrawIndexedIndirectCount functions can be used.

• The descriptorIndexing feature which indicates the implementation supports the minimum
number of descriptor indexing features as defined in the Feature Requirements section.

• The samplerFilterMinmax feature which indicates whether the implementation supports the
minimum number of image formats that support the
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT feature bit as defined by the
filterMinmaxSingleComponentFormats property minimum requirements.

• The framebufferIntegerColorSampleCounts limit which indicates the color sample counts that are
supported for all framebuffer color attachments with integer formats.

New Macros

• VK_API_VERSION_1_2

New Commands

• vkCmdBeginRenderPass2

• vkCmdDrawIndexedIndirectCount

• vkCmdDrawIndirectCount

• vkCmdEndRenderPass2

• vkCmdNextSubpass2

• vkCreateRenderPass2

• vkGetBufferDeviceAddress

• vkGetBufferOpaqueCaptureAddress

4272

• vkGetDeviceMemoryOpaqueCaptureAddress

• vkGetSemaphoreCounterValue

• vkResetQueryPool

• vkSignalSemaphore

• vkWaitSemaphores

New Structures

• VkAttachmentDescription2

• VkAttachmentReference2

• VkBufferDeviceAddressInfo

• VkConformanceVersion

• VkDeviceMemoryOpaqueCaptureAddressInfo

• VkFramebufferAttachmentImageInfo

• VkRenderPassCreateInfo2

• VkSemaphoreSignalInfo

• VkSemaphoreWaitInfo

• VkSubpassBeginInfo

• VkSubpassDependency2

• VkSubpassDescription2

• VkSubpassEndInfo

• Extending VkAttachmentDescription2:

◦ VkAttachmentDescriptionStencilLayout

• Extending VkAttachmentReference2:

◦ VkAttachmentReferenceStencilLayout

• Extending VkBufferCreateInfo:

◦ VkBufferOpaqueCaptureAddressCreateInfo

• Extending VkDescriptorSetAllocateInfo:

◦ VkDescriptorSetVariableDescriptorCountAllocateInfo

• Extending VkDescriptorSetLayoutCreateInfo:

◦ VkDescriptorSetLayoutBindingFlagsCreateInfo

• Extending VkDescriptorSetLayoutSupport:

◦ VkDescriptorSetVariableDescriptorCountLayoutSupport

• Extending VkFramebufferCreateInfo:

◦ VkFramebufferAttachmentsCreateInfo

• Extending VkImageCreateInfo, VkPhysicalDeviceImageFormatInfo2:

4273

◦ VkImageStencilUsageCreateInfo

• Extending VkImageCreateInfo, VkSwapchainCreateInfoKHR,
VkPhysicalDeviceImageFormatInfo2:

◦ VkImageFormatListCreateInfo

• Extending VkMemoryAllocateInfo:

◦ VkMemoryOpaqueCaptureAddressAllocateInfo

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevice8BitStorageFeatures

◦ VkPhysicalDeviceBufferDeviceAddressFeatures

◦ VkPhysicalDeviceDescriptorIndexingFeatures

◦ VkPhysicalDeviceHostQueryResetFeatures

◦ VkPhysicalDeviceImagelessFramebufferFeatures

◦ VkPhysicalDeviceScalarBlockLayoutFeatures

◦ VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures

◦ VkPhysicalDeviceShaderAtomicInt64Features

◦ VkPhysicalDeviceShaderFloat16Int8Features

◦ VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures

◦ VkPhysicalDeviceTimelineSemaphoreFeatures

◦ VkPhysicalDeviceUniformBufferStandardLayoutFeatures

◦ VkPhysicalDeviceVulkan11Features

◦ VkPhysicalDeviceVulkan12Features

◦ VkPhysicalDeviceVulkanMemoryModelFeatures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDepthStencilResolveProperties

◦ VkPhysicalDeviceDescriptorIndexingProperties

◦ VkPhysicalDeviceDriverProperties

◦ VkPhysicalDeviceFloatControlsProperties

◦ VkPhysicalDeviceSamplerFilterMinmaxProperties

◦ VkPhysicalDeviceTimelineSemaphoreProperties

◦ VkPhysicalDeviceVulkan11Properties

◦ VkPhysicalDeviceVulkan12Properties

• Extending VkRenderPassBeginInfo:

◦ VkRenderPassAttachmentBeginInfo

• Extending VkSamplerCreateInfo:

◦ VkSamplerReductionModeCreateInfo

4274

• Extending VkSemaphoreCreateInfo, VkPhysicalDeviceExternalSemaphoreInfo:

◦ VkSemaphoreTypeCreateInfo

• Extending VkSubmitInfo, VkBindSparseInfo:

◦ VkTimelineSemaphoreSubmitInfo

• Extending VkSubpassDescription2:

◦ VkSubpassDescriptionDepthStencilResolve

New Enums

• VkDescriptorBindingFlagBits

• VkDriverId

• VkResolveModeFlagBits

• VkSamplerReductionMode

• VkSemaphoreType

• VkSemaphoreWaitFlagBits

• VkShaderFloatControlsIndependence

New Bitmasks

• VkDescriptorBindingFlags

• VkResolveModeFlags

• VkSemaphoreWaitFlags

New Enum Constants

• VK_MAX_DRIVER_INFO_SIZE

• VK_MAX_DRIVER_NAME_SIZE

• Extending VkBufferCreateFlagBits:

◦ VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT

• Extending VkDescriptorPoolCreateFlagBits:

◦ VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• Extending VkFramebufferCreateFlagBits:

4275

◦ VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL

◦ VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

◦ VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL

◦ VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• Extending VkMemoryAllocateFlagBits:

◦ VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT

◦ VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

• Extending VkResult:

◦ VK_ERROR_FRAGMENTATION

◦ VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS

• Extending VkSamplerAddressMode:

◦ VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2

◦ VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT

◦ VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2

◦ VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT

◦ VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO

◦ VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT

◦ VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO

◦ VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO

◦ VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO

◦ VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO

◦ VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES

4276

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES

◦ VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO

◦ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2

◦ VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO

◦ VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO

◦ VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO

◦ VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2

◦ VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2

◦ VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE

◦ VK_STRUCTURE_TYPE_SUBPASS_END_INFO

◦ VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO

Version 1.1
Vulkan Version 1.1 promoted a number of key extensions into the core API:

• VK_KHR_16bit_storage

4277

• VK_KHR_bind_memory2

• VK_KHR_dedicated_allocation

• VK_KHR_descriptor_update_template

• VK_KHR_device_group

• VK_KHR_device_group_creation

• VK_KHR_external_fence

• VK_KHR_external_fence_capabilities

• VK_KHR_external_memory

• VK_KHR_external_memory_capabilities

• VK_KHR_external_semaphore

• VK_KHR_external_semaphore_capabilities

• VK_KHR_get_memory_requirements2

• VK_KHR_get_physical_device_properties2

• VK_KHR_maintenance1

• VK_KHR_maintenance2

• VK_KHR_maintenance3

• VK_KHR_multiview

• VK_KHR_relaxed_block_layout

• VK_KHR_sampler_ycbcr_conversion

• VK_KHR_shader_draw_parameters

• VK_KHR_storage_buffer_storage_class

• VK_KHR_variable_pointers

All differences in behavior between these extensions and the corresponding Vulkan 1.1
functionality are summarized below.

Differences Relative to VK_KHR_16bit_storage

If the VK_KHR_16bit_storage extension is not supported, support for the storageBuffer16BitAccess
feature is optional. Support for this feature is defined by VkPhysicalDevice16BitStorageFeatures
::storageBuffer16BitAccess or VkPhysicalDeviceVulkan11Features::storageBuffer16BitAccess when
queried via vkGetPhysicalDeviceFeatures2.

4278

Differences Relative to VK_KHR_sampler_ycbcr_conversion

If the VK_KHR_sampler_ycbcr_conversion extension is not supported, support for the
samplerYcbcrConversion feature is optional. Support for this feature is defined by
VkPhysicalDeviceSamplerYcbcrConversionFeatures::samplerYcbcrConversion or
VkPhysicalDeviceVulkan11Features::samplerYcbcrConversion when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_shader_draw_parameters

If the VK_KHR_shader_draw_parameters extension is not supported, support for the
SPV_KHR_shader_draw_parameters SPIR-V extension is optional. Support for this feature is defined by
VkPhysicalDeviceShaderDrawParametersFeatures::shaderDrawParameters or
VkPhysicalDeviceVulkan11Features::shaderDrawParameters when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_variable_pointers

If the VK_KHR_variable_pointers extension is not supported, support for the
variablePointersStorageBuffer feature is optional. Support for this feature is defined by
VkPhysicalDeviceVariablePointersFeatures::variablePointersStorageBuffer or
VkPhysicalDeviceVulkan11Features::variablePointersStorageBuffer when queried via
vkGetPhysicalDeviceFeatures2.

Additional Vulkan 1.1 Feature Support

In addition to the promoted extensions described above, Vulkan 1.1 added support for:

• The group operations and subgroup scope.

• The protected memory feature.

• A new command to enumerate the instance version: vkEnumerateInstanceVersion.

• The VkPhysicalDeviceShaderDrawParametersFeatures feature query struct (where the
VK_KHR_shader_draw_parameters extension did not have one).

New Macros

• VK_API_VERSION_1_1

New Object Types

• VkDescriptorUpdateTemplate

• VkSamplerYcbcrConversion

New Commands

• vkBindBufferMemory2

• vkBindImageMemory2

4279

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_shader_draw_parameters.html

• vkCmdDispatchBase

• vkCmdSetDeviceMask

• vkCreateDescriptorUpdateTemplate

• vkCreateSamplerYcbcrConversion

• vkDestroyDescriptorUpdateTemplate

• vkDestroySamplerYcbcrConversion

• vkEnumerateInstanceVersion

• vkEnumeratePhysicalDeviceGroups

• vkGetBufferMemoryRequirements2

• vkGetDescriptorSetLayoutSupport

• vkGetDeviceGroupPeerMemoryFeatures

• vkGetDeviceQueue2

• vkGetImageMemoryRequirements2

• vkGetImageSparseMemoryRequirements2

• vkGetPhysicalDeviceExternalBufferProperties

• vkGetPhysicalDeviceExternalFenceProperties

• vkGetPhysicalDeviceExternalSemaphoreProperties

• vkGetPhysicalDeviceFeatures2

• vkGetPhysicalDeviceFormatProperties2

• vkGetPhysicalDeviceImageFormatProperties2

• vkGetPhysicalDeviceMemoryProperties2

• vkGetPhysicalDeviceProperties2

• vkGetPhysicalDeviceQueueFamilyProperties2

• vkGetPhysicalDeviceSparseImageFormatProperties2

• vkTrimCommandPool

• vkUpdateDescriptorSetWithTemplate

New Structures

• VkBindBufferMemoryInfo

• VkBindImageMemoryInfo

• VkBufferMemoryRequirementsInfo2

• VkDescriptorSetLayoutSupport

• VkDescriptorUpdateTemplateCreateInfo

• VkDescriptorUpdateTemplateEntry

• VkDeviceQueueInfo2

4280

• VkExternalBufferProperties

• VkExternalFenceProperties

• VkExternalMemoryProperties

• VkExternalSemaphoreProperties

• VkFormatProperties2

• VkImageFormatProperties2

• VkImageMemoryRequirementsInfo2

• VkImageSparseMemoryRequirementsInfo2

• VkInputAttachmentAspectReference

• VkMemoryRequirements2

• VkPhysicalDeviceExternalBufferInfo

• VkPhysicalDeviceExternalFenceInfo

• VkPhysicalDeviceExternalSemaphoreInfo

• VkPhysicalDeviceGroupProperties

• VkPhysicalDeviceImageFormatInfo2

• VkPhysicalDeviceMemoryProperties2

• VkPhysicalDeviceProperties2

• VkPhysicalDeviceSparseImageFormatInfo2

• VkQueueFamilyProperties2

• VkSamplerYcbcrConversionCreateInfo

• VkSparseImageFormatProperties2

• VkSparseImageMemoryRequirements2

• Extending VkBindBufferMemoryInfo:

◦ VkBindBufferMemoryDeviceGroupInfo

• Extending VkBindImageMemoryInfo:

◦ VkBindImageMemoryDeviceGroupInfo

◦ VkBindImagePlaneMemoryInfo

• Extending VkBindSparseInfo:

◦ VkDeviceGroupBindSparseInfo

• Extending VkBufferCreateInfo:

◦ VkExternalMemoryBufferCreateInfo

• Extending VkCommandBufferBeginInfo:

◦ VkDeviceGroupCommandBufferBeginInfo

• Extending VkDeviceCreateInfo:

◦ VkDeviceGroupDeviceCreateInfo

4281

◦ VkPhysicalDeviceFeatures2

• Extending VkFenceCreateInfo:

◦ VkExportFenceCreateInfo

• Extending VkImageCreateInfo:

◦ VkExternalMemoryImageCreateInfo

• Extending VkImageFormatProperties2:

◦ VkExternalImageFormatProperties

◦ VkSamplerYcbcrConversionImageFormatProperties

• Extending VkImageMemoryRequirementsInfo2:

◦ VkImagePlaneMemoryRequirementsInfo

• Extending VkImageViewCreateInfo:

◦ VkImageViewUsageCreateInfo

• Extending VkMemoryAllocateInfo:

◦ VkExportMemoryAllocateInfo

◦ VkMemoryAllocateFlagsInfo

◦ VkMemoryDedicatedAllocateInfo

• Extending VkMemoryRequirements2:

◦ VkMemoryDedicatedRequirements

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevice16BitStorageFeatures

◦ VkPhysicalDeviceMultiviewFeatures

◦ VkPhysicalDeviceProtectedMemoryFeatures

◦ VkPhysicalDeviceSamplerYcbcrConversionFeatures

◦ VkPhysicalDeviceShaderDrawParameterFeatures

◦ VkPhysicalDeviceShaderDrawParametersFeatures

◦ VkPhysicalDeviceVariablePointerFeatures

◦ VkPhysicalDeviceVariablePointersFeatures

• Extending VkPhysicalDeviceImageFormatInfo2:

◦ VkPhysicalDeviceExternalImageFormatInfo

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceIDProperties

◦ VkPhysicalDeviceMaintenance3Properties

◦ VkPhysicalDeviceMultiviewProperties

◦ VkPhysicalDevicePointClippingProperties

◦ VkPhysicalDeviceProtectedMemoryProperties

4282

◦ VkPhysicalDeviceSubgroupProperties

• Extending VkPipelineTessellationStateCreateInfo:

◦ VkPipelineTessellationDomainOriginStateCreateInfo

• Extending VkRenderPassBeginInfo, VkRenderingInfo:

◦ VkDeviceGroupRenderPassBeginInfo

• Extending VkRenderPassCreateInfo:

◦ VkRenderPassInputAttachmentAspectCreateInfo

◦ VkRenderPassMultiviewCreateInfo

• Extending VkSamplerCreateInfo, VkImageViewCreateInfo:

◦ VkSamplerYcbcrConversionInfo

• Extending VkSemaphoreCreateInfo:

◦ VkExportSemaphoreCreateInfo

• Extending VkSubmitInfo:

◦ VkDeviceGroupSubmitInfo

◦ VkProtectedSubmitInfo

New Enums

• VkChromaLocation

• VkDescriptorUpdateTemplateType

• VkDeviceQueueCreateFlagBits

• VkExternalFenceFeatureFlagBits

• VkExternalFenceHandleTypeFlagBits

• VkExternalMemoryFeatureFlagBits

• VkExternalMemoryHandleTypeFlagBits

• VkExternalSemaphoreFeatureFlagBits

• VkExternalSemaphoreHandleTypeFlagBits

• VkFenceImportFlagBits

• VkMemoryAllocateFlagBits

• VkPeerMemoryFeatureFlagBits

• VkPointClippingBehavior

• VkSamplerYcbcrModelConversion

• VkSamplerYcbcrRange

• VkSemaphoreImportFlagBits

• VkSubgroupFeatureFlagBits

• VkTessellationDomainOrigin

4283

New Bitmasks

• VkCommandPoolTrimFlags

• VkDescriptorUpdateTemplateCreateFlags

• VkExternalFenceFeatureFlags

• VkExternalFenceHandleTypeFlags

• VkExternalMemoryFeatureFlags

• VkExternalMemoryHandleTypeFlags

• VkExternalSemaphoreFeatureFlags

• VkExternalSemaphoreHandleTypeFlags

• VkFenceImportFlags

• VkMemoryAllocateFlags

• VkPeerMemoryFeatureFlags

• VkSemaphoreImportFlags

• VkSubgroupFeatureFlags

New Enum Constants

• VK_LUID_SIZE

• VK_MAX_DEVICE_GROUP_SIZE

• VK_QUEUE_FAMILY_EXTERNAL

• Extending VkBufferCreateFlagBits:

◦ VK_BUFFER_CREATE_PROTECTED_BIT

• Extending VkCommandPoolCreateFlagBits:

◦ VK_COMMAND_POOL_CREATE_PROTECTED_BIT

• Extending VkDependencyFlagBits:

◦ VK_DEPENDENCY_DEVICE_GROUP_BIT

◦ VK_DEPENDENCY_VIEW_LOCAL_BIT

• Extending VkDeviceQueueCreateFlagBits:

◦ VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT

• Extending VkFormat:

◦ VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16

◦ VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16

◦ VK_FORMAT_B16G16R16G16_422_UNORM

◦ VK_FORMAT_B8G8R8G8_422_UNORM

◦ VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16

4284

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G16B16G16R16_422_UNORM

◦ VK_FORMAT_G16_B16R16_2PLANE_420_UNORM

◦ VK_FORMAT_G16_B16R16_2PLANE_422_UNORM

◦ VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM

◦ VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM

◦ VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM

◦ VK_FORMAT_G8B8G8R8_422_UNORM

◦ VK_FORMAT_G8_B8R8_2PLANE_420_UNORM

◦ VK_FORMAT_G8_B8R8_2PLANE_422_UNORM

◦ VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM

◦ VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM

◦ VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM

◦ VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16

◦ VK_FORMAT_R10X6G10X6_UNORM_2PACK16

◦ VK_FORMAT_R10X6_UNORM_PACK16

◦ VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16

◦ VK_FORMAT_R12X4G12X4_UNORM_2PACK16

◦ VK_FORMAT_R12X4_UNORM_PACK16

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT

◦ VK_FORMAT_FEATURE_DISJOINT_BIT

◦ VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABL

4285

E_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT

◦ VK_FORMAT_FEATURE_TRANSFER_DST_BIT

◦ VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• Extending VkImageAspectFlagBits:

◦ VK_IMAGE_ASPECT_PLANE_0_BIT

◦ VK_IMAGE_ASPECT_PLANE_1_BIT

◦ VK_IMAGE_ASPECT_PLANE_2_BIT

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT

◦ VK_IMAGE_CREATE_ALIAS_BIT

◦ VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT

◦ VK_IMAGE_CREATE_DISJOINT_BIT

◦ VK_IMAGE_CREATE_EXTENDED_USAGE_BIT

◦ VK_IMAGE_CREATE_PROTECTED_BIT

◦ VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

◦ VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• Extending VkMemoryHeapFlagBits:

◦ VK_MEMORY_HEAP_MULTI_INSTANCE_BIT

• Extending VkMemoryPropertyFlagBits:

◦ VK_MEMORY_PROPERTY_PROTECTED_BIT

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE

◦ VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_DISPATCH_BASE

◦ VK_PIPELINE_CREATE_DISPATCH_BASE_BIT

◦ VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT

• Extending VkQueueFlagBits:

◦ VK_QUEUE_PROTECTED_BIT

• Extending VkResult:

◦ VK_ERROR_INVALID_EXTERNAL_HANDLE

4286

◦ VK_ERROR_OUT_OF_POOL_MEMORY

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO

◦ VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO

◦ VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2

◦ VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO

◦ VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES

◦ VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES

◦ VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES

◦ VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO

◦ VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES

◦ VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2

◦ VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO

◦ VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO

◦ VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO

◦ VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS

◦ VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2

4287

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES

◦ VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO

◦ VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO

◦ VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2

4288

Version 1.0
Vulkan Version 1.0 was the initial release of the Vulkan API.

New Macros

• VK_API_VERSION

• VK_API_VERSION_1_0

• VK_API_VERSION_MAJOR

• VK_API_VERSION_MINOR

• VK_API_VERSION_PATCH

• VK_API_VERSION_VARIANT

• VK_DEFINE_HANDLE

• VK_DEFINE_NON_DISPATCHABLE_HANDLE

• VK_HEADER_VERSION

• VK_HEADER_VERSION_COMPLETE

• VK_MAKE_API_VERSION

• VK_MAKE_VERSION

• VK_NULL_HANDLE

• VK_USE_64_BIT_PTR_DEFINES

• VK_VERSION_MAJOR

• VK_VERSION_MINOR

• VK_VERSION_PATCH

New Base Types

• VkBool32

• VkDeviceAddress

• VkDeviceSize

• VkFlags

• VkSampleMask

New Object Types

• VkBuffer

• VkBufferView

• VkCommandBuffer

• VkCommandPool

• VkDescriptorPool

4289

• VkDescriptorSet

• VkDescriptorSetLayout

• VkDevice

• VkDeviceMemory

• VkEvent

• VkFence

• VkFramebuffer

• VkImage

• VkImageView

• VkInstance

• VkPhysicalDevice

• VkPipeline

• VkPipelineCache

• VkPipelineLayout

• VkQueryPool

• VkQueue

• VkRenderPass

• VkSampler

• VkSemaphore

• VkShaderModule

New Commands

• vkAllocateCommandBuffers

• vkAllocateDescriptorSets

• vkAllocateMemory

• vkBeginCommandBuffer

• vkBindBufferMemory

• vkBindImageMemory

• vkCmdBeginQuery

• vkCmdBeginRenderPass

• vkCmdBindDescriptorSets

• vkCmdBindIndexBuffer

• vkCmdBindPipeline

• vkCmdBindVertexBuffers

• vkCmdBlitImage

4290

• vkCmdClearAttachments

• vkCmdClearColorImage

• vkCmdClearDepthStencilImage

• vkCmdCopyBuffer

• vkCmdCopyBufferToImage

• vkCmdCopyImage

• vkCmdCopyImageToBuffer

• vkCmdCopyQueryPoolResults

• vkCmdDispatch

• vkCmdDispatchIndirect

• vkCmdDraw

• vkCmdDrawIndexed

• vkCmdDrawIndexedIndirect

• vkCmdDrawIndirect

• vkCmdEndQuery

• vkCmdEndRenderPass

• vkCmdExecuteCommands

• vkCmdFillBuffer

• vkCmdNextSubpass

• vkCmdPipelineBarrier

• vkCmdPushConstants

• vkCmdResetEvent

• vkCmdResetQueryPool

• vkCmdResolveImage

• vkCmdSetBlendConstants

• vkCmdSetDepthBias

• vkCmdSetDepthBounds

• vkCmdSetEvent

• vkCmdSetLineWidth

• vkCmdSetScissor

• vkCmdSetStencilCompareMask

• vkCmdSetStencilReference

• vkCmdSetStencilWriteMask

• vkCmdSetViewport

• vkCmdUpdateBuffer

4291

• vkCmdWaitEvents

• vkCmdWriteTimestamp

• vkCreateBuffer

• vkCreateBufferView

• vkCreateCommandPool

• vkCreateComputePipelines

• vkCreateDescriptorPool

• vkCreateDescriptorSetLayout

• vkCreateDevice

• vkCreateEvent

• vkCreateFence

• vkCreateFramebuffer

• vkCreateGraphicsPipelines

• vkCreateImage

• vkCreateImageView

• vkCreateInstance

• vkCreatePipelineCache

• vkCreatePipelineLayout

• vkCreateQueryPool

• vkCreateRenderPass

• vkCreateSampler

• vkCreateSemaphore

• vkCreateShaderModule

• vkDestroyBuffer

• vkDestroyBufferView

• vkDestroyCommandPool

• vkDestroyDescriptorPool

• vkDestroyDescriptorSetLayout

• vkDestroyDevice

• vkDestroyEvent

• vkDestroyFence

• vkDestroyFramebuffer

• vkDestroyImage

• vkDestroyImageView

• vkDestroyInstance

4292

• vkDestroyPipeline

• vkDestroyPipelineCache

• vkDestroyPipelineLayout

• vkDestroyQueryPool

• vkDestroyRenderPass

• vkDestroySampler

• vkDestroySemaphore

• vkDestroyShaderModule

• vkDeviceWaitIdle

• vkEndCommandBuffer

• vkEnumerateDeviceExtensionProperties

• vkEnumerateDeviceLayerProperties

• vkEnumerateInstanceExtensionProperties

• vkEnumerateInstanceLayerProperties

• vkEnumeratePhysicalDevices

• vkFlushMappedMemoryRanges

• vkFreeCommandBuffers

• vkFreeDescriptorSets

• vkFreeMemory

• vkGetBufferMemoryRequirements

• vkGetDeviceMemoryCommitment

• vkGetDeviceProcAddr

• vkGetDeviceQueue

• vkGetEventStatus

• vkGetFenceStatus

• vkGetImageMemoryRequirements

• vkGetImageSparseMemoryRequirements

• vkGetImageSubresourceLayout

• vkGetInstanceProcAddr

• vkGetPhysicalDeviceFeatures

• vkGetPhysicalDeviceFormatProperties

• vkGetPhysicalDeviceImageFormatProperties

• vkGetPhysicalDeviceMemoryProperties

• vkGetPhysicalDeviceProperties

• vkGetPhysicalDeviceQueueFamilyProperties

4293

• vkGetPhysicalDeviceSparseImageFormatProperties

• vkGetPipelineCacheData

• vkGetQueryPoolResults

• vkGetRenderAreaGranularity

• vkInvalidateMappedMemoryRanges

• vkMapMemory

• vkMergePipelineCaches

• vkQueueBindSparse

• vkQueueSubmit

• vkQueueWaitIdle

• vkResetCommandBuffer

• vkResetCommandPool

• vkResetDescriptorPool

• vkResetEvent

• vkResetFences

• vkSetEvent

• vkUnmapMemory

• vkUpdateDescriptorSets

• vkWaitForFences

New Structures

• VkAllocationCallbacks

• VkApplicationInfo

• VkAttachmentDescription

• VkAttachmentReference

• VkBaseInStructure

• VkBaseOutStructure

• VkBindSparseInfo

• VkBufferCopy

• VkBufferCreateInfo

• VkBufferImageCopy

• VkBufferMemoryBarrier

• VkBufferViewCreateInfo

• VkClearAttachment

• VkClearDepthStencilValue

4294

• VkClearRect

• VkCommandBufferAllocateInfo

• VkCommandBufferBeginInfo

• VkCommandBufferInheritanceInfo

• VkCommandPoolCreateInfo

• VkComponentMapping

• VkComputePipelineCreateInfo

• VkCopyDescriptorSet

• VkDescriptorBufferInfo

• VkDescriptorImageInfo

• VkDescriptorPoolCreateInfo

• VkDescriptorPoolSize

• VkDescriptorSetAllocateInfo

• VkDescriptorSetLayoutBinding

• VkDescriptorSetLayoutCreateInfo

• VkDeviceCreateInfo

• VkDeviceQueueCreateInfo

• VkDispatchIndirectCommand

• VkDrawIndexedIndirectCommand

• VkDrawIndirectCommand

• VkEventCreateInfo

• VkExtensionProperties

• VkExtent2D

• VkExtent3D

• VkFenceCreateInfo

• VkFormatProperties

• VkFramebufferCreateInfo

• VkGraphicsPipelineCreateInfo

• VkImageBlit

• VkImageCopy

• VkImageCreateInfo

• VkImageFormatProperties

• VkImageMemoryBarrier

• VkImageResolve

• VkImageSubresource

4295

• VkImageSubresourceLayers

• VkImageSubresourceRange

• VkImageViewCreateInfo

• VkInstanceCreateInfo

• VkLayerProperties

• VkMappedMemoryRange

• VkMemoryAllocateInfo

• VkMemoryBarrier

• VkMemoryHeap

• VkMemoryRequirements

• VkMemoryType

• VkOffset2D

• VkOffset3D

• VkPhysicalDeviceFeatures

• VkPhysicalDeviceLimits

• VkPhysicalDeviceMemoryProperties

• VkPhysicalDeviceProperties

• VkPhysicalDeviceSparseProperties

• VkPipelineCacheCreateInfo

• VkPipelineCacheHeaderVersionOne

• VkPipelineColorBlendAttachmentState

• VkPipelineColorBlendStateCreateInfo

• VkPipelineDepthStencilStateCreateInfo

• VkPipelineDynamicStateCreateInfo

• VkPipelineInputAssemblyStateCreateInfo

• VkPipelineMultisampleStateCreateInfo

• VkPipelineRasterizationStateCreateInfo

• VkPipelineShaderStageCreateInfo

• VkPipelineTessellationStateCreateInfo

• VkPipelineVertexInputStateCreateInfo

• VkPipelineViewportStateCreateInfo

• VkPushConstantRange

• VkQueryPoolCreateInfo

• VkQueueFamilyProperties

• VkRect2D

4296

• VkRenderPassBeginInfo

• VkRenderPassCreateInfo

• VkSamplerCreateInfo

• VkSemaphoreCreateInfo

• VkSparseBufferMemoryBindInfo

• VkSparseImageFormatProperties

• VkSparseImageMemoryBind

• VkSparseImageMemoryBindInfo

• VkSparseImageMemoryRequirements

• VkSparseImageOpaqueMemoryBindInfo

• VkSparseMemoryBind

• VkSpecializationInfo

• VkSpecializationMapEntry

• VkStencilOpState

• VkSubmitInfo

• VkSubpassDependency

• VkSubpassDescription

• VkSubresourceLayout

• VkVertexInputAttributeDescription

• VkVertexInputBindingDescription

• VkViewport

• VkWriteDescriptorSet

• Extending VkBindDescriptorSetsInfoKHR, VkPushConstantsInfoKHR,
VkPushDescriptorSetInfoKHR, VkPushDescriptorSetWithTemplateInfoKHR,
VkSetDescriptorBufferOffsetsInfoEXT, VkBindDescriptorBufferEmbeddedSamplersInfoEXT:

◦ VkPipelineLayoutCreateInfo

• Extending VkPipelineShaderStageCreateInfo:

◦ VkShaderModuleCreateInfo

New Unions

• VkClearColorValue

• VkClearValue

New Function Pointers

• PFN_vkAllocationFunction

• PFN_vkFreeFunction

4297

• PFN_vkInternalAllocationNotification

• PFN_vkInternalFreeNotification

• PFN_vkReallocationFunction

• PFN_vkVoidFunction

New Enums

• VkAccessFlagBits

• VkAttachmentDescriptionFlagBits

• VkAttachmentLoadOp

• VkAttachmentStoreOp

• VkBlendFactor

• VkBlendOp

• VkBorderColor

• VkBufferCreateFlagBits

• VkBufferUsageFlagBits

• VkColorComponentFlagBits

• VkCommandBufferLevel

• VkCommandBufferResetFlagBits

• VkCommandBufferUsageFlagBits

• VkCommandPoolCreateFlagBits

• VkCommandPoolResetFlagBits

• VkCompareOp

• VkComponentSwizzle

• VkCullModeFlagBits

• VkDependencyFlagBits

• VkDescriptorPoolCreateFlagBits

• VkDescriptorSetLayoutCreateFlagBits

• VkDescriptorType

• VkDynamicState

• VkEventCreateFlagBits

• VkFenceCreateFlagBits

• VkFilter

• VkFormat

• VkFormatFeatureFlagBits

• VkFramebufferCreateFlagBits

4298

• VkFrontFace

• VkImageAspectFlagBits

• VkImageCreateFlagBits

• VkImageLayout

• VkImageTiling

• VkImageType

• VkImageUsageFlagBits

• VkImageViewCreateFlagBits

• VkImageViewType

• VkIndexType

• VkInstanceCreateFlagBits

• VkInternalAllocationType

• VkLogicOp

• VkMemoryHeapFlagBits

• VkMemoryMapFlagBits

• VkMemoryPropertyFlagBits

• VkObjectType

• VkPhysicalDeviceType

• VkPipelineBindPoint

• VkPipelineCacheHeaderVersion

• VkPipelineCreateFlagBits

• VkPipelineShaderStageCreateFlagBits

• VkPipelineStageFlagBits

• VkPolygonMode

• VkPrimitiveTopology

• VkQueryControlFlagBits

• VkQueryPipelineStatisticFlagBits

• VkQueryResultFlagBits

• VkQueryType

• VkQueueFlagBits

• VkRenderPassCreateFlagBits

• VkResult

• VkSampleCountFlagBits

• VkSamplerAddressMode

• VkSamplerCreateFlagBits

4299

• VkSamplerMipmapMode

• VkShaderStageFlagBits

• VkSharingMode

• VkSparseImageFormatFlagBits

• VkSparseMemoryBindFlagBits

• VkStencilFaceFlagBits

• VkStencilOp

• VkStructureType

• VkSubpassContents

• VkSubpassDescriptionFlagBits

• VkSystemAllocationScope

• VkVendorId

• VkVertexInputRate

New Bitmasks

• VkAccessFlags

• VkAttachmentDescriptionFlags

• VkBufferCreateFlags

• VkBufferUsageFlags

• VkBufferViewCreateFlags

• VkColorComponentFlags

• VkCommandBufferResetFlags

• VkCommandBufferUsageFlags

• VkCommandPoolCreateFlags

• VkCommandPoolResetFlags

• VkCullModeFlags

• VkDependencyFlags

• VkDescriptorPoolCreateFlags

• VkDescriptorPoolResetFlags

• VkDescriptorSetLayoutCreateFlags

• VkDeviceCreateFlags

• VkDeviceQueueCreateFlags

• VkEventCreateFlags

• VkFenceCreateFlags

• VkFormatFeatureFlags

4300

• VkFramebufferCreateFlags

• VkImageAspectFlags

• VkImageCreateFlags

• VkImageUsageFlags

• VkImageViewCreateFlags

• VkInstanceCreateFlags

• VkMemoryHeapFlags

• VkMemoryMapFlags

• VkMemoryPropertyFlags

• VkPipelineCacheCreateFlags

• VkPipelineColorBlendStateCreateFlags

• VkPipelineCreateFlags

• VkPipelineDepthStencilStateCreateFlags

• VkPipelineDynamicStateCreateFlags

• VkPipelineInputAssemblyStateCreateFlags

• VkPipelineLayoutCreateFlags

• VkPipelineMultisampleStateCreateFlags

• VkPipelineRasterizationStateCreateFlags

• VkPipelineShaderStageCreateFlags

• VkPipelineStageFlags

• VkPipelineTessellationStateCreateFlags

• VkPipelineVertexInputStateCreateFlags

• VkPipelineViewportStateCreateFlags

• VkQueryControlFlags

• VkQueryPipelineStatisticFlags

• VkQueryPoolCreateFlags

• VkQueryResultFlags

• VkQueueFlags

• VkRenderPassCreateFlags

• VkSampleCountFlags

• VkSamplerCreateFlags

• VkSemaphoreCreateFlags

• VkShaderModuleCreateFlags

• VkShaderStageFlags

• VkSparseImageFormatFlags

4301

• VkSparseMemoryBindFlags

• VkStencilFaceFlags

• VkSubpassDescriptionFlags

New Headers

• vk_platform

New Enum Constants

• VK_ATTACHMENT_UNUSED

• VK_FALSE

• VK_LOD_CLAMP_NONE

• VK_MAX_DESCRIPTION_SIZE

• VK_MAX_EXTENSION_NAME_SIZE

• VK_MAX_MEMORY_HEAPS

• VK_MAX_MEMORY_TYPES

• VK_MAX_PHYSICAL_DEVICE_NAME_SIZE

• VK_QUEUE_FAMILY_IGNORED

• VK_REMAINING_ARRAY_LAYERS

• VK_REMAINING_MIP_LEVELS

• VK_SUBPASS_EXTERNAL

• VK_TRUE

• VK_UUID_SIZE

• VK_WHOLE_SIZE

4302

Appendix E: Layers & Extensions
(Informative)
Extensions to the Vulkan API can be defined by authors, groups of authors, and the Khronos Vulkan
Working Group. In order not to compromise the readability of the Vulkan Specification, the core
Specification does not incorporate most extensions. The online Registry of extensions is available at
URL

https://registry.khronos.org/vulkan/

and allows generating versions of the Specification incorporating different extensions.

Authors creating extensions and layers must follow the mandatory procedures described in the
Vulkan Documentation and Extensions document when creating extensions and layers.

The remainder of this appendix documents a set of extensions chosen when this document was
built. Versions of the Specification published in the Registry include:

• Core API + mandatory extensions required of all Vulkan implementations.

• Core API + all registered and published Khronos (KHR) extensions.

• Core API + all registered and published extensions.

Extensions are grouped as Khronos KHR, multivendor EXT, and then alphabetically by author ID.
Within each group, extensions are listed in alphabetical order by their name.

Extension Dependencies
Extensions which have dependencies on specific core versions or on other extensions will list such
dependencies.

For core versions, the specified version must be supported at runtime. All extensions implicitly
require support for Vulkan 1.0.

For a device extension, use of any device-level functionality defined by that extension requires that
any extensions that extension depends on be enabled.

For any extension, use of any instance-level functionality defined by that extension requires only
that any extensions that extension depends on be supported at runtime.

Extension Interactions
Some extensions define APIs which are only supported when other extensions or core versions are
supported at runtime. Such interactions are noted as “API Interactions”.

4303

https://registry.khronos.org/vulkan/

List of Current Extensions
• VK_KHR_acceleration_structure

• VK_KHR_android_surface

• VK_KHR_calibrated_timestamps

• VK_KHR_cooperative_matrix

• VK_KHR_deferred_host_operations

• VK_KHR_display

• VK_KHR_display_swapchain

• VK_KHR_dynamic_rendering_local_read

• VK_KHR_external_fence_fd

• VK_KHR_external_fence_win32

• VK_KHR_external_memory_fd

• VK_KHR_external_memory_win32

• VK_KHR_external_semaphore_fd

• VK_KHR_external_semaphore_win32

• VK_KHR_fragment_shader_barycentric

• VK_KHR_fragment_shading_rate

• VK_KHR_get_display_properties2

• VK_KHR_get_surface_capabilities2

• VK_KHR_global_priority

• VK_KHR_incremental_present

• VK_KHR_index_type_uint8

• VK_KHR_line_rasterization

• VK_KHR_load_store_op_none

• VK_KHR_maintenance5

• VK_KHR_maintenance6

• VK_KHR_map_memory2

• VK_KHR_performance_query

• VK_KHR_pipeline_executable_properties

• VK_KHR_pipeline_library

• VK_KHR_portability_enumeration

• VK_KHR_present_id

• VK_KHR_present_wait

• VK_KHR_push_descriptor

4304

• VK_KHR_ray_query

• VK_KHR_ray_tracing_maintenance1

• VK_KHR_ray_tracing_pipeline

• VK_KHR_ray_tracing_position_fetch

• VK_KHR_shader_clock

• VK_KHR_shader_expect_assume

• VK_KHR_shader_float_controls2

• VK_KHR_shader_maximal_reconvergence

• VK_KHR_shader_quad_control

• VK_KHR_shader_subgroup_rotate

• VK_KHR_shader_subgroup_uniform_control_flow

• VK_KHR_shared_presentable_image

• VK_KHR_surface

• VK_KHR_surface_protected_capabilities

• VK_KHR_swapchain

• VK_KHR_swapchain_mutable_format

• VK_KHR_vertex_attribute_divisor

• VK_KHR_video_decode_av1

• VK_KHR_video_decode_h264

• VK_KHR_video_decode_h265

• VK_KHR_video_decode_queue

• VK_KHR_video_encode_h264

• VK_KHR_video_encode_h265

• VK_KHR_video_encode_queue

• VK_KHR_video_maintenance1

• VK_KHR_video_queue

• VK_KHR_wayland_surface

• VK_KHR_win32_keyed_mutex

• VK_KHR_win32_surface

• VK_KHR_workgroup_memory_explicit_layout

• VK_KHR_xcb_surface

• VK_KHR_xlib_surface

• VK_EXT_acquire_drm_display

• VK_EXT_acquire_xlib_display

• VK_EXT_astc_decode_mode

4305

• VK_EXT_attachment_feedback_loop_dynamic_state

• VK_EXT_attachment_feedback_loop_layout

• VK_EXT_blend_operation_advanced

• VK_EXT_border_color_swizzle

• VK_EXT_color_write_enable

• VK_EXT_conditional_rendering

• VK_EXT_conservative_rasterization

• VK_EXT_custom_border_color

• VK_EXT_debug_utils

• VK_EXT_depth_bias_control

• VK_EXT_depth_clamp_zero_one

• VK_EXT_depth_clip_control

• VK_EXT_depth_clip_enable

• VK_EXT_depth_range_unrestricted

• VK_EXT_descriptor_buffer

• VK_EXT_device_address_binding_report

• VK_EXT_device_fault

• VK_EXT_device_memory_report

• VK_EXT_direct_mode_display

• VK_EXT_directfb_surface

• VK_EXT_discard_rectangles

• VK_EXT_display_control

• VK_EXT_display_surface_counter

• VK_EXT_dynamic_rendering_unused_attachments

• VK_EXT_extended_dynamic_state3

• VK_EXT_external_memory_acquire_unmodified

• VK_EXT_external_memory_dma_buf

• VK_EXT_external_memory_host

• VK_EXT_filter_cubic

• VK_EXT_fragment_density_map

• VK_EXT_fragment_density_map2

• VK_EXT_fragment_shader_interlock

• VK_EXT_frame_boundary

• VK_EXT_full_screen_exclusive

• VK_EXT_graphics_pipeline_library

4306

• VK_EXT_hdr_metadata

• VK_EXT_headless_surface

• VK_EXT_host_image_copy

• VK_EXT_image_2d_view_of_3d

• VK_EXT_image_compression_control

• VK_EXT_image_compression_control_swapchain

• VK_EXT_image_drm_format_modifier

• VK_EXT_image_sliced_view_of_3d

• VK_EXT_image_view_min_lod

• VK_EXT_layer_settings

• VK_EXT_legacy_dithering

• VK_EXT_map_memory_placed

• VK_EXT_memory_budget

• VK_EXT_memory_priority

• VK_EXT_mesh_shader

• VK_EXT_metal_objects

• VK_EXT_metal_surface

• VK_EXT_multi_draw

• VK_EXT_multisampled_render_to_single_sampled

• VK_EXT_mutable_descriptor_type

• VK_EXT_nested_command_buffer

• VK_EXT_non_seamless_cube_map

• VK_EXT_opacity_micromap

• VK_EXT_pageable_device_local_memory

• VK_EXT_pci_bus_info

• VK_EXT_physical_device_drm

• VK_EXT_pipeline_library_group_handles

• VK_EXT_pipeline_properties

• VK_EXT_pipeline_protected_access

• VK_EXT_pipeline_robustness

• VK_EXT_post_depth_coverage

• VK_EXT_primitive_topology_list_restart

• VK_EXT_primitives_generated_query

• VK_EXT_provoking_vertex

• VK_EXT_queue_family_foreign

4307

• VK_EXT_rasterization_order_attachment_access

• VK_EXT_rgba10x6_formats

• VK_EXT_robustness2

• VK_EXT_sample_locations

• VK_EXT_shader_atomic_float

• VK_EXT_shader_atomic_float2

• VK_EXT_shader_image_atomic_int64

• VK_EXT_shader_module_identifier

• VK_EXT_shader_object

• VK_EXT_shader_stencil_export

• VK_EXT_shader_tile_image

• VK_EXT_subpass_merge_feedback

• VK_EXT_surface_maintenance1

• VK_EXT_swapchain_colorspace

• VK_EXT_swapchain_maintenance1

• VK_EXT_transform_feedback

• VK_EXT_validation_cache

• VK_EXT_vertex_input_dynamic_state

• VK_EXT_ycbcr_image_arrays

• VK_AMD_buffer_marker

• VK_AMD_device_coherent_memory

• VK_AMD_display_native_hdr

• VK_AMD_gcn_shader

• VK_AMD_memory_overallocation_behavior

• VK_AMD_mixed_attachment_samples

• VK_AMD_pipeline_compiler_control

• VK_AMD_rasterization_order

• VK_AMD_shader_ballot

• VK_AMD_shader_core_properties

• VK_AMD_shader_core_properties2

• VK_AMD_shader_early_and_late_fragment_tests

• VK_AMD_shader_explicit_vertex_parameter

• VK_AMD_shader_fragment_mask

• VK_AMD_shader_image_load_store_lod

• VK_AMD_shader_info

4308

• VK_AMD_shader_trinary_minmax

• VK_AMD_texture_gather_bias_lod

• VK_ANDROID_external_format_resolve

• VK_ANDROID_external_memory_android_hardware_buffer

• VK_ARM_render_pass_striped

• VK_ARM_scheduling_controls

• VK_ARM_shader_core_builtins

• VK_ARM_shader_core_properties

• VK_FUCHSIA_buffer_collection

• VK_FUCHSIA_external_memory

• VK_FUCHSIA_external_semaphore

• VK_FUCHSIA_imagepipe_surface

• VK_GGP_frame_token

• VK_GGP_stream_descriptor_surface

• VK_GOOGLE_decorate_string

• VK_GOOGLE_display_timing

• VK_GOOGLE_hlsl_functionality1

• VK_GOOGLE_surfaceless_query

• VK_GOOGLE_user_type

• VK_HUAWEI_cluster_culling_shader

• VK_HUAWEI_invocation_mask

• VK_HUAWEI_subpass_shading

• VK_IMG_filter_cubic

• VK_IMG_relaxed_line_rasterization

• VK_INTEL_performance_query

• VK_INTEL_shader_integer_functions2

• VK_LUNARG_direct_driver_loading

• VK_MSFT_layered_driver

• VK_NN_vi_surface

• VK_NV_acquire_winrt_display

• VK_NV_clip_space_w_scaling

• VK_NV_compute_shader_derivatives

• VK_NV_cooperative_matrix

• VK_NV_copy_memory_indirect

• VK_NV_corner_sampled_image

4309

• VK_NV_coverage_reduction_mode

• VK_NV_dedicated_allocation_image_aliasing

• VK_NV_descriptor_pool_overallocation

• VK_NV_device_diagnostic_checkpoints

• VK_NV_device_diagnostics_config

• VK_NV_device_generated_commands

• VK_NV_device_generated_commands_compute

• VK_NV_extended_sparse_address_space

• VK_NV_external_memory_rdma

• VK_NV_fill_rectangle

• VK_NV_fragment_coverage_to_color

• VK_NV_fragment_shading_rate_enums

• VK_NV_framebuffer_mixed_samples

• VK_NV_geometry_shader_passthrough

• VK_NV_inherited_viewport_scissor

• VK_NV_linear_color_attachment

• VK_NV_low_latency

• VK_NV_low_latency2

• VK_NV_memory_decompression

• VK_NV_mesh_shader

• VK_NV_optical_flow

• VK_NV_per_stage_descriptor_set

• VK_NV_present_barrier

• VK_NV_raw_access_chains

• VK_NV_ray_tracing

• VK_NV_ray_tracing_invocation_reorder

• VK_NV_ray_tracing_motion_blur

• VK_NV_ray_tracing_validation

• VK_NV_representative_fragment_test

• VK_NV_sample_mask_override_coverage

• VK_NV_scissor_exclusive

• VK_NV_shader_atomic_float16_vector

• VK_NV_shader_image_footprint

• VK_NV_shader_sm_builtins

• VK_NV_shader_subgroup_partitioned

4310

• VK_NV_shading_rate_image

• VK_NV_viewport_array2

• VK_NV_viewport_swizzle

• VK_NVX_binary_import

• VK_NVX_image_view_handle

• VK_NVX_multiview_per_view_attributes

• VK_QCOM_filter_cubic_clamp

• VK_QCOM_filter_cubic_weights

• VK_QCOM_fragment_density_map_offset

• VK_QCOM_image_processing

• VK_QCOM_image_processing2

• VK_QCOM_multiview_per_view_render_areas

• VK_QCOM_multiview_per_view_viewports

• VK_QCOM_render_pass_shader_resolve

• VK_QCOM_render_pass_store_ops

• VK_QCOM_render_pass_transform

• VK_QCOM_rotated_copy_commands

• VK_QCOM_tile_properties

• VK_QCOM_ycbcr_degamma

• VK_QNX_external_memory_screen_buffer

• VK_QNX_screen_surface

• VK_SEC_amigo_profiling

• VK_VALVE_descriptor_set_host_mapping

4311

VK_KHR_acceleration_structure

Name String

VK_KHR_acceleration_structure

Extension Type

Device extension

Registered Extension Number

151

Revision

13

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1
and
VK_EXT_descriptor_indexing
and
VK_KHR_buffer_device_address
and
VK_KHR_deferred_host_operations

API Interactions

• Interacts with VK_EXT_debug_report

• Interacts with VK_KHR_format_feature_flags2

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2021-09-30

Contributors

• Samuel Bourasseau, Adobe

• Matthäus Chajdas, AMD

• Greg Grebe, AMD

• Nicolai Hähnle, AMD

• Tobias Hector, AMD

• Dave Oldcorn, AMD

• Skyler Saleh, AMD

4312

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_acceleration_structure] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_acceleration_structure extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_acceleration_structure] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_acceleration_structure extension*

• Mathieu Robart, Arm

• Marius Bjorge, Arm

• Tom Olson, Arm

• Sebastian Tafuri, EA

• Henrik Rydgard, Embark

• Juan Cañada, Epic Games

• Patrick Kelly, Epic Games

• Yuriy O’Donnell, Epic Games

• Michael Doggett, Facebook/Oculus

• Ricardo Garcia, Igalia

• Andrew Garrard, Imagination

• Don Scorgie, Imagination

• Dae Kim, Imagination

• Joshua Barczak, Intel

• Slawek Grajewski, Intel

• Jeff Bolz, NVIDIA

• Pascal Gautron, NVIDIA

• Daniel Koch, NVIDIA

• Christoph Kubisch, NVIDIA

• Ashwin Lele, NVIDIA

• Robert Stepinski, NVIDIA

• Martin Stich, NVIDIA

• Nuno Subtil, NVIDIA

• Eric Werness, NVIDIA

• Jon Leech, Khronos

• Jeroen van Schijndel, OTOY

• Juul Joosten, OTOY

• Alex Bourd, Qualcomm

• Roman Larionov, Qualcomm

• David McAllister, Qualcomm

• Lewis Gordon, Samsung

• Ralph Potter, Samsung

• Jasper Bekkers, Traverse Research

• Jesse Barker, Unity

• Baldur Karlsson, Valve

4313

Description

In order to be efficient, rendering techniques such as ray tracing need a quick way to identify
which primitives may be intersected by a ray traversing the geometries. Acceleration structures are
the most common way to represent the geometry spatially sorted, in order to quickly identify such
potential intersections.

This extension adds new functionalities:

• Acceleration structure objects and build commands

• Structures to describe geometry inputs to acceleration structure builds

• Acceleration structure copy commands

New Object Types

• VkAccelerationStructureKHR

New Commands

• vkBuildAccelerationStructuresKHR

• vkCmdBuildAccelerationStructuresIndirectKHR

• vkCmdBuildAccelerationStructuresKHR

• vkCmdCopyAccelerationStructureKHR

• vkCmdCopyAccelerationStructureToMemoryKHR

• vkCmdCopyMemoryToAccelerationStructureKHR

• vkCmdWriteAccelerationStructuresPropertiesKHR

• vkCopyAccelerationStructureKHR

• vkCopyAccelerationStructureToMemoryKHR

• vkCopyMemoryToAccelerationStructureKHR

• vkCreateAccelerationStructureKHR

• vkDestroyAccelerationStructureKHR

• vkGetAccelerationStructureBuildSizesKHR

• vkGetAccelerationStructureDeviceAddressKHR

• vkGetDeviceAccelerationStructureCompatibilityKHR

• vkWriteAccelerationStructuresPropertiesKHR

New Structures

• VkAabbPositionsKHR

• VkAccelerationStructureBuildGeometryInfoKHR

• VkAccelerationStructureBuildRangeInfoKHR

• VkAccelerationStructureBuildSizesInfoKHR

4314

• VkAccelerationStructureCreateInfoKHR

• VkAccelerationStructureDeviceAddressInfoKHR

• VkAccelerationStructureGeometryAabbsDataKHR

• VkAccelerationStructureGeometryInstancesDataKHR

• VkAccelerationStructureGeometryKHR

• VkAccelerationStructureGeometryTrianglesDataKHR

• VkAccelerationStructureInstanceKHR

• VkAccelerationStructureVersionInfoKHR

• VkCopyAccelerationStructureInfoKHR

• VkCopyAccelerationStructureToMemoryInfoKHR

• VkCopyMemoryToAccelerationStructureInfoKHR

• VkTransformMatrixKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceAccelerationStructureFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceAccelerationStructurePropertiesKHR

• Extending VkWriteDescriptorSet:

◦ VkWriteDescriptorSetAccelerationStructureKHR

New Unions

• VkAccelerationStructureGeometryDataKHR

• VkDeviceOrHostAddressConstKHR

• VkDeviceOrHostAddressKHR

New Enums

• VkAccelerationStructureBuildTypeKHR

• VkAccelerationStructureCompatibilityKHR

• VkAccelerationStructureCreateFlagBitsKHR

• VkAccelerationStructureTypeKHR

• VkBuildAccelerationStructureFlagBitsKHR

• VkBuildAccelerationStructureModeKHR

• VkCopyAccelerationStructureModeKHR

• VkGeometryFlagBitsKHR

• VkGeometryInstanceFlagBitsKHR

• VkGeometryTypeKHR

4315

New Bitmasks

• VkAccelerationStructureCreateFlagsKHR

• VkBuildAccelerationStructureFlagsKHR

• VkGeometryFlagsKHR

• VkGeometryInstanceFlagsKHR

New Enum Constants

• VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME

• VK_KHR_ACCELERATION_STRUCTURE_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR

◦ VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR

◦ VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR

• Extending VkDescriptorType:

◦ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR

• Extending VkIndexType:

◦ VK_INDEX_TYPE_NONE_KHR

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

• Extending VkQueryType:

◦ VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR

◦ VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR

4316

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_VERSION_INFO_KHR

◦ VK_STRUCTURE_TYPE_COPY_ACCELERATION_STRUCTURE_INFO_KHR

◦ VK_STRUCTURE_TYPE_COPY_ACCELERATION_STRUCTURE_TO_MEMORY_INFO_KHR

◦ VK_STRUCTURE_TYPE_COPY_MEMORY_TO_ACCELERATION_STRUCTURE_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR

If VK_EXT_debug_report is supported:

• Extending VkDebugReportObjectTypeEXT:

◦ VK_DEBUG_REPORT_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR_EXT

If VK_KHR_format_feature_flags2 is supported:

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR

Issues

(1) How does this extension differ from VK_NV_ray_tracing?

DISCUSSION:

The following is a summary of the main functional differences between
VK_KHR_acceleration_structure and VK_NV_ray_tracing:

• added acceleration structure serialization / deserialization
(VK_COPY_ACCELERATION_STRUCTURE_MODE_SERIALIZE_KHR,
VK_COPY_ACCELERATION_STRUCTURE_MODE_DESERIALIZE_KHR,
vkCmdCopyAccelerationStructureToMemoryKHR,
vkCmdCopyMemoryToAccelerationStructureKHR)

• document inactive primitives and instances

• added VkPhysicalDeviceAccelerationStructureFeaturesKHR structure

• added indirect and batched acceleration structure builds
(vkCmdBuildAccelerationStructuresIndirectKHR)

• added host acceleration structure commands

• reworked geometry structures so they could be better shared between device, host, and indirect
builds

• explicitly made VkAccelerationStructureKHR use device addresses

• added acceleration structure compatibility check function

4317

(vkGetDeviceAccelerationStructureCompatibilityKHR)

• add parameter for requesting memory requirements for host and/or device build

• added format feature for acceleration structure build vertex formats
(VK_FORMAT_FEATURE_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR)

(2) Can you give a more detailed comparison of differences and similarities between
VK_NV_ray_tracing and VK_KHR_acceleration_structure?

DISCUSSION:

The following is a more detailed comparison of which commands, structures, and enums are
aliased, changed, or removed.

• Aliased functionality — enums, structures, and commands that are considered equivalent:

◦ VkGeometryTypeNV ↔ VkGeometryTypeKHR

◦ VkAccelerationStructureTypeNV ↔ VkAccelerationStructureTypeKHR

◦ VkCopyAccelerationStructureModeNV ↔ VkCopyAccelerationStructureModeKHR

◦ VkGeometryFlagsNV ↔ VkGeometryFlagsKHR

◦ VkGeometryFlagBitsNV ↔ VkGeometryFlagBitsKHR

◦ VkGeometryInstanceFlagsNV ↔ VkGeometryInstanceFlagsKHR

◦ VkGeometryInstanceFlagBitsNV ↔ VkGeometryInstanceFlagBitsKHR

◦ VkBuildAccelerationStructureFlagsNV ↔ VkBuildAccelerationStructureFlagsKHR

◦ VkBuildAccelerationStructureFlagBitsNV ↔ VkBuildAccelerationStructureFlagBitsKHR

◦ VkTransformMatrixNV ↔ VkTransformMatrixKHR (added to VK_NV_ray_tracing for
descriptive purposes)

◦ VkAabbPositionsNV ↔ VkAabbPositionsKHR (added to VK_NV_ray_tracing for descriptive
purposes)

◦ VkAccelerationStructureInstanceNV ↔ VkAccelerationStructureInstanceKHR (added to
VK_NV_ray_tracing for descriptive purposes)

• Changed enums, structures, and commands:

◦ renamed VK_GEOMETRY_INSTANCE_TRIANGLE_CULL_DISABLE_BIT_NV →
VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR in
VkGeometryInstanceFlagBitsKHR

◦ VkGeometryTrianglesNV → VkAccelerationStructureGeometryTrianglesDataKHR (device or
host address instead of buffer+offset)

◦ VkGeometryAABBNV → VkAccelerationStructureGeometryAabbsDataKHR (device or host
address instead of buffer+offset)

◦ VkGeometryDataNV → VkAccelerationStructureGeometryDataKHR (union of
triangle/aabbs/instances)

◦ VkGeometryNV → VkAccelerationStructureGeometryKHR (changed type of geometry)

◦ VkAccelerationStructureCreateInfoNV → VkAccelerationStructureCreateInfoKHR (reshuffle

4318

geometry layout/information)

◦ VkPhysicalDeviceRayTracingPropertiesNV →
VkPhysicalDeviceAccelerationStructurePropertiesKHR (for acceleration structure
properties, renamed maxTriangleCount to maxPrimitiveCount, added per stage and update
after bind limits) and VkPhysicalDeviceRayTracingPipelinePropertiesKHR (for ray tracing
pipeline properties)

◦ VkAccelerationStructureMemoryRequirementsInfoNV (deleted - replaced by allocating on
top of VkBuffer)

◦ VkWriteDescriptorSetAccelerationStructureNV →
VkWriteDescriptorSetAccelerationStructureKHR (different acceleration structure type)

◦ vkCreateAccelerationStructureNV → vkCreateAccelerationStructureKHR (device address,
different geometry layout/information)

◦ vkGetAccelerationStructureMemoryRequirementsNV (deleted - replaced by allocating on top
of VkBuffer)

◦ vkCmdBuildAccelerationStructureNV → vkCmdBuildAccelerationStructuresKHR (params
moved to structs, layout differences)

◦ vkCmdCopyAccelerationStructureNV → vkCmdCopyAccelerationStructureKHR (params to
struct, extendable)

◦ vkGetAccelerationStructureHandleNV → vkGetAccelerationStructureDeviceAddressKHR
(device address instead of handle)

◦ VkAccelerationStructureMemoryRequirementsTypeNV → size queries for scratch space
moved to vkGetAccelerationStructureBuildSizesKHR

◦ vkDestroyAccelerationStructureNV → vkDestroyAccelerationStructureKHR (different
acceleration structure types)

◦ vkCmdWriteAccelerationStructuresPropertiesNV →
vkCmdWriteAccelerationStructuresPropertiesKHR (different acceleration structure types)

• Added enums, structures and commands:

◦ VK_GEOMETRY_TYPE_INSTANCES_KHR to VkGeometryTypeKHR enum

◦ VK_COPY_ACCELERATION_STRUCTURE_MODE_SERIALIZE_KHR,
VK_COPY_ACCELERATION_STRUCTURE_MODE_DESERIALIZE_KHR to
VkCopyAccelerationStructureModeKHR enum

◦ VkPhysicalDeviceAccelerationStructureFeaturesKHR structure

◦ VkAccelerationStructureBuildTypeKHR enum

◦ VkBuildAccelerationStructureModeKHR enum

◦ VkDeviceOrHostAddressKHR and VkDeviceOrHostAddressConstKHR unions

◦ VkAccelerationStructureBuildRangeInfoKHR struct

◦ VkAccelerationStructureGeometryInstancesDataKHR struct

◦ VkAccelerationStructureDeviceAddressInfoKHR struct

◦ VkAccelerationStructureVersionInfoKHR struct

4319

◦ VkStridedDeviceAddressRegionKHR struct

◦ VkCopyAccelerationStructureToMemoryInfoKHR struct

◦ VkCopyMemoryToAccelerationStructureInfoKHR struct

◦ VkCopyAccelerationStructureInfoKHR struct

◦ vkBuildAccelerationStructuresKHR command (host build)

◦ vkCopyAccelerationStructureKHR command (host copy)

◦ vkCopyAccelerationStructureToMemoryKHR (host serialize)

◦ vkCopyMemoryToAccelerationStructureKHR (host deserialize)

◦ vkWriteAccelerationStructuresPropertiesKHR (host properties)

◦ vkCmdCopyAccelerationStructureToMemoryKHR (device serialize)

◦ vkCmdCopyMemoryToAccelerationStructureKHR (device deserialize)

◦ vkGetDeviceAccelerationStructureCompatibilityKHR (serialization)

(3) What are the changes between the public provisional (VK_KHR_ray_tracing v8) release and the
internal provisional (VK_KHR_ray_tracing v9) release?

• added geometryFlags to VkAccelerationStructureCreateGeometryTypeInfoKHR (later reworked to
obsolete this)

• added minAccelerationStructureScratchOffsetAlignment property to
VkPhysicalDeviceRayTracingPropertiesKHR

• fix naming and return enum from vkGetDeviceAccelerationStructureCompatibilityKHR

◦ renamed VkAccelerationStructureVersionKHR to VkAccelerationStructureVersionInfoKHR

◦ renamed VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_VERSION_KHR to
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_VERSION_INFO_KHR

◦ removed VK_ERROR_INCOMPATIBLE_VERSION_KHR

◦ added VkAccelerationStructureCompatibilityKHR enum

◦ remove return value from vkGetDeviceAccelerationStructureCompatibilityKHR and added
return enum parameter

• Require Vulkan 1.1

• added creation time capture and replay flags

◦ added VkAccelerationStructureCreateFlagBitsKHR and
VkAccelerationStructureCreateFlagsKHR

◦ renamed the flags member of VkAccelerationStructureCreateInfoKHR to buildFlags (later
removed) and added the createFlags member

• change vkCmdBuildAccelerationStructuresIndirectKHR to use buffer device address for indirect
parameter

• make VK_KHR_deferred_host_operations an interaction instead of a required extension (later
went back on this)

• renamed VkAccelerationStructureBuildOffsetInfoKHR to

4320

VkAccelerationStructureBuildRangeInfoKHR

◦ renamed the ppOffsetInfos parameter of vkCmdBuildAccelerationStructuresKHR to
ppBuildRangeInfos

• Re-unify geometry description between build and create

◦ remove VkAccelerationStructureCreateGeometryTypeInfoKHR and
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_GEOMETRY_TYPE_INFO_KHR

◦ added VkAccelerationStructureCreateSizeInfoKHR structure (later removed)

◦ change type of the pGeometryInfos member of VkAccelerationStructureCreateInfoKHR from
VkAccelerationStructureCreateGeometryTypeInfoKHR to VkAccelerationStructureGeometryKHR
(later removed)

◦ added pCreateSizeInfos member to VkAccelerationStructureCreateInfoKHR (later removed)

• Fix ppGeometries ambiguity, add pGeometries

◦ remove geometryArrayOfPointers member of
VkAccelerationStructureBuildGeometryInfoKHR

◦ disambiguate two meanings of ppGeometries by explicitly adding pGeometries to the
VkAccelerationStructureBuildGeometryInfoKHR structure and require one of them be NULL

• added nullDescriptor support for acceleration structures

• changed the update member of VkAccelerationStructureBuildGeometryInfoKHR from a bool to
the mode VkBuildAccelerationStructureModeKHR enum which allows future extensibility in
update types

• Clarify deferred host ops for pipeline creation

◦ VkDeferredOperationKHR is now a top-level parameter for
vkBuildAccelerationStructuresKHR, vkCreateRayTracingPipelinesKHR,
vkCopyAccelerationStructureToMemoryKHR, vkCopyAccelerationStructureKHR, and
vkCopyMemoryToAccelerationStructureKHR

◦ removed VkDeferredOperationInfoKHR structure

◦ change deferred host creation/return parameter behavior such that the implementation can
modify such parameters until the deferred host operation completes

◦ VK_KHR_deferred_host_operations is required again

• Change acceleration structure build to always be sized

◦ de-alias VkAccelerationStructureMemoryRequirementsTypeNV and
VkAccelerationStructureMemoryRequirementsTypeKHR, and remove
VkAccelerationStructureMemoryRequirementsTypeKHR

◦ add vkGetAccelerationStructureBuildSizesKHR command and
VkAccelerationStructureBuildSizesInfoKHR structure and
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR enum to query sizes for
acceleration structures and scratch storage

◦ move size queries for scratch space to vkGetAccelerationStructureBuildSizesKHR

◦ remove compactedSize, buildFlags, maxGeometryCount, pGeometryInfos, pCreateSizeInfos
members of VkAccelerationStructureCreateInfoKHR and add the size member

4321

◦ add maxVertex member to VkAccelerationStructureGeometryTrianglesDataKHR structure

◦ remove VkAccelerationStructureCreateSizeInfoKHR structure

(4) What are the changes between the internal provisional (VK_KHR_ray_tracing v9) release and the
final (VK_KHR_acceleration_structure v11) release?

• refactor VK_KHR_ray_tracing into 3 extensions, enabling implementation flexibility and
decoupling ray query support from ray pipelines:

◦ VK_KHR_acceleration_structure (for acceleration structure operations)

◦ VK_KHR_ray_tracing_pipeline (for ray tracing pipeline and shader stages)

◦ VK_KHR_ray_query (for ray queries in existing shader stages)

• clarify buffer usage flags for ray tracing

◦ VK_BUFFER_USAGE_RAY_TRACING_BIT_NV is left alone in VK_NV_ray_tracing (required on scratch
and instanceData)

◦ VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR is added as an alias of
VK_BUFFER_USAGE_RAY_TRACING_BIT_NV in VK_KHR_ray_tracing_pipeline and is required on
shader binding table buffers

◦ VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR is added in
VK_KHR_acceleration_structure for all vertex, index, transform, aabb, and instance buffer
data referenced by device build commands

◦ VK_BUFFER_USAGE_STORAGE_BUFFER_BIT is used for scratchData

• add max primitive counts (ppMaxPrimitiveCounts) to
vkCmdBuildAccelerationStructuresIndirectKHR

• Allocate acceleration structures from VkBuffers and add a mode to constrain the device address

◦ de-alias VkBindAccelerationStructureMemoryInfoNV and vkBindAccelerationStructureMemoryNV,
and remove VkBindAccelerationStructureMemoryInfoKHR,
VkAccelerationStructureMemoryRequirementsInfoKHR, and
vkGetAccelerationStructureMemoryRequirementsKHR

◦ acceleration structures now take a VkBuffer and offset at creation time for memory
placement

◦ add a new VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR buffer usage for such
buffers

◦ add a new VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR acceleration structure type for
layering

• move VK_GEOMETRY_TYPE_INSTANCES_KHR to main enum instead of being added via extension

• make build commands more consistent - all now build multiple acceleration structures and are
named plurally (vkCmdBuildAccelerationStructuresIndirectKHR,
vkCmdBuildAccelerationStructuresKHR, vkBuildAccelerationStructuresKHR)

• add interactions with VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT for
acceleration structures, including a new feature
(descriptorBindingAccelerationStructureUpdateAfterBind) and 3 new properties

4322

(maxPerStageDescriptorAccelerationStructures,
maxPerStageDescriptorUpdateAfterBindAccelerationStructures,
maxDescriptorSetUpdateAfterBindAccelerationStructures)

• extension is no longer provisional

• define synchronization requirements for builds, traces, and copies

• define synchronization requirements for AS build inputs and indirect build buffer

(5) What is VK_ACCELERATION_STRUCTURE_TYPE_GENERIC_KHR for?

RESOLVED: It is primarily intended for API layering. In DXR, the acceleration structure is basically
just a buffer in a special layout, and you do not know at creation time whether it will be used as a
top or bottom level acceleration structure. We thus added a generic acceleration structure type
whose type is unknown at creation time, but is specified at build time instead. Applications which
are written directly for Vulkan should not use it.

Version History

• Revision 1, 2019-12-05 (Members of the Vulkan Ray Tracing TSG)

◦ Internal revisions (forked from VK_NV_ray_tracing)

• Revision 2, 2019-12-20 (Daniel Koch, Eric Werness)

◦ Add const version of DeviceOrHostAddress (!3515)

◦ Add VU to clarify that only handles in the current pipeline are valid (!3518)

◦ Restore some missing VUs and add in-place update language (#1902, !3522)

◦ rename VkAccelerationStructureInstanceKHR member from accelerationStructure to
accelerationStructureReference to better match its type (!3523)

◦ Allow VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS for pipeline creation if shader
group handles cannot be reused (!3523)

◦ update documentation for the VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS error code
and add missing documentation for new return codes from
VK_KHR_deferred_host_operations (!3523)

◦ list new query types for VK_KHR_ray_tracing (!3523)

◦ Fix VU statements for VkAccelerationStructureGeometryKHR referring to correct union
members and update to use more current wording (!3523)

• Revision 3, 2020-01-10 (Daniel Koch, Jon Leech, Christoph Kubisch)

◦ Fix 'instance of' and 'that/which contains/defines' markup issues (!3528)

◦ factor out VK_KHR_pipeline_library as stand-alone extension (!3540)

◦ Resolve Vulkan-hpp issues (!3543)

▪ add missing require for VkGeometryInstanceFlagsKHR

▪ de-alias VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_NV since the
KHR structure is no longer equivalent

▪ add len to pDataSize attribute for vkWriteAccelerationStructuresPropertiesKHR

4323

• Revision 4, 2020-01-23 (Daniel Koch, Eric Werness)

◦ Improve vkWriteAccelerationStructuresPropertiesKHR, add return value and VUs (#1947)

◦ Clarify language to allow multiple raygen shaders (#1959)

◦ Various editorial feedback (!3556)

◦ Add language to help deal with looped self-intersecting fans (#1901)

◦ Change vkCmdTraceRays{,Indirect}KHR args to pointers (!3559)

◦ Add scratch address validation language (#1941, !3551)

◦ Fix definition and add hierarchy information for shader call scope (#1977, !3571)

• Revision 5, 2020-02-04 (Eric Werness, Jeff Bolz, Daniel Koch)

◦ remove vestigial accelerationStructureUUID (!3582)

◦ update definition of repack instructions and improve memory model interactions (#1910,
#1913, !3584)

◦ Fix wrong sType for VkPhysicalDeviceRayTracingFeaturesKHR (#1988)

◦ Use provisional SPIR-V capabilities (#1987)

◦ require rayTraversalPrimitiveCulling if rayQuery is supported (#1927)

◦ Miss shaders do not have object parameters (!3592)

◦ Fix missing required types in XML (!3592)

◦ clarify matching conditions for update (!3592)

◦ add goal that host and device builds be similar (!3592)

◦ clarify that maxPrimitiveCount limit should apply to triangles and AABBs (!3592)

◦ Require alignment for instance arrayOfPointers (!3592)

◦ Zero is a valid value for instance flags (!3592)

◦ Add some alignment VUs that got lost in refactoring (!3592)

◦ Recommend TMin epsilon rather than culling (!3592)

◦ Get angle from dot product not cross product (!3592)

◦ Clarify that AH can access the payload and attributes (!3592)

◦ Match DXR behavior for inactive primitive definition (!3592)

◦ Use a more generic term than degenerate for inactive to avoid confusion (!3592)

• Revision 6, 2020-02-20 (Daniel Koch)

◦ fix some dangling NV references (#1996)

◦ rename VkCmdTraceRaysIndirectCommandKHR to VkTraceRaysIndirectCommandKHR
(!3607)

◦ update contributor list (!3611)

◦ use uint64_t instead of VkAccelerationStructureReferenceKHR in
VkAccelerationStructureInstanceKHR (#2004)

4324

• Revision 7, 2020-02-28 (Tobias Hector)

◦ remove HitTKHR SPIR-V builtin (spirv/spirv-extensions#7)

• Revision 8, 2020-03-06 (Tobias Hector, Dae Kim, Daniel Koch, Jeff Bolz, Eric Werness)

◦ explicitly state that Tmax is updated when new closest intersection is accepted (#2020,!3536)

◦ Made references to min and max t values consistent (!3644)

◦ finish enumerating differences relative to VK_NV_ray_tracing in issues (1) and (2)
(#1974,!3642)

◦ fix formatting in some math equations (!3642)

◦ Restrict the Hit Kind operand of OpReportIntersectionKHR to 7-bits (spirv/spirv-
extensions#8,!3646)

◦ Say ray tracing 'should' be watertight (#2008,!3631)

◦ Clarify memory requirements for ray tracing buffers (#2005,!3649)

◦ Add callable size limits (#1997,!3652)

• Revision 9, 2020-04-15 (Eric Werness, Daniel Koch, Tobias Hector, Joshua Barczak)

◦ Add geometry flags to acceleration structure creation (!3672)

◦ add build scratch memory alignment (minAccelerationStructureScratchOffsetAlignment)
(#2065,!3725)

◦ fix naming and return enum from vkGetDeviceAccelerationStructureCompatibilityKHR
(#2051,!3726)

◦ require SPIR-V 1.4 (#2096,!3777)

◦ added creation time capture/replay flags (#2104,!3774)

◦ require Vulkan 1.1 (#2133,!3806)

◦ use device addresses instead of VkBuffers for ray tracing commands (#2074,!3815)

◦ add interactions with Vulkan 1.2 and VK_KHR_vulkan_memory_model (#2133,!3830)

◦ make VK_KHR_pipeline_library an interaction instead of required (#2045,#2108,!3830)

◦ make VK_KHR_deferred_host_operations an interaction instead of required (#2045,!3830)

◦ removed maxCallableSize and added explicit stack size management for ray pipelines
(#1997,!3817,!3772,!3844)

◦ improved documentation for VkAccelerationStructureVersionInfoKHR (#2135,3835)

◦ rename VkAccelerationStructureBuildOffsetInfoKHR to
VkAccelerationStructureBuildRangeInfoKHR (#2058,!3754)

◦ Re-unify geometry description between build and create (!3754)

◦ Fix ppGeometries ambiguity, add pGeometries (#2032,!3811)

◦ add interactions with VK_EXT_robustness2 and allow nullDescriptor support for
acceleration structures (#1920,!3848)

◦ added future extensibility for AS updates (#2114,!3849)

◦ Fix VU for dispatchrays and add a limit on the size of the full grid (#2160,!3851)

4325

◦ Add shaderGroupHandleAlignment property (#2180,!3875)

◦ Clarify deferred host ops for pipeline creation (#2067,!3813)

◦ Change acceleration structure build to always be sized
(#2131,#2197,#2198,!3854,!3883,!3880)

• Revision 10, 2020-07-03 (Mathieu Robart, Daniel Koch, Eric Werness, Tobias Hector)

◦ Decomposition of the specification, from VK_KHR_ray_tracing to
VK_KHR_acceleration_structure (#1918,!3912)

◦ clarify buffer usage flags for ray tracing (#2181,!3939)

◦ add max primitive counts to build indirect command (#2233,!3944)

◦ Allocate acceleration structures from VkBuffers and add a mode to constrain the device
address (#2131,!3936)

◦ Move VK_GEOMETRY_TYPE_INSTANCES_KHR to main enum (#2243,!3952)

◦ make build commands more consistent (#2247,!3958)

◦ add interactions with UPDATE_AFTER_BIND (#2128,!3986)

◦ correct and expand build command VUs (!4020)

◦ fix copy command VUs (!4018)

◦ added various alignment requirements (#2229,!3943)

◦ fix valid usage for arrays of geometryCount items (#2198,!4010)

◦ define what is allowed to change on RTAS updates and relevant VUs (#2177,!3961)

• Revision 11, 2020-11-12 (Eric Werness, Josh Barczak, Daniel Koch, Tobias Hector)

◦ de-alias NV and KHR acceleration structure types and associated commands (#2271,!4035)

◦ specify alignment for host copy commands (#2273,!4037)

◦ document VK_FORMAT_FEATURE_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR

◦ specify that acceleration structures are non-linear (#2289,!4068)

◦ add several missing VUs for strides, vertexFormat, and indexType (#2315,!4069)

◦ restore VUs for VkAccelerationStructureBuildGeometryInfoKHR (#2337,!4098)

◦ ban multi-instance memory for host operations (#2324,!4102)

◦ allow dstAccelerationStructure to be null for vkGetAccelerationStructureBuildSizesKHR
(#2330,!4111)

◦ more build VU cleanup (#2138,#4130)

◦ specify host endianness for AS serialization (#2261,!4136)

◦ add invertible transform matrix VU (#1710,!4140)

◦ require geometryCount to be 1 for TLAS builds (!4145)

◦ improved validity conditions for build addresses (#4142)

◦ add single statement SPIR-V VUs, build limit VUs (!4158)

◦ document limits for vertex and aabb strides (#2390,!4184)

4326

◦ specify that VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR applies to AS copies
(#2382,#4173)

◦ define sync for AS build inputs and indirect buffer (#2407,!4208)

• Revision 12, 2021-08-06 (Samuel Bourasseau)

◦ rename VK_GEOMETRY_INSTANCE_TRIANGLE_FRONT_COUNTERCLOCKWISE_BIT_KHR to
VK_GEOMETRY_INSTANCE_TRIANGLE_FLIP_FACING_BIT_KHR (keep previous as alias).

◦ Clarify description and add note.

• Revision 13, 2021-09-30 (Jon Leech)

◦ Add interaction with VK_KHR_format_feature_flags2 to vk.xml

VK_KHR_android_surface

Name String

VK_KHR_android_surface

Extension Type

Instance extension

Registered Extension Number

9

Revision

6

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Jesse Hall critsec

Other Extension Metadata

Last Modified Date

2016-01-14

IP Status

No known IP claims.

Contributors

• Patrick Doane, Blizzard

• Faith Ekstrand, Intel

• Ian Elliott, LunarG

4327

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_android_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_android_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_android_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_android_surface extension*

• Courtney Goeltzenleuchter, LunarG

• Jesse Hall, Google

• James Jones, NVIDIA

• Antoine Labour, Google

• Jon Leech, Khronos

• David Mao, AMD

• Norbert Nopper, Freescale

• Alon Or-bach, Samsung

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Ray Smith, ARM

• Jeff Vigil, Qualcomm

• Chia-I Wu, LunarG

Description

The VK_KHR_android_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to an ANativeWindow,
Android’s native surface type. The ANativeWindow represents the producer endpoint of any buffer
queue, regardless of consumer endpoint. Common consumer endpoints for ANativeWindows are the
system window compositor, video encoders, and application-specific compositors importing the
images through a SurfaceTexture.

New Base Types

• ANativeWindow

New Commands

• vkCreateAndroidSurfaceKHR

New Structures

• VkAndroidSurfaceCreateInfoKHR

New Bitmasks

• VkAndroidSurfaceCreateFlagsKHR

New Enum Constants

• VK_KHR_ANDROID_SURFACE_EXTENSION_NAME

• VK_KHR_ANDROID_SURFACE_SPEC_VERSION

• Extending VkStructureType:

4328

◦ VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR

Issues

1) Does Android need a way to query for compatibility between a particular physical device (and
queue family?) and a specific Android display?

RESOLVED: No. Currently on Android, any physical device is expected to be able to present to the
system compositor, and all queue families must support the necessary image layout transitions and
synchronization operations.

Version History

• Revision 1, 2015-09-23 (Jesse Hall)

◦ Initial draft.

• Revision 2, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_android_surface to VK_KHR_android_surface.

• Revision 3, 2015-11-03 (Daniel Rakos)

◦ Added allocation callbacks to surface creation function.

• Revision 4, 2015-11-10 (Jesse Hall)

◦ Removed VK_ERROR_INVALID_ANDROID_WINDOW_KHR.

• Revision 5, 2015-11-28 (Daniel Rakos)

◦ Updated the surface create function to take a pCreateInfo structure.

• Revision 6, 2016-01-14 (James Jones)

◦ Moved VK_ERROR_NATIVE_WINDOW_IN_USE_KHR from the VK_KHR_android_surface to
the VK_KHR_surface extension.

VK_KHR_calibrated_timestamps

Name String

VK_KHR_calibrated_timestamps

Extension Type

Device extension

Registered Extension Number

544

Revision

1

Ratification Status

Ratified

4329

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Daniel Rakos aqnuep

Extension Proposal

VK_EXT_calibrated_timestamps

Other Extension Metadata

Last Modified Date

2023-07-12

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Alan Harrison, AMD

• Derrick Owens, AMD

• Daniel Rakos, RasterGrid

• Faith Ekstrand, Intel

• Keith Packard, Valve

Description

This extension provides an interface to query calibrated timestamps obtained quasi simultaneously
from two time domains.

New Commands

• vkGetCalibratedTimestampsKHR

• vkGetPhysicalDeviceCalibrateableTimeDomainsKHR

New Structures

• VkCalibratedTimestampInfoKHR

New Enums

• VkTimeDomainKHR

4330

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_calibrated_timestamps] @aqnuep%0A*Here describe the issue or question you have about the VK_KHR_calibrated_timestamps extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_calibrated_timestamps] @aqnuep%0A*Here describe the issue or question you have about the VK_KHR_calibrated_timestamps extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_calibrated_timestamps.adoc

New Enum Constants

• VK_KHR_CALIBRATED_TIMESTAMPS_EXTENSION_NAME

• VK_KHR_CALIBRATED_TIMESTAMPS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_KHR

Version History

• Revision 1, 2023-07-12 (Daniel Rakos)

◦ Initial draft.

VK_KHR_cooperative_matrix

Name String

VK_KHR_cooperative_matrix

Extension Type

Device extension

Registered Extension Number

507

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_KHR_cooperative_matrix

Contact

• Kevin Petit kpet

Extension Proposal

VK_KHR_cooperative_matrix

Other Extension Metadata

Last Modified Date

2023-05-03

Interactions and External Dependencies

• This extension provides API support for GLSL_KHR_cooperative_matrix

4331

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_cooperative_matrix.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_cooperative_matrix] @kpet%0A*Here describe the issue or question you have about the VK_KHR_cooperative_matrix extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_cooperative_matrix] @kpet%0A*Here describe the issue or question you have about the VK_KHR_cooperative_matrix extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_cooperative_matrix.adoc
https://github.com/KhronosGroup/GLSL/blob/master/extensions/khr/GLSL_KHR_cooperative_matrix.txt

Contributors

• Jeff Bolz, NVIDIA

• Markus Tavenrath, NVIDIA

• Daniel Koch, NVIDIA

• Kevin Petit, Arm Ltd.

• Boris Zanin, AMD

Description

This extension adds support for using cooperative matrix types in SPIR-V. Cooperative matrix types
are medium-sized matrices that are primarily supported in compute shaders, where the storage for
the matrix is spread across all invocations in some scope (usually a subgroup) and those
invocations cooperate to efficiently perform matrix multiplies.

Cooperative matrix types are defined by the SPV_KHR_cooperative_matrix SPIR-V extension and can
be used with the GLSL_KHR_cooperative_matrix GLSL extension.

This extension includes support for enumerating the matrix types and dimensions that are
supported by the implementation.

New Commands

• vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR

New Structures

• VkCooperativeMatrixPropertiesKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCooperativeMatrixFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceCooperativeMatrixPropertiesKHR

New Enums

• VkComponentTypeKHR

• VkScopeKHR

New Enum Constants

• VK_KHR_COOPERATIVE_MATRIX_EXTENSION_NAME

• VK_KHR_COOPERATIVE_MATRIX_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR

4332

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_cooperative_matrix.html
https://github.com/KhronosGroup/GLSL/blob/master/extensions/khr/GLSL_KHR_cooperative_matrix.txt

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_PROPERTIES_KHR

New SPIR-V Capabilities

• CooperativeMatrixKHR

Issues

Version History

• Revision 2, 2023-05-03 (Kevin Petit)

◦ First KHR revision

• Revision 1, 2019-02-05 (Jeff Bolz)

◦ NVIDIA vendor extension

VK_KHR_deferred_host_operations

Name String

VK_KHR_deferred_host_operations

Extension Type

Device extension

Registered Extension Number

269

Revision

4

Ratification Status

Ratified

Extension and Version Dependencies

None

Contact

• Josh Barczak jbarczak

Other Extension Metadata

Last Modified Date

2020-11-12

IP Status

No known IP claims.

Contributors

• Joshua Barczak, Intel

4333

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_deferred_host_operations] @jbarczak%0A*Here describe the issue or question you have about the VK_KHR_deferred_host_operations extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_deferred_host_operations] @jbarczak%0A*Here describe the issue or question you have about the VK_KHR_deferred_host_operations extension*

• Jeff Bolz, NVIDIA

• Daniel Koch, NVIDIA

• Slawek Grajewski, Intel

• Tobias Hector, AMD

• Yuriy O’Donnell, Epic

• Eric Werness, NVIDIA

• Baldur Karlsson, Valve

• Jesse Barker, Unity

• Contributors to VK_KHR_acceleration_structure, VK_KHR_ray_tracing_pipeline

Description

The VK_KHR_deferred_host_operations extension defines the infrastructure and usage patterns for
deferrable commands, but does not specify any commands as deferrable. This is left to additional
dependent extensions. Commands must not be deferred unless the deferral is specifically allowed
by another extension which depends on VK_KHR_deferred_host_operations.

New Object Types

• VkDeferredOperationKHR

New Commands

• vkCreateDeferredOperationKHR

• vkDeferredOperationJoinKHR

• vkDestroyDeferredOperationKHR

• vkGetDeferredOperationMaxConcurrencyKHR

• vkGetDeferredOperationResultKHR

New Enum Constants

• VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME

• VK_KHR_DEFERRED_HOST_OPERATIONS_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_DEFERRED_OPERATION_KHR

• Extending VkResult:

◦ VK_OPERATION_DEFERRED_KHR

◦ VK_OPERATION_NOT_DEFERRED_KHR

◦ VK_THREAD_DONE_KHR

◦ VK_THREAD_IDLE_KHR

4334

Code Examples

The following examples will illustrate the concept of deferrable operations using a hypothetical
example. The command vkDoSomethingExpensive denotes a deferrable command.

The following example illustrates how a vulkan application might request deferral of an expensive
operation:

// create a deferred operation
VkDeferredOperationKHR hOp;
VkResult result = vkCreateDeferredOperationKHR(device, pCallbacks, &hOp);
assert(result == VK_SUCCESS);

result = vkDoSomethingExpensive(device, hOp, ...);
assert(result == VK_OPERATION_DEFERRED_KHR);

// operation was deferred. Execute it asynchronously
std::async::launch(
 [hOp] ()
 {
 vkDeferredOperationJoinKHR(device, hOp);

 result = vkGetDeferredOperationResultKHR(device, hOp);

 // deferred operation is now complete. 'result' indicates success or failure

 vkDestroyDeferredOperationKHR(device, hOp, pCallbacks);
 }
);

The following example illustrates extracting concurrency from a single deferred operation:

// create a deferred operation
VkDeferredOperationKHR hOp;
VkResult result = vkCreateDeferredOperationKHR(device, pCallbacks, &hOp);
assert(result == VK_SUCCESS);

result = vkDoSomethingExpensive(device, hOp, ...);
assert(result == VK_OPERATION_DEFERRED_KHR);

// Query the maximum amount of concurrency and clamp to the desired maximum
uint32_t numLaunches = std::min(vkGetDeferredOperationMaxConcurrencyKHR(device, hOp),
maxThreads);

std::vector<std::future<void> > joins;

for (uint32_t i = 0; i < numLaunches; i++) {
 joins.emplace_back(std::async::launch(
 [hOp] ()

4335

 {
 vkDeferredOperationJoinKHR(device, hOp);
 // in a job system, a return of VK_THREAD_IDLE_KHR should queue
another
 // job, but it is not functionally required
 }
));
}

for (auto &f : joins) {
 f.get();
}

result = vkGetDeferredOperationResultKHR(device, hOp);

// deferred operation is now complete. 'result' indicates success or failure

vkDestroyDeferredOperationKHR(device, hOp, pCallbacks);

The following example shows a subroutine which guarantees completion of a deferred operation,
in the presence of multiple worker threads, and returns the result of the operation.

VkResult FinishDeferredOperation(VkDeferredOperationKHR hOp)
{
 // Attempt to join the operation until the implementation indicates that we should
stop

 VkResult result = vkDeferredOperationJoinKHR(device, hOp);
 while(result == VK_THREAD_IDLE_KHR)
 {
 std::this_thread::yield();
 result = vkDeferredOperationJoinKHR(device, hOp);
 }

 switch(result)
 {
 case VK_SUCCESS:
 {
 // deferred operation has finished. Query its result
 result = vkGetDeferredOperationResultKHR(device, hOp);
 }
 break;

 case VK_THREAD_DONE_KHR:
 {
 // deferred operation is being wrapped up by another thread
 // wait for that thread to finish
 do
 {
 std::this_thread::yield();

4336

 result = vkGetDeferredOperationResultKHR(device, hOp);
 } while(result == VK_NOT_READY);
 }
 break;

 default:
 assert(false); // other conditions are illegal.
 break;
 }

 return result;
}

Issues

1. Should this extension have a VkPhysicalDevice*FeaturesKHR structure?

RESOLVED: No. This extension does not add any functionality on its own and requires a dependent
extension to actually enable functionality and thus there is no value in adding a feature structure.
If necessary, any dependent extension could add a feature boolean if it wanted to indicate that it is
adding optional deferral support.

Version History

• Revision 1, 2019-12-05 (Josh Barczak, Daniel Koch)

◦ Initial draft.

• Revision 2, 2020-03-06 (Daniel Koch, Tobias Hector)

◦ Add missing VK_OBJECT_TYPE_DEFERRED_OPERATION_KHR enum

◦ fix sample code

◦ Clarified deferred operation parameter lifetimes (#2018,!3647)

• Revision 3, 2020-05-15 (Josh Barczak)

◦ Clarify behavior of vkGetDeferredOperationMaxConcurrencyKHR, allowing it to return 0 if
the operation is complete (#2036,!3850)

• Revision 4, 2020-11-12 (Tobias Hector, Daniel Koch)

◦ Remove VkDeferredOperationInfoKHR and change return value semantics when deferred
host operations are in use (#2067,3813)

◦ clarify return value of vkGetDeferredOperationResultKHR (#2339,!4110)

VK_KHR_display

Name String

VK_KHR_display

Extension Type

Instance extension

4337

Registered Extension Number

3

Revision

23

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• James Jones cubanismo

• Norbert Nopper FslNopper

Other Extension Metadata

Last Modified Date

2017-03-13

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Norbert Nopper, Freescale

• Jeff Vigil, Qualcomm

• Daniel Rakos, AMD

Description

This extension provides the API to enumerate displays and available modes on a given device.

New Object Types

• VkDisplayKHR

• VkDisplayModeKHR

New Commands

• vkCreateDisplayModeKHR

• vkCreateDisplayPlaneSurfaceKHR

• vkGetDisplayModePropertiesKHR

• vkGetDisplayPlaneCapabilitiesKHR

4338

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_display] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_display extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_display] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_display extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_display] @FslNopper%0A*Here describe the issue or question you have about the VK_KHR_display extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_display] @FslNopper%0A*Here describe the issue or question you have about the VK_KHR_display extension*

• vkGetDisplayPlaneSupportedDisplaysKHR

• vkGetPhysicalDeviceDisplayPlanePropertiesKHR

• vkGetPhysicalDeviceDisplayPropertiesKHR

New Structures

• VkDisplayModeCreateInfoKHR

• VkDisplayModeParametersKHR

• VkDisplayModePropertiesKHR

• VkDisplayPlaneCapabilitiesKHR

• VkDisplayPlanePropertiesKHR

• VkDisplayPropertiesKHR

• VkDisplaySurfaceCreateInfoKHR

New Enums

• VkDisplayPlaneAlphaFlagBitsKHR

New Bitmasks

• VkDisplayModeCreateFlagsKHR

• VkDisplayPlaneAlphaFlagsKHR

• VkDisplaySurfaceCreateFlagsKHR

• VkSurfaceTransformFlagsKHR

New Enum Constants

• VK_KHR_DISPLAY_EXTENSION_NAME

• VK_KHR_DISPLAY_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_DISPLAY_KHR

◦ VK_OBJECT_TYPE_DISPLAY_MODE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR

Issues

1) Which properties of a mode should be fixed in the mode information vs. settable in some other
function when setting the mode? E.g., do we need to double the size of the mode pool to include
both stereo and non-stereo modes? YUV and RGB scanout even if they both take RGB input images?
BGR vs. RGB input? etc.

4339

RESOLVED: Many modern displays support at most a handful of resolutions and timings natively.
Other “modes” are expected to be supported using scaling hardware on the display engine or GPU.
Other properties, such as rotation and mirroring should not require duplicating hardware modes
just to express all combinations. Further, these properties may be implemented on a per-display or
per-overlay granularity.

To avoid the exponential growth of modes as mutable properties are added, as was the case with
EGLConfig/WGL pixel formats/GLXFBConfig, this specification should separate out hardware
properties and configurable state into separate objects. Modes and overlay planes will express
capabilities of the hardware, while a separate structure will allow applications to configure scaling,
rotation, mirroring, color keys, LUT values, alpha masks, etc. for a given swapchain independent of
the mode in use. Constraints on these settings will be established by properties of the immutable
objects.

Note the resolution of this issue may affect issue 5 as well.

2) What properties of a display itself are useful?

RESOLVED: This issue is too broad. It was meant to prompt general discussion, but resolving this
issue amounts to completing this specification. All interesting properties should be included. The
issue will remain as a placeholder since removing it would make it hard to parse existing
discussion notes that refer to issues by number.

3) How are multiple overlay planes within a display or mode enumerated?

RESOLVED: They are referred to by an index. Each display will report the number of overlay
planes it contains.

4) Should swapchains be created relative to a mode or a display?

RESOLVED: When using this extension, swapchains are created relative to a mode and a plane. The
mode implies the display object the swapchain will present to. If the specified mode is not the
display’s current mode, the new mode will be applied when the first image is presented to the
swapchain, and the default operating system mode, if any, will be restored when the swapchain is
destroyed.

5) Should users query generic ranges from displays and construct their own modes explicitly using
those constraints rather than querying a fixed set of modes (Most monitors only have one real
“mode” these days, even though many support relatively arbitrary scaling, either on the monitor
side or in the GPU display engine, making “modes” something of a relic/compatibility construct).

RESOLVED: Expose both. Display information structures will expose a set of predefined modes, as
well as any attributes necessary to construct a customized mode.

6) Is it fine if we return the display and display mode handles in the structure used to query their
properties?

RESOLVED: Yes.

7) Is there a possibility that not all displays of a device work with all of the present queues of a
device? If yes, how do we determine which displays work with which present queues?

4340

RESOLVED: No known hardware has such limitations, but determining such limitations is
supported automatically using the existing VK_KHR_surface and VK_KHR_swapchain query mechanisms.

8) Should all presentation need to be done relative to an overlay plane, or can a display mode +
display be used alone to target an output?

RESOLVED: Require specifying a plane explicitly.

9) Should displays have an associated window system display, such as an HDC or Display*?

RESOLVED: No. Displays are independent of any windowing system in use on the system. Further,
neither HDC nor Display* refer to a physical display object.

10) Are displays queried from a physical GPU or from a device instance?

RESOLVED: Developers prefer to query modes directly from the physical GPU so they can use
display information as an input to their device selection algorithms prior to device creation. This
avoids the need to create placeholder device instances to enumerate displays.

This preference must be weighed against the extra initialization that must be done by driver
vendors prior to device instance creation to support this usage.

11) Should displays and/or modes be dispatchable objects? If functions are to take displays,
overlays, or modes as their first parameter, they must be dispatchable objects as defined in
Khronos bug 13529. If they are not added to the list of dispatchable objects, functions operating on
them must take some higher-level object as their first parameter. There is no performance case
against making them dispatchable objects, but they would be the first extension objects to be
dispatchable.

RESOLVED: Do not make displays or modes dispatchable. They will dispatch based on their
associated physical device.

12) Should hardware cursor capabilities be exposed?

RESOLVED: Defer. This could be a separate extension on top of the base WSI specs.

13) How many display objects should be enumerated for "tiled" display devices? There are ongoing
design discussions among lower-level display API authors regarding how to expose displays if they
are one physical display device to an end user, but may internally be implemented as two side-by-
side displays using the same display engine (and sometimes cabling) resources as two physically
separate display devices.

RESOLVED: Tiled displays will appear as a single display object in this API.

14) Should the raw EDID data be included in the display information?

RESOLVED: No. A future extension could be added which reports the EDID if necessary. This may
be complicated by the outcome of issue 13.

15) Should min and max scaling factor capabilities of overlays be exposed?

RESOLVED: Yes. This is exposed indirectly by allowing applications to query the min/max position

4341

and extent of the source and destination regions from which image contents are fetched by the
display engine when using a particular mode and overlay pair.

16) Should devices be able to expose planes that can be moved between displays? If so, how?

RESOLVED: Yes. Applications can determine which displays a given plane supports using
vkGetDisplayPlaneSupportedDisplaysKHR.

17) Should there be a way to destroy display modes? If so, does it support destroying “built in”
modes?

RESOLVED: Not in this extension. A future extension could add this functionality.

18) What should the lifetime of display and built-in display mode objects be?

RESOLVED: The lifetime of the instance. These objects cannot be destroyed. A future extension may
be added to expose a way to destroy these objects and/or support display hotplug.

19) Should persistent mode for smart panels be enabled/disabled at swapchain creation time, or on
a per-present basis.

RESOLVED: On a per-present basis.

Examples

Note

The example code for the VK_KHR_display and VK_KHR_display_swapchain extensions
was removed from the appendix after revision 1.0.43. The display enumeration
example code was ported to the cube demo that is shipped with the official
Khronos SDK, and is being kept up-to-date in that location (see: https://github.com/
KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c).

Version History

• Revision 1, 2015-02-24 (James Jones)

◦ Initial draft

• Revision 2, 2015-03-12 (Norbert Nopper)

◦ Added overlay enumeration for a display.

• Revision 3, 2015-03-17 (Norbert Nopper)

◦ Fixed typos and namings as discussed in Bugzilla.

◦ Reordered and grouped functions.

◦ Added functions to query count of display, mode and overlay.

◦ Added native display handle, which may be needed on some platforms to create a native
Window.

• Revision 4, 2015-03-18 (Norbert Nopper)

◦ Removed primary and virtualPostion members (see comment of James Jones in Bugzilla).

4342

https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c
https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c

◦ Added native overlay handle to information structure.

◦ Replaced , with ; in struct.

• Revision 6, 2015-03-18 (Daniel Rakos)

◦ Added WSI extension suffix to all items.

◦ Made the whole API more “Vulkanish”.

◦ Replaced all functions with a single vkGetDisplayInfoKHR function to better match the rest
of the API.

◦ Made the display, display mode, and overlay objects be first class objects, not subclasses of
VkBaseObject as they do not support the common functions anyways.

◦ Renamed *Info structures to *Properties.

◦ Removed overlayIndex field from VkOverlayProperties as there is an implicit index already
as a result of moving to a “Vulkanish” API.

◦ Displays are not get through device, but through physical GPU to match the rest of the
Vulkan API. Also this is something ISVs explicitly requested.

◦ Added issue (6) and (7).

• Revision 7, 2015-03-25 (James Jones)

◦ Added an issues section

◦ Added rotation and mirroring flags

• Revision 8, 2015-03-25 (James Jones)

◦ Combined the duplicate issues sections introduced in last change.

◦ Added proposed resolutions to several issues.

• Revision 9, 2015-04-01 (Daniel Rakos)

◦ Rebased extension against Vulkan 0.82.0

• Revision 10, 2015-04-01 (James Jones)

◦ Added issues (10) and (11).

◦ Added more straw-man issue resolutions, and cleaned up the proposed resolution for issue
(4).

◦ Updated the rotation and mirroring enums to have proper bitmask semantics.

• Revision 11, 2015-04-15 (James Jones)

◦ Added proposed resolution for issues (1) and (2).

◦ Added issues (12), (13), (14), and (15)

◦ Removed pNativeHandle field from overlay structure.

◦ Fixed small compilation errors in example code.

• Revision 12, 2015-07-29 (James Jones)

◦ Rewrote the guts of the extension against the latest WSI swapchain specifications and the
latest Vulkan API.

4343

◦ Address overlay planes by their index rather than an object handle and refer to them as
“planes” rather than “overlays” to make it slightly clearer that even a display with no
“overlays” still has at least one base “plane” that images can be displayed on.

◦ Updated most of the issues.

◦ Added an “extension type” section to the specification header.

◦ Reused the VK_EXT_KHR_surface surface transform enumerations rather than redefining
them here.

◦ Updated the example code to use the new semantics.

• Revision 13, 2015-08-21 (Ian Elliott)

◦ Renamed this extension and all of its enumerations, types, functions, etc. This makes it
compliant with the proposed standard for Vulkan extensions.

◦ Switched from “revision” to “version”, including use of the VK_MAKE_VERSION macro in the
header file.

• Revision 14, 2015-09-01 (James Jones)

◦ Restore single-field revision number.

• Revision 15, 2015-09-08 (James Jones)

◦ Added alpha flags enum.

◦ Added premultiplied alpha support.

• Revision 16, 2015-09-08 (James Jones)

◦ Added description section to the spec.

◦ Added issues 16 - 18.

• Revision 17, 2015-10-02 (James Jones)

◦ Planes are now a property of the entire device rather than individual displays. This allows
planes to be moved between multiple displays on devices that support it.

◦ Added a function to create a VkSurfaceKHR object describing a display plane and mode to
align with the new per-platform surface creation conventions.

◦ Removed detailed mode timing data. It was agreed that the mode extents and refresh rate
are sufficient for current use cases. Other information could be added back in as an
extension if it is needed in the future.

◦ Added support for smart/persistent/buffered display devices.

• Revision 18, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_display to VK_KHR_display.

• Revision 19, 2015-11-02 (James Jones)

◦ Updated example code to match revision 17 changes.

• Revision 20, 2015-11-03 (Daniel Rakos)

◦ Added allocation callbacks to creation functions.

• Revision 21, 2015-11-10 (Jesse Hall)

4344

◦ Added VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR, and use
VkDisplayPlaneAlphaFlagBitsKHR for VkDisplayPlanePropertiesKHR::alphaMode instead of
VkDisplayPlaneAlphaFlagsKHR, since it only represents one mode.

◦ Added reserved flags bitmask to VkDisplayPlanePropertiesKHR.

◦ Use VkSurfaceTransformFlagBitsKHR instead of obsolete VkSurfaceTransformKHR.

◦ Renamed vkGetDisplayPlaneSupportedDisplaysKHR parameters for clarity.

• Revision 22, 2015-12-18 (James Jones)

◦ Added missing “planeIndex” parameter to vkGetDisplayPlaneSupportedDisplaysKHR()

• Revision 23, 2017-03-13 (James Jones)

◦ Closed all remaining issues. The specification and implementations have been shipping with
the proposed resolutions for some time now.

◦ Removed the sample code and noted it has been integrated into the official Vulkan SDK cube
demo.

VK_KHR_display_swapchain

Name String

VK_KHR_display_swapchain

Extension Type

Device extension

Registered Extension Number

4

Revision

10

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_swapchain
and
VK_KHR_display

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2017-03-13

4345

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_display_swapchain] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_display_swapchain extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_display_swapchain] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_display_swapchain extension*

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Jeff Vigil, Qualcomm

• Jesse Hall, Google

Description

This extension provides an API to create a swapchain directly on a device’s display without any
underlying window system.

New Commands

• vkCreateSharedSwapchainsKHR

New Structures

• Extending VkPresentInfoKHR:

◦ VkDisplayPresentInfoKHR

New Enum Constants

• VK_KHR_DISPLAY_SWAPCHAIN_EXTENSION_NAME

• VK_KHR_DISPLAY_SWAPCHAIN_SPEC_VERSION

• Extending VkResult:

◦ VK_ERROR_INCOMPATIBLE_DISPLAY_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR

Issues

1) Should swapchains sharing images each hold a reference to the images, or should it be up to the
application to destroy the swapchains and images in an order that avoids the need for reference
counting?

RESOLVED: Take a reference. The lifetime of presentable images is already complex enough.

2) Should the srcRect and dstRect parameters be specified as part of the presentation command, or
at swapchain creation time?

RESOLVED: As part of the presentation command. This allows moving and scaling the image on the
screen without the need to respecify the mode or create a new swapchain and presentable images.

3) Should srcRect and dstRect be specified as rects, or separate offset/extent values?

4346

RESOLVED: As rects. Specifying them separately might make it easier for hardware to expose
support for one but not the other, but in such cases applications must just take care to obey the
reported capabilities and not use non-zero offsets or extents that require scaling, as appropriate.

4) How can applications create multiple swapchains that use the same images?

RESOLVED: By calling vkCreateSharedSwapchainsKHR.

An earlier resolution used vkCreateSwapchainKHR, chaining multiple VkSwapchainCreateInfoKHR
structures through pNext. In order to allow each swapchain to also allow other extension structs, a
level of indirection was used: VkSwapchainCreateInfoKHR::pNext pointed to a different structure,
which had both sType and pNext members for additional extensions, and also had a pointer to the
next VkSwapchainCreateInfoKHR structure. The number of swapchains to be created could only be
found by walking this linked list of alternating structures, and the pSwapchains out parameter was
reinterpreted to be an array of VkSwapchainKHR handles.

Another option considered was a method to specify a “shared” swapchain when creating a new
swapchain, such that groups of swapchains using the same images could be built up one at a time.
This was deemed unusable because drivers need to know all of the displays an image will be used
on when determining which internal formats and layouts to use for that image.

Examples

Note

The example code for the VK_KHR_display and VK_KHR_display_swapchain extensions
was removed from the appendix after revision 1.0.43. The display swapchain
creation example code was ported to the cube demo that is shipped with the
official Khronos SDK, and is being kept up-to-date in that location (see:
https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c).

Version History

• Revision 1, 2015-07-29 (James Jones)

◦ Initial draft

• Revision 2, 2015-08-21 (Ian Elliott)

◦ Renamed this extension and all of its enumerations, types, functions, etc. This makes it
compliant with the proposed standard for Vulkan extensions.

◦ Switched from “revision” to “version”, including use of the VK_MAKE_VERSION macro in the
header file.

• Revision 3, 2015-09-01 (James Jones)

◦ Restore single-field revision number.

• Revision 4, 2015-09-08 (James Jones)

◦ Allow creating multiple swapchains that share the same images using a single call to
vkCreateSwapchainKHR().

• Revision 5, 2015-09-10 (Alon Or-bach)

4347

https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c

◦ Removed underscores from SWAP_CHAIN in two enums.

• Revision 6, 2015-10-02 (James Jones)

◦ Added support for smart panels/buffered displays.

• Revision 7, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_display_swapchain to VK_KHR_display_swapchain.

• Revision 8, 2015-11-03 (Daniel Rakos)

◦ Updated sample code based on the changes to VK_KHR_swapchain.

• Revision 9, 2015-11-10 (Jesse Hall)

◦ Replaced VkDisplaySwapchainCreateInfoKHR with vkCreateSharedSwapchainsKHR,
changing resolution of issue #4.

• Revision 10, 2017-03-13 (James Jones)

◦ Closed all remaining issues. The specification and implementations have been shipping with
the proposed resolutions for some time now.

◦ Removed the sample code and noted it has been integrated into the official Vulkan SDK cube
demo.

VK_KHR_dynamic_rendering_local_read

Name String

VK_KHR_dynamic_rendering_local_read

Extension Type

Device extension

Registered Extension Number

233

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_dynamic_rendering

Contact

• Tobias Hector tobski

Extension Proposal

VK_KHR_dynamic_rendering_local_read

4348

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_dynamic_rendering_local_read] @tobski%0A*Here describe the issue or question you have about the VK_KHR_dynamic_rendering_local_read extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_dynamic_rendering_local_read] @tobski%0A*Here describe the issue or question you have about the VK_KHR_dynamic_rendering_local_read extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_dynamic_rendering_local_read.adoc

Other Extension Metadata

Last Modified Date

2023-11-03

Contributors

• Tobias Hector, AMD

• Hans-Kristian Arntzen, Valve

• Connor Abbott, Valve

• Pan Gao, Huawei

• Lionel Landwerlin, Intel

• Shahbaz Youssefi, Google

• Alyssa Rosenzweig, Valve

• Jan-Harald Fredriksen, Arm

• Mike Blumenkrantz, Valve

• Graeme Leese, Broadcom

• Piers Daniell, Nvidia

• Stuart Smith, AMD

• Daniel Story, Nintendo

• James Fitzpatrick, Imagination

• Piotr Byszewski, Mobica

• Spencer Fricke, LunarG

• Tom Olson, Arm

• Michal Pietrasiuk, Intel

• Matthew Netsch, Qualcomm

• Marty Johnson, Khronos

• Wyvern Wang, Huawei

• Jeff Bolz, Nvidia

• Samuel (Sheng-Wen) Huang, MediaTek

Description

This extension enables reads from attachments and resources written by previous fragment
shaders within a dynamic render pass.

New Commands

• vkCmdSetRenderingAttachmentLocationsKHR

• vkCmdSetRenderingInputAttachmentIndicesKHR

4349

New Structures

• Extending VkGraphicsPipelineCreateInfo, VkCommandBufferInheritanceInfo:

◦ VkRenderingAttachmentLocationInfoKHR

◦ VkRenderingInputAttachmentIndexInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR

New Enum Constants

• VK_KHR_DYNAMIC_RENDERING_LOCAL_READ_EXTENSION_NAME

• VK_KHR_DYNAMIC_RENDERING_LOCAL_READ_SPEC_VERSION

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_LOCAL_READ_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_LOCATION_INFO_KHR

◦ VK_STRUCTURE_TYPE_RENDERING_INPUT_ATTACHMENT_INDEX_INFO_KHR

Version History

• Revision 1, 2023-11-03 (Tobias Hector)

◦ Initial revision

VK_KHR_external_fence_fd

Name String

VK_KHR_external_fence_fd

Extension Type

Device extension

Registered Extension Number

116

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_fence
or

4350

Version 1.1

Contact

• Jesse Hall critsec

Other Extension Metadata

Last Modified Date

2017-05-08

IP Status

No known IP claims.

Contributors

• Jesse Hall, Google

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Cass Everitt, Oculus

• Contributors to VK_KHR_external_semaphore_fd

Description

An application using external memory may wish to synchronize access to that memory using
fences. This extension enables an application to export fence payload to and import fence payload
from POSIX file descriptors.

New Commands

• vkGetFenceFdKHR

• vkImportFenceFdKHR

New Structures

• VkFenceGetFdInfoKHR

• VkImportFenceFdInfoKHR

New Enum Constants

• VK_KHR_EXTERNAL_FENCE_FD_EXTENSION_NAME

• VK_KHR_EXTERNAL_FENCE_FD_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR

4351

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_fence_fd] @critsec%0A*Here describe the issue or question you have about the VK_KHR_external_fence_fd extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_fence_fd] @critsec%0A*Here describe the issue or question you have about the VK_KHR_external_fence_fd extension*

Issues

This extension borrows concepts, semantics, and language from VK_KHR_external_semaphore_fd. That
extension’s issues apply equally to this extension.

Version History

• Revision 1, 2017-05-08 (Jesse Hall)

◦ Initial revision

VK_KHR_external_fence_win32

Name String

VK_KHR_external_fence_win32

Extension Type

Device extension

Registered Extension Number

115

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_fence

Contact

• Jesse Hall critsec

Other Extension Metadata

Last Modified Date

2017-05-08

IP Status

No known IP claims.

Contributors

• Jesse Hall, Google

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Cass Everitt, Oculus

• Contributors to VK_KHR_external_semaphore_win32

4352

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_fence_win32] @critsec%0A*Here describe the issue or question you have about the VK_KHR_external_fence_win32 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_fence_win32] @critsec%0A*Here describe the issue or question you have about the VK_KHR_external_fence_win32 extension*

Description

An application using external memory may wish to synchronize access to that memory using
fences. This extension enables an application to export fence payload to and import fence payload
from Windows handles.

New Commands

• vkGetFenceWin32HandleKHR

• vkImportFenceWin32HandleKHR

New Structures

• VkFenceGetWin32HandleInfoKHR

• VkImportFenceWin32HandleInfoKHR

• Extending VkFenceCreateInfo:

◦ VkExportFenceWin32HandleInfoKHR

New Enum Constants

• VK_KHR_EXTERNAL_FENCE_WIN32_EXTENSION_NAME

• VK_KHR_EXTERNAL_FENCE_WIN32_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR

◦ VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR

Issues

This extension borrows concepts, semantics, and language from VK_KHR_external_semaphore_win32.
That extension’s issues apply equally to this extension.

1) Should D3D12 fence handle types be supported, like they are for semaphores?

RESOLVED: No. Doing so would require extending the fence signal and wait operations to provide
values to signal / wait for, like VkD3D12FenceSubmitInfoKHR does. A D3D12 fence can be signaled by
importing it into a VkSemaphore instead of a VkFence, and applications can check status or wait on
the D3D12 fence using non-Vulkan APIs. The convenience of being able to do these operations on
VkFence objects does not justify the extra API complexity.

Version History

• Revision 1, 2017-05-08 (Jesse Hall)

◦ Initial revision

4353

VK_KHR_external_memory_fd

Name String

VK_KHR_external_memory_fd

Extension Type

Device extension

Registered Extension Number

75

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_memory
or
Version 1.1

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-10-21

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

Description

An application may wish to reference device memory in multiple Vulkan logical devices or
instances, in multiple processes, and/or in multiple APIs. This extension enables an application to
export POSIX file descriptor handles from Vulkan memory objects and to import Vulkan memory
objects from POSIX file descriptor handles exported from other Vulkan memory objects or from
similar resources in other APIs.

New Commands

• vkGetMemoryFdKHR

4354

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_memory_fd] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_memory_fd extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_memory_fd] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_memory_fd extension*

• vkGetMemoryFdPropertiesKHR

New Structures

• VkMemoryFdPropertiesKHR

• VkMemoryGetFdInfoKHR

• Extending VkMemoryAllocateInfo:

◦ VkImportMemoryFdInfoKHR

New Enum Constants

• VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME

• VK_KHR_EXTERNAL_MEMORY_FD_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR

Issues

1) Does the application need to close the file descriptor returned by vkGetMemoryFdKHR?

RESOLVED: Yes, unless it is passed back in to a driver instance to import the memory. A successful
get call transfers ownership of the file descriptor to the application, and a successful import
transfers it back to the driver. Destroying the original memory object will not close the file
descriptor or remove its reference to the underlying memory resource associated with it.

2) Do drivers ever need to expose multiple file descriptors per memory object?

RESOLVED: No. This would indicate there are actually multiple memory objects, rather than a
single memory object.

3) How should the valid size and memory type for POSIX file descriptor memory handles created
outside of Vulkan be specified?

RESOLVED: The valid memory types are queried directly from the external handle. The size will be
specified by future extensions that introduce such external memory handle types.

Version History

• Revision 1, 2016-10-21 (James Jones)

◦ Initial revision

VK_KHR_external_memory_win32

Name String

VK_KHR_external_memory_win32

4355

Extension Type

Device extension

Registered Extension Number

74

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_memory

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-10-21

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Carsten Rohde, NVIDIA

Description

An application may wish to reference device memory in multiple Vulkan logical devices or
instances, in multiple processes, and/or in multiple APIs. This extension enables an application to
export Windows handles from Vulkan memory objects and to import Vulkan memory objects from
Windows handles exported from other Vulkan memory objects or from similar resources in other
APIs.

New Commands

• vkGetMemoryWin32HandleKHR

• vkGetMemoryWin32HandlePropertiesKHR

New Structures

• VkMemoryGetWin32HandleInfoKHR

4356

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_memory_win32] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_memory_win32 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_memory_win32] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_memory_win32 extension*

• VkMemoryWin32HandlePropertiesKHR

• Extending VkMemoryAllocateInfo:

◦ VkExportMemoryWin32HandleInfoKHR

◦ VkImportMemoryWin32HandleInfoKHR

New Enum Constants

• VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME

• VK_KHR_EXTERNAL_MEMORY_WIN32_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR

Issues

1) Do applications need to call CloseHandle() on the values returned from
vkGetMemoryWin32HandleKHR when handleType is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR?

RESOLVED: Yes, unless it is passed back in to another driver instance to import the object. A
successful get call transfers ownership of the handle to the application. Destroying the memory
object will not destroy the handle or the handle’s reference to the underlying memory resource.

2) Should the language regarding KMT/Windows 7 handles be moved to a separate extension so
that it can be deprecated over time?

RESOLVED: No. Support for them can be deprecated by drivers if they choose, by no longer
returning them in the supported handle types of the instance level queries.

3) How should the valid size and memory type for windows memory handles created outside of
Vulkan be specified?

RESOLVED: The valid memory types are queried directly from the external handle. The size is
determined by the associated image or buffer memory requirements for external handle types that
require dedicated allocations, and by the size specified when creating the object from which the
handle was exported for other external handle types.

Version History

• Revision 1, 2016-10-21 (James Jones)

◦ Initial revision

4357

VK_KHR_external_semaphore_fd

Name String

VK_KHR_external_semaphore_fd

Extension Type

Device extension

Registered Extension Number

80

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_semaphore
or
Version 1.1

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-10-21

IP Status

No known IP claims.

Contributors

• Jesse Hall, Google

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Carsten Rohde, NVIDIA

Description

An application using external memory may wish to synchronize access to that memory using
semaphores. This extension enables an application to export semaphore payload to and import
semaphore payload from POSIX file descriptors.

4358

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_semaphore_fd] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_semaphore_fd extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_semaphore_fd] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_semaphore_fd extension*

New Commands

• vkGetSemaphoreFdKHR

• vkImportSemaphoreFdKHR

New Structures

• VkImportSemaphoreFdInfoKHR

• VkSemaphoreGetFdInfoKHR

New Enum Constants

• VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME

• VK_KHR_EXTERNAL_SEMAPHORE_FD_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR

◦ VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR

Issues

1) Does the application need to close the file descriptor returned by vkGetSemaphoreFdKHR?

RESOLVED: Yes, unless it is passed back in to a driver instance to import the semaphore. A
successful get call transfers ownership of the file descriptor to the application, and a successful
import transfers it back to the driver. Destroying the original semaphore object will not close the
file descriptor or remove its reference to the underlying semaphore resource associated with it.

Version History

• Revision 1, 2016-10-21 (Jesse Hall)

◦ Initial revision

VK_KHR_external_semaphore_win32

Name String

VK_KHR_external_semaphore_win32

Extension Type

Device extension

Registered Extension Number

79

Revision

1

4359

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_semaphore

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-10-21

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Carsten Rohde, NVIDIA

Description

An application using external memory may wish to synchronize access to that memory using
semaphores. This extension enables an application to export semaphore payload to and import
semaphore payload from Windows handles.

New Commands

• vkGetSemaphoreWin32HandleKHR

• vkImportSemaphoreWin32HandleKHR

New Structures

• VkImportSemaphoreWin32HandleInfoKHR

• VkSemaphoreGetWin32HandleInfoKHR

• Extending VkSemaphoreCreateInfo:

◦ VkExportSemaphoreWin32HandleInfoKHR

• Extending VkSubmitInfo:

◦ VkD3D12FenceSubmitInfoKHR

New Enum Constants

• VK_KHR_EXTERNAL_SEMAPHORE_WIN32_EXTENSION_NAME

• VK_KHR_EXTERNAL_SEMAPHORE_WIN32_SPEC_VERSION

4360

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_semaphore_win32] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_semaphore_win32 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_semaphore_win32] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_semaphore_win32 extension*

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR

◦ VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR

◦ VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR

Issues

1) Do applications need to call CloseHandle() on the values returned from
vkGetSemaphoreWin32HandleKHR when handleType is
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR?

RESOLVED: Yes, unless it is passed back in to another driver instance to import the object. A
successful get call transfers ownership of the handle to the application. Destroying the semaphore
object will not destroy the handle or the handle’s reference to the underlying semaphore resource.

2) Should the language regarding KMT/Windows 7 handles be moved to a separate extension so
that it can be deprecated over time?

RESOLVED: No. Support for them can be deprecated by drivers if they choose, by no longer
returning them in the supported handle types of the instance level queries.

3) Should applications be allowed to specify additional object attributes for shared handles?

RESOLVED: Yes. Applications will be allowed to provide similar attributes to those they would to
any other handle creation API.

4) How do applications communicate the desired fence values to use with D3D12_FENCE-based Vulkan
semaphores?

RESOLVED: There are a couple of options. The values for the signaled and reset states could be
communicated up front when creating the object and remain static for the life of the Vulkan
semaphore, or they could be specified using auxiliary structures when submitting semaphore
signal and wait operations, similar to what is done with the keyed mutex extensions. The latter is
more flexible and consistent with the keyed mutex usage, but the former is a much simpler API.

Since Vulkan tends to favor flexibility and consistency over simplicity, a new structure specifying
D3D12 fence acquire and release values is added to the vkQueueSubmit function.

Version History

• Revision 1, 2016-10-21 (James Jones)

◦ Initial revision

VK_KHR_fragment_shader_barycentric

Name String

VK_KHR_fragment_shader_barycentric

4361

Extension Type

Device extension

Registered Extension Number

323

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_KHR_fragment_shader_barycentric

Contact

• Stu Smith

Extension Proposal

VK_KHR_fragment_shader_barycentric

Other Extension Metadata

Last Modified Date

2022-03-10

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_EXT_fragment_shader_barycentric

Contributors

• Stu Smith, AMD

• Tobias Hector, AMD

• Graeme Leese, Broadcom

• Jan-Harald Fredriksen, Arm

• Slawek Grajewski, Intel

• Pat Brown, NVIDIA

• Hans-Kristian Arntzen, Valve

• Contributors to the VK_NV_fragment_shader_barycentric specification

4362

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_fragment_shader_barycentric.html
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_fragment_shader_barycentric.adoc
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_fragment_shader_barycentric.txt

Description

This extension is based on the VK_NV_fragment_shader_barycentric extension, and adds support for
the following SPIR-V extension in Vulkan:

• SPV_KHR_fragment_shader_barycentric

The extension provides access to three additional fragment shader variable decorations in SPIR-V:

• PerVertexKHR, which indicates that a fragment shader input will not have interpolated values,
but instead must be accessed with an extra array index that identifies one of the vertices of the
primitive producing the fragment

• BaryCoordKHR, which indicates that the variable is a three-component floating-point vector
holding barycentric weights for the fragment produced using perspective interpolation

• BaryCoordNoPerspKHR, which indicates that the variable is a three-component floating-point
vector holding barycentric weights for the fragment produced using linear interpolation

When using GLSL source-based shader languages, the following variables from
GL_EXT_fragment_shader_barycentric map to these SPIR-V built-in decorations:

• in vec3 gl_BaryCoordEXT; → BaryCoordKHR

• in vec3 gl_BaryCoordNoPerspEXT; → BaryCoordNoPerspKHR

GLSL variables declared using the pervertexEXT GLSL qualifier are expected to be decorated with
PerVertexKHR in SPIR-V.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFragmentShaderBarycentricFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR

New Enum Constants

• VK_KHR_FRAGMENT_SHADER_BARYCENTRIC_EXTENSION_NAME

• VK_KHR_FRAGMENT_SHADER_BARYCENTRIC_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_PROPERTIES_KHR

New Built-In Variables

• BaryCoordKHR

• BaryCoordNoPerspKHR

4363

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_fragment_shader_barycentric.html

New SPIR-V Decorations

• PerVertexKHR

New SPIR-V Capabilities

• FragmentBarycentricKHR

Issues

1) What are the interactions with MSAA and how are BaryCoordKHR and BaryCoordNoPerspKHR
interpolated?

RESOLVED: The inputs decorated with BaryCoordKHR or BaryCoordNoPerspKHR may also be decorated
with the Centroid or Sample qualifiers to specify interpolation, like any other fragment shader input.
If shaderSampleRateInterpolationFunctions is enabled, the extended instructions
InterpolateAtCentroid, InterpolateAtOffset, and InterpolateAtSample from the GLSL.std.450 may
also be used with inputs decorated with BaryCoordKHR or BaryCoordNoPerspKHR.

Version History

• Revision 1, 2022-03-10 (Stu Smith)

◦ Initial revision

VK_KHR_fragment_shading_rate

Name String

VK_KHR_fragment_shading_rate

Extension Type

Device extension

Registered Extension Number

227

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

 VK_KHR_create_renderpass2
 or
 Version 1.2
and
 VK_KHR_get_physical_device_properties2
 or
 Version 1.1

4364

API Interactions

• Interacts with VK_KHR_format_feature_flags2

SPIR-V Dependencies

• SPV_KHR_fragment_shading_rate

Contact

• Tobias Hector tobski

Extension Proposal

VK_KHR_fragment_shading_rate

Other Extension Metadata

Last Modified Date

2021-09-30

Interactions and External Dependencies

• This extension provides API support for GL_EXT_fragment_shading_rate

Contributors

• Tobias Hector, AMD

• Guennadi Riguer, AMD

• Matthaeus Chajdas, AMD

• Pat Brown, Nvidia

• Matthew Netsch, Qualcomm

• Slawomir Grajewski, Intel

• Jan-Harald Fredriksen, Arm

• Jeff Bolz, Nvidia

• Arseny Kapoulkine, Roblox

• Contributors to the VK_NV_shading_rate_image specification

• Contributors to the VK_EXT_fragment_density_map specification

Description

This extension adds the ability to change the rate at which fragments are shaded. Rather than the
usual single fragment invocation for each pixel covered by a primitive, multiple pixels can be
shaded by a single fragment shader invocation.

Up to three methods are available to the application to change the fragment shading rate:

• Pipeline Fragment Shading Rate, which allows the specification of a rate per-draw.

• Primitive Fragment Shading Rate, which allows the specification of a rate per primitive,
specified during shading.

• Attachment Fragment Shading Rate, which allows the specification of a rate per-region of the
framebuffer, specified in a specialized image attachment.

4365

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_fragment_shading_rate.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_fragment_shading_rate] @tobski%0A*Here describe the issue or question you have about the VK_KHR_fragment_shading_rate extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_fragment_shading_rate] @tobski%0A*Here describe the issue or question you have about the VK_KHR_fragment_shading_rate extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_fragment_shading_rate.adoc
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_fragment_shading_rate.txt

Additionally, these rates can all be specified and combined in order to adjust the overall detail in
the image at each point.

This functionality can be used to focus shading efforts where higher levels of detail are needed in
some parts of a scene compared to others. This can be particularly useful in high resolution
rendering, or for XR contexts.

This extension also adds support for the SPV_KHR_fragment_shading_rate extension which enables
setting the primitive fragment shading rate, and allows querying the final shading rate from a
fragment shader.

New Commands

• vkCmdSetFragmentShadingRateKHR

• vkGetPhysicalDeviceFragmentShadingRatesKHR

New Structures

• VkPhysicalDeviceFragmentShadingRateKHR

• Extending VkGraphicsPipelineCreateInfo:

◦ VkPipelineFragmentShadingRateStateCreateInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFragmentShadingRateFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceFragmentShadingRatePropertiesKHR

• Extending VkSubpassDescription2:

◦ VkFragmentShadingRateAttachmentInfoKHR

New Enums

• VkFragmentShadingRateCombinerOpKHR

New Enum Constants

• VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME

• VK_KHR_FRAGMENT_SHADING_RATE_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• Extending VkImageLayout:

4366

◦ VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR

If VK_KHR_format_feature_flags2 is supported:

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

Version History

• Revision 1, 2020-05-06 (Tobias Hector)

◦ Initial revision

• Revision 2, 2021-09-30 (Jon Leech)

◦ Add interaction with VK_KHR_format_feature_flags2 to vk.xml

VK_KHR_get_display_properties2

Name String

VK_KHR_get_display_properties2

Extension Type

Instance extension

Registered Extension Number

122

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_display

4367

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2017-02-21

IP Status

No known IP claims.

Contributors

• Ian Elliott, Google

• James Jones, NVIDIA

Description

This extension provides new queries for device display properties and capabilities that can be
easily extended by other extensions, without introducing any further queries. This extension can be
considered the VK_KHR_display equivalent of the VK_KHR_get_physical_device_properties2 extension.

New Commands

• vkGetDisplayModeProperties2KHR

• vkGetDisplayPlaneCapabilities2KHR

• vkGetPhysicalDeviceDisplayPlaneProperties2KHR

• vkGetPhysicalDeviceDisplayProperties2KHR

New Structures

• VkDisplayModeProperties2KHR

• VkDisplayPlaneCapabilities2KHR

• VkDisplayPlaneInfo2KHR

• VkDisplayPlaneProperties2KHR

• VkDisplayProperties2KHR

New Enum Constants

• VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME

• VK_KHR_GET_DISPLAY_PROPERTIES_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DISPLAY_MODE_PROPERTIES_2_KHR

◦ VK_STRUCTURE_TYPE_DISPLAY_PLANE_CAPABILITIES_2_KHR

◦ VK_STRUCTURE_TYPE_DISPLAY_PLANE_INFO_2_KHR

4368

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_get_display_properties2] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_get_display_properties2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_get_display_properties2] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_get_display_properties2 extension*

◦ VK_STRUCTURE_TYPE_DISPLAY_PLANE_PROPERTIES_2_KHR

◦ VK_STRUCTURE_TYPE_DISPLAY_PROPERTIES_2_KHR

Issues

1) What should this extension be named?

RESOLVED: VK_KHR_get_display_properties2. Other alternatives:

• VK_KHR_display2

• One extension, combined with VK_KHR_surface_capabilites2.

2) Should extensible input structs be added for these new functions:

RESOLVED:

• vkGetPhysicalDeviceDisplayProperties2KHR: No. The only current input is a VkPhysicalDevice.
Other inputs would not make sense.

• vkGetPhysicalDeviceDisplayPlaneProperties2KHR: No. The only current input is a
VkPhysicalDevice. Other inputs would not make sense.

• vkGetDisplayModeProperties2KHR: No. The only current inputs are a VkPhysicalDevice and a
VkDisplayModeKHR. Other inputs would not make sense.

3) Should additional display query functions be extended?

RESOLVED:

• vkGetDisplayPlaneSupportedDisplaysKHR: No. Extensions should instead extend
vkGetDisplayPlaneCapabilitiesKHR().

Version History

• Revision 1, 2017-02-21 (James Jones)

◦ Initial draft.

VK_KHR_get_surface_capabilities2

Name String

VK_KHR_get_surface_capabilities2

Extension Type

Instance extension

Registered Extension Number

120

Revision

1

4369

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2017-02-27

IP Status

No known IP claims.

Contributors

• Ian Elliott, Google

• James Jones, NVIDIA

• Alon Or-bach, Samsung

Description

This extension provides new queries for device surface capabilities that can be easily extended by
other extensions, without introducing any further queries. This extension can be considered the
VK_KHR_surface equivalent of the VK_KHR_get_physical_device_properties2 extension.

New Commands

• vkGetPhysicalDeviceSurfaceCapabilities2KHR

• vkGetPhysicalDeviceSurfaceFormats2KHR

New Structures

• VkPhysicalDeviceSurfaceInfo2KHR

• VkSurfaceCapabilities2KHR

• VkSurfaceFormat2KHR

New Enum Constants

• VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME

• VK_KHR_GET_SURFACE_CAPABILITIES_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR

4370

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_get_surface_capabilities2] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_get_surface_capabilities2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_get_surface_capabilities2] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_get_surface_capabilities2 extension*

◦ VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR

Issues

1) What should this extension be named?

RESOLVED: VK_KHR_get_surface_capabilities2. Other alternatives:

• VK_KHR_surface2

• One extension, combining a separate display-specific query extension.

2) Should additional WSI query functions be extended?

RESOLVED:

• vkGetPhysicalDeviceSurfaceCapabilitiesKHR: Yes. The need for this motivated the extension.

• vkGetPhysicalDeviceSurfaceSupportKHR: No. Currently only has boolean output. Extensions
should instead extend vkGetPhysicalDeviceSurfaceCapabilities2KHR.

• vkGetPhysicalDeviceSurfaceFormatsKHR: Yes.

• vkGetPhysicalDeviceSurfacePresentModesKHR: No. Recent discussion concluded this
introduced too much variability for applications to deal with. Extensions should instead extend
vkGetPhysicalDeviceSurfaceCapabilities2KHR.

• vkGetPhysicalDeviceXlibPresentationSupportKHR: Not in this extension.

• vkGetPhysicalDeviceXcbPresentationSupportKHR: Not in this extension.

• vkGetPhysicalDeviceWaylandPresentationSupportKHR: Not in this extension.

• vkGetPhysicalDeviceWin32PresentationSupportKHR: Not in this extension.

Version History

• Revision 1, 2017-02-27 (James Jones)

◦ Initial draft.

VK_KHR_global_priority

Name String

VK_KHR_global_priority

Extension Type

Device extension

Registered Extension Number

189

Revision

1

4371

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2021-10-22

Contributors

• Tobias Hector, AMD

• Contributors to VK_EXT_global_priority

• Contributors to VK_EXT_global_priority_query

Description

In Vulkan, users can specify device-scope queue priorities. In some cases it may be useful to extend
this concept to a system-wide scope. This device extension allows applications to query the global
queue priorities supported by a queue family, and then set a priority when creating queues. The
default queue priority is VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT.

Implementations can report which global priority levels are treated differently by the
implementation. It is intended primarily for use in system integration along with certain platform-
specific priority enforcement rules.

The driver implementation will attempt to skew hardware resource allocation in favour of the
higher-priority task. Therefore, higher-priority work may retain similar latency and throughput
characteristics even if the system is congested with lower priority work.

The global priority level of a queue shall take precedence over the per-process queue priority
(VkDeviceQueueCreateInfo::pQueuePriorities).

Abuse of this feature may result in starving the rest of the system from hardware resources.
Therefore, the driver implementation may deny requests to acquire a priority above the default
priority (VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) if the caller does not have sufficient privileges. In
this scenario VK_ERROR_NOT_PERMITTED_EXT is returned.

The driver implementation may fail the queue allocation request if resources required to complete
the operation have been exhausted (either by the same process or a different process). In this
scenario VK_ERROR_INITIALIZATION_FAILED is returned.

New Structures

• Extending VkDeviceQueueCreateInfo:

4372

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_global_priority] @tobski%0A*Here describe the issue or question you have about the VK_KHR_global_priority extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_global_priority] @tobski%0A*Here describe the issue or question you have about the VK_KHR_global_priority extension*

◦ VkDeviceQueueGlobalPriorityCreateInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR

• Extending VkQueueFamilyProperties2:

◦ VkQueueFamilyGlobalPriorityPropertiesKHR

New Enums

• VkQueueGlobalPriorityKHR

New Enum Constants

• VK_KHR_GLOBAL_PRIORITY_EXTENSION_NAME

• VK_KHR_GLOBAL_PRIORITY_SPEC_VERSION

• VK_MAX_GLOBAL_PRIORITY_SIZE_KHR

• Extending VkResult:

◦ VK_ERROR_NOT_PERMITTED_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR

Issues

1) Can we additionally query whether a caller is permitted to acquire a specific global queue
priority in this extension?

RESOLVED: No. Whether a caller has enough privilege goes with the OS, and the Vulkan driver
cannot really guarantee that the privilege will not change in between this query and the actual
queue creation call.

2) If more than 1 queue using global priority is requested, is there a good way to know which queue
is failing the device creation?

RESOLVED: No. There is not a good way at this moment, and it is also not quite actionable for the
applications to know that because the information may not be accurate. Queue creation can fail
because of runtime constraints like insufficient privilege or lack of resource, and the failure is not
necessarily tied to that particular queue configuration requested.

Version History

• Revision 1, 2021-10-22 (Tobias Hector)

◦ Initial draft

4373

VK_KHR_incremental_present

Name String

VK_KHR_incremental_present

Extension Type

Device extension

Registered Extension Number

85

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_swapchain

Contact

• Ian Elliott ianelliottus

Other Extension Metadata

Last Modified Date

2016-11-02

IP Status

No known IP claims.

Contributors

• Ian Elliott, Google

• Jesse Hall, Google

• Alon Or-bach, Samsung

• James Jones, NVIDIA

• Daniel Rakos, AMD

• Ray Smith, ARM

• Mika Isojarvi, Google

• Jeff Juliano, NVIDIA

• Jeff Bolz, NVIDIA

Description

This device extension extends vkQueuePresentKHR, from the VK_KHR_swapchain extension, allowing

4374

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_incremental_present] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_incremental_present extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_incremental_present] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_incremental_present extension*

an application to specify a list of rectangular, modified regions of each image to present. This
should be used in situations where an application is only changing a small portion of the
presentable images within a swapchain, since it enables the presentation engine to avoid wasting
time presenting parts of the surface that have not changed.

This extension is leveraged from the EGL_KHR_swap_buffers_with_damage extension.

New Structures

• VkPresentRegionKHR

• VkRectLayerKHR

• Extending VkPresentInfoKHR:

◦ VkPresentRegionsKHR

New Enum Constants

• VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME

• VK_KHR_INCREMENTAL_PRESENT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR

Issues

1) How should we handle steroescopic-3D swapchains? We need to add a layer for each rectangle.
One approach is to create another struct containing the VkRect2D plus layer, and have
VkPresentRegionsKHR point to an array of that struct. Another approach is to have two parallel
arrays, pRectangles and pLayers, where pRectangles[i] and pLayers[i] must be used together. Which
approach should we use, and if the array of a new structure, what should that be called?

RESOLVED: Create a new structure, which is a VkRect2D plus a layer, and will be called
VkRectLayerKHR.

2) Where is the origin of the VkRectLayerKHR?

RESOLVED: The upper left corner of the presentable image(s) of the swapchain, per the definition
of framebuffer coordinates.

3) Does the rectangular region, VkRectLayerKHR, specify pixels of the swapchain’s image(s), or of
the surface?

RESOLVED: Of the image(s). Some presentation engines may scale the pixels of a swapchain’s
image(s) to the size of the surface. The size of the swapchain’s image(s) will be consistent, where the
size of the surface may vary over time.

4) What if all of the rectangles for a given swapchain contain a width and/or height of zero?

RESOLVED: The application is indicating that no pixels changed since the last present. The
presentation engine may use such a hint and not update any pixels for the swapchain. However, all

4375

other semantics of vkQueuePresentKHR must still be honored, including waiting for semaphores to
signal.

5) When the swapchain is created with VkSwapchainCreateInfoKHR::preTransform set to a value other
than VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR, should the rectangular region, VkRectLayerKHR, be
transformed to align with the preTransform?

RESOLVED: No. The rectangular region in VkRectLayerKHR should not be transformed. As such, it
may not align with the extents of the swapchain’s image(s). It is the responsibility of the
presentation engine to transform the rectangular region. This matches the behavior of the Android
presentation engine, which set the precedent.

Version History

• Revision 1, 2016-11-02 (Ian Elliott)

◦ Internal revisions

• Revision 2, 2021-03-18 (Ian Elliott)

◦ Clarified alignment of rectangles for presentation engines that support transformed
swapchains.

VK_KHR_index_type_uint8

Name String

VK_KHR_index_type_uint8

Extension Type

Device extension

Registered Extension Number

534

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

4376

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_index_type_uint8] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_index_type_uint8 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_index_type_uint8] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_index_type_uint8 extension*

Last Modified Date

2023-06-06

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

Description

This extension allows uint8_t indices to be used with vkCmdBindIndexBuffer.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceIndexTypeUint8FeaturesKHR

New Enum Constants

• VK_KHR_INDEX_TYPE_UINT8_EXTENSION_NAME

• VK_KHR_INDEX_TYPE_UINT8_SPEC_VERSION

• Extending VkIndexType:

◦ VK_INDEX_TYPE_UINT8_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_KHR

Version History

• Revision 1, 2023-06-06 (Piers Daniell)

◦ Internal revisions

VK_KHR_line_rasterization

Name String

VK_KHR_line_rasterization

Extension Type

Device extension

Registered Extension Number

535

Revision

1

4377

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2023-06-08

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Allen Jensen, NVIDIA

• Faith Ekstrand, Intel

Description

This extension adds some line rasterization features that are commonly used in CAD applications
and supported in other APIs like OpenGL. Bresenham-style line rasterization is supported, smooth
rectangular lines (coverage to alpha) are supported, and stippled lines are supported for all three
line rasterization modes.

New Commands

• vkCmdSetLineStippleKHR

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceLineRasterizationFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceLineRasterizationPropertiesKHR

• Extending VkPipelineRasterizationStateCreateInfo:

◦ VkPipelineRasterizationLineStateCreateInfoKHR

4378

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_line_rasterization] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_line_rasterization extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_line_rasterization] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_line_rasterization extension*

New Enums

• VkLineRasterizationModeKHR

New Enum Constants

• VK_KHR_LINE_RASTERIZATION_EXTENSION_NAME

• VK_KHR_LINE_RASTERIZATION_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_LINE_STIPPLE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_KHR

Issues

1) Do we need to support Bresenham-style and smooth lines with more than one rasterization
sample? i.e. the equivalent of glDisable(GL_MULTISAMPLE) in OpenGL when the framebuffer has
more than one sample?

RESOLVED: Yes. For simplicity, Bresenham line rasterization carries forward a few restrictions
from OpenGL, such as not supporting per-sample shading, alpha to coverage, or alpha to one.

Version History

• Revision 1, 2019-05-09 (Jeff Bolz)

◦ Initial draft

VK_KHR_load_store_op_none

Name String

VK_KHR_load_store_op_none

Extension Type

Device extension

Registered Extension Number

527

Revision

1

Ratification Status

Ratified

4379

Extension and Version Dependencies

None

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_KHR_load_store_op_none

Other Extension Metadata

Last Modified Date

2023-05-16

Contributors

• Shahbaz Youssefi, Google

• Bill Licea-Kane, Qualcomm Technologies, Inc.

• Tobias Hector, AMD

Description

This extension provides VK_ATTACHMENT_LOAD_OP_NONE_KHR and VK_ATTACHMENT_STORE_OP_NONE_KHR,
which are identically promoted from the VK_EXT_load_store_op_none extension.

New Enum Constants

• VK_KHR_LOAD_STORE_OP_NONE_EXTENSION_NAME

• VK_KHR_LOAD_STORE_OP_NONE_SPEC_VERSION

• Extending VkAttachmentLoadOp:

◦ VK_ATTACHMENT_LOAD_OP_NONE_KHR

• Extending VkAttachmentStoreOp:

◦ VK_ATTACHMENT_STORE_OP_NONE_KHR

Version History

• Revision 1, 2023-05-16 (Shahbaz Youssefi)

◦ Initial revision, based on VK_EXT_load_store_op_none.

VK_KHR_maintenance5

Name String

VK_KHR_maintenance5

Extension Type

Device extension

4380

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_load_store_op_none] @syoussefi%0A*Here describe the issue or question you have about the VK_KHR_load_store_op_none extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_load_store_op_none] @syoussefi%0A*Here describe the issue or question you have about the VK_KHR_load_store_op_none extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_load_store_op_none.adoc

Registered Extension Number

471

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1
and
VK_KHR_dynamic_rendering

API Interactions

• Interacts with VK_VERSION_1_1

• Interacts with VK_VERSION_1_2

• Interacts with VK_VERSION_1_3

• Interacts with VK_EXT_attachment_feedback_loop_layout

• Interacts with VK_EXT_buffer_device_address

• Interacts with VK_EXT_conditional_rendering

• Interacts with VK_EXT_descriptor_buffer

• Interacts with VK_EXT_fragment_density_map

• Interacts with VK_EXT_graphics_pipeline_library

• Interacts with VK_EXT_opacity_micromap

• Interacts with VK_EXT_pipeline_creation_cache_control

• Interacts with VK_EXT_pipeline_protected_access

• Interacts with VK_EXT_transform_feedback

• Interacts with VK_KHR_acceleration_structure

• Interacts with VK_KHR_buffer_device_address

• Interacts with VK_KHR_device_group

• Interacts with VK_KHR_dynamic_rendering

• Interacts with VK_KHR_fragment_shading_rate

• Interacts with VK_KHR_pipeline_executable_properties

• Interacts with VK_KHR_pipeline_library

• Interacts with VK_KHR_ray_tracing_pipeline

• Interacts with VK_KHR_video_decode_queue

• Interacts with VK_KHR_video_encode_queue

• Interacts with VK_NV_device_generated_commands

4381

• Interacts with VK_NV_displacement_micromap

• Interacts with VK_NV_ray_tracing

• Interacts with VK_NV_ray_tracing_motion_blur

Contact

• Stu Smith stu-s

Extension Proposal

VK_KHR_maintenance5

Other Extension Metadata

Last Modified Date

2023-05-02

Interactions and External Dependencies

Contributors

• Stu Smith, AMD

• Tobias Hector, AMD

• Shahbaz Youssefi, Google

• Slawomir Cygan, Intel

• Lionel Landwerlin, Intel

• James Fitzpatrick, Imagination Technologies

• Andrew Garrard, Imagination Technologies

• Ralph Potter, Samsung

• Pan Gao, Huawei

• Jan-Harald Fredriksen, ARM

• Jon Leech, Khronos

• Mike Blumenkrantz, Valve

Description

VK_KHR_maintenance5 adds a collection of minor features, none of which would warrant an entire
extension of their own.

The new features are as follows:

• A new VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR format

• A new VK_FORMAT_A8_UNORM_KHR format

• A property to indicate that multisample coverage operations are performed after sample
counting in EarlyFragmentTests mode

• Relax VkBufferView creation requirements by allowing subsets of the associated VkBuffer usage
using VkBufferUsageFlags2CreateInfoKHR

4382

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance5] @stu-s%0A*Here describe the issue or question you have about the VK_KHR_maintenance5 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance5] @stu-s%0A*Here describe the issue or question you have about the VK_KHR_maintenance5 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_maintenance5.adoc

• A new entry point vkCmdBindIndexBuffer2KHR, allowing a range of memory to be bound as an
index buffer

• vkGetDeviceProcAddr must return NULL for supported core functions beyond the version
requested by the application.

• A property to indicate that the sample mask test is performed after sample counting in
EarlyFragmentTests mode

• vkCmdBindVertexBuffers2 now supports using VK_WHOLE_SIZE in the pSizes parameter.

• A default size of 1.0 is used if PointSize is not written

• Shader modules are deprecated - applications can now pass VkShaderModuleCreateInfo as a
chained struct to pipeline creation via VkPipelineShaderStageCreateInfo

• A function vkGetRenderingAreaGranularityKHR to query the optimal render area for a dynamic
rendering instance.

• A property to indicate that depth/stencil texturing operations with VK_COMPONENT_SWIZZLE_ONE
have defined behavior

• Add vkGetImageSubresourceLayout2KHR and a new function
vkGetDeviceImageSubresourceLayoutKHR to allow the application to query the image memory
layout without having to create an image object and query it.

• Allow VK_REMAINING_ARRAY_LAYERS as the layerCount member of VkImageSubresourceLayers

• Adds stronger guarantees for propagation of VK_ERROR_DEVICE_LOST return values

• A property to indicate whether PointSize controls the final rasterization of polygons if polygon
mode is VK_POLYGON_MODE_POINT

• Two properties to indicate the non-strict line rasterization algorithm used

• Two new flags words VkPipelineCreateFlagBits2KHR and VkBufferUsageFlagBits2KHR

• Physical-device-level functions can now be called with any value in the valid range for a type
beyond the defined enumerants, such that applications can avoid checking individual features,
extensions, or versions before querying supported properties of a particular enumerant.

• Clarification that copies between images of any type are allowed, treating 1D images as 2D
images with a height of 1.

New Commands

• vkCmdBindIndexBuffer2KHR

• vkGetDeviceImageSubresourceLayoutKHR

• vkGetImageSubresourceLayout2KHR

• vkGetRenderingAreaGranularityKHR

New Structures

• VkDeviceImageSubresourceInfoKHR

• VkImageSubresource2KHR

• VkRenderingAreaInfoKHR

4383

• VkSubresourceLayout2KHR

• Extending VkBufferViewCreateInfo, VkBufferCreateInfo, VkPhysicalDeviceExternalBufferInfo,
VkDescriptorBufferBindingInfoEXT:

◦ VkBufferUsageFlags2CreateInfoKHR

• Extending VkComputePipelineCreateInfo, VkGraphicsPipelineCreateInfo,
VkRayTracingPipelineCreateInfoNV, VkRayTracingPipelineCreateInfoKHR:

◦ VkPipelineCreateFlags2CreateInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMaintenance5FeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMaintenance5PropertiesKHR

New Enums

• VkBufferUsageFlagBits2KHR

• VkPipelineCreateFlagBits2KHR

New Bitmasks

• VkBufferUsageFlags2KHR

• VkPipelineCreateFlags2KHR

New Enum Constants

• VK_KHR_MAINTENANCE_5_EXTENSION_NAME

• VK_KHR_MAINTENANCE_5_SPEC_VERSION

• Extending VkFormat:

◦ VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR

◦ VK_FORMAT_A8_UNORM_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_IMAGE_SUBRESOURCE_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_SUBRESOURCE_2_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_5_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_5_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_CREATE_FLAGS_2_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_RENDERING_AREA_INFO_KHR

◦ VK_STRUCTURE_TYPE_SUBRESOURCE_LAYOUT_2_KHR

If VK_EXT_attachment_feedback_loop_layout is supported:

4384

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT

◦ VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT

If VK_EXT_conditional_rendering is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_CONDITIONAL_RENDERING_BIT_EXT

If VK_EXT_descriptor_buffer is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT

◦ VK_BUFFER_USAGE_2_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT

◦ VK_BUFFER_USAGE_2_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_DESCRIPTOR_BUFFER_BIT_EXT

If VK_EXT_graphics_pipeline_library is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT

◦ VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT

If VK_EXT_opacity_micromap is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_MICROMAP_BUILD_INPUT_READ_ONLY_BIT_EXT

◦ VK_BUFFER_USAGE_2_MICROMAP_STORAGE_BIT_EXT

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT

If VK_EXT_pipeline_protected_access is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_NO_PROTECTED_ACCESS_BIT_EXT

◦ VK_PIPELINE_CREATE_2_PROTECTED_ACCESS_ONLY_BIT_EXT

If VK_EXT_transform_feedback is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT

◦ VK_BUFFER_USAGE_2_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT

4385

If VK_KHR_acceleration_structure is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR

◦ VK_BUFFER_USAGE_2_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR

If VK_KHR_dynamic_rendering and VK_EXT_fragment_density_map is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

If VK_KHR_dynamic_rendering and VK_KHR_fragment_shading_rate is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

If VK_KHR_pipeline_executable_properties is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR

◦ VK_PIPELINE_CREATE_2_CAPTURE_STATISTICS_BIT_KHR

If VK_KHR_pipeline_library is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR

If VK_KHR_ray_tracing_pipeline is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_SHADER_BINDING_TABLE_BIT_KHR

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_AABBS_BIT_KHR

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR

If VK_KHR_video_decode_queue is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_VIDEO_DECODE_DST_BIT_KHR

4386

◦ VK_BUFFER_USAGE_2_VIDEO_DECODE_SRC_BIT_KHR

If VK_KHR_video_encode_queue is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_VIDEO_ENCODE_DST_BIT_KHR

◦ VK_BUFFER_USAGE_2_VIDEO_ENCODE_SRC_BIT_KHR

If VK_NV_device_generated_commands is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_INDIRECT_BINDABLE_BIT_NV

If VK_NV_displacement_micromap is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV

If VK_NV_ray_tracing is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_RAY_TRACING_BIT_NV

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_DEFER_COMPILE_BIT_NV

If VK_NV_ray_tracing_motion_blur is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_RAY_TRACING_ALLOW_MOTION_BIT_NV

If Version 1.1 or VK_KHR_device_group is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_DISPATCH_BASE_BIT_KHR

◦ VK_PIPELINE_CREATE_2_VIEW_INDEX_FROM_DEVICE_INDEX_BIT_KHR

If Version 1.2 or VK_KHR_buffer_device_address or VK_EXT_buffer_device_address is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_SHADER_DEVICE_ADDRESS_BIT_KHR

If Version 1.3 or VK_EXT_pipeline_creation_cache_control is supported:

• Extending VkPipelineCreateFlagBits2KHR:

◦ VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR

◦ VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR

4387

Issues

None.

Version History

• Revision 1, 2022-12-12 (Stu Smith)

◦ Initial revision

VK_KHR_maintenance6

Name String

VK_KHR_maintenance6

Extension Type

Device extension

Registered Extension Number

546

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1

API Interactions

• Interacts with VK_EXT_descriptor_buffer

• Interacts with VK_KHR_push_descriptor

Contact

• Jon Leech oddhack

Extension Proposal

VK_KHR_maintenance6

Other Extension Metadata

Last Modified Date

2023-08-03

Interactions and External Dependencies

• Interacts with VK_EXT_robustness2

Contributors

• Jon Leech, Khronos

4388

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance6] @oddhack%0A*Here describe the issue or question you have about the VK_KHR_maintenance6 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance6] @oddhack%0A*Here describe the issue or question you have about the VK_KHR_maintenance6 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_maintenance6.adoc

• Stu Smith, AMD

• Mike Blumenkrantz, Valve

• Ralph Potter, Samsung

• James Fitzpatrick, Imagination Technologies

• Piers Daniell, NVIDIA

• Daniel Story, Nintendo

Description

VK_KHR_maintenance6 adds a collection of minor features, none of which would warrant an entire
extension of their own.

The new features are as follows:

• VkBindMemoryStatusKHR may be included in the pNext chain of VkBindBufferMemoryInfo and
VkBindImageMemoryInfo, allowing applications to identify individual resources for which
memory binding failed during calls to vkBindBufferMemory2 and vkBindImageMemory2.

• A new property fragmentShadingRateClampCombinerInputs to indicate if an implementation
clamps the inputs to fragment shading rate combiner operations.

• VK_NULL_HANDLE is allowed to be used when binding an index buffer, instead of a valid
VkBuffer handle. When the nullDescriptor feature is enabled, every index fetched results in a
value of zero.

• A new property maxCombinedImageSamplerDescriptorCount to indicate the maximum number of
descriptors needed for any of the formats that require a sampler Y′CBCR conversion supported
by the implementation.

• A new property blockTexelViewCompatibleMultipleLayers indicating whether
VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT is allowed to be used with layerCount > 1

• pNext extensible *2 versions of all descriptor binding commands.

New Commands

• vkCmdBindDescriptorSets2KHR

• vkCmdPushConstants2KHR

If VK_EXT_descriptor_buffer is supported:

• vkCmdBindDescriptorBufferEmbeddedSamplers2EXT

• vkCmdSetDescriptorBufferOffsets2EXT

If VK_KHR_push_descriptor is supported:

• vkCmdPushDescriptorSet2KHR

• vkCmdPushDescriptorSetWithTemplate2KHR

4389

New Structures

• VkBindDescriptorSetsInfoKHR

• VkPushConstantsInfoKHR

• Extending VkBindBufferMemoryInfo, VkBindImageMemoryInfo:

◦ VkBindMemoryStatusKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMaintenance6FeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMaintenance6PropertiesKHR

If VK_EXT_descriptor_buffer is supported:

• VkBindDescriptorBufferEmbeddedSamplersInfoEXT

• VkSetDescriptorBufferOffsetsInfoEXT

If VK_KHR_push_descriptor is supported:

• VkPushDescriptorSetInfoKHR

• VkPushDescriptorSetWithTemplateInfoKHR

New Enum Constants

• VK_KHR_MAINTENANCE_6_EXTENSION_NAME

• VK_KHR_MAINTENANCE_6_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BIND_DESCRIPTOR_SETS_INFO_KHR

◦ VK_STRUCTURE_TYPE_BIND_MEMORY_STATUS_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_6_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_6_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PUSH_CONSTANTS_INFO_KHR

If VK_EXT_descriptor_buffer is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BIND_DESCRIPTOR_BUFFER_EMBEDDED_SAMPLERS_INFO_EXT

◦ VK_STRUCTURE_TYPE_SET_DESCRIPTOR_BUFFER_OFFSETS_INFO_EXT

If VK_KHR_push_descriptor is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PUSH_DESCRIPTOR_SET_INFO_KHR

◦ VK_STRUCTURE_TYPE_PUSH_DESCRIPTOR_SET_WITH_TEMPLATE_INFO_KHR

4390

Issues

None.

Version History

• Revision 1, 2023-08-01 (Jon Leech)

◦ Initial revision

VK_KHR_map_memory2

Name String

VK_KHR_map_memory2

Extension Type

Device extension

Registered Extension Number

272

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Contact

• Faith Ekstrand gfxstrand

Extension Proposal

VK_KHR_map_memory2

Other Extension Metadata

Last Modified Date

2023-03-14

Interactions and External Dependencies

• None

Contributors

• Faith Ekstrand, Collabora

• Tobias Hector, AMD

4391

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_map_memory2] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_map_memory2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_map_memory2] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_map_memory2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_map_memory2.adoc

Description

This extension provides extensible versions of the Vulkan memory map and unmap entry points.
The new entry points are functionally identical to the core entry points, except that their
parameters are specified using extensible structures that can be used to pass extension-specific
information.

New Commands

• vkMapMemory2KHR

• vkUnmapMemory2KHR

New Structures

• VkMemoryMapInfoKHR

• VkMemoryUnmapInfoKHR

New Enums

• VkMemoryUnmapFlagBitsKHR

New Bitmasks

• VkMemoryUnmapFlagsKHR

New Enum Constants

• VK_KHR_MAP_MEMORY_2_EXTENSION_NAME

• VK_KHR_MAP_MEMORY_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MEMORY_MAP_INFO_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_UNMAP_INFO_KHR

Version History

• Revision 0, 2022-08-03 (Faith Ekstrand)

◦ Internal revisions

• Revision 1, 2023-03-14

◦ Public release

VK_KHR_performance_query

Name String

VK_KHR_performance_query

Extension Type

Device extension

4392

Registered Extension Number

117

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Special Use

• Developer tools

Contact

• Alon Or-bach alonorbach

Other Extension Metadata

Last Modified Date

2019-10-08

IP Status

No known IP claims.

Contributors

• Jesse Barker, Unity Technologies

• Kenneth Benzie, Codeplay

• Jan-Harald Fredriksen, ARM

• Jeff Leger, Qualcomm

• Jesse Hall, Google

• Tobias Hector, AMD

• Neil Henning, Codeplay

• Baldur Karlsson

• Lionel Landwerlin, Intel

• Peter Lohrmann, AMD

• Alon Or-bach, Samsung

• Daniel Rakos, AMD

• Niklas Smedberg, Unity Technologies

• Igor Ostrowski, Intel

4393

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_performance_query] @alonorbach%0A*Here describe the issue or question you have about the VK_KHR_performance_query extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_performance_query] @alonorbach%0A*Here describe the issue or question you have about the VK_KHR_performance_query extension*

Description

The VK_KHR_performance_query extension adds a mechanism to allow querying of performance
counters for use in applications and by profiling tools.

Each queue family may expose counters that can be enabled on a queue of that family. We extend
VkQueryType to add a new query type for performance queries, and chain a structure on
VkQueryPoolCreateInfo to specify the performance queries to enable.

New Commands

• vkAcquireProfilingLockKHR

• vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR

• vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR

• vkReleaseProfilingLockKHR

New Structures

• VkAcquireProfilingLockInfoKHR

• VkPerformanceCounterDescriptionKHR

• VkPerformanceCounterKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePerformanceQueryFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDevicePerformanceQueryPropertiesKHR

• Extending VkQueryPoolCreateInfo:

◦ VkQueryPoolPerformanceCreateInfoKHR

• Extending VkSubmitInfo, VkSubmitInfo2:

◦ VkPerformanceQuerySubmitInfoKHR

New Unions

• VkPerformanceCounterResultKHR

New Enums

• VkAcquireProfilingLockFlagBitsKHR

• VkPerformanceCounterDescriptionFlagBitsKHR

• VkPerformanceCounterScopeKHR

• VkPerformanceCounterStorageKHR

• VkPerformanceCounterUnitKHR

4394

New Bitmasks

• VkAcquireProfilingLockFlagsKHR

• VkPerformanceCounterDescriptionFlagsKHR

New Enum Constants

• VK_KHR_PERFORMANCE_QUERY_EXTENSION_NAME

• VK_KHR_PERFORMANCE_QUERY_SPEC_VERSION

• Extending VkQueryType:

◦ VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ACQUIRE_PROFILING_LOCK_INFO_KHR

◦ VK_STRUCTURE_TYPE_PERFORMANCE_COUNTER_DESCRIPTION_KHR

◦ VK_STRUCTURE_TYPE_PERFORMANCE_COUNTER_KHR

◦ VK_STRUCTURE_TYPE_PERFORMANCE_QUERY_SUBMIT_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_QUERY_POOL_PERFORMANCE_CREATE_INFO_KHR

Issues

1) Should this extension include a mechanism to begin a query in command buffer A and end the
query in command buffer B?

RESOLVED No - queries are tied to command buffer creation and thus have to be encapsulated
within a single command buffer.

2) Should this extension include a mechanism to begin and end queries globally on the queue, not
using the existing command buffer commands?

RESOLVED No - for the same reasoning as the resolution of 1).

3) Should this extension expose counters that require multiple passes?

RESOLVED Yes - users should re-submit a command buffer with the same commands in it multiple
times, specifying the pass to count as the query parameter in VkPerformanceQuerySubmitInfoKHR.

4) How to handle counters across parallel workloads?

RESOLVED In the spirit of Vulkan, a counter description flag
VK_PERFORMANCE_COUNTER_DESCRIPTION_CONCURRENTLY_IMPACTED_BIT_KHR denotes that the accuracy of a
counter result is affected by parallel workloads.

5) How to handle secondary command buffers?

4395

RESOLVED Secondary command buffers inherit any counter pass index specified in the parent
primary command buffer. Note: this is no longer an issue after change from issue 10 resolution

6) What commands does the profiling lock have to be held for?

RESOLVED For any command buffer that is being queried with a performance query pool, the
profiling lock must be held while that command buffer is in the recording, executable, or pending
state.

7) Should we support vkCmdCopyQueryPoolResults?

RESOLVED Yes.

8) Should we allow performance queries to interact with multiview?

RESOLVED Yes, but the performance queries must be performed once for each pass per view.

9) Should a queryCount > 1 be usable for performance queries?

RESOLVED Yes. Some vendors will have costly performance counter query pool creation, and
would rather if a certain set of counters were to be used multiple times that a queryCount > 1 can be
used to amortize the instantiation cost.

10) Should we introduce an indirect mechanism to set the counter pass index?

RESOLVED Specify the counter pass index at submit time instead, to avoid requiring re-recording
of command buffers when multiple counter passes are needed.

Examples

The following example shows how to find what performance counters a queue family supports,
setup a query pool to record these performance counters, how to add the query pool to the
command buffer to record information, and how to get the results from the query pool.

// A previously created physical device
VkPhysicalDevice physicalDevice;

// One of the queue families our device supports
uint32_t queueFamilyIndex;

uint32_t counterCount;

// Get the count of counters supported
vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR(
 physicalDevice,
 queueFamilyIndex,
 &counterCount,
 NULL,
 NULL);

VkPerformanceCounterKHR* counters =

4396

 malloc(sizeof(VkPerformanceCounterKHR) * counterCount);
VkPerformanceCounterDescriptionKHR* counterDescriptions =
 malloc(sizeof(VkPerformanceCounterDescriptionKHR) * counterCount);

// Get the counters supported
vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR(
 physicalDevice,
 queueFamilyIndex,
 &counterCount,
 counters,
 counterDescriptions);

// Try to enable the first 8 counters
uint32_t enabledCounters[8];

const uint32_t enabledCounterCount = min(counterCount, 8));

for (uint32_t i = 0; i < enabledCounterCount; i++) {
 enabledCounters[i] = i;
}

// A previously created device that had the performanceCounterQueryPools feature
// set to VK_TRUE
VkDevice device;

VkQueryPoolPerformanceCreateInfoKHR performanceQueryCreateInfo = {
 .sType = VK_STRUCTURE_TYPE_QUERY_POOL_PERFORMANCE_CREATE_INFO_KHR,
 .pNext = NULL,

 // Specify the queue family that this performance query is performed on
 .queueFamilyIndex = queueFamilyIndex,

 // The number of counters to enable
 .counterIndexCount = enabledCounterCount,

 // The array of indices of counters to enable
 .pCounterIndices = enabledCounters
};

// Get the number of passes our counters will require.
uint32_t numPasses;

vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR(
 physicalDevice,
 &performanceQueryCreateInfo,
 &numPasses);

VkQueryPoolCreateInfo queryPoolCreateInfo = {
 .sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
 .pNext = &performanceQueryCreateInfo,

4397

 .flags = 0,
 // Using our new query type here
 .queryType = VK_QUERY_TYPE_PERFORMANCE_QUERY_KHR,
 .queryCount = 1,
 .pipelineStatistics = 0
};

VkQueryPool queryPool;

VkResult result = vkCreateQueryPool(
 device,
 &queryPoolCreateInfo,
 NULL,
 &queryPool);

assert(VK_SUCCESS == result);

// A queue from queueFamilyIndex
VkQueue queue;

// A command buffer we want to record counters on
VkCommandBuffer commandBuffer;

VkCommandBufferBeginInfo commandBufferBeginInfo = {
 .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
 .pNext = NULL,
 .flags = 0,
 .pInheritanceInfo = NULL
};

VkAcquireProfilingLockInfoKHR lockInfo = {
 .sType = VK_STRUCTURE_TYPE_ACQUIRE_PROFILING_LOCK_INFO_KHR,
 .pNext = NULL,
 .flags = 0,
 .timeout = UINT64_MAX // Wait forever for the lock
};

// Acquire the profiling lock before we record command buffers
// that will use performance queries

result = vkAcquireProfilingLockKHR(device, &lockInfo);

assert(VK_SUCCESS == result);

result = vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo);

assert(VK_SUCCESS == result);

vkCmdResetQueryPool(
 commandBuffer,
 queryPool,

4398

 0,
 1);

vkCmdBeginQuery(
 commandBuffer,
 queryPool,
 0,
 0);

// Perform the commands you want to get performance information on
// ...

// Perform a barrier to ensure all previous commands were complete before
// ending the query
vkCmdPipelineBarrier(commandBuffer,
 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
 0,
 0,
 NULL,
 0,
 NULL,
 0,
 NULL);

vkCmdEndQuery(
 commandBuffer,
 queryPool,
 0);

result = vkEndCommandBuffer(commandBuffer);

assert(VK_SUCCESS == result);

for (uint32_t counterPass = 0; counterPass < numPasses; counterPass++) {

 VkPerformanceQuerySubmitInfoKHR performanceQuerySubmitInfo = {
 VK_STRUCTURE_TYPE_PERFORMANCE_QUERY_SUBMIT_INFO_KHR,
 NULL,
 counterPass
 };

 // Submit the command buffer and wait for its completion
 // ...
}

// Release the profiling lock after the command buffer is no longer in the
// pending state.
vkReleaseProfilingLockKHR(device);

4399

result = vkResetCommandBuffer(commandBuffer, 0);

assert(VK_SUCCESS == result);

// Create an array to hold the results of all counters
VkPerformanceCounterResultKHR* recordedCounters = malloc(
 sizeof(VkPerformanceCounterResultKHR) * enabledCounterCount);

result = vkGetQueryPoolResults(
 device,
 queryPool,
 0,
 1,
 sizeof(VkPerformanceCounterResultKHR) * enabledCounterCount,
 recordedCounters,
 sizeof(VkPerformanceCounterResultKHR) * enabledCounterCount,
 NULL);

// recordedCounters is filled with our counters, we will look at one for posterity
switch (counters[0].storage) {
 case VK_PERFORMANCE_COUNTER_STORAGE_INT32:
 // use recordCounters[0].int32 to get at the counter result!
 break;
 case VK_PERFORMANCE_COUNTER_STORAGE_INT64:
 // use recordCounters[0].int64 to get at the counter result!
 break;
 case VK_PERFORMANCE_COUNTER_STORAGE_UINT32:
 // use recordCounters[0].uint32 to get at the counter result!
 break;
 case VK_PERFORMANCE_COUNTER_STORAGE_UINT64:
 // use recordCounters[0].uint64 to get at the counter result!
 break;
 case VK_PERFORMANCE_COUNTER_STORAGE_FLOAT32:
 // use recordCounters[0].float32 to get at the counter result!
 break;
 case VK_PERFORMANCE_COUNTER_STORAGE_FLOAT64:
 // use recordCounters[0].float64 to get at the counter result!
 break;
}

Version History

• Revision 1, 2019-10-08

VK_KHR_pipeline_executable_properties

Name String

VK_KHR_pipeline_executable_properties

4400

Extension Type

Device extension

Registered Extension Number

270

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Special Use

• Developer tools

Contact

• Faith Ekstrand gfxstrand

Other Extension Metadata

Last Modified Date

2019-05-28

IP Status

No known IP claims.

Interactions and External Dependencies

Contributors

• Faith Ekstrand, Intel

• Ian Romanick, Intel

• Kenneth Graunke, Intel

• Baldur Karlsson, Valve

• Jesse Hall, Google

• Jeff Bolz, Nvidia

• Piers Daniel, Nvidia

• Tobias Hector, AMD

• Jan-Harald Fredriksen, ARM

• Tom Olson, ARM

• Daniel Koch, Nvidia

• Spencer Fricke, Samsung

4401

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_pipeline_executable_properties] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_pipeline_executable_properties extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_pipeline_executable_properties] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_pipeline_executable_properties extension*

Description

When a pipeline is created, its state and shaders are compiled into zero or more device-specific
executables, which are used when executing commands against that pipeline. This extension adds a
mechanism to query properties and statistics about the different executables produced by the
pipeline compilation process. This is intended to be used by debugging and performance tools to
allow them to provide more detailed information to the user. Certain compile time shader statistics
provided through this extension may be useful to developers for debugging or performance
analysis.

New Commands

• vkGetPipelineExecutableInternalRepresentationsKHR

• vkGetPipelineExecutablePropertiesKHR

• vkGetPipelineExecutableStatisticsKHR

New Structures

• VkPipelineExecutableInfoKHR

• VkPipelineExecutableInternalRepresentationKHR

• VkPipelineExecutablePropertiesKHR

• VkPipelineExecutableStatisticKHR

• VkPipelineInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR

New Unions

• VkPipelineExecutableStatisticValueKHR

New Enums

• VkPipelineExecutableStatisticFormatKHR

New Enum Constants

• VK_KHR_PIPELINE_EXECUTABLE_PROPERTIES_EXTENSION_NAME

• VK_KHR_PIPELINE_EXECUTABLE_PROPERTIES_SPEC_VERSION

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR

◦ VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_INFO_KHR

4402

◦ VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_INTERNAL_REPRESENTATION_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_STATISTIC_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR

Issues

1) What should we call the pieces of the pipeline which are produced by the compilation process
and about which you can query properties and statistics?

RESOLVED: Call them “executables”. The name “binary” was used in early drafts of the extension
but it was determined that “pipeline binary” could have a fairly broad meaning (such as a binary
serialized form of an entire pipeline) and was too big of a namespace for the very specific needs of
this extension.

Version History

• Revision 1, 2019-05-28 (Faith Ekstrand)

◦ Initial draft

VK_KHR_pipeline_library

Name String

VK_KHR_pipeline_library

Extension Type

Device extension

Registered Extension Number

291

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Contact

• Christoph Kubisch pixeljetstream

Other Extension Metadata

Last Modified Date

2020-01-08

4403

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_pipeline_library] @pixeljetstream%0A*Here describe the issue or question you have about the VK_KHR_pipeline_library extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_pipeline_library] @pixeljetstream%0A*Here describe the issue or question you have about the VK_KHR_pipeline_library extension*

IP Status

No known IP claims.

Contributors

• See contributors to VK_KHR_ray_tracing_pipeline

Description

A pipeline library is a special pipeline that cannot be bound, instead it defines a set of shaders and
shader groups which can be linked into other pipelines. This extension defines the infrastructure
for pipeline libraries, but does not specify the creation or usage of pipeline libraries. This is left to
additional dependent extensions.

New Structures

• Extending VkGraphicsPipelineCreateInfo:

◦ VkPipelineLibraryCreateInfoKHR

New Enum Constants

• VK_KHR_PIPELINE_LIBRARY_EXTENSION_NAME

• VK_KHR_PIPELINE_LIBRARY_SPEC_VERSION

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_LIBRARY_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR

Version History

• Revision 1, 2020-01-08 (Christoph Kubisch)

◦ Initial draft.

VK_KHR_portability_enumeration

Name String

VK_KHR_portability_enumeration

Extension Type

Instance extension

Registered Extension Number

395

Revision

1

4404

Ratification Status

Ratified

Extension and Version Dependencies

None

Contact

• Charles Giessen charles-lunarg

Other Extension Metadata

Last Modified Date

2021-06-02

IP Status

No known IP claims.

Interactions and External Dependencies

• Interacts with VK_KHR_portability_subset

Contributors

• Lenny Komow, LunarG

• Charles Giessen, LunarG

Description

This extension allows applications to control whether devices that expose the
VK_KHR_portability_subset extension are included in the results of physical device enumeration.
Since devices which support the VK_KHR_portability_subset extension are not fully conformant
Vulkan implementations, the Vulkan loader does not report those devices unless the application
explicitly asks for them. This prevents applications which may not be aware of non-conformant
devices from accidentally using them, as any device which supports the VK_KHR_portability_subset
extension mandates that the extension must be enabled if that device is used.

This extension is implemented in the loader.

New Enum Constants

• VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME

• VK_KHR_PORTABILITY_ENUMERATION_SPEC_VERSION

• Extending VkInstanceCreateFlagBits:

◦ VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR

Version History

• Revision 1, 2021-06-02 (Lenny Komow)

◦ Initial version

4405

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_portability_enumeration] @charles-lunarg%0A*Here describe the issue or question you have about the VK_KHR_portability_enumeration extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_portability_enumeration] @charles-lunarg%0A*Here describe the issue or question you have about the VK_KHR_portability_enumeration extension*

VK_KHR_present_id

Name String

VK_KHR_present_id

Extension Type

Device extension

Registered Extension Number

295

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_swapchain
and
VK_KHR_get_physical_device_properties2

Contact

• Keith Packard keithp

Other Extension Metadata

Last Modified Date

2019-05-15

IP Status

No known IP claims.

Contributors

• Keith Packard, Valve

• Ian Elliott, Google

• Alon Or-bach, Samsung

Description

This device extension allows an application that uses the VK_KHR_swapchain extension to provide an
identifier for present operations on a swapchain. An application can use this to reference specific
present operations in other extensions.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePresentIdFeaturesKHR

4406

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_present_id] @keithp%0A*Here describe the issue or question you have about the VK_KHR_present_id extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_present_id] @keithp%0A*Here describe the issue or question you have about the VK_KHR_present_id extension*

• Extending VkPresentInfoKHR:

◦ VkPresentIdKHR

New Enum Constants

• VK_KHR_PRESENT_ID_EXTENSION_NAME

• VK_KHR_PRESENT_ID_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_ID_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PRESENT_ID_KHR

Issues

None.

Examples

Version History

• Revision 1, 2019-05-15 (Keith Packard)

◦ Initial version

VK_KHR_present_wait

Name String

VK_KHR_present_wait

Extension Type

Device extension

Registered Extension Number

249

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_swapchain
and
VK_KHR_present_id

Contact

• Keith Packard keithp

4407

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_present_wait] @keithp%0A*Here describe the issue or question you have about the VK_KHR_present_wait extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_present_wait] @keithp%0A*Here describe the issue or question you have about the VK_KHR_present_wait extension*

Other Extension Metadata

Last Modified Date

2019-05-15

IP Status

No known IP claims.

Contributors

• Keith Packard, Valve

• Ian Elliott, Google

• Tobias Hector, AMD

• Daniel Stone, Collabora

Description

This device extension allows an application that uses the VK_KHR_swapchain extension to wait for
present operations to complete. An application can use this to monitor and control the pacing of the
application by managing the number of outstanding images yet to be presented.

New Commands

• vkWaitForPresentKHR

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePresentWaitFeaturesKHR

New Enum Constants

• VK_KHR_PRESENT_WAIT_EXTENSION_NAME

• VK_KHR_PRESENT_WAIT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_WAIT_FEATURES_KHR

Issues

1) When does the wait finish?

RESOLVED. The wait will finish when the present is visible to the user. There is no requirement for
any precise timing relationship between the presentation of the image to the user, but
implementations should signal the wait as close as possible to the presentation of the first pixel in
the new image to the user.

2) Should this use fences or other existing synchronization mechanism.

RESOLVED. Because display and rendering are often implemented in separate drivers, this

4408

extension will provide a separate synchronization API.

3) Should this extension share present identification with other extensions?

RESOLVED. Yes. A new extension, VK_KHR_present_id, should be created to provide a shared
structure for presentation identifiers.

4) What happens when presentations complete out of order wrt calls to vkQueuePresent? This
could happen if the semaphores for the presentations were ready out of order.

OPTION A: Require that when a PresentId is set that the driver ensure that images are always
presented in the order of calls to vkQueuePresent.

OPTION B: Finish both waits when the earliest present completes. This will complete the later
present wait earlier than the actual presentation. This should be the easiest to implement as the
driver need only track the largest present ID completed. This is also the 'natural' consequence of
interpreting the existing vkWaitForPresentKHR specificationn.

OPTION C: Finish both waits when both have completed. This will complete the earlier
presentation later than the actual presentation time. This is allowed by the current specification as
there is no precise timing requirement for when the presentId value is updated. This requires
slightly more complexity in the driver as it will need to track all outstanding presentId values.

Examples

Version History

• Revision 1, 2019-02-19 (Keith Packard)

◦ Initial version

VK_KHR_push_descriptor

Name String

VK_KHR_push_descriptor

Extension Type

Device extension

Registered Extension Number

81

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

4409

API Interactions

• Interacts with VK_VERSION_1_1

• Interacts with VK_KHR_descriptor_update_template

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-09-12

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Michael Worcester, Imagination Technologies

Description

This extension allows descriptors to be written into the command buffer, while the implementation
is responsible for managing their memory. Push descriptors may enable easier porting from older
APIs and in some cases can be more efficient than writing descriptors into descriptor sets.

New Commands

• vkCmdPushDescriptorSetKHR

If VK_KHR_descriptor_update_template is supported:

• vkCmdPushDescriptorSetWithTemplateKHR

If Version 1.1 is supported:

• vkCmdPushDescriptorSetWithTemplateKHR

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDevicePushDescriptorPropertiesKHR

New Enum Constants

• VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME

• VK_KHR_PUSH_DESCRIPTOR_SPEC_VERSION

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR

4410

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_push_descriptor] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_push_descriptor extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_push_descriptor] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_push_descriptor extension*

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR

If VK_KHR_descriptor_update_template is supported:

• Extending VkDescriptorUpdateTemplateType:

◦ VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR

If Version 1.1 is supported:

• Extending VkDescriptorUpdateTemplateType:

◦ VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR

Version History

• Revision 1, 2016-10-15 (Jeff Bolz)

◦ Internal revisions

• Revision 2, 2017-09-12 (Tobias Hector)

◦ Added interactions with Vulkan 1.1

VK_KHR_ray_query

Name String

VK_KHR_ray_query

Extension Type

Device extension

Registered Extension Number

349

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_spirv_1_4
and
VK_KHR_acceleration_structure

SPIR-V Dependencies

• SPV_KHR_ray_query

Contact

• Daniel Koch dgkoch

4411

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_ray_query.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_ray_query] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_ray_query extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_ray_query] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_ray_query extension*

Other Extension Metadata

Last Modified Date

2020-11-12

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_ray_query

Contributors

• Matthäus Chajdas, AMD

• Greg Grebe, AMD

• Nicolai Hähnle, AMD

• Tobias Hector, AMD

• Dave Oldcorn, AMD

• Skyler Saleh, AMD

• Mathieu Robart, Arm

• Marius Bjorge, Arm

• Tom Olson, Arm

• Sebastian Tafuri, EA

• Henrik Rydgard, Embark

• Juan Cañada, Epic Games

• Patrick Kelly, Epic Games

• Yuriy O’Donnell, Epic Games

• Michael Doggett, Facebook/Oculus

• Andrew Garrard, Imagination

• Don Scorgie, Imagination

• Dae Kim, Imagination

• Joshua Barczak, Intel

• Slawek Grajewski, Intel

• Jeff Bolz, NVIDIA

• Pascal Gautron, NVIDIA

• Daniel Koch, NVIDIA

• Christoph Kubisch, NVIDIA

• Ashwin Lele, NVIDIA

• Robert Stepinski, NVIDIA

• Martin Stich, NVIDIA

• Nuno Subtil, NVIDIA

• Eric Werness, NVIDIA

4412

https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_ray_query.txt

• Jon Leech, Khronos

• Jeroen van Schijndel, OTOY

• Juul Joosten, OTOY

• Alex Bourd, Qualcomm

• Roman Larionov, Qualcomm

• David McAllister, Qualcomm

• Spencer Fricke, Samsung

• Lewis Gordon, Samsung

• Ralph Potter, Samsung

• Jasper Bekkers, Traverse Research

• Jesse Barker, Unity

• Baldur Karlsson, Valve

Description

Rasterization has been the dominant method to produce interactive graphics, but increasing
performance of graphics hardware has made ray tracing a viable option for interactive rendering.
Being able to integrate ray tracing with traditional rasterization makes it easier for applications to
incrementally add ray traced effects to existing applications or to do hybrid approaches with
rasterization for primary visibility and ray tracing for secondary queries.

Ray queries are available to all shader types, including graphics, compute and ray tracing pipelines.
Ray queries are not able to launch additional shaders, instead returning traversal results to the
calling shader.

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_KHR_ray_query

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRayQueryFeaturesKHR

New Enum Constants

• VK_KHR_RAY_QUERY_EXTENSION_NAME

• VK_KHR_RAY_QUERY_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR

New SPIR-V Capabilities

• RayQueryKHR

4413

• RayTraversalPrimitiveCullingKHR

Sample Code

Example of ray query in a GLSL shader, illustrating how to use ray queries to determine whether a
given position (at ray origin) is in shadow or not, by tracing a ray towards the light, and checking
for any intersections with geometry occluding the light.

rayQueryEXT rq;

rayQueryInitializeEXT(rq, accStruct, gl_RayFlagsTerminateOnFirstHitEXT, cullMask,
origin, tMin, direction, tMax);

// Traverse the acceleration structure and store information about the first
intersection (if any)
rayQueryProceedEXT(rq);

if (rayQueryGetIntersectionTypeEXT(rq, true) ==
gl_RayQueryCommittedIntersectionNoneEXT) {
 // Not in shadow
}

Issues

(1) What are the changes between the public provisional (VK_KHR_ray_tracing v8) release and the
final (VK_KHR_acceleration_structure v11 / VK_KHR_ray_query v1) release?

• refactor VK_KHR_ray_tracing into 3 extensions, enabling implementation flexibility and
decoupling ray query support from ray pipelines:

◦ VK_KHR_acceleration_structure (for acceleration structure operations)

◦ VK_KHR_ray_tracing_pipeline (for ray tracing pipeline and shader stages)

◦ VK_KHR_ray_query (for ray queries in existing shader stages)

• Update SPIRV capabilities to use RayQueryKHR

• extension is no longer provisional

Version History

• Revision 1, 2020-11-12 (Mathieu Robart, Daniel Koch, Andrew Garrard)

◦ Decomposition of the specification, from VK_KHR_ray_tracing to VK_KHR_ray_query
(#1918,!3912)

◦ update to use RayQueryKHR SPIR-V capability

◦ add numerical limits for ray parameters (#2235,!3960)

◦ relax formula for ray intersection candidate determination (#2322,!4080)

◦ restrict traces to TLAS (#2239,!4141)

4414

◦ require HitT to be in ray interval for OpRayQueryGenerateIntersectionKHR (#2359,!4146)

◦ add ray query shader stages for AS read bit (#2407,!4203)

VK_KHR_ray_tracing_maintenance1

Name String

VK_KHR_ray_tracing_maintenance1

Extension Type

Device extension

Registered Extension Number

387

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_acceleration_structure

API Interactions

• Interacts with VK_KHR_ray_tracing_pipeline

• Interacts with VK_KHR_synchronization2

SPIR-V Dependencies

• SPV_KHR_ray_cull_mask

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2022-02-21

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_ray_cull_mask

• Interacts with VK_KHR_ray_tracing_pipeline

• Interacts with VK_KHR_synchronization2

Contributors

• Stu Smith, AMD

• Tobias Hector, AMD

• Marius Bjorge, Arm

4415

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_ray_cull_mask.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_ray_tracing_maintenance1] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_ray_tracing_maintenance1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_ray_tracing_maintenance1] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_ray_tracing_maintenance1 extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_ray_cull_mask.txt

• Tom Olson, Arm

• Yuriy O’Donnell, Epic Games

• Yunpeng Zhu, Huawei

• Andrew Garrard, Imagination

• Dae Kim, Imagination

• Joshua Barczak, Intel

• Lionel Landwerlin, Intel

• Daniel Koch, NVIDIA

• Eric Werness, NVIDIA

• Spencer Fricke, Samsung

Description

VK_KHR_ray_tracing_maintenance1 adds a collection of minor ray tracing features, none of which
would warrant an entire extension of their own.

The new features are as follows:

• Adds support for the SPV_KHR_ray_cull_mask SPIR-V extension in Vulkan. This extension provides
access to built-in CullMaskKHR shader variable which contains the value of the OpTrace* Cull Mask
parameter. This new shader variable is accessible in the intersection, any-hit, closest-hit and
miss shader stages.

• Adds support for a new pipeline stage and access mask built on top of VK_KHR_synchronization2:

◦ VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR to specify execution of
acceleration structure copy commands

◦ VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR to specify read access to a shader binding
table in any shader pipeline stage

• Adds two new acceleration structure query parameters:

◦ VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR to query the acceleration structure size on
the device timeline

◦ VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR to query the
number of bottom level acceleration structure pointers for serialization

• Adds an optional new indirect ray tracing dispatch command, vkCmdTraceRaysIndirect2KHR,
which sources the shader binding table parameters as well as the dispatch dimensions from the
device. The rayTracingPipelineTraceRaysIndirect2 feature indicates whether this functionality is
supported.

New Commands

If VK_KHR_ray_tracing_pipeline is supported:

• vkCmdTraceRaysIndirect2KHR

4416

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR

If VK_KHR_ray_tracing_pipeline is supported:

• VkTraceRaysIndirectCommand2KHR

New Enum Constants

• VK_KHR_RAY_TRACING_MAINTENANCE_1_EXTENSION_NAME

• VK_KHR_RAY_TRACING_MAINTENANCE_1_SPEC_VERSION

• Extending VkQueryType:

◦ VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_BOTTOM_LEVEL_POINTERS_KHR

◦ VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SIZE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MAINTENANCE_1_FEATURES_KHR

If VK_KHR_synchronization2 is supported:

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR

If VK_KHR_synchronization2 and VK_KHR_ray_tracing_pipeline is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR

New Built-In Variables

• CullMaskKHR

New SPIR-V Capabilities

• RayCullMaskKHR

Issues

None Yet!

Version History

• Revision 1, 2022-02-21 (Members of the Vulkan Ray Tracing TSG)

◦ internal revisions

4417

VK_KHR_ray_tracing_pipeline

Name String

VK_KHR_ray_tracing_pipeline

Extension Type

Device extension

Registered Extension Number

348

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_spirv_1_4
and
VK_KHR_acceleration_structure

SPIR-V Dependencies

• SPV_KHR_ray_tracing

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2020-11-12

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_ray_tracing

• This extension interacts with Vulkan 1.2 and VK_KHR_vulkan_memory_model, adding the shader-
call-related relation of invocations, shader-call-order partial order of dynamic instances of
instructions, and the ShaderCallKHR scope.

• This extension interacts with VK_KHR_pipeline_library, enabling pipeline libraries to be used
with ray tracing pipelines and enabling usage of
VkRayTracingPipelineInterfaceCreateInfoKHR.

Contributors

• Matthäus Chajdas, AMD

• Greg Grebe, AMD

• Nicolai Hähnle, AMD

• Tobias Hector, AMD

4418

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_ray_tracing_pipeline] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_ray_tracing_pipeline extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_ray_tracing_pipeline] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_ray_tracing_pipeline extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_ray_tracing.txt

• Dave Oldcorn, AMD

• Skyler Saleh, AMD

• Mathieu Robart, Arm

• Marius Bjorge, Arm

• Tom Olson, Arm

• Sebastian Tafuri, EA

• Henrik Rydgard, Embark

• Juan Cañada, Epic Games

• Patrick Kelly, Epic Games

• Yuriy O’Donnell, Epic Games

• Michael Doggett, Facebook/Oculus

• Andrew Garrard, Imagination

• Don Scorgie, Imagination

• Dae Kim, Imagination

• Joshua Barczak, Intel

• Slawek Grajewski, Intel

• Jeff Bolz, NVIDIA

• Pascal Gautron, NVIDIA

• Daniel Koch, NVIDIA

• Christoph Kubisch, NVIDIA

• Ashwin Lele, NVIDIA

• Robert Stepinski, NVIDIA

• Martin Stich, NVIDIA

• Nuno Subtil, NVIDIA

• Eric Werness, NVIDIA

• Jon Leech, Khronos

• Jeroen van Schijndel, OTOY

• Juul Joosten, OTOY

• Alex Bourd, Qualcomm

• Roman Larionov, Qualcomm

• David McAllister, Qualcomm

• Spencer Fricke, Samsung

• Lewis Gordon, Samsung

• Ralph Potter, Samsung

• Jasper Bekkers, Traverse Research

4419

• Jesse Barker, Unity

• Baldur Karlsson, Valve

Description

Rasterization has been the dominant method to produce interactive graphics, but increasing
performance of graphics hardware has made ray tracing a viable option for interactive rendering.
Being able to integrate ray tracing with traditional rasterization makes it easier for applications to
incrementally add ray traced effects to existing applications or to do hybrid approaches with
rasterization for primary visibility and ray tracing for secondary queries.

To enable ray tracing, this extension adds a few different categories of new functionality:

• A new ray tracing pipeline type with new shader domains: ray generation, intersection, any-hit,
closest hit, miss, and callable

• A shader binding indirection table to link shader groups with acceleration structure items

• Ray tracing commands which initiate the ray pipeline traversal and invocation of the various
new shader domains depending on which traversal conditions are met

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_KHR_ray_tracing

New Commands

• vkCmdSetRayTracingPipelineStackSizeKHR

• vkCmdTraceRaysIndirectKHR

• vkCmdTraceRaysKHR

• vkCreateRayTracingPipelinesKHR

• vkGetRayTracingCaptureReplayShaderGroupHandlesKHR

• vkGetRayTracingShaderGroupHandlesKHR

• vkGetRayTracingShaderGroupStackSizeKHR

New Structures

• VkRayTracingPipelineCreateInfoKHR

• VkRayTracingPipelineInterfaceCreateInfoKHR

• VkRayTracingShaderGroupCreateInfoKHR

• VkStridedDeviceAddressRegionKHR

• VkTraceRaysIndirectCommandKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRayTracingPipelineFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

4420

◦ VkPhysicalDeviceRayTracingPipelinePropertiesKHR

New Enums

• VkRayTracingShaderGroupTypeKHR

• VkShaderGroupShaderKHR

New Enum Constants

• VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME

• VK_KHR_RAY_TRACING_PIPELINE_SPEC_VERSION

• VK_SHADER_UNUSED_KHR

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR

• Extending VkPipelineBindPoint:

◦ VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR

◦ VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR

◦ VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR

◦ VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR

◦ VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR

◦ VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR

◦ VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR

• Extending VkShaderStageFlagBits:

◦ VK_SHADER_STAGE_ANY_HIT_BIT_KHR

◦ VK_SHADER_STAGE_CALLABLE_BIT_KHR

◦ VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR

◦ VK_SHADER_STAGE_INTERSECTION_BIT_KHR

◦ VK_SHADER_STAGE_MISS_BIT_KHR

◦ VK_SHADER_STAGE_RAYGEN_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR

4421

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_INTERFACE_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR

New or Modified Built-In Variables

• LaunchIdKHR

• LaunchSizeKHR

• WorldRayOriginKHR

• WorldRayDirectionKHR

• ObjectRayOriginKHR

• ObjectRayDirectionKHR

• RayTminKHR

• RayTmaxKHR

• InstanceCustomIndexKHR

• InstanceId

• ObjectToWorldKHR

• WorldToObjectKHR

• HitKindKHR

• IncomingRayFlagsKHR

• RayGeometryIndexKHR

• (modified)PrimitiveId

New SPIR-V Capabilities

• RayTracingKHR

• RayTraversalPrimitiveCullingKHR

Issues

(1) How does this extension differ from VK_NV_ray_tracing?

DISCUSSION:

The following is a summary of the main functional differences between
VK_KHR_ray_tracing_pipeline and VK_NV_ray_tracing:

• added support for indirect ray tracing (vkCmdTraceRaysIndirectKHR)

• uses SPV_KHR_ray_tracing instead of SPV_NV_ray_tracing

◦ refer to KHR SPIR-V enums instead of NV SPIR-V enums (which are functionally equivalent

4422

and aliased to the same values).

◦ added RayGeometryIndexKHR built-in

• removed vkCompileDeferredNV compilation functionality and replaced with deferred host
operations interactions for ray tracing

• added VkPhysicalDeviceRayTracingPipelineFeaturesKHR structure

• extended VkPhysicalDeviceRayTracingPipelinePropertiesKHR structure

◦ renamed maxRecursionDepth to maxRayRecursionDepth and it has a minimum of 1 instead of 31

◦ require shaderGroupHandleSize to be 32 bytes

◦ added maxRayDispatchInvocationCount, shaderGroupHandleAlignment and
maxRayHitAttributeSize

• reworked geometry structures so they could be better shared between device, host, and indirect
builds

• changed SBT parameters to a structure and added size (VkStridedDeviceAddressRegionKHR)

• add parameter for requesting memory requirements for host and/or device build

• added pipeline library support for ray tracing

• added watertightness guarantees

• added no-null-shader pipeline flags (VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_*_SHADERS_BIT_KHR)

• added memory model interactions with ray tracing and define how subgroups work and can be
repacked

(2) Can you give a more detailed comparison of differences and similarities between
VK_NV_ray_tracing and VK_KHR_ray_tracing_pipeline?

DISCUSSION:

The following is a more detailed comparison of which commands, structures, and enums are
aliased, changed, or removed.

• Aliased functionality — enums, structures, and commands that are considered equivalent:

◦ VkRayTracingShaderGroupTypeNV ↔ VkRayTracingShaderGroupTypeKHR

◦ vkGetRayTracingShaderGroupHandlesNV ↔ vkGetRayTracingShaderGroupHandlesKHR

• Changed enums, structures, and commands:

◦ VkRayTracingShaderGroupCreateInfoNV → VkRayTracingShaderGroupCreateInfoKHR
(added pShaderGroupCaptureReplayHandle)

◦ VkRayTracingPipelineCreateInfoNV → VkRayTracingPipelineCreateInfoKHR (changed type
of pGroups, added libraries, pLibraryInterface, and pDynamicState)

◦ VkPhysicalDeviceRayTracingPropertiesNV → VkPhysicalDeviceRayTracingPropertiesKHR
(renamed maxTriangleCount to maxPrimitiveCount, added shaderGroupHandleCaptureReplaySize)

◦ vkCmdTraceRaysNV → vkCmdTraceRaysKHR (params to struct)

◦ vkCreateRayTracingPipelinesNV → vkCreateRayTracingPipelinesKHR (different struct,

4423

changed functionality)

• Added enums, structures and commands:

◦ VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR,
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR,
VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR,
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR,
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR to VkPipelineCreateFlagBits

◦ VkPhysicalDeviceRayTracingPipelineFeaturesKHR structure

◦ VkDeviceOrHostAddressKHR and VkDeviceOrHostAddressConstKHR unions

◦ VkPipelineLibraryCreateInfoKHR struct

◦ VkRayTracingPipelineInterfaceCreateInfoKHR struct

◦ VkStridedDeviceAddressRegionKHR struct

◦ vkCmdTraceRaysIndirectKHR command and VkTraceRaysIndirectCommandKHR struct

◦ vkGetRayTracingCaptureReplayShaderGroupHandlesKHR (shader group capture/replay)

◦ vkCmdSetRayTracingPipelineStackSizeKHR and vkGetRayTracingShaderGroupStackSizeKHR
commands for stack size control

• Functionality removed:

◦ VK_PIPELINE_CREATE_DEFER_COMPILE_BIT_NV

◦ vkCompileDeferredNV command (replaced with VK_KHR_deferred_host_operations)

(3) What are the changes between the public provisional (VK_KHR_ray_tracing v8) release and the
internal provisional (VK_KHR_ray_tracing v9) release?

• Require Vulkan 1.1 and SPIR-V 1.4

• Added interactions with Vulkan 1.2 and VK_KHR_vulkan_memory_model

• added creation time capture and replay flags

◦ added VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR to
VkPipelineCreateFlagBits

• replace VkStridedBufferRegionKHR with VkStridedDeviceAddressRegionKHR and change
vkCmdTraceRaysKHR, vkCmdTraceRaysIndirectKHR, to take these for the shader binding table
and use device addresses instead of buffers.

• require the shader binding table buffers to have the VK_BUFFER_USAGE_RAY_TRACING_BIT_KHR set

• make VK_KHR_pipeline_library an interaction instead of required extension

• rename the libraries member of VkRayTracingPipelineCreateInfoKHR to pLibraryInfo and
make it a pointer

• make VK_KHR_deferred_host_operations an interaction instead of a required extension (later
went back on this)

• added explicit stack size management for ray tracing pipelines

4424

◦ removed the maxCallableSize member of VkRayTracingPipelineInterfaceCreateInfoKHR

◦ added the pDynamicState member to VkRayTracingPipelineCreateInfoKHR

◦ added VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR dynamic state for ray tracing
pipelines

◦ added vkGetRayTracingShaderGroupStackSizeKHR and
vkCmdSetRayTracingPipelineStackSizeKHR commands

◦ added VkShaderGroupShaderKHR enum

• Added maxRayDispatchInvocationCount limit to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR

• Added shaderGroupHandleAlignment property to
VkPhysicalDeviceRayTracingPipelinePropertiesKHR

• Added maxRayHitAttributeSize property to VkPhysicalDeviceRayTracingPipelinePropertiesKHR

• Clarify deferred host ops for pipeline creation

◦ VkDeferredOperationKHR is now a top-level parameter for
vkCreateRayTracingPipelinesKHR

◦ removed VkDeferredOperationInfoKHR structure

◦ change deferred host creation/return parameter behavior such that the implementation can
modify such parameters until the deferred host operation completes

◦ VK_KHR_deferred_host_operations is required again

(4) What are the changes between the internal provisional (VK_KHR_ray_tracing v9) release and the
final (VK_KHR_acceleration_structure v11 / VK_KHR_ray_tracing_pipeline v1) release?

• refactor VK_KHR_ray_tracing into 3 extensions, enabling implementation flexibility and
decoupling ray query support from ray pipelines:

◦ VK_KHR_acceleration_structure (for acceleration structure operations)

◦ VK_KHR_ray_tracing_pipeline (for ray tracing pipeline and shader stages)

◦ VK_KHR_ray_query (for ray queries in existing shader stages)

• Require Volatile for the following builtins in the ray generation, closest hit, miss, intersection,
and callable shader stages:

◦ SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask, SubgroupGeMask, SubgroupGtMask,
SubgroupLeMask, SubgroupLtMask

◦ SMIDNV, WarpIDNV

• clarify buffer usage flags for ray tracing

◦ VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR is added as an alias of
VK_BUFFER_USAGE_RAY_TRACING_BIT_NV and is required on shader binding table buffers

◦ VK_BUFFER_USAGE_STORAGE_BUFFER_BIT is used in VK_KHR_acceleration_structure for scratchData

• rename maxRecursionDepth to maxRayPipelineRecursionDepth (pipeline creation) and
maxRayRecursionDepth (limit) to reduce confusion

4425

• Add queryable maxRayHitAttributeSize limit and rename members of
VkRayTracingPipelineInterfaceCreateInfoKHR to maxPipelineRayPayloadSize and
maxPipelineRayHitAttributeSize for clarity

• Update SPIRV capabilities to use RayTracingKHR

• extension is no longer provisional

• define synchronization requirements for indirect trace rays and indirect buffer

(5) This extension adds gl_InstanceID for the intersection, any-hit, and closest hit shaders, but in
KHR_vulkan_glsl, gl_InstanceID is replaced with gl_InstanceIndex. Which should be used for Vulkan
in this extension?

RESOLVED: This extension uses gl_InstanceID and maps it to InstanceId in SPIR-V. It is
acknowledged that this is different than other shader stages in Vulkan. There are two main reasons
for the difference here:

• symmetry with gl_PrimitiveID which is also available in these shaders

• there is no “baseInstance” relevant for these shaders, and so ID makes it more obvious that this
is zero-based.

(6) Why is VK_KHR_pipeline_library an interaction instead of a required dependency, particularly
when the “Feature Requirements” section says it is required to be supported anyhow?

RESOLVED: If VK_KHR_pipeline_library were a required extension dependency, then every
application would need to enable the extension whether or not they actually want to use the
pipeline library functionality. Developers found this to be annoying and unfriendly behavior. We do
wish to require all implementations to support it though, and thus it is listed in the feature
requirements section.

Sample Code

Example ray generation GLSL shader

#version 450 core
#extension GL_EXT_ray_tracing : require
layout(set = 0, binding = 0, rgba8) uniform image2D image;
layout(set = 0, binding = 1) uniform accelerationStructureEXT as;
layout(location = 0) rayPayloadEXT float payload;

void main()
{
 vec4 col = vec4(0, 0, 0, 1);

 vec3 origin = vec3(float(gl_LaunchIDEXT.x)/float(gl_LaunchSizeEXT.x), float
(gl_LaunchIDEXT.y)/float(gl_LaunchSizeEXT.y), 1.0);
 vec3 dir = vec3(0.0, 0.0, -1.0);

 traceRayEXT(as, 0, 0xff, 0, 1, 0, origin, 0.0, dir, 1000.0, 0);

4426

 col.y = payload;

 imageStore(image, ivec2(gl_LaunchIDEXT.xy), col);
}

Version History

• Revision 1, 2020-11-12 (Mathieu Robart, Daniel Koch, Eric Werness, Tobias Hector)

◦ Decomposition of the specification, from VK_KHR_ray_tracing to
VK_KHR_ray_tracing_pipeline (#1918,!3912)

◦ require certain subgroup and sm_shader_builtin shader builtins to be decorated as volatile
in the ray generation, closest hit, miss, intersection, and callable stages (#1924,!3903,!3954)

◦ clarify buffer usage flags for ray tracing (#2181,!3939)

◦ rename maxRecursionDepth to maxRayPipelineRecursionDepth and
maxRayRecursionDepth (#2203,!3937)

◦ add queryable maxRayHitAttributeSize and rename members of
VkRayTracingPipelineInterfaceCreateInfoKHR (#2102,!3966)

◦ update to use RayTracingKHR SPIR-V capability

◦ add VUs for matching hit group type against geometry type (#2245,!3994)

◦ require RayTMaxKHR be volatile in intersection shaders (#2268,!4030)

◦ add numerical limits for ray parameters (#2235,!3960)

◦ fix SBT indexing rules for device addresses (#2308,!4079)

◦ relax formula for ray intersection candidate determination (#2322,!4080)

◦ add more details on ShaderRecordBufferKHR variables (#2230,!4083)

◦ clarify valid bits for InstanceCustomIndexKHR (GLSL/GLSL#19,!4128)

◦ allow at most one IncomingRayPayloadKHR, IncomingCallableDataKHR, and HitAttributeKHR
(!4129)

◦ add minimum for maxShaderGroupStride (#2353,!4131)

◦ require VK_KHR_pipeline_library extension to be supported (#2348,!4135)

◦ clarify meaning of 'geometry index' (#2272,!4137)

◦ restrict traces to TLAS (#2239,!4141)

◦ add note about maxPipelineRayPayloadSize (#2383,!4172)

◦ do not require raygen shader in pipeline libraries (!4185)

◦ define sync for indirect trace rays and indirect buffer (#2407,!4208)

VK_KHR_ray_tracing_position_fetch

Name String

VK_KHR_ray_tracing_position_fetch

4427

Extension Type

Device extension

Registered Extension Number

482

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_acceleration_structure

SPIR-V Dependencies

• SPV_KHR_ray_tracing_position_fetch

Contact

• Eric Werness

Extension Proposal

VK_KHR_ray_tracing_position_fetch

Other Extension Metadata

Last Modified Date

2023-02-17

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_ray_tracing_position_fetch

• Interacts with VK_KHR_ray_tracing_pipeline

• Interacts with VK_KHR_ray_query

Contributors

• Eric Werness, NVIDIA

• Stu Smith, AMD

• Yuriy O’Donnell, Epic Games

• Ralph Potter, Samsung

• Joshua Barczak, Intel

• Lionel Landwerlin, Intel

• Andrew Garrard, Imagination Technologies

• Alex Bourd, Qualcomm

• Yunpeng Zhu, Huawei Technologies

• Marius Bjorge, Arm

4428

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_ray_tracing_position_fetch.html
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_ray_tracing_position_fetch.adoc
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_ray_tracing_position_fetch.txt

• Daniel Koch, NVIDIA

Description

VK_KHR_ray_tracing_position_fetch adds the ability to fetch the vertex positions in the shader from
a hit triangle as stored in the acceleration structure.

An application adds VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DATA_ACCESS_KHR to the acceleration
structure at build time. Then, if the hit is a triangle geometry, the shader (any-hit or closest hit for
ray pipelines or using ray query) can fetch the three, three-component vertex positions in object
space, of the triangle which was hit.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRayTracingPositionFetchFeaturesKHR

New Enum Constants

• VK_KHR_RAY_TRACING_POSITION_FETCH_EXTENSION_NAME

• VK_KHR_RAY_TRACING_POSITION_FETCH_SPEC_VERSION

• Extending VkBuildAccelerationStructureFlagBitsKHR:

◦ VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DATA_ACCESS_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_POSITION_FETCH_FEATURES_KHR

New Built-In Variables

• HitTriangleVertexPositionsKHR

New SPIR-V Capabilities

• RayTracingPositionFetchKHR

Issues

None Yet!

Version History

• Revision 1, 2023-02-17 (Eric Werness)

◦ internal revisions

VK_KHR_shader_clock

Name String

VK_KHR_shader_clock

4429

Extension Type

Device extension

Registered Extension Number

182

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

SPIR-V Dependencies

• SPV_KHR_shader_clock

Contact

• Aaron Hagan ahagan

Other Extension Metadata

Last Modified Date

2019-4-25

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_ARB_shader_clock and
GL_EXT_shader_realtime_clock

Contributors

• Aaron Hagan, AMD

• Daniel Koch, NVIDIA

Description

This extension advertises the SPIR-V ShaderClockKHR capability for Vulkan, which allows a shader to
query a real-time or monotonically incrementing counter at the subgroup level or across the device
level. The two valid SPIR-V scopes for OpReadClockKHR are Subgroup and Device.

When using GLSL source-based shading languages, the clockRealtime*EXT() timing functions map to
the OpReadClockKHR instruction with a scope of Device, and the clock*ARB() timing functions map to
the OpReadClockKHR instruction with a scope of Subgroup.

4430

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_shader_clock.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_clock] @ahagan%0A*Here describe the issue or question you have about the VK_KHR_shader_clock extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_clock] @ahagan%0A*Here describe the issue or question you have about the VK_KHR_shader_clock extension*
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_shader_clock.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_shader_realtime_clock.txt

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderClockFeaturesKHR

New Enum Constants

• VK_KHR_SHADER_CLOCK_EXTENSION_NAME

• VK_KHR_SHADER_CLOCK_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR

New SPIR-V Capabilities

• ShaderClockKHR

Version History

• Revision 1, 2019-4-25 (Aaron Hagan)

◦ Initial revision

VK_KHR_shader_expect_assume

Name String

VK_KHR_shader_expect_assume

Extension Type

Device extension

Registered Extension Number

545

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_KHR_expect_assume

Contact

• Kevin Petit kpet

4431

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_expect_assume.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_expect_assume] @kpet%0A*Here describe the issue or question you have about the VK_KHR_shader_expect_assume extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_expect_assume] @kpet%0A*Here describe the issue or question you have about the VK_KHR_shader_expect_assume extension*

Extension Proposal

VK_KHR_shader_expect_assume

Other Extension Metadata

Last Modified Date

2023-12-06

IP Status

No known IP claims.

Contributors

• Kevin Petit, Arm

• Tobias Hector, AMD

• James Fitzpatrick, Imagination Technologies

Description

This extension allows the use of the SPV_KHR_expect_assume extension in SPIR-V shader modules
which enables SPIR-V producers to provide optimization hints to the Vulkan implementation.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderExpectAssumeFeaturesKHR

New Enum Constants

• VK_KHR_SHADER_EXPECT_ASSUME_EXTENSION_NAME

• VK_KHR_SHADER_EXPECT_ASSUME_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_EXPECT_ASSUME_FEATURES_KHR

New SPIR-V Capabilities

• ExpectAssumeKHR

Version History

• Revision 1, 2023-12-06 (Kevin Petit)

◦ Initial revision

VK_KHR_shader_float_controls2

Name String

VK_KHR_shader_float_controls2

4432

https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_shader_expect_assume.adoc

Extension Type

Device extension

Registered Extension Number

529

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1
and
VK_KHR_shader_float_controls

SPIR-V Dependencies

• SPV_KHR_float_controls2

Contact

• Graeme Leese gnl21

Extension Proposal

VK_KHR_shader_float_controls2

Other Extension Metadata

Last Modified Date

2023-05-16

Interactions and External Dependencies

• This extension requires SPV_KHR_float_controls2.

Contributors

• Graeme Leese, Broadcom

Description

This extension enables use of the more expressive fast floating-point math flags in the
SPV_KHR_float_controls2 extension. These flags give finer- grained control over which
optimisations compilers may apply, potentially speeding up execution while retaining correct
results.

The extension also adds control over the fast-math modes to the GLSL extended instruction set,
making these operations more consistent with SPIR-V and allowing their use in situations where
floating-point conformance is important.

4433

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_float_controls2.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_float_controls2] @gnl21%0A*Here describe the issue or question you have about the VK_KHR_shader_float_controls2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_float_controls2] @gnl21%0A*Here describe the issue or question you have about the VK_KHR_shader_float_controls2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_shader_float_controls2.adoc
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_float_controls2.html

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderFloatControls2FeaturesKHR

New Enum Constants

• VK_KHR_SHADER_FLOAT_CONTROLS_2_EXTENSION_NAME

• VK_KHR_SHADER_FLOAT_CONTROLS_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT_CONTROLS_2_FEATURES_KHR

New SPIR-V Capabilities

• FloatControls2

Version History

• Revision 1, 2023-05-16 (Graeme Leese)

◦ Initial draft

VK_KHR_shader_maximal_reconvergence

Name String

VK_KHR_shader_maximal_reconvergence

Extension Type

Device extension

Registered Extension Number

435

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1

SPIR-V Dependencies

• SPV_KHR_maximal_reconvergence

Contact

• Alan Baker alan-baker

4434

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_maximal_reconvergence.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_maximal_reconvergence] @alan-baker%0A*Here describe the issue or question you have about the VK_KHR_shader_maximal_reconvergence extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_maximal_reconvergence] @alan-baker%0A*Here describe the issue or question you have about the VK_KHR_shader_maximal_reconvergence extension*

Extension Proposal

VK_KHR_shader_maximal_reconvergence

Other Extension Metadata

Last Modified Date

2021-11-12

IP Status

No known IP claims.

Interactions and External Dependencies

• Requires SPIR-V 1.3.

• This extension requires SPV_KHR_maximal_reconvergence

Contributors

• Alan Baker, Google

Description

This extension allows the use of the SPV_KHR_maximal_reconvergence SPIR-V extension in shader
modules. SPV_KHR_maximal_reconvergence provides stronger guarantees that diverged subgroups will
reconverge. These guarantees should match shader author intuition about divergence and
reconvergence of invocations based on the structure of the code in the HLL.

Developers should utilize this extension if they require stronger guarantees about reconvergence
than either the core spec or SPV_KHR_subgroup_uniform_control_flow. This extension will define
the rules that govern how invocations diverge and reconverge in a way that should match
developer intuition. It allows robust programs to be written relying on subgroup operations and
other tangled instructions.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR

New Enum Constants

• VK_KHR_SHADER_MAXIMAL_RECONVERGENCE_EXTENSION_NAME

• VK_KHR_SHADER_MAXIMAL_RECONVERGENCE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MAXIMAL_RECONVERGENCE_FEATURES_KHR

New SPIR-V Capabilities

• MaximallyReconvergesKHR

4435

https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_shader_maximal_reconvergence.adoc
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_maximal_reconvergence.html

Version History

• Revision 1, 2021-11-12 (Alan Baker)

◦ Internal draft version

VK_KHR_shader_quad_control

Name String

VK_KHR_shader_quad_control

Extension Type

Device extension

Registered Extension Number

236

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1
and
VK_KHR_vulkan_memory_model
and
VK_KHR_shader_maximal_reconvergence

SPIR-V Dependencies

• SPV_KHR_quad_control

Contact

• Tobias Hector tobski

Extension Proposal

VK_KHR_shader_quad_control

Other Extension Metadata

Last Modified Date

2023-11-01

IP Status

No known IP claims.

Contributors

• Tobias Hector, AMD

• Bill Licea-Kane, Qualcomm

4436

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_quad_control.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_quad_control] @tobski%0A*Here describe the issue or question you have about the VK_KHR_shader_quad_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_quad_control] @tobski%0A*Here describe the issue or question you have about the VK_KHR_shader_quad_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_shader_quad_control.adoc

• Graeme Leese, Broadcom

• Jan-Harald Fredriksen, Arm

• Nicolai Hähnle, AMD

• Jeff Bolz, NVidia

• Alan Baker, Google

• Hans-Kristian Arntzen, Valve

Description

This extension adds new quad any/all operations, requires that derivatives are well-defined in
quad-uniform control flow, and adds the ability to require helper invocations participate in group
operations.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderQuadControlFeaturesKHR

New Enum Constants

• VK_KHR_SHADER_QUAD_CONTROL_EXTENSION_NAME

• VK_KHR_SHADER_QUAD_CONTROL_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_QUAD_CONTROL_FEATURES_KHR

New SPIR-V Capabilities

• QuadControlKHR

Version History

• Revision 1, 2023-11-01 (Tobias Hector)

◦ Initial draft

VK_KHR_shader_subgroup_rotate

Name String

VK_KHR_shader_subgroup_rotate

Extension Type

Device extension

Registered Extension Number

417

4437

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_KHR_subgroup_rotate

Contact

• Kevin Petit kpet

Extension Proposal

VK_KHR_shader_subgroup_rotate

Last Modified Date

2024-01-29

IP Status

No known IP claims.

Contributors

• Kévin Petit, Arm Ltd.

• Tobias Hector, AMD

• John Leech, Khronos

• Matthew Netsch, Qualcomm

• Jan-Harald Fredriksen, Arm Ltd.

• Graeme Leese, Broadcom

• Tom Olson, Arm Ltd.

• Spencer Fricke, LunarG Inc.

This extension adds support for the subgroup rotate instruction defined in
SPV_KHR_subgroup_rotate.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderSubgroupRotateFeaturesKHR

New Enum Constants

• VK_KHR_SHADER_SUBGROUP_ROTATE_EXTENSION_NAME

• VK_KHR_SHADER_SUBGROUP_ROTATE_SPEC_VERSION

4438

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_subgroup_rotate.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_subgroup_rotate] @kpet%0A*Here describe the issue or question you have about the VK_KHR_shader_subgroup_rotate extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_subgroup_rotate] @kpet%0A*Here describe the issue or question you have about the VK_KHR_shader_subgroup_rotate extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_shader_subgroup_rotate.adoc

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_ROTATE_FEATURES_KHR

• Extending VkSubgroupFeatureFlagBits:

◦ VK_SUBGROUP_FEATURE_ROTATE_BIT_KHR

◦ VK_SUBGROUP_FEATURE_ROTATE_CLUSTERED_BIT_KHR

New SPIR-V Capabilities

• GroupNonUniformRotateKHR

Version History

• Revision 2, 2024-01-29 (Kévin Petit)

◦ Add VK_SUBGROUP_FEATURE_ROTATE_BIT_KHR and VK_SUBGROUP_FEATURE_ROTATE_CLUSTERED_BIT_KHR

• Revision 1, 2023-06-20 (Kévin Petit)

◦ Initial revision

VK_KHR_shader_subgroup_uniform_control_flow

Name String

VK_KHR_shader_subgroup_uniform_control_flow

Extension Type

Device extension

Registered Extension Number

324

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1

SPIR-V Dependencies

• SPV_KHR_subgroup_uniform_control_flow

Contact

• Alan Baker alan-baker

Other Extension Metadata

4439

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_subgroup_uniform_control_flow.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_subgroup_uniform_control_flow] @alan-baker%0A*Here describe the issue or question you have about the VK_KHR_shader_subgroup_uniform_control_flow extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_subgroup_uniform_control_flow] @alan-baker%0A*Here describe the issue or question you have about the VK_KHR_shader_subgroup_uniform_control_flow extension*

Last Modified Date

2020-08-27

IP Status

No known IP claims.

Interactions and External Dependencies

• Requires SPIR-V 1.3.

• This extension provides API support for GL_EXT_subgroupuniform_qualifier

Contributors

• Alan Baker, Google

• Jeff Bolz, NVIDIA

Description

This extension allows the use of the SPV_KHR_subgroup_uniform_control_flow SPIR-V extension in
shader modules. SPV_KHR_subgroup_uniform_control_flow provides stronger guarantees that diverged
subgroups will reconverge.

Developers should utilize this extension if they use subgroup operations to reduce the work
performed by a uniform subgroup. This extension will guarantee that uniform subgroup will
reconverge in the same manner as invocation groups (see “Uniform Control Flow” in the Khronos
SPIR-V Specification).

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR

New Enum Constants

• VK_KHR_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_EXTENSION_NAME

• VK_KHR_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR

Version History

• Revision 1, 2020-08-27 (Alan Baker)

◦ Internal draft version

VK_KHR_shared_presentable_image

Name String

VK_KHR_shared_presentable_image

4440

https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_subgroupuniform_qualifier.txt

Extension Type

Device extension

Registered Extension Number

112

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_swapchain
and
VK_KHR_get_surface_capabilities2
and
 VK_KHR_get_physical_device_properties2
 or
 Version 1.1

Contact

• Alon Or-bach alonorbach

Other Extension Metadata

Last Modified Date

2017-03-20

IP Status

No known IP claims.

Contributors

• Alon Or-bach, Samsung Electronics

• Ian Elliott, Google

• Jesse Hall, Google

• Pablo Ceballos, Google

• Chris Forbes, Google

• Jeff Juliano, NVIDIA

• James Jones, NVIDIA

• Daniel Rakos, AMD

• Tobias Hector, Imagination Technologies

• Graham Connor, Imagination Technologies

• Michael Worcester, Imagination Technologies

4441

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shared_presentable_image] @alonorbach%0A*Here describe the issue or question you have about the VK_KHR_shared_presentable_image extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shared_presentable_image] @alonorbach%0A*Here describe the issue or question you have about the VK_KHR_shared_presentable_image extension*

• Cass Everitt, Oculus

• Johannes Van Waveren, Oculus

Description

This extension extends VK_KHR_swapchain to enable creation of a shared presentable image. This
allows the application to use the image while the presention engine is accessing it, in order to
reduce the latency between rendering and presentation.

New Commands

• vkGetSwapchainStatusKHR

New Structures

• Extending VkSurfaceCapabilities2KHR:

◦ VkSharedPresentSurfaceCapabilitiesKHR

New Enum Constants

• VK_KHR_SHARED_PRESENTABLE_IMAGE_EXTENSION_NAME

• VK_KHR_SHARED_PRESENTABLE_IMAGE_SPEC_VERSION

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR

• Extending VkPresentModeKHR:

◦ VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR

◦ VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR

Issues

1) Should we allow a Vulkan WSI swapchain to toggle between normal usage and shared
presentation usage?

RESOLVED: No. WSI swapchains are typically recreated with new properties instead of having
their properties changed. This can also save resources, assuming that fewer images are needed for
shared presentation, and assuming that most VR applications do not need to switch between
normal and shared usage.

2) Should we have a query for determining how the presentation engine refresh is triggered?

RESOLVED: Yes. This is done via which presentation modes a surface supports.

3) Should the object representing a shared presentable image be an extension of a
VkSwapchainKHR or a separate object?

4442

RESOLVED: Extension of a swapchain due to overlap in creation properties and to allow common
functionality between shared and normal presentable images and swapchains.

4) What should we call the extension and the new structures it creates?

RESOLVED: Shared presentable image / shared present.

5) Should the minImageCount and presentMode values of the VkSwapchainCreateInfoKHR be ignored,
or required to be compatible values?

RESOLVED: minImageCount must be set to 1, and presentMode should be set to either
VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR or VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR.

6) What should the layout of the shared presentable image be?

RESOLVED: After acquiring the shared presentable image, the application must transition it to the
VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR layout prior to it being used. After this initial transition, any
image usage that was requested during swapchain creation can be performed on the image
without layout transitions being performed.

7) Do we need a new API for the trigger to refresh new content?

RESOLVED: vkQueuePresentKHR to act as API to trigger a refresh, as will allow combination with
other compatible extensions to vkQueuePresentKHR.

8) How should an application detect a VK_ERROR_OUT_OF_DATE_KHR error on a swapchain using the
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR present mode?

RESOLVED: Introduce vkGetSwapchainStatusKHR to allow applications to query the status of a
swapchain using a shared presentation mode.

9) What should subsequent calls to vkQueuePresentKHR for
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR swapchains be defined to do?

RESOLVED: State that implementations may use it as a hint for updated content.

10) Can the ownership of a shared presentable image be transferred to a different queue?

RESOLVED: No. It is not possible to transfer ownership of a shared presentable image obtained
from a swapchain created using VK_SHARING_MODE_EXCLUSIVE after it has been presented.

11) How should vkQueueSubmit behave if a command buffer uses an image from a
VK_ERROR_OUT_OF_DATE_KHR swapchain?

RESOLVED: vkQueueSubmit is expected to return the VK_ERROR_DEVICE_LOST error.

12) Can Vulkan provide any guarantee on the order of rendering, to enable beam chasing?

RESOLVED: This could be achieved via use of render passes to ensure strip rendering.

4443

Version History

• Revision 1, 2017-03-20 (Alon Or-bach)

◦ Internal revisions

VK_KHR_surface

Name String

VK_KHR_surface

Extension Type

Instance extension

Registered Extension Number

1

Revision

25

Ratification Status

Ratified

Extension and Version Dependencies

None

Contact

• James Jones cubanismo

• Ian Elliott ianelliottus

Other Extension Metadata

Last Modified Date

2016-08-25

IP Status

No known IP claims.

Contributors

• Patrick Doane, Blizzard

• Ian Elliott, LunarG

• Jesse Hall, Google

• James Jones, NVIDIA

• David Mao, AMD

• Norbert Nopper, Freescale

• Alon Or-bach, Samsung

4444

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_surface] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_surface] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_surface extension*

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Jeff Vigil, Qualcomm

• Chia-I Wu, LunarG

• Faith Ekstrand, Intel

Description

The VK_KHR_surface extension is an instance extension. It introduces VkSurfaceKHR objects, which
abstract native platform surface or window objects for use with Vulkan. It also provides a way to
determine whether a queue family in a physical device supports presenting to particular surface.

Separate extensions for each platform provide the mechanisms for creating VkSurfaceKHR objects,
but once created they may be used in this and other platform-independent extensions, in particular
the VK_KHR_swapchain extension.

New Object Types

• VkSurfaceKHR

New Commands

• vkDestroySurfaceKHR

• vkGetPhysicalDeviceSurfaceCapabilitiesKHR

• vkGetPhysicalDeviceSurfaceFormatsKHR

• vkGetPhysicalDeviceSurfacePresentModesKHR

• vkGetPhysicalDeviceSurfaceSupportKHR

New Structures

• VkSurfaceCapabilitiesKHR

• VkSurfaceFormatKHR

New Enums

• VkColorSpaceKHR

• VkCompositeAlphaFlagBitsKHR

• VkPresentModeKHR

• VkSurfaceTransformFlagBitsKHR

New Bitmasks

• VkCompositeAlphaFlagsKHR

4445

New Enum Constants

• VK_KHR_SURFACE_EXTENSION_NAME

• VK_KHR_SURFACE_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_SURFACE_KHR

• Extending VkResult:

◦ VK_ERROR_NATIVE_WINDOW_IN_USE_KHR

◦ VK_ERROR_SURFACE_LOST_KHR

Examples

Note

The example code for the VK_KHR_surface and VK_KHR_swapchain extensions was
removed from the appendix after revision 1.0.29. This WSI example code was
ported to the cube demo that is shipped with the official Khronos SDK, and is being
kept up-to-date in that location (see: https://github.com/KhronosGroup/Vulkan-
Tools/blob/master/cube/cube.c).

Issues

1) Should this extension include a method to query whether a physical device supports presenting
to a specific window or native surface on a given platform?

RESOLVED: Yes. Without this, applications would need to create a device instance to determine
whether a particular window can be presented to. Knowing that a device supports presentation to a
platform in general is not sufficient, as a single machine might support multiple seats, or instances
of the platform that each use different underlying physical devices. Additionally, on some
platforms, such as the X Window System, different drivers and devices might be used for different
windows depending on which section of the desktop they exist on.

2) Should the vkGetPhysicalDeviceSurfaceCapabilitiesKHR,
vkGetPhysicalDeviceSurfaceFormatsKHR, and vkGetPhysicalDeviceSurfacePresentModesKHR
functions be in this extension and operate on physical devices, rather than being in
VK_KHR_swapchain (i.e. device extension) and being dependent on VkDevice?

RESOLVED: Yes. While it might be useful to depend on VkDevice (and therefore on enabled
extensions and features) for the queries, Vulkan was released only with the VkPhysicalDevice
versions. Many cases can be resolved by a Valid Usage statement, and/or by a separate pNext chain
version of the query struct specific to a given extension or parameters, via extensible versions of
the queries: vkGetPhysicalDeviceSurfacePresentModes2EXT,
vkGetPhysicalDeviceSurfaceCapabilities2KHR, and vkGetPhysicalDeviceSurfaceFormats2KHR.

3) Should Vulkan support Xlib or XCB as the API for accessing the X Window System platform?

RESOLVED: Both. XCB is a more modern and efficient API, but Xlib usage is deeply ingrained in
many applications and likely will remain in use for the foreseeable future. Not all drivers

4446

https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c
https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c

necessarily need to support both, but including both as options in the core specification will
probably encourage support, which should in turn ease adoption of the Vulkan API in older
codebases. Additionally, the performance improvements possible with XCB likely will not have a
measurable impact on the performance of Vulkan presentation and other minimal window system
interactions defined here.

4) Should the GBM platform be included in the list of platform enums?

RESOLVED: Deferred, and will be addressed with a platform-specific extension to be written in the
future.

Version History

• Revision 1, 2015-05-20 (James Jones)

◦ Initial draft, based on LunarG KHR spec, other KHR specs, patches attached to bugs.

• Revision 2, 2015-05-22 (Ian Elliott)

◦ Created initial Description section.

◦ Removed query for whether a platform requires the use of a queue for presentation, since it
was decided that presentation will always be modeled as being part of the queue.

◦ Fixed typos and other minor mistakes.

• Revision 3, 2015-05-26 (Ian Elliott)

◦ Improved the Description section.

• Revision 4, 2015-05-27 (James Jones)

◦ Fixed compilation errors in example code.

• Revision 5, 2015-06-01 (James Jones)

◦ Added issues 1 and 2 and made related spec updates.

• Revision 6, 2015-06-01 (James Jones)

◦ Merged the platform type mappings table previously removed from VK_KHR_swapchain
with the platform description table in this spec.

◦ Added issues 3 and 4 documenting choices made when building the initial list of native
platforms supported.

• Revision 7, 2015-06-11 (Ian Elliott)

◦ Updated table 1 per input from the KHR TSG.

◦ Updated issue 4 (GBM) per discussion with Daniel Stone. He will create a platform-specific
extension sometime in the future.

• Revision 8, 2015-06-17 (James Jones)

◦ Updated enum-extending values using new convention.

◦ Fixed the value of VK_SURFACE_PLATFORM_INFO_TYPE_SUPPORTED_KHR.

• Revision 9, 2015-06-17 (James Jones)

◦ Rebased on Vulkan API version 126.

4447

• Revision 10, 2015-06-18 (James Jones)

◦ Marked issues 2 and 3 resolved.

• Revision 11, 2015-06-23 (Ian Elliott)

◦ Examples now show use of function pointers for extension functions.

◦ Eliminated extraneous whitespace.

• Revision 12, 2015-07-07 (Daniel Rakos)

◦ Added error section describing when each error is expected to be reported.

◦ Replaced the term “queue node index” with “queue family index” in the spec as that is the
agreed term to be used in the latest version of the core header and spec.

◦ Replaced bool32_t with VkBool32.

• Revision 13, 2015-08-06 (Daniel Rakos)

◦ Updated spec against latest core API header version.

• Revision 14, 2015-08-20 (Ian Elliott)

◦ Renamed this extension and all of its enumerations, types, functions, etc. This makes it
compliant with the proposed standard for Vulkan extensions.

◦ Switched from “revision” to “version”, including use of the VK_MAKE_VERSION macro in the
header file.

◦ Did miscellaneous cleanup, etc.

• Revision 15, 2015-08-20 (Ian Elliott—porting a 2015-07-29 change from James Jones)

◦ Moved the surface transform enums here from VK_WSI_swapchain so they could be reused
by VK_WSI_display.

• Revision 16, 2015-09-01 (James Jones)

◦ Restore single-field revision number.

• Revision 17, 2015-09-01 (James Jones)

◦ Fix example code compilation errors.

• Revision 18, 2015-09-26 (Jesse Hall)

◦ Replaced VkSurfaceDescriptionKHR with the VkSurfaceKHR object, which is created via
layered extensions. Added VkDestroySurfaceKHR.

• Revision 19, 2015-09-28 (Jesse Hall)

◦ Renamed from VK_EXT_KHR_swapchain to VK_EXT_KHR_surface.

• Revision 20, 2015-09-30 (Jeff Vigil)

◦ Add error result VK_ERROR_SURFACE_LOST_KHR.

• Revision 21, 2015-10-15 (Daniel Rakos)

◦ Updated the resolution of issue #2 and include the surface capability queries in this
extension.

◦ Renamed SurfaceProperties to SurfaceCapabilities as it better reflects that the values
returned are the capabilities of the surface on a particular device.

4448

◦ Other minor cleanup and consistency changes.

• Revision 22, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_surface to VK_KHR_surface.

• Revision 23, 2015-11-03 (Daniel Rakos)

◦ Added allocation callbacks to vkDestroySurfaceKHR.

• Revision 24, 2015-11-10 (Jesse Hall)

◦ Removed VkSurfaceTransformKHR. Use VkSurfaceTransformFlagBitsKHR instead.

◦ Rename VkSurfaceCapabilitiesKHR member maxImageArraySize to maxImageArrayLayers.

• Revision 25, 2016-01-14 (James Jones)

◦ Moved VK_ERROR_NATIVE_WINDOW_IN_USE_KHR from the VK_KHR_android_surface to
the VK_KHR_surface extension.

• 2016-08-23 (Ian Elliott)

◦ Update the example code, to not have so many characters per line, and to split out a new
example to show how to obtain function pointers.

• 2016-08-25 (Ian Elliott)

◦ A note was added at the beginning of the example code, stating that it will be removed from
future versions of the appendix.

VK_KHR_surface_protected_capabilities

Name String

VK_KHR_surface_protected_capabilities

Extension Type

Instance extension

Registered Extension Number

240

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1
and
VK_KHR_get_surface_capabilities2

Contact

• Sandeep Shinde sashinde

4449

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_surface_protected_capabilities] @sashinde%0A*Here describe the issue or question you have about the VK_KHR_surface_protected_capabilities extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_surface_protected_capabilities] @sashinde%0A*Here describe the issue or question you have about the VK_KHR_surface_protected_capabilities extension*

Other Extension Metadata

Last Modified Date

2018-12-18

IP Status

No known IP claims.

Contributors

• Sandeep Shinde, NVIDIA

• James Jones, NVIDIA

• Daniel Koch, NVIDIA

Description

This extension extends VkSurfaceCapabilities2KHR, providing applications a way to query whether
swapchains can be created with the VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR flag set.

Vulkan 1.1 added (optional) support for protect memory and protected resources including buffers
(VK_BUFFER_CREATE_PROTECTED_BIT), images (VK_IMAGE_CREATE_PROTECTED_BIT), and swapchains
(VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR). However, on implementations which support multiple
windowing systems, not all window systems may be able to provide a protected display path.

This extension provides a way to query if a protected swapchain created for a surface (and thus a
specific windowing system) can be displayed on screen. It extends the existing
VkSurfaceCapabilities2KHR structure with a new VkSurfaceProtectedCapabilitiesKHR structure
from which the application can obtain information about support for protected swapchain creation
through vkGetPhysicalDeviceSurfaceCapabilities2KHR.

New Structures

• Extending VkSurfaceCapabilities2KHR:

◦ VkSurfaceProtectedCapabilitiesKHR

New Enum Constants

• VK_KHR_SURFACE_PROTECTED_CAPABILITIES_EXTENSION_NAME

• VK_KHR_SURFACE_PROTECTED_CAPABILITIES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR

Version History

• Revision 1, 2018-12-18 (Sandeep Shinde, Daniel Koch)

◦ Internal revisions.

4450

VK_KHR_swapchain

Name String

VK_KHR_swapchain

Extension Type

Device extension

Registered Extension Number

2

Revision

70

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_surface

API Interactions

• Interacts with VK_VERSION_1_1

Contact

• James Jones cubanismo

• Ian Elliott ianelliottus

Other Extension Metadata

Last Modified Date

2017-10-06

IP Status

No known IP claims.

Interactions and External Dependencies

• Interacts with Vulkan 1.1

Contributors

• Patrick Doane, Blizzard

• Ian Elliott, LunarG

• Jesse Hall, Google

• Mathias Heyer, NVIDIA

• James Jones, NVIDIA

• David Mao, AMD

• Norbert Nopper, Freescale

4451

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_swapchain] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_swapchain extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_swapchain] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_swapchain extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_swapchain] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_swapchain extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_swapchain] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_swapchain extension*

• Alon Or-bach, Samsung

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Jeff Vigil, Qualcomm

• Chia-I Wu, LunarG

• Faith Ekstrand, Intel

• Matthaeus G. Chajdas, AMD

• Ray Smith, ARM

Description

The VK_KHR_swapchain extension is the device-level companion to the VK_KHR_surface extension. It
introduces VkSwapchainKHR objects, which provide the ability to present rendering results to a
surface.

New Object Types

• VkSwapchainKHR

New Commands

• vkAcquireNextImageKHR

• vkCreateSwapchainKHR

• vkDestroySwapchainKHR

• vkGetSwapchainImagesKHR

• vkQueuePresentKHR

If Version 1.1 is supported:

• vkAcquireNextImage2KHR

• vkGetDeviceGroupPresentCapabilitiesKHR

• vkGetDeviceGroupSurfacePresentModesKHR

• vkGetPhysicalDevicePresentRectanglesKHR

New Structures

• VkPresentInfoKHR

• VkSwapchainCreateInfoKHR

If Version 1.1 is supported:

• VkAcquireNextImageInfoKHR

• VkDeviceGroupPresentCapabilitiesKHR

4452

• Extending VkBindImageMemoryInfo:

◦ VkBindImageMemorySwapchainInfoKHR

• Extending VkImageCreateInfo:

◦ VkImageSwapchainCreateInfoKHR

• Extending VkPresentInfoKHR:

◦ VkDeviceGroupPresentInfoKHR

• Extending VkSwapchainCreateInfoKHR:

◦ VkDeviceGroupSwapchainCreateInfoKHR

New Enums

• VkSwapchainCreateFlagBitsKHR

If Version 1.1 is supported:

• VkDeviceGroupPresentModeFlagBitsKHR

New Bitmasks

• VkSwapchainCreateFlagsKHR

If Version 1.1 is supported:

• VkDeviceGroupPresentModeFlagsKHR

New Enum Constants

• VK_KHR_SWAPCHAIN_EXTENSION_NAME

• VK_KHR_SWAPCHAIN_SPEC_VERSION

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_SWAPCHAIN_KHR

• Extending VkResult:

◦ VK_ERROR_OUT_OF_DATE_KHR

◦ VK_SUBOPTIMAL_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PRESENT_INFO_KHR

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR

If Version 1.1 is supported:

• Extending VkStructureType:

4453

◦ VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR

• Extending VkSwapchainCreateFlagBitsKHR:

◦ VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR

◦ VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR

Issues

1) Does this extension allow the application to specify the memory backing of the presentable
images?

RESOLVED: No. Unlike standard images, the implementation will allocate the memory backing of
the presentable image.

2) What operations are allowed on presentable images?

RESOLVED: This is determined by the image usage flags specified when creating the presentable
image’s swapchain.

3) Does this extension support MSAA presentable images?

RESOLVED: No. Presentable images are always single-sampled. Multi-sampled rendering must use
regular images. To present the rendering results the application must manually resolve the multi-
sampled image to a single-sampled presentable image prior to presentation.

4) Does this extension support stereo/multi-view presentable images?

RESOLVED: Yes. The number of views associated with a presentable image is determined by the
imageArrayLayers specified when creating a swapchain. All presentable images in a given swapchain
use the same array size.

5) Are the layers of stereo presentable images half-sized?

RESOLVED: No. The image extents always match those requested by the application.

6) Do the “present” and “acquire next image” commands operate on a queue? If not, do they need to
include explicit semaphore objects to interlock them with queue operations?

RESOLVED: The present command operates on a queue. The image ownership operation it
represents happens in order with other operations on the queue, so no explicit semaphore object is
required to synchronize its actions.

Applications may want to acquire the next image in separate threads from those in which they
manage their queue, or in multiple threads. To make such usage easier, the acquire next image

4454

command takes a semaphore to signal as a method of explicit synchronization. The application
must later queue a wait for this semaphore before queuing execution of any commands using the
image.

7) Does vkAcquireNextImageKHR block if no images are available?

RESOLVED: The command takes a timeout parameter. Special values for the timeout are 0, which
makes the call a non-blocking operation, and UINT64_MAX, which blocks indefinitely. Values in
between will block for up to the specified time. The call will return when an image becomes
available or an error occurs. It may, but is not required to, return before the specified timeout
expires if the swapchain becomes out of date.

8) Can multiple presents be queued using one vkQueuePresentKHR call?

RESOLVED: Yes. VkPresentInfoKHR contains a list of swapchains and corresponding image indices
that will be presented. When supported, all presentations queued with a single
vkQueuePresentKHR call will be applied atomically as one operation. The same swapchain must
not appear in the list more than once. Later extensions may provide applications stronger
guarantees of atomicity for such present operations, and/or allow them to query whether atomic
presentation of a particular group of swapchains is possible.

9) How do the presentation and acquire next image functions notify the application the targeted
surface has changed?

RESOLVED: Two new result codes are introduced for this purpose:

• VK_SUBOPTIMAL_KHR - Presentation will still succeed, subject to the window resize behavior, but
the swapchain is no longer configured optimally for the surface it targets. Applications should
query updated surface information and recreate their swapchain at the next convenient
opportunity.

• VK_ERROR_OUT_OF_DATE_KHR - Failure. The swapchain is no longer compatible with the surface it
targets. The application must query updated surface information and recreate the swapchain
before presentation will succeed.

These can be returned by both vkAcquireNextImageKHR and vkQueuePresentKHR.

10) Does the vkAcquireNextImageKHR command return a semaphore to the application via an
output parameter, or accept a semaphore to signal from the application as an object handle
parameter?

RESOLVED: Accept a semaphore to signal as an object handle. This avoids the need to specify
whether the application must destroy the semaphore or whether it is owned by the swapchain, and
if the latter, what its lifetime is and whether it can be reused for other operations once it is received
from vkAcquireNextImageKHR.

11) What types of swapchain queuing behavior should be exposed? Options include swap interval
specification, mailbox/most recent vs. FIFO queue management, targeting specific vertical blank
intervals or absolute times for a given present operation, and probably others. For some of these,
whether they are specified at swapchain creation time or as per-present parameters needs to be
decided as well.

4455

RESOLVED: The base swapchain extension will expose 3 possible behaviors (of which, FIFO will
always be supported):

• Immediate present: Does not wait for vertical blanking period to update the current image,
likely resulting in visible tearing. No internal queue is used. Present requests are applied
immediately.

• Mailbox queue: Waits for the next vertical blanking period to update the current image. No
tearing should be observed. An internal single-entry queue is used to hold pending presentation
requests. If the queue is full when a new presentation request is received, the new request
replaces the existing entry, and any images associated with the prior entry become available for
reuse by the application.

• FIFO queue: Waits for the next vertical blanking period to update the current image. No tearing
should be observed. An internal queue containing numSwapchainImages - 1 entries is used to hold
pending presentation requests. New requests are appended to the end of the queue, and one
request is removed from the beginning of the queue and processed during each vertical
blanking period in which the queue is non-empty

Not all surfaces will support all of these modes, so the modes supported will be returned using a
surface information query. All surfaces must support the FIFO queue mode. Applications must
choose one of these modes up front when creating a swapchain. Switching modes can be
accomplished by recreating the swapchain.

12) Can VK_PRESENT_MODE_MAILBOX_KHR provide non-blocking guarantees for
vkAcquireNextImageKHR? If so, what is the proper criteria?

RESOLVED: Yes. The difficulty is not immediately obvious here. Naively, if at least 3 images are
requested, mailbox mode should always have an image available for the application if the
application does not own any images when the call to vkAcquireNextImageKHR was made.
However, some presentation engines may have more than one “current” image, and would still
need to block in some cases. The right requirement appears to be that if the application allocates
the surface’s minimum number of images + 1 then it is guaranteed non-blocking behavior when it
does not currently own any images.

13) Is there a way to create and initialize a new swapchain for a surface that has generated a
VK_SUBOPTIMAL_KHR return code while still using the old swapchain?

RESOLVED: Not as part of this specification. This could be useful to allow the application to create
an “optimal” replacement swapchain and rebuild all its command buffers using it in a background
thread at a low priority while continuing to use the “suboptimal” swapchain in the main thread. It
could probably use the same “atomic replace” semantics proposed for recreating direct-to-device
swapchains without incurring a mode switch. However, after discussion, it was determined some
platforms probably could not support concurrent swapchains for the same surface though, so this
will be left out of the base KHR extensions. A future extension could add this for platforms where it
is supported.

14) Should there be a special value for VkSurfaceCapabilitiesKHR::maxImageCount to indicate there
are no practical limits on the number of images in a swapchain?

RESOLVED: Yes. There will often be cases where there is no practical limit to the number of images

4456

in a swapchain other than the amount of available resources (i.e., memory) in the system. Trying to
derive a hard limit from things like memory size is prone to failure. It is better in such cases to
leave it to applications to figure such soft limits out via trial/failure iterations.

15) Should there be a special value for VkSurfaceCapabilitiesKHR::currentExtent to indicate the size
of the platform surface is undefined?

RESOLVED: Yes. On some platforms (Wayland, for example), the surface size is defined by the
images presented to it rather than the other way around.

16) Should there be a special value for VkSurfaceCapabilitiesKHR::maxImageExtent to indicate there
is no practical limit on the surface size?

RESOLVED: No. It seems unlikely such a system would exist. 0 could be used to indicate the
platform places no limits on the extents beyond those imposed by Vulkan for normal images, but
this query could just as easily return those same limits, so a special “unlimited” value does not seem
useful for this field.

17) How should surface rotation and mirroring be exposed to applications? How do they specify
rotation and mirroring transforms applied prior to presentation?

RESOLVED: Applications can query both the supported and current transforms of a surface. Both
are specified relative to the device’s “natural” display rotation and direction. The supported
transforms indicate which orientations the presentation engine accepts images in. For example, a
presentation engine that does not support transforming surfaces as part of presentation, and which
is presenting to a surface that is displayed with a 90-degree rotation, would return only one
supported transform bit: VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR. Applications must transform
their rendering by the transform they specify when creating the swapchain in preTransform field.

18) Can surfaces ever not support VK_MIRROR_NONE? Can they support vertical and horizontal
mirroring simultaneously? Relatedly, should VK_MIRROR_NONE[_BIT] be zero, or bit one, and should
applications be allowed to specify multiple pre and current mirror transform bits, or exactly one?

RESOLVED: Since some platforms may not support presenting with a transform other than the
native window’s current transform, and prerotation/mirroring are specified relative to the device’s
natural rotation and direction, rather than relative to the surface’s current rotation and direction, it
is necessary to express lack of support for no mirroring. To allow this, the MIRROR_NONE enum must
occupy a bit in the flags. Since MIRROR_NONE must be a bit in the bitmask rather than a bitmask with
no values set, allowing more than one bit to be set in the bitmask would make it possible to
describe undefined transforms such as VK_MIRROR_NONE_BIT | VK_MIRROR_HORIZONTAL_BIT, or a
transform that includes both “no mirroring” and “horizontal mirroring” simultaneously. Therefore,
it is desirable to allow specifying all supported mirroring transforms using only one bit. The
question then becomes, should there be a VK_MIRROR_HORIZONTAL_AND_VERTICAL_BIT to represent a
simultaneous horizontal and vertical mirror transform? However, such a transform is equivalent to
a 180 degree rotation, so presentation engines and applications that wish to support or use such a
transform can express it through rotation instead. Therefore, 3 exclusive bits are sufficient to
express all needed mirroring transforms.

19) Should support for sRGB be required?

4457

RESOLVED: In the advent of UHD and HDR display devices, proper color space information is vital
to the display pipeline represented by the swapchain. The app can discover the supported
format/color-space pairs and select a pair most suited to its rendering needs. Currently only the
sRGB color space is supported, future extensions may provide support for more color spaces. See
issues 23 and 24.

20) Is there a mechanism to modify or replace an existing swapchain with one targeting the same
surface?

RESOLVED: Yes. This is described above in the text.

21) Should there be a way to set prerotation and mirroring using native APIs when presenting
using a Vulkan swapchain?

RESOLVED: Yes. The transforms that can be expressed in this extension are a subset of those
possible on native platforms. If a platform exposes a method to specify the transform of presented
images for a given surface using native methods and exposes more transforms or other properties
for surfaces than Vulkan supports, it might be impossible, difficult, or inconvenient to set some of
those properties using Vulkan KHR extensions and some using the native interfaces. To avoid
overwriting properties set using native commands when presenting using a Vulkan swapchain, the
application can set the pretransform to “inherit”, in which case the current native properties will
be used, or if none are available, a platform-specific default will be used. Platforms that do not
specify a reasonable default or do not provide native mechanisms to specify such transforms
should not include the inherit bits in the supportedTransforms bitmask they return in
VkSurfaceCapabilitiesKHR.

22) Should the content of presentable images be clipped by objects obscuring their target surface?

RESOLVED: Applications can choose which behavior they prefer. Allowing the content to be
clipped could enable more efficient presentation methods on some platforms, but some
applications might rely on the content of presentable images to perform techniques such as partial
updates or motion blurs.

23) What is the purpose of specifying a VkColorSpaceKHR along with VkFormat when creating a
swapchain?

RESOLVED: While Vulkan itself is color space agnostic (e.g. even the meaning of R, G, B and A can
be freely defined by the rendering application), the swapchain eventually will have to present the
images on a display device with specific color reproduction characteristics. If any color space
transformations are necessary before an image can be displayed, the color space of the presented
image must be known to the swapchain. A swapchain will only support a restricted set of color
format and -space pairs. This set can be discovered via vkGetPhysicalDeviceSurfaceFormatsKHR. As
it can be expected that most display devices support the sRGB color space, at least one format/color-
space pair has to be exposed, where the color space is VK_COLOR_SPACE_SRGB_NONLINEAR_KHR.

24) How are sRGB formats and the sRGB color space related?

RESOLVED: While Vulkan exposes a number of SRGB texture formats, using such formats does not
guarantee working in a specific color space. It merely means that the hardware can directly
support applying the non-linear transfer functions defined by the sRGB standard color space when

4458

reading from or writing to images of those formats. Still, it is unlikely that a swapchain will expose
a *_SRGB format along with any color space other than VK_COLOR_SPACE_SRGB_NONLINEAR_KHR.

On the other hand, non-*_SRGB formats will be very likely exposed in pair with a SRGB color space.
This means, the hardware will not apply any transfer function when reading from or writing to
such images, yet they will still be presented on a device with sRGB display characteristics. In this
case the application is responsible for applying the transfer function, for instance by using shader
math.

25) How are the lifetimes of surfaces and swapchains targeting them related?

RESOLVED: A surface must outlive any swapchains targeting it. A VkSurfaceKHR owns the binding
of the native window to the Vulkan driver.

26) How can the client control the way the alpha component of swapchain images is treated by the
presentation engine during compositing?

RESOLVED: We should add new enum values to allow the client to negotiate with the presentation
engine on how to treat image alpha values during the compositing process. Since not all platforms
can practically control this through the Vulkan driver, a value of
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR is provided like for surface transforms.

27) Is vkCreateSwapchainKHR the right function to return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR, or
should the various platform-specific VkSurfaceKHR factory functions catch this error earlier?

RESOLVED: For most platforms, the VkSurfaceKHR structure is a simple container holding the data
that identifies a native window or other object representing a surface on a particular platform. For
the surface factory functions to return this error, they would likely need to register a reference on
the native objects with the native display server somehow, and ensure no other such references
exist. Surfaces were not intended to be that heavyweight.

Swapchains are intended to be the objects that directly manipulate native windows and
communicate with the native presentation mechanisms. Swapchains will already need to
communicate with the native display server to negotiate allocation and/or presentation of
presentable images for a native surface. Therefore, it makes more sense for swapchain creation to
be the point at which native object exclusivity is enforced. Platforms may choose to enforce further
restrictions on the number of VkSurfaceKHR objects that may be created for the same native
window if such a requirement makes sense on a particular platform, but a global requirement is
only sensible at the swapchain level.

Examples

Note

The example code for the VK_KHR_surface and VK_KHR_swapchain extensions was
removed from the appendix after revision 1.0.29. This WSI example code was
ported to the cube demo that is shipped with the official Khronos SDK, and is being
kept up-to-date in that location (see: https://github.com/KhronosGroup/Vulkan-
Tools/blob/master/cube/cube.c).

4459

https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c
https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c

Version History

• Revision 1, 2015-05-20 (James Jones)

◦ Initial draft, based on LunarG KHR spec, other KHR specs, patches attached to bugs.

• Revision 2, 2015-05-22 (Ian Elliott)

◦ Made many agreed-upon changes from 2015-05-21 KHR TSG meeting. This includes using
only a queue for presentation, and having an explicit function to acquire the next image.

◦ Fixed typos and other minor mistakes.

• Revision 3, 2015-05-26 (Ian Elliott)

◦ Improved the Description section.

◦ Added or resolved issues that were found in improving the Description. For example,
pSurfaceDescription is used consistently, instead of sometimes using pSurface.

• Revision 4, 2015-05-27 (James Jones)

◦ Fixed some grammatical errors and typos

◦ Filled in the description of imageUseFlags when creating a swapchain.

◦ Added a description of swapInterval.

◦ Replaced the paragraph describing the order of operations on a queue for image ownership
and presentation.

• Revision 5, 2015-05-27 (James Jones)

◦ Imported relevant issues from the (abandoned) vk_wsi_persistent_swapchain_images
extension.

◦ Added issues 6 and 7, regarding behavior of the acquire next image and present commands
with respect to queues.

◦ Updated spec language and examples to align with proposed resolutions to issues 6 and 7.

• Revision 6, 2015-05-27 (James Jones)

◦ Added issue 8, regarding atomic presentation of multiple swapchains

◦ Updated spec language and examples to align with proposed resolution to issue 8.

• Revision 7, 2015-05-27 (James Jones)

◦ Fixed compilation errors in example code, and made related spec fixes.

• Revision 8, 2015-05-27 (James Jones)

◦ Added issue 9, and the related VK_SUBOPTIMAL_KHR result code.

◦ Renamed VK_OUT_OF_DATE_KHR to VK_ERROR_OUT_OF_DATE_KHR.

• Revision 9, 2015-05-27 (James Jones)

◦ Added inline proposed resolutions (marked with [JRJ]) to some XXX questions/issues. These
should be moved to the issues section in a subsequent update if the proposals are adopted.

• Revision 10, 2015-05-28 (James Jones)

◦ Converted vkAcquireNextImageKHR back to a non-queue operation that uses a

4460

VkSemaphore object for explicit synchronization.

◦ Added issue 10 to determine whether vkAcquireNextImageKHR generates or returns
semaphores, or whether it operates on a semaphore provided by the application.

• Revision 11, 2015-05-28 (James Jones)

◦ Marked issues 6, 7, and 8 resolved.

◦ Renamed VkSurfaceCapabilityPropertiesKHR to VkSurfacePropertiesKHR to better convey
the mutable nature of the information it contains.

• Revision 12, 2015-05-28 (James Jones)

◦ Added issue 11 with a proposed resolution, and the related issue 12.

◦ Updated various sections of the spec to match the proposed resolution to issue 11.

• Revision 13, 2015-06-01 (James Jones)

◦ Moved some structures to VK_EXT_KHR_swap_chain to resolve the specification’s issues 1
and 2.

• Revision 14, 2015-06-01 (James Jones)

◦ Added code for example 4 demonstrating how an application might make use of the two
different present and acquire next image KHR result codes.

◦ Added issue 13.

• Revision 15, 2015-06-01 (James Jones)

◦ Added issues 14 - 16 and related spec language.

◦ Fixed some spelling errors.

◦ Added language describing the meaningful return values for vkAcquireNextImageKHR and
vkQueuePresentKHR.

• Revision 16, 2015-06-02 (James Jones)

◦ Added issues 17 and 18, as well as related spec language.

◦ Removed some erroneous text added by mistake in the last update.

• Revision 17, 2015-06-15 (Ian Elliott)

◦ Changed special value from “-1” to “0” so that the data types can be unsigned.

• Revision 18, 2015-06-15 (Ian Elliott)

◦ Clarified the values of VkSurfacePropertiesKHR::minImageCount and the timeout parameter
of the vkAcquireNextImageKHR function.

• Revision 19, 2015-06-17 (James Jones)

◦ Misc. cleanup. Removed resolved inline issues and fixed typos.

◦ Fixed clarification of VkSurfacePropertiesKHR::minImageCount made in version 18.

◦ Added a brief “Image Ownership” definition to the list of terms used in the spec.

• Revision 20, 2015-06-17 (James Jones)

◦ Updated enum-extending values using new convention.

4461

• Revision 21, 2015-06-17 (James Jones)

◦ Added language describing how to use VK_IMAGE_LAYOUT_PRESENT_SOURCE_KHR.

◦ Cleaned up an XXX comment regarding the description of which queues
vkQueuePresentKHR can be used on.

• Revision 22, 2015-06-17 (James Jones)

◦ Rebased on Vulkan API version 126.

• Revision 23, 2015-06-18 (James Jones)

◦ Updated language for issue 12 to read as a proposed resolution.

◦ Marked issues 11, 12, 13, 16, and 17 resolved.

◦ Temporarily added links to the relevant bugs under the remaining unresolved issues.

◦ Added issues 19 and 20 as well as proposed resolutions.

• Revision 24, 2015-06-19 (Ian Elliott)

◦ Changed special value for VkSurfacePropertiesKHR::currentExtent back to “-1” from “0”.
This value will never need to be unsigned, and “0” is actually a legal value.

• Revision 25, 2015-06-23 (Ian Elliott)

◦ Examples now show use of function pointers for extension functions.

◦ Eliminated extraneous whitespace.

• Revision 26, 2015-06-25 (Ian Elliott)

◦ Resolved Issues 9 & 10 per KHR TSG meeting.

• Revision 27, 2015-06-25 (James Jones)

◦ Added oldSwapchain member to VkSwapchainCreateInfoKHR.

• Revision 28, 2015-06-25 (James Jones)

◦ Added the “inherit” bits to the rotation and mirroring flags and the associated issue 21.

• Revision 29, 2015-06-25 (James Jones)

◦ Added the “clipped” flag to VkSwapchainCreateInfoKHR, and the associated issue 22.

◦ Specified that presenting an image does not modify it.

• Revision 30, 2015-06-25 (James Jones)

◦ Added language to the spec that clarifies the behavior of vkCreateSwapchainKHR() when the
oldSwapchain field of VkSwapchainCreateInfoKHR is not NULL.

• Revision 31, 2015-06-26 (Ian Elliott)

◦ Example of new VkSwapchainCreateInfoKHR members, “oldSwapchain” and “clipped”.

◦ Example of using VkSurfacePropertiesKHR::{min|max}ImageCount to set
VkSwapchainCreateInfoKHR::minImageCount.

◦ Rename vkGetSurfaceInfoKHR()'s 4th parameter to “pDataSize”, for consistency with other
functions.

◦ Add macro with C-string name of extension (just to header file).

4462

• Revision 32, 2015-06-26 (James Jones)

◦ Minor adjustments to the language describing the behavior of “oldSwapchain”

◦ Fixed the version date on my previous two updates.

• Revision 33, 2015-06-26 (Jesse Hall)

◦ Add usage flags to VkSwapchainCreateInfoKHR

• Revision 34, 2015-06-26 (Ian Elliott)

◦ Rename vkQueuePresentKHR()'s 2nd parameter to “pPresentInfo”, for consistency with
other functions.

• Revision 35, 2015-06-26 (Faith Ekstrand)

◦ Merged the VkRotationFlagBitsKHR and VkMirrorFlagBitsKHR enums into a single
VkSurfaceTransformFlagBitsKHR enum.

• Revision 36, 2015-06-26 (Faith Ekstrand)

◦ Added a VkSurfaceTransformKHR enum that is not a bitmask. Each value in
VkSurfaceTransformKHR corresponds directly to one of the bits in
VkSurfaceTransformFlagBitsKHR so transforming from one to the other is easy. Having a
separate enum means that currentTransform and preTransform are now unambiguous by
definition.

• Revision 37, 2015-06-29 (Ian Elliott)

◦ Corrected one of the signatures of vkAcquireNextImageKHR, which had the last two
parameters switched from what it is elsewhere in the specification and header files.

• Revision 38, 2015-06-30 (Ian Elliott)

◦ Corrected a typo in description of the vkGetSwapchainInfoKHR() function.

◦ Corrected a typo in header file comment for VkPresentInfoKHR::sType.

• Revision 39, 2015-07-07 (Daniel Rakos)

◦ Added error section describing when each error is expected to be reported.

◦ Replaced bool32_t with VkBool32.

• Revision 40, 2015-07-10 (Ian Elliott)

◦ Updated to work with version 138 of the vulkan.h header. This includes declaring the
VkSwapchainKHR type using the new VK_DEFINE_NONDISP_HANDLE macro, and no longer
extending VkObjectType (which was eliminated).

• Revision 41 2015-07-09 (Mathias Heyer)

◦ Added color space language.

• Revision 42, 2015-07-10 (Daniel Rakos)

◦ Updated query mechanism to reflect the convention changes done in the core spec.

◦ Removed “queue” from the name of VK_STRUCTURE_TYPE_QUEUE_PRESENT_INFO_KHR to
be consistent with the established naming convention.

◦ Removed reference to the no longer existing VkObjectType enum.

4463

• Revision 43, 2015-07-17 (Daniel Rakos)

◦ Added support for concurrent sharing of swapchain images across queue families.

◦ Updated sample code based on recent changes

• Revision 44, 2015-07-27 (Ian Elliott)

◦ Noted that support for VK_PRESENT_MODE_FIFO_KHR is required. That is ICDs may
optionally support IMMEDIATE and MAILBOX, but must support FIFO.

• Revision 45, 2015-08-07 (Ian Elliott)

◦ Corrected a typo in spec file (type and variable name had wrong case for the
imageColorSpace member of the VkSwapchainCreateInfoKHR struct).

◦ Corrected a typo in header file (last parameter in PFN_vkGetSurfacePropertiesKHR was
missing “KHR” at the end of type: VkSurfacePropertiesKHR).

• Revision 46, 2015-08-20 (Ian Elliott)

◦ Renamed this extension and all of its enumerations, types, functions, etc. This makes it
compliant with the proposed standard for Vulkan extensions.

◦ Switched from “revision” to “version”, including use of the VK_MAKE_VERSION macro in the
header file.

◦ Made improvements to several descriptions.

◦ Changed the status of several issues from PROPOSED to RESOLVED, leaving no unresolved
issues.

◦ Resolved several TODOs, did miscellaneous cleanup, etc.

• Revision 47, 2015-08-20 (Ian Elliott—porting a 2015-07-29 change from James Jones)

◦ Moved the surface transform enums to VK_WSI_swapchain so they could be reused by
VK_WSI_display.

• Revision 48, 2015-09-01 (James Jones)

◦ Various minor cleanups.

• Revision 49, 2015-09-01 (James Jones)

◦ Restore single-field revision number.

• Revision 50, 2015-09-01 (James Jones)

◦ Update Example #4 to include code that illustrates how to use the oldSwapchain field.

• Revision 51, 2015-09-01 (James Jones)

◦ Fix example code compilation errors.

• Revision 52, 2015-09-08 (Matthaeus G. Chajdas)

◦ Corrected a typo.

• Revision 53, 2015-09-10 (Alon Or-bach)

◦ Removed underscore from SWAP_CHAIN left in
VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR.

• Revision 54, 2015-09-11 (Jesse Hall)

4464

◦ Described the execution and memory coherence requirements for image transitions to and
from VK_IMAGE_LAYOUT_PRESENT_SOURCE_KHR.

• Revision 55, 2015-09-11 (Ray Smith)

◦ Added errors for destroying and binding memory to presentable images

• Revision 56, 2015-09-18 (James Jones)

◦ Added fence argument to vkAcquireNextImageKHR

◦ Added example of how to meter a host thread based on presentation rate.

• Revision 57, 2015-09-26 (Jesse Hall)

◦ Replace VkSurfaceDescriptionKHR with VkSurfaceKHR.

◦ Added issue 25 with agreed resolution.

• Revision 58, 2015-09-28 (Jesse Hall)

◦ Renamed from VK_EXT_KHR_device_swapchain to VK_EXT_KHR_swapchain.

• Revision 59, 2015-09-29 (Ian Elliott)

◦ Changed vkDestroySwapchainKHR() to return void.

• Revision 60, 2015-10-01 (Jeff Vigil)

◦ Added error result VK_ERROR_SURFACE_LOST_KHR.

• Revision 61, 2015-10-05 (Faith Ekstrand)

◦ Added the VkCompositeAlpha enum and corresponding structure fields.

• Revision 62, 2015-10-12 (Daniel Rakos)

◦ Added VK_PRESENT_MODE_FIFO_RELAXED_KHR.

• Revision 63, 2015-10-15 (Daniel Rakos)

◦ Moved surface capability queries to VK_EXT_KHR_surface.

• Revision 64, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_swapchain to VK_KHR_swapchain.

• Revision 65, 2015-10-28 (Ian Elliott)

◦ Added optional pResult member to VkPresentInfoKHR, so that per-swapchain results can be
obtained from vkQueuePresentKHR().

• Revision 66, 2015-11-03 (Daniel Rakos)

◦ Added allocation callbacks to create and destroy functions.

◦ Updated resource transition language.

◦ Updated sample code.

• Revision 67, 2015-11-10 (Jesse Hall)

◦ Add reserved flags bitmask to VkSwapchainCreateInfoKHR.

◦ Modify naming and member ordering to match API style conventions, and so the
VkSwapchainCreateInfoKHR image property members mirror corresponding
VkImageCreateInfo members but with an 'image' prefix.

4465

◦ Make VkPresentInfoKHR::pResults non-const; it is an output array parameter.

◦ Make pPresentInfo parameter to vkQueuePresentKHR const.

• Revision 68, 2016-04-05 (Ian Elliott)

◦ Moved the “validity” include for vkAcquireNextImage to be in its proper place, after the
prototype and list of parameters.

◦ Clarified language about presentable images, including how they are acquired, when
applications can and cannot use them, etc. As part of this, removed language about
“ownership” of presentable images, and replaced it with more-consistent language about
presentable images being “acquired” by the application.

• 2016-08-23 (Ian Elliott)

◦ Update the example code, to use the final API command names, to not have so many
characters per line, and to split out a new example to show how to obtain function pointers.
This code is more similar to the LunarG “cube” demo program.

• 2016-08-25 (Ian Elliott)

◦ A note was added at the beginning of the example code, stating that it will be removed from
future versions of the appendix.

• Revision 69, 2017-09-07 (Tobias Hector)

◦ Added interactions with Vulkan 1.1

• Revision 70, 2017-10-06 (Ian Elliott)

◦ Corrected interactions with Vulkan 1.1

VK_KHR_swapchain_mutable_format

Name String

VK_KHR_swapchain_mutable_format

Extension Type

Device extension

Registered Extension Number

201

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_swapchain
and
 VK_KHR_maintenance2
 or

4466

 Version 1.1
and
 VK_KHR_image_format_list
 or
 Version 1.2

Contact

• Daniel Rakos drakos-amd

Other Extension Metadata

Last Modified Date

2018-03-28

IP Status

No known IP claims.

Contributors

• Faith Ekstrand, Intel

• Jan-Harald Fredriksen, ARM

• Jesse Hall, Google

• Daniel Rakos, AMD

• Ray Smith, ARM

Description

This extension allows processing of swapchain images as different formats to that used by the
window system, which is particularly useful for switching between sRGB and linear RGB formats.

It adds a new swapchain creation flag that enables creating image views from presentable images
with a different format than the one used to create the swapchain.

New Enum Constants

• VK_KHR_SWAPCHAIN_MUTABLE_FORMAT_EXTENSION_NAME

• VK_KHR_SWAPCHAIN_MUTABLE_FORMAT_SPEC_VERSION

• Extending VkSwapchainCreateFlagBitsKHR:

◦ VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR

Issues

1) Are there any new capabilities needed?

RESOLVED: No. It is expected that all implementations exposing this extension support swapchain
image format mutability.

2) Do we need a separate VK_SWAPCHAIN_CREATE_EXTENDED_USAGE_BIT_KHR?

4467

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_swapchain_mutable_format] @drakos-amd%0A*Here describe the issue or question you have about the VK_KHR_swapchain_mutable_format extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_swapchain_mutable_format] @drakos-amd%0A*Here describe the issue or question you have about the VK_KHR_swapchain_mutable_format extension*

RESOLVED: No. This extension requires VK_KHR_maintenance2 and presentable images of swapchains
created with VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR are created internally in a way equivalent
to specifying both VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT and VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR.

3) Do we need a separate structure to allow specifying an image format list for swapchains?

RESOLVED: No. We simply use the same VkImageFormatListCreateInfoKHR structure introduced
by VK_KHR_image_format_list. The structure is required to be included in the pNext chain of
VkSwapchainCreateInfoKHR for swapchains created with
VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR.

Version History

• Revision 1, 2018-03-28 (Daniel Rakos)

◦ Internal revisions.

VK_KHR_vertex_attribute_divisor

Name String

VK_KHR_vertex_attribute_divisor

Extension Type

Device extension

Registered Extension Number

526

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_KHR_vertex_attribute_divisor

Other Extension Metadata

Last Modified Date

2023-09-20

4468

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_vertex_attribute_divisor] @syoussefi%0A*Here describe the issue or question you have about the VK_KHR_vertex_attribute_divisor extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_vertex_attribute_divisor] @syoussefi%0A*Here describe the issue or question you have about the VK_KHR_vertex_attribute_divisor extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_vertex_attribute_divisor.adoc

IP Status

No known IP claims.

Contributors

• Shahbaz Youssefi, Google

• Contributors to VK_EXT_vertex_attribute_divisor

Description

This extension is based on the VK_EXT_vertex_attribute_divisor extension. The only difference is the
new property supportsNonZeroFirstInstance, which indicates support for non-zero values in
firstInstance. This allows the extension to be supported on implementations that have
traditionally only supported OpenGL ES.

New Structures

• VkVertexInputBindingDivisorDescriptionKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceVertexAttributeDivisorFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceVertexAttributeDivisorPropertiesKHR

• Extending VkPipelineVertexInputStateCreateInfo:

◦ VkPipelineVertexInputDivisorStateCreateInfoKHR

New Enum Constants

• VK_KHR_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME

• VK_KHR_VERTEX_ATTRIBUTE_DIVISOR_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_KHR

Version History

• Revision 1, 2023-09-20 (Shahbaz Youssefi)

◦ First Version, based on VK_EXT_vertex_attribute_divisor

VK_KHR_video_decode_av1

Name String

VK_KHR_video_decode_av1

4469

Extension Type

Device extension

Registered Extension Number

513

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_video_decode_queue

Contact

• Daniel Rakos aqnuep

Extension Proposal

VK_KHR_video_decode_av1

Other Extension Metadata

Last Modified Date

2024-01-02

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• Benjamin Cheng, AMD

• Ho Hin Lau, AMD

• Lynne Iribarren, Independent

• David Airlie, Red Hat, Inc.

• Ping Liu, Intel

• Srinath Kumarapuram, NVIDIA

• Vassili Nikolaev, NVIDIA

• Tony Zlatinski, NVIDIA

• Charlie Turner, Igalia

• Daniel Almeida, Collabora

• Nicolas Dufresne, Collabora

• Daniel Rakos, RasterGrid

4470

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_decode_av1] @aqnuep%0A*Here describe the issue or question you have about the VK_KHR_video_decode_av1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_decode_av1] @aqnuep%0A*Here describe the issue or question you have about the VK_KHR_video_decode_av1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_decode_av1.adoc

Description

This extension builds upon the VK_KHR_video_decode_queue extension by adding support for decoding
elementary video stream sequences compliant with the AV1 video compression standard.

New Structures

• Extending VkVideoCapabilitiesKHR:

◦ VkVideoDecodeAV1CapabilitiesKHR

• Extending VkVideoDecodeInfoKHR:

◦ VkVideoDecodeAV1PictureInfoKHR

• Extending VkVideoProfileInfoKHR, VkQueryPoolCreateInfo:

◦ VkVideoDecodeAV1ProfileInfoKHR

• Extending VkVideoReferenceSlotInfoKHR:

◦ VkVideoDecodeAV1DpbSlotInfoKHR

• Extending VkVideoSessionParametersCreateInfoKHR:

◦ VkVideoDecodeAV1SessionParametersCreateInfoKHR

New Enum Constants

• VK_KHR_VIDEO_DECODE_AV1_EXTENSION_NAME

• VK_KHR_VIDEO_DECODE_AV1_SPEC_VERSION

• VK_MAX_VIDEO_AV1_REFERENCES_PER_FRAME_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_CAPABILITIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_DPB_SLOT_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_PICTURE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_PROFILE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_AV1_SESSION_PARAMETERS_CREATE_INFO_KHR

• Extending VkVideoCodecOperationFlagBitsKHR:

◦ VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR

Version History

• Revision 1, 2024-01-02 (Daniel Rakos)

◦ Internal revisions

VK_KHR_video_decode_h264

Name String

VK_KHR_video_decode_h264

4471

Extension Type

Device extension

Registered Extension Number

41

Revision

9

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_video_decode_queue

Contact

• peter.fang@amd.com

Extension Proposal

VK_KHR_video_decode_h264

Other Extension Metadata

Last Modified Date

2023-12-05

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• Chunbo Chen, Intel

• HoHin Lau, AMD

• Jake Beju, AMD

• Peter Fang, AMD

• Ping Liu, Intel

• Srinath Kumarapuram, NVIDIA

• Tony Zlatinski, NVIDIA

• Daniel Rakos, RasterGrid

Description

This extension builds upon the VK_KHR_video_decode_queue extension by adding support for decoding
elementary video stream sequences compliant with the H.264/AVC video compression standard.

 Note

4472

mailto:peter.fang@amd.com
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_decode_h264.adoc

This extension was promoted to KHR from the provisional extension
VK_EXT_video_decode_h264.

New Structures

• Extending VkVideoCapabilitiesKHR:

◦ VkVideoDecodeH264CapabilitiesKHR

• Extending VkVideoDecodeInfoKHR:

◦ VkVideoDecodeH264PictureInfoKHR

• Extending VkVideoProfileInfoKHR, VkQueryPoolCreateInfo:

◦ VkVideoDecodeH264ProfileInfoKHR

• Extending VkVideoReferenceSlotInfoKHR:

◦ VkVideoDecodeH264DpbSlotInfoKHR

• Extending VkVideoSessionParametersCreateInfoKHR:

◦ VkVideoDecodeH264SessionParametersCreateInfoKHR

• Extending VkVideoSessionParametersUpdateInfoKHR:

◦ VkVideoDecodeH264SessionParametersAddInfoKHR

New Enums

• VkVideoDecodeH264PictureLayoutFlagBitsKHR

New Bitmasks

• VkVideoDecodeH264PictureLayoutFlagsKHR

New Enum Constants

• VK_KHR_VIDEO_DECODE_H264_EXTENSION_NAME

• VK_KHR_VIDEO_DECODE_H264_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_CAPABILITIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_DPB_SLOT_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_PICTURE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_PROFILE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_SESSION_PARAMETERS_ADD_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H264_SESSION_PARAMETERS_CREATE_INFO_KHR

• Extending VkVideoCodecOperationFlagBitsKHR:

◦ VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR

4473

Version History

• Revision 1, 2018-6-11 (Peter Fang)

◦ Initial draft

• Revision 2, March 29 2021 (Tony Zlatinski)

◦ Spec and API Updates

• Revision 3, August 1 2021 (Srinath Kumarapuram)

◦ Rename VkVideoDecodeH264FieldLayoutFlagsEXT to VkVideoDecodeH264PictureLayoutFlagsEXT,
VkVideoDecodeH264FieldLayoutFlagBitsEXT to VkVideoDecodeH264PictureLayoutFlagBitsEXT
(along with the names of enumerants it defines), and
VkVideoDecodeH264ProfileEXT.fieldLayout to VkVideoDecodeH264ProfileEXT.pictureLayout,
following Vulkan naming conventions.

• Revision 4, 2022-03-16 (Ahmed Abdelkhalek)

◦ Relocate Std header version reporting/requesting from this extension to
VK_KHR_video_queue extension.

◦ Remove the now empty VkVideoDecodeH264SessionCreateInfoEXT.

• Revision 5, 2022-03-31 (Ahmed Abdelkhalek)

◦ Use type StdVideoH264Level for VkVideoDecodeH264Capabilities.maxLevel

• Revision 6, 2022-08-09 (Daniel Rakos)

◦ Rename VkVideoDecodeH264ProfileEXT to VkVideoDecodeH264ProfileInfoEXT

◦ Rename VkVideoDecodeH264MvcEXT to VkVideoDecodeH264MvcInfoEXT

• Revision 7, 2022-09-18 (Daniel Rakos)

◦ Change type of VkVideoDecodeH264ProfileInfoEXT::pictureLayout to
VkVideoDecodeH264PictureLayoutFlagBitsEXT

◦ Remove MVC support and related VkVideoDecodeH264MvcInfoEXT structure

◦ Rename spsStdCount, pSpsStd, ppsStdCount, and pPpsStd to stdSPSCount, pStdSPSs, stdPPSCount,
and pStdPPSs, respectively, in VkVideoDecodeH264SessionParametersAddInfoEXT

◦ Rename maxSpsStdCount and maxPpsStdCount to maxStdSPSCount and maxStdPPSCount,
respectively, in VkVideoDecodeH264SessionParametersCreateInfoEXT

◦ Rename slicesCount and pSlicesDataOffsets to sliceCount and pSliceOffsets, respectively, in
VkVideoDecodeH264PictureInfoEXT

• Revision 8, 2022-09-29 (Daniel Rakos)

◦ Change extension from EXT to KHR

◦ Extension is no longer provisional

• Revision 9, 2023-12-05 (Daniel Rakos)

◦ Condition reference picture setup based on the value of
StdVideoDecodeH264PictureInfo::flags.is_reference

4474

VK_KHR_video_decode_h265

Name String

VK_KHR_video_decode_h265

Extension Type

Device extension

Registered Extension Number

188

Revision

8

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_video_decode_queue

Contact

• peter.fang@amd.com

Extension Proposal

VK_KHR_video_decode_h265

Other Extension Metadata

Last Modified Date

2023-12-05

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• HoHin Lau, AMD

• Jake Beju, AMD

• Peter Fang, AMD

• Ping Liu, Intel

• Srinath Kumarapuram, NVIDIA

• Tony Zlatinski, NVIDIA

• Daniel Rakos, RasterGrid

4475

mailto:peter.fang@amd.com
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_decode_h265.adoc

Description

This extension builds upon the VK_KHR_video_decode_queue extension by adding support for decoding
elementary video stream sequences compliant with the H.265/HEVC video compression standard.

Note

This extension was promoted to KHR from the provisional extension
VK_EXT_video_decode_h265.

New Structures

• Extending VkVideoCapabilitiesKHR:

◦ VkVideoDecodeH265CapabilitiesKHR

• Extending VkVideoDecodeInfoKHR:

◦ VkVideoDecodeH265PictureInfoKHR

• Extending VkVideoProfileInfoKHR, VkQueryPoolCreateInfo:

◦ VkVideoDecodeH265ProfileInfoKHR

• Extending VkVideoReferenceSlotInfoKHR:

◦ VkVideoDecodeH265DpbSlotInfoKHR

• Extending VkVideoSessionParametersCreateInfoKHR:

◦ VkVideoDecodeH265SessionParametersCreateInfoKHR

• Extending VkVideoSessionParametersUpdateInfoKHR:

◦ VkVideoDecodeH265SessionParametersAddInfoKHR

New Enum Constants

• VK_KHR_VIDEO_DECODE_H265_EXTENSION_NAME

• VK_KHR_VIDEO_DECODE_H265_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_CAPABILITIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_DPB_SLOT_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_PICTURE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_PROFILE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_SESSION_PARAMETERS_ADD_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_H265_SESSION_PARAMETERS_CREATE_INFO_KHR

• Extending VkVideoCodecOperationFlagBitsKHR:

◦ VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR

4476

Version History

• Revision 1, 2018-6-11 (Peter Fang)

◦ Initial draft

• Revision 1.6, March 29 2021 (Tony Zlatinski)

◦ Spec and API updates.

• Revision 2, 2022-03-16 (Ahmed Abdelkhalek)

◦ Relocate Std header version reporting/requesting from this extension to
VK_KHR_video_queue extension.

◦ Remove the now empty VkVideoDecodeH265SessionCreateInfoEXT.

• Revision 3, 2022-03-31 (Ahmed Abdelkhalek)

◦ Use type StdVideoH265Level for VkVideoDecodeH265Capabilities.maxLevel

• Revision 4, 2022-08-09 (Daniel Rakos)

◦ Rename VkVideoDecodeH265ProfileEXT to VkVideoDecodeH265ProfileInfoEXT

• Revision 5, 2022-09-18 (Daniel Rakos)

◦ Rename vpsStdCount, pVpsStd, spsStdCount, pSpsStd, ppsStdCount, and pPpsStd to stdVPSCount,
pStdVPSs, stdSPSCount, pStdSPSs, stdPPSCount, and pStdPPSs, respectively, in
VkVideoDecodeH265SessionParametersAddInfoEXT

◦ Rename maxVpsStdCount, maxSpsStdCount, and maxPpsStdCount to maxStdVPSCount,
maxStdSPSCount and maxStdPPSCount, respectively, in
VkVideoDecodeH265SessionParametersCreateInfoEXT

◦ Rename slicesCount and pSlicesDataOffsets to sliceCount and pSliceOffsets, respectively, in
VkVideoDecodeH265PictureInfoEXT

• Revision 6, 2022-11-14 (Daniel Rakos)

◦ Rename slice to sliceSegment in the APIs for better clarity

• Revision 7, 2022-11-14 (Daniel Rakos)

◦ Change extension from EXT to KHR

◦ Extension is no longer provisional

• Revision 8, 2023-12-05 (Daniel Rakos)

◦ Condition reference picture setup based on the value of
StdVideoDecodeH265PictureInfo::flags.IsReference

VK_KHR_video_decode_queue

Name String

VK_KHR_video_decode_queue

Extension Type

Device extension

4477

Registered Extension Number

25

Revision

8

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_video_queue
and
VK_KHR_synchronization2

API Interactions

• Interacts with VK_KHR_format_feature_flags2

Contact

• jake.beju@amd.com

Extension Proposal

VK_KHR_video_decode_queue

Other Extension Metadata

Last Modified Date

2023-12-05

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• Jake Beju, AMD

• Olivier Lapicque, NVIDIA

• Peter Fang, AMD

• Piers Daniell, NVIDIA

• Srinath Kumarapuram, NVIDIA

• Tony Zlatinski, NVIDIA

• Daniel Rakos, RasterGrid

Description

This extension builds upon the VK_KHR_video_queue extension by adding common APIs specific to
video decoding and thus enabling implementations to expose queue families supporting video
decode operations.

4478

mailto:jake.beju@amd.com
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_decode_queue.adoc

More specifically, it adds video decode specific capabilities and a new command buffer command
that allows recording video decode operations against a video session.

This extension is to be used in conjunction with other codec specific video decode extensions that
enable decoding video sequences of specific video compression standards.

New Commands

• vkCmdDecodeVideoKHR

New Structures

• VkVideoDecodeInfoKHR

• Extending VkVideoCapabilitiesKHR:

◦ VkVideoDecodeCapabilitiesKHR

• Extending VkVideoProfileInfoKHR, VkQueryPoolCreateInfo:

◦ VkVideoDecodeUsageInfoKHR

New Enums

• VkVideoDecodeCapabilityFlagBitsKHR

• VkVideoDecodeUsageFlagBitsKHR

New Bitmasks

• VkVideoDecodeCapabilityFlagsKHR

• VkVideoDecodeFlagsKHR

• VkVideoDecodeUsageFlagsKHR

New Enum Constants

• VK_KHR_VIDEO_DECODE_QUEUE_EXTENSION_NAME

• VK_KHR_VIDEO_DECODE_QUEUE_SPEC_VERSION

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_VIDEO_DECODE_READ_BIT_KHR

◦ VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_VIDEO_DECODE_DST_BIT_KHR

◦ VK_BUFFER_USAGE_VIDEO_DECODE_SRC_BIT_KHR

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_VIDEO_DECODE_DPB_BIT_KHR

◦ VK_FORMAT_FEATURE_VIDEO_DECODE_OUTPUT_BIT_KHR

• Extending VkImageLayout:

4479

◦ VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR

◦ VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR

◦ VK_IMAGE_LAYOUT_VIDEO_DECODE_SRC_KHR

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR

◦ VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR

◦ VK_IMAGE_USAGE_VIDEO_DECODE_SRC_BIT_KHR

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR

• Extending VkQueueFlagBits:

◦ VK_QUEUE_VIDEO_DECODE_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_CAPABILITIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_DECODE_USAGE_INFO_KHR

If VK_KHR_format_feature_flags2 is supported:

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_VIDEO_DECODE_DPB_BIT_KHR

◦ VK_FORMAT_FEATURE_2_VIDEO_DECODE_OUTPUT_BIT_KHR

Version History

• Revision 1, 2018-6-11 (Peter Fang)

◦ Initial draft

• Revision 1.5, Nov 09 2018 (Tony Zlatinski)

◦ API Updates

• Revision 1.6, Jan 08 2020 (Tony Zlatinski)

◦ API unify with the video_encode_queue spec

• Revision 1.7, March 29 2021 (Tony Zlatinski)

◦ Spec and API updates.

• Revision 2, September 30 2021 (Jon Leech)

◦ Add interaction with VK_KHR_format_feature_flags2 to vk.xml

• Revision 3, 2022-02-25 (Ahmed Abdelkhalek)

◦ Add VkVideoDecodeCapabilitiesKHR with new flags to report support for decode DPB and
output coinciding in the same image, or in distinct images.

• Revision 4, 2022-03-31 (Ahmed Abdelkhalek)

4480

◦ Remove redundant VkVideoDecodeInfoKHR.coded{Offset|Extent}

• Revision 5, 2022-07-18 (Daniel Rakos)

◦ Remove VkVideoDecodeFlagBitsKHR as it contains no defined flags for now

• Revision 6, 2022-08-12 (Daniel Rakos)

◦ Add VkVideoDecodeUsageInfoKHR structure and related flags

• Revision 7, 2022-09-29 (Daniel Rakos)

◦ Extension is no longer provisional

• Revision 8, 2023-12-05 (Daniel Rakos)

◦ Require the specification of a reconstructed picture in all cases, except when the video
session was created with no DPB slots to match shipping implementations

◦ Make DPB slot activation behavior codec-specific to continue allowing application control
over reference picture setup now that a reconstructed picture is always mandatory

VK_KHR_video_encode_h264

Name String

VK_KHR_video_encode_h264

Extension Type

Device extension

Registered Extension Number

39

Revision

14

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_video_encode_queue

Contact

• Ahmed Abdelkhalek aabdelkh

Extension Proposal

VK_KHR_video_encode_h264

Other Extension Metadata

Last Modified Date

2023-12-05

4481

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_encode_h264] @aabdelkh%0A*Here describe the issue or question you have about the VK_KHR_video_encode_h264 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_encode_h264] @aabdelkh%0A*Here describe the issue or question you have about the VK_KHR_video_encode_h264 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_encode_h264.adoc

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• George Hao, AMD

• Jake Beju, AMD

• Peter Fang, AMD

• Ping Liu, Intel

• Srinath Kumarapuram, NVIDIA

• Tony Zlatinski, NVIDIA

• Ravi Chaudhary, NVIDIA

• Yang Liu, AMD

• Daniel Rakos, RasterGrid

• Aidan Fabius, Core Avionics & Industrial Inc.

• Lynne Iribarren, Independent

Description

This extension builds upon the VK_KHR_video_encode_queue extension by adding support for
encoding elementary video stream sequences compliant with the H.264/AVC video compression
standard.

Note

This extension was promoted to KHR from the provisional extension
VK_EXT_video_encode_h264.

New Structures

• VkVideoEncodeH264FrameSizeKHR

• VkVideoEncodeH264NaluSliceInfoKHR

• VkVideoEncodeH264QpKHR

• Extending VkVideoBeginCodingInfoKHR:

◦ VkVideoEncodeH264GopRemainingFrameInfoKHR

• Extending VkVideoCapabilitiesKHR:

◦ VkVideoEncodeH264CapabilitiesKHR

• Extending VkVideoCodingControlInfoKHR, VkVideoBeginCodingInfoKHR:

◦ VkVideoEncodeH264RateControlInfoKHR

• Extending VkVideoEncodeInfoKHR:

◦ VkVideoEncodeH264PictureInfoKHR

4482

• Extending VkVideoEncodeQualityLevelPropertiesKHR:

◦ VkVideoEncodeH264QualityLevelPropertiesKHR

• Extending VkVideoEncodeRateControlLayerInfoKHR:

◦ VkVideoEncodeH264RateControlLayerInfoKHR

• Extending VkVideoEncodeSessionParametersFeedbackInfoKHR:

◦ VkVideoEncodeH264SessionParametersFeedbackInfoKHR

• Extending VkVideoEncodeSessionParametersGetInfoKHR:

◦ VkVideoEncodeH264SessionParametersGetInfoKHR

• Extending VkVideoProfileInfoKHR, VkQueryPoolCreateInfo:

◦ VkVideoEncodeH264ProfileInfoKHR

• Extending VkVideoReferenceSlotInfoKHR:

◦ VkVideoEncodeH264DpbSlotInfoKHR

• Extending VkVideoSessionCreateInfoKHR:

◦ VkVideoEncodeH264SessionCreateInfoKHR

• Extending VkVideoSessionParametersCreateInfoKHR:

◦ VkVideoEncodeH264SessionParametersCreateInfoKHR

• Extending VkVideoSessionParametersUpdateInfoKHR:

◦ VkVideoEncodeH264SessionParametersAddInfoKHR

New Enums

• VkVideoEncodeH264CapabilityFlagBitsKHR

• VkVideoEncodeH264RateControlFlagBitsKHR

• VkVideoEncodeH264StdFlagBitsKHR

New Bitmasks

• VkVideoEncodeH264CapabilityFlagsKHR

• VkVideoEncodeH264RateControlFlagsKHR

• VkVideoEncodeH264StdFlagsKHR

New Enum Constants

• VK_KHR_VIDEO_ENCODE_H264_EXTENSION_NAME

• VK_KHR_VIDEO_ENCODE_H264_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_CAPABILITIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_DPB_SLOT_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_GOP_REMAINING_FRAME_INFO_KHR

4483

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_NALU_SLICE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PICTURE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PROFILE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_QUALITY_LEVEL_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_RATE_CONTROL_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_RATE_CONTROL_LAYER_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_ADD_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_FEEDBACK_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_GET_INFO_KHR

• Extending VkVideoCodecOperationFlagBitsKHR:

◦ VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR

Version History

• Revision 0, 2018-7-23 (Ahmed Abdelkhalek)

◦ Initial draft

• Revision 0.5, 2020-02-13 (Tony Zlatinski)

◦ General Spec cleanup

◦ Added DPB structures

◦ Change the VCL frame encode structure

◦ Added a common Non-VCL Picture Paramarameters structure

• Revision 1, 2021-03-29 (Tony Zlatinski)

◦ Spec and API updates

• Revision 2, August 1 2021 (Srinath Kumarapuram)

◦ Rename VkVideoEncodeH264CapabilitiesFlagsEXT to VkVideoEncodeH264CapabilityFlagsEXT and
VkVideoEncodeH264CapabilitiesFlagsEXT to VkVideoEncodeH264CapabilityFlagsEXT, following
Vulkan naming conventions.

• Revision 3, 2021-12-08 (Ahmed Abdelkhalek)

◦ Rate control updates

• Revision 4, 2022-02-04 (Ahmed Abdelkhalek)

◦ Align VkVideoEncodeH264VclFrameInfoEXT structure to similar one in
VK_EXT_video_encode_h265 extension

• Revision 5, 2022-02-10 (Ahmed Abdelkhalek)

◦ Updates to encode capability interface

• Revision 6, 2022-03-16 (Ahmed Abdelkhalek)

4484

◦ Relocate Std header version reporting/requesting from this extension to
VK_KHR_video_queue extension.

◦ Remove redundant maxPictureSizeInMbs from VkVideoEncodeH264SessionCreateInfoEXT.

◦ Remove the now empty VkVideoEncodeH264SessionCreateInfoEXT.

• Revision 7, 2022-04-06 (Ahmed Abdelkhalek)

◦ Add capability flag to report support to use B frame in L1 reference list.

◦ Add capability flag to report support for disabling SPS direct_8x8_inference_flag.

• Revision 8, 2022-07-18 (Daniel Rakos)

◦ Replace VkVideoEncodeH264RateControlStructureFlagBitsEXT bit enum with
VkVideoEncodeH264RateControlStructureEXT enum

◦ Rename VkVideoEncodeH264ProfileEXT to VkVideoEncodeH264ProfileInfoEXT

◦ Rename VkVideoEncodeH264ReferenceListsEXT to VkVideoEncodeH264ReferenceListsInfoEXT

◦ Rename VkVideoEncodeH264EmitPictureParametersEXT to
VkVideoEncodeH264EmitPictureParametersInfoEXT

◦ Rename VkVideoEncodeH264NaluSliceEXT to VkVideoEncodeH264NaluSliceInfoEXT

• Revision 9, 2022-09-18 (Daniel Rakos)

◦ Rename spsStdCount, pSpsStd, ppsStdCount, and pPpsStd to stdSPSCount, pStdSPSs, stdPPSCount,
and pStdPPSs, respectively, in VkVideoEncodeH264SessionParametersAddInfoEXT

◦ Rename maxSpsStdCount and maxPpsStdCount to maxStdSPSCount and maxStdPPSCount,
respectively, in VkVideoEncodeH264SessionParametersCreateInfoEXT

• Revision 10, 2023-03-06 (Daniel Rakos)

◦ Removed VkVideoEncodeH264EmitPictureParametersInfoEXT

◦ Changed member types in VkVideoEncodeH264CapabilitiesEXT and
VkVideoEncodeH264ReferenceListsInfoEXT from uint8_t to uint32_t

◦ Changed the type of VkVideoEncodeH264RateControlInfoEXT::temporalLayerCount and
VkVideoEncodeH264RateControlLayerInfoEXT::temporalLayerId from uint8_t to uint32_t

◦ Removed VkVideoEncodeH264InputModeFlagsEXT and VkVideoEncodeH264OutputModeFlagsEXT as
we only support frame-in-frame-out mode for now

◦ Rename pCurrentPictureInfo in VkVideoEncodeH264VclFrameInfoEXT to pStdPictureInfo

◦ Rename pSliceHeaderStd in VkVideoEncodeH264NaluSliceInfoEXT to pStdSliceHeader

◦ Rename pReferenceFinalLists in VkVideoEncodeH264VclFrameInfoEXT and
VkVideoEncodeH264NaluSliceInfoEXT to pStdReferenceFinalLists

◦ Removed the slotIndex member of VkVideoEncodeH264DpbSlotInfoEXT and changed it to be
chained to VkVideoReferenceSlotInfoKHR

◦ Replaced VkVideoEncodeH264ReferenceListsInfoEXT with the new Video Std header structure
StdVideoEncodeH264ReferenceLists that also includes data previously part of the now
removed StdVideoEncodeH264RefMemMgmtCtrlOperations structure

◦ Added new capability flag

4485

VK_VIDEO_ENCODE_H264_CAPABILITY_DIFFERENT_REFERENCE_FINAL_LISTS_BIT_EXT

• Revision 11, 2023-05-22 (Daniel Rakos)

◦ Renamed VkVideoEncodeH264VclFrameInfoEXT to VkVideoEncodeH264PictureInfoEXT

◦ Added VkVideoEncodeH264PictureInfoEXT::generatePrefixNalu and
VK_VIDEO_ENCODE_H264_CAPABILITY_GENERATE_PREFIX_NALU_BIT_EXT to enable the generation of
H.264 prefix NALUs when supported by the implementation

◦ Removed VkVideoEncodeH264RateControlLayerInfoEXT::temporalLayerId

◦ Added expectDyadicTemporalLayerPattern capability

◦ Added the VkVideoEncodeH264SessionParametersGetInfoEXT structure to identify the H.264
parameter sets to retrieve encoded parameter data for, and the
VkVideoEncodeH264SessionParametersFeedbackInfoEXT structure to retrieve H.264 parameter
set override information when using the new vkGetEncodedVideoSessionParametersKHR
command

◦ Added VkVideoEncodeH264NaluSliceInfoEXT::constantQp to specify per-slice constant QP when
rate control mode is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR

◦ Added VkVideoEncodeH264QualityLevelPropertiesEXT for retrieving H.264 specific quality level
recommendations

◦ Replaced VkVideoEncodeH264RateControlStructureEXT enum with the flags type
VkVideoEncodeH264RateControlFlagsEXT and bits defined in
VkVideoEncodeH264RateControlFlagBitsEXT and added HRD compliance flag

◦ Removed useInitialRcQp and initialRcQp members of
VkVideoEncodeH264RateControlLayerInfoEXT

◦ Added prefersGopRemainingFrames and requiresGopRemainingFrames, and the new
VkVideoEncodeH264GopRemainingFrameInfoEXT structure to allow specifying remaining frames
of each type in the rate control GOP

◦ Added maxTemporalLayers, maxQp, and minQp capabilities

◦ Added maxLevelIdc capability and new VkVideoEncodeH264SessionCreateInfoEXT structure to
specify upper bounds on the H.264 level of the produced video bitstream

◦ Moved capability flags specific to codec syntax restrictions from
VkVideoEncodeH264CapabilityFlagsEXT to the new VkVideoEncodeH264StdFlagsEXT which is now
included as a separate stdSyntaxFlags member in VkVideoEncodeH264CapabilitiesEXT

◦ Removed codec syntax override values from VkVideoEncodeH264CapabilitiesEXT

◦ Removed VkVideoEncodeH264NaluSliceInfoEXT::mbCount and
VK_VIDEO_ENCODE_H264_CAPABILITY_SLICE_MB_COUNT_BIT_EXT

◦ Replaced VK_VIDEO_ENCODE_H264_CAPABILITY_MULTIPLE_SLICES_PER_FRAME_BIT_EXT with the new
maxSliceCount capability

◦ Removed capability flag
VK_VIDEO_ENCODE_H264_CAPABILITY_DIFFERENT_REFERENCE_FINAL_LISTS_BIT_EXT and removed
pStdReferenceFinalLists members from the VkVideoEncodeH264PictureInfoEXT and
VkVideoEncodeH264NaluSliceInfoEXT structures as reference lists info is now included in
pStdPictureInfo

4486

◦ Added capability flag VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_EXT

• Revision 12, 2023-07-19 (Daniel Rakos)

◦ Added video std capability flags VK_VIDEO_ENCODE_H264_STD_SLICE_QP_DELTA_BIT_EXT and
VK_VIDEO_ENCODE_H264_STD_DIFFERENT_SLICE_QP_DELTA_BIT_EXT

◦ Fixed optionality of the array members of VkVideoEncodeH264SessionParametersAddInfoEXT

◦ Fixed optionality of VkVideoEncodeH264RateControlInfoEXT::flags

• Revision 13, 2023-09-04 (Daniel Rakos)

◦ Change extension from EXT to KHR

◦ Extension is no longer provisional

• Revision 14, 2023-12-05 (Daniel Rakos)

◦ Condition reference picture setup based on the value of
StdVideoEncodeH264PictureInfo::flags.is_reference

VK_KHR_video_encode_h265

Name String

VK_KHR_video_encode_h265

Extension Type

Device extension

Registered Extension Number

40

Revision

14

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_video_encode_queue

Contact

• Ahmed Abdelkhalek aabdelkh

Extension Proposal

VK_KHR_video_encode_h265

Other Extension Metadata

Last Modified Date

2023-12-05

4487

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_encode_h265] @aabdelkh%0A*Here describe the issue or question you have about the VK_KHR_video_encode_h265 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_encode_h265] @aabdelkh%0A*Here describe the issue or question you have about the VK_KHR_video_encode_h265 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_encode_h265.adoc

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• George Hao, AMD

• Jake Beju, AMD

• Chunbo Chen, Intel

• Ping Liu, Intel

• Srinath Kumarapuram, NVIDIA

• Tony Zlatinski, NVIDIA

• Ravi Chaudhary, NVIDIA

• Daniel Rakos, RasterGrid

• Aidan Fabius, Core Avionics & Industrial Inc.

• Lynne Iribarren, Independent

Description

This extension builds upon the VK_KHR_video_encode_queue extension by adding support for
encoding elementary video stream sequences compliant with the H.265/HEVC video compression
standard.

Note

This extension was promoted to KHR from the provisional extension
VK_EXT_video_encode_h265.

New Structures

• VkVideoEncodeH265FrameSizeKHR

• VkVideoEncodeH265NaluSliceSegmentInfoKHR

• VkVideoEncodeH265QpKHR

• Extending VkVideoBeginCodingInfoKHR:

◦ VkVideoEncodeH265GopRemainingFrameInfoKHR

• Extending VkVideoCapabilitiesKHR:

◦ VkVideoEncodeH265CapabilitiesKHR

• Extending VkVideoCodingControlInfoKHR, VkVideoBeginCodingInfoKHR:

◦ VkVideoEncodeH265RateControlInfoKHR

• Extending VkVideoEncodeInfoKHR:

◦ VkVideoEncodeH265PictureInfoKHR

• Extending VkVideoEncodeQualityLevelPropertiesKHR:

4488

◦ VkVideoEncodeH265QualityLevelPropertiesKHR

• Extending VkVideoEncodeRateControlLayerInfoKHR:

◦ VkVideoEncodeH265RateControlLayerInfoKHR

• Extending VkVideoEncodeSessionParametersFeedbackInfoKHR:

◦ VkVideoEncodeH265SessionParametersFeedbackInfoKHR

• Extending VkVideoEncodeSessionParametersGetInfoKHR:

◦ VkVideoEncodeH265SessionParametersGetInfoKHR

• Extending VkVideoProfileInfoKHR, VkQueryPoolCreateInfo:

◦ VkVideoEncodeH265ProfileInfoKHR

• Extending VkVideoReferenceSlotInfoKHR:

◦ VkVideoEncodeH265DpbSlotInfoKHR

• Extending VkVideoSessionCreateInfoKHR:

◦ VkVideoEncodeH265SessionCreateInfoKHR

• Extending VkVideoSessionParametersCreateInfoKHR:

◦ VkVideoEncodeH265SessionParametersCreateInfoKHR

• Extending VkVideoSessionParametersUpdateInfoKHR:

◦ VkVideoEncodeH265SessionParametersAddInfoKHR

New Enums

• VkVideoEncodeH265CapabilityFlagBitsKHR

• VkVideoEncodeH265CtbSizeFlagBitsKHR

• VkVideoEncodeH265RateControlFlagBitsKHR

• VkVideoEncodeH265StdFlagBitsKHR

• VkVideoEncodeH265TransformBlockSizeFlagBitsKHR

New Bitmasks

• VkVideoEncodeH265CapabilityFlagsKHR

• VkVideoEncodeH265CtbSizeFlagsKHR

• VkVideoEncodeH265RateControlFlagsKHR

• VkVideoEncodeH265StdFlagsKHR

• VkVideoEncodeH265TransformBlockSizeFlagsKHR

New Enum Constants

• VK_KHR_VIDEO_ENCODE_H265_EXTENSION_NAME

• VK_KHR_VIDEO_ENCODE_H265_SPEC_VERSION

• Extending VkStructureType:

4489

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_CAPABILITIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_DPB_SLOT_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_GOP_REMAINING_FRAME_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_NALU_SLICE_SEGMENT_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_PICTURE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_PROFILE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_QUALITY_LEVEL_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_RATE_CONTROL_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_RATE_CONTROL_LAYER_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_ADD_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_FEEDBACK_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_H265_SESSION_PARAMETERS_GET_INFO_KHR

• Extending VkVideoCodecOperationFlagBitsKHR:

◦ VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR

Version History

• Revision 0, 2019-11-14 (Ahmed Abdelkhalek)

◦ Initial draft

• Revision 0.5, 2020-02-13 (Tony Zlatinski)

◦ General Spec cleanup

◦ Added DPB structures

◦ Change the VCL frame encode structure

◦ Added a common Non-VCL Picture Paramarameters structure

• Revision 2, Oct 10 2021 (Srinath Kumarapuram)

◦ Vulkan Video Encode h.265 update and spec edits

• Revision 3, 2021-12-08 (Ahmed Abdelkhalek)

◦ Rate control updates

• Revision 4, 2022-01-11 (Ahmed Abdelkhalek)

◦ Replace occurrences of “slice” by “slice segment” and rename structures/enums to reflect
this.

• Revision 5, 2022-02-10 (Ahmed Abdelkhalek)

◦ Updates to encode capability interface

• Revision 6, 2022-03-16 (Ahmed Abdelkhalek)

4490

◦ Relocate Std header version reporting/requesting from this extension to
VK_KHR_video_queue extension.

◦ Remove the now empty VkVideoEncodeH265SessionCreateInfoEXT.

• Revision 7, 2022-03-24 (Ahmed Abdelkhalek)

◦ Add capability flags to report support to disable transform skip and support to use B frame
in L1 reference list.

• Revision 8, 2022-07-18 (Daniel Rakos)

◦ Replace VkVideoEncodeH265RateControlStructureFlagBitsEXT bit enum with
VkVideoEncodeH265RateControlStructureEXT enum

◦ Rename VkVideoEncodeH265ProfileEXT to VkVideoEncodeH265ProfileInfoEXT

◦ Rename VkVideoEncodeH265ReferenceListsEXT to VkVideoEncodeH265ReferenceListsInfoEXT

◦ Rename VkVideoEncodeH265EmitPictureParametersEXT to
VkVideoEncodeH265EmitPictureParametersInfoEXT

◦ Rename VkVideoEncodeH265NaluSliceSegmentEXT to VkVideoEncodeH265NaluSliceSegmentInfoEXT

• Revision 9, 2022-09-18 (Daniel Rakos)

◦ Rename vpsStdCount, pVpsStd, spsStdCount, pSpsStd, ppsStdCount, and pPpsStd to stdVPSCount,
pStdVPSs, stdSPSCount, pStdSPSs, stdPPSCount, and pStdPPSs, respectively, in
VkVideoEncodeH265SessionParametersAddInfoEXT

◦ Rename maxVpsStdCount, maxSpsStdCount, and maxPpsStdCount to maxStdVPSCount,
maxStdSPSCount and maxStdPPSCount, respectively, in
VkVideoEncodeH265SessionParametersCreateInfoEXT

• Revision 10, 2023-03-06 (Daniel Rakos)

◦ Removed VkVideoEncodeH265EmitPictureParametersInfoEXT

◦ Changed member types in VkVideoEncodeH265CapabilitiesEXT and
VkVideoEncodeH265ReferenceListsInfoEXT from uint8_t to uint32_t

◦ Changed the type of VkVideoEncodeH265RateControlInfoEXT::subLayerCount and
VkVideoEncodeH265RateControlLayerInfoEXT::temporalId from uint8_t to uint32_t

◦ Removed VkVideoEncodeH265InputModeFlagsEXT and VkVideoEncodeH265OutputModeFlagsEXT as
we only support frame-in-frame-out mode for now

◦ Rename pCurrentPictureInfo in VkVideoEncodeH265VclFrameInfoEXT to pStdPictureInfo

◦ Rename pSliceSegmentHeaderStd in VkVideoEncodeH265NaluSliceSegmentInfoEXT to
pStdSliceSegmentHeader

◦ Rename pReferenceFinalLists in VkVideoEncodeH265VclFrameInfoEXT and
VkVideoEncodeH265NaluSliceSegmentInfoEXT to pStdReferenceFinalLists

◦ Removed the slotIndex member of VkVideoEncodeH265DpbSlotInfoEXT and changed it to be
chained to VkVideoReferenceSlotInfoKHR

◦ Replaced VkVideoEncodeH265ReferenceListsInfoEXT with the new Video Std header structure
StdVideoEncodeH265ReferenceLists

◦ Added new capability flag

4491

VK_VIDEO_ENCODE_H265_CAPABILITY_DIFFERENT_REFERENCE_FINAL_LISTS_BIT_EXT

• Revision 11, 2023-05-26 (Daniel Rakos)

◦ Renamed VkVideoEncodeH265VclFrameInfoEXT to VkVideoEncodeH265PictureInfoEXT

◦ Removed VkVideoEncodeH265RateControlLayerInfoEXT::temporalId

◦ Added expectDyadicTemporalSubLayerPattern capability

◦ Added the VkVideoEncodeH265SessionParametersGetInfoEXT structure to identify the H.265
parameter sets to retrieve encoded parameter data for, and the
VkVideoEncodeH265SessionParametersFeedbackInfoEXT structure to retrieve H.265 parameter
set override information when using the new vkGetEncodedVideoSessionParametersKHR
command

◦ Added VkVideoEncodeH265NaluSliceSegmentInfoEXT::constantQp to specify per-slice segment
constant QP when rate control mode is VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DISABLED_BIT_KHR

◦ Added VkVideoEncodeH265QualityLevelPropertiesEXT for retrieving H.265 specific quality level
recommendations

◦ Replaced VkVideoEncodeH265RateControlStructureEXT enum with the flags type
VkVideoEncodeH265RateControlFlagsEXT and bits defined in
VkVideoEncodeH265RateControlFlagBitsEXT and added HRD compliance flag

◦ Removed useInitialRcQp and initialRcQp members of
VkVideoEncodeH265RateControlLayerInfoEXT

◦ Added prefersGopRemainingFrames and requiresGopRemainingFrames, and the new
VkVideoEncodeH265GopRemainingFrameInfoEXT structure to allow specifying remaining frames
of each type in the rate control GOP

◦ Renamed maxSubLayersCount capability to maxSubLayerCount

◦ Added maxQp, and minQp capabilities

◦ Added maxLevelIdc capability and new VkVideoEncodeH265SessionCreateInfoEXT structure to
specify upper bounds on the H.265 level of the produced video bitstream

◦ Moved capability flags specific to codec syntax restrictions from
VkVideoEncodeH265CapabilityFlagsEXT to the new VkVideoEncodeH265StdFlagsEXT which is now
included as a separate stdSyntaxFlags member in VkVideoEncodeH265CapabilitiesEXT

◦ Added std prefix to codec syntax capabilities in VkVideoEncodeH265CapabilitiesEXT

◦ Removed VkVideoEncodeH265NaluSliceSegmentInfoEXT::ctbCount and
VK_VIDEO_ENCODE_H265_CAPABILITY_SLICE_SEGMENT_CTB_COUNT_BIT_EXT

◦ Replaced VK_VIDEO_ENCODE_H265_CAPABILITY_MULTIPLE_SLICE_SEGMENTS_PER_FRAME_BIT_EXT with
the new maxSliceSegmentCount capability

◦ Added maxTiles capability

◦ Removed codec syntax min/max capabilities from VkVideoEncodeH265CapabilitiesEXT

◦ Removed capability flag
VK_VIDEO_ENCODE_H265_CAPABILITY_DIFFERENT_REFERENCE_FINAL_LISTS_BIT_EXT and removed
pStdReferenceFinalLists members from the VkVideoEncodeH265PictureInfoEXT and
VkVideoEncodeH265NaluSliceSegmentInfoEXT structures as reference lists info is now included

4492

in pStdPictureInfo

◦ Added capability flag VK_VIDEO_ENCODE_H265_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_EXT

• Revision 12, 2023-07-19 (Daniel Rakos)

◦ Added video std capability flags VK_VIDEO_ENCODE_H265_STD_SLICE_QP_DELTA_BIT_EXT and
VK_VIDEO_ENCODE_H265_STD_DIFFERENT_SLICE_QP_DELTA_BIT_EXT

◦ Fixed optionality of the array members of VkVideoEncodeH265SessionParametersAddInfoEXT

◦ Fixed optionality of VkVideoEncodeH265RateControlInfoEXT::flags

• Revision 13, 2023-09-04 (Daniel Rakos)

◦ Change extension from EXT to KHR

◦ Extension is no longer provisional

• Revision 14, 2023-12-05 (Daniel Rakos)

◦ Condition reference picture setup based on the value of
StdVideoEncodeH265PictureInfo::flags.is_reference

VK_KHR_video_encode_queue

Name String

VK_KHR_video_encode_queue

Extension Type

Device extension

Registered Extension Number

300

Revision

12

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_video_queue
and
VK_KHR_synchronization2

API Interactions

• Interacts with VK_KHR_format_feature_flags2

Contact

• Ahmed Abdelkhalek aabdelkh

Extension Proposal

VK_KHR_video_encode_queue

4493

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_encode_queue] @aabdelkh%0A*Here describe the issue or question you have about the VK_KHR_video_encode_queue extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_encode_queue] @aabdelkh%0A*Here describe the issue or question you have about the VK_KHR_video_encode_queue extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_encode_queue.adoc

Other Extension Metadata

Last Modified Date

2023-12-05

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• Damien Kessler, NVIDIA

• George Hao, AMD

• Jake Beju, AMD

• Peter Fang, AMD

• Piers Daniell, NVIDIA

• Srinath Kumarapuram, NVIDIA

• Thomas J. Meier, NVIDIA

• Tony Zlatinski, NVIDIA

• Ravi Chaudhary, NVIDIA

• Yang Liu, AMD

• Daniel Rakos, RasterGrid

• Ping Liu, Intel

• Aidan Fabius, Core Avionics & Industrial Inc.

• Lynne Iribarren, Independent

Description

This extension builds upon the VK_KHR_video_queue extension by adding common APIs specific to
video encoding and thus enabling implementations to expose queue families supporting video
encode operations.

More specifically, it adds video encode specific capabilities and a new command buffer command
that allows recording video encode operations against a video session.

This extension is to be used in conjunction with other codec specific video encode extensions that
enable encoding video sequences of specific video compression standards.

New Commands

• vkCmdEncodeVideoKHR

• vkGetEncodedVideoSessionParametersKHR

• vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR

4494

New Structures

• VkPhysicalDeviceVideoEncodeQualityLevelInfoKHR

• VkVideoEncodeInfoKHR

• VkVideoEncodeQualityLevelPropertiesKHR

• VkVideoEncodeRateControlLayerInfoKHR

• VkVideoEncodeSessionParametersFeedbackInfoKHR

• VkVideoEncodeSessionParametersGetInfoKHR

• Extending VkQueryPoolCreateInfo:

◦ VkQueryPoolVideoEncodeFeedbackCreateInfoKHR

• Extending VkVideoCapabilitiesKHR:

◦ VkVideoEncodeCapabilitiesKHR

• Extending VkVideoCodingControlInfoKHR, VkVideoBeginCodingInfoKHR:

◦ VkVideoEncodeRateControlInfoKHR

• Extending VkVideoCodingControlInfoKHR, VkVideoSessionParametersCreateInfoKHR:

◦ VkVideoEncodeQualityLevelInfoKHR

• Extending VkVideoProfileInfoKHR, VkQueryPoolCreateInfo:

◦ VkVideoEncodeUsageInfoKHR

New Enums

• VkVideoEncodeCapabilityFlagBitsKHR

• VkVideoEncodeContentFlagBitsKHR

• VkVideoEncodeFeedbackFlagBitsKHR

• VkVideoEncodeRateControlModeFlagBitsKHR

• VkVideoEncodeTuningModeKHR

• VkVideoEncodeUsageFlagBitsKHR

New Bitmasks

• VkVideoEncodeCapabilityFlagsKHR

• VkVideoEncodeContentFlagsKHR

• VkVideoEncodeFeedbackFlagsKHR

• VkVideoEncodeFlagsKHR

• VkVideoEncodeRateControlFlagsKHR

• VkVideoEncodeRateControlModeFlagsKHR

• VkVideoEncodeUsageFlagsKHR

4495

New Enum Constants

• VK_KHR_VIDEO_ENCODE_QUEUE_EXTENSION_NAME

• VK_KHR_VIDEO_ENCODE_QUEUE_SPEC_VERSION

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_VIDEO_ENCODE_READ_BIT_KHR

◦ VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_VIDEO_ENCODE_DST_BIT_KHR

◦ VK_BUFFER_USAGE_VIDEO_ENCODE_SRC_BIT_KHR

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_VIDEO_ENCODE_DPB_BIT_KHR

◦ VK_FORMAT_FEATURE_VIDEO_ENCODE_INPUT_BIT_KHR

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_VIDEO_ENCODE_DPB_KHR

◦ VK_IMAGE_LAYOUT_VIDEO_ENCODE_DST_KHR

◦ VK_IMAGE_LAYOUT_VIDEO_ENCODE_SRC_KHR

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR

◦ VK_IMAGE_USAGE_VIDEO_ENCODE_DST_BIT_KHR

◦ VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR

• Extending VkQueryResultStatusKHR:

◦ VK_QUERY_RESULT_STATUS_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_KHR

• Extending VkQueryType:

◦ VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR

• Extending VkQueueFlagBits:

◦ VK_QUEUE_VIDEO_ENCODE_BIT_KHR

• Extending VkResult:

◦ VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_ENCODE_QUALITY_LEVEL_INFO_KHR

◦ VK_STRUCTURE_TYPE_QUERY_POOL_VIDEO_ENCODE_FEEDBACK_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_CAPABILITIES_KHR

4496

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_QUALITY_LEVEL_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_QUALITY_LEVEL_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_RATE_CONTROL_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_RATE_CONTROL_LAYER_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_SESSION_PARAMETERS_FEEDBACK_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_SESSION_PARAMETERS_GET_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_ENCODE_USAGE_INFO_KHR

• Extending VkVideoCodingControlFlagBitsKHR:

◦ VK_VIDEO_CODING_CONTROL_ENCODE_QUALITY_LEVEL_BIT_KHR

◦ VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR

• Extending VkVideoSessionCreateFlagBitsKHR:

◦ VK_VIDEO_SESSION_CREATE_ALLOW_ENCODE_PARAMETER_OPTIMIZATIONS_BIT_KHR

If VK_KHR_format_feature_flags2 is supported:

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_VIDEO_ENCODE_DPB_BIT_KHR

◦ VK_FORMAT_FEATURE_2_VIDEO_ENCODE_INPUT_BIT_KHR

Version History

• Revision 1, 2018-07-23 (Ahmed Abdelkhalek)

◦ Initial draft

• Revision 1.1, 10/29/2019 (Tony Zlatinski)

◦ Updated the reserved spec tokens and renamed VkVideoEncoderKHR to VkVideoSessionKHR

• Revision 1.6, Jan 08 2020 (Tony Zlatinski)

◦ API unify with the video_decode_queue spec

• Revision 2, March 29 2021 (Tony Zlatinski)

◦ Spec and API updates.

• Revision 3, 2021-09-30 (Jon Leech)

◦ Add interaction with VK_KHR_format_feature_flags2 to vk.xml

• Revision 4, 2022-02-10 (Ahmed Abdelkhalek)

◦ Updates to encode capability interface

• Revision 5, 2022-03-31 (Ahmed Abdelkhalek)

◦ Remove redundant VkVideoEncodeInfoKHR.codedExtent

• Revision 6, 2022-07-18 (Daniel Rakos)

4497

◦ Remove VkVideoEncodeRateControlFlagBitsKHR and VkVideoEncodeFlagBitsKHR as they contain
no defined flags for now

◦ Add VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR and
VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_LAYER_BIT_KHR to indicate rate control and rate
control layer change requests, respectively, in video coding control operations

• Revision 7, 2022-08-12 (Daniel Rakos)

◦ Add VkVideoEncodeUsageInfoKHR structure and related flags

• Revision 8, 2023-03-06 (Daniel Rakos)

◦ Replace VK_QUERY_TYPE_VIDEO_ENCODE_BITSTREAM_BUFFER_RANGE_KHR queries with more generic
VK_QUERY_TYPE_VIDEO_ENCODE_FEEDBACK_KHR queries that can be extended in the future with
more feedback values

◦ Rename dstBitstreamBuffer, dstBitstreamBufferOffset, and dstBitstreamBufferMaxRange in
VkVideoEncodeInfoKHR to dstBuffer, dstBufferOffset, and dstBufferRange, respectively, for
consistency with the naming convention in the video decode extensions

◦ Change the type of rateControlLayerCount and qualityLevelCount in
VkVideoEncodeCapabilitiesKHR from uint8_t to uint32_t and rename them to
maxRateControlLayers and maxQualityLevels, respectively

◦ Change the type of averageBitrate and maxBitrate in VkVideoEncodeRateControlLayerInfoKHR`
from uint32_t to uint64_t

◦ Fixed the definition of rate control flag bits and added the new
VK_VIDEO_ENCODE_RATE_CONTROL_MODE_DEFAULT_KHR constant to indicate implementation-specific
automatic rate control

◦ Change the type of VkVideoEncodeRateControlInfoKHR::layerCount from uint8_t to uint32_t

◦ Rename pLayerConfigs to pLayers in VkVideoEncodeRateControlInfoKHR

• Revision 9, 2023-03-28 (Daniel Rakos)

◦ Removed VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_LAYER_BIT_KHR and the ability to
change the state of individual rate control layers

◦ Added new VK_VIDEO_ENCODE_FEEDBACK_BITSTREAM_HAS_OVERRIDES_BIT_KHR flag to video encode
feedback queries

◦ Added new video session create flag
VK_VIDEO_SESSION_CREATE_ALLOW_ENCODE_PARAMETER_OPTIMIZATIONS_BIT_KHR to opt-in to video
session and encoding parameter optimizations

◦ Added the vkGetEncodedVideoSessionParametersKHR command to enable retrieving encoded
video session parameter data

◦ Moved virtualBufferSizeInMs and initialVirtualBufferSizeInMs from
VkVideoEncodeRateControlLayerInfoKHR to VkVideoEncodeRateControlInfoKHR

◦ Added maxBitrate capability

◦ Renamed inputImageDataFillAlignment capability to encodeInputPictureGranularity to better
reflect its purpose

◦ Added new vkGetPhysicalDeviceVideoEncodeQualityLevelPropertiesKHR command and related

4498

structures to enable querying recommended settings for video encode quality levels

◦ Added VK_VIDEO_CODING_CONTROL_ENCODE_QUALITY_LEVEL_BIT_KHR flag and
VkVideoEncodeQualityLevelInfoKHR structure to allow controlling video encode quality level
and removed qualityLevel from the encode operation parameters

• Revision 10, 2023-07-19 (Daniel Rakos)

◦ Added VK_QUERY_RESULT_STATUS_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_KHR query result status
code and the related capability flag
VK_VIDEO_ENCODE_CAPABILITY_INSUFFICIENT_BITSTREAM_BUFFER_RANGE_DETECTION_BIT_KHR

• Revision 11, 2023-09-04 (Daniel Rakos)

◦ Extension is no longer provisional

• Revision 12, 2023-12-05 (Daniel Rakos)

◦ Require the specification of a reconstructed picture in all cases, except when the video
session was created with no DPB slots to match shipping implementations

◦ Make DPB slot activation behavior codec-specific to continue allowing application control
over reference picture setup now that a reconstructed picture is always mandatory

VK_KHR_video_maintenance1

Name String

VK_KHR_video_maintenance1

Extension Type

Device extension

Registered Extension Number

516

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_video_queue

Contact

• Daniel Rakos aqnuep

Extension Proposal

VK_KHR_video_maintenance1

Other Extension Metadata

4499

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_maintenance1] @aqnuep%0A*Here describe the issue or question you have about the VK_KHR_video_maintenance1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_maintenance1] @aqnuep%0A*Here describe the issue or question you have about the VK_KHR_video_maintenance1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_maintenance1.adoc

Last Modified Date

2023-07-27

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• Aidan Fabius, Core Avionics & Industrial Inc.

• Ping Liu, Intel

• Lynne Iribarren, Independent

• Srinath Kumarapuram, NVIDIA

• Tony Zlatinski, NVIDIA

• Daniel Rakos, RasterGrid

Description

VK_KHR_video_maintenance1 adds a collection of minor video coding features, none of which would
warrant an entire extension of their own.

The new features are as follows:

• Allow creating buffers that can be used in video coding operations, independent of the used
video profile, using the new buffer creation flag
VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR.

• Allow creating images that can be used as decode output or encode input pictures, independent
of the used video profile, using the new image creation flag
VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR.

• Allow specifying queries used by video coding operations as part of the video coding command
parameters, instead of using begin/end query when the video session is created using the new
video session creation flag VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceVideoMaintenance1FeaturesKHR

• Extending VkVideoDecodeInfoKHR, VkVideoEncodeInfoKHR:

◦ VkVideoInlineQueryInfoKHR

New Enum Constants

• VK_KHR_VIDEO_MAINTENANCE_1_EXTENSION_NAME

• VK_KHR_VIDEO_MAINTENANCE_1_SPEC_VERSION

• Extending VkBufferCreateFlagBits:

4500

◦ VK_BUFFER_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_MAINTENANCE_1_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_INLINE_QUERY_INFO_KHR

• Extending VkVideoSessionCreateFlagBitsKHR:

◦ VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR

Version History

• Revision 1, 2023-07-27 (Daniel Rakos)

◦ internal revisions

VK_KHR_video_queue

Name String

VK_KHR_video_queue

Extension Type

Device extension

Registered Extension Number

24

Revision

8

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1
and
VK_KHR_synchronization2

Contact

• Tony Zlatinski tzlatinski

Extension Proposal

VK_KHR_video_queue

Other Extension Metadata

Last Modified Date

2022-09-29

4501

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_queue] @tzlatinski%0A*Here describe the issue or question you have about the VK_KHR_video_queue extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_video_queue] @tzlatinski%0A*Here describe the issue or question you have about the VK_KHR_video_queue extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_video_queue.adoc

IP Status

No known IP claims.

Contributors

• Ahmed Abdelkhalek, AMD

• George Hao, AMD

• Jake Beju, AMD

• Piers Daniell, NVIDIA

• Srinath Kumarapuram, NVIDIA

• Tobias Hector, AMD

• Tony Zlatinski, NVIDIA

• Daniel Rakos, RasterGrid

Description

This extension provides common APIs to enable exposing queue families with support for video
codec operations by introducing the following new object types and related functionalities:

• Video session objects that represent and maintain the state needed to perform video codec
operations.

• Video session parameters objects that act as a container for codec specific parameters.

In addition, it also introduces query commands that allow applications to determine video coding
related capabilities, and command buffer commands that enable recording video coding operations
against a video session.

This extension is to be used in conjunction with other extensions that enable specific video coding
operations.

New Object Types

• VkVideoSessionKHR

• VkVideoSessionParametersKHR

New Commands

• vkBindVideoSessionMemoryKHR

• vkCmdBeginVideoCodingKHR

• vkCmdControlVideoCodingKHR

• vkCmdEndVideoCodingKHR

• vkCreateVideoSessionKHR

• vkCreateVideoSessionParametersKHR

• vkDestroyVideoSessionKHR

4502

• vkDestroyVideoSessionParametersKHR

• vkGetPhysicalDeviceVideoCapabilitiesKHR

• vkGetPhysicalDeviceVideoFormatPropertiesKHR

• vkGetVideoSessionMemoryRequirementsKHR

• vkUpdateVideoSessionParametersKHR

New Structures

• VkBindVideoSessionMemoryInfoKHR

• VkPhysicalDeviceVideoFormatInfoKHR

• VkVideoBeginCodingInfoKHR

• VkVideoCapabilitiesKHR

• VkVideoCodingControlInfoKHR

• VkVideoEndCodingInfoKHR

• VkVideoFormatPropertiesKHR

• VkVideoPictureResourceInfoKHR

• VkVideoReferenceSlotInfoKHR

• VkVideoSessionCreateInfoKHR

• VkVideoSessionMemoryRequirementsKHR

• VkVideoSessionParametersCreateInfoKHR

• VkVideoSessionParametersUpdateInfoKHR

• Extending VkPhysicalDeviceImageFormatInfo2, VkPhysicalDeviceVideoFormatInfoKHR,
VkImageCreateInfo, VkBufferCreateInfo:

◦ VkVideoProfileListInfoKHR

• Extending VkQueryPoolCreateInfo:

◦ VkVideoProfileInfoKHR

• Extending VkQueueFamilyProperties2:

◦ VkQueueFamilyQueryResultStatusPropertiesKHR

◦ VkQueueFamilyVideoPropertiesKHR

New Enums

• VkQueryResultStatusKHR

• VkVideoCapabilityFlagBitsKHR

• VkVideoChromaSubsamplingFlagBitsKHR

• VkVideoCodecOperationFlagBitsKHR

• VkVideoCodingControlFlagBitsKHR

• VkVideoComponentBitDepthFlagBitsKHR

4503

• VkVideoSessionCreateFlagBitsKHR

New Bitmasks

• VkVideoBeginCodingFlagsKHR

• VkVideoCapabilityFlagsKHR

• VkVideoChromaSubsamplingFlagsKHR

• VkVideoCodecOperationFlagsKHR

• VkVideoCodingControlFlagsKHR

• VkVideoComponentBitDepthFlagsKHR

• VkVideoEndCodingFlagsKHR

• VkVideoSessionCreateFlagsKHR

• VkVideoSessionParametersCreateFlagsKHR

New Enum Constants

• VK_KHR_VIDEO_QUEUE_EXTENSION_NAME

• VK_KHR_VIDEO_QUEUE_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_VIDEO_SESSION_KHR

◦ VK_OBJECT_TYPE_VIDEO_SESSION_PARAMETERS_KHR

• Extending VkQueryResultFlagBits:

◦ VK_QUERY_RESULT_WITH_STATUS_BIT_KHR

• Extending VkQueryType:

◦ VK_QUERY_TYPE_RESULT_STATUS_ONLY_KHR

• Extending VkResult:

◦ VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR

◦ VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR

◦ VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR

◦ VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR

◦ VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR

◦ VK_ERROR_VIDEO_STD_VERSION_NOT_SUPPORTED_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BIND_VIDEO_SESSION_MEMORY_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VIDEO_FORMAT_INFO_KHR

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_QUERY_RESULT_STATUS_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_VIDEO_PROPERTIES_KHR

4504

◦ VK_STRUCTURE_TYPE_VIDEO_BEGIN_CODING_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_CAPABILITIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_CODING_CONTROL_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_END_CODING_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_FORMAT_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_PICTURE_RESOURCE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_PROFILE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_PROFILE_LIST_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_REFERENCE_SLOT_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_SESSION_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_SESSION_MEMORY_REQUIREMENTS_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_SESSION_PARAMETERS_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_VIDEO_SESSION_PARAMETERS_UPDATE_INFO_KHR

Version History

• Revision 0.1, 2019-11-21 (Tony Zlatinski)

◦ Initial draft

• Revision 0.2, 2019-11-27 (Tony Zlatinski)

◦ Make vulkan video core common between decode and encode

• Revision 1, March 29 2021 (Tony Zlatinski)

◦ Spec and API updates.

• Revision 2, August 1 2021 (Srinath Kumarapuram)

◦ Rename VkVideoCapabilitiesFlagBitsKHR to VkVideoCapabilityFlagBitsKHR (along with the
names of enumerants it defines) and VkVideoCapabilitiesFlagsKHR to
VkVideoCapabilityFlagsKHR, following Vulkan naming conventions.

• Revision 3, 2022-03-16 (Ahmed Abdelkhalek)

◦ Relocate Std header version reporting/requesting from codec-operation specific extensions
to this extension.

◦ Make Std header versions codec-operation specific instead of only codec-specific.

• Revision 4, 2022-05-30 (Daniel Rakos)

◦ Refactor the video format query APIs and related language

◦ Extend VkResult with video-specific error codes

• Revision 5, 2022-08-11 (Daniel Rakos)

◦ Add VkVideoSessionParametersCreateFlagsKHR

◦ Remove VkVideoCodingQualityPresetFlagsKHR

◦ Rename VkQueueFamilyQueryResultStatusProperties2KHR to

4505

VkQueueFamilyQueryResultStatusPropertiesKHR

◦ Rename VkVideoQueueFamilyProperties2KHR to VkQueueFamilyVideoPropertiesKHR

◦ Rename VkVideoProfileKHR to VkVideoProfileInfoKHR

◦ Rename VkVideoProfilesKHR to VkVideoProfileListInfoKHR

◦ Rename VkVideoGetMemoryPropertiesKHR to VkVideoSessionMemoryRequirementsKHR

◦ Rename VkVideoBindMemoryKHR to VkBindVideoSessionMemoryInfoKHR

◦ Fix pNext constness of VkPhysicalDeviceVideoFormatInfoKHR and
VkVideoSessionMemoryRequirementsKHR

◦ Fix incorrectly named value enums in bit enum types VkVideoCodecOperationFlagBitsKHR and
VkVideoChromaSubsamplingFlagBitsKHR

◦ Remove unnecessary default values from VkVideoSessionCreateFlagBitsKHR and
VkVideoCodingControlFlagBitsKHR

◦ Eliminate nested pointer in VkVideoSessionMemoryRequirementsKHR

◦ Rename VkVideoPictureResourceKHR to VkVideoPictureResourceInfoKHR

◦ Rename VkVideoReferenceSlotKHR to VkVideoReferenceSlotInfoKHR

• Revision 6, 2022-09-18 (Daniel Rakos)

◦ Rename the maxReferencePicturesSlotsCount and maxReferencePicturesActiveCount fields of
VkVideoCapabilitiesKHR and VkVideoSessionCreateInfoKHR to maxDpbSlots and
maxActiveReferencePictures, respectively, to clarify their meaning

◦ Rename capabilityFlags to flags in VkVideoCapabilitiesKHR

◦ Rename videoPictureExtentGranularity to pictureAccessGranularity in
VkVideoCapabilitiesKHR

◦ Rename minExtent and maxExtent to minCodedExtent and maxCodedExtent, respectively, in
VkVideoCapabilitiesKHR

◦ Rename referencePicturesFormat to referencePictureFormat in VkVideoSessionCreateInfoKHR

• Revision 7, 2022-09-26 (Daniel Rakos)

◦ Change type of VkVideoReferenceSlotInfoKHR::slotIndex from int8_t to int32_t

• Revision 8, 2022-09-29 (Daniel Rakos)

◦ Extension is no longer provisional

VK_KHR_wayland_surface

Name String

VK_KHR_wayland_surface

Extension Type

Instance extension

Registered Extension Number

7

4506

Revision

6

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Jesse Hall critsec

• Ian Elliott ianelliottus

Other Extension Metadata

Last Modified Date

2015-11-28

IP Status

No known IP claims.

Contributors

• Patrick Doane, Blizzard

• Faith Ekstrand, Intel

• Ian Elliott, LunarG

• Courtney Goeltzenleuchter, LunarG

• Jesse Hall, Google

• James Jones, NVIDIA

• Antoine Labour, Google

• Jon Leech, Khronos

• David Mao, AMD

• Norbert Nopper, Freescale

• Alon Or-bach, Samsung

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Ray Smith, ARM

• Jeff Vigil, Qualcomm

• Chia-I Wu, LunarG

Description

The VK_KHR_wayland_surface extension is an instance extension. It provides a mechanism to create a

4507

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_wayland_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_wayland_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_wayland_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_wayland_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_wayland_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_wayland_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_wayland_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_wayland_surface extension*

VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to a Wayland wl_surface,
as well as a query to determine support for rendering to a Wayland compositor.

New Commands

• vkCreateWaylandSurfaceKHR

• vkGetPhysicalDeviceWaylandPresentationSupportKHR

New Structures

• VkWaylandSurfaceCreateInfoKHR

New Bitmasks

• VkWaylandSurfaceCreateFlagsKHR

New Enum Constants

• VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME

• VK_KHR_WAYLAND_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR

Issues

1) Does Wayland need a way to query for compatibility between a particular physical device and a
specific Wayland display? This would be a more general query than
vkGetPhysicalDeviceSurfaceSupportKHR: if the Wayland-specific query returned VK_TRUE for a
(VkPhysicalDevice, struct wl_display*) pair, then the physical device could be assumed to support
presentation to any VkSurfaceKHR for surfaces on the display.

RESOLVED: Yes. vkGetPhysicalDeviceWaylandPresentationSupportKHR was added to address this
issue.

2) Should we require surfaces created with vkCreateWaylandSurfaceKHR to support the
VK_PRESENT_MODE_MAILBOX_KHR present mode?

RESOLVED: Yes. Wayland is an inherently mailbox window system and mailbox support is
required for some Wayland compositor interactions to work as expected. While handling these
interactions may be possible with VK_PRESENT_MODE_FIFO_KHR, it is much more difficult to do without
deadlock and requiring all Wayland applications to be able to support implementations which only
support VK_PRESENT_MODE_FIFO_KHR would be an onerous restriction on application developers.

Version History

• Revision 1, 2015-09-23 (Jesse Hall)

◦ Initial draft, based on the previous contents of VK_EXT_KHR_swapchain (later renamed
VK_EXT_KHR_surface).

4508

• Revision 2, 2015-10-02 (James Jones)

◦ Added vkGetPhysicalDeviceWaylandPresentationSupportKHR() to resolve issue #1.

◦ Adjusted wording of issue #1 to match the agreed-upon solution.

◦ Renamed “window” parameters to “surface” to match Wayland conventions.

• Revision 3, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_wayland_surface to VK_KHR_wayland_surface.

• Revision 4, 2015-11-03 (Daniel Rakos)

◦ Added allocation callbacks to vkCreateWaylandSurfaceKHR.

• Revision 5, 2015-11-28 (Daniel Rakos)

◦ Updated the surface create function to take a pCreateInfo structure.

• Revision 6, 2017-02-08 (Faith Ekstrand)

◦ Added the requirement that implementations support VK_PRESENT_MODE_MAILBOX_KHR.

◦ Added wording about interactions between vkQueuePresentKHR and the Wayland requests
sent to the compositor.

VK_KHR_win32_keyed_mutex

Name String

VK_KHR_win32_keyed_mutex

Extension Type

Device extension

Registered Extension Number

76

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_memory_win32

Contact

• Carsten Rohde crohde

Other Extension Metadata

Last Modified Date

2016-10-21

4509

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_win32_keyed_mutex] @crohde%0A*Here describe the issue or question you have about the VK_KHR_win32_keyed_mutex extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_win32_keyed_mutex] @crohde%0A*Here describe the issue or question you have about the VK_KHR_win32_keyed_mutex extension*

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Carsten Rohde, NVIDIA

Description

Applications that wish to import Direct3D 11 memory objects into the Vulkan API may wish to use
the native keyed mutex mechanism to synchronize access to the memory between Vulkan and
Direct3D. This extension provides a way for an application to access the keyed mutex associated
with an imported Vulkan memory object when submitting command buffers to a queue.

New Structures

• Extending VkSubmitInfo, VkSubmitInfo2:

◦ VkWin32KeyedMutexAcquireReleaseInfoKHR

New Enum Constants

• VK_KHR_WIN32_KEYED_MUTEX_EXTENSION_NAME

• VK_KHR_WIN32_KEYED_MUTEX_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR

Version History

• Revision 1, 2016-10-21 (James Jones)

◦ Initial revision

VK_KHR_win32_surface

Name String

VK_KHR_win32_surface

Extension Type

Instance extension

Registered Extension Number

10

Revision

6

4510

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Jesse Hall critsec

• Ian Elliott ianelliottus

Other Extension Metadata

Last Modified Date

2017-04-24

IP Status

No known IP claims.

Contributors

• Patrick Doane, Blizzard

• Faith Ekstrand, Intel

• Ian Elliott, LunarG

• Courtney Goeltzenleuchter, LunarG

• Jesse Hall, Google

• James Jones, NVIDIA

• Antoine Labour, Google

• Jon Leech, Khronos

• David Mao, AMD

• Norbert Nopper, Freescale

• Alon Or-bach, Samsung

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Ray Smith, ARM

• Jeff Vigil, Qualcomm

• Chia-I Wu, LunarG

Description

The VK_KHR_win32_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to a Win32 HWND, as well
as a query to determine support for rendering to the windows desktop.

4511

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_win32_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_win32_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_win32_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_win32_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_win32_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_win32_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_win32_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_win32_surface extension*

New Commands

• vkCreateWin32SurfaceKHR

• vkGetPhysicalDeviceWin32PresentationSupportKHR

New Structures

• VkWin32SurfaceCreateInfoKHR

New Bitmasks

• VkWin32SurfaceCreateFlagsKHR

New Enum Constants

• VK_KHR_WIN32_SURFACE_EXTENSION_NAME

• VK_KHR_WIN32_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR

Issues

1) Does Win32 need a way to query for compatibility between a particular physical device and a
specific screen? Compatibility between a physical device and a window generally only depends on
what screen the window is on. However, there is not an obvious way to identify a screen without
already having a window on the screen.

RESOLVED: No. While it may be useful, there is not a clear way to do this on Win32. However, a
method was added to query support for presenting to the windows desktop as a whole.

2) If a native window object (HWND) is used by one graphics API, and then is later used by a different
graphics API (one of which is Vulkan), can these uses interfere with each other?

RESOLVED: Yes.

Uses of a window object by multiple graphics APIs results in undefined behavior. Such behavior
may succeed when using one Vulkan implementation but fail when using a different Vulkan
implementation. Potential failures include:

• Creating then destroying a flip presentation model DXGI swapchain on a window object can
prevent vkCreateSwapchainKHR from succeeding on the same window object.

• Creating then destroying a VkSwapchainKHR on a window object can prevent creation of a
bitblt model DXGI swapchain on the same window object.

• Creating then destroying a VkSwapchainKHR on a window object can effectively SetPixelFormat
to a different format than the format chosen by an OpenGL application.

• Creating then destroying a VkSwapchainKHR on a window object on one VkPhysicalDevice can
prevent vkCreateSwapchainKHR from succeeding on the same window object, but on a
different VkPhysicalDevice that is associated with a different Vulkan ICD.

4512

In all cases the problem can be worked around by creating a new window object.

Technical details include:

• Creating a DXGI swapchain over a window object can alter the object for the remainder of its
lifetime. The alteration persists even after the DXGI swapchain has been destroyed. This
alteration can make it impossible for a conformant Vulkan implementation to create a
VkSwapchainKHR over the same window object. Mention of this alteration can be found in the
remarks section of the MSDN documentation for DXGI_SWAP_EFFECT.

• Calling GDI’s SetPixelFormat (needed by OpenGL’s WGL layer) on a window object alters the
object for the remainder of its lifetime. The MSDN documentation for SetPixelFormat explains
that a window object’s pixel format can be set only one time.

• Creating a VkSwapchainKHR over a window object can alter the object for its remaining
lifetime. Either of the above alterations may occur as a side effect of vkCreateSwapchainKHR.

Version History

• Revision 1, 2015-09-23 (Jesse Hall)

◦ Initial draft, based on the previous contents of VK_EXT_KHR_swapchain (later renamed
VK_EXT_KHR_surface).

• Revision 2, 2015-10-02 (James Jones)

◦ Added presentation support query for win32 desktops.

• Revision 3, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_win32_surface to VK_KHR_win32_surface.

• Revision 4, 2015-11-03 (Daniel Rakos)

◦ Added allocation callbacks to vkCreateWin32SurfaceKHR.

• Revision 5, 2015-11-28 (Daniel Rakos)

◦ Updated the surface create function to take a pCreateInfo structure.

• Revision 6, 2017-04-24 (Jeff Juliano)

◦ Add issue 2 addressing reuse of a native window object in a different Graphics API, or by a
different Vulkan ICD.

VK_KHR_workgroup_memory_explicit_layout

Name String

VK_KHR_workgroup_memory_explicit_layout

Extension Type

Device extension

Registered Extension Number

337

4513

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_KHR_workgroup_memory_explicit_layout

Contact

• Caio Marcelo de Oliveira Filho cmarcelo

Other Extension Metadata

Last Modified Date

2020-06-01

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_EXT_shared_memory_block

Contributors

• Caio Marcelo de Oliveira Filho, Intel

• Jeff Bolz, NVIDIA

• Graeme Leese, Broadcom

• Faith Ekstrand, Intel

• Daniel Koch, NVIDIA

Description

This extension adds Vulkan support for the SPV_KHR_workgroup_memory_explicit_layout SPIR-V
extension, which allows shaders to explicitly define the layout of Workgroup storage class memory
and create aliases between variables from that storage class in a compute shader.

The aliasing feature allows different “views” on the same data, so the shader can bulk copy data
from another storage class using one type (e.g. an array of large vectors), and then use the data with
a more specific type. It also enables reducing the amount of workgroup memory consumed by
allowing the shader to alias data whose lifetimes do not overlap.

The explicit layout support and some form of aliasing is also required for layering OpenCL on top of
Vulkan.

4514

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_workgroup_memory_explicit_layout.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_workgroup_memory_explicit_layout] @cmarcelo%0A*Here describe the issue or question you have about the VK_KHR_workgroup_memory_explicit_layout extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_workgroup_memory_explicit_layout] @cmarcelo%0A*Here describe the issue or question you have about the VK_KHR_workgroup_memory_explicit_layout extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_shared_memory_block.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_workgroup_memory_explicit_layout.html

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR

New Enum Constants

• VK_KHR_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_EXTENSION_NAME

• VK_KHR_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR

New SPIR-V Capabilities

• WorkgroupMemoryExplicitLayoutKHR

• WorkgroupMemoryExplicitLayout8BitAccessKHR

• WorkgroupMemoryExplicitLayout16BitAccessKHR

Version History

• Revision 1, 2020-06-01 (Caio Marcelo de Oliveira Filho)

◦ Initial version

VK_KHR_xcb_surface

Name String

VK_KHR_xcb_surface

Extension Type

Instance extension

Registered Extension Number

6

Revision

6

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Jesse Hall critsec

• Ian Elliott ianelliottus

4515

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_xcb_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_xcb_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_xcb_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_xcb_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_xcb_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_xcb_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_xcb_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_xcb_surface extension*

Other Extension Metadata

Last Modified Date

2015-11-28

IP Status

No known IP claims.

Contributors

• Patrick Doane, Blizzard

• Faith Ekstrand, Intel

• Ian Elliott, LunarG

• Courtney Goeltzenleuchter, LunarG

• Jesse Hall, Google

• James Jones, NVIDIA

• Antoine Labour, Google

• Jon Leech, Khronos

• David Mao, AMD

• Norbert Nopper, Freescale

• Alon Or-bach, Samsung

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Ray Smith, ARM

• Jeff Vigil, Qualcomm

• Chia-I Wu, LunarG

Description

The VK_KHR_xcb_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to an X11 Window, using
the XCB client-side library, as well as a query to determine support for rendering via XCB.

New Commands

• vkCreateXcbSurfaceKHR

• vkGetPhysicalDeviceXcbPresentationSupportKHR

New Structures

• VkXcbSurfaceCreateInfoKHR

4516

New Bitmasks

• VkXcbSurfaceCreateFlagsKHR

New Enum Constants

• VK_KHR_XCB_SURFACE_EXTENSION_NAME

• VK_KHR_XCB_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR

Issues

1) Does XCB need a way to query for compatibility between a particular physical device and a
specific screen? This would be a more general query than vkGetPhysicalDeviceSurfaceSupportKHR:
If it returned VK_TRUE, then the physical device could be assumed to support presentation to any
window on that screen.

RESOLVED: Yes, this is needed for toolkits that want to create a VkDevice before creating a window.
To ensure the query is reliable, it must be made against a particular X visual rather than the screen
in general.

Version History

• Revision 1, 2015-09-23 (Jesse Hall)

◦ Initial draft, based on the previous contents of VK_EXT_KHR_swapchain (later renamed
VK_EXT_KHR_surface).

• Revision 2, 2015-10-02 (James Jones)

◦ Added presentation support query for an (xcb_connection_t*, xcb_visualid_t) pair.

◦ Removed “root” parameter from CreateXcbSurfaceKHR(), as it is redundant when a window
on the same screen is specified as well.

◦ Adjusted wording of issue #1 and added agreed upon resolution.

• Revision 3, 2015-10-14 (Ian Elliott)

◦ Removed “root” parameter from CreateXcbSurfaceKHR() in one more place.

• Revision 4, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_xcb_surface to VK_KHR_xcb_surface.

• Revision 5, 2015-10-23 (Daniel Rakos)

◦ Added allocation callbacks to vkCreateXcbSurfaceKHR.

• Revision 6, 2015-11-28 (Daniel Rakos)

◦ Updated the surface create function to take a pCreateInfo structure.

4517

VK_KHR_xlib_surface

Name String

VK_KHR_xlib_surface

Extension Type

Instance extension

Registered Extension Number

5

Revision

6

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Jesse Hall critsec

• Ian Elliott ianelliottus

Other Extension Metadata

Last Modified Date

2015-11-28

IP Status

No known IP claims.

Contributors

• Patrick Doane, Blizzard

• Faith Ekstrand, Intel

• Ian Elliott, LunarG

• Courtney Goeltzenleuchter, LunarG

• Jesse Hall, Google

• James Jones, NVIDIA

• Antoine Labour, Google

• Jon Leech, Khronos

• David Mao, AMD

• Norbert Nopper, Freescale

• Alon Or-bach, Samsung

4518

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_xlib_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_xlib_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_xlib_surface] @critsec%0A*Here describe the issue or question you have about the VK_KHR_xlib_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_xlib_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_xlib_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_xlib_surface] @ianelliottus%0A*Here describe the issue or question you have about the VK_KHR_xlib_surface extension*

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Ray Smith, ARM

• Jeff Vigil, Qualcomm

• Chia-I Wu, LunarG

Description

The VK_KHR_xlib_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to an X11 Window, using
the Xlib client-side library, as well as a query to determine support for rendering via Xlib.

New Commands

• vkCreateXlibSurfaceKHR

• vkGetPhysicalDeviceXlibPresentationSupportKHR

New Structures

• VkXlibSurfaceCreateInfoKHR

New Bitmasks

• VkXlibSurfaceCreateFlagsKHR

New Enum Constants

• VK_KHR_XLIB_SURFACE_EXTENSION_NAME

• VK_KHR_XLIB_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR

Issues

1) Does X11 need a way to query for compatibility between a particular physical device and a
specific screen? This would be a more general query than vkGetPhysicalDeviceSurfaceSupportKHR;
if it returned VK_TRUE, then the physical device could be assumed to support presentation to any
window on that screen.

RESOLVED: Yes, this is needed for toolkits that want to create a VkDevice before creating a window.
To ensure the query is reliable, it must be made against a particular X visual rather than the screen
in general.

Version History

• Revision 1, 2015-09-23 (Jesse Hall)

◦ Initial draft, based on the previous contents of VK_EXT_KHR_swapchain (later renamed

4519

VK_EXT_KHR_surface).

• Revision 2, 2015-10-02 (James Jones)

◦ Added presentation support query for (Display*, VisualID) pair.

◦ Removed “root” parameter from CreateXlibSurfaceKHR(), as it is redundant when a window
on the same screen is specified as well.

◦ Added appropriate X errors.

◦ Adjusted wording of issue #1 and added agreed upon resolution.

• Revision 3, 2015-10-14 (Ian Elliott)

◦ Renamed this extension from VK_EXT_KHR_x11_surface to VK_EXT_KHR_xlib_surface.

• Revision 4, 2015-10-26 (Ian Elliott)

◦ Renamed from VK_EXT_KHR_xlib_surface to VK_KHR_xlib_surface.

• Revision 5, 2015-11-03 (Daniel Rakos)

◦ Added allocation callbacks to vkCreateXlibSurfaceKHR.

• Revision 6, 2015-11-28 (Daniel Rakos)

◦ Updated the surface create function to take a pCreateInfo structure.

VK_EXT_acquire_drm_display

Name String

VK_EXT_acquire_drm_display

Extension Type

Instance extension

Registered Extension Number

286

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_direct_mode_display

Contact

• Drew DeVault sir@cmpwn.com

Other Extension Metadata

Last Modified Date

2021-06-09

4520

mailto:sir@cmpwn.com

IP Status

No known IP claims.

Contributors

• Simon Zeni, Status Holdings, Ltd.

Description

This extension allows an application to take exclusive control of a display using the Direct
Rendering Manager (DRM) interface. When acquired, the display will be under full control of the
application until the display is either released or the connector is unplugged.

New Commands

• vkAcquireDrmDisplayEXT

• vkGetDrmDisplayEXT

New Enum Constants

• VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME

• VK_EXT_ACQUIRE_DRM_DISPLAY_SPEC_VERSION

Issues

None.

Version History

• Revision 1, 2021-05-11 (Simon Zeni)

◦ Initial draft

VK_EXT_acquire_xlib_display

Name String

VK_EXT_acquire_xlib_display

Extension Type

Instance extension

Registered Extension Number

90

Revision

1

Ratification Status

Not ratified

4521

Extension and Version Dependencies

VK_EXT_direct_mode_display

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-12-13

IP Status

No known IP claims.

Contributors

• Dave Airlie, Red Hat

• Pierre Boudier, NVIDIA

• James Jones, NVIDIA

• Damien Leone, NVIDIA

• Pierre-Loup Griffais, Valve

• Liam Middlebrook, NVIDIA

• Daniel Vetter, Intel

Description

This extension allows an application to take exclusive control on a display currently associated with
an X11 screen. When control is acquired, the display will be deassociated from the X11 screen until
control is released or the specified display connection is closed. Essentially, the X11 screen will
behave as if the monitor has been unplugged until control is released.

New Commands

• vkAcquireXlibDisplayEXT

• vkGetRandROutputDisplayEXT

New Enum Constants

• VK_EXT_ACQUIRE_XLIB_DISPLAY_EXTENSION_NAME

• VK_EXT_ACQUIRE_XLIB_DISPLAY_SPEC_VERSION

Issues

1) Should vkAcquireXlibDisplayEXT take an RandR display ID, or a Vulkan display handle as input?

RESOLVED: A Vulkan display handle. Otherwise there would be no way to specify handles to
displays that had been prevented from being included in the X11 display list by some native

4522

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_acquire_xlib_display] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_acquire_xlib_display extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_acquire_xlib_display] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_acquire_xlib_display extension*

platform or vendor-specific mechanism.

2) How does an application figure out which RandR display corresponds to a Vulkan display?

RESOLVED: A new function, vkGetRandROutputDisplayEXT, is introduced for this purpose.

3) Should vkGetRandROutputDisplayEXT be part of this extension, or a general Vulkan / RandR or
Vulkan / Xlib extension?

RESOLVED: To avoid yet another extension, include it in this extension.

Version History

• Revision 1, 2016-12-13 (James Jones)

◦ Initial draft

VK_EXT_astc_decode_mode

Name String

VK_EXT_astc_decode_mode

Extension Type

Device extension

Registered Extension Number

68

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Other Extension Metadata

Last Modified Date

2018-08-07

Contributors

• Jan-Harald Fredriksen, Arm

4523

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_astc_decode_mode] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_astc_decode_mode extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_astc_decode_mode] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_astc_decode_mode extension*

Description

The existing specification requires that low dynamic range (LDR) ASTC textures are decompressed
to FP16 values per component. In many cases, decompressing LDR textures to a lower precision
intermediate result gives acceptable image quality. Source material for LDR textures is typically
authored as 8-bit UNORM values, so decoding to FP16 values adds little value. On the other hand,
reducing precision of the decoded result reduces the size of the decompressed data, potentially
improving texture cache performance and saving power.

The goal of this extension is to enable this efficiency gain on existing ASTC texture data. This is
achieved by giving the application the ability to select the intermediate decoding precision.

Three decoding options are provided:

• Decode to VK_FORMAT_R16G16B16A16_SFLOAT precision: This is the default, and matches the
required behavior in the core API.

• Decode to VK_FORMAT_R8G8B8A8_UNORM precision: This is provided as an option in LDR mode.

• Decode to VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 precision: This is provided as an option in both LDR
and HDR mode. In this mode, negative values cannot be represented and are clamped to zero.
The alpha component is ignored, and the results are as if alpha was 1.0. This decode mode is
optional and support can be queried via the physical device properties.

New Structures

• Extending VkImageViewCreateInfo:

◦ VkImageViewASTCDecodeModeEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceASTCDecodeFeaturesEXT

New Enum Constants

• VK_EXT_ASTC_DECODE_MODE_EXTENSION_NAME

• VK_EXT_ASTC_DECODE_MODE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_ASTC_DECODE_MODE_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ASTC_DECODE_FEATURES_EXT

Issues

1) Are implementations allowed to decode at a higher precision than what is requested?

RESOLUTION: No.
If we allow this, then this extension could be exposed on all
implementations that support ASTC.
But developers would have no way of knowing what precision was actually
used, and thus whether the image quality is sufficient at reduced

4524

precision.

2) Should the decode mode be image view state and/or sampler state?

RESOLUTION: Image view state only.
Some implementations treat the different decode modes as different
texture formats.

Example

Create an image view that decodes to VK_FORMAT_R8G8B8A8_UNORM precision:

 VkImageViewASTCDecodeModeEXT decodeMode =
 {
 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_ASTC_DECODE_MODE_EXT,
 .pNext = NULL,
 .decodeMode = VK_FORMAT_R8G8B8A8_UNORM
 };

 VkImageViewCreateInfo createInfo =
 {
 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
 .pNext = &decodeMode,
 // flags, image, viewType set to application-desired values
 .format = VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
 // components, subresourceRange set to application-desired values
 };

 VkImageView imageView;
 VkResult result = vkCreateImageView(
 device,
 &createInfo,
 NULL,
 &imageView);

Version History

• Revision 1, 2018-08-07 (Jan-Harald Fredriksen)

◦ Initial revision

VK_EXT_attachment_feedback_loop_dynamic_state

Name String

VK_EXT_attachment_feedback_loop_dynamic_state

Extension Type

Device extension

4525

Registered Extension Number

525

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_EXT_attachment_feedback_loop_layout

Contact

• Mike Blumenkrantz zmike

Extension Proposal

VK_EXT_attachment_feedback_loop_dynamic_state

Other Extension Metadata

Last Modified Date

2023-04-28

IP Status

No known IP claims.

Contributors

• Mike Blumenkrantz, Valve

• Daniel Story, Nintendo

• Stu Smith, AMD

• Samuel Pitoiset, Valve

• Ricardo Garcia, Igalia

Description

This extension adds support for setting attachment feedback loops dynamically on command
buffers.

New Commands

• vkCmdSetAttachmentFeedbackLoopEnableEXT

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

4526

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_attachment_feedback_loop_dynamic_state] @zmike%0A*Here describe the issue or question you have about the VK_EXT_attachment_feedback_loop_dynamic_state extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_attachment_feedback_loop_dynamic_state] @zmike%0A*Here describe the issue or question you have about the VK_EXT_attachment_feedback_loop_dynamic_state extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_attachment_feedback_loop_dynamic_state.adoc

◦ VkPhysicalDeviceAttachmentFeedbackLoopDynamicStateFeaturesEXT

New Enum Constants

• VK_EXT_ATTACHMENT_FEEDBACK_LOOP_DYNAMIC_STATE_EXTENSION_NAME

• VK_EXT_ATTACHMENT_FEEDBACK_LOOP_DYNAMIC_STATE_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_DYNAMIC_STATE_FEATURES_EXT

Version History

• Revision 1, 2023-04-28 (Mike Blumenkrantz)

◦ Initial revision

VK_EXT_attachment_feedback_loop_layout

Name String

VK_EXT_attachment_feedback_loop_layout

Extension Type

Device extension

Registered Extension Number

340

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Joshua Ashton Joshua-Ashton

Extension Proposal

VK_EXT_attachment_feedback_loop_layout

Other Extension Metadata

Last Modified Date

2022-04-04

4527

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_attachment_feedback_loop_layout] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_attachment_feedback_loop_layout extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_attachment_feedback_loop_layout] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_attachment_feedback_loop_layout extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_attachment_feedback_loop_layout.adoc

IP Status

No known IP claims.

Contributors

• Joshua Ashton, Valve

• Faith Ekstrand, Collabora

• Bas Nieuwenhuizen, Google

• Samuel Iglesias Gonsálvez, Igalia

• Ralph Potter, Samsung

• Jan-Harald Fredriksen, Arm

• Ricardo Garcia, Igalia

Description

This extension adds a new image layout, VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT,
which allows applications to have an image layout in which they are able to both render to and
sample/fetch from the same subresource of an image in a given render pass.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT

New Enum Constants

• VK_EXT_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_EXTENSION_NAME

• VK_EXT_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_SPEC_VERSION

• Extending VkDependencyFlagBits:

◦ VK_DEPENDENCY_FEEDBACK_LOOP_BIT_EXT

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_COLOR_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT

◦ VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT

4528

Version History

• Revision 2, 2022-04-04 (Joshua Ashton)

◦ Renamed from VALVE to EXT.

• Revision 1, 2021-03-09 (Joshua Ashton)

◦ Initial draft.

VK_EXT_blend_operation_advanced

Name String

VK_EXT_blend_operation_advanced

Extension Type

Device extension

Registered Extension Number

149

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-06-12

Contributors

• Jeff Bolz, NVIDIA

Description

This extension adds a number of “advanced” blending operations that can be used to perform new
color blending operations, many of which are more complex than the standard blend modes
provided by unextended Vulkan. This extension requires different styles of usage, depending on the
level of hardware support and the enabled features:

• If VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT::advancedBlendCoherentOperations is

4529

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_blend_operation_advanced] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_blend_operation_advanced extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_blend_operation_advanced] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_blend_operation_advanced extension*

VK_FALSE, the new blending operations are supported, but a memory dependency must separate
each advanced blend operation on a given sample.
VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT is used to synchronize reads using
advanced blend operations.

• If VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT::advancedBlendCoherentOperations is
VK_TRUE, advanced blend operations obey primitive order just like basic blend operations.

In unextended Vulkan, the set of blending operations is limited, and can be expressed very simply.
The VK_BLEND_OP_MIN and VK_BLEND_OP_MAX blend operations simply compute component-wise
minimums or maximums of source and destination color components. The VK_BLEND_OP_ADD,
VK_BLEND_OP_SUBTRACT, and VK_BLEND_OP_REVERSE_SUBTRACT modes multiply the source and destination
colors by source and destination factors and either add the two products together or subtract one
from the other. This limited set of operations supports many common blending operations but
precludes the use of more sophisticated transparency and blending operations commonly available
in many dedicated imaging APIs.

This extension provides a number of new “advanced” blending operations. Unlike traditional
blending operations using VK_BLEND_OP_ADD, these blending equations do not use source and
destination factors specified by VkBlendFactor. Instead, each blend operation specifies a complete
equation based on the source and destination colors. These new blend operations are used for both
RGB and alpha components; they must not be used to perform separate RGB and alpha blending
(via different values of color and alpha VkBlendOp).

These blending operations are performed using premultiplied colors, where RGB colors can be
considered premultiplied or non-premultiplied by alpha, according to the srcPremultiplied and
dstPremultiplied members of VkPipelineColorBlendAdvancedStateCreateInfoEXT. If a color is
considered non-premultiplied, the (R,G,B) color components are multiplied by the alpha component
prior to blending. For non-premultiplied color components in the range [0,1], the corresponding
premultiplied color component would have values in the range [0 × A, 1 × A].

Many of these advanced blending equations are formulated where the result of blending source
and destination colors with partial coverage have three separate contributions: from the portions
covered by both the source and the destination, from the portion covered only by the source, and
from the portion covered only by the destination. The blend parameter
VkPipelineColorBlendAdvancedStateCreateInfoEXT::blendOverlap can be used to specify a
correlation between source and destination pixel coverage. If set to VK_BLEND_OVERLAP_CONJOINT_EXT,
the source and destination are considered to have maximal overlap, as would be the case if
drawing two objects on top of each other. If set to VK_BLEND_OVERLAP_DISJOINT_EXT, the source and
destination are considered to have minimal overlap, as would be the case when rendering a
complex polygon tessellated into individual non-intersecting triangles. If set to
VK_BLEND_OVERLAP_UNCORRELATED_EXT, the source and destination coverage are assumed to have no
spatial correlation within the pixel.

In addition to the coherency issues on implementations not supporting
advancedBlendCoherentOperations, this extension has several limitations worth noting. First, the new
blend operations have a limit on the number of color attachments they can be used with, as
indicated by VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT
::advancedBlendMaxColorAttachments. Additionally, blending precision may be limited to 16-bit

4530

floating-point, which may result in a loss of precision and dynamic range for framebuffer formats
with 32-bit floating-point components, and in a loss of precision for formats with 12- and 16-bit
signed or unsigned normalized integer components.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT

• Extending VkPipelineColorBlendStateCreateInfo:

◦ VkPipelineColorBlendAdvancedStateCreateInfoEXT

New Enums

• VkBlendOverlapEXT

New Enum Constants

• VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME

• VK_EXT_BLEND_OPERATION_ADVANCED_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT

• Extending VkBlendOp:

◦ VK_BLEND_OP_BLUE_EXT

◦ VK_BLEND_OP_COLORBURN_EXT

◦ VK_BLEND_OP_COLORDODGE_EXT

◦ VK_BLEND_OP_CONTRAST_EXT

◦ VK_BLEND_OP_DARKEN_EXT

◦ VK_BLEND_OP_DIFFERENCE_EXT

◦ VK_BLEND_OP_DST_ATOP_EXT

◦ VK_BLEND_OP_DST_EXT

◦ VK_BLEND_OP_DST_IN_EXT

◦ VK_BLEND_OP_DST_OUT_EXT

◦ VK_BLEND_OP_DST_OVER_EXT

◦ VK_BLEND_OP_EXCLUSION_EXT

◦ VK_BLEND_OP_GREEN_EXT

◦ VK_BLEND_OP_HARDLIGHT_EXT

◦ VK_BLEND_OP_HARDMIX_EXT

4531

◦ VK_BLEND_OP_HSL_COLOR_EXT

◦ VK_BLEND_OP_HSL_HUE_EXT

◦ VK_BLEND_OP_HSL_LUMINOSITY_EXT

◦ VK_BLEND_OP_HSL_SATURATION_EXT

◦ VK_BLEND_OP_INVERT_EXT

◦ VK_BLEND_OP_INVERT_OVG_EXT

◦ VK_BLEND_OP_INVERT_RGB_EXT

◦ VK_BLEND_OP_LIGHTEN_EXT

◦ VK_BLEND_OP_LINEARBURN_EXT

◦ VK_BLEND_OP_LINEARDODGE_EXT

◦ VK_BLEND_OP_LINEARLIGHT_EXT

◦ VK_BLEND_OP_MINUS_CLAMPED_EXT

◦ VK_BLEND_OP_MINUS_EXT

◦ VK_BLEND_OP_MULTIPLY_EXT

◦ VK_BLEND_OP_OVERLAY_EXT

◦ VK_BLEND_OP_PINLIGHT_EXT

◦ VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT

◦ VK_BLEND_OP_PLUS_CLAMPED_EXT

◦ VK_BLEND_OP_PLUS_DARKER_EXT

◦ VK_BLEND_OP_PLUS_EXT

◦ VK_BLEND_OP_RED_EXT

◦ VK_BLEND_OP_SCREEN_EXT

◦ VK_BLEND_OP_SOFTLIGHT_EXT

◦ VK_BLEND_OP_SRC_ATOP_EXT

◦ VK_BLEND_OP_SRC_EXT

◦ VK_BLEND_OP_SRC_IN_EXT

◦ VK_BLEND_OP_SRC_OUT_EXT

◦ VK_BLEND_OP_SRC_OVER_EXT

◦ VK_BLEND_OP_VIVIDLIGHT_EXT

◦ VK_BLEND_OP_XOR_EXT

◦ VK_BLEND_OP_ZERO_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_ADVANCED_STATE_CREATE_INFO_EXT

4532

Issues

None.

Version History

• Revision 1, 2017-06-12 (Jeff Bolz)

◦ Internal revisions

• Revision 2, 2017-06-12 (Jeff Bolz)

◦ Internal revisions

VK_EXT_border_color_swizzle

Name String

VK_EXT_border_color_swizzle

Extension Type

Device extension

Registered Extension Number

412

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_custom_border_color

Special Uses

• OpenGL / ES support

• D3D support

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2021-10-12

IP Status

No known IP claims.

Contributors

• Graeme Leese, Broadcom

4533

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_border_color_swizzle] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_border_color_swizzle extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_border_color_swizzle] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_border_color_swizzle extension*

• Jan-Harald Fredriksen, Arm

• Ricardo Garcia, Igalia

• Shahbaz Youssefi, Google

• Stu Smith, AMD

Description

After the publication of VK_EXT_custom_border_color, it was discovered that some
implementations had undefined behavior when combining a sampler that uses a custom border
color with image views whose component mapping is not the identity mapping.

Since VK_EXT_custom_border_color has already shipped, this new extension
VK_EXT_border_color_swizzle was created to define the interaction between custom border colors
and non-identity image view swizzles, and provide a work-around for implementations that must
pre-swizzle the sampler border color to match the image view component mapping it is combined
with.

This extension also defines the behavior between samplers with an opaque black border color and
image views with a non-identity component swizzle, which was previously left undefined.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceBorderColorSwizzleFeaturesEXT

• Extending VkSamplerCreateInfo:

◦ VkSamplerBorderColorComponentMappingCreateInfoEXT

New Enum Constants

• VK_EXT_BORDER_COLOR_SWIZZLE_EXTENSION_NAME

• VK_EXT_BORDER_COLOR_SWIZZLE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_SAMPLER_BORDER_COLOR_COMPONENT_MAPPING_CREATE_INFO_EXT

Issues

None.

Version History

• Revision 1, 2021-10-12 (Piers Daniell)

◦ Internal revisions.

4534

VK_EXT_color_write_enable

Name String

VK_EXT_color_write_enable

Extension Type

Device extension

Registered Extension Number

382

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Sharif Elcott selcott

Other Extension Metadata

Last Modified Date

2020-02-25

IP Status

No known IP claims.

Contributors

• Sharif Elcott, Google

• Tobias Hector, AMD

• Piers Daniell, NVIDIA

Description

This extension allows for selectively enabling and disabling writes to output color attachments via
a pipeline dynamic state.

The intended use cases for this new state are mostly identical to those of colorWriteMask, such as
selectively disabling writes to avoid feedback loops between subpasses or bandwidth savings for
unused outputs. By making the state dynamic, one additional benefit is the ability to reduce
pipeline counts and pipeline switching via shaders that write a superset of the desired data of
which subsets are selected dynamically. The reason for a new state, colorWriteEnable, rather than

4535

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_color_write_enable] @selcott%0A*Here describe the issue or question you have about the VK_EXT_color_write_enable extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_color_write_enable] @selcott%0A*Here describe the issue or question you have about the VK_EXT_color_write_enable extension*

making colorWriteMask dynamic is that, on many implementations, the more flexible per-
component semantics of the colorWriteMask state cannot be made dynamic in a performant
manner.

New Commands

• vkCmdSetColorWriteEnableEXT

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceColorWriteEnableFeaturesEXT

• Extending VkPipelineColorBlendStateCreateInfo:

◦ VkPipelineColorWriteCreateInfoEXT

New Enum Constants

• VK_EXT_COLOR_WRITE_ENABLE_EXTENSION_NAME

• VK_EXT_COLOR_WRITE_ENABLE_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_COLOR_WRITE_CREATE_INFO_EXT

Version History

• Revision 1, 2020-01-25 (Sharif Elcott)

◦ Internal revisions

VK_EXT_conditional_rendering

Name String

VK_EXT_conditional_rendering

Extension Type

Device extension

Registered Extension Number

82

Revision

2

4536

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Vikram Kushwaha vkushwaha

Other Extension Metadata

Last Modified Date

2018-05-21

IP Status

No known IP claims.

Contributors

• Vikram Kushwaha, NVIDIA

• Daniel Rakos, AMD

• Jesse Hall, Google

• Jeff Bolz, NVIDIA

• Piers Daniell, NVIDIA

• Stuart Smith, Imagination Technologies

Description

This extension allows the execution of one or more rendering commands to be conditional on a
value in buffer memory. This may help an application reduce the latency by conditionally
discarding rendering commands without application intervention. The conditional rendering
commands are limited to draws, compute dispatches and clearing attachments within a conditional
rendering block.

New Commands

• vkCmdBeginConditionalRenderingEXT

• vkCmdEndConditionalRenderingEXT

New Structures

• VkConditionalRenderingBeginInfoEXT

• Extending VkCommandBufferInheritanceInfo:

◦ VkCommandBufferInheritanceConditionalRenderingInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceConditionalRenderingFeaturesEXT

4537

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_conditional_rendering] @vkushwaha%0A*Here describe the issue or question you have about the VK_EXT_conditional_rendering extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_conditional_rendering] @vkushwaha%0A*Here describe the issue or question you have about the VK_EXT_conditional_rendering extension*

New Enums

• VkConditionalRenderingFlagBitsEXT

New Bitmasks

• VkConditionalRenderingFlagsEXT

New Enum Constants

• VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME

• VK_EXT_CONDITIONAL_RENDERING_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_CONDITIONAL_RENDERING_BIT_EXT

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT

◦ VK_STRUCTURE_TYPE_CONDITIONAL_RENDERING_BEGIN_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT

Issues

1) Should conditional rendering affect copy and blit commands?

RESOLVED: Conditional rendering should not affect copies and blits.

2) Should secondary command buffers be allowed to execute while conditional rendering is active
in the primary command buffer?

RESOLVED: The rendering commands in secondary command buffer will be affected by an active
conditional rendering in primary command buffer if the conditionalRenderingEnable is set to
VK_TRUE. Conditional rendering must not be active in the primary command buffer if
conditionalRenderingEnable is VK_FALSE.

Examples

None.

Version History

• Revision 1, 2018-04-19 (Vikram Kushwaha)

◦ First Version

4538

• Revision 2, 2018-05-21 (Vikram Kushwaha)

◦ Add new pipeline stage, access flags and limit conditional rendering to a subpass or entire
render pass.

VK_EXT_conservative_rasterization

Name String

VK_EXT_conservative_rasterization

Extension Type

Device extension

Registered Extension Number

102

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

SPIR-V Dependencies

• SPV_EXT_fragment_fully_covered

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2020-06-09

Interactions and External Dependencies

• This extension requires SPV_EXT_fragment_fully_covered if the
VkPhysicalDeviceConservativeRasterizationPropertiesEXT::fullyCoveredFragmentShaderInputVa
riable feature is used.

• This extension requires SPV_KHR_post_depth_coverageif the
VkPhysicalDeviceConservativeRasterizationPropertiesEXT::conservativeRasterizationPostDept
hCoverage feature is used.

• This extension provides API support for GL_NV_conservative_raster_underestimation if the
VkPhysicalDeviceConservativeRasterizationPropertiesEXT::fullyCoveredFragmentShaderInputVa
riable feature is used.

4539

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_fragment_fully_covered.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_conservative_rasterization] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_conservative_rasterization extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_conservative_rasterization] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_conservative_rasterization extension*
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_fragment_fully_covered.html
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_post_depth_coverage.html
https://registry.khronos.org/OpenGL/extensions/NV/NV_conservative_raster_underestimation.txt

Contributors

• Daniel Koch, NVIDIA

• Daniel Rakos, AMD

• Jeff Bolz, NVIDIA

• Slawomir Grajewski, Intel

• Stu Smith, Imagination Technologies

Description

This extension adds a new rasterization mode called conservative rasterization. There are two
modes of conservative rasterization; overestimation and underestimation.

When overestimation is enabled, if any part of the primitive, including its edges, covers any part of
the rectangular pixel area, including its sides, then a fragment is generated with all coverage
samples turned on. This extension allows for some variation in implementations by accounting for
differences in overestimation, where the generating primitive size is increased at each of its edges
by some sub-pixel amount to further increase conservative pixel coverage. Implementations can
allow the application to specify an extra overestimation beyond the base overestimation the
implementation already does. It also allows implementations to either cull degenerate primitives or
rasterize them.

When underestimation is enabled, fragments are only generated if the rectangular pixel area is
fully covered by the generating primitive. If supported by the implementation, when a pixel
rectangle is fully covered the fragment shader input variable builtin called FullyCoveredEXT is set
to true. The shader variable works in either overestimation or underestimation mode.

Implementations can process degenerate triangles and lines by either discarding them or
generating conservative fragments for them. Degenerate triangles are those that end up with zero
area after the rasterizer quantizes them to the fixed-point pixel grid. Degenerate lines are those
with zero length after quantization.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceConservativeRasterizationPropertiesEXT

• Extending VkPipelineRasterizationStateCreateInfo:

◦ VkPipelineRasterizationConservativeStateCreateInfoEXT

New Enums

• VkConservativeRasterizationModeEXT

New Bitmasks

• VkPipelineRasterizationConservativeStateCreateFlagsEXT

4540

New Enum Constants

• VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME

• VK_EXT_CONSERVATIVE_RASTERIZATION_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT

New Built-In Variables

• FullyCoveredEXT

New SPIR-V Capabilities

• FragmentFullyCoveredEXT

Version History

• Revision 1.1, 2020-09-06 (Piers Daniell)

◦ Add missing SPIR-V and GLSL dependencies.

• Revision 1, 2017-08-28 (Piers Daniell)

◦ Internal revisions

VK_EXT_custom_border_color

Name String

VK_EXT_custom_border_color

Extension Type

Device extension

Registered Extension Number

288

Revision

12

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Special Uses

• OpenGL / ES support

4541

• D3D support

Contact

• Liam Middlebrook liam-middlebrook

Other Extension Metadata

Last Modified Date

2020-04-16

IP Status

No known IP claims.

Contributors

• Joshua Ashton, Valve

• Hans-Kristian Arntzen, Valve

• Philip Rebohle, Valve

• Liam Middlebrook, NVIDIA

• Jeff Bolz, NVIDIA

• Tobias Hector, AMD

• Faith Ekstrand, Intel

• Spencer Fricke, Samsung Electronics

• Graeme Leese, Broadcom

• Jesse Hall, Google

• Jan-Harald Fredriksen, ARM

• Tom Olson, ARM

• Stuart Smith, Imagination Technologies

• Donald Scorgie, Imagination Technologies

• Alex Walters, Imagination Technologies

• Peter Quayle, Imagination Technologies

Description

This extension provides cross-vendor functionality to specify a custom border color for use when
the sampler address mode VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER is used.

To create a sampler which uses a custom border color set VkSamplerCreateInfo::borderColor to one
of:

• VK_BORDER_COLOR_FLOAT_CUSTOM_EXT

• VK_BORDER_COLOR_INT_CUSTOM_EXT

When VK_BORDER_COLOR_FLOAT_CUSTOM_EXT or VK_BORDER_COLOR_INT_CUSTOM_EXT is used, applications

4542

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_custom_border_color] @liam-middlebrook%0A*Here describe the issue or question you have about the VK_EXT_custom_border_color extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_custom_border_color] @liam-middlebrook%0A*Here describe the issue or question you have about the VK_EXT_custom_border_color extension*

must provide a VkSamplerCustomBorderColorCreateInfoEXT in the pNext chain for
VkSamplerCreateInfo.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCustomBorderColorFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceCustomBorderColorPropertiesEXT

• Extending VkSamplerCreateInfo:

◦ VkSamplerCustomBorderColorCreateInfoEXT

New Enum Constants

• VK_EXT_CUSTOM_BORDER_COLOR_EXTENSION_NAME

• VK_EXT_CUSTOM_BORDER_COLOR_SPEC_VERSION

• Extending VkBorderColor:

◦ VK_BORDER_COLOR_FLOAT_CUSTOM_EXT

◦ VK_BORDER_COLOR_INT_CUSTOM_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT

Issues

1) Should VkClearColorValue be used for the border color value, or should we have our own
struct/union? Do we need to specify the type of the input values for the components? This is more
of a concern if VkClearColorValue is used here because it provides a union of float,int,uint types.

RESOLVED: Will reuse existing VkClearColorValue structure in order to easily take advantage of
float,int,uint borderColor types.

2) For hardware which supports a limited number of border colors what happens if that number is
exceeded? Should this be handled by the driver unbeknownst to the application? In Revision 1 we
had solved this issue using a new Object type, however that may have lead to additional system
resource consumption which would otherwise not be required.

RESOLVED: Added VkPhysicalDeviceCustomBorderColorPropertiesEXT::maxCustomBorderColorSamplers
for tracking implementation-specific limit, and Valid Usage statement handling overflow.

3) Should this be supported for immutable samplers at all, or by a feature bit? Some
implementations may not be able to support custom border colors on immutable samplers — is it
worthwhile enabling this to work on them for implementations that can support it, or forbidding it
entirely.

4543

RESOLVED: Samplers created with a custom border color are forbidden from being immutable.
This resolves concerns for implementations where the custom border color is an index to a LUT
instead of being directly embedded into sampler state.

4) Should UINT and SINT (unsigned integer and signed integer) border color types be separated or
should they be combined into one generic INT (integer) type?

RESOLVED: Separating these does not make much sense as the existing fixed border color types do
not have this distinction, and there is no reason in hardware to do so. This separation would also
create unnecessary work and considerations for the application.

Version History

• Revision 1, 2019-10-10 (Joshua Ashton)

◦ Internal revisions.

• Revision 2, 2019-10-11 (Liam Middlebrook)

◦ Remove VkCustomBorderColor object and associated functions

◦ Add issues concerning HW limitations for custom border color count

• Revision 3, 2019-10-12 (Joshua Ashton)

◦ Re-expose the limits for the maximum number of unique border colors

◦ Add extra details about border color tracking

◦ Fix typos

• Revision 4, 2019-10-12 (Joshua Ashton)

◦ Changed maxUniqueCustomBorderColors to a uint32_t from a VkDeviceSize

• Revision 5, 2019-10-14 (Liam Middlebrook)

◦ Added features bit

• Revision 6, 2019-10-15 (Joshua Ashton)

◦ Type-ize VK_BORDER_COLOR_CUSTOM

◦ Fix const-ness on pNext of VkSamplerCustomBorderColorCreateInfoEXT

• Revision 7, 2019-11-26 (Liam Middlebrook)

◦ Renamed maxUniqueCustomBorderColors to maxCustomBorderColors

• Revision 8, 2019-11-29 (Joshua Ashton)

◦ Renamed borderColor member of VkSamplerCustomBorderColorCreateInfoEXT to
customBorderColor

• Revision 9, 2020-02-19 (Joshua Ashton)

◦ Renamed maxCustomBorderColors to maxCustomBorderColorSamplers

• Revision 10, 2020-02-21 (Joshua Ashton)

◦ Added format to VkSamplerCustomBorderColorCreateInfoEXT and feature bit

• Revision 11, 2020-04-07 (Joshua Ashton)

4544

◦ Dropped UINT/SINT border color differences, consolidated types

• Revision 12, 2020-04-16 (Joshua Ashton)

◦ Renamed VK_BORDER_COLOR_CUSTOM_FLOAT_EXT to
VK_BORDER_COLOR_FLOAT_CUSTOM_EXT for consistency

VK_EXT_debug_utils

Name String

VK_EXT_debug_utils

Extension Type

Instance extension

Registered Extension Number

129

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

None

Special Use

• Debugging tools

Contact

• Mark Young marky-lunarg

Other Extension Metadata

Last Modified Date

2020-04-03

Revision

2

IP Status

No known IP claims.

Dependencies

• This extension is written against version 1.0 of the Vulkan API.

• Requires VkObjectType

Contributors

• Mark Young, LunarG

4545

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_debug_utils] @marky-lunarg%0A*Here describe the issue or question you have about the VK_EXT_debug_utils extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_debug_utils] @marky-lunarg%0A*Here describe the issue or question you have about the VK_EXT_debug_utils extension*

• Baldur Karlsson

• Ian Elliott, Google

• Courtney Goeltzenleuchter, Google

• Karl Schultz, LunarG

• Mark Lobodzinski, LunarG

• Mike Schuchardt, LunarG

• Jaakko Konttinen, AMD

• Dan Ginsburg, Valve Software

• Rolando Olivares, Epic Games

• Dan Baker, Oxide Games

• Kyle Spagnoli, NVIDIA

• Jon Ashburn, LunarG

• Piers Daniell, NVIDIA

Description

Due to the nature of the Vulkan interface, there is very little error information available to the
developer and application. By using the VK_EXT_debug_utils extension, developers can obtain more
information. When combined with validation layers, even more detailed feedback on the
application’s use of Vulkan will be provided.

This extension provides the following capabilities:

• The ability to create a debug messenger which will pass along debug messages to an application
supplied callback.

• The ability to identify specific Vulkan objects using a name or tag to improve tracking.

• The ability to identify specific sections within a VkQueue or VkCommandBuffer using labels to aid
organization and offline analysis in external tools.

The main difference between this extension and VK_EXT_debug_report and VK_EXT_debug_marker is
that those extensions use VkDebugReportObjectTypeEXT to identify objects. This extension uses the
core VkObjectType in place of VkDebugReportObjectTypeEXT. The primary reason for this move is
that no future object type handle enumeration values will be added to
VkDebugReportObjectTypeEXT since the creation of VkObjectType.

In addition, this extension combines the functionality of both VK_EXT_debug_report and
VK_EXT_debug_marker by allowing object name and debug markers (now called labels) to be returned
to the application’s callback function. This should assist in clarifying the details of a debug message
including: what objects are involved and potentially which location within a VkQueue or
VkCommandBuffer the message occurred.

New Object Types

• VkDebugUtilsMessengerEXT

4546

New Commands

• vkCmdBeginDebugUtilsLabelEXT

• vkCmdEndDebugUtilsLabelEXT

• vkCmdInsertDebugUtilsLabelEXT

• vkCreateDebugUtilsMessengerEXT

• vkDestroyDebugUtilsMessengerEXT

• vkQueueBeginDebugUtilsLabelEXT

• vkQueueEndDebugUtilsLabelEXT

• vkQueueInsertDebugUtilsLabelEXT

• vkSetDebugUtilsObjectNameEXT

• vkSetDebugUtilsObjectTagEXT

• vkSubmitDebugUtilsMessageEXT

New Structures

• VkDebugUtilsLabelEXT

• VkDebugUtilsMessengerCallbackDataEXT

• VkDebugUtilsObjectTagInfoEXT

• Extending VkInstanceCreateInfo:

◦ VkDebugUtilsMessengerCreateInfoEXT

• Extending VkPipelineShaderStageCreateInfo:

◦ VkDebugUtilsObjectNameInfoEXT

New Function Pointers

• PFN_vkDebugUtilsMessengerCallbackEXT

New Enums

• VkDebugUtilsMessageSeverityFlagBitsEXT

• VkDebugUtilsMessageTypeFlagBitsEXT

New Bitmasks

• VkDebugUtilsMessageSeverityFlagsEXT

• VkDebugUtilsMessageTypeFlagsEXT

• VkDebugUtilsMessengerCallbackDataFlagsEXT

• VkDebugUtilsMessengerCreateFlagsEXT

4547

New Enum Constants

• VK_EXT_DEBUG_UTILS_EXTENSION_NAME

• VK_EXT_DEBUG_UTILS_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT

◦ VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT

◦ VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT

◦ VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_TAG_INFO_EXT

Examples

Example 1

VK_EXT_debug_utils allows an application to register multiple callbacks with any Vulkan component
wishing to report debug information. Some callbacks may log the information to a file, others may
cause a debug break point or other application defined behavior. An application can register
callbacks even when no validation layers are enabled, but they will only be called for loader and, if
implemented, driver events.

To capture events that occur while creating or destroying an instance an application can link a
VkDebugUtilsMessengerCreateInfoEXT structure to the pNext element of the VkInstanceCreateInfo
structure given to vkCreateInstance.

Example uses: Create three callback objects. One will log errors and warnings to the debug console
using Windows OutputDebugString. The second will cause the debugger to break at that callback
when an error happens and the third will log warnings to stdout.

 extern VkInstance instance;
 VkResult res;
 VkDebugUtilsMessengerEXT cb1, cb2, cb3;

 // Must call extension functions through a function pointer:
 PFN_vkCreateDebugUtilsMessengerEXT pfnCreateDebugUtilsMessengerEXT =
(PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance,
"vkCreateDebugUtilsMessengerEXT");
 PFN_vkDestroyDebugUtilsMessengerEXT pfnDestroyDebugUtilsMessengerEXT =
(PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance,
"vkDestroyDebugUtilsMessengerEXT");

 VkDebugUtilsMessengerCreateInfoEXT callback1 = {
 .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
 .pNext = NULL,

4548

 .flags = 0,
 .messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT |
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT,
 .messageType= VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
 VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT,
 .pfnUserCallback = myOutputDebugString,
 .pUserData = NULL
 };
 res = pfnCreateDebugUtilsMessengerEXT(instance, &callback1, NULL, &cb1);
 if (res != VK_SUCCESS) {
 // Do error handling for VK_ERROR_OUT_OF_MEMORY
 }

 callback1.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
 callback1.pfnUserCallback = myDebugBreak;
 callback1.pUserData = NULL;
 res = pfnCreateDebugUtilsMessengerEXT(instance, &callback1, NULL, &cb2);
 if (res != VK_SUCCESS) {
 // Do error handling for VK_ERROR_OUT_OF_MEMORY
 }

 VkDebugUtilsMessengerCreateInfoEXT callback3 = {
 .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = 0,
 .messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT,
 .messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
 VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT,
 .pfnUserCallback = mystdOutLogger,
 .pUserData = NULL
 };
 res = pfnCreateDebugUtilsMessengerEXT(instance, &callback3, NULL, &cb3);
 if (res != VK_SUCCESS) {
 // Do error handling for VK_ERROR_OUT_OF_MEMORY
 }

 ...

 // Remove callbacks when cleaning up
 pfnDestroyDebugUtilsMessengerEXT(instance, cb1, NULL);
 pfnDestroyDebugUtilsMessengerEXT(instance, cb2, NULL);
 pfnDestroyDebugUtilsMessengerEXT(instance, cb3, NULL);

Example 2

Associate a name with an image, for easier debugging in external tools or with validation layers
that can print a friendly name when referring to objects in error messages.

 extern VkInstance instance;
 extern VkDevice device;

4549

 extern VkImage image;

 // Must call extension functions through a function pointer:
 PFN_vkSetDebugUtilsObjectNameEXT pfnSetDebugUtilsObjectNameEXT =
(PFN_vkSetDebugUtilsObjectNameEXT)vkGetInstanceProcAddr(instance,
"vkSetDebugUtilsObjectNameEXT");

 // Set a name on the image
 const VkDebugUtilsObjectNameInfoEXT imageNameInfo =
 {
 .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT,
 .pNext = NULL,
 .objectType = VK_OBJECT_TYPE_IMAGE,
 .objectHandle = (uint64_t)image,
 .pObjectName = "Brick Diffuse Texture",
 };

 pfnSetDebugUtilsObjectNameEXT(device, &imageNameInfo);

 // A subsequent error might print:
 // Image 'Brick Diffuse Texture' (0xc0dec0dedeadbeef) is used in a
 // command buffer with no memory bound to it.

Example 3

Annotating regions of a workload with naming information so that offline analysis tools can display
a more usable visualization of the commands submitted.

 extern VkInstance instance;
 extern VkCommandBuffer commandBuffer;

 // Must call extension functions through a function pointer:
 PFN_vkQueueBeginDebugUtilsLabelEXT pfnQueueBeginDebugUtilsLabelEXT =
(PFN_vkQueueBeginDebugUtilsLabelEXT)vkGetInstanceProcAddr(instance,
"vkQueueBeginDebugUtilsLabelEXT");
 PFN_vkQueueEndDebugUtilsLabelEXT pfnQueueEndDebugUtilsLabelEXT =
(PFN_vkQueueEndDebugUtilsLabelEXT)vkGetInstanceProcAddr(instance,
"vkQueueEndDebugUtilsLabelEXT");
 PFN_vkCmdBeginDebugUtilsLabelEXT pfnCmdBeginDebugUtilsLabelEXT =
(PFN_vkCmdBeginDebugUtilsLabelEXT)vkGetInstanceProcAddr(instance,
"vkCmdBeginDebugUtilsLabelEXT");
 PFN_vkCmdEndDebugUtilsLabelEXT pfnCmdEndDebugUtilsLabelEXT =
(PFN_vkCmdEndDebugUtilsLabelEXT)vkGetInstanceProcAddr(instance,
"vkCmdEndDebugUtilsLabelEXT");
 PFN_vkCmdInsertDebugUtilsLabelEXT pfnCmdInsertDebugUtilsLabelEXT =
(PFN_vkCmdInsertDebugUtilsLabelEXT)vkGetInstanceProcAddr(instance,
"vkCmdInsertDebugUtilsLabelEXT");

 // Describe the area being rendered
 const VkDebugUtilsLabelEXT houseLabel =

4550

 {
 .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT,
 .pNext = NULL,
 .pLabelName = "Brick House",
 .color = { 1.0f, 0.0f, 0.0f, 1.0f },
 };

 // Start an annotated group of calls under the 'Brick House' name
 pfnCmdBeginDebugUtilsLabelEXT(commandBuffer, &houseLabel);
 {
 // A mutable structure for each part being rendered
 VkDebugUtilsLabelEXT housePartLabel =
 {
 .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT,
 .pNext = NULL,
 .pLabelName = NULL,
 .color = { 0.0f, 0.0f, 0.0f, 0.0f },
 };

 // Set the name and insert the marker
 housePartLabel.pLabelName = "Walls";
 pfnCmdInsertDebugUtilsLabelEXT(commandBuffer, &housePartLabel);

 // Insert the drawcall for the walls
 vkCmdDrawIndexed(commandBuffer, 1000, 1, 0, 0, 0);

 // Insert a recursive region for two sets of windows
 housePartLabel.pLabelName = "Windows";
 pfnCmdBeginDebugUtilsLabelEXT(commandBuffer, &housePartLabel);
 {
 vkCmdDrawIndexed(commandBuffer, 75, 6, 1000, 0, 0);
 vkCmdDrawIndexed(commandBuffer, 100, 2, 1450, 0, 0);
 }
 pfnCmdEndDebugUtilsLabelEXT(commandBuffer);

 housePartLabel.pLabelName = "Front Door";
 pfnCmdInsertDebugUtilsLabelEXT(commandBuffer, &housePartLabel);

 vkCmdDrawIndexed(commandBuffer, 350, 1, 1650, 0, 0);

 housePartLabel.pLabelName = "Roof";
 pfnCmdInsertDebugUtilsLabelEXT(commandBuffer, &housePartLabel);

 vkCmdDrawIndexed(commandBuffer, 500, 1, 2000, 0, 0);
 }
 // End the house annotation started above
 pfnCmdEndDebugUtilsLabelEXT(commandBuffer);

 // Do other work

 vkEndCommandBuffer(commandBuffer);

4551

 // Describe the queue being used
 const VkDebugUtilsLabelEXT queueLabel =
 {
 .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT,
 .pNext = NULL,
 .pLabelName = "Main Render Work",
 .color = { 0.0f, 1.0f, 0.0f, 1.0f },
 };

 // Identify the queue label region
 pfnQueueBeginDebugUtilsLabelEXT(queue, &queueLabel);

 // Submit the work for the main render thread
 const VkCommandBuffer cmd_bufs[] = {commandBuffer};
 VkSubmitInfo submit_info =
 {
 .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
 .pNext = NULL,
 .waitSemaphoreCount = 0,
 .pWaitSemaphores = NULL,
 .pWaitDstStageMask = NULL,
 .commandBufferCount = 1,
 .pCommandBuffers = cmd_bufs,
 .signalSemaphoreCount = 0,
 .pSignalSemaphores = NULL
 };
 vkQueueSubmit(queue, 1, &submit_info, fence);

 // End the queue label region
 pfnQueueEndDebugUtilsLabelEXT(queue);

Issues

1) Should we just name this extension VK_EXT_debug_report2

RESOLVED: No. There is enough additional changes to the structures to break backwards
compatibility. So, a new name was decided that would not indicate any interaction with the
previous extension.

2) Will validation layers immediately support all the new features.

RESOLVED: Not immediately. As one can imagine, there is a lot of work involved with converting
the validation layer logging over to the new functionality. Basic logging, as seen in the origin
VK_EXT_debug_report extension will be made available immediately. However, adding the labels and
object names will take time. Since the priority for Khronos at this time is to continue focusing on
Valid Usage statements, it may take a while before the new functionality is fully exposed.

3) If the validation layers will not expose the new functionality immediately, then what is the point
of this extension?

4552

RESOLVED: We needed a replacement for VK_EXT_debug_report because the
VkDebugReportObjectTypeEXT enumeration will no longer be updated and any new objects will
need to be debugged using the new functionality provided by this extension.

4) Should this extension be split into two separate parts (1 extension that is an instance extension
providing the callback functionality, and another device extension providing the general debug
marker and annotation functionality)?

RESOLVED: No, the functionality for this extension is too closely related. If we did split up the
extension, where would the structures and enums live, and how would you define that the device
behavior in the instance extension is really only valid if the device extension is enabled, and the
functionality is passed in. It is cleaner to just define this all as an instance extension, plus it allows
the application to enable all debug functionality provided with one enable string during
vkCreateInstance.

Version History

• Revision 1, 2017-09-14 (Mark Young and all listed Contributors)

◦ Initial draft, based on VK_EXT_debug_report and VK_EXT_debug_marker in addition to previous
feedback supplied from various companies including Valve, Epic, and Oxide games.

• Revision 2, 2020-04-03 (Mark Young and Piers Daniell)

◦ Updated to allow either NULL or an empty string to be passed in for pObjectName in
VkDebugUtilsObjectNameInfoEXT, because the loader and various drivers support NULL already.

VK_EXT_depth_bias_control

Name String

VK_EXT_depth_bias_control

Extension Type

Device extension

Registered Extension Number

284

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Special Use

• D3D support

4553

Contact

• Joshua Ashton Joshua-Ashton

Extension Proposal

VK_EXT_depth_bias_control

Other Extension Metadata

Last Modified Date

2023-02-15

IP Status

No known IP claims.

Contributors

• Joshua Ashton, VALVE

• Hans-Kristian Arntzen, VALVE

• Mike Blumenkrantz, VALVE

• Georg Lehmann, VALVE

• Piers Daniell, NVIDIA

• Lionel Landwerlin, INTEL

• Tobias Hector, AMD

• Ricardo Garcia, IGALIA

• Jan-Harald Fredriksen, ARM

• Shahbaz Youssefi, GOOGLE

• Tom Olson, ARM

Description

This extension adds a new structure, VkDepthBiasRepresentationInfoEXT, that can be added to a pNext
chain of VkPipelineRasterizationStateCreateInfo and allows setting the scaling and representation
of depth bias for a pipeline.

This state can also be set dynamically by using the new structure mentioned above in combination
with the new vkCmdSetDepthBias2EXT command.

New Commands

• vkCmdSetDepthBias2EXT

New Structures

• VkDepthBiasInfoEXT

• Extending VkDepthBiasInfoEXT, VkPipelineRasterizationStateCreateInfo:

◦ VkDepthBiasRepresentationInfoEXT

4554

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_bias_control] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_depth_bias_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_bias_control] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_depth_bias_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_depth_bias_control.adoc

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDepthBiasControlFeaturesEXT

New Enums

• VkDepthBiasRepresentationEXT

New Enum Constants

• VK_EXT_DEPTH_BIAS_CONTROL_EXTENSION_NAME

• VK_EXT_DEPTH_BIAS_CONTROL_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEPTH_BIAS_INFO_EXT

◦ VK_STRUCTURE_TYPE_DEPTH_BIAS_REPRESENTATION_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_BIAS_CONTROL_FEATURES_EXT

Version History

• Revision 1, 2022-09-22 (Joshua Ashton)

◦ Initial draft.

VK_EXT_depth_clamp_zero_one

Name String

VK_EXT_depth_clamp_zero_one

Extension Type

Device extension

Registered Extension Number

422

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Graeme Leese gnl21

4555

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_clamp_zero_one] @gnl21%0A*Here describe the issue or question you have about the VK_EXT_depth_clamp_zero_one extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_clamp_zero_one] @gnl21%0A*Here describe the issue or question you have about the VK_EXT_depth_clamp_zero_one extension*

Other Extension Metadata

Last Modified Date

2021-07-29

Contributors

• Graeme Leese, Broadcom

Description

This extension gives defined behavior to fragment depth values which end up outside the
conventional [0, 1] range. It can be used to ensure portability in edge cases of features like
depthBias. The particular behavior is chosen to match OpenGL to aid porting or emulation.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDepthClampZeroOneFeaturesEXT

New Enum Constants

• VK_EXT_DEPTH_CLAMP_ZERO_ONE_EXTENSION_NAME

• VK_EXT_DEPTH_CLAMP_ZERO_ONE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLAMP_ZERO_ONE_FEATURES_EXT

Version History

• Revision 1, 2021-07-29 (Graeme Leese)

◦ Internal revisions

VK_EXT_depth_clip_control

Name String

VK_EXT_depth_clip_control

Extension Type

Device extension

Registered Extension Number

356

Revision

1

Ratification Status

Not ratified

4556

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Special Use

• OpenGL / ES support

Contact

• Shahbaz Youssefi syoussefi

Other Extension Metadata

Last Modified Date

2021-11-09

Contributors

• Spencer Fricke, Samsung Electronics

• Shahbaz Youssefi, Google

• Ralph Potter, Samsung Electronics

Description

This extension allows the application to use the OpenGL depth range in NDC, i.e. with depth in
range [-1, 1], as opposed to Vulkan’s default of [0, 1]. The purpose of this extension is to allow
efficient layering of OpenGL over Vulkan, by avoiding emulation in the pre-rasterization shader
stages. This emulation, which effectively duplicates gl_Position but with a different depth value,
costs ALU and consumes shader output components that the implementation may not have to spare
to meet OpenGL minimum requirements.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDepthClipControlFeaturesEXT

• Extending VkPipelineViewportStateCreateInfo:

◦ VkPipelineViewportDepthClipControlCreateInfoEXT

New Enum Constants

• VK_EXT_DEPTH_CLIP_CONTROL_EXTENSION_NAME

• VK_EXT_DEPTH_CLIP_CONTROL_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_DEPTH_CLIP_CONTROL_CREATE_INFO_EXT

Issues

1) Should this extension include an origin control option to match GL_LOWER_LEFT found in

4557

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_clip_control] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_depth_clip_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_clip_control] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_depth_clip_control extension*

ARB_clip_control?

RESOLVED: No. The fix for porting over the origin is a simple y-axis flip. The depth clip control is a
much harder problem to solve than what this extension is aimed to solve. Adding an equivalent to
GL_LOWER_LEFT would require more testing.

2) Should this pipeline state be dynamic?

RESOLVED: Yes. The purpose of this extension is to emulate the OpenGL depth range, which is
expected to be globally fixed (in case of OpenGL ES) or very infrequently changed (with
glClipControl in OpenGL).

3) Should the control provided in this extension be an enum that could be extended in the future?

RESOLVED: No. It is highly unlikely that the depth range is changed to anything other than [0, 1] in
the future. Should that happen a new extension will be required to extend such an enum, and that
extension might as well add a new struct to chain to VkPipelineViewportStateCreateInfo::pNext
instead.

Version History

• Revision 0, 2020-10-01 (Spencer Fricke)

◦ Internal revisions

• Revision 1, 2020-11-26 (Shahbaz Youssefi)

◦ Language fixes

VK_EXT_depth_clip_enable

Name String

VK_EXT_depth_clip_enable

Extension Type

Device extension

Registered Extension Number

103

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

4558

Special Use

• D3D support

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2018-12-20

Contributors

• Daniel Rakos, AMD

• Henri Verbeet, CodeWeavers

• Jeff Bolz, NVIDIA

• Philip Rebohle, DXVK

• Tobias Hector, AMD

Description

This extension allows the depth clipping operation, that is normally implicitly controlled by
VkPipelineRasterizationStateCreateInfo::depthClampEnable, to instead be controlled explicitly by
VkPipelineRasterizationDepthClipStateCreateInfoEXT::depthClipEnable.

This is useful for translating DX content which assumes depth clamping is always enabled, but
depth clip can be controlled by the DepthClipEnable rasterization state (D3D12_RASTERIZER_DESC).

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDepthClipEnableFeaturesEXT

• Extending VkPipelineRasterizationStateCreateInfo:

◦ VkPipelineRasterizationDepthClipStateCreateInfoEXT

New Bitmasks

• VkPipelineRasterizationDepthClipStateCreateFlagsEXT

New Enum Constants

• VK_EXT_DEPTH_CLIP_ENABLE_EXTENSION_NAME

• VK_EXT_DEPTH_CLIP_ENABLE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT

4559

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_clip_enable] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_depth_clip_enable extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_clip_enable] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_depth_clip_enable extension*

Version History

• Revision 1, 2018-12-20 (Piers Daniell)

◦ Internal revisions

VK_EXT_depth_range_unrestricted

Name String

VK_EXT_depth_range_unrestricted

Extension Type

Device extension

Registered Extension Number

14

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2017-06-22

Contributors

• Daniel Koch, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension removes the VkViewport minDepth and maxDepth restrictions that the values must be
between 0.0 and 1.0, inclusive. It also removes the same restriction on
VkPipelineDepthStencilStateCreateInfo minDepthBounds and maxDepthBounds. Finally it removes the
restriction on the depth value in VkClearDepthStencilValue.

New Enum Constants

• VK_EXT_DEPTH_RANGE_UNRESTRICTED_EXTENSION_NAME

• VK_EXT_DEPTH_RANGE_UNRESTRICTED_SPEC_VERSION

4560

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_range_unrestricted] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_depth_range_unrestricted extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_depth_range_unrestricted] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_depth_range_unrestricted extension*

Issues

1) How do VkViewport minDepth and maxDepth values outside of the 0.0 to 1.0 range interact with
Primitive Clipping?

RESOLVED: The behavior described in Primitive Clipping still applies. If depth clamping is disabled
the depth values are still clipped to 0 ≤ zc ≤ wc before the viewport transform. If depth clamping is
enabled the above equation is ignored and the depth values are instead clamped to the VkViewport
minDepth and maxDepth values, which in the case of this extension can be outside of the 0.0 to 1.0
range.

2) What happens if a resulting depth fragment is outside of the 0.0 to 1.0 range and the depth
buffer is fixed-point rather than floating-point?

RESOLVED: This situation can also arise without this extension (when fragment shaders replace
depth values, for example), and this extension does not change the behaviour, which is defined in
the Depth Test section of the Fragment Operations chapter.

Version History

• Revision 1, 2017-06-22 (Piers Daniell)

◦ Internal revisions

VK_EXT_descriptor_buffer

Name String

VK_EXT_descriptor_buffer

Extension Type

Device extension

Registered Extension Number

317

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_buffer_device_address
and
VK_KHR_synchronization2
and
VK_EXT_descriptor_indexing

4561

API Interactions

• Interacts with VK_KHR_acceleration_structure

• Interacts with VK_NV_ray_tracing

Contact

• Tobias Hector tobski

Extension Proposal

VK_EXT_descriptor_buffer

Other Extension Metadata

Last Modified Date

2021-06-07

IP Status

No known IP claims.

Contributors

• Tobias Hector, AMD

• Stu Smith, AMD

• Maciej Jesionowski, AMD

• Boris Zanin, AMD

• Hans-Kristian Arntzen, Valve

• Connor Abbott, Valve

• Baldur Karlsson, Valve

• Mike Blumenkrantz, Valve

• Graeme Leese, Broadcom

• Jan-Harald Fredriksen, Arm

• Rodrigo Locatti, NVIDIA

• Jeff Bolz, NVIDIA

• Piers Daniell, NVIDIA

• Jeff Leger, QUALCOMM

• Lionel Landwerlin, Intel

• Slawomir Grajewski, Intel

Description

This extension introduces new commands to put shader-accessible descriptors directly in memory,
making the management of descriptor data more explicit.

4562

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_descriptor_buffer] @tobski%0A*Here describe the issue or question you have about the VK_EXT_descriptor_buffer extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_descriptor_buffer] @tobski%0A*Here describe the issue or question you have about the VK_EXT_descriptor_buffer extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_descriptor_buffer.adoc

New Commands

• vkCmdBindDescriptorBufferEmbeddedSamplersEXT

• vkCmdBindDescriptorBuffersEXT

• vkCmdSetDescriptorBufferOffsetsEXT

• vkGetBufferOpaqueCaptureDescriptorDataEXT

• vkGetDescriptorEXT

• vkGetDescriptorSetLayoutBindingOffsetEXT

• vkGetDescriptorSetLayoutSizeEXT

• vkGetImageOpaqueCaptureDescriptorDataEXT

• vkGetImageViewOpaqueCaptureDescriptorDataEXT

• vkGetSamplerOpaqueCaptureDescriptorDataEXT

If VK_KHR_acceleration_structure or VK_NV_ray_tracing is supported:

• vkGetAccelerationStructureOpaqueCaptureDescriptorDataEXT

New Structures

• VkBufferCaptureDescriptorDataInfoEXT

• VkDescriptorAddressInfoEXT

• VkDescriptorBufferBindingInfoEXT

• VkDescriptorGetInfoEXT

• VkImageCaptureDescriptorDataInfoEXT

• VkImageViewCaptureDescriptorDataInfoEXT

• VkSamplerCaptureDescriptorDataInfoEXT

• Extending VkBufferCreateInfo, VkImageCreateInfo, VkImageViewCreateInfo,
VkSamplerCreateInfo, VkAccelerationStructureCreateInfoKHR,
VkAccelerationStructureCreateInfoNV:

◦ VkOpaqueCaptureDescriptorDataCreateInfoEXT

• Extending VkDescriptorBufferBindingInfoEXT:

◦ VkDescriptorBufferBindingPushDescriptorBufferHandleEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDescriptorBufferFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT

◦ VkPhysicalDeviceDescriptorBufferPropertiesEXT

If VK_KHR_acceleration_structure or VK_NV_ray_tracing is supported:

4563

• VkAccelerationStructureCaptureDescriptorDataInfoEXT

New Unions

• VkDescriptorDataEXT

New Enum Constants

• VK_EXT_DESCRIPTOR_BUFFER_EXTENSION_NAME

• VK_EXT_DESCRIPTOR_BUFFER_SPEC_VERSION

• Extending VkAccelerationStructureCreateFlagBitsKHR:

◦ VK_ACCELERATION_STRUCTURE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT

• Extending VkBufferCreateFlagBits:

◦ VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT

◦ VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT

◦ VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

• Extending VkImageViewCreateFlagBits:

◦ VK_IMAGE_VIEW_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

• Extending VkSamplerCreateFlagBits:

◦ VK_SAMPLER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BUFFER_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_ADDRESS_INFO_EXT

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_BUFFER_BINDING_INFO_EXT

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_BUFFER_BINDING_PUSH_DESCRIPTOR_BUFFER_HANDLE_EXT

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_GET_INFO_EXT

4564

◦ VK_STRUCTURE_TYPE_IMAGE_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

◦ VK_STRUCTURE_TYPE_OPAQUE_CAPTURE_DESCRIPTOR_DATA_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_DENSITY_MAP_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_SAMPLER_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

If VK_KHR_acceleration_structure or VK_NV_ray_tracing is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CAPTURE_DESCRIPTOR_DATA_INFO_EXT

Version History

• Revision 1, 2021-06-07 (Stu Smith)

◦ Initial revision

VK_EXT_device_address_binding_report

Name String

VK_EXT_device_address_binding_report

Extension Type

Device extension

Registered Extension Number

355

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_EXT_debug_utils

Special Uses

• Debugging tools

• Developer tools

Contact

• Ralph Potter r_potter

4565

Other Extension Metadata

Last Modified Date

2020-11-23

Interactions and External Dependencies

• This extension requires VK_EXT_debug_utils

Contributors

• Ralph Potter, Samsung

• Spencer Fricke, Samsung

• Jan-Harald Fredriksen, ARM

• Andrew Ellem, Google

• Alex Walters, IMG

• Jeff Bolz, NVIDIA

Description

This extension enables applications to track the binding of regions of the GPU virtual address space,
and to associate those regions with Vulkan objects. This extension is primarily intended to aid in
crash postmortem, where applications may wish to map a faulting GPU address to a Vulkan object.

For example, a page fault triggered by accessing an address located within a region of the GPU
virtual address space that was previously reported as bound and then unbound may indicate a use-
after-free error. Similarly, faults generated by accessing virtual addresses outside the limits of a
bound region of GPU virtual address space may indicate indexing beyond the bounds of a resource.

New Structures

• Extending VkDebugUtilsMessengerCallbackDataEXT:

◦ VkDeviceAddressBindingCallbackDataEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceAddressBindingReportFeaturesEXT

New Enums

• VkDeviceAddressBindingFlagBitsEXT

• VkDeviceAddressBindingTypeEXT

New Bitmasks

• VkDeviceAddressBindingFlagsEXT

New Enum Constants

• VK_EXT_DEVICE_ADDRESS_BINDING_REPORT_EXTENSION_NAME

4566

• VK_EXT_DEVICE_ADDRESS_BINDING_REPORT_SPEC_VERSION

• Extending VkDebugUtilsMessageTypeFlagBitsEXT:

◦ VK_DEBUG_UTILS_MESSAGE_TYPE_DEVICE_ADDRESS_BINDING_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_ADDRESS_BINDING_CALLBACK_DATA_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ADDRESS_BINDING_REPORT_FEATURES_EXT

Issues

1.) Should this extend VK_EXT_debug_utils or VK_EXT_device_memory_report?

RESOLVED: Extend VK_EXT_debug_utils. VK_EXT_device_memory_report focuses on memory
allocations and would not normally trigger callbacks in all of the situations where
VK_EXT_device_address_binding_report is expected to.

2.) Should this extension cover all Vulkan object types, or only resources such as buffers and
images?

RESOLVED: The extension covers all Vulkan objects, and is not restricted to objects backed by
VkDeviceMemory objects.

3.) Should reallocation be identified explicitly, or as a unbind/bind pair?

RESOLVED: Reallocation should be represented as an unbind/bind pair.

4.) Can multiple Vulkan objects share an overlapping virtual address range?

RESOLVED: Yes. This can be expected to occur due to resources aliasing.

5.) Can a single Vulkan object be associated with multiple virtual address ranges concurrently?

RESOLVED: Yes. These should be reported via multiple calls to the reporting callback.

6.) Should the virtual address ranges associated with internal allocations such as memory pools be
reported?

RESOLVED: Virtual address ranges associated with internal allocations should only be reported
when they become associated with a specific Vulkan object. In the case of internal pool allocations,
a bind event should be reported when resources from the pool are assigned to a Vulkan object, and
an unbind event should be reported when those resources are returned to the pool.
Implementations should not report the binding or unbinding of virtual address ranges for which
there are no related API objects visible to the application developer.

7.) Can an implementation report binding a virtual address range at VkImage or VkImageView
creation, rather than in response to vkBindImageMemory?

RESOLVED: Yes. Virtual address range binding should be reported at the appropriate point at
which it occurs within the implementation. This extension does not mandate when that should
occur, and applications should anticipate receiving callback events at any point after registering

4567

callbacks.

8.) Can reporting of binding/unbinding be deferred until a resource is referenced by an executing
command buffer?

RESOLVED: Changes to the virtual address ranges associated with a Vulkan object should be
reported as close as possible to where they occur within the implementation. If virtual address
binding is deferred, then the callback should also be deferred to match.

9.) Do bind/unbind callbacks have to form matched pairs? Can a large region be bound, and then
subregions unbound, resulting in fragmentation?

RESOLVED: Splitting of virtual address regions, and unmatched bind/unbind callbacks may occur.
Developers should anticipate that sparse memory may exhibit this behaviour.

10.) The specification mandates that a callback must be triggered whenever a GPU virtual address
range associated with any Vulkan object is bound or unbound. Do we need queries or properties
indicating which Vulkan objects will report binding modifications?

RESOLVED: No. This extension is not intended to mandate how and when implementations bind
virtual ranges to objects. Adding queries or properties would constrain implementations, which
might otherwise vary how virtual address bindings occur based on usage.

11.) Should vkAllocateMemory and vkFreeMemory trigger reporting callbacks?

RESOLVED: If an implementation binds a GPU virtual address range when vkAllocateMemory is
called, then the callbacks must be triggered associating the virtual address range with the
VkDeviceMemory object. If the device memory is subsequently bound to a buffer or image via
vkBind*Memory, the callbacks should be triggered a second time, reporting the association
between virtual address range and the buffer/image.

Version History

• Revision 1, 2020-09-23 (Ralph Potter)

◦ Internal revisions

VK_EXT_device_fault

Name String

VK_EXT_device_fault

Extension Type

Device extension

Registered Extension Number

342

Revision

2

4568

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Ralph Potter r_potter

Extension Proposal

VK_EXT_device_fault

Other Extension Metadata

Last Modified Date

2021-03-10

IP Status

No known IP claims.

Contributors

• Ralph Potter, Samsung

• Stuart Smith, AMD

• Jan-Harald Fredriksen, ARM

• Mark Bellamy, ARM

• Andrew Ellem, Google

• Alex Walters, IMG

• Jeff Bolz, NVIDIA

• Baldur Karlsson, Valve

Description

Device loss can be triggered by a variety of issues, including invalid API usage, implementation
errors, or hardware failures.

This extension introduces a new command: vkGetDeviceFaultInfoEXT, which may be called
subsequent to a VK_ERROR_DEVICE_LOST error code having been returned by the implementation. This
command allows developers to query for additional information on GPU faults which may have
caused device loss, and to generate binary crash dumps, which may be loaded into external tools
for further diagnosis.

New Commands

• vkGetDeviceFaultInfoEXT

4569

https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_device_fault.adoc

New Structures

• VkDeviceFaultAddressInfoEXT

• VkDeviceFaultCountsEXT

• VkDeviceFaultInfoEXT

• VkDeviceFaultVendorBinaryHeaderVersionOneEXT

• VkDeviceFaultVendorInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFaultFeaturesEXT

New Enums

• VkDeviceFaultAddressTypeEXT

• VkDeviceFaultVendorBinaryHeaderVersionEXT

New Enum Constants

• VK_EXT_DEVICE_FAULT_EXTENSION_NAME

• VK_EXT_DEVICE_FAULT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_FAULT_COUNTS_EXT

◦ VK_STRUCTURE_TYPE_DEVICE_FAULT_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FAULT_FEATURES_EXT

Version History

• Revision 2, 2023-04-05 (Ralph Potter)

◦ Restored two missing members to the XML definition of
VkDeviceFaultVendorBinaryHeaderVersionOneEXT. No functional change to the
specification.

• Revision 1, 2020-10-19 (Ralph Potter)

◦ Initial revision

VK_EXT_device_memory_report

Name String

VK_EXT_device_memory_report

Extension Type

Device extension

Registered Extension Number

285

4570

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Special Use

• Developer tools

Contact

• Yiwei Zhang zhangyiwei

Other Extension Metadata

Last Modified Date

2021-01-06

IP Status

No known IP claims.

Contributors

• Yiwei Zhang, Google

• Jesse Hall, Google

Description

This device extension allows registration of device memory event callbacks upon device creation,
so that applications or middleware can obtain detailed information about memory usage and how
memory is associated with Vulkan objects. This extension exposes the actual underlying device
memory usage, including allocations that are not normally visible to the application, such as
memory consumed by vkCreateGraphicsPipelines. It is intended primarily for use by debug tooling
rather than for production applications.

New Structures

• VkDeviceMemoryReportCallbackDataEXT

• Extending VkDeviceCreateInfo:

◦ VkDeviceDeviceMemoryReportCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDeviceMemoryReportFeaturesEXT

New Function Pointers

• PFN_vkDeviceMemoryReportCallbackEXT

4571

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_device_memory_report] @zhangyiwei%0A*Here describe the issue or question you have about the VK_EXT_device_memory_report extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_device_memory_report] @zhangyiwei%0A*Here describe the issue or question you have about the VK_EXT_device_memory_report extension*

New Enums

• VkDeviceMemoryReportEventTypeEXT

New Bitmasks

• VkDeviceMemoryReportFlagsEXT

New Enum Constants

• VK_EXT_DEVICE_MEMORY_REPORT_EXTENSION_NAME

• VK_EXT_DEVICE_MEMORY_REPORT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_DEVICE_MEMORY_REPORT_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_DEVICE_MEMORY_REPORT_CALLBACK_DATA_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_MEMORY_REPORT_FEATURES_EXT

Issues

1) Should this be better expressed as an extension to VK_EXT_debug_utils and its general-purpose
messenger construct?

RESOLVED: No. The intended lifecycle is quite different. We want to make this extension tied to the
device’s lifecycle. Each ICD just handles its own implementation of this extension, and this
extension will only be directly exposed from the ICD. So we can avoid the extra implementation
complexity used to accommodate the flexibility of VK_EXT_debug_utils extension.

2) Can we extend and use the existing internal allocation callbacks instead of adding the new
callback structure in this extension?

RESOLVED: No. Our memory reporting layer that combines this information with other memory
information it collects directly (e.g. bindings of resources to VkDeviceMemory) would have to
intercept all entry points that take a VkAllocationCallbacks parameter and inject its own
pfnInternalAllocation and pfnInternalFree. That may be doable for the extensions we know about,
but not for ones we do not. The proposal would work fine in the face of most unknown extensions.
But even for ones we know about, since apps can provide a different set of callbacks and userdata
and those can be retained by the driver and used later (esp. for pool object, but not just those), we
would have to dynamically allocate the interception trampoline every time. That is getting to be an
unreasonably large amount of complexity and (possibly) overhead.

We are interested in both alloc/free and import/unimport. The latter is fairly important for tracking
(and avoiding double-counting) of swapchain images (still true with “native swapchains” based on
external memory) and media/camera interop. Though we might be able to handle this with
additional VkInternalAllocationType values, for import/export we do want to be able to tie this to
the external resource, which is one thing that the memoryObjectId is for.

The internal alloc/free callbacks are not extensible except via new VkInternalAllocationType
values. The VkDeviceMemoryReportCallbackDataEXT in this extension is extensible. That was

4572

deliberate: there is a real possibility we will want to get extra information in the future. As one
example, currently this reports only physical allocations, but we believe there are interesting cases
for tracking how populated that VA region is.

The callbacks are clearly specified as only callable within the context of a call from the app into
Vulkan. We believe there are some cases where drivers can allocate device memory
asynchronously. This was one of the sticky issues that derailed the internal device memory
allocation reporting design (which is essentially what this extension is trying to do) leading up to
1.0.

VkAllocationCallbacks is described in a section called “Host memory” and the intro to it is very
explicitly about host memory. The other callbacks are all inherently about host memory. But this
extension is very focused on device memory.

3) Should the callback be reporting which heap is used?

RESOLVED: Yes. It is important for non-UMA systems to have all the device memory allocations
attributed to the corresponding device memory heaps. For internally-allocated device memory,
heapIndex will always correspond to an advertised heap, rather than having a magic value
indicating a non-advertised heap. Drivers can advertise heaps that do not have any corresponding
memory types if they need to.

4) Should we use an array of callback for the layers to intercept instead of chaining multiple of the
VkDeviceDeviceMemoryReportCreateInfoEXT structures in the pNext of VkDeviceCreateInfo?

RESOLVED No. The pointer to the VkDeviceDeviceMemoryReportCreateInfoEXT structure itself is
const and you cannot just cast it away. Thus we cannot update the callback array inside the
structure. In addition, we cannot drop this pNext chain either, so making a copy of this whole
structure does not work either.

5) Should we track bulk allocations shared among multiple objects?

RESOLVED No. Take the shader heap as an example. Some implementations will let multiple
VkPipeline objects share the same shader heap. We are not asking the implementation to report
VK_OBJECT_TYPE_PIPELINE along with a VK_NULL_HANDLE for this bulk allocation. Instead, this bulk
allocation is considered as a layer below what this extension is interested in. Later, when the actual
VkPipeline objects are created by suballocating from the bulk allocation, we ask the
implementation to report the valid handles of the VkPipeline objects along with the actual
suballocated sizes and different memoryObjectId.

6) Can we require the callbacks to be always called in the same thread with the Vulkan commands?

RESOLVED No. Some implementations might choose to multiplex work from multiple application
threads into a single backend thread and perform JIT allocations as a part of that flow. Since this
behavior is theoretically legit, we cannot require the callbacks to be always called in the same
thread with the Vulkan commands, and the note is to remind the applications to handle this case
properly.

7) Should we add an additional “allocation failed” event type with things like size and heap index
reported?

4573

RESOLVED Yes. This fits in well with the callback infrastructure added in this extension, and
implementation touches the same code and has the same overheads as the rest of the extension. It
could help debugging things like getting an VK_ERROR_OUT_OF_HOST_MEMORY error when ending a
command buffer. Right now the allocation failure could have happened anywhere during
recording, and a callback would be really useful to understand where and why.

Version History

• Revision 1, 2020-08-26 (Yiwei Zhang)

◦ Initial version

• Revision 2, 2021-01-06 (Yiwei Zhang)

◦ Minor description update

VK_EXT_direct_mode_display

Name String

VK_EXT_direct_mode_display

Extension Type

Instance extension

Registered Extension Number

89

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_display

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-12-13

IP Status

No known IP claims.

Contributors

• Pierre Boudier, NVIDIA

• James Jones, NVIDIA

4574

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_direct_mode_display] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_direct_mode_display extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_direct_mode_display] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_direct_mode_display extension*

• Damien Leone, NVIDIA

• Pierre-Loup Griffais, Valve

• Liam Middlebrook, NVIDIA

Description

This is extension, along with related platform extensions, allows applications to take exclusive
control of displays associated with a native windowing system. This is especially useful for virtual
reality applications that wish to hide HMDs (head mounted displays) from the native platform’s
display management system, desktop, and/or other applications.

New Commands

• vkReleaseDisplayEXT

New Enum Constants

• VK_EXT_DIRECT_MODE_DISPLAY_EXTENSION_NAME

• VK_EXT_DIRECT_MODE_DISPLAY_SPEC_VERSION

Issues

1) Should this extension and its related platform-specific extensions leverage VK_KHR_display, or
provide separate equivalent interfaces.

RESOLVED: Use VK_KHR_display concepts and objects. VK_KHR_display can be used to enumerate all
displays on the system, including those attached to/in use by a window system or native platform,
but VK_KHR_display_swapchain will fail to create a swapchain on in-use displays. This extension and
its platform-specific children will allow applications to grab in-use displays away from window
systems and/or native platforms, allowing them to be used with VK_KHR_display_swapchain.

2) Are separate calls needed to acquire displays and enable direct mode?

RESOLVED: No, these operations happen in one combined command. Acquiring a display puts it
into direct mode.

Version History

• Revision 1, 2016-12-13 (James Jones)

◦ Initial draft

VK_EXT_directfb_surface

Name String

VK_EXT_directfb_surface

Extension Type

Instance extension

4575

Registered Extension Number

347

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Nicolas Caramelli caramelli

Other Extension Metadata

Last Modified Date

2020-06-16

IP Status

No known IP claims.

Contributors

• Nicolas Caramelli

Description

The VK_EXT_directfb_surface extension is an instance extension. It provides a mechanism to create
a VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to a DirectFB
IDirectFBSurface, as well as a query to determine support for rendering via DirectFB.

New Commands

• vkCreateDirectFBSurfaceEXT

• vkGetPhysicalDeviceDirectFBPresentationSupportEXT

New Structures

• VkDirectFBSurfaceCreateInfoEXT

New Bitmasks

• VkDirectFBSurfaceCreateFlagsEXT

New Enum Constants

• VK_EXT_DIRECTFB_SURFACE_EXTENSION_NAME

• VK_EXT_DIRECTFB_SURFACE_SPEC_VERSION

4576

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_directfb_surface] @caramelli%0A*Here describe the issue or question you have about the VK_EXT_directfb_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_directfb_surface] @caramelli%0A*Here describe the issue or question you have about the VK_EXT_directfb_surface extension*

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DIRECTFB_SURFACE_CREATE_INFO_EXT

Version History

• Revision 1, 2020-06-16 (Nicolas Caramelli)

◦ Initial version

VK_EXT_discard_rectangles

Name String

VK_EXT_discard_rectangles

Extension Type

Device extension

Registered Extension Number

100

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2023-01-18

Interactions and External Dependencies

• Interacts with VK_KHR_device_group

• Interacts with Vulkan 1.1

Contributors

• Daniel Koch, NVIDIA

• Jeff Bolz, NVIDIA

4577

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_discard_rectangles] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_discard_rectangles extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_discard_rectangles] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_discard_rectangles extension*

Description

This extension provides additional orthogonally aligned “discard rectangles” specified in
framebuffer-space coordinates that restrict rasterization of all points, lines and triangles.

From zero to an implementation-dependent limit (specified by maxDiscardRectangles) number of
discard rectangles can be operational at once. When one or more discard rectangles are active,
rasterized fragments can either survive if the fragment is within any of the operational discard
rectangles (VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT mode) or be rejected if the fragment is within
any of the operational discard rectangles (VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT mode).

These discard rectangles operate orthogonally to the existing scissor test functionality. The discard
rectangles can be different for each physical device in a device group by specifying the device mask
and setting discard rectangle dynamic state.

Version 2 of this extension introduces new dynamic states
VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT and VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT,
and the corresponding functions vkCmdSetDiscardRectangleEnableEXT and
vkCmdSetDiscardRectangleModeEXT. Applications that use these dynamic states must ensure the
implementation advertises at least specVersion 2 of this extension.

New Commands

• vkCmdSetDiscardRectangleEXT

• vkCmdSetDiscardRectangleEnableEXT

• vkCmdSetDiscardRectangleModeEXT

New Structures

• Extending VkGraphicsPipelineCreateInfo:

◦ VkPipelineDiscardRectangleStateCreateInfoEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDiscardRectanglePropertiesEXT

New Enums

• VkDiscardRectangleModeEXT

New Bitmasks

• VkPipelineDiscardRectangleStateCreateFlagsEXT

New Enum Constants

• VK_EXT_DISCARD_RECTANGLES_EXTENSION_NAME

• VK_EXT_DISCARD_RECTANGLES_SPEC_VERSION

• Extending VkDynamicState:

4578

◦ VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT

◦ VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT

◦ VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT

Version History

• Revision 2, 2023-01-18 (Piers Daniell)

◦ Add dynamic states for discard rectangle enable/disable and mode.

• Revision 1, 2016-12-22 (Piers Daniell)

◦ Internal revisions

VK_EXT_display_control

Name String

VK_EXT_display_control

Extension Type

Device extension

Registered Extension Number

92

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_display_surface_counter
and
VK_KHR_swapchain

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-12-13

4579

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_display_control] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_display_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_display_control] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_display_control extension*

IP Status

No known IP claims.

Contributors

• Pierre Boudier, NVIDIA

• James Jones, NVIDIA

• Damien Leone, NVIDIA

• Pierre-Loup Griffais, Valve

• Daniel Vetter, Intel

Description

This extension defines a set of utility functions for use with the VK_KHR_display and
VK_KHR_display_swapchain extensions.

New Commands

• vkDisplayPowerControlEXT

• vkGetSwapchainCounterEXT

• vkRegisterDeviceEventEXT

• vkRegisterDisplayEventEXT

New Structures

• VkDeviceEventInfoEXT

• VkDisplayEventInfoEXT

• VkDisplayPowerInfoEXT

• Extending VkSwapchainCreateInfoKHR:

◦ VkSwapchainCounterCreateInfoEXT

New Enums

• VkDeviceEventTypeEXT

• VkDisplayEventTypeEXT

• VkDisplayPowerStateEXT

New Enum Constants

• VK_EXT_DISPLAY_CONTROL_EXTENSION_NAME

• VK_EXT_DISPLAY_CONTROL_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT

◦ VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT

4580

◦ VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT

Issues

1) Should this extension add an explicit “WaitForVsync” API or a fence signaled at vsync that the
application can wait on?

RESOLVED: A fence. A separate API could later be provided that allows exporting the fence to a
native object that could be inserted into standard run loops on POSIX and Windows systems.

2) Should callbacks be added for a vsync event, or in general to monitor events in Vulkan?

RESOLVED: No, fences should be used. Some events are generated by interrupts which are
managed in the kernel. In order to use a callback provided by the application, drivers would need
to have the userspace driver spawn threads that would wait on the kernel event, and hence the
callbacks could be difficult for the application to synchronize with its other work given they would
arrive on a foreign thread.

3) Should vblank or scanline events be exposed?

RESOLVED: Vblank events. Scanline events could be added by a separate extension, but the latency
of processing an interrupt and waking up a userspace event is high enough that the accuracy of a
scanline event would be rather low. Further, per-scanline interrupts are not supported by all
hardware.

Version History

• Revision 1, 2016-12-13 (James Jones)

◦ Initial draft

VK_EXT_display_surface_counter

Name String

VK_EXT_display_surface_counter

Extension Type

Instance extension

Registered Extension Number

91

Revision

1

Ratification Status

Not ratified

4581

Extension and Version Dependencies

VK_KHR_display

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-12-13

IP Status

No known IP claims.

Contributors

• Pierre Boudier, NVIDIA

• James Jones, NVIDIA

• Damien Leone, NVIDIA

• Pierre-Loup Griffais, Valve

• Daniel Vetter, Intel

Description

This extension defines a vertical blanking period counter associated with display surfaces. It
provides a mechanism to query support for such a counter from a VkSurfaceKHR object.

New Commands

• vkGetPhysicalDeviceSurfaceCapabilities2EXT

New Structures

• VkSurfaceCapabilities2EXT

New Enums

• VkSurfaceCounterFlagBitsEXT

New Bitmasks

• VkSurfaceCounterFlagsEXT

New Enum Constants

• VK_EXT_DISPLAY_SURFACE_COUNTER_EXTENSION_NAME

• VK_EXT_DISPLAY_SURFACE_COUNTER_SPEC_VERSION

• Extending VkStructureType:

4582

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_display_surface_counter] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_display_surface_counter extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_display_surface_counter] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_display_surface_counter extension*

◦ VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES2_EXT

◦ VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT

Version History

• Revision 1, 2016-12-13 (James Jones)

◦ Initial draft

VK_EXT_dynamic_rendering_unused_attachments

Name String

VK_EXT_dynamic_rendering_unused_attachments

Extension Type

Device extension

Registered Extension Number

500

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

 VK_KHR_get_physical_device_properties2
 or
 Version 1.1
and
 VK_KHR_dynamic_rendering
 or
 Version 1.3

Contact

• Piers Daniell pdaniell-nv

Extension Proposal

VK_EXT_dynamic_rendering_unused_attachments

Other Extension Metadata

Last Modified Date

2023-05-22

IP Status

No known IP claims.

4583

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_dynamic_rendering_unused_attachments] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_dynamic_rendering_unused_attachments extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_dynamic_rendering_unused_attachments] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_dynamic_rendering_unused_attachments extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_dynamic_rendering_unused_attachments.adoc

Contributors

• Daniel Story, Nintendo

• Hans-Kristian Arntzen, Valve

• Jan-Harald Fredriksen, Arm

• James Fitzpatrick, Imagination Technologies

• Pan Gao, Huawei Technologies

• Ricardo Garcia, Igalia

• Stu Smith, AMD

Description

This extension lifts some restrictions in the VK_KHR_dynamic_rendering extension to allow render
pass instances and bound pipelines within those render pass instances to have an unused
attachment specified in one but not the other. It also allows pipelines to use different formats in a
render pass as long the attachment is NULL.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT

New Enum Constants

• VK_EXT_DYNAMIC_RENDERING_UNUSED_ATTACHMENTS_EXTENSION_NAME

• VK_EXT_DYNAMIC_RENDERING_UNUSED_ATTACHMENTS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_UNUSED_ATTACHMENTS_FEATURES_EXT

Issues

None.

Version History

• Revision 1, 2023-05-22 (Piers Daniell)

◦ Internal revisions

VK_EXT_extended_dynamic_state3

Name String

VK_EXT_extended_dynamic_state3

Extension Type

Device extension

4584

Registered Extension Number

456

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

API Interactions

• Interacts with VK_VERSION_1_1

• Interacts with VK_EXT_blend_operation_advanced

• Interacts with VK_EXT_conservative_rasterization

• Interacts with VK_EXT_depth_clip_control

• Interacts with VK_EXT_depth_clip_enable

• Interacts with VK_EXT_line_rasterization

• Interacts with VK_EXT_provoking_vertex

• Interacts with VK_EXT_sample_locations

• Interacts with VK_EXT_transform_feedback

• Interacts with VK_KHR_maintenance2

• Interacts with VK_NV_clip_space_w_scaling

• Interacts with VK_NV_coverage_reduction_mode

• Interacts with VK_NV_fragment_coverage_to_color

• Interacts with VK_NV_framebuffer_mixed_samples

• Interacts with VK_NV_representative_fragment_test

• Interacts with VK_NV_shading_rate_image

• Interacts with VK_NV_viewport_swizzle

Contact

• Piers Daniell pdaniell-nv

Extension Proposal

VK_EXT_extended_dynamic_state3

Other Extension Metadata

Last Modified Date

2022-09-02

4585

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_extended_dynamic_state3] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_extended_dynamic_state3 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_extended_dynamic_state3] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_extended_dynamic_state3 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_extended_dynamic_state3.adoc

IP Status

No known IP claims.

Contributors

• Daniel Story, Nintendo

• Jamie Madill, Google

• Jan-Harald Fredriksen, Arm

• Faith Ekstrand, Collabora

• Mike Blumenkrantz, Valve

• Ricardo Garcia, Igalia

• Samuel Pitoiset, Valve

• Shahbaz Youssefi, Google

• Stu Smith, AMD

• Tapani Pälli, Intel

Description

This extension adds almost all of the remaining pipeline state as dynamic state to help applications
further reduce the number of monolithic pipelines they need to create and bind.

New Commands

• vkCmdSetAlphaToCoverageEnableEXT

• vkCmdSetAlphaToOneEnableEXT

• vkCmdSetColorBlendEnableEXT

• vkCmdSetColorBlendEquationEXT

• vkCmdSetColorWriteMaskEXT

• vkCmdSetDepthClampEnableEXT

• vkCmdSetLogicOpEnableEXT

• vkCmdSetPolygonModeEXT

• vkCmdSetRasterizationSamplesEXT

• vkCmdSetSampleMaskEXT

If VK_EXT_blend_operation_advanced is supported:

• vkCmdSetColorBlendAdvancedEXT

If VK_EXT_conservative_rasterization is supported:

• vkCmdSetConservativeRasterizationModeEXT

• vkCmdSetExtraPrimitiveOverestimationSizeEXT

4586

If VK_EXT_depth_clip_control is supported:

• vkCmdSetDepthClipNegativeOneToOneEXT

If VK_EXT_depth_clip_enable is supported:

• vkCmdSetDepthClipEnableEXT

If VK_EXT_line_rasterization is supported:

• vkCmdSetLineRasterizationModeEXT

• vkCmdSetLineStippleEnableEXT

If VK_EXT_provoking_vertex is supported:

• vkCmdSetProvokingVertexModeEXT

If VK_EXT_sample_locations is supported:

• vkCmdSetSampleLocationsEnableEXT

If VK_EXT_transform_feedback is supported:

• vkCmdSetRasterizationStreamEXT

If VK_KHR_maintenance2 or Version 1.1 is supported:

• vkCmdSetTessellationDomainOriginEXT

If VK_NV_clip_space_w_scaling is supported:

• vkCmdSetViewportWScalingEnableNV

If VK_NV_coverage_reduction_mode is supported:

• vkCmdSetCoverageReductionModeNV

If VK_NV_fragment_coverage_to_color is supported:

• vkCmdSetCoverageToColorEnableNV

• vkCmdSetCoverageToColorLocationNV

If VK_NV_framebuffer_mixed_samples is supported:

• vkCmdSetCoverageModulationModeNV

• vkCmdSetCoverageModulationTableEnableNV

• vkCmdSetCoverageModulationTableNV

If VK_NV_representative_fragment_test is supported:

• vkCmdSetRepresentativeFragmentTestEnableNV

4587

If VK_NV_shading_rate_image is supported:

• vkCmdSetShadingRateImageEnableNV

If VK_NV_viewport_swizzle is supported:

• vkCmdSetViewportSwizzleNV

New Structures

• VkColorBlendAdvancedEXT

• VkColorBlendEquationEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceExtendedDynamicState3FeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceExtendedDynamicState3PropertiesEXT

New Enum Constants

• VK_EXT_EXTENDED_DYNAMIC_STATE_3_EXTENSION_NAME

• VK_EXT_EXTENDED_DYNAMIC_STATE_3_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT

◦ VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT

◦ VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT

◦ VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT

◦ VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT

◦ VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT

◦ VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT

◦ VK_DYNAMIC_STATE_POLYGON_MODE_EXT

◦ VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT

◦ VK_DYNAMIC_STATE_SAMPLE_MASK_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_PROPERTIES_EXT

If VK_EXT_blend_operation_advanced is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_COLOR_BLEND_ADVANCED_EXT

If VK_EXT_conservative_rasterization is supported:

4588

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT

◦ VK_DYNAMIC_STATE_EXTRA_PRIMITIVE_OVERESTIMATION_SIZE_EXT

If VK_EXT_depth_clip_control is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT

If VK_EXT_depth_clip_enable is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT

If VK_EXT_line_rasterization is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT

◦ VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT

If VK_EXT_provoking_vertex is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT

If VK_EXT_sample_locations is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT

If VK_EXT_transform_feedback is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_RASTERIZATION_STREAM_EXT

If VK_KHR_maintenance2 or Version 1.1 is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT

If VK_NV_clip_space_w_scaling is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_ENABLE_NV

If VK_NV_coverage_reduction_mode is supported:

• Extending VkDynamicState:

4589

◦ VK_DYNAMIC_STATE_COVERAGE_REDUCTION_MODE_NV

If VK_NV_fragment_coverage_to_color is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_ENABLE_NV

◦ VK_DYNAMIC_STATE_COVERAGE_TO_COLOR_LOCATION_NV

If VK_NV_framebuffer_mixed_samples is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_COVERAGE_MODULATION_MODE_NV

◦ VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_ENABLE_NV

◦ VK_DYNAMIC_STATE_COVERAGE_MODULATION_TABLE_NV

If VK_NV_representative_fragment_test is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_REPRESENTATIVE_FRAGMENT_TEST_ENABLE_NV

If VK_NV_shading_rate_image is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_SHADING_RATE_IMAGE_ENABLE_NV

If VK_NV_viewport_swizzle is supported:

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_VIEWPORT_SWIZZLE_NV

Issues

1) What about the VkPipelineMultisampleStateCreateInfo state sampleShadingEnable and
minSampleShading?

UNRESOLVED

• sampleShadingEnable and minSampleShading are required when compiling the fragment shader,
and it is not meaningful to set them dynamically since they always need to match the
fragment shader state, so this hardware state may as well just come from the pipeline with
the fragment shader.

Version History

• Revision 2, 2022-07-18 (Piers Daniell)

◦ Added rasterizationSamples

• Revision 1, 2022-05-18 (Piers Daniell)

◦ Internal revisions

4590

VK_EXT_external_memory_acquire_unmodified

Name String

VK_EXT_external_memory_acquire_unmodified

Extension Type

Device extension

Registered Extension Number

454

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_memory

Contact

• Lina Versace versalinyaa

Extension Proposal

VK_EXT_external_memory_acquire_unmodified

Other Extension Metadata

Last Modified Date

2023-03-09

Contributors

• Lina Versace, Google

• Chia-I Wu, Google

• James Jones, NVIDIA

• Yiwei Zhang, Google

Description

A memory barrier may have a performance penalty when acquiring ownership of a subresource
range from an external queue family. This extension provides API that may reduce the
performance penalty if ownership of the subresource range was previously released to the external
queue family and if the resource’s memory has remained unmodified between the release and
acquire operations.

New Structures

• Extending VkBufferMemoryBarrier, VkBufferMemoryBarrier2, VkImageMemoryBarrier,

4591

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_external_memory_acquire_unmodified] @versalinyaa%0A*Here describe the issue or question you have about the VK_EXT_external_memory_acquire_unmodified extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_external_memory_acquire_unmodified] @versalinyaa%0A*Here describe the issue or question you have about the VK_EXT_external_memory_acquire_unmodified extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_external_memory_acquire_unmodified.adoc

VkImageMemoryBarrier2:

◦ VkExternalMemoryAcquireUnmodifiedEXT

New Enum Constants

• VK_EXT_EXTERNAL_MEMORY_ACQUIRE_UNMODIFIED_EXTENSION_NAME

• VK_EXT_EXTERNAL_MEMORY_ACQUIRE_UNMODIFIED_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_ACQUIRE_UNMODIFIED_EXT

Version History

• Revision 1, 2023-03-09 (Lina Versace)

◦ Initial revision

VK_EXT_external_memory_dma_buf

Name String

VK_EXT_external_memory_dma_buf

Extension Type

Device extension

Registered Extension Number

126

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_external_memory_fd

Contact

• Lina Versace versalinyaa

Other Extension Metadata

Last Modified Date

2017-10-10

IP Status

No known IP claims.

4592

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_external_memory_dma_buf] @versalinyaa%0A*Here describe the issue or question you have about the VK_EXT_external_memory_dma_buf extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_external_memory_dma_buf] @versalinyaa%0A*Here describe the issue or question you have about the VK_EXT_external_memory_dma_buf extension*

Contributors

• Lina Versace, Google

• James Jones, NVIDIA

• Faith Ekstrand, Intel

Description

A dma_buf is a type of file descriptor, defined by the Linux kernel, that allows sharing memory
across kernel device drivers and across processes. This extension enables applications to import a
dma_buf as VkDeviceMemory, to export VkDeviceMemory as a dma_buf, and to create VkBuffer
objects that can be bound to that memory.

New Enum Constants

• VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME

• VK_EXT_EXTERNAL_MEMORY_DMA_BUF_SPEC_VERSION

• Extending VkExternalMemoryHandleTypeFlagBits:

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT

Issues

1) How does the application, when creating a VkImage that it intends to bind to dma_buf
VkDeviceMemory containing an externally produced image, specify the memory layout (such as
row pitch and DRM format modifier) of the VkImage? In other words, how does the application
achieve behavior comparable to that provided by EGL_EXT_image_dma_buf_import and
EGL_EXT_image_dma_buf_import_modifiers ?

RESOLVED: Features comparable to those in EGL_EXT_image_dma_buf_import and
EGL_EXT_image_dma_buf_import_modifiers will be provided by an extension layered atop this one.

2) Without the ability to specify the memory layout of external dma_buf images, how is this
extension useful?

RESOLVED: This extension provides exactly one new feature: the ability to import/export between
dma_buf and VkDeviceMemory. This feature, together with features provided by
VK_KHR_external_memory_fd, is sufficient to bind a VkBuffer to dma_buf.

Version History

• Revision 1, 2017-10-10 (Lina Versace)

◦ Squashed internal revisions

VK_EXT_external_memory_host

Name String

VK_EXT_external_memory_host

4593

https://registry.khronos.org/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://registry.khronos.org/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt
https://registry.khronos.org/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://registry.khronos.org/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt

Extension Type

Device extension

Registered Extension Number

179

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_external_memory
or
Version 1.1

Contact

• Daniel Rakos drakos-amd

Other Extension Metadata

Last Modified Date

2017-11-10

IP Status

No known IP claims.

Contributors

• Jaakko Konttinen, AMD

• David Mao, AMD

• Daniel Rakos, AMD

• Tobias Hector, Imagination Technologies

• Faith Ekstrand, Intel

• James Jones, NVIDIA

Description

This extension enables an application to import host allocations and host mapped foreign device
memory to Vulkan memory objects.

New Commands

• vkGetMemoryHostPointerPropertiesEXT

4594

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_external_memory_host] @drakos-amd%0A*Here describe the issue or question you have about the VK_EXT_external_memory_host extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_external_memory_host] @drakos-amd%0A*Here describe the issue or question you have about the VK_EXT_external_memory_host extension*

New Structures

• VkMemoryHostPointerPropertiesEXT

• Extending VkMemoryAllocateInfo:

◦ VkImportMemoryHostPointerInfoEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceExternalMemoryHostPropertiesEXT

New Enum Constants

• VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME

• VK_EXT_EXTERNAL_MEMORY_HOST_SPEC_VERSION

• Extending VkExternalMemoryHandleTypeFlagBits:

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT

◦ VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT

Issues

1) What memory type has to be used to import host pointers?

RESOLVED: Depends on the implementation. Applications have to use the new
vkGetMemoryHostPointerPropertiesEXT command to query the supported memory types for a
particular host pointer. The reported memory types may include memory types that come from a
memory heap that is otherwise not usable for regular memory object allocation and thus such a
heap’s size may be zero.

2) Can the application still access the contents of the host allocation after importing?

RESOLVED: Yes. However, usual synchronization requirements apply.

3) Can the application free the host allocation?

RESOLVED: No, it violates valid usage conditions. Using the memory object imported from a host
allocation that is already freed thus results in undefined behavior.

4) Is vkMapMemory expected to return the same host address which was specified when importing
it to the memory object?

RESOLVED: No. Implementations are allowed to return the same address but it is not required.
Some implementations might return a different virtual mapping of the allocation, although the
same physical pages will be used.

4595

5) Is there any limitation on the alignment of the host pointer and/or size?

RESOLVED: Yes. Both the address and the size have to be an integer multiple of
minImportedHostPointerAlignment. In addition, some platforms and foreign devices may have
additional restrictions.

6) Can the same host allocation be imported multiple times into a given physical device?

RESOLVED: No, at least not guaranteed by this extension. Some platforms do not allow locking the
same physical pages for device access multiple times, so attempting to do it may result in undefined
behavior.

7) Does this extension support exporting the new handle type?

RESOLVED: No.

8) Should we include the possibility to import host mapped foreign device memory using this API?

RESOLVED: Yes, through a separate handle type. Implementations are still allowed to support only
one of the handle types introduced by this extension by not returning import support for a
particular handle type as returned in VkExternalMemoryPropertiesKHR.

Version History

• Revision 1, 2017-11-10 (Daniel Rakos)

◦ Internal revisions

VK_EXT_filter_cubic

Name String

VK_EXT_filter_cubic

Extension Type

Device extension

Registered Extension Number

171

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Matthew Netsch mnetsch

4596

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_filter_cubic] @mnetsch%0A*Here describe the issue or question you have about the VK_EXT_filter_cubic extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_filter_cubic] @mnetsch%0A*Here describe the issue or question you have about the VK_EXT_filter_cubic extension*

Other Extension Metadata

Last Modified Date

2019-12-13

Contributors

• Bill Licea-Kane, Qualcomm Technologies, Inc.

• Andrew Garrard, Samsung

• Daniel Koch, NVIDIA

• Donald Scorgie, Imagination Technologies

• Graeme Leese, Broadcom

• Jan-Harald Fredriksen, ARM

• Jeff Leger, Qualcomm Technologies, Inc.

• Tobias Hector, AMD

• Tom Olson, ARM

• Stuart Smith, Imagination Technologies

Description

VK_EXT_filter_cubic extends VK_IMG_filter_cubic.

It documents cubic filtering of other image view types. It adds new structures that can be added to
the pNext chain of VkPhysicalDeviceImageFormatInfo2 and VkImageFormatProperties2 that can be
used to determine which image types and which image view types support cubic filtering.

New Structures

• Extending VkImageFormatProperties2:

◦ VkFilterCubicImageViewImageFormatPropertiesEXT

• Extending VkPhysicalDeviceImageFormatInfo2:

◦ VkPhysicalDeviceImageViewImageFormatInfoEXT

New Enum Constants

• VK_EXT_FILTER_CUBIC_EXTENSION_NAME

• VK_EXT_FILTER_CUBIC_SPEC_VERSION

• Extending VkFilter:

◦ VK_FILTER_CUBIC_EXT

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_FILTER_CUBIC_IMAGE_VIEW_IMAGE_FORMAT_PROPERTIES_EXT

4597

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_IMAGE_FORMAT_INFO_EXT

Version History

• Revision 3, 2019-12-13 (wwlk)

◦ Delete requirement to cubic filter the formats USCALED_PACKED32, SSCALED_PACKED32,
UINT_PACK32, and SINT_PACK32 (cut/paste error)

• Revision 2, 2019-06-05 (wwlk)

◦ Clarify 1D optional

• Revision 1, 2019-01-24 (wwlk)

◦ Initial version

VK_EXT_fragment_density_map

Name String

VK_EXT_fragment_density_map

Extension Type

Device extension

Registered Extension Number

219

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

API Interactions

• Interacts with VK_KHR_format_feature_flags2

SPIR-V Dependencies

• SPV_EXT_fragment_invocation_density

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2021-09-30

4598

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_fragment_invocation_density.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_fragment_density_map] @mnetsch%0A*Here describe the issue or question you have about the VK_EXT_fragment_density_map extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_fragment_density_map] @mnetsch%0A*Here describe the issue or question you have about the VK_EXT_fragment_density_map extension*

Interactions and External Dependencies

• This extension provides API support for GL_EXT_fragment_invocation_density

Contributors

• Matthew Netsch, Qualcomm Technologies, Inc.

• Robert VanReenen, Qualcomm Technologies, Inc.

• Jonathan Wicks, Qualcomm Technologies, Inc.

• Tate Hornbeck, Qualcomm Technologies, Inc.

• Sam Holmes, Qualcomm Technologies, Inc.

• Jeff Leger, Qualcomm Technologies, Inc.

• Jan-Harald Fredriksen, ARM

• Jeff Bolz, NVIDIA

• Pat Brown, NVIDIA

• Daniel Rakos, AMD

• Piers Daniell, NVIDIA

Description

This extension allows an application to specify areas of the render target where the fragment
shader may be invoked fewer times. These fragments are broadcasted out to multiple pixels to
cover the render target.

The primary use of this extension is to reduce workloads in areas where lower quality may not be
perceived such as the distorted edges of a lens or the periphery of a user’s gaze.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFragmentDensityMapFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceFragmentDensityMapPropertiesEXT

• Extending VkRenderPassCreateInfo, VkRenderPassCreateInfo2:

◦ VkRenderPassFragmentDensityMapCreateInfoEXT

New Enum Constants

• VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME

• VK_EXT_FRAGMENT_DENSITY_MAP_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_FRAGMENT_DENSITY_MAP_READ_BIT_EXT

• Extending VkFormatFeatureFlagBits:

4599

https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_fragment_invocation_density.txt

◦ VK_FORMAT_FEATURE_FRAGMENT_DENSITY_MAP_BIT_EXT

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT

• Extending VkImageViewCreateFlagBits:

◦ VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DYNAMIC_BIT_EXT

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT

• Extending VkSamplerCreateFlagBits:

◦ VK_SAMPLER_CREATE_SUBSAMPLED_BIT_EXT

◦ VK_SAMPLER_CREATE_SUBSAMPLED_COARSE_RECONSTRUCTION_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_RENDER_PASS_FRAGMENT_DENSITY_MAP_CREATE_INFO_EXT

If VK_KHR_format_feature_flags2 is supported:

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_FRAGMENT_DENSITY_MAP_BIT_EXT

New or Modified Built-In Variables

• FragInvocationCountEXT

• FragSizeEXT

New SPIR-V Capabilities

• FragmentDensityEXT

Version History

• Revision 1, 2018-09-25 (Matthew Netsch)

◦ Initial version

• Revision 2, 2021-09-30 (Jon Leech)

◦ Add interaction with VK_KHR_format_feature_flags2 to vk.xml

4600

VK_EXT_fragment_density_map2

Name String

VK_EXT_fragment_density_map2

Extension Type

Device extension

Registered Extension Number

333

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_fragment_density_map

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2020-06-16

Interactions and External Dependencies

• Interacts with Vulkan 1.1

Contributors

• Matthew Netsch, Qualcomm Technologies, Inc.

• Jonathan Tinkham, Qualcomm Technologies, Inc.

• Jonathan Wicks, Qualcomm Technologies, Inc.

• Jan-Harald Fredriksen, ARM

Description

This extension adds additional features and properties to VK_EXT_fragment_density_map in order to
reduce fragment density map host latency as well as improved queries for subsampled sampler
implementation-dependent behavior.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFragmentDensityMap2FeaturesEXT

4601

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_fragment_density_map2] @mnetsch%0A*Here describe the issue or question you have about the VK_EXT_fragment_density_map2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_fragment_density_map2] @mnetsch%0A*Here describe the issue or question you have about the VK_EXT_fragment_density_map2 extension*

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceFragmentDensityMap2PropertiesEXT

New Enum Constants

• VK_EXT_FRAGMENT_DENSITY_MAP_2_EXTENSION_NAME

• VK_EXT_FRAGMENT_DENSITY_MAP_2_SPEC_VERSION

• Extending VkImageViewCreateFlagBits:

◦ VK_IMAGE_VIEW_CREATE_FRAGMENT_DENSITY_MAP_DEFERRED_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_2_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_2_PROPERTIES_EXT

Version History

• Revision 1, 2020-06-16 (Matthew Netsch)

◦ Initial version

VK_EXT_fragment_shader_interlock

Name String

VK_EXT_fragment_shader_interlock

Extension Type

Device extension

Registered Extension Number

252

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

SPIR-V Dependencies

• SPV_EXT_fragment_shader_interlock

Contact

• Piers Daniell pdaniell-nv

4602

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_fragment_shader_interlock] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_fragment_shader_interlock extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_fragment_shader_interlock] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_fragment_shader_interlock extension*

Other Extension Metadata

Last Modified Date

2019-05-02

Interactions and External Dependencies

• This extension provides API support for GL_ARB_fragment_shader_interlock

Contributors

• Daniel Koch, NVIDIA

• Graeme Leese, Broadcom

• Jan-Harald Fredriksen, Arm

• Faith Ekstrand, Intel

• Jeff Bolz, NVIDIA

• Ruihao Zhang, Qualcomm

• Slawomir Grajewski, Intel

• Spencer Fricke, Samsung

Description

This extension adds support for the FragmentShaderPixelInterlockEXT,
FragmentShaderSampleInterlockEXT, and FragmentShaderShadingRateInterlockEXT capabilities from the
SPV_EXT_fragment_shader_interlock extension to Vulkan.

Enabling these capabilities provides a critical section for fragment shaders to avoid overlapping
pixels being processed at the same time, and certain guarantees about the ordering of fragment
shader invocations of fragments of overlapping pixels.

This extension can be useful for algorithms that need to access per-pixel data structures via shader
loads and stores. Algorithms using this extension can access per-pixel data structures in critical
sections without other invocations accessing the same per-pixel data. Additionally, the ordering
guarantees are useful for cases where the API ordering of fragments is meaningful. For example,
applications may be able to execute programmable blending operations in the fragment shader,
where the destination buffer is read via image loads and the final value is written via image stores.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT

New Enum Constants

• VK_EXT_FRAGMENT_SHADER_INTERLOCK_EXTENSION_NAME

• VK_EXT_FRAGMENT_SHADER_INTERLOCK_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT

4603

https://registry.khronos.org/OpenGL/extensions/ARB/ARB_fragment_shader_interlock.txt

New SPIR-V Capabilities

• FragmentShaderInterlockEXT

• FragmentShaderPixelInterlockEXT

• FragmentShaderShadingRateInterlockEXT

Version History

• Revision 1, 2019-05-24 (Piers Daniell)

◦ Internal revisions

VK_EXT_frame_boundary

Name String

VK_EXT_frame_boundary

Extension Type

Device extension

Registered Extension Number

376

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Contact

• James Fitzpatrick jamesfitzpatrick

Extension Proposal

VK_EXT_frame_boundary

Other Extension Metadata

Last Modified Date

2023-06-14

Contributors

• James Fitzpatrick, Imagination Technologies

• Hugues Evrard, Google

• Melih Yasin Yalcin, Google

• Andrew Garrard, Imagination Technologies

4604

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_frame_boundary] @jamesfitzpatrick%0A*Here describe the issue or question you have about the VK_EXT_frame_boundary extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_frame_boundary] @jamesfitzpatrick%0A*Here describe the issue or question you have about the VK_EXT_frame_boundary extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_frame_boundary.adoc

• Jan-Harald Fredriksen, Arm

• Vassili Nikolaev, NVIDIA

• Ting Wei, Huawei

Description

VK_EXT_frame_boundary is a device extension that helps tools (such as debuggers) to group queue
submissions per frames in non-trivial scenarios, typically when vkQueuePresentKHR is not a
relevant frame boundary delimiter.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFrameBoundaryFeaturesEXT

• Extending VkSubmitInfo, VkSubmitInfo2, VkPresentInfoKHR, VkBindSparseInfo:

◦ VkFrameBoundaryEXT

New Enums

• VkFrameBoundaryFlagBitsEXT

New Bitmasks

• VkFrameBoundaryFlagsEXT

New Enum Constants

• VK_EXT_FRAME_BOUNDARY_EXTENSION_NAME

• VK_EXT_FRAME_BOUNDARY_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_FRAME_BOUNDARY_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAME_BOUNDARY_FEATURES_EXT

Version History

• Revision 0, 2022-01-14 (Hugues Evard)

◦ Initial proposal

• Revision 1, 2023-06-14 (James Fitzpatrick)

◦ Initial draft

VK_EXT_full_screen_exclusive

Name String

VK_EXT_full_screen_exclusive

4605

Extension Type

Device extension

Registered Extension Number

256

Revision

4

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_surface
and
VK_KHR_get_surface_capabilities2
and
VK_KHR_swapchain

API Interactions

• Interacts with VK_VERSION_1_1

• Interacts with VK_KHR_device_group

• Interacts with VK_KHR_win32_surface

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2019-03-12

IP Status

No known IP claims.

Interactions and External Dependencies

• Interacts with Vulkan 1.1

• Interacts with VK_KHR_device_group

• Interacts with VK_KHR_win32_surface

Contributors

• Hans-Kristian Arntzen, ARM

• Slawomir Grajewski, Intel

• Tobias Hector, AMD

4606

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_full_screen_exclusive] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_full_screen_exclusive extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_full_screen_exclusive] @cubanismo%0A*Here describe the issue or question you have about the VK_EXT_full_screen_exclusive extension*

• James Jones, NVIDIA

• Daniel Rakos, AMD

• Jeff Juliano, NVIDIA

• Joshua Schnarr, NVIDIA

• Aaron Hagan, AMD

Description

This extension allows applications to set the policy for swapchain creation and presentation
mechanisms relating to full-screen access. Implementations may be able to acquire exclusive access
to a particular display for an application window that covers the whole screen. This can increase
performance on some systems by bypassing composition, however it can also result in disruptive or
expensive transitions in the underlying windowing system when a change occurs.

Applications can choose between explicitly disallowing or allowing this behavior, letting the
implementation decide, or managing this mode of operation directly using the new
vkAcquireFullScreenExclusiveModeEXT and vkReleaseFullScreenExclusiveModeEXT commands.

New Commands

• vkAcquireFullScreenExclusiveModeEXT

• vkGetPhysicalDeviceSurfacePresentModes2EXT

• vkReleaseFullScreenExclusiveModeEXT

If VK_KHR_device_group is supported:

• vkGetDeviceGroupSurfacePresentModes2EXT

If Version 1.1 is supported:

• vkGetDeviceGroupSurfacePresentModes2EXT

New Structures

• Extending VkPhysicalDeviceSurfaceInfo2KHR, VkSwapchainCreateInfoKHR:

◦ VkSurfaceFullScreenExclusiveInfoEXT

• Extending VkSurfaceCapabilities2KHR:

◦ VkSurfaceCapabilitiesFullScreenExclusiveEXT

If VK_KHR_win32_surface is supported:

• Extending VkPhysicalDeviceSurfaceInfo2KHR, VkSwapchainCreateInfoKHR:

◦ VkSurfaceFullScreenExclusiveWin32InfoEXT

New Enums

• VkFullScreenExclusiveEXT

4607

New Enum Constants

• VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME

• VK_EXT_FULL_SCREEN_EXCLUSIVE_SPEC_VERSION

• Extending VkResult:

◦ VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT

◦ VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_INFO_EXT

If VK_KHR_win32_surface is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT

Issues

1) What should the extension & flag be called?

RESOLVED: VK_EXT_full_screen_exclusive.

Other options considered (prior to the app-controlled mode) were:

• VK_EXT_smooth_fullscreen_transition

• VK_EXT_fullscreen_behavior

• VK_EXT_fullscreen_preference

• VK_EXT_fullscreen_hint

• VK_EXT_fast_fullscreen_transition

• VK_EXT_avoid_fullscreen_exclusive

2) Do we need more than a boolean toggle?

RESOLVED: Yes.

Using an enum with default/allowed/disallowed/app-controlled enables applications to accept
driver default behavior, specifically override it in either direction without implying the driver is
ever required to use full-screen exclusive mechanisms, or manage this mode explicitly.

3) Should this be a KHR or EXT extension?

RESOLVED: EXT, in order to allow it to be shipped faster.

4) Can the fullscreen hint affect the surface capabilities, and if so, should the hint also be specified
as input when querying the surface capabilities?

RESOLVED: Yes on both accounts.

4608

While the hint does not guarantee a particular fullscreen mode will be used when the swapchain is
created, it can sometimes imply particular modes will NOT be used. If the driver determines that it
will opt-out of using a particular mode based on the policy, and knows it can only support certain
capabilities if that mode is used, it would be confusing at best to the application to report those
capabilities in such cases. Not allowing implementations to report this state to applications could
result in situations where applications are unable to determine why swapchain creation fails when
they specify certain hint values, which could result in never- terminating surface creation loops.

5) Should full-screen be one word or two?

RESOLVED: Two words.

"Fullscreen" is not in my dictionary, and web searches did not turn up definitive proof that it is a
colloquially accepted compound word. Documentation for the corresponding Windows API
mechanisms dithers. The text consistently uses a hyphen, but none-the-less, there is a
SetFullscreenState method in the DXGI swapchain object. Given this inconclusive external
guidance, it is best to adhere to the Vulkan style guidelines and avoid inventing new compound
words.

Version History

• Revision 4, 2019-03-12 (Tobias Hector)

◦ Added application-controlled mode, and related functions

◦ Tidied up appendix

• Revision 3, 2019-01-03 (James Jones)

◦ Renamed to VK_EXT_full_screen_exclusive

◦ Made related adjustments to the tri-state enumerant names.

• Revision 2, 2018-11-27 (James Jones)

◦ Renamed to VK_KHR_fullscreen_behavior

◦ Switched from boolean flag to tri-state enum

• Revision 1, 2018-11-06 (James Jones)

◦ Internal revision

VK_EXT_graphics_pipeline_library

Name String

VK_EXT_graphics_pipeline_library

Extension Type

Device extension

Registered Extension Number

321

4609

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_pipeline_library

Contact

• Tobias Hector tobski

Extension Proposal

VK_EXT_graphics_pipeline_library

Other Extension Metadata

Last Modified Date

2021-08-17

Contributors

• Tobias Hector, AMD

• Chris Glover, Google

• Jeff Leger, Qualcomm

• Jan-Harald Fredriksen, Arm

• Piers Daniell, NVidia

• Boris Zanin, Mobica

• Krzysztof Niski, NVidia

• Dan Ginsburg, Valve

• Sebastian Aaltonen, Unity

• Arseny Kapoulkine, Roblox

• Calle Lejdfors, Ubisoft

• Tiago Rodrigues, Ubisoft

• Francois Duranleau, Gameloft

Description

This extension allows the separate compilation of four distinct parts of graphics pipelines, with the
intent of allowing faster pipeline loading for applications reusing the same shaders or state in
multiple pipelines. Each part can be independently compiled into a graphics pipeline library, with a
final link step required to create an executable pipeline that can be bound to a command buffer.

4610

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_graphics_pipeline_library] @tobski%0A*Here describe the issue or question you have about the VK_EXT_graphics_pipeline_library extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_graphics_pipeline_library] @tobski%0A*Here describe the issue or question you have about the VK_EXT_graphics_pipeline_library extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_graphics_pipeline_library.adoc

New Structures

• Extending VkGraphicsPipelineCreateInfo:

◦ VkGraphicsPipelineLibraryCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT

New Enums

• VkGraphicsPipelineLibraryFlagBitsEXT

• VkPipelineLayoutCreateFlagBits

New Bitmasks

• VkGraphicsPipelineLibraryFlagsEXT

New Enum Constants

• VK_EXT_GRAPHICS_PIPELINE_LIBRARY_EXTENSION_NAME

• VK_EXT_GRAPHICS_PIPELINE_LIBRARY_SPEC_VERSION

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT

◦ VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT

• Extending VkPipelineLayoutCreateFlagBits:

◦ VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_PROPERTIES_EXT

Version History

• Revision 1, 2021-08-17 (Tobias Hector)

◦ Initial draft.

VK_EXT_hdr_metadata

Name String

VK_EXT_hdr_metadata

4611

Extension Type

Device extension

Registered Extension Number

106

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_swapchain

Contact

• Courtney Goeltzenleuchter courtney-g

Other Extension Metadata

Last Modified Date

2018-12-19

IP Status

No known IP claims.

Contributors

• Courtney Goeltzenleuchter, Google

Description

This extension defines two new structures and a function to assign SMPTE (the Society of Motion
Picture and Television Engineers) 2086 metadata and CTA (Consumer Technology Association) 861.3
metadata to a swapchain. The metadata includes the color primaries, white point, and luminance
range of the reference monitor, which all together define the color volume containing all the
possible colors the reference monitor can produce. The reference monitor is the display where
creative work is done and creative intent is established. To preserve such creative intent as much
as possible and achieve consistent color reproduction on different viewing displays, it is useful for
the display pipeline to know the color volume of the original reference monitor where content was
created or tuned. This avoids performing unnecessary mapping of colors that are not displayable
on the original reference monitor. The metadata also includes the maxContentLightLevel and
maxFrameAverageLightLevel as defined by CTA 861.3.

While the intended purpose of the metadata is to assist in the transformation between different
color volumes of different displays and help achieve better color reproduction, it is not in the scope
of this extension to define how exactly the metadata should be used in such a process. It is up to the
implementation to determine how to make use of the metadata.

4612

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_hdr_metadata] @courtney-g%0A*Here describe the issue or question you have about the VK_EXT_hdr_metadata extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_hdr_metadata] @courtney-g%0A*Here describe the issue or question you have about the VK_EXT_hdr_metadata extension*

New Commands

• vkSetHdrMetadataEXT

New Structures

• VkHdrMetadataEXT

• VkXYColorEXT

New Enum Constants

• VK_EXT_HDR_METADATA_EXTENSION_NAME

• VK_EXT_HDR_METADATA_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_HDR_METADATA_EXT

Issues

1) Do we need a query function?

PROPOSED: No, Vulkan does not provide queries for state that the application can track on its own.

2) Should we specify default if not specified by the application?

PROPOSED: No, that leaves the default up to the display.

Version History

• Revision 1, 2016-12-27 (Courtney Goeltzenleuchter)

◦ Initial version

• Revision 2, 2018-12-19 (Courtney Goeltzenleuchter)

◦ Correct implicit validity for VkHdrMetadataEXT structure

VK_EXT_headless_surface

Name String

VK_EXT_headless_surface

Extension Type

Instance extension

Registered Extension Number

257

Revision

1

4613

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Lisa Wu chengtianww

Other Extension Metadata

Last Modified Date

2019-03-21

IP Status

No known IP claims.

Contributors

• Ray Smith, Arm

Description

The VK_EXT_headless_surface extension is an instance extension. It provides a mechanism to create
VkSurfaceKHR objects independently of any window system or display device. The presentation
operation for a swapchain created from a headless surface is by default a no-op, resulting in no
externally-visible result.

Because there is no real presentation target, future extensions can layer on top of the headless
surface to introduce arbitrary or customisable sets of restrictions or features. These could include
features like saving to a file or restrictions to emulate a particular presentation target.

This functionality is expected to be useful for application and driver development because it allows
any platform to expose an arbitrary or customisable set of restrictions and features of a
presentation engine. This makes it a useful portable test target for applications targeting a wide
range of presentation engines where the actual target presentation engines might be scarce,
unavailable or otherwise undesirable or inconvenient to use for general Vulkan application
development.

New Commands

• vkCreateHeadlessSurfaceEXT

New Structures

• VkHeadlessSurfaceCreateInfoEXT

New Bitmasks

• VkHeadlessSurfaceCreateFlagsEXT

4614

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_headless_surface] @chengtianww%0A*Here describe the issue or question you have about the VK_EXT_headless_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_headless_surface] @chengtianww%0A*Here describe the issue or question you have about the VK_EXT_headless_surface extension*

New Enum Constants

• VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME

• VK_EXT_HEADLESS_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_HEADLESS_SURFACE_CREATE_INFO_EXT

Version History

• Revision 1, 2019-03-21 (Ray Smith)

◦ Initial draft

VK_EXT_host_image_copy

Name String

VK_EXT_host_image_copy

Extension Type

Device extension

Registered Extension Number

271

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_copy_commands2
and
VK_KHR_format_feature_flags2

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_EXT_host_image_copy

Other Extension Metadata

Last Modified Date

2023-04-26

4615

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_host_image_copy] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_host_image_copy extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_host_image_copy] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_host_image_copy extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_host_image_copy.adoc

Contributors

• Shahbaz Youssefi, Google

• Faith Ekstrand, Collabora

• Hans-Kristian Arntzen, Valve

• Piers Daniell, NVIDIA

• Jan-Harald Fredriksen, Arm

• James Fitzpatrick, Imagination

• Daniel Story, Nintendo

Description

This extension allows applications to copy data between host memory and images on the host
processor, without staging the data through a GPU-accessible buffer. This removes the need to
allocate and manage the buffer and its associated memory. On some architectures it may also
eliminate an extra copy operation. This extension additionally allows applications to copy data
between images on the host.

To support initializing a new image in preparation for a host copy, it is now possible to transition a
new image to VK_IMAGE_LAYOUT_GENERAL or other host-copyable layouts via
vkTransitionImageLayoutEXT. Additionally, it is possible to perform copies that preserve the
swizzling layout of the image by using the VK_HOST_IMAGE_COPY_MEMCPY_EXT flag. In that case, the
memory size needed for copies to or from a buffer can be retrieved by chaining
VkSubresourceHostMemcpySizeEXT to pLayout in vkGetImageSubresourceLayout2EXT.

New Commands

• vkCopyImageToImageEXT

• vkCopyImageToMemoryEXT

• vkCopyMemoryToImageEXT

• vkGetImageSubresourceLayout2EXT

• vkTransitionImageLayoutEXT

New Structures

• VkCopyImageToImageInfoEXT

• VkCopyImageToMemoryInfoEXT

• VkCopyMemoryToImageInfoEXT

• VkHostImageLayoutTransitionInfoEXT

• VkImageSubresource2EXT

• VkImageToMemoryCopyEXT

• VkMemoryToImageCopyEXT

• VkSubresourceLayout2EXT

4616

• Extending VkImageFormatProperties2:

◦ VkHostImageCopyDevicePerformanceQueryEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceHostImageCopyFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceHostImageCopyPropertiesEXT

• Extending VkSubresourceLayout2KHR:

◦ VkSubresourceHostMemcpySizeEXT

New Enums

• VkHostImageCopyFlagBitsEXT

New Bitmasks

• VkHostImageCopyFlagsEXT

New Enum Constants

• VK_EXT_HOST_IMAGE_COPY_EXTENSION_NAME

• VK_EXT_HOST_IMAGE_COPY_SPEC_VERSION

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT_EXT

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COPY_IMAGE_TO_IMAGE_INFO_EXT

◦ VK_STRUCTURE_TYPE_COPY_IMAGE_TO_MEMORY_INFO_EXT

◦ VK_STRUCTURE_TYPE_COPY_MEMORY_TO_IMAGE_INFO_EXT

◦ VK_STRUCTURE_TYPE_HOST_IMAGE_COPY_DEVICE_PERFORMANCE_QUERY_EXT

◦ VK_STRUCTURE_TYPE_HOST_IMAGE_LAYOUT_TRANSITION_INFO_EXT

◦ VK_STRUCTURE_TYPE_IMAGE_TO_MEMORY_COPY_EXT

◦ VK_STRUCTURE_TYPE_MEMORY_TO_IMAGE_COPY_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_SUBRESOURCE_HOST_MEMCPY_SIZE_EXT

Issues

1) When uploading data to an image, the data is usually loaded from disk. Why not have the

4617

application load the data directly into a VkDeviceMemory bound to a buffer (instead of host memory),
and use vkCmdCopyBufferToImage? The same could be done when downloading data from an
image.

RESOLVED: This may not always be possible. Complicated Vulkan applications such as game
engines often have decoupled subsystems for streaming data and rendering. It may be
unreasonable to require the streaming subsystem to coordinate with the rendering subsystem to
allocate memory on its behalf, especially as Vulkan may not be the only API supported by the
engine. In emulation layers, the image data is necessarily provided by the application in host
memory, so an optimization as suggested is not possible. Most importantly, the device memory may
not be mappable by an application, but still accessible to the driver.

2) Are optimalBufferCopyOffsetAlignment and optimalBufferCopyRowPitchAlignment applicable to host
memory as well with the functions introduced by this extension? Or should there be new limits?

RESOLVED: No alignment requirements for the host memory pointer.

3) Should there be granularity requirements for image offsets and extents?

RESOLVED: No granularity requirements, i.e. a granularity of 1 pixel (for non-compressed formats)
and 1 texel block (for compressed formats) is assumed.

4) How should the application deal with layout transitions before or after copying to or from
images?

RESOLVED: An existing issue with linear images is that when emulating other APIs, it is impossible
to know when to transition them as they are written to by the host and then used bindlessly. The
copy operations in this extension are affected by the same limitation. A new command is thus
introduced by this extension to address this problem by allowing the host to perform an image
layout transition between a handful of layouts.

Version History

• Revision 0, 2021-01-20 (Faith Ekstrand)

◦ Initial idea and xml

• Revision 1, 2023-04-26 (Shahbaz Youssefi)

◦ Initial revision

VK_EXT_image_2d_view_of_3d

Name String

VK_EXT_image_2d_view_of_3d

Extension Type

Device extension

Registered Extension Number

394

4618

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_maintenance1
and
VK_KHR_get_physical_device_properties2

Special Use

• OpenGL / ES support

Contact

• Mike Blumenkrantz zmike

Other Extension Metadata

Last Modified Date

2022-02-22

IP Status

No known IP claims.

Contributors

• Mike Blumenkrantz, Valve

• Piers Daniell, NVIDIA

• Spencer Fricke, Samsung

• Ricardo Garcia, Igalia

• Graeme Leese, Broadcom

• Ralph Potter, Samsung

• Stu Smith, AMD

• Shahbaz Youssefi, Google

• Alex Walters, Imagination

Description

This extension allows a single slice of a 3D image to be used as a 2D view in image descriptors,
matching both the functionality of glBindImageTexture in OpenGL with the layer parameter set to
true and 2D view binding provided by the extension EGL_KHR_gl_texture_3D_image. It is primarily
intended to support GL emulation.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

4619

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_2d_view_of_3d] @zmike%0A*Here describe the issue or question you have about the VK_EXT_image_2d_view_of_3d extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_2d_view_of_3d] @zmike%0A*Here describe the issue or question you have about the VK_EXT_image_2d_view_of_3d extension*

◦ VkPhysicalDeviceImage2DViewOf3DFeaturesEXT

New Enum Constants

• VK_EXT_IMAGE_2D_VIEW_OF_3D_EXTENSION_NAME

• VK_EXT_IMAGE_2D_VIEW_OF_3D_SPEC_VERSION

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT

Version History

• Revision 1, 2022-03-25 (Mike Blumenkrantz)

◦ Internal revisions

VK_EXT_image_compression_control

Name String

VK_EXT_image_compression_control

Extension Type

Device extension

Registered Extension Number

339

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Extension Proposal

VK_EXT_image_compression_control

Other Extension Metadata

Last Modified Date

2022-05-02

4620

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_compression_control] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_image_compression_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_compression_control] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_image_compression_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_image_compression_control.adoc

IP Status

No known IP claims.

Contributors

• Jan-Harald Fredriksen, Arm

• Graeme Leese, Broadcom

• Andrew Garrard, Imagination

• Lisa Wu, Arm

• Peter Kohaut, Arm

Description

This extension enables fixed-rate image compression and adds the ability to control when this kind
of compression can be applied. Many implementations support some form of framebuffer
compression. This is typically transparent to applications as lossless compression schemes are used.
With fixed-rate compression, the compression is done at a defined bitrate. Such compression
algorithms generally produce results that are visually lossless, but the results are typically not bit-
exact when compared to a non-compressed result. The implementation may not be able to use the
requested compression rate in all cases. This extension adds a query that can be used to determine
the compression scheme and rate that was applied to an image.

New Commands

• vkGetImageSubresourceLayout2EXT

New Structures

• VkImageSubresource2EXT

• VkSubresourceLayout2EXT

• Extending VkImageCreateInfo, VkSwapchainCreateInfoKHR,
VkPhysicalDeviceImageFormatInfo2:

◦ VkImageCompressionControlEXT

• Extending VkImageFormatProperties2, VkSurfaceFormat2KHR, VkSubresourceLayout2KHR:

◦ VkImageCompressionPropertiesEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceImageCompressionControlFeaturesEXT

New Enums

• VkImageCompressionFixedRateFlagBitsEXT

• VkImageCompressionFlagBitsEXT

4621

New Bitmasks

• VkImageCompressionFixedRateFlagsEXT

• VkImageCompressionFlagsEXT

New Enum Constants

• VK_EXT_IMAGE_COMPRESSION_CONTROL_EXTENSION_NAME

• VK_EXT_IMAGE_COMPRESSION_CONTROL_SPEC_VERSION

• Extending VkResult:

◦ VK_ERROR_COMPRESSION_EXHAUSTED_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT

◦ VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_IMAGE_SUBRESOURCE_2_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_SUBRESOURCE_LAYOUT_2_EXT

Version History

• Revision 1, 2022-05-02 (Jan-Harald Fredriksen)

◦ Initial draft

VK_EXT_image_compression_control_swapchain

Name String

VK_EXT_image_compression_control_swapchain

Extension Type

Device extension

Registered Extension Number

438

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_image_compression_control

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

4622

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_compression_control_swapchain] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_image_compression_control_swapchain extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_compression_control_swapchain] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_image_compression_control_swapchain extension*

Other Extension Metadata

Last Modified Date

2022-05-02

IP Status

No known IP claims.

Contributors

• Jan-Harald Fredriksen, Arm

• Graeme Leese, Broadcom

• Andrew Garrard, Imagination

• Lisa Wu, Arm

• Peter Kohaut, Arm

• Ian Elliott, Google

Description

This extension enables fixed-rate image compression and adds the ability to control when this kind
of compression can be applied to swapchain images.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT

New Enum Constants

• VK_EXT_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_EXTENSION_NAME

• VK_EXT_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_FEATURES_EXT

Version History

• Revision 1, 2022-05-02 (Jan-Harald Fredriksen)

◦ Initial draft

VK_EXT_image_drm_format_modifier

Name String

VK_EXT_image_drm_format_modifier

Extension Type

Device extension

4623

Registered Extension Number

159

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

 VK_KHR_bind_memory2
 and
 VK_KHR_get_physical_device_properties2
 and
 VK_KHR_sampler_ycbcr_conversion
 or
 Version 1.1
and
 VK_KHR_image_format_list
 or
 Version 1.2

API Interactions

• Interacts with VK_KHR_format_feature_flags2

Contact

• Lina Versace versalinyaa

Other Extension Metadata

Last Modified Date

2021-09-30

IP Status

No known IP claims.

Contributors

• Antoine Labour, Google

• Bas Nieuwenhuizen, Google

• Lina Versace, Google

• James Jones, NVIDIA

• Faith Ekstrand, Intel

• Jőrg Wagner, ARM

• Kristian Høgsberg Kristensen, Google

• Ray Smith, ARM

4624

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_drm_format_modifier] @versalinyaa%0A*Here describe the issue or question you have about the VK_EXT_image_drm_format_modifier extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_drm_format_modifier] @versalinyaa%0A*Here describe the issue or question you have about the VK_EXT_image_drm_format_modifier extension*

Description

This extension provides the ability to use DRM format modifiers with images, enabling Vulkan to
better integrate with the Linux ecosystem of graphics, video, and display APIs.

Its functionality closely overlaps with EGL_EXT_image_dma_buf_import_modifiers2 and
EGL_MESA_image_dma_buf_export3. Unlike the EGL extensions, this extension does not require the use
of a specific handle type (such as a dma_buf) for external memory and provides more explicit
control of image creation.

Introduction to DRM Format Modifiers

A DRM format modifier is a 64-bit, vendor-prefixed, semi-opaque unsigned integer. Most modifiers
represent a concrete, vendor-specific tiling format for images. Some exceptions are
DRM_FORMAT_MOD_LINEAR (which is not vendor-specific); DRM_FORMAT_MOD_NONE (which is an alias of
DRM_FORMAT_MOD_LINEAR due to historical accident); and DRM_FORMAT_MOD_INVALID (which does not
represent a tiling format). The modifier’s vendor prefix consists of the 8 most significant bits. The
canonical list of modifiers and vendor prefixes is found in drm_fourcc.h in the Linux kernel source.
The other dominant source of modifiers are vendor kernel trees.

One goal of modifiers in the Linux ecosystem is to enumerate for each vendor a reasonably sized set
of tiling formats that are appropriate for images shared across processes, APIs, and/or devices,
where each participating component may possibly be from different vendors. A non-goal is to
enumerate all tiling formats supported by all vendors. Some tiling formats used internally by
vendors are inappropriate for sharing; no modifiers should be assigned to such tiling formats.

Modifier values typically do not describe memory layouts. More precisely, a modifier's lower 56 bits
usually have no structure. Instead, modifiers name memory layouts; they name a small set of
vendor-preferred layouts for image sharing. As a consequence, in each vendor namespace the
modifier values are often sequentially allocated starting at 1.

Each modifier is usually supported by a single vendor and its name matches the pattern
{VENDOR}_FORMAT_MOD_* or DRM_FORMAT_MOD_{VENDOR}_*. Examples are I915_FORMAT_MOD_X_TILED and
DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED. An exception is DRM_FORMAT_MOD_LINEAR, which is supported by
most vendors.

Many APIs in Linux use modifiers to negotiate and specify the memory layout of shared images. For
example, a Wayland compositor and Wayland client may, by relaying modifiers over the Wayland
protocol zwp_linux_dmabuf_v1, negotiate a vendor-specific tiling format for a shared wl_buffer. The
client may allocate the underlying memory for the wl_buffer with GBM, providing the chosen
modifier to gbm_bo_create_with_modifiers. The client may then import the wl_buffer into Vulkan for
producing image content, providing the resource’s dma_buf to VkImportMemoryFdInfoKHR and its
modifier to VkImageDrmFormatModifierExplicitCreateInfoEXT. The compositor may then import
the wl_buffer into OpenGL for sampling, providing the resource’s dma_buf and modifier to
eglCreateImage. The compositor may also bypass OpenGL and submit the wl_buffer directly to the
kernel’s display API, providing the dma_buf and modifier through drm_mode_fb_cmd2.

Format Translation

Modifier-capable APIs often pair modifiers with DRM formats, which are defined in drm_fourcc.h.

4625

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/drm/drm_fourcc.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/drm/drm_fourcc.h

However, VK_EXT_image_drm_format_modifier uses VkFormat instead of DRM formats. The
application must convert between VkFormat and DRM format when it sends or receives a DRM
format to or from an external API.

The mapping from VkFormat to DRM format is lossy. Therefore, when receiving a DRM format from
an external API, often the application must use information from the external API to accurately
map the DRM format to a VkFormat. For example, DRM formats do not distinguish between RGB
and sRGB (as of 2018-03-28); external information is required to identify the image’s color space.

The mapping between VkFormat and DRM format is also incomplete. For some DRM formats there
exist no corresponding Vulkan format, and for some Vulkan formats there exist no corresponding
DRM format.

Usage Patterns

Three primary usage patterns are intended for this extension:

• Negotiation. The application negotiates with modifier-aware, external components to
determine sets of image creation parameters supported among all components.

In the Linux ecosystem, the negotiation usually assumes the image is a 2D, single-sampled, non-
mipmapped, non-array image; this extension permits that assumption but does not require it.
The result of the negotiation usually resembles a set of tuples such as (drmFormat,
drmFormatModifier), where each participating component supports all tuples in the set.

Many details of this negotiation - such as the protocol used during negotiation, the set of image
creation parameters expressible in the protocol, and how the protocol chooses which process
and which API will create the image - are outside the scope of this specification.

In this extension, vkGetPhysicalDeviceFormatProperties2 with
VkDrmFormatModifierPropertiesListEXT serves a primary role during the negotiation, and
vkGetPhysicalDeviceImageFormatProperties2 with
VkPhysicalDeviceImageDrmFormatModifierInfoEXT serves a secondary role.

• Import. The application imports an image with a modifier.

In this pattern, the application receives from an external source the image’s memory and its
creation parameters, which are often the result of the negotiation described above. Some image
creation parameters are implicitly defined by the external source; for example,
VK_IMAGE_TYPE_2D is often assumed. Some image creation parameters are usually explicit, such as
the image’s format, drmFormatModifier, and extent; and each plane’s offset and rowPitch.

Before creating the image, the application first verifies that the physical device supports the
received creation parameters by querying vkGetPhysicalDeviceFormatProperties2 with
VkDrmFormatModifierPropertiesListEXT and vkGetPhysicalDeviceImageFormatProperties2
with VkPhysicalDeviceImageDrmFormatModifierInfoEXT. Then the application creates the
image by chaining VkImageDrmFormatModifierExplicitCreateInfoEXT and
VkExternalMemoryImageCreateInfo onto VkImageCreateInfo.

• Export. The application creates an image and allocates its memory. Then the application

4626

exports to modifier-aware consumers the image’s memory handles; its creation parameters; its
modifier; and the offset, size, and rowPitch of each memory plane.

In this pattern, the Vulkan device is the authority for the image; it is the allocator of the image’s
memory and the decider of the image’s creation parameters. When choosing the image’s
creation parameters, the application usually chooses a tuple (format, drmFormatModifier) from
the result of the negotiation described above. The negotiation’s result often contains multiple
tuples that share the same format but differ in their modifier. In this case, the application should
defer the choice of the image’s modifier to the Vulkan implementation by providing all such
modifiers to VkImageDrmFormatModifierListCreateInfoEXT::pDrmFormatModifiers; and the
implementation should choose from pDrmFormatModifiers the optimal modifier in consideration
with the other image parameters.

The application creates the image by chaining VkImageDrmFormatModifierListCreateInfoEXT
and VkExternalMemoryImageCreateInfo onto VkImageCreateInfo. The protocol and APIs by
which the application will share the image with external consumers will likely determine the
value of VkExternalMemoryImageCreateInfo::handleTypes. The implementation chooses for the
image an optimal modifier from VkImageDrmFormatModifierListCreateInfoEXT
::pDrmFormatModifiers. The application then queries the implementation-chosen modifier with
vkGetImageDrmFormatModifierPropertiesEXT, and queries the memory layout of each plane
with vkGetImageSubresourceLayout.

The application then allocates the image’s memory with VkMemoryAllocateInfo, adding
chained extending structures for external memory; binds it to the image; and exports the
memory, for example, with vkGetMemoryFdKHR.

Finally, the application sends the image’s creation parameters, its modifier, its per-plane
memory layout, and the exported memory handle to the external consumers. The details of how
the application transmits this information to external consumers is outside the scope of this
specification.

Prior Art

Extension EGL_EXT_image_dma_buf_import1 introduced the ability to create an EGLImage by importing
for each plane a dma_buf, offset, and row pitch.

Later, extension EGL_EXT_image_dma_buf_import_modifiers2 introduced the ability to query which
combination of formats and modifiers the implementation supports and to specify modifiers during
creation of the EGLImage.

Extension EGL_MESA_image_dma_buf_export3 is the inverse of EGL_EXT_image_dma_buf_import_modifiers.

The Linux kernel modesetting API (KMS), when configuring the display’s framebuffer with struct
drm_mode_fb_cmd24, allows one to specify the framebuffer’s modifier as well as a per-plane memory
handle, offset, and row pitch.

GBM, a graphics buffer manager for Linux, allows creation of a gbm_bo (that is, a graphics buffer
object) by importing data similar to that in EGL_EXT_image_dma_buf_import_modifiers1; and
symmetrically allows exporting the same data from the gbm_bo. See the references to modifier and
plane in gbm.h5.

4627

New Commands

• vkGetImageDrmFormatModifierPropertiesEXT

New Structures

• VkDrmFormatModifierPropertiesEXT

• VkImageDrmFormatModifierPropertiesEXT

• Extending VkFormatProperties2:

◦ VkDrmFormatModifierPropertiesListEXT

• Extending VkImageCreateInfo:

◦ VkImageDrmFormatModifierExplicitCreateInfoEXT

◦ VkImageDrmFormatModifierListCreateInfoEXT

• Extending VkPhysicalDeviceImageFormatInfo2:

◦ VkPhysicalDeviceImageDrmFormatModifierInfoEXT

If VK_KHR_format_feature_flags2 is supported:

• VkDrmFormatModifierProperties2EXT

• Extending VkFormatProperties2:

◦ VkDrmFormatModifierPropertiesList2EXT

New Enum Constants

• VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME

• VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_SPEC_VERSION

• Extending VkImageAspectFlagBits:

◦ VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT

◦ VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT

◦ VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT

◦ VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT

• Extending VkImageTiling:

◦ VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT

• Extending VkResult:

◦ VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_EXT

◦ VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT

4628

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT

If VK_KHR_format_feature_flags2 is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_2_EXT

Issues

1) Should this extension define a single DRM format modifier per VkImage? Or define one per plane?

+

RESOLVED: There exists a single DRM format modifier per VkImage.

DISCUSSION: Prior art, such as EGL_EXT_image_dma_buf_import_modifiers2, struct drm_mode_fb_cmd24,
and struct gbm_import_fd_modifier_data5, allows defining one modifier per plane. However,
developers of the GBM and kernel APIs concede it was a mistake. Beginning in Linux 4.10, the
kernel requires that the application provide the same DRM format modifier for each plane. (See
Linux commit bae781b259269590109e8a4a8227331362b88212). And GBM provides an entry point,
gbm_bo_get_modifier, for querying the modifier of the image but does not provide one to query the
modifier of individual planes.

2) When creating an image with VkImageDrmFormatModifierExplicitCreateInfoEXT, which is
typically used when importing an image, should the application explicitly provide the size of each
plane?

+

RESOLVED: No. The application must not provide the size. To enforce this, the API requires that
VkImageDrmFormatModifierExplicitCreateInfoEXT::pPlaneLayouts->size must be 0.

DISCUSSION: Prior art, such as EGL_EXT_image_dma_buf_import_modifiers2, struct drm_mode_fb_cmd24,
and struct gbm_import_fd_modifier_data5, omits from the API the size of each plane. Instead, the
APIs infer each plane’s size from the import parameters, which include the image’s pixel format
and a dma_buf, offset, and row pitch for each plane.

However, Vulkan differs from EGL and GBM with regards to image creation in the following ways:

Differences in Image Creation

• Undedicated allocation by default. When importing or exporting a set of dma_bufs as an
EGLImage or gbm_bo, common practice mandates that each dma_buf’s memory be dedicated (in
the sense of VK_KHR_dedicated_allocation) to the image (though not necessarily dedicated to a
single plane). In particular, neither the GBM documentation nor the EGL extension
specifications explicitly state this requirement, but in light of common practice this is likely due
to under-specification rather than intentional omission. In contrast,
VK_EXT_image_drm_format_modifier permits, but does not require, the implementation to require
dedicated allocations for images created with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.

• Separation of image creation and memory allocation. When importing a set of dma_bufs as
an EGLImage or gbm_bo, EGL and GBM create the image resource and bind it to memory (the

4629

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bae781b259269590109e8a4a8227331362b88212

dma_bufs) simultaneously. This allows EGL and GBM to query each dma_buf’s size during
image creation. In Vulkan, image creation and memory allocation are independent unless a
dedicated allocation is used (as in VK_KHR_dedicated_allocation). Therefore, without requiring
dedicated allocation, Vulkan cannot query the size of each dma_buf (or other external handle)
when calculating the image’s memory layout. Even if dedication allocation were required,
Vulkan cannot calculate the image’s memory layout until after the image is bound to its
dma_ufs.

The above differences complicate the potential inference of plane size in Vulkan. Consider the
following problematic cases:

Problematic Plane Size Calculations

• Padding. Some plane of the image may require implementation-dependent padding.

• Metadata. For some modifiers, the image may have a metadata plane which requires a non-
trivial calculation to determine its size.

• Mipmapped, array, and 3D images. The implementation may support
VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT for images whose mipLevels, arrayLayers, or depth is
greater than 1. For such images with certain modifiers, the calculation of each plane’s size may
be non-trivial.

However, an application-provided plane size solves none of the above problems.

For simplicity, consider an external image with a single memory plane. The implementation is
obviously capable calculating the image’s size when its tiling is VK_IMAGE_TILING_OPTIMAL. Likewise,
any reasonable implementation is capable of calculating the image’s size when its tiling uses a
supported modifier.

Suppose that the external image’s size is smaller than the implementation-calculated size. If the
application provided the external image’s size to vkCreateImage, the implementation would
observe the mismatched size and recognize its inability to comprehend the external image’s layout
(unless the implementation used the application-provided size to select a refinement of the tiling
layout indicated by the modifier, which is strongly discouraged). The implementation would
observe the conflict, and reject image creation with
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT. On the other hand, if the application did
not provide the external image’s size to vkCreateImage, then the application would observe after
calling vkGetImageMemoryRequirements that the external image’s size is less than the size
required by the implementation. The application would observe the conflict and refuse to bind the
VkImage to the external memory. In both cases, the result is explicit failure.

Suppose that the external image’s size is larger than the implementation-calculated size. If the
application provided the external image’s size to vkCreateImage, for reasons similar to above the
implementation would observe the mismatched size and recognize its inability to comprehend the
image data residing in the extra size. The implementation, however, must assume that image data
resides in the entire size provided by the application. The implementation would observe the
conflict and reject image creation with VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT. On
the other hand, if the application did not provide the external image’s size to vkCreateImage, then
the application would observe after calling vkGetImageMemoryRequirements that the external
image’s size is larger than the implementation-usable size. The application would observe the

4630

conflict and refuse to bind the VkImage to the external memory. In both cases, the result is explicit
failure.

Therefore, an application-provided size provides no benefit, and this extension should not require
it. This decision renders VkSubresourceLayout::size an unused field during image creation, and
thus introduces a risk that implementations may require applications to submit sideband creation
parameters in the unused field. To prevent implementations from relying on sideband data, this
extension requires the application to set size to 0.

References

1. EGL_EXT_image_dma_buf_import

2. EGL_EXT_image_dma_buf_import_modifiers

3. EGL_MESA_image_dma_buf_export

4. struct drm_mode_fb_cmd2

5. gbm.h

Version History

• Revision 1, 2018-08-29 (Lina Versace)

◦ First stable revision

• Revision 2, 2021-09-30 (Jon Leech)

◦ Add interaction with VK_KHR_format_feature_flags2 to vk.xml

VK_EXT_image_sliced_view_of_3d

Name String

VK_EXT_image_sliced_view_of_3d

Extension Type

Device extension

Registered Extension Number

419

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_maintenance1
and
VK_KHR_get_physical_device_properties2

4631

https://registry.khronos.org/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://registry.khronos.org/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt
https://registry.khronos.org/EGL/extensions/MESA/EGL_MESA_image_dma_buf_export.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/uapi/drm/drm_mode.h?id=refs/tags/v4.10#n392
https://cgit.freedesktop.org/mesa/mesa/tree/src/gbm/main/gbm.h?id=refs/tags/mesa-18.0.0-rc1

Special Use

• D3D support

Contact

• Mike Blumenkrantz zmike

Extension Proposal

VK_EXT_image_sliced_view_of_3d

Other Extension Metadata

Last Modified Date

2023-01-24

IP Status

No known IP claims.

Contributors

• Mike Blumenkrantz, Valve

• Hans-Kristian Arntzen, Valve

• Ricardo Garcia, Igalia

• Shahbaz Youssefi, Google

• Piers Daniell, NVIDIA

Description

This extension allows creating 3D views of 3D images such that the views contain a subset of the
slices in the image, using a Z offset and range, for the purpose of using the views as storage image
descriptors. This matches functionality in D3D12 and is primarily intended to support D3D12
emulation.

New Structures

• Extending VkImageViewCreateInfo:

◦ VkImageViewSlicedCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceImageSlicedViewOf3DFeaturesEXT

New Enum Constants

• VK_EXT_IMAGE_SLICED_VIEW_OF_3D_EXTENSION_NAME

• VK_EXT_IMAGE_SLICED_VIEW_OF_3D_SPEC_VERSION

• VK_REMAINING_3D_SLICES_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_SLICED_CREATE_INFO_EXT

4632

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_sliced_view_of_3d] @zmike%0A*Here describe the issue or question you have about the VK_EXT_image_sliced_view_of_3d extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_sliced_view_of_3d] @zmike%0A*Here describe the issue or question you have about the VK_EXT_image_sliced_view_of_3d extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_image_sliced_view_of_3d.adoc

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_SLICED_VIEW_OF_3D_FEATURES_EXT

Version History

• Revision 1, 2022-10-21 (Mike Blumenkrantz)

◦ Initial revision

VK_EXT_image_view_min_lod

Name String

VK_EXT_image_view_min_lod

Extension Type

Device extension

Registered Extension Number

392

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Joshua Ashton Joshua-Ashton

Other Extension Metadata

Last Modified Date

2021-11-09

IP Status

No known IP claims.

Contributors

• Joshua Ashton, Valve

• Hans-Kristian Arntzen, Valve

• Samuel Iglesias Gonsalvez, Igalia

• Tobias Hector, AMD

• Faith Ekstrand, Intel

• Tom Olson, ARM

4633

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_view_min_lod] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_image_view_min_lod extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_view_min_lod] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_image_view_min_lod extension*

Description

This extension allows applications to clamp the minimum LOD value during Image Level(s)
Selection, Texel Gathering and Integer Texel Coordinate Operations with a given VkImageView by
VkImageViewMinLodCreateInfoEXT::minLod.

This extension may be useful to restrict a VkImageView to only mips which have been uploaded,
and the use of fractional minLod can be useful for smoothly introducing new mip levels when using
linear mipmap filtering.

New Structures

• Extending VkImageViewCreateInfo:

◦ VkImageViewMinLodCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceImageViewMinLodFeaturesEXT

New Enum Constants

• VK_EXT_IMAGE_VIEW_MIN_LOD_EXTENSION_NAME

• VK_EXT_IMAGE_VIEW_MIN_LOD_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_MIN_LOD_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT

Version History

• Revision 1, 2021-07-06 (Joshua Ashton)

◦ Initial version

VK_EXT_layer_settings

Name String

VK_EXT_layer_settings

Extension Type

Instance extension

Registered Extension Number

497

Revision

2

Ratification Status

Ratified

4634

Extension and Version Dependencies

None

Contact

• Christophe Riccio christophe

Extension Proposal

VK_EXT_layer_settings

Other Extension Metadata

Last Modified Date

2023-09-23

IP Status

No known IP claims.

Contributors

• Christophe Riccio, LunarG

• Mark Lobodzinski, LunarG

• Charles Giessen, LunarG

• Spencer Fricke, LunarG

• Juan Ramos, LunarG

• Daniel Rakos, RasterGrid

• Shahbaz Youssefi, Google

• Lina Versace, Google

• Bill Hollings, The Brenwill Workshop

• Jon Leech, Khronos

• Tom Olson, Arm

Description

This extension provides a mechanism for configuring programmatically through the Vulkan API
the behavior of layers.

This extension provides the VkLayerSettingsCreateInfoEXT struct that can be included in the pNext
chain of the VkInstanceCreateInfo structure passed as the pCreateInfo parameter of
vkCreateInstance.

The structure contains an array of VkLayerSettingEXT structure values that configure specific
features of layers.

Example

VK_EXT_layer_settings is implemented by the Vulkan Profiles layer.

4635

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_layer_settings] @christophe%0A*Here describe the issue or question you have about the VK_EXT_layer_settings extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_layer_settings] @christophe%0A*Here describe the issue or question you have about the VK_EXT_layer_settings extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_layer_settings.adoc

It allows the profiles layer tests used by the profiles layer C.I. to programmatically configure the
layer for each test without affecting the C.I. environment, allowing to run multiple tests
concurrently.

const char* profile_file_data = JSON_TEST_FILES_PATH "VP_KHR_roadmap_2022.json";
const char* profile_name_data = "VP_KHR_roadmap_2022";
VkBool32 emulate_portability_data = VK_TRUE;
const char* simulate_capabilities[] = {
 "SIMULATE_API_VERSION_BIT",
 "SIMULATE_FEATURES_BIT",
 "SIMULATE_PROPERTIES_BIT",
 "SIMULATE_EXTENSIONS_BIT",
 "SIMULATE_FORMATS_BIT",
 "SIMULATE_QUEUE_FAMILY_PROPERTIES_BIT"
};
const char* debug_reports[] = {
 "DEBUG_REPORT_ERROR_BIT",
 "DEBUG_REPORT_WARNING_BIT",
 "DEBUG_REPORT_NOTIFICATION_BIT",
 "DEBUG_REPORT_DEBUG_BIT"
};

const VkLayerSettingEXT settings[] = {
 {kLayerName, kLayerSettingsProfileFile, VK_LAYER_SETTING_TYPE_STRING_EXT, 1,
&profile_file_data},
 {kLayerName, kLayerSettingsProfileName, VK_LAYER_SETTING_TYPE_STRING_EXT, 1,
&profile_name_data},
 {kLayerName, kLayerSettingsEmulatePortability, VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &emulate_portability_data},
 {kLayerName, kLayerSettingsSimulateCapabilities,
VK_LAYER_SETTING_TYPE_STRING_EXT,
 static_cast<uint32_t>(std::size(simulate_capabilities)),
simulate_capabilities},
 {kLayerName, kLayerSettingsDebugReports, VK_LAYER_SETTING_TYPE_STRING_EXT,
 static_cast<uint32_t>(std::size(debug_reports)), debug_reports}
};

const VkLayerSettingsCreateInfoEXT layer_settings_create_info{
 VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT, nullptr,
 static_cast<uint32_t>(std::size(settings)), settings};

VkInstanceCreateInfo inst_create_info = {};
...
inst_create_info.pNext = &layer_settings_create_info;
vkCreateInstance(&inst_create_info, nullptr, &_instances);

Note

The VK_EXT_layer_settings extension subsumes all the functionality provided in
the VK_EXT_validation_flags extension and the VK_EXT_validation_features

4636

extension.

New Structures

• VkLayerSettingEXT

• Extending VkInstanceCreateInfo:

◦ VkLayerSettingsCreateInfoEXT

New Enums

• VkLayerSettingTypeEXT

New Enum Constants

• VK_EXT_LAYER_SETTINGS_EXTENSION_NAME

• VK_EXT_LAYER_SETTINGS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT

Issues

• How should application developers figure out the list of available settings?

This extension does not provide a reflection API for layer settings. Layer settings are described in
each layer JSON manifest and the documentation of each layer which implements this extension.

Version History

• Revision 1, 2020-06-17 (Mark Lobodzinski)

◦ Initial revision for Validation layer internal usages

• Revision 2, 2023-09-26 (Christophe Riccio)

◦ Refactor APIs for any layer usages and public release

VK_EXT_legacy_dithering

Name String

VK_EXT_legacy_dithering

Extension Type

Device extension

Registered Extension Number

466

Revision

1

4637

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

API Interactions

• Interacts with VK_VERSION_1_3

• Interacts with VK_KHR_dynamic_rendering

Special Use

• OpenGL / ES support

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_EXT_legacy_dithering

Other Extension Metadata

Last Modified Date

2022-03-31

Contributors

• Shahbaz Youssefi, Google

• Graeme Leese, Broadcom

• Jan-Harald Fredriksen, Arm

Description

This extension exposes a hardware feature used by some vendors to implement OpenGL’s
dithering. The purpose of this extension is to support layering OpenGL over Vulkan, by allowing the
layer to take advantage of the same hardware feature and provide equivalent dithering to OpenGL
applications.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceLegacyDitheringFeaturesEXT

New Enum Constants

• VK_EXT_LEGACY_DITHERING_EXTENSION_NAME

• VK_EXT_LEGACY_DITHERING_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LEGACY_DITHERING_FEATURES_EXT

4638

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_legacy_dithering] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_legacy_dithering extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_legacy_dithering] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_legacy_dithering extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_legacy_dithering.adoc

• Extending VkSubpassDescriptionFlagBits:

◦ VK_SUBPASS_DESCRIPTION_ENABLE_LEGACY_DITHERING_BIT_EXT

If VK_KHR_dynamic_rendering is supported:

• Extending VkRenderingFlagBits:

◦ VK_RENDERING_ENABLE_LEGACY_DITHERING_BIT_EXT

If Version 1.3 is supported:

• Extending VkRenderingFlagBits:

◦ VK_RENDERING_ENABLE_LEGACY_DITHERING_BIT_EXT

Version History

• Revision 1, 2022-03-31 (Shahbaz Youssefi)

◦ Internal revisions

Issues

1) In OpenGL, the dither state can change dynamically. Should this extension add a pipeline state
for dither?

RESOLVED: No. Changing dither state is rarely, if ever, done during rendering. Every surveyed
Android application either entirely disables dither, explicitly enables it, or uses the default state
(which is enabled). Additionally, on some hardware dither can only be specified in a render pass
granularity, so a change in dither state would necessarily need to cause a render pass break. This
extension considers dynamic changes in OpenGL dither state a theoretical situation, and expects
the layer to break the render pass in such a situation without any practical downsides.

VK_EXT_map_memory_placed

Name String

VK_EXT_map_memory_placed

Extension Type

Device extension

Registered Extension Number

273

Revision

1

Ratification Status

Not ratified

4639

Extension and Version Dependencies

VK_KHR_map_memory2

Contact

• Faith Ekstrand gfxstrand

Extension Proposal

VK_EXT_map_memory_placed

Other Extension Metadata

Last Modified Date

2023-03-21

IP Status

No known IP claims.

Interactions and External Dependencies

• Depends on apitext:VK_KHR_map_memory2

• Interacts with apitext:VK_EXT_external_memory_host

Contributors

• Faith Ekstrand, Collabora

• Tobias Hector, AMD

• James Jones, NVIDIA

• Georg Lehmann, Valve

• Derek Lesho, Codeweavers

Description

This extension allows a client to request that vkMapMemory2KHR attempt to place the memory
map at a particular virtual address.

New Structures

• Extending VkMemoryMapInfoKHR:

◦ VkMemoryMapPlacedInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMapMemoryPlacedFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMapMemoryPlacedPropertiesEXT

New Enum Constants

• VK_EXT_MAP_MEMORY_PLACED_EXTENSION_NAME

4640

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_map_memory_placed] @gfxstrand%0A*Here describe the issue or question you have about the VK_EXT_map_memory_placed extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_map_memory_placed] @gfxstrand%0A*Here describe the issue or question you have about the VK_EXT_map_memory_placed extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_map_memory_placed.adoc

• VK_EXT_MAP_MEMORY_PLACED_SPEC_VERSION

• Extending VkMemoryMapFlagBits:

◦ VK_MEMORY_MAP_PLACED_BIT_EXT

• Extending VkMemoryUnmapFlagBitsKHR:

◦ VK_MEMORY_UNMAP_RESERVE_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MEMORY_MAP_PLACED_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAP_MEMORY_PLACED_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAP_MEMORY_PLACED_PROPERTIES_EXT

Version History

• Revision 0, 2024-01-14 (Faith Ekstrand)

◦ Internal revisions

VK_EXT_memory_budget

Name String

VK_EXT_memory_budget

Extension Type

Device extension

Registered Extension Number

238

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2018-10-08

4641

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_memory_budget] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_memory_budget extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_memory_budget] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_memory_budget extension*

Contributors

• Jeff Bolz, NVIDIA

• Jeff Juliano, NVIDIA

Description

While running a Vulkan application, other processes on the machine might also be attempting to
use the same device memory, which can pose problems. This extension adds support for querying
the amount of memory used and the total memory budget for a memory heap. The values returned
by this query are implementation-dependent and can depend on a variety of factors including
operating system and system load.

The VkPhysicalDeviceMemoryBudgetPropertiesEXT::heapBudget values can be used as a guideline
for how much total memory from each heap the current process can use at any given time, before
allocations may start failing or causing performance degradation. The values may change based on
other activity in the system that is outside the scope and control of the Vulkan implementation.

The VkPhysicalDeviceMemoryBudgetPropertiesEXT::heapUsage will display the current process
estimated heap usage.

With this information, the idea is for an application at some interval (once per frame, per few
seconds, etc) to query heapBudget and heapUsage. From here the application can notice if it is over
budget and decide how it wants to handle the memory situation (free it, move to host memory,
changing mipmap levels, etc). This extension is designed to be used in concert with
VK_EXT_memory_priority to help with this part of memory management.

New Structures

• Extending VkPhysicalDeviceMemoryProperties2:

◦ VkPhysicalDeviceMemoryBudgetPropertiesEXT

New Enum Constants

• VK_EXT_MEMORY_BUDGET_EXTENSION_NAME

• VK_EXT_MEMORY_BUDGET_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT

Version History

• Revision 1, 2018-10-08 (Jeff Bolz)

◦ Initial revision

VK_EXT_memory_priority

Name String

VK_EXT_memory_priority

4642

Extension Type

Device extension

Registered Extension Number

239

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2018-10-08

Contributors

• Jeff Bolz, NVIDIA

• Jeff Juliano, NVIDIA

Description

This extension adds a priority value specified at memory allocation time. On some systems with
both device-local and non-device-local memory heaps, the implementation may transparently move
memory from one heap to another when a heap becomes full (for example, when the total memory
used across all processes exceeds the size of the heap). In such a case, this priority value may be
used to determine which allocations are more likely to remain in device-local memory.

New Structures

• Extending VkMemoryAllocateInfo:

◦ VkMemoryPriorityAllocateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMemoryPriorityFeaturesEXT

New Enum Constants

• VK_EXT_MEMORY_PRIORITY_EXTENSION_NAME

• VK_EXT_MEMORY_PRIORITY_SPEC_VERSION

• Extending VkStructureType:

4643

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_memory_priority] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_memory_priority extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_memory_priority] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_memory_priority extension*

◦ VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT

Version History

• Revision 1, 2018-10-08 (Jeff Bolz)

◦ Initial revision

VK_EXT_mesh_shader

Name String

VK_EXT_mesh_shader

Extension Type

Device extension

Registered Extension Number

329

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_spirv_1_4

API Interactions

• Interacts with VK_NV_device_generated_commands

SPIR-V Dependencies

• SPV_EXT_mesh_shader

Contact

• Christoph Kubisch pixeljetstream

Extension Proposal

VK_EXT_mesh_shader

Other Extension Metadata

Last Modified Date

2022-01-20

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_mesh_shader

• Interacts with Vulkan 1.1

4644

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_mesh_shader] @pixeljetstream%0A*Here describe the issue or question you have about the VK_EXT_mesh_shader extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_mesh_shader] @pixeljetstream%0A*Here describe the issue or question you have about the VK_EXT_mesh_shader extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_mesh_shader.adoc
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_mesh_shader.txt

• Interacts with VK_KHR_multiview

• Interacts with VK_KHR_fragment_shading_rate

Contributors

• Christoph Kubisch, NVIDIA

• Pat Brown, NVIDIA

• Jeff Bolz, NVIDIA

• Daniel Koch, NVIDIA

• Piers Daniell, NVIDIA

• Pierre Boudier, NVIDIA

• Patrick Mours, NVIDIA

• David Zhao Akeley, NVIDIA

• Kedarnath Thangudu, NVIDIA

• Timur Kristóf, Valve

• Hans-Kristian Arntzen, Valve

• Philip Rebohle, Valve

• Mike Blumenkrantz, Valve

• Slawomir Grajewski, Intel

• Michal Pietrasiuk, Intel

• Mariusz Merecki, Intel

• Tom Olson, ARM

• Jan-Harald Fredriksen, ARM

• Sandeep Kakarlapudi, ARM

• Ruihao Zhang, QUALCOMM

• Ricardo Garcia, Igalia, S.L.

• Tobias Hector, AMD

• Stu Smith, AMD

Description

This extension provides a new mechanism allowing applications to generate collections of
geometric primitives via programmable mesh shading. It is an alternative to the existing
programmable primitive shading pipeline, which relied on generating input primitives by a fixed
function assembler as well as fixed function vertex fetch.

This extension also adds support for the following SPIR-V extension in Vulkan:

• SPV_EXT_mesh_shader

4645

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_mesh_shader.html

New Commands

• vkCmdDrawMeshTasksEXT

• vkCmdDrawMeshTasksIndirectCountEXT

• vkCmdDrawMeshTasksIndirectEXT

New Structures

• VkDrawMeshTasksIndirectCommandEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMeshShaderFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMeshShaderPropertiesEXT

New Enum Constants

• VK_EXT_MESH_SHADER_EXTENSION_NAME

• VK_EXT_MESH_SHADER_SPEC_VERSION

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_MESH_SHADER_BIT_EXT

◦ VK_PIPELINE_STAGE_TASK_SHADER_BIT_EXT

• Extending VkQueryPipelineStatisticFlagBits:

◦ VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT

◦ VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT

• Extending VkQueryType:

◦ VK_QUERY_TYPE_MESH_PRIMITIVES_GENERATED_EXT

• Extending VkShaderStageFlagBits:

◦ VK_SHADER_STAGE_MESH_BIT_EXT

◦ VK_SHADER_STAGE_TASK_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_EXT

If VK_NV_device_generated_commands is supported:

• Extending VkIndirectCommandsTokenTypeNV:

◦ VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_NV

New or Modified Built-In Variables

• CullPrimitiveEXT

4646

• PrimitivePointIndicesEXT

• PrimitiveLineIndicesEXT

• PrimitiveTriangleIndicesEXT

• (modified)Position

• (modified)PointSize

• (modified)ClipDistance

• (modified)CullDistance

• (modified)PrimitiveId

• (modified)Layer

• (modified)ViewportIndex

• (modified)NumWorkgroups

• (modified)WorkgroupSize

• (modified)WorkgroupId

• (modified)LocalInvocationId

• (modified)GlobalInvocationId

• (modified)LocalInvocationIndex

• (modified)NumSubgroups

• (modified)SubgroupId

• (modified)DrawIndex

• (modified)PrimitiveShadingRateKHR

• (modified)ViewIndex

New SPIR-V Capability

• MeshShadingEXT

Version History

• Revision 1, 2022-03-08 (Christoph Kubisch, Daniel Koch, Patrick Mours)

◦ Initial revision

VK_EXT_metal_objects

Name String

VK_EXT_metal_objects

Extension Type

Device extension

4647

Registered Extension Number

312

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Bill Hollings billhollings

Extension Proposal

VK_EXT_metal_objects

Other Extension Metadata

Last Modified Date

2022-05-28

IP Status

No known IP claims.

Contributors

• Bill Hollings, The Brenwill Workshop Ltd.

• Dzmitry Malyshau, Mozilla Corp.

Description

In a Vulkan implementation that is layered on top of Metal on Apple device platforms, this
extension provides the ability to import and export the underlying Metal objects associated with
specific Vulkan objects.

As detailed in the extension proposal document, this extension adds one new Vulkan command,
vkExportMetalObjectsEXT, to export underlying Metal objects from Vulkan objects, and supports
importing the appropriate existing Metal objects when creating Vulkan objects of types
VkDeviceMemory, VkImage, VkSemaphore, and VkEvent,

The intent is that this extension will be advertised and supported only on implementations that are
layered on top of Metal on Apple device platforms.

New Base Types

• IOSurfaceRef

• MTLBuffer_id

4648

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_metal_objects] @billhollings%0A*Here describe the issue or question you have about the VK_EXT_metal_objects extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_metal_objects] @billhollings%0A*Here describe the issue or question you have about the VK_EXT_metal_objects extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_metal_objects.adoc
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_metal_objects.adoc

• MTLCommandQueue_id

• MTLDevice_id

• MTLSharedEvent_id

• MTLTexture_id

New Commands

• vkExportMetalObjectsEXT

New Structures

• VkExportMetalObjectsInfoEXT

• Extending VkExportMetalObjectsInfoEXT:

◦ VkExportMetalBufferInfoEXT

◦ VkExportMetalCommandQueueInfoEXT

◦ VkExportMetalDeviceInfoEXT

◦ VkExportMetalIOSurfaceInfoEXT

◦ VkExportMetalSharedEventInfoEXT

◦ VkExportMetalTextureInfoEXT

• Extending VkImageCreateInfo:

◦ VkImportMetalIOSurfaceInfoEXT

◦ VkImportMetalTextureInfoEXT

• Extending VkInstanceCreateInfo, VkMemoryAllocateInfo, VkImageCreateInfo,
VkImageViewCreateInfo, VkBufferViewCreateInfo, VkSemaphoreCreateInfo,
VkEventCreateInfo:

◦ VkExportMetalObjectCreateInfoEXT

• Extending VkMemoryAllocateInfo:

◦ VkImportMetalBufferInfoEXT

• Extending VkSemaphoreCreateInfo, VkEventCreateInfo:

◦ VkImportMetalSharedEventInfoEXT

New Enums

• VkExportMetalObjectTypeFlagBitsEXT

New Bitmasks

• VkExportMetalObjectTypeFlagsEXT

New Enum Constants

• VK_EXT_METAL_OBJECTS_EXTENSION_NAME

4649

• VK_EXT_METAL_OBJECTS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXPORT_METAL_BUFFER_INFO_EXT

◦ VK_STRUCTURE_TYPE_EXPORT_METAL_COMMAND_QUEUE_INFO_EXT

◦ VK_STRUCTURE_TYPE_EXPORT_METAL_DEVICE_INFO_EXT

◦ VK_STRUCTURE_TYPE_EXPORT_METAL_IO_SURFACE_INFO_EXT

◦ VK_STRUCTURE_TYPE_EXPORT_METAL_OBJECTS_INFO_EXT

◦ VK_STRUCTURE_TYPE_EXPORT_METAL_OBJECT_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_EXPORT_METAL_SHARED_EVENT_INFO_EXT

◦ VK_STRUCTURE_TYPE_EXPORT_METAL_TEXTURE_INFO_EXT

◦ VK_STRUCTURE_TYPE_IMPORT_METAL_BUFFER_INFO_EXT

◦ VK_STRUCTURE_TYPE_IMPORT_METAL_IO_SURFACE_INFO_EXT

◦ VK_STRUCTURE_TYPE_IMPORT_METAL_SHARED_EVENT_INFO_EXT

◦ VK_STRUCTURE_TYPE_IMPORT_METAL_TEXTURE_INFO_EXT

Issues

None.

Version History

• Revision 1, 2022-05-28 (Bill Hollings)

◦ Initial draft.

◦ Incorporated feedback from review by the Vulkan Working Group. Renamed many
structures, moved import/export of MTLBuffer to VkDeviceMemory, added export of
MTLSharedEvent, added import of MTLSharedEvent for VkSemaphore and VkEvent, and
changed used bit mask fields to individual bit fields to simplify Valid Usage rules.

VK_EXT_metal_surface

Name String

VK_EXT_metal_surface

Extension Type

Instance extension

Registered Extension Number

218

Revision

1

4650

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Dzmitry Malyshau kvark

Other Extension Metadata

Last Modified Date

2018-10-01

IP Status

No known IP claims.

Contributors

• Dzmitry Malyshau, Mozilla Corp.

Description

The VK_EXT_metal_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) from CAMetalLayer, which is the
native rendering surface of Apple’s Metal framework.

New Base Types

• CAMetalLayer

New Commands

• vkCreateMetalSurfaceEXT

New Structures

• VkMetalSurfaceCreateInfoEXT

New Bitmasks

• VkMetalSurfaceCreateFlagsEXT

New Enum Constants

• VK_EXT_METAL_SURFACE_EXTENSION_NAME

• VK_EXT_METAL_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT

4651

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_metal_surface] @kvark%0A*Here describe the issue or question you have about the VK_EXT_metal_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_metal_surface] @kvark%0A*Here describe the issue or question you have about the VK_EXT_metal_surface extension*

Version History

• Revision 1, 2018-10-01 (Dzmitry Malyshau)

◦ Initial version

VK_EXT_multi_draw

Name String

VK_EXT_multi_draw

Extension Type

Device extension

Registered Extension Number

393

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Mike Blumenkrantz zmike

Other Extension Metadata

Last Modified Date

2021-05-19

Interactions and External Dependencies

• Interacts with Vulkan 1.1.

• Interacts with VK_KHR_shader_draw_parameters.

IP Status

No known IP claims.

Contributors

• Mike Blumenkrantz, VALVE

• Piers Daniell, NVIDIA

• Faith Ekstrand, INTEL

• Spencer Fricke, SAMSUNG

• Ricardo Garcia, IGALIA

4652

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_multi_draw] @zmike%0A*Here describe the issue or question you have about the VK_EXT_multi_draw extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_multi_draw] @zmike%0A*Here describe the issue or question you have about the VK_EXT_multi_draw extension*

• Jon Leech, KHRONOS

• Stu Smith, AMD

Description

Processing multiple draw commands in sequence incurs measurable overhead within drivers due
to repeated state checks and updates during dispatch. This extension enables passing the entire
sequence of draws directly to the driver in order to avoid any such overhead, using an array of
VkMultiDrawInfoEXT or VkMultiDrawIndexedInfoEXT structs with vkCmdDrawMultiEXT or
vkCmdDrawMultiIndexedEXT, respectively. These functions could be used any time multiple draw
commands are being recorded without any state changes between them in order to maximize
performance.

New Commands

• vkCmdDrawMultiEXT

• vkCmdDrawMultiIndexedEXT

New Structures

• VkMultiDrawIndexedInfoEXT

• VkMultiDrawInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMultiDrawFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMultiDrawPropertiesEXT

New Enum Constants

• VK_EXT_MULTI_DRAW_EXTENSION_NAME

• VK_EXT_MULTI_DRAW_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT

New or Modified Built-In Variables

• (modified)DrawIndex

Version History

• Revision 1, 2021-01-20 (Mike Blumenkrantz)

◦ Initial version

4653

VK_EXT_multisampled_render_to_single_sampled

Name String

VK_EXT_multisampled_render_to_single_sampled

Extension Type

Device extension

Registered Extension Number

377

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_create_renderpass2
and
VK_KHR_depth_stencil_resolve

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_EXT_multisampled_render_to_single_sampled

Other Extension Metadata

Last Modified Date

2021-04-16

IP Status

No known IP claims.

Contributors

• Shahbaz Youssefi, Google

• Jan-Harald Fredriksen, Arm

• Jörg Wagner, Arm

• Matthew Netsch, Qualcomm Technologies, Inc.

• Jarred Davies, Imagination Technologies

Description

With careful usage of resolve attachments, multisampled image memory allocated with
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, loadOp not equal to VK_ATTACHMENT_LOAD_OP_LOAD and

4654

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_multisampled_render_to_single_sampled] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_multisampled_render_to_single_sampled extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_multisampled_render_to_single_sampled] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_multisampled_render_to_single_sampled extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_multisampled_render_to_single_sampled.adoc

storeOp not equal to VK_ATTACHMENT_STORE_OP_STORE, a Vulkan application is able to efficiently
perform multisampled rendering without incurring any additional memory penalty on some
implementations.

Under certain circumstances however, the application may not be able to complete its
multisampled rendering within a single render pass; for example if it does partial rasterization
from frame to frame, blending on an image from a previous frame, or in emulation of
GL_EXT_multisampled_render_to_texture. In such cases, the application can use an initial subpass
to effectively load single-sampled data from the next subpass’s resolve attachment and fill in the
multisampled attachment which otherwise uses loadOp equal to VK_ATTACHMENT_LOAD_OP_DONT_CARE.
However, this is not always possible (for example for stencil in the absence of
VK_EXT_shader_stencil_export) and has multiple drawbacks.

Some implementations are able to perform said operation efficiently in hardware, effectively
loading a multisampled attachment from the contents of a single sampled one. Together with the
ability to perform a resolve operation at the end of a subpass, these implementations are able to
perform multisampled rendering on single-sampled attachments with no extra memory or
bandwidth overhead. This extension exposes this capability by allowing a framebuffer and render
pass to include single-sampled attachments while rendering is done with a specified number of
samples.

New Structures

• Extending VkFormatProperties2:

◦ VkSubpassResolvePerformanceQueryEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMultisampledRenderToSingleSampledFeaturesEXT

• Extending VkSubpassDescription2, VkRenderingInfo:

◦ VkMultisampledRenderToSingleSampledInfoEXT

New Enum Constants

• VK_EXT_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_EXTENSION_NAME

• VK_EXT_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_SPEC_VERSION

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_SUBPASS_RESOLVE_PERFORMANCE_QUERY_EXT

Issues

1) Could the multisampled attachment be initialized through some form of copy?

4655

RESOLVED: No. Some implementations do not support copying between attachments in general,
and find expressing this operation through a copy unnatural.

2) Another way to achieve this is by introducing a new loadOp to load the contents of the
multisampled image from a single-sampled one. Why is this extension preferred?

RESOLVED: Using this extension simplifies the application, as it does not need to manage a
secondary lazily-allocated image. Additionally, using this extension leaves less room for error; for
example a single mistake in loadOp or storeOp would result in the lazily-allocated image to actually
take up memory, and remain so until destruction.

3) There is no guarantee that multisampled data between two subpasses with the same number of
samples will be retained as the implementation may be forced to split the render pass implicitly for
various reasons. Should this extension require that every subpass that uses multisampled-render-
to-single-sampled end in an implicit render pass split (which results in a resolve operation)?

RESOLVED: No. Not requiring this allows render passes with multiple multisampled-render-to-
single-sampled subpasses to potentially execute more efficiently (though there is no guarantee).

Version History

• Revision 1, 2021-04-12 (Shahbaz Youssefi)

VK_EXT_mutable_descriptor_type

Name String

VK_EXT_mutable_descriptor_type

Extension Type

Device extension

Registered Extension Number

495

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_maintenance3

Special Use

• D3D support

Contact

• Joshua Ashton Joshua-Ashton

• Hans-Kristian Arntzen HansKristian-Work

4656

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_mutable_descriptor_type] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_mutable_descriptor_type extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_mutable_descriptor_type] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_mutable_descriptor_type extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_mutable_descriptor_type] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_EXT_mutable_descriptor_type extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_mutable_descriptor_type] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_EXT_mutable_descriptor_type extension*

Extension Proposal

VK_EXT_mutable_descriptor_type

Other Extension Metadata

Last Modified Date

2022-08-22

IP Status

No known IP claims.

Contributors

• Joshua Ashton, Valve

• Hans-Kristian Arntzen, Valve

Description

This extension allows applications to reduce descriptor memory footprint by allowing a descriptor
to be able to mutate to a given list of descriptor types depending on which descriptor types are
written into, or copied into a descriptor set.

The main use case this extension intends to address is descriptor indexing with
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT where the descriptor types are completely
generic, as this means applications can allocate one large descriptor set, rather than having one
large descriptor set per descriptor type, which significantly bloats descriptor memory usage and
causes performance issues.

This extension also adds a mechanism to declare that a descriptor pool, and therefore the
descriptor sets that are allocated from it, reside only in host memory; as such these descriptors can
only be updated/copied, but not bound.

These features together allow much more efficient emulation of the raw D3D12 binding model. This
extension is primarily intended to be useful for API layering efforts.

New Structures

• VkMutableDescriptorTypeListEXT

• Extending VkDescriptorSetLayoutCreateInfo, VkDescriptorPoolCreateInfo:

◦ VkMutableDescriptorTypeCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT

New Enum Constants

• VK_EXT_MUTABLE_DESCRIPTOR_TYPE_EXTENSION_NAME

• VK_EXT_MUTABLE_DESCRIPTOR_TYPE_SPEC_VERSION

• Extending VkDescriptorPoolCreateFlagBits:

4657

https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_mutable_descriptor_type.adoc

◦ VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_EXT

• Extending VkDescriptorType:

◦ VK_DESCRIPTOR_TYPE_MUTABLE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_EXT

Version History

• Revision 1, 2022-08-22 (Jon Leech)

◦ Initial version, promoted from VK_VALVE_mutable_descriptor_type.

VK_EXT_nested_command_buffer

Name String

VK_EXT_nested_command_buffer

Extension Type

Device extension

Registered Extension Number

452

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2023-09-18

Contributors

• Daniel Story, Nintendo

• Peter Kohaut, NVIDIA

4658

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_nested_command_buffer] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_nested_command_buffer extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_nested_command_buffer] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_nested_command_buffer extension*

• Shahbaz Youssefi, Google

• Slawomir Grajewski, Intel

• Stu Smith, AMD

Description

With core Vulkan it is not legal to call vkCmdExecuteCommands when recording a secondary
command buffer. This extension relaxes that restriction, allowing secondary command buffers to
execute other secondary command buffers.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceNestedCommandBufferFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceNestedCommandBufferPropertiesEXT

New Enum Constants

• VK_EXT_NESTED_COMMAND_BUFFER_EXTENSION_NAME

• VK_EXT_NESTED_COMMAND_BUFFER_SPEC_VERSION

• Extending VkRenderingFlagBits:

◦ VK_RENDERING_CONTENTS_INLINE_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NESTED_COMMAND_BUFFER_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NESTED_COMMAND_BUFFER_PROPERTIES_EXT

• Extending VkSubpassContents:

◦ VK_SUBPASS_CONTENTS_INLINE_AND_SECONDARY_COMMAND_BUFFERS_EXT

Issues

1) The Command Buffer Levels property for the Vulkan commands comes from the cmdbufferlevel
attribute in vk.xml for the command, and it is currently not possible to modify this attribute based
on whether an extension is enabled. For this extension we want the cmdbufferlevel attribute for
vkCmdExecuteCommands to be primary,secondary when this extension is enabled and primary
otherwise.

RESOLVED: The cmdbufferlevel attribute for vkCmdExecuteCommands has been changed to
primary,secondary and a new VUID added to prohibit recording this command in a secondary
command buffer unless this extension is enabled.

Version History

• Revision 1, 2023-09-18 (Piers Daniell)

4659

◦ Internal revisions

VK_EXT_non_seamless_cube_map

Name String

VK_EXT_non_seamless_cube_map

Extension Type

Device extension

Registered Extension Number

423

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Special Uses

• D3D support

• OpenGL / ES support

Contact

• Georg Lehmann DadSchoorse

Extension Proposal

VK_EXT_non_seamless_cube_map

Other Extension Metadata

Last Modified Date

2021-09-04

IP Status

No known IP claims.

Contributors

• Georg Lehmann

Description

This extension provides functionality to disable cube map edge handling on a per sampler level
which matches the behavior of other graphics APIs.

This extension may be useful for building translation layers for those APIs or for porting

4660

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_non_seamless_cube_map] @DadSchoorse%0A*Here describe the issue or question you have about the VK_EXT_non_seamless_cube_map extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_non_seamless_cube_map] @DadSchoorse%0A*Here describe the issue or question you have about the VK_EXT_non_seamless_cube_map extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_non_seamless_cube_map.adoc

applications that rely on this cube map behavior.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT

New Enum Constants

• VK_EXT_NON_SEAMLESS_CUBE_MAP_EXTENSION_NAME

• VK_EXT_NON_SEAMLESS_CUBE_MAP_SPEC_VERSION

• Extending VkSamplerCreateFlagBits:

◦ VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT

Version History

• Revision 1, 2021-09-04 (Georg Lehmann)

◦ First Version

VK_EXT_opacity_micromap

Name String

VK_EXT_opacity_micromap

Extension Type

Device extension

Registered Extension Number

397

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_acceleration_structure
and
VK_KHR_synchronization2

SPIR-V Dependencies

• SPV_EXT_opacity_micromap

4661

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_opacity_micromap.html

Contact

• Christoph Kubisch pixeljetstream

• Eric Werness

Extension Proposal

VK_EXT_opacity_micromap

Other Extension Metadata

Last Modified Date

2022-08-24

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_opacity_micromap

Contributors

• Christoph Kubisch, NVIDIA

• Eric Werness, NVIDIA

• Josh Barczak, Intel

• Stu Smith, AMD

Description

When adding transparency to a ray traced scene, an application can choose between further
tessellating the geometry or using an any-hit shader to allow the ray through specific parts of the
geometry. These options have the downside of either significantly increasing memory consumption
or adding runtime overhead to run shader code in the middle of traversal, respectively.

This extension adds the ability to add an opacity micromap to geometry when building an
acceleration structure. The opacity micromap compactly encodes opacity information which can be
read by the implementation to mark parts of triangles as opaque or transparent. The format is
externally visible to allow the application to compress its internal geometry and surface
representations into the compressed format ahead of time. The compressed format subdivides each
triangle into a set of subtriangles, each of which can be assigned either two or four opacity values.
These opacity values can control if a ray hitting that subtriangle is treated as an opaque hit,
complete miss, or possible hit, depending on the controls described in Ray Opacity Micromap.

This extension provides:

• a VkMicromapEXT structure to store the micromap,

• functions similar to acceleration structure build functions to build the opacity micromap array,
and

• a structure to extend VkAccelerationStructureGeometryTrianglesDataKHR to attach a micromap
to the geometry of the acceleration structure.

4662

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_opacity_micromap] @pixeljetstream%0A*Here describe the issue or question you have about the VK_EXT_opacity_micromap extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_opacity_micromap] @pixeljetstream%0A*Here describe the issue or question you have about the VK_EXT_opacity_micromap extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_opacity_micromap.adoc
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_opacity_micromap.txt

New Object Types

• VkMicromapEXT

New Commands

• vkBuildMicromapsEXT

• vkCmdBuildMicromapsEXT

• vkCmdCopyMemoryToMicromapEXT

• vkCmdCopyMicromapEXT

• vkCmdCopyMicromapToMemoryEXT

• vkCmdWriteMicromapsPropertiesEXT

• vkCopyMemoryToMicromapEXT

• vkCopyMicromapEXT

• vkCopyMicromapToMemoryEXT

• vkCreateMicromapEXT

• vkDestroyMicromapEXT

• vkGetDeviceMicromapCompatibilityEXT

• vkGetMicromapBuildSizesEXT

• vkWriteMicromapsPropertiesEXT

New Structures

• VkCopyMemoryToMicromapInfoEXT

• VkCopyMicromapInfoEXT

• VkCopyMicromapToMemoryInfoEXT

• VkMicromapBuildInfoEXT

• VkMicromapBuildSizesInfoEXT

• VkMicromapCreateInfoEXT

• VkMicromapTriangleEXT

• VkMicromapUsageEXT

• VkMicromapVersionInfoEXT

• Extending VkAccelerationStructureGeometryTrianglesDataKHR:

◦ VkAccelerationStructureTrianglesOpacityMicromapEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceOpacityMicromapFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceOpacityMicromapPropertiesEXT

4663

New Enums

• VkBuildMicromapFlagBitsEXT

• VkBuildMicromapModeEXT

• VkCopyMicromapModeEXT

• VkMicromapCreateFlagBitsEXT

• VkMicromapTypeEXT

• VkOpacityMicromapFormatEXT

• VkOpacityMicromapSpecialIndexEXT

New Bitmasks

• VkBuildMicromapFlagsEXT

• VkMicromapCreateFlagsEXT

New Enum Constants

• VK_EXT_OPACITY_MICROMAP_EXTENSION_NAME

• VK_EXT_OPACITY_MICROMAP_SPEC_VERSION

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_MICROMAP_READ_BIT_EXT

◦ VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_MICROMAP_BUILD_INPUT_READ_ONLY_BIT_EXT

◦ VK_BUFFER_USAGE_MICROMAP_STORAGE_BIT_EXT

• Extending VkBuildAccelerationStructureFlagBitsKHR:

◦ VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISABLE_OPACITY_MICROMAPS_EXT

◦ VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_DATA_UPDATE_EXT

◦ VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_OPACITY_MICROMAP_UPDATE_EXT

• Extending VkGeometryInstanceFlagBitsKHR:

◦ VK_GEOMETRY_INSTANCE_DISABLE_OPACITY_MICROMAPS_EXT

◦ VK_GEOMETRY_INSTANCE_FORCE_OPACITY_MICROMAP_2_STATE_EXT

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_MICROMAP_EXT

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT

4664

• Extending VkQueryType:

◦ VK_QUERY_TYPE_MICROMAP_COMPACTED_SIZE_EXT

◦ VK_QUERY_TYPE_MICROMAP_SERIALIZATION_SIZE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_TRIANGLES_OPACITY_MICROMAP_EXT

◦ VK_STRUCTURE_TYPE_COPY_MEMORY_TO_MICROMAP_INFO_EXT

◦ VK_STRUCTURE_TYPE_COPY_MICROMAP_INFO_EXT

◦ VK_STRUCTURE_TYPE_COPY_MICROMAP_TO_MEMORY_INFO_EXT

◦ VK_STRUCTURE_TYPE_MICROMAP_BUILD_INFO_EXT

◦ VK_STRUCTURE_TYPE_MICROMAP_BUILD_SIZES_INFO_EXT

◦ VK_STRUCTURE_TYPE_MICROMAP_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_MICROMAP_VERSION_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPACITY_MICROMAP_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPACITY_MICROMAP_PROPERTIES_EXT

Reference Code

uint32_t BarycentricsToSpaceFillingCurveIndex(float u, float v, uint32_t level)
{
 u = clamp(u, 0.0f, 1.0f);
 v = clamp(v, 0.0f, 1.0f);

 uint32_t iu, iv, iw;

 // Quantize barycentric coordinates
 float fu = u * (1u << level);
 float fv = v * (1u << level);

 iu = (uint32_t)fu;
 iv = (uint32_t)fv;

 float uf = fu - float(iu);
 float vf = fv - float(iv);

 if (iu >= (1u << level)) iu = (1u << level) - 1u;
 if (iv >= (1u << level)) iv = (1u << level) - 1u;

 uint32_t iuv = iu + iv;

 if (iuv >= (1u << level))
 iu -= iuv - (1u << level) + 1u;

 iw = ~(iu + iv);

4665

 if (uf + vf >= 1.0f && iuv < (1u << level) - 1u) --iw;

 uint32_t b0 = ~(iu ^ iw);
 b0 &= ((1u << level) - 1u);
 uint32_t t = (iu ^ iv) & b0;

 uint32_t f = t;
 f ^= f >> 1u;
 f ^= f >> 2u;
 f ^= f >> 4u;
 f ^= f >> 8u;
 uint32_t b1 = ((f ^ iu) & ~b0) | t;

 // Interleave bits
 b0 = (b0 | (b0 << 8u)) & 0x00ff00ffu;
 b0 = (b0 | (b0 << 4u)) & 0x0f0f0f0fu;
 b0 = (b0 | (b0 << 2u)) & 0x33333333u;
 b0 = (b0 | (b0 << 1u)) & 0x55555555u;
 b1 = (b1 | (b1 << 8u)) & 0x00ff00ffu;
 b1 = (b1 | (b1 << 4u)) & 0x0f0f0f0fu;
 b1 = (b1 | (b1 << 2u)) & 0x33333333u;
 b1 = (b1 | (b1 << 1u)) & 0x55555555u;

 return b0 | (b1 << 1u);
}

Issues

(1) Is the build actually similar to an acceleration structure build?

• Resolved: The build should be much lighter-weight than an acceleration structure build, but the
infrastructure is similar enough that it makes sense to keep the concepts compatible.

(2) Why does VkMicromapUsageEXT not have type/pNext?

• Resolved: There can be a very large number of these structures, so doubling the size of these
can be significant memory consumption. Also, an application may be loading these directly
from a file which is more compatible with it being a flat structure. The including structures are
extensible and are probably a more suitable place to add extensibility.

(3) Why is there a SPIR-V extension?

• Resolved: There is a ray flag. To be consistent with how the existing ray tracing extensions work
that ray flag needs its own extension.

(4) Should there be indirect micromap build?

• Resolved: Not for now. There is more in-depth usage metadata required and it seems less likely
that something like a GPU culling system would need to change the counts for a micromap.

(5) Should micromaps have a micromap device address?

4666

• Resolved: There is no need right now (can just use the handle) but that is a bit different from
acceleration structures, though the two are not completely parallel in their usage.

(6) Why are the alignment requirements defined as a mix of hardcoded values and caps?

• Resolved: This is most parallel with the definition of VK_KHR_acceleration_structure and
maintaining commonality makes it easier for applications to share memory.

Version History

• Revision 2, 2022-06-22 (Eric Werness)

◦ EXTify and clean up for discussion

• Revision 1, 2022-01-01 (Eric Werness)

◦ Initial revision

VK_EXT_pageable_device_local_memory

Name String

VK_EXT_pageable_device_local_memory

Extension Type

Device extension

Registered Extension Number

413

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_memory_priority

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2021-08-24

Contributors

• Hans-Kristian Arntzen, Valve

• Axel Gneiting, id Software

• Billy Khan, id Software

4667

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pageable_device_local_memory] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_pageable_device_local_memory extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pageable_device_local_memory] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_pageable_device_local_memory extension*

• Daniel Koch, NVIDIA

• Chris Lentini, NVIDIA

• Joshua Schnarr, NVIDIA

• Stu Smith, AMD

Description

Vulkan is frequently implemented on multi-user and multi-process operating systems where the
device-local memory can be shared by more than one process. On such systems the size of the
device-local memory available to the application may not be the full size of the memory heap at all
times. In order for these operating systems to support multiple applications the device-local
memory is virtualized and paging is used to move memory between device-local and host-local
memory heaps, transparent to the application.

The current Vulkan specification does not expose this behavior well and may cause applications to
make suboptimal memory choices when allocating memory. For example, in a system with multiple
applications running, the application may think that device-local memory is full and revert to
making performance-sensitive allocations from host-local memory. In reality the memory heap
might not have been full, it just appeared to be at the time memory consumption was queried, and
a device-local allocation would have succeeded. A well designed operating system that implements
pageable device-local memory will try to have all memory allocations for the foreground
application paged into device-local memory, and paged out for other applications as needed when
not in use.

When this extension is exposed by the Vulkan implementation it indicates to the application that
the operating system implements pageable device-local memory and the application should adjust
its memory allocation strategy accordingly. The extension also exposes a new
vkSetDeviceMemoryPriorityEXT function to allow the application to dynamically adjust the priority
of existing memory allocations based on its current needs. This will help the operating system page
out lower priority memory allocations before higher priority allocations when needed. It will also
help the operating system decide which memory allocations to page back into device-local memory
first.

To take best advantage of pageable device-local memory the application must create the Vulkan
device with the VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT
::pageableDeviceLocalMemory feature enabled. When enabled the Vulkan implementation will allow
device-local memory allocations to be paged in and out by the operating system, and may not
return VK_ERROR_OUT_OF_DEVICE_MEMORY even if device-local memory appears to be full, but
will instead page this, or other allocations, out to make room. The Vulkan implementation will also
ensure that host-local memory allocations will never be promoted to device-local memory by the
operating system, or consume device-local memory.

New Commands

• vkSetDeviceMemoryPriorityEXT

4668

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePageableDeviceLocalMemoryFeaturesEXT

New Enum Constants

• VK_EXT_PAGEABLE_DEVICE_LOCAL_MEMORY_EXTENSION_NAME

• VK_EXT_PAGEABLE_DEVICE_LOCAL_MEMORY_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PAGEABLE_DEVICE_LOCAL_MEMORY_FEATURES_EXT

Version History

• Revision 1, 2021-08-24 (Piers Daniell)

◦ Initial revision

VK_EXT_pci_bus_info

Name String

VK_EXT_pci_bus_info

Extension Type

Device extension

Registered Extension Number

213

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Matthaeus G. Chajdas anteru

Other Extension Metadata

Last Modified Date

2018-12-10

4669

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pci_bus_info] @anteru%0A*Here describe the issue or question you have about the VK_EXT_pci_bus_info extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pci_bus_info] @anteru%0A*Here describe the issue or question you have about the VK_EXT_pci_bus_info extension*

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Daniel Rakos, AMD

Description

This extension adds a new query to obtain PCI bus information about a physical device.

Not all physical devices have PCI bus information, either due to the device not being connected to
the system through a PCI interface or due to platform specific restrictions and policies. Thus this
extension is only expected to be supported by physical devices which can provide the information.

As a consequence, applications should always check for the presence of the extension string for
each individual physical device for which they intend to issue the new query for and should not
have any assumptions about the availability of the extension on any given platform.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDevicePCIBusInfoPropertiesEXT

New Enum Constants

• VK_EXT_PCI_BUS_INFO_EXTENSION_NAME

• VK_EXT_PCI_BUS_INFO_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT

Version History

• Revision 2, 2018-12-10 (Daniel Rakos)

◦ Changed all members of the new structure to have the uint32_t type

• Revision 1, 2018-10-11 (Daniel Rakos)

◦ Initial revision

VK_EXT_physical_device_drm

Name String

VK_EXT_physical_device_drm

Extension Type

Device extension

4670

Registered Extension Number

354

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Simon Ser emersion

Other Extension Metadata

Last Modified Date

2021-06-09

IP Status

No known IP claims.

Contributors

• Simon Ser

Description

This extension provides new facilities to query DRM properties for physical devices, enabling users
to match Vulkan physical devices with DRM nodes on Linux.

Its functionality closely overlaps with EGL_EXT_device_drm1. Unlike the EGL extension, this extension
does not expose a string containing the name of the device file and instead exposes device minor
numbers.

DRM defines multiple device node types. Each physical device may have one primary node and one
render node associated. Physical devices may have no primary node (e.g. if the device does not
have a display subsystem), may have no render node (e.g. if it is a software rendering engine), or
may have neither (e.g. if it is a software rendering engine without a display subsystem).

To query DRM properties for a physical device, chain VkPhysicalDeviceDrmPropertiesEXT to
VkPhysicalDeviceProperties2.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDrmPropertiesEXT

4671

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_physical_device_drm] @emersion%0A*Here describe the issue or question you have about the VK_EXT_physical_device_drm extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_physical_device_drm] @emersion%0A*Here describe the issue or question you have about the VK_EXT_physical_device_drm extension*

New Enum Constants

• VK_EXT_PHYSICAL_DEVICE_DRM_EXTENSION_NAME

• VK_EXT_PHYSICAL_DEVICE_DRM_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT

References

1. EGL_EXT_device_drm

Version History

• Revision 1, 2021-06-09

◦ First stable revision

VK_EXT_pipeline_library_group_handles

Name String

VK_EXT_pipeline_library_group_handles

Extension Type

Device extension

Registered Extension Number

499

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_ray_tracing_pipeline
and
VK_KHR_pipeline_library

Contact

• Hans-Kristian Arntzen HansKristian-Work

Extension Proposal

VK_EXT_pipeline_library_group_handles

Other Extension Metadata

Last Modified Date

2023-01-25

4672

https://registry.khronos.org/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_library_group_handles] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_EXT_pipeline_library_group_handles extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_library_group_handles] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_EXT_pipeline_library_group_handles extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_pipeline_library_group_handles.adoc

IP Status

No known IP claims.

Contributors

• Hans-Kristian Arntzen, Valve

• Stuart Smith, AMD

• Ricardo Garcia, Igalia

• Lionel Landwerlin, Intel

• Eric Werness, NVIDIA

• Daniel Koch, NVIDIA

Description

When using pipeline libraries in ray tracing pipelines, a library might get linked into different
pipelines in an incremental way. An application can have a strategy where a ray tracing pipeline is
comprised of N pipeline libraries and is later augmented by creating a new pipeline with N + 1
libraries. Without this extension, all group handles must be re-queried as the group handle is tied to
the pipeline, not the library. This is problematic for applications which aim to decouple
construction of record buffers and the linkage of ray tracing pipelines.

To aid in this, this extension enables support for querying group handles directly from pipeline
libraries. Group handles obtained from a library must remain bitwise identical in any VkPipeline
that links to the library.

With this feature, the extension also improves compatibility with DXR 1.1 AddToStateObject(),
which guarantees that group handles returned remain bitwise identical between parent and child
pipelines. In addition, querying group handles from COLLECTION objects is also supported with
that API.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePipelineLibraryGroupHandlesFeaturesEXT

New Enum Constants

• VK_EXT_PIPELINE_LIBRARY_GROUP_HANDLES_EXTENSION_NAME

• VK_EXT_PIPELINE_LIBRARY_GROUP_HANDLES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_LIBRARY_GROUP_HANDLES_FEATURES_EXT

Version History

• Revision 1, 2023-01-25 (Hans-Kristian Arntzen)

◦ Initial draft

4673

VK_EXT_pipeline_properties

Name String

VK_EXT_pipeline_properties

Extension Type

Device extension

Registered Extension Number

373

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Mukund Keshava mkeshavanv

Other Extension Metadata

Last Modified Date

2022-04-19

IP Status

No known IP claims.

Contributors

• Mukund Keshava, NVIDIA

• Daniel Koch, NVIDIA

• Mark Bellamy, Arm

Description

Vulkan SC requires offline compilation of pipelines. In order to support this, the pipeline state is
represented in a JSON schema that is read by an offline tool for compilation.

One method of developing a Vulkan SC application is to author a Vulkan application and use a layer
to record and serialize the pipeline state and shaders for offline compilation. Each pipeline is
represented by a separate JSON file, and can be identified with a pipelineIdentifier.

Once the pipelines have been compiled by the offline pipeline cache compiler, the Vulkan SC
application can then use this pipelineIdentifier for identifying the pipeline via Vulkan SC’s
VkPipelineIdentifierInfo structure.

4674

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_properties] @mkeshavanv%0A*Here describe the issue or question you have about the VK_EXT_pipeline_properties extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_properties] @mkeshavanv%0A*Here describe the issue or question you have about the VK_EXT_pipeline_properties extension*
https://github.com/KhronosGroup/VulkanSC-Docs/wiki/JSON-schema

This extension allows the Vulkan application to query the pipelineIdentifier associated with each
pipeline so that the application can store this with its pipeline metadata and the Vulkan SC
application will then use to map the same state to an entry in the Vulkan SC pipeline cache.

It is expected that this extension will initially be implemented in the json generation layer, although
we can envision that there might be future uses for it in native Vulkan drivers as well.

New Commands

• vkGetPipelinePropertiesEXT

New Structures

• VkPipelineInfoEXT

• VkPipelinePropertiesIdentifierEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePipelinePropertiesFeaturesEXT

New Enum Constants

• VK_EXT_PIPELINE_PROPERTIES_EXTENSION_NAME

• VK_EXT_PIPELINE_PROPERTIES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_PROPERTIES_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_INFO_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_PROPERTIES_IDENTIFIER_EXT

Issues

(1) This extension does not make sense on a strict Vulkan SC implementation. It may however be of
potential use in a non-strict Vulkan SC implementation. Should this extension be enabled as part of
Vulkan SC as well?

RESOLVED: No. This extension will not be enabled for Vulkan SC.

(2) This is intended to be a general pipeline properties query, but is currently only retrieving the
pipeline identifier. Should the pipeline identifier query be mandatory for this extension and for all
queries using this entry point?

RESOLVED: Use VkBaseOutStructure for the return parameter. Currently this is required to
actually be a VkPipelinePropertiesIdentifierEXT structure, but that could be relaxed in the future to
allow other structure types or to allow other structures to be chained in along with this one.

(3) Should there be a feature structure? Should it be required?

RESOLVED: Add a feature structure, and a feature for querying pipeline identifier, but allow it to
be optional so that this extension can be used as the basis for other pipeline property queries

4675

without requiring the pipeline identifier to be supported.

Version History

• Revision 1, 2022-04-19 (Mukund Keshava, Daniel Koch)

◦ Initial draft

VK_EXT_pipeline_protected_access

Name String

VK_EXT_pipeline_protected_access

Extension Type

Device extension

Registered Extension Number

467

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_EXT_pipeline_protected_access

Other Extension Metadata

Last Modified Date

2022-07-28

Contributors

• Shahbaz Youssefi, Google

• Jörg Wagner, Arm

• Ralph Potter, Samsung

• Daniel Koch, NVIDIA

Description

This extension allows protected memory access to be specified per pipeline as opposed to per
device. Through the usage of this extension, any performance penalty paid due to access to

4676

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_protected_access] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_pipeline_protected_access extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_protected_access] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_pipeline_protected_access extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_pipeline_protected_access.adoc

protected memory will be limited to the specific pipelines that make such accesses.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePipelineProtectedAccessFeaturesEXT

New Enum Constants

• VK_EXT_PIPELINE_PROTECTED_ACCESS_EXTENSION_NAME

• VK_EXT_PIPELINE_PROTECTED_ACCESS_SPEC_VERSION

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_NO_PROTECTED_ACCESS_BIT_EXT

◦ VK_PIPELINE_CREATE_PROTECTED_ACCESS_ONLY_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_PROTECTED_ACCESS_FEATURES_EXT

Version History

• Revision 1, 2022-07-28 (Shahbaz Youssefi)

◦ Internal revisions

VK_EXT_pipeline_robustness

Name String

VK_EXT_pipeline_robustness

Extension Type

Device extension

Registered Extension Number

69

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Jarred Davies

4677

Other Extension Metadata

Last Modified Date

2022-07-12

Interactions and External Dependencies

• Interacts with VK_EXT_robustness2

• Interacts with VK_EXT_image_robustness

• Interacts with VK_KHR_ray_tracing_pipeline

Contributors

• Jarred Davies, Imagination Technologies

• Alex Walters, Imagination Technologies

• Piers Daniell, NVIDIA

• Graeme Leese, Broadcom Corporation

• Jeff Leger, Qualcomm Technologies, Inc.

• Faith Ekstrand, Intel

• Lionel Landwerlin, Intel

• Shahbaz Youssefi, Google, Inc.

Description

This extension allows users to request robustness on a per-pipeline stage basis.

As robustBufferAccess and other robustness features may have an adverse effect on performance,
this extension is designed to allow users to request robust behavior only where it may be needed.

New Structures

• Extending VkGraphicsPipelineCreateInfo, VkComputePipelineCreateInfo,
VkPipelineShaderStageCreateInfo, VkRayTracingPipelineCreateInfoKHR:

◦ VkPipelineRobustnessCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePipelineRobustnessFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDevicePipelineRobustnessPropertiesEXT

New Enums

• VkPipelineRobustnessBufferBehaviorEXT

• VkPipelineRobustnessImageBehaviorEXT

4678

New Enum Constants

• VK_EXT_PIPELINE_ROBUSTNESS_EXTENSION_NAME

• VK_EXT_PIPELINE_ROBUSTNESS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_ROBUSTNESS_CREATE_INFO_EXT

Version History

• Revision 1, 2022-07-12 (Jarred Davies)

◦ Initial version

VK_EXT_post_depth_coverage

Name String

VK_EXT_post_depth_coverage

Extension Type

Device extension

Registered Extension Number

156

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_KHR_post_depth_coverage

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2017-07-17

Interactions and External Dependencies

• This extension provides API support for GL_ARB_post_depth_coverage and

4679

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_post_depth_coverage.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_post_depth_coverage] @dgkoch%0A*Here describe the issue or question you have about the VK_EXT_post_depth_coverage extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_post_depth_coverage] @dgkoch%0A*Here describe the issue or question you have about the VK_EXT_post_depth_coverage extension*
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_post_depth_coverage.txt

GL_EXT_post_depth_coverage

Contributors

• Jeff Bolz, NVIDIA

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_KHR_post_depth_coverage

which allows the fragment shader to control whether values in the SampleMask built-in input
variable reflect the coverage after early depth and stencil tests are applied.

This extension adds a new PostDepthCoverage execution mode under the
SampleMaskPostDepthCoverage capability. When this mode is specified along with EarlyFragmentTests,
the value of an input variable decorated with the SampleMask built-in reflects the coverage after the
early fragment tests are applied. Otherwise, it reflects the coverage before the depth and stencil
tests.

When using GLSL source-based shading languages, the post_depth_coverage layout qualifier from
GL_ARB_post_depth_coverage or GL_EXT_post_depth_coverage maps to the PostDepthCoverage
execution mode.

New Enum Constants

• VK_EXT_POST_DEPTH_COVERAGE_EXTENSION_NAME

• VK_EXT_POST_DEPTH_COVERAGE_SPEC_VERSION

New SPIR-V Capabilities

• SampleMaskPostDepthCoverage

Version History

• Revision 1, 2017-07-17 (Daniel Koch)

◦ Internal revisions

VK_EXT_primitive_topology_list_restart

Name String

VK_EXT_primitive_topology_list_restart

Extension Type

Device extension

Registered Extension Number

357

4680

https://registry.khronos.org/OpenGL/extensions/EXT/EXT_post_depth_coverage.txt

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Special Use

• OpenGL / ES support

Contact

• Shahbaz Youssefi syoussefi

Other Extension Metadata

Last Modified Date

2021-01-11

IP Status

No known IP claims.

Contributors

• Courtney Goeltzenleuchter, Google

• Shahbaz Youssefi, Google

Description

This extension allows list primitives to use the primitive restart index value. This provides a more
efficient implementation when layering OpenGL functionality on Vulkan by avoiding emulation
which incurs data copies.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT

New Enum Constants

• VK_EXT_PRIMITIVE_TOPOLOGY_LIST_RESTART_EXTENSION_NAME

• VK_EXT_PRIMITIVE_TOPOLOGY_LIST_RESTART_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT

4681

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_primitive_topology_list_restart] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_primitive_topology_list_restart extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_primitive_topology_list_restart] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_primitive_topology_list_restart extension*

Version History

• Revision 0, 2020-09-14 (Courtney Goeltzenleuchter)

◦ Internal revisions

• Revision 1, 2021-01-11 (Shahbaz Youssefi)

◦ Add the primitiveTopologyPatchListRestart feature

◦ Internal revisions

VK_EXT_primitives_generated_query

Name String

VK_EXT_primitives_generated_query

Extension Type

Device extension

Registered Extension Number

383

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_transform_feedback

Special Use

• OpenGL / ES support

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_EXT_primitives_generated_query

Other Extension Metadata

Last Modified Date

2022-01-24

Contributors

• Shahbaz Youssefi, Google

• Piers Daniell, NVIDIA

• Faith Ekstrand, Collabora

• Jan-Harald Fredriksen, Arm

4682

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_primitives_generated_query] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_primitives_generated_query extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_primitives_generated_query] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_primitives_generated_query extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_primitives_generated_query.adoc

Description

This extension adds support for a new query type to match OpenGL’s GL_PRIMITIVES_GENERATED to
support layering.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT

New Enum Constants

• VK_EXT_PRIMITIVES_GENERATED_QUERY_EXTENSION_NAME

• VK_EXT_PRIMITIVES_GENERATED_QUERY_SPEC_VERSION

• Extending VkQueryType:

◦ VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT

Issues

1) Can the query from VK_EXT_transform_feedback be used instead?

RESOLVED: No. While the query from VK_EXT_transform_feedback can produce the same results
as in this extension, it is only available while transform feedback is active. The OpenGL
GL_PRIMITIVES_GENERATED query is independent from transform feedback. Emulation through
artificial transform feedback is unnecessarily inefficient.

2) Can VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT be used instead?

RESOLVED: It could, but we prefer the extension for simplicity. Vulkan requires that only one
query be active at a time. If both the GL_PRIMITIVES_GENERATED and the
GL_CLIPPING_INPUT_PRIMITIVES_ARB queries need to be simultaneously enabled, emulation of both
through VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT is inconvenient.

3) On some hardware, this query cannot be implemented if
VkPipelineRasterizationStateCreateInfo::rasterizerDiscardEnable is enabled. How will this be
handled?

RESOLVED: A feature flag is exposed by this extension for this. On said hardware, the GL
implementation disables rasterizer-discard and achieves the same effect through other means. It
will not be able to do the same in Vulkan due to lack of state information. A feature flag is exposed
by this extension so the OpenGL implementation on top of Vulkan would be able to implement a
similar workaround.

4) On some hardware, this query cannot be implemented for non-zero query indices. How will this
be handled?

4683

RESOLVED: A feature flag is exposed by this extension for this. If this feature is not present, the
query from VK_EXT_transform_feedback can be used to the same effect.

5) How is the interaction of this extension with transformFeedbackRasterizationStreamSelect
handled?

RESOLVED: Disallowed for non-zero streams. In OpenGL, the rasterization stream is always stream
zero.

Version History

• Revision 1, 2021-06-23 (Shahbaz Youssefi)

◦ Internal revisions

VK_EXT_provoking_vertex

Name String

VK_EXT_provoking_vertex

Extension Type

Device extension

Registered Extension Number

255

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Special Use

• OpenGL / ES support

Contact

• Jesse Hall jessehall

Other Extension Metadata

Last Modified Date

2021-02-22

IP Status

No known IP claims.

4684

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_provoking_vertex] @jessehall%0A*Here describe the issue or question you have about the VK_EXT_provoking_vertex extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_provoking_vertex] @jessehall%0A*Here describe the issue or question you have about the VK_EXT_provoking_vertex extension*

Contributors

• Alexis Hétu, Google

• Bill Licea-Kane, Qualcomm

• Daniel Koch, Nvidia

• Jamie Madill, Google

• Jan-Harald Fredriksen, Arm

• Faith Ekstrand, Intel

• Jeff Bolz, Nvidia

• Jeff Leger, Qualcomm

• Jesse Hall, Google

• Jörg Wagner, Arm

• Matthew Netsch, Qualcomm

• Mike Blumenkrantz, Valve

• Piers Daniell, Nvidia

• Tobias Hector, AMD

Description

This extension allows changing the provoking vertex convention between Vulkan’s default
convention (first vertex) and OpenGL’s convention (last vertex).

This extension is intended for use by API-translation layers that implement APIs like OpenGL on top
of Vulkan, and need to match the source API’s provoking vertex convention. Applications using
Vulkan directly should use Vulkan’s default convention.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceProvokingVertexFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceProvokingVertexPropertiesEXT

• Extending VkPipelineRasterizationStateCreateInfo:

◦ VkPipelineRasterizationProvokingVertexStateCreateInfoEXT

New Enums

• VkProvokingVertexModeEXT

New Enum Constants

• VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME

• VK_EXT_PROVOKING_VERTEX_SPEC_VERSION

4685

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_PROVOKING_VERTEX_STATE_CREATE_INFO_EXT

Issues

1) At what granularity should this state be set?

RESOLVED: At pipeline bind, with an optional per-render pass restriction.

The most natural place to put this state is in the graphics pipeline object. Some implementations
require it to be known when creating the pipeline, and pipeline state is convenient for
implementing OpenGL 3.2’s glProvokingVertex, which can change the state between draw calls.
However, some implementations can only change it approximately render pass granularity. To
accommodate both, provoking vertex will be pipeline state, but implementations can require that
only one mode is used within a render pass instance; the render pass’s mode is chosen implicitly
when the first pipeline is bound.

2) Does the provoking vertex mode affect the order that vertices are written to transform feedback
buffers?

RESOLVED: Yes, to enable layered implementations of OpenGL and D3D.

All of OpenGL, OpenGL ES, and Direct3D 11 require that vertices are written to transform feedback
buffers such that flat-shaded attributes have the same value when drawing the contents of the
transform feedback buffer as they did in the original drawing when the transform feedback buffer
was written (assuming the provoking vertex mode has not changed, in APIs that support more than
one mode).

Version History

• Revision 1, (1c) 2021-02-22 (Jesse Hall)

◦ Added
VkPhysicalDeviceProvokingVertexPropertiesEXT::transformFeedbackPreservesTriangleFan
ProvokingVertex to accommodate implementations that cannot change the transform
feedback vertex order for triangle fans.

• Revision 1, (1b) 2020-06-14 (Jesse Hall)

◦ Added
VkPhysicalDeviceProvokingVertexFeaturesEXT::transformFeedbackPreservesProvokingVert
ex and required that transform feedback write vertices so as to preserve the provoking
vertex of each primitive.

• Revision 1, (1a) 2019-10-23 (Jesse Hall)

◦ Initial draft, based on a proposal by Alexis Hétu

4686

VK_EXT_queue_family_foreign

Name String

VK_EXT_queue_family_foreign

Extension Type

Device extension

Registered Extension Number

127

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_external_memory
or
Version 1.1

Contact

• Lina Versace versalinyaa

Other Extension Metadata

Last Modified Date

2017-11-01

IP Status

No known IP claims.

Contributors

• Lina Versace, Google

• James Jones, NVIDIA

• Faith Ekstrand, Intel

• Jesse Hall, Google

• Daniel Rakos, AMD

• Ray Smith, ARM

Description

This extension defines a special queue family, VK_QUEUE_FAMILY_FOREIGN_EXT, which can be used to
transfer ownership of resources backed by external memory to foreign, external queues. This is
similar to VK_QUEUE_FAMILY_EXTERNAL_KHR, defined in VK_KHR_external_memory. The key differences
between the two are:

4687

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_queue_family_foreign] @versalinyaa%0A*Here describe the issue or question you have about the VK_EXT_queue_family_foreign extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_queue_family_foreign] @versalinyaa%0A*Here describe the issue or question you have about the VK_EXT_queue_family_foreign extension*

• The queues represented by VK_QUEUE_FAMILY_EXTERNAL_KHR must share the same physical device
and the same driver version as the current VkInstance. VK_QUEUE_FAMILY_FOREIGN_EXT has no such
restrictions. It can represent devices and drivers from other vendors, and can even represent
non-Vulkan-capable devices.

• All resources backed by external memory support VK_QUEUE_FAMILY_EXTERNAL_KHR. Support for
VK_QUEUE_FAMILY_FOREIGN_EXT is more restrictive.

• Applications should expect transitions to/from VK_QUEUE_FAMILY_FOREIGN_EXT to be more
expensive than transitions to/from VK_QUEUE_FAMILY_EXTERNAL_KHR.

New Enum Constants

• VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME

• VK_EXT_QUEUE_FAMILY_FOREIGN_SPEC_VERSION

• VK_QUEUE_FAMILY_FOREIGN_EXT

Version History

• Revision 1, 2017-11-01 (Lina Versace)

◦ Squashed internal revisions

VK_EXT_rasterization_order_attachment_access

Name String

VK_EXT_rasterization_order_attachment_access

Extension Type

Device extension

Registered Extension Number

464

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Extension Proposal

VK_EXT_rasterization_order_attachment_access

4688

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_rasterization_order_attachment_access] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_rasterization_order_attachment_access extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_rasterization_order_attachment_access] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_rasterization_order_attachment_access extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_rasterization_order_attachment_access.adoc

Other Extension Metadata

Last Modified Date

2022-07-04

IP Status

No known IP claims.

Contributors

• Tobias Hector, AMD

• Jan-Harald Fredriksen, Arm

Description

This extension extends the mechanism of input attachments to allow access to framebuffer
attachments that are used both as input and as color or depth/stencil attachments from one
fragment to the next, in rasterization order, without explicit synchronization.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT

New Enums

• VkPipelineColorBlendStateCreateFlagBits

• VkPipelineDepthStencilStateCreateFlagBits

New Enum Constants

• VK_EXT_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME

• VK_EXT_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_SPEC_VERSION

• Extending VkPipelineColorBlendStateCreateFlagBits:

◦ VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT

• Extending VkPipelineDepthStencilStateCreateFlagBits:

◦ VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_E
XT

◦ VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT
_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT

• Extending VkSubpassDescriptionFlagBits:

◦ VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT

◦ VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT

4689

◦ VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EXT

Examples

None.

Version History

• Revision 1, 2022-07-04 (Jan-Harald Fredriksen)

◦ Initial draft

VK_EXT_rgba10x6_formats

Name String

VK_EXT_rgba10x6_formats

Extension Type

Device extension

Registered Extension Number

345

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_sampler_ycbcr_conversion

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Other Extension Metadata

Last Modified Date

2021-09-29

IP Status

No known IP claims.

Contributors

• Jan-Harald Fredriksen, Arm

• Graeme Leese, Broadcom

• Spencer Fricke, Samsung

4690

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_rgba10x6_formats] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_rgba10x6_formats extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_rgba10x6_formats] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_rgba10x6_formats extension*

Description

This extension enables the VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 format to be used without
a sampler Y′CBCR conversion enabled.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT

New Enum Constants

• VK_EXT_RGBA10X6_FORMATS_EXTENSION_NAME

• VK_EXT_RGBA10X6_FORMATS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RGBA10X6_FORMATS_FEATURES_EXT

Issues

1) Should we reuse the existing format enumeration or introduce a new one?

RESOLVED: We reuse an existing format enumeration,
VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16, that was previously exclusively used for YCbCr and
therefore had a set of limitations related to that usage. The alternative was to introduce a new
format token with exactly the same bit representation as the existing token, but without the
limitations.

2) Should we only introduce VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 or also 1-3 component
variations?

RESOLVED: Only the 4-component format is introduced because the 1- and 2- component
variations are already not exclusive to YCbCr, and the 3-component variation is not a good match
for hardware capabilities.

Version History

• Revision 1, 2021-09-29 (Jan-Harald Fredriksen)

◦ Initial EXT version

VK_EXT_robustness2

Name String

VK_EXT_robustness2

Extension Type

Device extension

4691

Registered Extension Number

287

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Liam Middlebrook liam-middlebrook

Other Extension Metadata

Last Modified Date

2020-01-29

IP Status

No known IP claims.

Contributors

• Liam Middlebrook, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension adds stricter requirements for how out of bounds reads and writes are handled.
Most accesses must be tightly bounds-checked, out of bounds writes must be discarded, out of
bound reads must return zero. Rather than allowing multiple possible (0,0,0,x) vectors, the out of
bounds values are treated as zero, and then missing components are inserted based on the format
as described in Conversion to RGBA and vertex input attribute extraction.

These additional requirements may be expensive on some implementations, and should only be
enabled when truly necessary.

This extension also adds support for “null descriptors”, where VK_NULL_HANDLE can be used
instead of a valid handle. Accesses to null descriptors have well-defined behavior, and do not rely
on robustness.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRobustness2FeaturesEXT

4692

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_robustness2] @liam-middlebrook%0A*Here describe the issue or question you have about the VK_EXT_robustness2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_robustness2] @liam-middlebrook%0A*Here describe the issue or question you have about the VK_EXT_robustness2 extension*

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceRobustness2PropertiesEXT

New Enum Constants

• VK_EXT_ROBUSTNESS_2_EXTENSION_NAME

• VK_EXT_ROBUSTNESS_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT

Issues

1. Why do VkPhysicalDeviceRobustness2PropertiesEXT::robustUniformBufferAccessSizeAlignment
and VkPhysicalDeviceRobustness2PropertiesEXT::robustStorageBufferAccessSizeAlignment exist?

RESOLVED: Some implementations cannot efficiently tightly bounds-check all buffer accesses.
Rather, the size of the bound range is padded to some power of two multiple, up to 256 bytes for
uniform buffers and up to 4 bytes for storage buffers, and that padded size is bounds-checked. This
is sufficient to implement D3D-like behavior, because D3D only allows binding whole uniform
buffers or ranges that are a multiple of 256 bytes, and D3D raw and structured buffers only support
32-bit accesses.

Examples

None.

Version History

• Revision 1, 2019-11-01 (Jeff Bolz, Liam Middlebrook)

◦ Initial draft

VK_EXT_sample_locations

Name String

VK_EXT_sample_locations

Extension Type

Device extension

Registered Extension Number

144

Revision

1

4693

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Daniel Rakos drakos-amd

Other Extension Metadata

Last Modified Date

2017-08-02

Contributors

• Mais Alnasser, AMD

• Matthaeus G. Chajdas, AMD

• Maciej Jesionowski, AMD

• Daniel Rakos, AMD

• Slawomir Grajewski, Intel

• Jeff Bolz, NVIDIA

• Bill Licea-Kane, Qualcomm

Description

This extension allows an application to modify the locations of samples within a pixel used in
rasterization. Additionally, it allows applications to specify different sample locations for each pixel
in a group of adjacent pixels, which can increase antialiasing quality (particularly if a custom
resolve shader is used that takes advantage of these different locations).

It is common for implementations to optimize the storage of depth values by storing values that can
be used to reconstruct depth at each sample location, rather than storing separate depth values for
each sample. For example, the depth values from a single triangle may be represented using plane
equations. When the depth value for a sample is needed, it is automatically evaluated at the sample
location. Modifying the sample locations causes the reconstruction to no longer evaluate the same
depth values as when the samples were originally generated, thus the depth aspect of a
depth/stencil attachment must be cleared before rendering to it using different sample locations.

Some implementations may need to evaluate depth image values while performing image layout
transitions. To accommodate this, instances of the VkSampleLocationsInfoEXT structure can be
specified for each situation where an explicit or automatic layout transition has to take place.
VkSampleLocationsInfoEXT can be chained from VkImageMemoryBarrier structures to provide
sample locations for layout transitions performed by vkCmdWaitEvents and vkCmdPipelineBarrier
calls, and VkRenderPassSampleLocationsBeginInfoEXT can be chained from

4694

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_sample_locations] @drakos-amd%0A*Here describe the issue or question you have about the VK_EXT_sample_locations extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_sample_locations] @drakos-amd%0A*Here describe the issue or question you have about the VK_EXT_sample_locations extension*

VkRenderPassBeginInfo to provide sample locations for layout transitions performed implicitly by
a render pass instance.

New Commands

• vkCmdSetSampleLocationsEXT

• vkGetPhysicalDeviceMultisamplePropertiesEXT

New Structures

• VkAttachmentSampleLocationsEXT

• VkMultisamplePropertiesEXT

• VkSampleLocationEXT

• VkSubpassSampleLocationsEXT

• Extending VkImageMemoryBarrier, VkImageMemoryBarrier2:

◦ VkSampleLocationsInfoEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceSampleLocationsPropertiesEXT

• Extending VkPipelineMultisampleStateCreateInfo:

◦ VkPipelineSampleLocationsStateCreateInfoEXT

• Extending VkRenderPassBeginInfo:

◦ VkRenderPassSampleLocationsBeginInfoEXT

New Enum Constants

• VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME

• VK_EXT_SAMPLE_LOCATIONS_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT

◦ VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT

4695

Version History

• Revision 1, 2017-08-02 (Daniel Rakos)

◦ Internal revisions

VK_EXT_shader_atomic_float

Name String

VK_EXT_shader_atomic_float

Extension Type

Device extension

Registered Extension Number

261

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

SPIR-V Dependencies

• SPV_EXT_shader_atomic_float_add

Contact

• Vikram Kushwaha vkushwaha-nv

Other Extension Metadata

Last Modified Date

2020-07-15

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_EXT_shader_atomic_float

Contributors

• Vikram Kushwaha, NVIDIA

• Jeff Bolz, NVIDIA

4696

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_shader_atomic_float_add.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_atomic_float] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_EXT_shader_atomic_float extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_atomic_float] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_EXT_shader_atomic_float extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_shader_atomic_float.txt

Description

This extension allows a shader to contain floating-point atomic operations on buffer, workgroup,
and image memory. It also advertises the SPIR-V AtomicFloat32AddEXT and AtomicFloat64AddEXT
capabilities that allows atomic addition on floating-points numbers. The supported operations
include OpAtomicFAddEXT, OpAtomicExchange, OpAtomicLoad and OpAtomicStore.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderAtomicFloatFeaturesEXT

New Enum Constants

• VK_EXT_SHADER_ATOMIC_FLOAT_EXTENSION_NAME

• VK_EXT_SHADER_ATOMIC_FLOAT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT

New SPIR-V Capabilities

• AtomicFloat32AddEXT

• AtomicFloat64AddEXT

Version History

• Revision 1, 2020-07-15 (Vikram Kushwaha)

◦ Internal revisions

VK_EXT_shader_atomic_float2

Name String

VK_EXT_shader_atomic_float2

Extension Type

Device extension

Registered Extension Number

274

Revision

1

Ratification Status

Not ratified

4697

Extension and Version Dependencies

VK_EXT_shader_atomic_float

SPIR-V Dependencies

• SPV_EXT_shader_atomic_float16_add

• SPV_EXT_shader_atomic_float_min_max

Contact

• Faith Ekstrand gfxstrand

Other Extension Metadata

Last Modified Date

2020-08-14

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_shader_atomic_float2

Contributors

• Faith Ekstrand, Intel

Description

This extension allows a shader to perform 16-bit floating-point atomic operations on buffer and
workgroup memory as well as floating-point atomic minimum and maximum operations on buffer,
workgroup, and image memory. It advertises the SPIR-V AtomicFloat16AddEXT capability which
allows atomic add operations on 16-bit floating-point numbers and the SPIR-V
AtomicFloat16MinMaxEXT, AtomicFloat32MinMaxEXT and AtomicFloat64MinMaxEXT capabilities which
allow atomic minimum and maximum operations on floating-point numbers. The supported
operations include OpAtomicFAddEXT, OpAtomicFMinEXT and OpAtomicFMaxEXT.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT

New Enum Constants

• VK_EXT_SHADER_ATOMIC_FLOAT_2_EXTENSION_NAME

• VK_EXT_SHADER_ATOMIC_FLOAT_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT

4698

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_shader_atomic_float16_add.html
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_shader_atomic_float_min_max.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_atomic_float2] @gfxstrand%0A*Here describe the issue or question you have about the VK_EXT_shader_atomic_float2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_atomic_float2] @gfxstrand%0A*Here describe the issue or question you have about the VK_EXT_shader_atomic_float2 extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_shader_atomic_float2.txt

Issues

1) Should this extension add support for 16-bit image atomics?

RESOLVED: No. While Vulkan supports creating storage images with VK_FORMAT_R16_SFLOAT and
doing load and store on them, the data in the shader has a 32-bit representation. Vulkan currently
has no facility for even basic reading or writing such images using 16-bit float values in the shader.
Adding such functionality would be required before 16-bit image atomics would make sense and is
outside the scope of this extension.

New SPIR-V Capabilities

• AtomicFloat32MinMaxEXT

• AtomicFloat32MinMaxEXT

• AtomicFloat32MinMaxEXT

• AtomicFloat64MinMaxEXT

Version History

• Revision 1, 2020-08-14 (Faith Ekstrand)

◦ Internal revisions

VK_EXT_shader_image_atomic_int64

Name String

VK_EXT_shader_image_atomic_int64

Extension Type

Device extension

Registered Extension Number

235

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

SPIR-V Dependencies

• SPV_EXT_shader_image_int64

4699

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_shader_image_int64.html

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2020-07-14

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_shader_image_int64

Contributors

• Matthaeus Chajdas, AMD

• Graham Wihlidal, Epic Games

• Tobias Hector, AMD

• Jeff Bolz, Nvidia

• Faith Ekstrand, Intel

Description

This extension extends existing 64-bit integer atomic support to enable these operations on images
as well.

When working with large 2- or 3-dimensional data sets (e.g. rasterization or screen-space effects),
image accesses are generally more efficient than equivalent buffer accesses. This extension allows
applications relying on 64-bit integer atomics in this manner to quickly improve performance with
only relatively minor code changes.

64-bit integer atomic support is guaranteed for optimally tiled images with the VK_FORMAT_R64_UINT
and VK_FORMAT_R64_SINT formats.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT

New Enum Constants

• VK_EXT_SHADER_IMAGE_ATOMIC_INT64_EXTENSION_NAME

• VK_EXT_SHADER_IMAGE_ATOMIC_INT64_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_ATOMIC_INT64_FEATURES_EXT

4700

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_image_atomic_int64] @tobski%0A*Here describe the issue or question you have about the VK_EXT_shader_image_atomic_int64 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_image_atomic_int64] @tobski%0A*Here describe the issue or question you have about the VK_EXT_shader_image_atomic_int64 extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_shader_image_int64.txt

Version History

• Revision 1, 2020-07-14 (Tobias Hector)

◦ Initial draft

VK_EXT_shader_module_identifier

Name String

VK_EXT_shader_module_identifier

Extension Type

Device extension

Registered Extension Number

463

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_EXT_pipeline_creation_cache_control

Contact

• Hans-Kristian Arntzen HansKristian-Work

Extension Proposal

VK_EXT_shader_module_identifier

Other Extension Metadata

Last Modified Date

2022-05-16

IP Status

No known IP claims.

Contributors

• Hans-Kristian Arntzen, Valve

• Ricardo Garcia, Igalia

• Piers Daniell, NVIDIA

• Jan-Harald Fredriksen, Arm

• Tom Olson, Arm

4701

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_module_identifier] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_EXT_shader_module_identifier extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_module_identifier] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_EXT_shader_module_identifier extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_shader_module_identifier.adoc

• Faith Ekstrand, Collabora

Description

Some applications generate SPIR-V code at runtime. When pipeline caches are primed, either
explicitly through e.g. VkPipelineCache mechanisms, or implicitly through driver managed caches,
having to re-generate SPIR-V modules is redundant. SPIR-V modules could be cached on disk by an
application, but the extra disk size requirement might be prohibitive in some use cases.

This extension adds the ability for an application to query a small identifier associated with a
VkShaderModule. On subsequent runs of the application, the same identifier can be provided in
lieu of a VkShaderModule object. A pipeline creation call with such a module may succeed if a
pipeline could be created without invoking compilation, and information inside the SPIR-V module
is not required by the implementation.

VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT must be used if only the identifier is
provided, and this use case is intended to work like a non-blocking, speculative compile.
Applications can fallback as necessary.

The main motivation for identifying the module itself and not the entire pipeline is that pipeline
identifiers change when a driver is updated, but module identifiers are expected to be stable for
any particular driver implementation. This approach is helpful for shader pre-compilation systems
which can prime pipeline caches ahead of time. When on-disk pipeline caches are updated, the
same shader identifiers could lead to a pipeline cache hit.

New Commands

• vkGetShaderModuleCreateInfoIdentifierEXT

• vkGetShaderModuleIdentifierEXT

New Structures

• VkShaderModuleIdentifierEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT

• Extending VkPipelineShaderStageCreateInfo:

◦ VkPipelineShaderStageModuleIdentifierCreateInfoEXT

New Enum Constants

• VK_EXT_SHADER_MODULE_IDENTIFIER_EXTENSION_NAME

• VK_EXT_SHADER_MODULE_IDENTIFIER_SPEC_VERSION

• VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT

• Extending VkStructureType:

4702

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_SHADER_MODULE_IDENTIFIER_EXT

Version History

• Revision 1, 2022-03-16 (Hans-Kristian Arntzen)

◦ Initial draft

VK_EXT_shader_object

Name String

VK_EXT_shader_object

Extension Type

Device extension

Registered Extension Number

483

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

 VK_KHR_get_physical_device_properties2
 or
 Version 1.1
and
 VK_KHR_dynamic_rendering
 or
 Version 1.3

API Interactions

• Interacts with VK_VERSION_1_1

• Interacts with VK_VERSION_1_3

• Interacts with VK_EXT_blend_operation_advanced

• Interacts with VK_EXT_conservative_rasterization

• Interacts with VK_EXT_depth_clip_control

• Interacts with VK_EXT_depth_clip_enable

• Interacts with VK_EXT_fragment_density_map

4703

• Interacts with VK_EXT_line_rasterization

• Interacts with VK_EXT_mesh_shader

• Interacts with VK_EXT_provoking_vertex

• Interacts with VK_EXT_sample_locations

• Interacts with VK_EXT_subgroup_size_control

• Interacts with VK_EXT_transform_feedback

• Interacts with VK_KHR_device_group

• Interacts with VK_KHR_fragment_shading_rate

• Interacts with VK_NV_clip_space_w_scaling

• Interacts with VK_NV_coverage_reduction_mode

• Interacts with VK_NV_fragment_coverage_to_color

• Interacts with VK_NV_framebuffer_mixed_samples

• Interacts with VK_NV_mesh_shader

• Interacts with VK_NV_representative_fragment_test

• Interacts with VK_NV_shading_rate_image

• Interacts with VK_NV_viewport_swizzle

Contact

• Daniel Story daniel-story

Extension Proposal

VK_EXT_shader_object

Other Extension Metadata

Last Modified Date

2023-03-30

Interactions and External Dependencies

• Interacts with VK_EXT_extended_dynamic_state

• Interacts with VK_EXT_extended_dynamic_state2

• Interacts with VK_EXT_extended_dynamic_state3

• Interacts with VK_EXT_vertex_input_dynamic_state

IP Status

No known IP claims.

Contributors

• Piers Daniell, NVIDIA

• Sandy Jamieson, Nintendo

• Žiga Markuš, LunarG

4704

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_object] @daniel-story%0A*Here describe the issue or question you have about the VK_EXT_shader_object extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_object] @daniel-story%0A*Here describe the issue or question you have about the VK_EXT_shader_object extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_shader_object.adoc

• Tobias Hector, AMD

• Alex Walters, Imagination

• Shahbaz Youssefi, Google

• Ralph Potter, Samsung

• Jan-Harald Fredriksen, ARM

• Connor Abott, Valve

• Arseny Kapoulkine, Roblox

• Patrick Doane, Activision

• Jeff Leger, Qualcomm

• Stu Smith, AMD

• Chris Glover, Google

• Ricardo Garcia, Igalia

• Faith Ekstrand, Collabora

• Timur Kristóf, Valve

• Constantine Shablya, Collabora

• Daniel Koch, NVIDIA

• Alyssa Rosenzweig, Collabora

• Mike Blumenkrantz, Valve

• Samuel Pitoiset, Valve

• Qun Lin, AMD

• Spencer Fricke, LunarG

• Soroush Faghihi Kashani, Imagination

Description

This extension introduces a new VkShaderEXT object type which represents a single compiled
shader stage. Shader objects provide a more flexible alternative to VkPipeline objects, which may
be helpful in certain use cases.

New Object Types

• VkShaderEXT

New Commands

• vkCmdBindShadersEXT

• vkCmdBindVertexBuffers2EXT

• vkCmdSetAlphaToCoverageEnableEXT

• vkCmdSetAlphaToOneEnableEXT

4705

• vkCmdSetColorBlendEnableEXT

• vkCmdSetColorBlendEquationEXT

• vkCmdSetColorWriteMaskEXT

• vkCmdSetCullModeEXT

• vkCmdSetDepthBiasEnableEXT

• vkCmdSetDepthBoundsTestEnableEXT

• vkCmdSetDepthClampEnableEXT

• vkCmdSetDepthCompareOpEXT

• vkCmdSetDepthTestEnableEXT

• vkCmdSetDepthWriteEnableEXT

• vkCmdSetFrontFaceEXT

• vkCmdSetLogicOpEXT

• vkCmdSetLogicOpEnableEXT

• vkCmdSetPatchControlPointsEXT

• vkCmdSetPolygonModeEXT

• vkCmdSetPrimitiveRestartEnableEXT

• vkCmdSetPrimitiveTopologyEXT

• vkCmdSetRasterizationSamplesEXT

• vkCmdSetRasterizerDiscardEnableEXT

• vkCmdSetSampleMaskEXT

• vkCmdSetScissorWithCountEXT

• vkCmdSetStencilOpEXT

• vkCmdSetStencilTestEnableEXT

• vkCmdSetTessellationDomainOriginEXT

• vkCmdSetVertexInputEXT

• vkCmdSetViewportWithCountEXT

• vkCreateShadersEXT

• vkDestroyShaderEXT

• vkGetShaderBinaryDataEXT

If VK_EXT_blend_operation_advanced is supported:

• vkCmdSetColorBlendAdvancedEXT

If VK_EXT_conservative_rasterization is supported:

• vkCmdSetConservativeRasterizationModeEXT

4706

• vkCmdSetExtraPrimitiveOverestimationSizeEXT

If VK_EXT_depth_clip_control is supported:

• vkCmdSetDepthClipNegativeOneToOneEXT

If VK_EXT_depth_clip_enable is supported:

• vkCmdSetDepthClipEnableEXT

If VK_EXT_line_rasterization is supported:

• vkCmdSetLineRasterizationModeEXT

• vkCmdSetLineStippleEnableEXT

If VK_EXT_provoking_vertex is supported:

• vkCmdSetProvokingVertexModeEXT

If VK_EXT_sample_locations is supported:

• vkCmdSetSampleLocationsEnableEXT

If VK_EXT_transform_feedback is supported:

• vkCmdSetRasterizationStreamEXT

If VK_NV_clip_space_w_scaling is supported:

• vkCmdSetViewportWScalingEnableNV

If VK_NV_coverage_reduction_mode is supported:

• vkCmdSetCoverageReductionModeNV

If VK_NV_fragment_coverage_to_color is supported:

• vkCmdSetCoverageToColorEnableNV

• vkCmdSetCoverageToColorLocationNV

If VK_NV_framebuffer_mixed_samples is supported:

• vkCmdSetCoverageModulationModeNV

• vkCmdSetCoverageModulationTableEnableNV

• vkCmdSetCoverageModulationTableNV

If VK_NV_representative_fragment_test is supported:

• vkCmdSetRepresentativeFragmentTestEnableNV

If VK_NV_shading_rate_image is supported:

4707

• vkCmdSetShadingRateImageEnableNV

If VK_NV_viewport_swizzle is supported:

• vkCmdSetViewportSwizzleNV

New Structures

• VkColorBlendAdvancedEXT

• VkColorBlendEquationEXT

• VkShaderCreateInfoEXT

• VkVertexInputAttributeDescription2EXT

• VkVertexInputBindingDescription2EXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderObjectFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderObjectPropertiesEXT

• Extending VkPipelineShaderStageCreateInfo, VkShaderCreateInfoEXT:

◦ VkShaderRequiredSubgroupSizeCreateInfoEXT

New Enums

• VkShaderCodeTypeEXT

• VkShaderCreateFlagBitsEXT

New Bitmasks

• VkShaderCreateFlagsEXT

New Enum Constants

• VK_EXT_SHADER_OBJECT_EXTENSION_NAME

• VK_EXT_SHADER_OBJECT_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_SHADER_EXT

• Extending VkResult:

◦ VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT

◦ VK_INCOMPATIBLE_SHADER_BINARY_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_PROPERTIES_EXT

4708

◦ VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_SHADER_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT

◦ VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT

If VK_EXT_fragment_density_map is supported:

• Extending VkShaderCreateFlagBitsEXT:

◦ VK_SHADER_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

If VK_EXT_mesh_shader or VK_NV_mesh_shader is supported:

• Extending VkShaderCreateFlagBitsEXT:

◦ VK_SHADER_CREATE_NO_TASK_SHADER_BIT_EXT

If VK_EXT_subgroup_size_control or Version 1.3 is supported:

• Extending VkShaderCreateFlagBitsEXT:

◦ VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT

◦ VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT

If VK_KHR_device_group or Version 1.1 is supported:

• Extending VkShaderCreateFlagBitsEXT:

◦ VK_SHADER_CREATE_DISPATCH_BASE_BIT_EXT

If VK_KHR_fragment_shading_rate is supported:

• Extending VkShaderCreateFlagBitsEXT:

◦ VK_SHADER_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_EXT

Examples

Example 1

Create linked pair of vertex and fragment shaders.

// Logical device created with the shaderObject feature enabled
VkDevice device;

// SPIR-V shader code for a vertex shader, along with its size in bytes
void* pVertexSpirv;
size_t vertexSpirvSize;

// SPIR-V shader code for a fragment shader, along with its size in bytes
void* pFragmentSpirv;
size_t fragmentSpirvSize;

4709

// Descriptor set layout compatible with the shaders
VkDescriptorSetLayout descriptorSetLayout;

VkShaderCreateInfoEXT shaderCreateInfos[2] =
{
 {
 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT,
 .stage = VK_SHADER_STAGE_VERTEX_BIT,
 .nextStage = VK_SHADER_STAGE_FRAGMENT_BIT,
 .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
 .codeSize = vertexSpirvSize,
 .pCode = pVertexSpirv,
 .pName = "main",
 .setLayoutCount = 1,
 .pSetLayouts = &descriptorSetLayout;
 .pushConstantRangeCount = 0,
 .pPushConstantRanges = NULL,
 .pSpecializationInfo = NULL
 },
 {
 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT,
 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
 .nextStage = 0,
 .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
 .codeSize = fragmentSpirvSize,
 .pCode = pFragmentSpirv,
 .pName = "main",
 .setLayoutCount = 1,
 .pSetLayouts = &descriptorSetLayout;
 .pushConstantRangeCount = 0,
 .pPushConstantRanges = NULL,
 .pSpecializationInfo = NULL
 }
};

VkResult result;
VkShaderEXT shaders[2];

result = vkCreateShadersEXT(device, 2, &shaderCreateInfos, NULL, shaders);
if (result != VK_SUCCESS)
{
 // Handle error
}

Later, during command buffer recording, bind the linked shaders and draw.

4710

// Command buffer in the recording state
VkCommandBuffer commandBuffer;

// Vertex and fragment shader objects created above
VkShaderEXT shaders[2];

// Assume vertex buffers, descriptor sets, etc. have been bound, and existing
// state setting commands have been called to set all required state

const VkShaderStageFlagBits stages[2] =
{
 VK_SHADER_STAGE_VERTEX_BIT,
 VK_SHADER_STAGE_FRAGMENT_BIT
};

// Bind linked shaders
vkCmdBindShadersEXT(commandBuffer, 2, stages, shaders);

// Equivalent to the previous line. Linked shaders can be bound one at a time,
// in any order:
// vkCmdBindShadersEXT(commandBuffer, 1, &stages[1], &shaders[1]);
// vkCmdBindShadersEXT(commandBuffer, 1, &stages[0], &shaders[0]);

// The above is sufficient to draw if the device was created with the
// tessellationShader and geometryShader features disabled. Otherwise, since
// those stages should not execute, vkCmdBindShadersEXT() must be called at
// least once with each of their stages in pStages before drawing:

const VkShaderStageFlagBits unusedStages[3] =
{
 VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
 VK_SHADER_STAGE_GEOMETRY_BIT
};

// NULL pShaders is equivalent to an array of stageCount VK_NULL_HANDLE values,
// meaning no shaders are bound to those stages, and that any previously bound
// shaders are unbound
vkCmdBindShadersEXT(commandBuffer, 3, unusedStages, NULL);

// Graphics shader objects may only be used to draw inside dynamic render pass
// instances begun with vkCmdBeginRendering(), assume one has already been begun

// Draw a triangle
vkCmdDraw(commandBuffer, 3, 1, 0, 0);

Example 2

Create unlinked vertex, geometry, and fragment shaders.

4711

// Logical device created with the shaderObject feature enabled
VkDevice device;

// SPIR-V shader code for vertex shaders, along with their sizes in bytes
void* pVertexSpirv[2];
size_t vertexSpirvSize[2];

// SPIR-V shader code for a geometry shader, along with its size in bytes
void pGeometrySpirv;
size_t geometrySpirvSize;

// SPIR-V shader code for fragment shaders, along with their sizes in bytes
void* pFragmentSpirv[2];
size_t fragmentSpirvSize[2];

// Descriptor set layout compatible with the shaders
VkDescriptorSetLayout descriptorSetLayout;

VkShaderCreateInfoEXT shaderCreateInfos[5] =
{
 // Stage order does not matter
 {
 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = 0,
 .stage = VK_SHADER_STAGE_GEOMETRY_BIT,
 .nextStage = VK_SHADER_STAGE_FRAGMENT_BIT,
 .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
 .codeSize = pGeometrySpirv,
 .pCode = geometrySpirvSize,
 .pName = "main",
 .setLayoutCount = 1,
 .pSetLayouts = &descriptorSetLayout;
 .pushConstantRangeCount = 0,
 .pPushConstantRanges = NULL,
 .pSpecializationInfo = NULL
 },
 {
 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = 0,
 .stage = VK_SHADER_STAGE_VERTEX_BIT,
 .nextStage = VK_SHADER_STAGE_GEOMETRY_BIT,
 .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
 .codeSize = vertexSpirvSize[0],
 .pCode = pVertexSpirv[0],
 .pName = "main",
 .setLayoutCount = 1,
 .pSetLayouts = &descriptorSetLayout;
 .pushConstantRangeCount = 0,

4712

 .pPushConstantRanges = NULL,
 .pSpecializationInfo = NULL
 },
 {
 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = 0,
 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
 .nextStage = 0,
 .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
 .codeSize = fragmentSpirvSize[0],
 .pCode = pFragmentSpirv[0],
 .pName = "main",
 .setLayoutCount = 1,
 .pSetLayouts = &descriptorSetLayout;
 .pushConstantRangeCount = 0,
 .pPushConstantRanges = NULL,
 .pSpecializationInfo = NULL
 },
 {
 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = 0,
 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
 .nextStage = 0,
 .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
 .codeSize = fragmentSpirvSize[1],
 .pCode = pFragmentSpirv[1],
 .pName = "main",
 .setLayoutCount = 1,
 .pSetLayouts = &descriptorSetLayout;
 .pushConstantRangeCount = 0,
 .pPushConstantRanges = NULL,
 .pSpecializationInfo = NULL
 },
 {
 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = 0,
 .stage = VK_SHADER_STAGE_VERTEX_BIT,
 // Suppose we want this vertex shader to be able to be followed by
 // either a geometry shader or fragment shader:
 .nextStage = VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
 .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
 .codeSize = vertexSpirvSize[1],
 .pCode = pVertexSpirv[1],
 .pName = "main",
 .setLayoutCount = 1,
 .pSetLayouts = &descriptorSetLayout;
 .pushConstantRangeCount = 0,
 .pPushConstantRanges = NULL,

4713

 .pSpecializationInfo = NULL
 }
};

VkResult result;
VkShaderEXT shaders[5];

result = vkCreateShadersEXT(device, 5, &shaderCreateInfos, NULL, shaders);
if (result != VK_SUCCESS)
{
 // Handle error
}

Later, during command buffer recording, bind the linked shaders in different combinations and
draw.

// Command buffer in the recording state
VkCommandBuffer commandBuffer;

// Vertex, geometry, and fragment shader objects created above
VkShaderEXT shaders[5];

// Assume vertex buffers, descriptor sets, etc. have been bound, and existing
// state setting commands have been called to set all required state

const VkShaderStageFlagBits stages[3] =
{
 // Any order is allowed
 VK_SHADER_STAGE_FRAGMENT_BIT,
 VK_SHADER_STAGE_VERTEX_BIT,
 VK_SHADER_STAGE_GEOMETRY_BIT,
};

VkShaderEXT bindShaders[3] =
{
 shaders[2], // FS
 shaders[1], // VS
 shaders[0] // GS
};

// Bind unlinked shaders
vkCmdBindShadersEXT(commandBuffer, 3, stages, bindShaders);

// Assume the tessellationShader feature is disabled, so vkCmdBindShadersEXT()
// need not have been called with either tessellation stage

// Graphics shader objects may only be used to draw inside dynamic render pass
// instances begun with vkCmdBeginRendering(), assume one has already been begun

// Draw a triangle

4714

vkCmdDraw(commandBuffer, 3, 1, 0, 0);

// Bind a different unlinked fragment shader
const VkShaderStageFlagBits fragmentStage = VK_SHADER_STAGE_FRAGMENT_BIT;
vkCmdBindShadersEXT(commandBuffer, 1, &fragmentStage, &shaders[3]);

// Draw another triangle
vkCmdDraw(commandBuffer, 3, 1, 0, 0);

// Bind a different unlinked vertex shader
const VkShaderStageFlagBits vertexStage = VK_SHADER_STAGE_VERTEX_BIT;
vkCmdBindShadersEXT(commandBuffer, 1, &vertexStage, &shaders[4]);

// Draw another triangle
vkCmdDraw(commandBuffer, 3, 1, 0, 0);

Version History

• Revision 1, 2023-03-30 (Daniel Story)

◦ Initial draft

VK_EXT_shader_stencil_export

Name String

VK_EXT_shader_stencil_export

Extension Type

Device extension

Registered Extension Number

141

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_EXT_shader_stencil_export

Contact

• Dominik Witczak dominikwitczakamd

4715

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_shader_stencil_export.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_stencil_export] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_EXT_shader_stencil_export extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_stencil_export] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_EXT_shader_stencil_export extension*

Other Extension Metadata

Last Modified Date

2017-07-19

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_ARB_shader_stencil_export

Contributors

• Dominik Witczak, AMD

• Daniel Rakos, AMD

• Rex Xu, AMD

Description

This extension adds support for the SPIR-V extension SPV_EXT_shader_stencil_export, providing a
mechanism whereby a shader may generate the stencil reference value per invocation. When
stencil testing is enabled, this allows the test to be performed against the value generated in the
shader.

New Enum Constants

• VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME

• VK_EXT_SHADER_STENCIL_EXPORT_SPEC_VERSION

Version History

• Revision 1, 2017-07-19 (Dominik Witczak)

◦ Initial draft

VK_EXT_shader_tile_image

Name String

VK_EXT_shader_tile_image

Extension Type

Device extension

Registered Extension Number

396

Revision

1

4716

https://registry.khronos.org/OpenGL/extensions/ARB/ARB_shader_stencil_export.txt

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.3

SPIR-V Dependencies

• SPV_EXT_shader_tile_image

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Extension Proposal

VK_EXT_shader_tile_image

Other Extension Metadata

Last Modified Date

2023-03-23

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_EXT_shader_tile_image

Contributors

• Sandeep Kakarlapudi, Arm

• Jan-Harald Fredriksen, Arm

• James Fitzpatrick, Imagination

• Andrew Garrard, Imagination

• Jeff Leger, Qualcomm

• Huilong Wang, Huawei

• Graeme Leese, Broadcom

• Hans-Kristian Arntzen, Valve

• Tobias Hector, AMD

• Jeff Bolz, NVIDIA

• Shahbaz Youssefi, Google

Description

This extension allows fragment shader invocations to read color, depth and stencil values at their
pixel location in rasterization order. The functionality is only available when using dynamic render
passes introduced by VK_KHR_dynamic_rendering. Example use cases are programmable blending
and deferred shading.

4717

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_shader_tile_image.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_tile_image] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_shader_tile_image extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_tile_image] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_shader_tile_image extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_shader_tile_image.adoc
https://raw.githubusercontent.com/KhronosGroup/GLSL/master/extensions/ext/GLSL_EXT_shader_tile_image.txt

See fragment shader tile image reads for more information.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderTileImageFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderTileImagePropertiesEXT

New Enum Constants

• VK_EXT_SHADER_TILE_IMAGE_EXTENSION_NAME

• VK_EXT_SHADER_TILE_IMAGE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TILE_IMAGE_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TILE_IMAGE_PROPERTIES_EXT

Issues

None.

Examples

Color read example.

layout(location = 0 /* aliased to color attachment 0 */) tileImageEXT highp
attachmentEXT color0;
layout(location = 1 /* aliased to color attachment 1 */) tileImageEXT highp
attachmentEXT color1;

layout(location = 0) out vec4 fragColor;

void main()
{
 vec4 value = colorAttachmentReadEXT(color0) + colorAttachmentReadEXT(color1);
 fragColor = value;
}

Depth & Stencil read example.

void main()
{
 // read sample 0: works for non-MSAA or MSAA targets
 highp float last_depth = depthAttachmentReadEXT();
 lowp uint last_stencil = stencilAttachmentReadEXT();

4718

 //..
}

Version History

• Revision 1, 2023-03-23 (Sandeep Kakarlapudi)

◦ Initial version

VK_EXT_subpass_merge_feedback

Name String

VK_EXT_subpass_merge_feedback

Extension Type

Device extension

Registered Extension Number

459

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Ting Wei catweiting

Extension Proposal

VK_EXT_subpass_merge_feedback

Other Extension Metadata

Last Modified Date

2022-05-24

IP Status

No known IP claims.

Contributors

• Jan-Harald Fredriksen, Arm

• Jorg Wagner, Arm

• Ting Wei, Arm

4719

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_subpass_merge_feedback] @catweiting%0A*Here describe the issue or question you have about the VK_EXT_subpass_merge_feedback extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_subpass_merge_feedback] @catweiting%0A*Here describe the issue or question you have about the VK_EXT_subpass_merge_feedback extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_subpass_merge_feedback.adoc

Description

This extension adds a mechanism to provide feedback to an application about whether the
subpasses specified on render pass creation are merged by the implementation. Additionally, it
provides a control to enable or disable subpass merging in the render pass.

New Structures

• VkRenderPassCreationFeedbackInfoEXT

• VkRenderPassSubpassFeedbackInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceSubpassMergeFeedbackFeaturesEXT

• Extending VkRenderPassCreateInfo2:

◦ VkRenderPassCreationFeedbackCreateInfoEXT

• Extending VkRenderPassCreateInfo2, VkSubpassDescription2:

◦ VkRenderPassCreationControlEXT

• Extending VkSubpassDescription2:

◦ VkRenderPassSubpassFeedbackCreateInfoEXT

New Enums

• VkSubpassMergeStatusEXT

New Enum Constants

• VK_EXT_SUBPASS_MERGE_FEEDBACK_EXTENSION_NAME

• VK_EXT_SUBPASS_MERGE_FEEDBACK_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_MERGE_FEEDBACK_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_RENDER_PASS_CREATION_CONTROL_EXT

◦ VK_STRUCTURE_TYPE_RENDER_PASS_CREATION_FEEDBACK_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_RENDER_PASS_SUBPASS_FEEDBACK_CREATE_INFO_EXT

Version History

• Revision 1, 2022-03-10

◦ Initial draft.

• Revision 2, 2022-05-24

◦ Fix structextends and constness issues.

4720

VK_EXT_surface_maintenance1

Name String

VK_EXT_surface_maintenance1

Extension Type

Instance extension

Registered Extension Number

275

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface
and
VK_KHR_get_surface_capabilities2

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_EXT_surface_maintenance1

Other Extension Metadata

Last Modified Date

2022-11-09

Contributors

• Jeff Juliano, NVIDIA

• Lionel Landwerlin, Intel

• Shahbaz Youssefi, Google

• Chris Forbes, Google

• Ian Elliott, Google

• Hans-Kristian Arntzen, Valve

• Daniel Stone, Collabora

Description

VK_EXT_surface_maintenance1 adds a collection of window system integration features that were
intentionally left out or overlooked in the original VK_KHR_surface extension.

4721

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_surface_maintenance1] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_surface_maintenance1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_surface_maintenance1] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_surface_maintenance1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_surface_maintenance1.adoc

The new features are as follows:

• Allow querying number of min/max images from a surface for a particular presentation mode.

• Allow querying a surface’s scaled presentation capabilities.

• Allow querying a surface for the set of presentation modes which can be easily switched
between without requiring swapchain recreation.

New Structures

• Extending VkPhysicalDeviceSurfaceInfo2KHR:

◦ VkSurfacePresentModeEXT

• Extending VkSurfaceCapabilities2KHR:

◦ VkSurfacePresentModeCompatibilityEXT

◦ VkSurfacePresentScalingCapabilitiesEXT

New Enums

• VkPresentGravityFlagBitsEXT

• VkPresentScalingFlagBitsEXT

New Bitmasks

• VkPresentGravityFlagsEXT

• VkPresentScalingFlagsEXT

New Enum Constants

• VK_EXT_SURFACE_MAINTENANCE_1_EXTENSION_NAME

• VK_EXT_SURFACE_MAINTENANCE_1_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_COMPATIBILITY_EXT

◦ VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT

◦ VK_STRUCTURE_TYPE_SURFACE_PRESENT_SCALING_CAPABILITIES_EXT

Version History

• Revision 0, 2019-02-27 (Lionel Landwerlin)

◦ Internal revisions

• Revision 1, 2022-11-09 (Shahbaz Youssefi)

◦ Add functionality and complete spec

4722

VK_EXT_swapchain_colorspace

Name String

VK_EXT_swapchain_colorspace

Extension Type

Instance extension

Registered Extension Number

105

Revision

4

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Courtney Goeltzenleuchter courtney-g

Other Extension Metadata

Last Modified Date

2019-04-26

IP Status

No known IP claims.

Contributors

• Courtney Goeltzenleuchter, Google

Description

This extension expands VkColorSpaceKHR to add support for most standard color spaces beyond
VK_COLOR_SPACE_SRGB_NONLINEAR_KHR. This extension also adds support for
VK_COLOR_SPACE_PASS_THROUGH_EXT which allows applications to use color spaces not explicitly
enumerated in VkColorSpaceKHR.

New Enum Constants

• VK_EXT_SWAPCHAIN_COLOR_SPACE_EXTENSION_NAME

• VK_EXT_SWAPCHAIN_COLOR_SPACE_SPEC_VERSION

• Extending VkColorSpaceKHR:

◦ VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT

4723

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_swapchain_colorspace] @courtney-g%0A*Here describe the issue or question you have about the VK_EXT_swapchain_colorspace extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_swapchain_colorspace] @courtney-g%0A*Here describe the issue or question you have about the VK_EXT_swapchain_colorspace extension*

◦ VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT

◦ VK_COLOR_SPACE_BT2020_LINEAR_EXT

◦ VK_COLOR_SPACE_BT709_LINEAR_EXT

◦ VK_COLOR_SPACE_BT709_NONLINEAR_EXT

◦ VK_COLOR_SPACE_DCI_P3_LINEAR_EXT

◦ VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT

◦ VK_COLOR_SPACE_DISPLAY_P3_LINEAR_EXT

◦ VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT

◦ VK_COLOR_SPACE_DOLBYVISION_EXT

◦ VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT

◦ VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT

◦ VK_COLOR_SPACE_HDR10_HLG_EXT

◦ VK_COLOR_SPACE_HDR10_ST2084_EXT

◦ VK_COLOR_SPACE_PASS_THROUGH_EXT

Issues

1) Does the spec need to specify which kinds of image formats support the color spaces?

RESOLVED: Pixel format is independent of color space (though some color spaces really want /
need floating point color components to be useful). Therefore, do not plan on documenting what
formats support which color spaces. An application can call
vkGetPhysicalDeviceSurfaceFormatsKHR to query what a particular implementation supports.

2) How does application determine if HW supports appropriate transfer function for a color space?

RESOLVED: Extension indicates that implementation must not do the OETF encoding if it is not
sRGB. That responsibility falls to the application shaders. Any other native OETF / EOTF functions
supported by an implementation can be described by separate extension.

Version History

• Revision 1, 2016-12-27 (Courtney Goeltzenleuchter)

◦ Initial version

• Revision 2, 2017-01-19 (Courtney Goeltzenleuchter)

◦ Add pass through and multiple options for BT2020.

◦ Clean up some issues with equations not displaying properly.

• Revision 3, 2017-06-23 (Courtney Goeltzenleuchter)

◦ Add extended sRGB non-linear enum.

• Revision 4, 2019-04-26 (Graeme Leese)

◦ Clarify color space transfer function usage.

4724

◦ Refer to normative definitions in the Data Format Specification.

◦ Clarify DCI-P3 and Display P3 usage.

VK_EXT_swapchain_maintenance1

Name String

VK_EXT_swapchain_maintenance1

Extension Type

Device extension

Registered Extension Number

276

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_swapchain
and
VK_EXT_surface_maintenance1
and
VK_KHR_get_physical_device_properties2

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_EXT_swapchain_maintenance1

Other Extension Metadata

Last Modified Date

2022-10-28

Contributors

• Jeff Juliano, NVIDIA

• Shahbaz Youssefi, Google

• Chris Forbes, Google

• Ian Elliott, Google

• Yiwei Zhang, Google

• Charlie Lao, Google

• Lina Versace, Google

4725

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_swapchain_maintenance1] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_swapchain_maintenance1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_swapchain_maintenance1] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_swapchain_maintenance1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_swapchain_maintenance1.adoc

• Ralph Potter, Samsung

• Igor Nazarov, Samsung

• Hyunchang Kim, Samsung

• Suenghwan Lee, Samsung

• Munseong Kang, Samsung

• Joonyong Park, Samsung

• Hans-Kristian Arntzen, Valve

• Lisa Wu, Arm

• Daniel Stone, Collabora

• Pan Gao, Huawei

Description

VK_EXT_swapchain_maintenance1 adds a collection of window system integration features that were
intentionally left out or overlooked in the original VK_KHR_swapchain extension.

The new features are as follows:

• Specify a fence that will be signaled when the resources associated with a present operation can
be safely destroyed.

• Allow changing the present mode a swapchain is using at per-present granularity.

• Allow applications to define the behavior when presenting a swapchain image to a surface with
different dimensions than the image. Using this feature may allow implementations to avoid
returning VK_ERROR_OUT_OF_DATE_KHR in this situation.

• Allow applications to defer swapchain memory allocation for improved startup time and
memory footprint.

• Allow applications to release previously acquired images without presenting them.

New Commands

• vkReleaseSwapchainImagesEXT

New Structures

• VkReleaseSwapchainImagesInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT

• Extending VkPresentInfoKHR:

◦ VkSwapchainPresentFenceInfoEXT

◦ VkSwapchainPresentModeInfoEXT

• Extending VkSwapchainCreateInfoKHR:

4726

◦ VkSwapchainPresentModesCreateInfoEXT

◦ VkSwapchainPresentScalingCreateInfoEXT

New Enum Constants

• VK_EXT_SWAPCHAIN_MAINTENANCE_1_EXTENSION_NAME

• VK_EXT_SWAPCHAIN_MAINTENANCE_1_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SWAPCHAIN_MAINTENANCE_1_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_RELEASE_SWAPCHAIN_IMAGES_INFO_EXT

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_FENCE_INFO_EXT

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODES_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODE_INFO_EXT

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_SCALING_CREATE_INFO_EXT

• Extending VkSwapchainCreateFlagBitsKHR:

◦ VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT

Version History

• Revision 0, 2019-05-28

◦ Initial revisions

• Revision 1, 2022-08-21 (Shahbaz Youssefi)

◦ Add functionality and complete spec

VK_EXT_transform_feedback

Name String

VK_EXT_transform_feedback

Extension Type

Device extension

Registered Extension Number

29

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

4727

Special Uses

• OpenGL / ES support

• D3D support

• Developer tools

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2018-10-09

Contributors

• Baldur Karlsson, Valve

• Boris Zanin, Mobica

• Daniel Rakos, AMD

• Donald Scorgie, Imagination

• Henri Verbeet, CodeWeavers

• Jan-Harald Fredriksen, Arm

• Faith Ekstrand, Intel

• Jeff Bolz, NVIDIA

• Jesse Barker, Unity

• Jesse Hall, Google

• Pierre-Loup Griffais, Valve

• Philip Rebohle, DXVK

• Ruihao Zhang, Qualcomm

• Samuel Pitoiset, Valve

• Slawomir Grajewski, Intel

• Stu Smith, Imagination Technologies

Description

This extension adds transform feedback to the Vulkan API by exposing the SPIR-V
TransformFeedback and GeometryStreams capabilities to capture vertex, tessellation or geometry
shader outputs to one or more buffers. It adds API functionality to bind transform feedback buffers
to capture the primitives emitted by the graphics pipeline from SPIR-V outputs decorated for
transform feedback. The transform feedback capture can be paused and resumed by way of storing
and retrieving a byte counter. The captured data can be drawn again where the vertex count is
derived from the byte counter without CPU intervention. If the implementation is capable, a vertex
stream other than zero can be rasterized.

4728

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_transform_feedback] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_transform_feedback extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_transform_feedback] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_transform_feedback extension*

All these features are designed to match the full capabilities of OpenGL core transform feedback
functionality and beyond. Many of the features are optional to allow base OpenGL ES GPUs to also
implement this extension.

The primary purpose of the functionality exposed by this extension is to support translation layers
from other 3D APIs. This functionality is not considered forward looking, and is not expected to be
promoted to a KHR extension or to core Vulkan. Unless this is needed for translation, it is
recommended that developers use alternative techniques of using the GPU to process and capture
vertex data.

New Commands

• vkCmdBeginQueryIndexedEXT

• vkCmdBeginTransformFeedbackEXT

• vkCmdBindTransformFeedbackBuffersEXT

• vkCmdDrawIndirectByteCountEXT

• vkCmdEndQueryIndexedEXT

• vkCmdEndTransformFeedbackEXT

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceTransformFeedbackFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceTransformFeedbackPropertiesEXT

• Extending VkPipelineRasterizationStateCreateInfo:

◦ VkPipelineRasterizationStateStreamCreateInfoEXT

New Bitmasks

• VkPipelineRasterizationStateStreamCreateFlagsEXT

New Enum Constants

• VK_EXT_TRANSFORM_FEEDBACK_EXTENSION_NAME

• VK_EXT_TRANSFORM_FEEDBACK_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT

◦ VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT

◦ VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT

4729

◦ VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT

• Extending VkQueryType:

◦ VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT

Issues

1) Should we include pause/resume functionality?

RESOLVED: Yes, this is needed to ease layering other APIs which have this functionality. To pause
use vkCmdEndTransformFeedbackEXT and provide valid buffer handles in the pCounterBuffers array
and offsets in the pCounterBufferOffsets array for the implementation to save the resume points.
Then to resume use vkCmdBeginTransformFeedbackEXT with the previous pCounterBuffers and
pCounterBufferOffsets values. Between the pause and resume there needs to be a memory barrier
for the counter buffers with a source access of VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT
at pipeline stage VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT to a destination access of
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT at pipeline stage
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT.

2) How does this interact with multiview?

RESOLVED: Transform feedback cannot be made active in a render pass with multiview enabled.

3) How should queries be done?

RESOLVED: There is a new query type VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT. A query pool
created with this type will capture 2 integers - numPrimitivesWritten and numPrimitivesNeeded -
for the specified vertex stream output from the last pre-rasterization shader stage. The vertex
stream output queried is zero by default, but can be specified with the new
vkCmdBeginQueryIndexedEXT and vkCmdEndQueryIndexedEXT commands.

Version History

• Revision 1, 2018-10-09 (Piers Daniell)

◦ Internal revisions

VK_EXT_validation_cache

Name String

VK_EXT_validation_cache

4730

Extension Type

Device extension

Registered Extension Number

161

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Cort Stratton cdwfs

Other Extension Metadata

Last Modified Date

2017-08-29

IP Status

No known IP claims.

Contributors

• Cort Stratton, Google

• Chris Forbes, Google

Description

This extension provides a mechanism for caching the results of potentially expensive internal
validation operations across multiple runs of a Vulkan application. At the core is the
VkValidationCacheEXT object type, which is managed similarly to the existing VkPipelineCache.

The new struct VkShaderModuleValidationCacheCreateInfoEXT can be included in the pNext chain
at vkCreateShaderModule time. It contains a VkValidationCacheEXT to use when validating the
VkShaderModule.

New Object Types

• VkValidationCacheEXT

New Commands

• vkCreateValidationCacheEXT

• vkDestroyValidationCacheEXT

4731

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_validation_cache] @cdwfs%0A*Here describe the issue or question you have about the VK_EXT_validation_cache extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_validation_cache] @cdwfs%0A*Here describe the issue or question you have about the VK_EXT_validation_cache extension*

• vkGetValidationCacheDataEXT

• vkMergeValidationCachesEXT

New Structures

• VkValidationCacheCreateInfoEXT

• Extending VkShaderModuleCreateInfo, VkPipelineShaderStageCreateInfo:

◦ VkShaderModuleValidationCacheCreateInfoEXT

New Enums

• VkValidationCacheHeaderVersionEXT

New Bitmasks

• VkValidationCacheCreateFlagsEXT

New Enum Constants

• VK_EXT_VALIDATION_CACHE_EXTENSION_NAME

• VK_EXT_VALIDATION_CACHE_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_VALIDATION_CACHE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_VALIDATION_CACHE_CREATE_INFO_EXT

Version History

• Revision 1, 2017-08-29 (Cort Stratton)

◦ Initial draft

VK_EXT_vertex_input_dynamic_state

Name String

VK_EXT_vertex_input_dynamic_state

Extension Type

Device extension

Registered Extension Number

353

Revision

2

4732

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2020-08-21

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Spencer Fricke, Samsung

• Stu Smith, AMD

Description

One of the states that contributes to the combinatorial explosion of pipeline state objects that need
to be created, is the vertex input binding and attribute descriptions. By allowing them to be
dynamic applications may reduce the number of pipeline objects they need to create.

This extension adds dynamic state support for what is normally static state in
VkPipelineVertexInputStateCreateInfo.

New Commands

• vkCmdSetVertexInputEXT

New Structures

• VkVertexInputAttributeDescription2EXT

• VkVertexInputBindingDescription2EXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT

New Enum Constants

• VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME

4733

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_vertex_input_dynamic_state] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_vertex_input_dynamic_state extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_vertex_input_dynamic_state] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_vertex_input_dynamic_state extension*

• VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_VERTEX_INPUT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT

◦ VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT

Version History

• Revision 2, 2020-11-05 (Piers Daniell)

◦ Make VkVertexInputBindingDescription2EXT extensible

◦ Add new VkVertexInputAttributeDescription2EXT struct for the
pVertexAttributeDescriptions parameter to vkCmdSetVertexInputEXT so it is also extensible

• Revision 1, 2020-08-21 (Piers Daniell)

◦ Internal revisions

VK_EXT_ycbcr_image_arrays

Name String

VK_EXT_ycbcr_image_arrays

Extension Type

Device extension

Registered Extension Number

253

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_sampler_ycbcr_conversion
or
Version 1.1

Contact

• Piers Daniell pdaniell-nv

4734

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_ycbcr_image_arrays] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_ycbcr_image_arrays extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_ycbcr_image_arrays] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_ycbcr_image_arrays extension*

Other Extension Metadata

Last Modified Date

2019-01-15

Contributors

• Piers Daniell, NVIDIA

Description

This extension allows images of a format that requires Y′CBCR conversion to be created with
multiple array layers, which is otherwise restricted.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceYcbcrImageArraysFeaturesEXT

New Enum Constants

• VK_EXT_YCBCR_IMAGE_ARRAYS_EXTENSION_NAME

• VK_EXT_YCBCR_IMAGE_ARRAYS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT

Version History

• Revision 1, 2019-01-15 (Piers Daniell)

◦ Initial revision

VK_AMD_buffer_marker

Name String

VK_AMD_buffer_marker

Extension Type

Device extension

Registered Extension Number

180

Revision

1

Ratification Status

Not ratified

4735

Extension and Version Dependencies

None

Special Use

• Developer tools

Contact

• Daniel Rakos drakos-amd

Other Extension Metadata

Last Modified Date

2018-01-26

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Jaakko Konttinen, AMD

• Daniel Rakos, AMD

Description

This extension adds a new operation to execute pipelined writes of small marker values into a
VkBuffer object.

The primary purpose of these markers is to facilitate the development of debugging tools for
tracking which pipelined command contributed to device loss.

New Commands

• vkCmdWriteBufferMarkerAMD

New Enum Constants

• VK_AMD_BUFFER_MARKER_EXTENSION_NAME

• VK_AMD_BUFFER_MARKER_SPEC_VERSION

Examples

None.

Version History

• Revision 1, 2018-01-26 (Jaakko Konttinen)

◦ Initial revision

4736

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_buffer_marker] @drakos-amd%0A*Here describe the issue or question you have about the VK_AMD_buffer_marker extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_buffer_marker] @drakos-amd%0A*Here describe the issue or question you have about the VK_AMD_buffer_marker extension*

VK_AMD_device_coherent_memory

Name String

VK_AMD_device_coherent_memory

Extension Type

Device extension

Registered Extension Number

230

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2019-02-04

Contributors

• Ping Fu, AMD

• Timothy Lottes, AMD

• Tobias Hector, AMD

Description

This extension adds the device coherent and device uncached memory types. Any device accesses
to device coherent memory are automatically made visible to any other device access. Device
uncached memory indicates to applications that caches are disabled for a particular memory type,
which guarantees device coherence.

Device coherent and uncached memory are expected to have lower performance for general access
than non-device coherent memory, but can be useful in certain scenarios; particularly so for
debugging.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCoherentMemoryFeaturesAMD

4737

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_device_coherent_memory] @tobski%0A*Here describe the issue or question you have about the VK_AMD_device_coherent_memory extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_device_coherent_memory] @tobski%0A*Here describe the issue or question you have about the VK_AMD_device_coherent_memory extension*

New Enum Constants

• VK_AMD_DEVICE_COHERENT_MEMORY_EXTENSION_NAME

• VK_AMD_DEVICE_COHERENT_MEMORY_SPEC_VERSION

• Extending VkMemoryPropertyFlagBits:

◦ VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD

◦ VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD

Version History

• Revision 1, 2019-02-04 (Tobias Hector)

◦ Initial revision

VK_AMD_display_native_hdr

Name String

VK_AMD_display_native_hdr

Extension Type

Device extension

Registered Extension Number

214

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_get_surface_capabilities2
and
VK_KHR_swapchain

Contact

• Matthaeus G. Chajdas anteru

Other Extension Metadata

Last Modified Date

2018-12-18

4738

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_display_native_hdr] @anteru%0A*Here describe the issue or question you have about the VK_AMD_display_native_hdr extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_display_native_hdr] @anteru%0A*Here describe the issue or question you have about the VK_AMD_display_native_hdr extension*

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Aaron Hagan, AMD

• Aric Cyr, AMD

• Timothy Lottes, AMD

• Derrick Owens, AMD

• Daniel Rakos, AMD

Description

This extension introduces the following display native HDR features to Vulkan:

• A new VkColorSpaceKHR enum for setting the native display color space. For example, this
color space would be set by the swapchain to use the native color space in Freesync2 displays.

• Local dimming control

New Commands

• vkSetLocalDimmingAMD

New Structures

• Extending VkSurfaceCapabilities2KHR:

◦ VkDisplayNativeHdrSurfaceCapabilitiesAMD

• Extending VkSwapchainCreateInfoKHR:

◦ VkSwapchainDisplayNativeHdrCreateInfoAMD

New Enum Constants

• VK_AMD_DISPLAY_NATIVE_HDR_EXTENSION_NAME

• VK_AMD_DISPLAY_NATIVE_HDR_SPEC_VERSION

• Extending VkColorSpaceKHR:

◦ VK_COLOR_SPACE_DISPLAY_NATIVE_AMD

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DISPLAY_NATIVE_HDR_SURFACE_CAPABILITIES_AMD

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_DISPLAY_NATIVE_HDR_CREATE_INFO_AMD

Issues

None.

4739

Examples

None.

Version History

• Revision 1, 2018-12-18 (Daniel Rakos)

◦ Initial revision

VK_AMD_gcn_shader

Name String

VK_AMD_gcn_shader

Extension Type

Device extension

Registered Extension Number

26

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_AMD_gcn_shader

Contact

• Dominik Witczak dominikwitczakamd

Other Extension Metadata

Last Modified Date

2016-05-30

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_AMD_gcn_shader

Contributors

• Dominik Witczak, AMD

• Daniel Rakos, AMD

4740

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_gcn_shader.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_gcn_shader] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_AMD_gcn_shader extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_gcn_shader] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_AMD_gcn_shader extension*
https://registry.khronos.org/OpenGL/extensions/AMD/AMD_gcn_shader.txt

• Rex Xu, AMD

• Graham Sellers, AMD

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_AMD_gcn_shader

New Enum Constants

• VK_AMD_GCN_SHADER_EXTENSION_NAME

• VK_AMD_GCN_SHADER_SPEC_VERSION

Version History

• Revision 1, 2016-05-30 (Dominik Witczak)

◦ Initial draft

VK_AMD_memory_overallocation_behavior

Name String

VK_AMD_memory_overallocation_behavior

Extension Type

Device extension

Registered Extension Number

190

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Martin Dinkov mdinkov

Other Extension Metadata

Last Modified Date

2018-09-19

4741

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_gcn_shader.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_memory_overallocation_behavior] @mdinkov%0A*Here describe the issue or question you have about the VK_AMD_memory_overallocation_behavior extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_memory_overallocation_behavior] @mdinkov%0A*Here describe the issue or question you have about the VK_AMD_memory_overallocation_behavior extension*

IP Status

No known IP claims.

Contributors

• Martin Dinkov, AMD

• Matthaeus Chajdas, AMD

• Daniel Rakos, AMD

• Jon Campbell, AMD

Description

This extension allows controlling whether explicit overallocation beyond the device memory heap
sizes (reported by VkPhysicalDeviceMemoryProperties) is allowed or not. Overallocation may lead
to performance loss and is not supported for all platforms.

New Structures

• Extending VkDeviceCreateInfo:

◦ VkDeviceMemoryOverallocationCreateInfoAMD

New Enums

• VkMemoryOverallocationBehaviorAMD

New Enum Constants

• VK_AMD_MEMORY_OVERALLOCATION_BEHAVIOR_EXTENSION_NAME

• VK_AMD_MEMORY_OVERALLOCATION_BEHAVIOR_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD

Version History

• Revision 1, 2018-09-19 (Martin Dinkov)

◦ Initial draft.

VK_AMD_mixed_attachment_samples

Name String

VK_AMD_mixed_attachment_samples

Extension Type

Device extension

Registered Extension Number

137

4742

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Matthaeus G. Chajdas anteru

Other Extension Metadata

Last Modified Date

2017-07-24

Contributors

• Mais Alnasser, AMD

• Matthaeus G. Chajdas, AMD

• Maciej Jesionowski, AMD

• Daniel Rakos, AMD

Description

This extension enables applications to use multisampled rendering with a depth/stencil sample
count that is larger than the color sample count. Having a depth/stencil sample count larger than
the color sample count allows maintaining geometry and coverage information at a higher sample
rate than color information. All samples are depth/stencil tested, but only the first color sample
count number of samples get a corresponding color output.

New Enum Constants

• VK_AMD_MIXED_ATTACHMENT_SAMPLES_EXTENSION_NAME

• VK_AMD_MIXED_ATTACHMENT_SAMPLES_SPEC_VERSION

Issues

None.

Version History

• Revision 1, 2017-07-24 (Daniel Rakos)

◦ Internal revisions

4743

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_mixed_attachment_samples] @anteru%0A*Here describe the issue or question you have about the VK_AMD_mixed_attachment_samples extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_mixed_attachment_samples] @anteru%0A*Here describe the issue or question you have about the VK_AMD_mixed_attachment_samples extension*

VK_AMD_pipeline_compiler_control

Name String

VK_AMD_pipeline_compiler_control

Extension Type

Device extension

Registered Extension Number

184

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Matthaeus G. Chajdas anteru

Other Extension Metadata

Last Modified Date

2019-07-26

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Daniel Rakos, AMD

• Maciej Jesionowski, AMD

• Tobias Hector, AMD

Description

This extension introduces VkPipelineCompilerControlCreateInfoAMD structure that can be chained
to a pipeline’s creation information to specify additional flags that affect pipeline compilation.

New Structures

• Extending VkGraphicsPipelineCreateInfo, VkComputePipelineCreateInfo,
VkExecutionGraphPipelineCreateInfoAMDX:

◦ VkPipelineCompilerControlCreateInfoAMD

4744

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_pipeline_compiler_control] @anteru%0A*Here describe the issue or question you have about the VK_AMD_pipeline_compiler_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_pipeline_compiler_control] @anteru%0A*Here describe the issue or question you have about the VK_AMD_pipeline_compiler_control extension*

New Enums

• VkPipelineCompilerControlFlagBitsAMD

New Bitmasks

• VkPipelineCompilerControlFlagsAMD

New Enum Constants

• VK_AMD_PIPELINE_COMPILER_CONTROL_EXTENSION_NAME

• VK_AMD_PIPELINE_COMPILER_CONTROL_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PIPELINE_COMPILER_CONTROL_CREATE_INFO_AMD

Issues

None.

Examples

None.

Version History

• Revision 1, 2019-07-26 (Tobias Hector)

◦ Initial revision.

VK_AMD_rasterization_order

Name String

VK_AMD_rasterization_order

Extension Type

Device extension

Registered Extension Number

19

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

4745

Contact

• Daniel Rakos drakos-amd

Other Extension Metadata

Last Modified Date

2016-04-25

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Jaakko Konttinen, AMD

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Dominik Witczak, AMD

Description

This extension introduces the possibility for the application to control the order of primitive
rasterization. In unextended Vulkan, the following stages are guaranteed to execute in API order:

• depth bounds test

• stencil test, stencil op, and stencil write

• depth test and depth write

• occlusion queries

• blending, logic op, and color write

This extension enables applications to opt into a relaxed, implementation defined primitive
rasterization order that may allow better parallel processing of primitives and thus enabling higher
primitive throughput. It is applicable in cases where the primitive rasterization order is known to
not affect the output of the rendering or any differences caused by a different rasterization order
are not a concern from the point of view of the application’s purpose.

A few examples of cases when using the relaxed primitive rasterization order would not have an
effect on the final rendering:

• If the primitives rendered are known to not overlap in framebuffer space.

• If depth testing is used with a comparison operator of VK_COMPARE_OP_LESS,
VK_COMPARE_OP_LESS_OR_EQUAL, VK_COMPARE_OP_GREATER, or VK_COMPARE_OP_GREATER_OR_EQUAL, and the
primitives rendered are known to not overlap in clip space.

• If depth testing is not used and blending is enabled for all attachments with a commutative
blend operator.

4746

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_rasterization_order] @drakos-amd%0A*Here describe the issue or question you have about the VK_AMD_rasterization_order extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_rasterization_order] @drakos-amd%0A*Here describe the issue or question you have about the VK_AMD_rasterization_order extension*

New Structures

• Extending VkPipelineRasterizationStateCreateInfo:

◦ VkPipelineRasterizationStateRasterizationOrderAMD

New Enums

• VkRasterizationOrderAMD

New Enum Constants

• VK_AMD_RASTERIZATION_ORDER_EXTENSION_NAME

• VK_AMD_RASTERIZATION_ORDER_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD

Issues

1) How is this extension useful to application developers?

RESOLVED: Allows them to increase primitive throughput for cases when strict API order
rasterization is not important due to the nature of the content, the configuration used, or the
requirements towards the output of the rendering.

2) How does this extension interact with content optimizations aiming to reduce overdraw by
appropriately ordering the input primitives?

RESOLVED: While the relaxed rasterization order might somewhat limit the effectiveness of such
content optimizations, most of the benefits of it are expected to be retained even when the relaxed
rasterization order is used, so applications should still apply these optimizations even if they
intend to use the extension.

3) Are there any guarantees about the primitive rasterization order when using the new relaxed
mode?

RESOLVED: No. In this case the rasterization order is completely implementation-dependent, but in
practice it is expected to partially still follow the order of incoming primitives.

4) Does the new relaxed rasterization order have any adverse effect on repeatability and other
invariance rules of the API?

RESOLVED: Yes, in the sense that it extends the list of exceptions when the repeatability
requirement does not apply.

Examples

None

4747

Issues

None

Version History

• Revision 1, 2016-04-25 (Daniel Rakos)

◦ Initial draft.

VK_AMD_shader_ballot

Name String

VK_AMD_shader_ballot

Extension Type

Device extension

Registered Extension Number

38

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_AMD_shader_ballot

Contact

• Dominik Witczak dominikwitczakamd

Other Extension Metadata

Last Modified Date

2016-09-19

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_AMD_shader_ballot

Contributors

• Qun Lin, AMD

• Graham Sellers, AMD

4748

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_ballot.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_ballot] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_AMD_shader_ballot extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_ballot] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_AMD_shader_ballot extension*
https://registry.khronos.org/OpenGL/extensions/AMD/AMD_shader_ballot.txt

• Daniel Rakos, AMD

• Rex Xu, AMD

• Dominik Witczak, AMD

• Matthäus G. Chajdas, AMD

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_AMD_shader_ballot

New Enum Constants

• VK_AMD_SHADER_BALLOT_EXTENSION_NAME

• VK_AMD_SHADER_BALLOT_SPEC_VERSION

Version History

• Revision 1, 2016-09-19 (Dominik Witczak)

◦ Initial draft

VK_AMD_shader_core_properties

Name String

VK_AMD_shader_core_properties

Extension Type

Device extension

Registered Extension Number

186

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Martin Dinkov mdinkov

Other Extension Metadata

4749

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_ballot.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_core_properties] @mdinkov%0A*Here describe the issue or question you have about the VK_AMD_shader_core_properties extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_core_properties] @mdinkov%0A*Here describe the issue or question you have about the VK_AMD_shader_core_properties extension*

Last Modified Date

2019-06-25

IP Status

No known IP claims.

Contributors

• Martin Dinkov, AMD

• Matthaeus G. Chajdas, AMD

Description

This extension exposes shader core properties for a target physical device through the
VK_KHR_get_physical_device_properties2 extension. Please refer to the example below for proper
usage.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderCorePropertiesAMD

New Enum Constants

• VK_AMD_SHADER_CORE_PROPERTIES_EXTENSION_NAME

• VK_AMD_SHADER_CORE_PROPERTIES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD

Examples

This example retrieves the shader core properties for a physical device.

extern VkInstance instance;

PFN_vkGetPhysicalDeviceProperties2 pfnVkGetPhysicalDeviceProperties2 =
 reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2>
 (vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2"));

VkPhysicalDeviceProperties2 general_props;
VkPhysicalDeviceShaderCorePropertiesAMD shader_core_properties;

shader_core_properties.pNext = nullptr;
shader_core_properties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD;

general_props.pNext = &shader_core_properties;
general_props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;

4750

// After this call, shader_core_properties has been populated
pfnVkGetPhysicalDeviceProperties2(device, &general_props);

printf("Number of shader engines: %d\n",
 m_shader_core_properties.shader_engine_count =
 shader_core_properties.shaderEngineCount;
printf("Number of shader arrays: %d\n",
 m_shader_core_properties.shader_arrays_per_engine_count =
 shader_core_properties.shaderArraysPerEngineCount;
printf("Number of CUs per shader array: %d\n",
 m_shader_core_properties.compute_units_per_shader_array =
 shader_core_properties.computeUnitsPerShaderArray;
printf("Number of SIMDs per compute unit: %d\n",
 m_shader_core_properties.simd_per_compute_unit =
 shader_core_properties.simdPerComputeUnit;
printf("Number of wavefront slots in each SIMD: %d\n",
 m_shader_core_properties.wavefronts_per_simd =
 shader_core_properties.wavefrontsPerSimd;
printf("Number of threads per wavefront: %d\n",
 m_shader_core_properties.wavefront_size =
 shader_core_properties.wavefrontSize;
printf("Number of physical SGPRs per SIMD: %d\n",
 m_shader_core_properties.sgprs_per_simd =
 shader_core_properties.sgprsPerSimd;
printf("Minimum number of SGPRs that can be allocated by a wave: %d\n",
 m_shader_core_properties.min_sgpr_allocation =
 shader_core_properties.minSgprAllocation;
printf("Number of available SGPRs: %d\n",
 m_shader_core_properties.max_sgpr_allocation =
 shader_core_properties.maxSgprAllocation;
printf("SGPRs are allocated in groups of this size: %d\n",
 m_shader_core_properties.sgpr_allocation_granularity =
 shader_core_properties.sgprAllocationGranularity;
printf("Number of physical VGPRs per SIMD: %d\n",
 m_shader_core_properties.vgprs_per_simd =
 shader_core_properties.vgprsPerSimd;
printf("Minimum number of VGPRs that can be allocated by a wave: %d\n",
 m_shader_core_properties.min_vgpr_allocation =
 shader_core_properties.minVgprAllocation;
printf("Number of available VGPRs: %d\n",
 m_shader_core_properties.max_vgpr_allocation =
 shader_core_properties.maxVgprAllocation;
printf("VGPRs are allocated in groups of this size: %d\n",
 m_shader_core_properties.vgpr_allocation_granularity =
 shader_core_properties.vgprAllocationGranularity;

Version History

• Revision 2, 2019-06-25 (Matthaeus G. Chajdas)

◦ Clarified the meaning of a few fields.

4751

• Revision 1, 2018-02-15 (Martin Dinkov)

◦ Initial draft.

VK_AMD_shader_core_properties2

Name String

VK_AMD_shader_core_properties2

Extension Type

Device extension

Registered Extension Number

228

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_AMD_shader_core_properties

Contact

• Matthaeus G. Chajdas anteru

Other Extension Metadata

Last Modified Date

2019-07-26

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Tobias Hector, AMD

Description

This extension exposes additional shader core properties for a target physical device through the
VK_KHR_get_physical_device_properties2 extension.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderCoreProperties2AMD

4752

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_core_properties2] @anteru%0A*Here describe the issue or question you have about the VK_AMD_shader_core_properties2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_core_properties2] @anteru%0A*Here describe the issue or question you have about the VK_AMD_shader_core_properties2 extension*

New Enums

• VkShaderCorePropertiesFlagBitsAMD

New Bitmasks

• VkShaderCorePropertiesFlagsAMD

New Enum Constants

• VK_AMD_SHADER_CORE_PROPERTIES_2_EXTENSION_NAME

• VK_AMD_SHADER_CORE_PROPERTIES_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD

Examples

None.

Version History

• Revision 1, 2019-07-26 (Matthaeus G. Chajdas)

◦ Initial draft.

VK_AMD_shader_early_and_late_fragment_tests

Name String

VK_AMD_shader_early_and_late_fragment_tests

Extension Type

Device extension

Registered Extension Number

322

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_AMD_shader_early_and_late_fragment_tests

4753

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html

Contact

• Tobias Hector tobski

Extension Proposal

VK_AMD_shader_early_and_late_fragment_tests

Other Extension Metadata

Last Modified Date

2021-09-14

Interactions and External Dependencies

• This extension interacts with VK_EXT_shader_stencil_export

Contributors

• Tobias Hector, AMD

Description

This extension adds support for the SPV_AMD_shader_early_and_late_fragment_tests extension,
allowing shaders to explicitly opt in to allowing both early and late fragment tests with the
EarlyAndLateFragmentTestsAMD execution mode.

If VK_EXT_shader_stencil_export is supported, additional execution modes allowing early depth tests
similar to DepthUnchanged, DepthLess, and DepthGreater are provided.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD

New Enum Constants

• VK_AMD_SHADER_EARLY_AND_LATE_FRAGMENT_TESTS_EXTENSION_NAME

• VK_AMD_SHADER_EARLY_AND_LATE_FRAGMENT_TESTS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_EARLY_AND_LATE_FRAGMENT_TESTS_FEATURES_AMD

Version History

• Revision 1, 2021-09-14 (Tobias Hector)

◦ Initial draft

VK_AMD_shader_explicit_vertex_parameter

Name String

VK_AMD_shader_explicit_vertex_parameter

4754

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_early_and_late_fragment_tests] @tobski%0A*Here describe the issue or question you have about the VK_AMD_shader_early_and_late_fragment_tests extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_early_and_late_fragment_tests] @tobski%0A*Here describe the issue or question you have about the VK_AMD_shader_early_and_late_fragment_tests extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_AMD_shader_early_and_late_fragment_tests.adoc
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html

Extension Type

Device extension

Registered Extension Number

22

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_AMD_shader_explicit_vertex_parameter

Contact

• Qun Lin linqun

Other Extension Metadata

Last Modified Date

2016-05-10

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_AMD_shader_explicit_vertex_parameter

Contributors

• Matthaeus G. Chajdas, AMD

• Qun Lin, AMD

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Rex Xu, AMD

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_AMD_shader_explicit_vertex_parameter

New Enum Constants

• VK_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER_EXTENSION_NAME

4755

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_explicit_vertex_parameter] @linqun%0A*Here describe the issue or question you have about the VK_AMD_shader_explicit_vertex_parameter extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_explicit_vertex_parameter] @linqun%0A*Here describe the issue or question you have about the VK_AMD_shader_explicit_vertex_parameter extension*
https://registry.khronos.org/OpenGL/extensions/AMD/AMD_shader_explicit_vertex_parameter.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html

• VK_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER_SPEC_VERSION

Version History

• Revision 1, 2016-05-10 (Daniel Rakos)

◦ Initial draft

VK_AMD_shader_fragment_mask

Name String

VK_AMD_shader_fragment_mask

Extension Type

Device extension

Registered Extension Number

138

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_AMD_shader_fragment_mask

Contact

• Aaron Hagan AaronHaganAMD

Other Extension Metadata

Last Modified Date

2017-08-16

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_AMD_shader_fragment_mask

Contributors

• Aaron Hagan, AMD

• Daniel Rakos, AMD

• Timothy Lottes, AMD

4756

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_fragment_mask.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_fragment_mask] @AaronHaganAMD%0A*Here describe the issue or question you have about the VK_AMD_shader_fragment_mask extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_fragment_mask] @AaronHaganAMD%0A*Here describe the issue or question you have about the VK_AMD_shader_fragment_mask extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/amd/GL_AMD_shader_fragment_mask.txt

Description

This extension provides efficient read access to the fragment mask in compressed multisampled
color surfaces. The fragment mask is a lookup table that associates color samples with color
fragment values.

From a shader, the fragment mask can be fetched with a call to fragmentMaskFetchAMD, which returns
a single uint where each subsequent four bits specify the color fragment index corresponding to
the color sample, starting from the least significant bit. For example, when eight color samples are
used, the color fragment index for color sample 0 will be in bits 0-3 of the fragment mask, for color
sample 7 the index will be in bits 28-31.

The color fragment for a particular color sample may then be fetched with the corresponding
fragment mask value using the fragmentFetchAMD shader function.

New Enum Constants

• VK_AMD_SHADER_FRAGMENT_MASK_EXTENSION_NAME

• VK_AMD_SHADER_FRAGMENT_MASK_SPEC_VERSION

New SPIR-V Capabilities

• FragmentMaskAMD

Examples

This example shows a shader that queries the fragment mask from a multisampled compressed
surface and uses it to query fragment values.

#version 450 core

#extension GL_AMD_shader_fragment_mask: enable

layout(binding = 0) uniform sampler2DMS s2DMS;
layout(binding = 1) uniform isampler2DMSArray is2DMSArray;

layout(binding = 2, input_attachment_index = 0) uniform usubpassInputMS usubpassMS;

layout(location = 0) out vec4 fragColor;

void main()
{
 vec4 fragOne = vec4(0.0);

 uint fragMask = fragmentMaskFetchAMD(s2DMS, ivec2(2, 3));
 uint fragIndex = (fragMask & 0xF0) >> 4;
 fragOne += fragmentFetchAMD(s2DMS, ivec2(2, 3), 1);

 fragMask = fragmentMaskFetchAMD(is2DMSArray, ivec3(2, 3, 1));
 fragIndex = (fragMask & 0xF0) >> 4;

4757

 fragOne += fragmentFetchAMD(is2DMSArray, ivec3(2, 3, 1), fragIndex);

 fragMask = fragmentMaskFetchAMD(usubpassMS);
 fragIndex = (fragMask & 0xF0) >> 4;
 fragOne += fragmentFetchAMD(usubpassMS, fragIndex);

 fragColor = fragOne;
}

Version History

• Revision 1, 2017-08-16 (Aaron Hagan)

◦ Initial draft

VK_AMD_shader_image_load_store_lod

Name String

VK_AMD_shader_image_load_store_lod

Extension Type

Device extension

Registered Extension Number

47

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_AMD_shader_image_load_store_lod

Contact

• Dominik Witczak dominikwitczakamd

Other Extension Metadata

Last Modified Date

2017-08-21

Interactions and External Dependencies

• This extension provides API support for GL_AMD_shader_image_load_store_lod

4758

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_image_load_store_lod.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_image_load_store_lod] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_AMD_shader_image_load_store_lod extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_image_load_store_lod] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_AMD_shader_image_load_store_lod extension*
https://registry.khronos.org/OpenGL/extensions/AMD/AMD_shader_image_load_store_lod.txt

IP Status

No known IP claims.

Contributors

• Dominik Witczak, AMD

• Qun Lin, AMD

• Rex Xu, AMD

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_AMD_shader_image_load_store_lod

New Enum Constants

• VK_AMD_SHADER_IMAGE_LOAD_STORE_LOD_EXTENSION_NAME

• VK_AMD_SHADER_IMAGE_LOAD_STORE_LOD_SPEC_VERSION

Version History

• Revision 1, 2017-08-21 (Dominik Witczak)

◦ Initial draft

VK_AMD_shader_info

Name String

VK_AMD_shader_info

Extension Type

Device extension

Registered Extension Number

43

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Special Use

• Developer tools

4759

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_image_load_store_lod.html

Contact

• Jaakko Konttinen jaakkoamd

Other Extension Metadata

Last Modified Date

2017-10-09

IP Status

No known IP claims.

Contributors

• Jaakko Konttinen, AMD

Description

This extension adds a way to query certain information about a compiled shader which is part of a
pipeline. This information may include shader disassembly, shader binary and various statistics
about a shader’s resource usage.

While this extension provides a mechanism for extracting this information, the details regarding
the contents or format of this information are not specified by this extension and may be provided
by the vendor externally.

Furthermore, all information types are optionally supported, and users should not assume every
implementation supports querying every type of information.

New Commands

• vkGetShaderInfoAMD

New Structures

• VkShaderResourceUsageAMD

• VkShaderStatisticsInfoAMD

New Enums

• VkShaderInfoTypeAMD

New Enum Constants

• VK_AMD_SHADER_INFO_EXTENSION_NAME

• VK_AMD_SHADER_INFO_SPEC_VERSION

Examples

This example extracts the register usage of a fragment shader within a particular graphics pipeline:

4760

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_info] @jaakkoamd%0A*Here describe the issue or question you have about the VK_AMD_shader_info extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_info] @jaakkoamd%0A*Here describe the issue or question you have about the VK_AMD_shader_info extension*

extern VkDevice device;
extern VkPipeline gfxPipeline;

PFN_vkGetShaderInfoAMD pfnGetShaderInfoAMD = (PFN_vkGetShaderInfoAMD
)vkGetDeviceProcAddr(
 device, "vkGetShaderInfoAMD");

VkShaderStatisticsInfoAMD statistics = {};

size_t dataSize = sizeof(statistics);

if (pfnGetShaderInfoAMD(device,
 gfxPipeline,
 VK_SHADER_STAGE_FRAGMENT_BIT,
 VK_SHADER_INFO_TYPE_STATISTICS_AMD,
 &dataSize,
 &statistics) == VK_SUCCESS)
{
 printf("VGPR usage: %d\n", statistics.resourceUsage.numUsedVgprs);
 printf("SGPR usage: %d\n", statistics.resourceUsage.numUsedSgprs);
}

The following example continues the previous example by subsequently attempting to query and
print shader disassembly about the fragment shader:

// Query disassembly size (if available)
if (pfnGetShaderInfoAMD(device,
 gfxPipeline,
 VK_SHADER_STAGE_FRAGMENT_BIT,
 VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD,
 &dataSize,
 nullptr) == VK_SUCCESS)
{
 printf("Fragment shader disassembly:\n");

 void* disassembly = malloc(dataSize);

 // Query disassembly and print
 if (pfnGetShaderInfoAMD(device,
 gfxPipeline,
 VK_SHADER_STAGE_FRAGMENT_BIT,
 VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD,
 &dataSize,
 disassembly) == VK_SUCCESS)
 {
 printf((char*)disassembly);
 }

 free(disassembly);

4761

}

Version History

• Revision 1, 2017-10-09 (Jaakko Konttinen)

◦ Initial revision

VK_AMD_shader_trinary_minmax

Name String

VK_AMD_shader_trinary_minmax

Extension Type

Device extension

Registered Extension Number

21

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_AMD_shader_trinary_minmax

Contact

• Qun Lin linqun

Other Extension Metadata

Last Modified Date

2016-05-10

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_AMD_shader_trinary_minmax

Contributors

• Matthaeus G. Chajdas, AMD

• Qun Lin, AMD

4762

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_trinary_minmax.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_trinary_minmax] @linqun%0A*Here describe the issue or question you have about the VK_AMD_shader_trinary_minmax extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_shader_trinary_minmax] @linqun%0A*Here describe the issue or question you have about the VK_AMD_shader_trinary_minmax extension*
https://registry.khronos.org/OpenGL/extensions/AMD/AMD_shader_trinary_minmax.txt

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Rex Xu, AMD

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_AMD_shader_trinary_minmax

New Enum Constants

• VK_AMD_SHADER_TRINARY_MINMAX_EXTENSION_NAME

• VK_AMD_SHADER_TRINARY_MINMAX_SPEC_VERSION

Version History

• Revision 1, 2016-05-10 (Daniel Rakos)

◦ Initial draft

VK_AMD_texture_gather_bias_lod

Name String

VK_AMD_texture_gather_bias_lod

Extension Type

Device extension

Registered Extension Number

42

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_AMD_texture_gather_bias_lod

Contact

• Rex Xu amdrexu

4763

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_shader_trinary_minmax.html
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_texture_gather_bias_lod.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_texture_gather_bias_lod] @amdrexu%0A*Here describe the issue or question you have about the VK_AMD_texture_gather_bias_lod extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_texture_gather_bias_lod] @amdrexu%0A*Here describe the issue or question you have about the VK_AMD_texture_gather_bias_lod extension*

Other Extension Metadata

Last Modified Date

2017-03-21

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_AMD_texture_gather_bias_lod

Contributors

• Dominik Witczak, AMD

• Daniel Rakos, AMD

• Graham Sellers, AMD

• Matthaeus G. Chajdas, AMD

• Qun Lin, AMD

• Rex Xu, AMD

• Timothy Lottes, AMD

Description

This extension adds two related features.

Firstly, support for the following SPIR-V extension in Vulkan is added:

• SPV_AMD_texture_gather_bias_lod

Secondly, the extension allows the application to query which formats can be used together with
the new function prototypes introduced by the SPIR-V extension.

New Structures

• Extending VkImageFormatProperties2:

◦ VkTextureLODGatherFormatPropertiesAMD

New Enum Constants

• VK_AMD_TEXTURE_GATHER_BIAS_LOD_EXTENSION_NAME

• VK_AMD_TEXTURE_GATHER_BIAS_LOD_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD

New SPIR-V Capabilities

• ImageGatherBiasLodAMD

4764

https://registry.khronos.org/OpenGL/extensions/AMD/AMD_texture_gather_bias_lod.txt

Examples

struct VkTextureLODGatherFormatPropertiesAMD
{
 VkStructureType sType;
 const void* pNext;
 VkBool32 supportsTextureGatherLODBiasAMD;
};

//
--
--
// How to detect if an image format can be used with the new function prototypes.
VkPhysicalDeviceImageFormatInfo2 formatInfo;
VkImageFormatProperties2 formatProps;
VkTextureLODGatherFormatPropertiesAMD textureLODGatherSupport;

textureLODGatherSupport.sType =
VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD;
textureLODGatherSupport.pNext = nullptr;

formatInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2;
formatInfo.pNext = nullptr;
formatInfo.format = ...;
formatInfo.type = ...;
formatInfo.tiling = ...;
formatInfo.usage = ...;
formatInfo.flags = ...;

formatProps.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2;
formatProps.pNext = &textureLODGatherSupport;

vkGetPhysicalDeviceImageFormatProperties2(physical_device, &formatInfo, &formatProps);

if (textureLODGatherSupport.supportsTextureGatherLODBiasAMD == VK_TRUE)
{
 // physical device supports SPV_AMD_texture_gather_bias_lod for the specified
 // format configuration.
}
else
{
 // physical device does not support SPV_AMD_texture_gather_bias_lod for the
 // specified format configuration.
}

Version History

• Revision 1, 2017-03-21 (Dominik Witczak)

◦ Initial draft

4765

VK_ANDROID_external_format_resolve

Name String

VK_ANDROID_external_format_resolve

Extension Type

Device extension

Registered Extension Number

469

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_ANDROID_external_memory_android_hardware_buffer

API Interactions

• Interacts with VK_KHR_dynamic_rendering

Special Use

• OpenGL / ES support

Contact

• Chris Forbes chrisforbes

Extension Proposal

VK_ANDROID_external_format_resolve

Other Extension Metadata

Last Modified Date

2023-05-03

IP Status

No known IP claims.

Contributors

• Tobias Hector, AMD

• Chris Forbes, Google

• Jan-Harald Fredriksen, Arm

• Shahbaz Youssefi, Google

• Matthew Netsch, Qualcomm

• Tony Zlatsinki, Nvidia

4766

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ANDROID_external_format_resolve] @chrisforbes%0A*Here describe the issue or question you have about the VK_ANDROID_external_format_resolve extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ANDROID_external_format_resolve] @chrisforbes%0A*Here describe the issue or question you have about the VK_ANDROID_external_format_resolve extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_ANDROID_external_format_resolve.adoc

• Daniel Koch, Nvidia

• Jeff Leger, Qualcomm

• Alex Walters, Imagination

• Andrew Garrard, Imagination

• Ralph Potter, Samsung

• Ian Elliott, Google

Description

This extension enables rendering to Android Hardware Buffers with external formats which cannot
be directly represented as renderable in Vulkan, including Y′CBCR formats.

New Structures

• Extending VkAndroidHardwareBufferPropertiesANDROID:

◦ VkAndroidHardwareBufferFormatResolvePropertiesANDROID

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceExternalFormatResolveFeaturesANDROID

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceExternalFormatResolvePropertiesANDROID

New Enum Constants

• VK_ANDROID_EXTERNAL_FORMAT_RESOLVE_EXTENSION_NAME

• VK_ANDROID_EXTERNAL_FORMAT_RESOLVE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_RESOLVE_PROPERTIES_ANDROID

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FORMAT_RESOLVE_FEATURES_ANDROID

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FORMAT_RESOLVE_PROPERTIES_ANDROID

If VK_KHR_dynamic_rendering is supported:

• Extending VkResolveModeFlagBits:

◦ VK_RESOLVE_MODE_EXTERNAL_FORMAT_DOWNSAMPLE_ANDROID

Version History

• Revision 1, 2023-05-34 (Tobias Hector)

◦ Initial version

VK_ANDROID_external_memory_android_hardware_buffer

4767

Name String

VK_ANDROID_external_memory_android_hardware_buffer

Extension Type

Device extension

Registered Extension Number

130

Revision

5

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_sampler_ycbcr_conversion
and
VK_KHR_external_memory
and
VK_EXT_queue_family_foreign
and
VK_KHR_dedicated_allocation

API Interactions

• Interacts with VK_KHR_format_feature_flags2

Contact

• Jesse Hall critsec

Other Extension Metadata

Last Modified Date

2021-09-30

IP Status

No known IP claims.

Contributors

• Ray Smith, ARM

• Lina Versace, Google

• Jesse Hall, Google

• Tobias Hector, Imagination

• James Jones, NVIDIA

• Tony Zlatinski, NVIDIA

• Matthew Netsch, Qualcomm

4768

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ANDROID_external_memory_android_hardware_buffer] @critsec%0A*Here describe the issue or question you have about the VK_ANDROID_external_memory_android_hardware_buffer extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ANDROID_external_memory_android_hardware_buffer] @critsec%0A*Here describe the issue or question you have about the VK_ANDROID_external_memory_android_hardware_buffer extension*

• Andrew Garrard, Samsung

Description

This extension enables an application to import Android AHardwareBuffer objects created outside
of the Vulkan device into Vulkan memory objects, where they can be bound to images and buffers.
It also allows exporting an AHardwareBuffer from a Vulkan memory object for symmetry with
other operating systems. But since not all AHardwareBuffer usages and formats have Vulkan
equivalents, exporting from Vulkan provides strictly less functionality than creating the
AHardwareBuffer externally and importing it.

Some AHardwareBuffer images have implementation-defined external formats that may not
correspond to Vulkan formats. Sampler Y′CBCR conversion can be used to sample from these images
and convert them to a known color space.

New Base Types

• AHardwareBuffer

New Commands

• vkGetAndroidHardwareBufferPropertiesANDROID

• vkGetMemoryAndroidHardwareBufferANDROID

New Structures

• VkAndroidHardwareBufferPropertiesANDROID

• VkMemoryGetAndroidHardwareBufferInfoANDROID

• Extending VkAndroidHardwareBufferPropertiesANDROID:

◦ VkAndroidHardwareBufferFormatPropertiesANDROID

• Extending VkImageCreateInfo, VkSamplerYcbcrConversionCreateInfo,
VkAttachmentDescription2, VkGraphicsPipelineCreateInfo, VkCommandBufferInheritanceInfo:

◦ VkExternalFormatANDROID

• Extending VkImageFormatProperties2:

◦ VkAndroidHardwareBufferUsageANDROID

• Extending VkMemoryAllocateInfo:

◦ VkImportAndroidHardwareBufferInfoANDROID

If VK_KHR_format_feature_flags2 is supported:

• Extending VkAndroidHardwareBufferPropertiesANDROID:

◦ VkAndroidHardwareBufferFormatProperties2ANDROID

New Enum Constants

• VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME

4769

• VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_SPEC_VERSION

• Extending VkExternalMemoryHandleTypeFlagBits:

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID

◦ VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID

◦ VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID

◦ VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID

◦ VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID

◦ VK_STRUCTURE_TYPE_MEMORY_GET_ANDROID_HARDWARE_BUFFER_INFO_ANDROID

If VK_KHR_format_feature_flags2 is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_2_ANDROID

Issues

1) Other external memory objects are represented as weakly-typed handles (e.g. Win32 HANDLE or
POSIX file descriptor), and require a handle type parameter along with handles. AHardwareBuffer
is strongly typed, so naming the handle type is redundant. Does symmetry justify adding handle
type parameters/fields anyway?

RESOLVED: No. The handle type is already provided in places that treat external memory objects
generically. In the places we would add it, the application code that would have to provide the
handle type value is already dealing with AHardwareBuffer-specific commands/structures; the
extra symmetry would not be enough to make that code generic.

2) The internal layout and therefore size of a AHardwareBuffer image may depend on native usage
flags that do not have corresponding Vulkan counterparts. Do we provide this information to
vkCreateImage somehow, or allow the allocation size reported by
vkGetImageMemoryRequirements to be approximate?

RESOLVED: Allow the allocation size to be unspecified when allocating the memory. It has to work
this way for exported image memory anyway, since AHardwareBuffer allocation happens in
vkAllocateMemory, and internally is performed by a separate HAL, not the Vulkan implementation
itself. There is a similar issue with vkGetImageSubresourceLayout: the layout is determined by the
allocator HAL, so it is not known until the image is bound to memory.

3) Should the result of sampling an external-format image with the suggested Y′CBCR conversion
parameters yield the same results as using a samplerExternalOES in OpenGL ES?

RESOLVED: This would be desirable, so that apps converting from OpenGL ES to Vulkan could get
the same output given the same input. But since sampling and conversion from Y′CBCR images is so
loosely defined in OpenGL ES, multiple implementations do it in a way that does not conform to
Vulkan’s requirements. Modifying the OpenGL ES implementation would be difficult, and would

4770

change the output of existing unmodified applications. Changing the output only for applications
that are being modified gives developers the chance to notice and mitigate any problems.
Implementations are encouraged to minimize differences as much as possible without causing
compatibility problems for existing OpenGL ES applications or violating Vulkan requirements.

4) Should an AHardwareBuffer with AHARDWAREBUFFER_USAGE_CPU_* usage be mappable in Vulkan?
Should it be possible to export an AHardwareBuffers with such usage?

RESOLVED: Optional, and mapping in Vulkan is not the same as AHardwareBuffer_lock. The
semantics of these are different: mapping in memory is persistent, just gives a raw view of the
memory contents, and does not involve ownership. AHardwareBuffer_lock gives the host exclusive
access to the buffer, is temporary, and allows for reformatting copy-in/copy-out. Implementations
are not required to support host-visible memory types for imported Android hardware buffers or
resources backed by them. If a host-visible memory type is supported and used, the memory can be
mapped in Vulkan, but doing so follows Vulkan semantics: it is just a raw view of the data and does
not imply ownership (this means implementations must not internally call AHardwareBuffer_lock to
implement vkMapMemory, or assume the application has done so). Implementations are not
required to support linear-tiled images backed by Android hardware buffers, even if the
AHardwareBuffer has CPU usage. There is no reliable way to allocate memory in Vulkan that can be
exported to a AHardwareBuffer with CPU usage.

5) Android may add new AHardwareBuffer formats and usage flags over time. Can reference to
them be added to this extension, or do they need a new extension?

RESOLVED: This extension can document the interaction between the new AHB formats/usages
and existing Vulkan features. No new Vulkan features or implementation requirements can be
added. The extension version number will be incremented when this additional documentation is
added, but the version number does not indicate that an implementation supports Vulkan memory
or resources that map to the new AHardwareBuffer features: support for that must be queried with
vkGetPhysicalDeviceImageFormatProperties2 or is implied by successfully allocating a
AHardwareBuffer outside of Vulkan that uses the new feature and has a GPU usage flag.

In essence, these are new features added to a new Android API level, rather than new Vulkan
features. The extension will only document how existing Vulkan features map to that new Android
feature.

Version History

• Revision 5, 2022-02-04 (Chris Forbes)

◦ Describe mapping of flags for storage image support

• Revision 4, 2021-09-30 (Jon Leech)

◦ Add interaction with VK_KHR_format_feature_flags2 to vk.xml

• Revision 3, 2019-08-27 (Jon Leech)

◦ Update revision history to correspond to XML version number

• Revision 2, 2018-04-09 (Petr Kraus)

◦ Markup fixes and remove incorrect Draft status

4771

• Revision 1, 2018-03-04 (Jesse Hall)

◦ Initial version

VK_ARM_render_pass_striped

Name String

VK_ARM_render_pass_striped

Extension Type

Device extension

Registered Extension Number

425

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
VK_KHR_synchronization2

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Extension Proposal

VK_ARM_render_pass_striped

Other Extension Metadata

Last Modified Date

2023-11-21

IP Status

No known IP claims.

Contributors

• Jan-Harald Fredriksen, Arm

• Lisa Wu, Arm

• Torbjorn Nilsson, Arm

• Ying-Chieh Chen, Mediatek

• Jim Chiu, Mediatek

4772

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_render_pass_striped] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_ARM_render_pass_striped extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_render_pass_striped] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_ARM_render_pass_striped extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_ARM_render_pass_striped.adoc

Description

This extension adds the ability to split a render pass instance into stripes, and to get a notification
when rendering has completed for each stripe.

New Structures

• VkRenderPassStripeInfoARM

• Extending VkCommandBufferSubmitInfo:

◦ VkRenderPassStripeSubmitInfoARM

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRenderPassStripedFeaturesARM

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceRenderPassStripedPropertiesARM

• Extending VkRenderingInfo, VkRenderPassBeginInfo:

◦ VkRenderPassStripeBeginInfoARM

New Enum Constants

• VK_ARM_RENDER_PASS_STRIPED_EXTENSION_NAME

• VK_ARM_RENDER_PASS_STRIPED_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RENDER_PASS_STRIPED_FEATURES_ARM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RENDER_PASS_STRIPED_PROPERTIES_ARM

◦ VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_BEGIN_INFO_ARM

◦ VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_INFO_ARM

◦ VK_STRUCTURE_TYPE_RENDER_PASS_STRIPE_SUBMIT_INFO_ARM

Examples

None.

Version History

• Revision 1, 2023-11-21

◦ Initial revision

VK_ARM_scheduling_controls

Name String

VK_ARM_scheduling_controls

4773

Extension Type

Device extension

Registered Extension Number

418

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_ARM_shader_core_builtins

Contact

• Kevin Petit kpet

Other Extension Metadata

Last Modified Date

2023-08-23

Interactions and External Dependencies

None

IP Status

No known IP claims.

Contributors

• Kévin Petit, Arm Ltd.

• Jan-Harald Fredriksen, Arm Ltd.

• Mikel Garai, Arm Ltd.

Description

This extension exposes a collection of controls to modify the scheduling behaviour of Arm Mali
devices.

New Structures

• Extending VkDeviceQueueCreateInfo, VkDeviceCreateInfo:

◦ VkDeviceQueueShaderCoreControlCreateInfoARM

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceSchedulingControlsFeaturesARM

• Extending VkPhysicalDeviceProperties2:

4774

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_scheduling_controls] @kpet%0A*Here describe the issue or question you have about the VK_ARM_scheduling_controls extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_scheduling_controls] @kpet%0A*Here describe the issue or question you have about the VK_ARM_scheduling_controls extension*

◦ VkPhysicalDeviceSchedulingControlsPropertiesARM

New Enums

• VkPhysicalDeviceSchedulingControlsFlagBitsARM

New Bitmasks

• VkPhysicalDeviceSchedulingControlsFlagsARM

New Enum Constants

• VK_ARM_SCHEDULING_CONTROLS_EXTENSION_NAME

• VK_ARM_SCHEDULING_CONTROLS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_QUEUE_SHADER_CORE_CONTROL_CREATE_INFO_ARM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_FEATURES_ARM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCHEDULING_CONTROLS_PROPERTIES_ARM

New SPIR-V Capabilities

None.

Issues

None.

Version History

• Revision 1, 2023-08-23 (Kévin Petit)

◦ Initial revision

VK_ARM_shader_core_builtins

Name String

VK_ARM_shader_core_builtins

Extension Type

Device extension

Registered Extension Number

498

Revision

2

4775

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_ARM_core_builtins

Contact

• Kevin Petit kpet

Other Extension Metadata

Last Modified Date

2022-10-05

Interactions and External Dependencies

• This extension provides API support for GL_ARM_shader_core_builtins

Contributors

• Kevin Petit, Arm Ltd.

• Jan-Harald Fredriksen, Arm Ltd.

Description

This extension provides the ability to determine device-specific properties on Arm GPUs. It exposes
properties for the number of shader cores, the maximum number of warps that can run on a
shader core, and shader builtins to enable invocations to identify which core and warp a shader
invocation is executing on.

This extension enables support for the SPIR-V CoreBuiltinsARM capability.

These properties and built-ins can be used for debugging or performance optimisation purposes. A
typical optimisation example would be to use CoreIDARM to select a per-shader-core instance of a
data structure in algorithms that use atomics so as to reduce contention.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderCoreBuiltinsFeaturesARM

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderCoreBuiltinsPropertiesARM

New Enum Constants

• VK_ARM_SHADER_CORE_BUILTINS_EXTENSION_NAME

• VK_ARM_SHADER_CORE_BUILTINS_SPEC_VERSION

4776

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/ARM/SPV_ARM_core_builtins.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_shader_core_builtins] @kpet%0A*Here describe the issue or question you have about the VK_ARM_shader_core_builtins extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_shader_core_builtins] @kpet%0A*Here describe the issue or question you have about the VK_ARM_shader_core_builtins extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/arm/GLSL_ARM_shader_core_builtins.txt

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_BUILTINS_FEATURES_ARM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_BUILTINS_PROPERTIES_ARM

New or Modified Built-In Variables

• CoreCountARM

• CoreMaxIDARM

• CoreIDARM

• WarpsMaxIDARM

• WarpIDARM

New SPIR-V Capabilities

• CoreBuiltinsARM

Issues

None.

Version History

• Revision 1, 2022-10-05 (Kevin Petit)

◦ Initial revision

• Revision 2, 2022-10-26 (Kevin Petit)

◦ Add shaderCoreMask property

VK_ARM_shader_core_properties

Name String

VK_ARM_shader_core_properties

Extension Type

Device extension

Registered Extension Number

416

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

Version 1.1

4777

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Other Extension Metadata

Last Modified Date

2023-02-07

IP Status

No known IP claims.

Contributors

• Jan-Harald Fredriksen, Arm Ltd.

Description

This extension provides the ability to determine device-specific performance properties of Arm
GPUs.

It exposes properties for the number of texel, pixel, and fused multiply-add operations per clock
per shader core. This can be used in combination with the VK_ARM_shader_core_builtins extension
that provides the ability to query the number of shader cores on the physical device.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderCorePropertiesARM

New Enum Constants

• VK_ARM_SHADER_CORE_PROPERTIES_EXTENSION_NAME

• VK_ARM_SHADER_CORE_PROPERTIES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_ARM

Version History

• Revision 1, 2023-02-07 (Jan-Harald Fredriksen)

◦ Initial draft.

VK_FUCHSIA_buffer_collection

Name String

VK_FUCHSIA_buffer_collection

Extension Type

Device extension

4778

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_shader_core_properties] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_ARM_shader_core_properties extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_shader_core_properties] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_ARM_shader_core_properties extension*

Registered Extension Number

367

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_FUCHSIA_external_memory
and
VK_KHR_sampler_ycbcr_conversion

API Interactions

• Interacts with VK_EXT_debug_report

Contact

• John Rosasco rosasco

Other Extension Metadata

Last Modified Date

2021-09-23

IP Status

No known IP claims.

Contributors

• Craig Stout, Google

• John Bauman, Google

• John Rosasco, Google

Description

A buffer collection is a collection of one or more buffers which were allocated together as a group
and which all have the same properties. These properties describe the buffers' internal
representation such as its dimensions and memory layout. This ensures that all of the buffers can
be used interchangeably by tasks that require swapping among multiple buffers, such as double-
buffered graphics rendering.

By sharing such a collection of buffers between components, communication about buffer lifecycle
can be made much simpler and more efficient. For example, when a content producer finishes
writing to a buffer, it can message the consumer of the buffer with the buffer index, rather than
passing a handle to the shared memory.

On Fuchsia, the Sysmem service uses buffer collections as a core construct in its design.
VK_FUCHSIA_buffer_collection is the Vulkan extension that allows Vulkan applications to

4779

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_FUCHSIA_buffer_collection] @rosasco%0A*Here describe the issue or question you have about the VK_FUCHSIA_buffer_collection extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_FUCHSIA_buffer_collection] @rosasco%0A*Here describe the issue or question you have about the VK_FUCHSIA_buffer_collection extension*

interoperate with the Sysmem service on Fuchsia.

New Object Types

• VkBufferCollectionFUCHSIA

New Commands

• vkCreateBufferCollectionFUCHSIA

• vkDestroyBufferCollectionFUCHSIA

• vkGetBufferCollectionPropertiesFUCHSIA

• vkSetBufferCollectionBufferConstraintsFUCHSIA

• vkSetBufferCollectionImageConstraintsFUCHSIA

New Structures

• VkBufferCollectionConstraintsInfoFUCHSIA

• VkBufferCollectionCreateInfoFUCHSIA

• VkBufferCollectionPropertiesFUCHSIA

• VkBufferConstraintsInfoFUCHSIA

• VkImageConstraintsInfoFUCHSIA

• VkImageFormatConstraintsInfoFUCHSIA

• VkSysmemColorSpaceFUCHSIA

• Extending VkBufferCreateInfo:

◦ VkBufferCollectionBufferCreateInfoFUCHSIA

• Extending VkImageCreateInfo:

◦ VkBufferCollectionImageCreateInfoFUCHSIA

• Extending VkMemoryAllocateInfo:

◦ VkImportMemoryBufferCollectionFUCHSIA

New Enums

• VkImageConstraintsInfoFlagBitsFUCHSIA

New Bitmasks

• VkImageConstraintsInfoFlagsFUCHSIA

• VkImageFormatConstraintsFlagsFUCHSIA

New Enum Constants

• VK_FUCHSIA_BUFFER_COLLECTION_EXTENSION_NAME

• VK_FUCHSIA_BUFFER_COLLECTION_SPEC_VERSION

4780

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_BUFFER_COLLECTION_FUCHSIA

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BUFFER_COLLECTION_BUFFER_CREATE_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_BUFFER_COLLECTION_CONSTRAINTS_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_BUFFER_COLLECTION_CREATE_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_BUFFER_COLLECTION_IMAGE_CREATE_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_BUFFER_COLLECTION_PROPERTIES_FUCHSIA

◦ VK_STRUCTURE_TYPE_BUFFER_CONSTRAINTS_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_IMAGE_CONSTRAINTS_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_IMAGE_FORMAT_CONSTRAINTS_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_IMPORT_MEMORY_BUFFER_COLLECTION_FUCHSIA

◦ VK_STRUCTURE_TYPE_SYSMEM_COLOR_SPACE_FUCHSIA

If VK_EXT_debug_report is supported:

• Extending VkDebugReportObjectTypeEXT:

◦ VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_COLLECTION_FUCHSIA_EXT

Issues

1) When configuring a VkImageConstraintsInfoFUCHSIA structure for constraint setting, should a
NULL pFormatConstraints parameter be allowed ?

RESOLVED: No. Specifying a NULL pFormatConstraints results in logical complexity of interpreting
the relationship between the VkImageCreateInfo::usage settings of the elements of the
pImageCreateInfos array and the implied or desired VkFormatFeatureFlags.

The explicit requirement for pFormatConstraints to be non-NULL simplifies the implied logic of the
implementation and expectations for the Vulkan application.

Version History

• Revision 2, 2021-09-23 (John Rosasco)

◦ Review passes

• Revision 1, 2021-03-09 (John Rosasco)

◦ Initial revision

VK_FUCHSIA_external_memory

Name String

VK_FUCHSIA_external_memory

4781

Extension Type

Device extension

Registered Extension Number

365

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_external_memory_capabilities
and
VK_KHR_external_memory

Contact

• John Rosasco rosasco

Other Extension Metadata

Last Modified Date

2021-03-01

IP Status

No known IP claims.

Contributors

• Craig Stout, Google

• John Bauman, Google

• John Rosasco, Google

Description

Vulkan apps may wish to export or import device memory handles to or from other logical devices,
instances or APIs.

This memory sharing can eliminate copies of memory buffers when different subsystems need to
interoperate on them. Sharing memory buffers may also facilitate a better distribution of
processing workload for more complex memory manipulation pipelines.

New Commands

• vkGetMemoryZirconHandleFUCHSIA

• vkGetMemoryZirconHandlePropertiesFUCHSIA

4782

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_FUCHSIA_external_memory] @rosasco%0A*Here describe the issue or question you have about the VK_FUCHSIA_external_memory extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_FUCHSIA_external_memory] @rosasco%0A*Here describe the issue or question you have about the VK_FUCHSIA_external_memory extension*

New Structures

• VkMemoryGetZirconHandleInfoFUCHSIA

• VkMemoryZirconHandlePropertiesFUCHSIA

• Extending VkMemoryAllocateInfo:

◦ VkImportMemoryZirconHandleInfoFUCHSIA

New Enum Constants

• VK_FUCHSIA_EXTERNAL_MEMORY_EXTENSION_NAME

• VK_FUCHSIA_EXTERNAL_MEMORY_SPEC_VERSION

• Extending VkExternalMemoryHandleTypeFlagBits:

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMPORT_MEMORY_ZIRCON_HANDLE_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_MEMORY_GET_ZIRCON_HANDLE_INFO_FUCHSIA

◦ VK_STRUCTURE_TYPE_MEMORY_ZIRCON_HANDLE_PROPERTIES_FUCHSIA

Issues

See VK_KHR_external_memory issues list for further information.

Version History

• Revision 1, 2021-03-01 (John Rosasco)

◦ Initial draft

VK_FUCHSIA_external_semaphore

Name String

VK_FUCHSIA_external_semaphore

Extension Type

Device extension

Registered Extension Number

366

Revision

1

Ratification Status

Not ratified

4783

Extension and Version Dependencies

VK_KHR_external_semaphore_capabilities
and
VK_KHR_external_semaphore

Contact

• John Rosasco rosasco

Other Extension Metadata

Last Modified Date

2021-03-08

IP Status

No known IP claims.

Contributors

• Craig Stout, Google

• John Bauman, Google

• John Rosasco, Google

Description

An application using external memory may wish to synchronize access to that memory using
semaphores. This extension enables an application to export semaphore payload to and import
semaphore payload from Zircon event handles.

New Commands

• vkGetSemaphoreZirconHandleFUCHSIA

• vkImportSemaphoreZirconHandleFUCHSIA

New Structures

• VkImportSemaphoreZirconHandleInfoFUCHSIA

• VkSemaphoreGetZirconHandleInfoFUCHSIA

New Enum Constants

• VK_FUCHSIA_EXTERNAL_SEMAPHORE_EXTENSION_NAME

• VK_FUCHSIA_EXTERNAL_SEMAPHORE_SPEC_VERSION

• Extending VkExternalSemaphoreHandleTypeFlagBits:

◦ VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_ZIRCON_EVENT_BIT_FUCHSIA

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_ZIRCON_HANDLE_INFO_FUCHSIA

4784

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_FUCHSIA_external_semaphore] @rosasco%0A*Here describe the issue or question you have about the VK_FUCHSIA_external_semaphore extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_FUCHSIA_external_semaphore] @rosasco%0A*Here describe the issue or question you have about the VK_FUCHSIA_external_semaphore extension*

◦ VK_STRUCTURE_TYPE_SEMAPHORE_GET_ZIRCON_HANDLE_INFO_FUCHSIA

Issues

1) Does the application need to close the Zircon event handle returned by
vkGetSemaphoreZirconHandleFUCHSIA?

RESOLVED: Yes, unless it is passed back in to a driver instance to import the semaphore. A
successful get call transfers ownership of the Zircon event handle to the application, and a
successful import transfers it back to the driver. Destroying the original semaphore object will not
close the Zircon event handle nor remove its reference to the underlying semaphore resource
associated with it.

Version History

• Revision 1, 2021-03-08 (John Rosasco)

◦ Initial revision

VK_FUCHSIA_imagepipe_surface

Name String

VK_FUCHSIA_imagepipe_surface

Extension Type

Instance extension

Registered Extension Number

215

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Craig Stout cdotstout

Other Extension Metadata

Last Modified Date

2018-07-27

IP Status

No known IP claims.

4785

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_FUCHSIA_imagepipe_surface] @cdotstout%0A*Here describe the issue or question you have about the VK_FUCHSIA_imagepipe_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_FUCHSIA_imagepipe_surface] @cdotstout%0A*Here describe the issue or question you have about the VK_FUCHSIA_imagepipe_surface extension*

Contributors

• Craig Stout, Google

• Ian Elliott, Google

• Jesse Hall, Google

Description

The VK_FUCHSIA_imagepipe_surface extension is an instance extension. It provides a mechanism to
create a VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to a Fuchsia
imagePipeHandle.

New Commands

• vkCreateImagePipeSurfaceFUCHSIA

New Structures

• VkImagePipeSurfaceCreateInfoFUCHSIA

New Bitmasks

• VkImagePipeSurfaceCreateFlagsFUCHSIA

New Enum Constants

• VK_FUCHSIA_IMAGEPIPE_SURFACE_EXTENSION_NAME

• VK_FUCHSIA_IMAGEPIPE_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGEPIPE_SURFACE_CREATE_INFO_FUCHSIA

Version History

• Revision 1, 2018-07-27 (Craig Stout)

◦ Initial draft.

VK_GGP_frame_token

Name String

VK_GGP_frame_token

Extension Type

Device extension

Registered Extension Number

192

4786

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_swapchain
and
VK_GGP_stream_descriptor_surface

Contact

• Jean-Francois Roy jfroy

Other Extension Metadata

Last Modified Date

2019-01-28

IP Status

No known IP claims.

Contributors

• Jean-Francois Roy, Google

• Richard O’Grady, Google

Description

This extension allows an application that uses the VK_KHR_swapchain extension in combination with
a Google Games Platform surface provided by the VK_GGP_stream_descriptor_surface extension to
associate a Google Games Platform frame token with a present operation.

New Structures

• Extending VkPresentInfoKHR:

◦ VkPresentFrameTokenGGP

New Enum Constants

• VK_GGP_FRAME_TOKEN_EXTENSION_NAME

• VK_GGP_FRAME_TOKEN_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PRESENT_FRAME_TOKEN_GGP

Version History

• Revision 1, 2018-11-26 (Jean-Francois Roy)

4787

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GGP_frame_token] @jfroy%0A*Here describe the issue or question you have about the VK_GGP_frame_token extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GGP_frame_token] @jfroy%0A*Here describe the issue or question you have about the VK_GGP_frame_token extension*

◦ Initial revision.

VK_GGP_stream_descriptor_surface

Name String

VK_GGP_stream_descriptor_surface

Extension Type

Instance extension

Registered Extension Number

50

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Jean-Francois Roy jfroy

Other Extension Metadata

Last Modified Date

2019-01-28

IP Status

No known IP claims.

Contributors

• Jean-Francois Roy, Google

• Brad Grantham, Google

• Connor Smith, Google

• Cort Stratton, Google

• Hai Nguyen, Google

• Ian Elliott, Google

• Jesse Hall, Google

• Jim Ray, Google

• Katherine Wu, Google

• Kaye Mason, Google

4788

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GGP_stream_descriptor_surface] @jfroy%0A*Here describe the issue or question you have about the VK_GGP_stream_descriptor_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GGP_stream_descriptor_surface] @jfroy%0A*Here describe the issue or question you have about the VK_GGP_stream_descriptor_surface extension*

• Kuangye Guo, Google

• Mark Segal, Google

• Nicholas Vining, Google

• Paul Lalonde, Google

• Richard O’Grady, Google

Description

The VK_GGP_stream_descriptor_surface extension is an instance extension. It provides a mechanism
to create a VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to a Google
Games Platform GgpStreamDescriptor.

New Commands

• vkCreateStreamDescriptorSurfaceGGP

New Structures

• VkStreamDescriptorSurfaceCreateInfoGGP

New Bitmasks

• VkStreamDescriptorSurfaceCreateFlagsGGP

New Enum Constants

• VK_GGP_STREAM_DESCRIPTOR_SURFACE_EXTENSION_NAME

• VK_GGP_STREAM_DESCRIPTOR_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_STREAM_DESCRIPTOR_SURFACE_CREATE_INFO_GGP

Version History

• Revision 1, 2018-11-26 (Jean-Francois Roy)

◦ Initial revision.

VK_GOOGLE_decorate_string

Name String

VK_GOOGLE_decorate_string

Extension Type

Device extension

Registered Extension Number

225

4789

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_GOOGLE_decorate_string

Contact

• Hai Nguyen chaoticbob

Other Extension Metadata

Last Modified Date

2018-07-09

IP Status

No known IP claims.

Contributors

• Hai Nguyen, Google

• Neil Henning, AMD

Description

The VK_GOOGLE_decorate_string extension allows use of the SPV_GOOGLE_decorate_string extension in
SPIR-V shader modules.

New Enum Constants

• VK_GOOGLE_DECORATE_STRING_EXTENSION_NAME

• VK_GOOGLE_DECORATE_STRING_SPEC_VERSION

Version History

• Revision 1, 2018-07-09 (Neil Henning)

◦ Initial draft

VK_GOOGLE_display_timing

Name String

VK_GOOGLE_display_timing

4790

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/GOOGLE/SPV_GOOGLE_decorate_string.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_decorate_string] @chaoticbob%0A*Here describe the issue or question you have about the VK_GOOGLE_decorate_string extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_decorate_string] @chaoticbob%0A*Here describe the issue or question you have about the VK_GOOGLE_decorate_string extension*

Extension Type

Device extension

Registered Extension Number

93

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_swapchain

Contact

• Ian Elliott ianelliottus

Other Extension Metadata

Last Modified Date

2017-02-14

IP Status

No known IP claims.

Contributors

• Ian Elliott, Google

• Jesse Hall, Google

Description

This device extension allows an application that uses the VK_KHR_swapchain extension to obtain
information about the presentation engine’s display, to obtain timing information about each
present, and to schedule a present to happen no earlier than a desired time. An application can use
this to minimize various visual anomalies (e.g. stuttering).

Traditional game and real-time animation applications need to correctly position their geometry
for when the presentable image will be presented to the user. To accomplish this, applications need
various timing information about the presentation engine’s display. They need to know when
presentable images were actually presented, and when they could have been presented.
Applications also need to tell the presentation engine to display an image no sooner than a given
time. This allows the application to avoid stuttering, so the animation looks smooth to the user.

This extension treats variable-refresh-rate (VRR) displays as if they are fixed-refresh-rate (FRR)
displays.

4791

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_display_timing] @ianelliottus%0A*Here describe the issue or question you have about the VK_GOOGLE_display_timing extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_display_timing] @ianelliottus%0A*Here describe the issue or question you have about the VK_GOOGLE_display_timing extension*

New Commands

• vkGetPastPresentationTimingGOOGLE

• vkGetRefreshCycleDurationGOOGLE

New Structures

• VkPastPresentationTimingGOOGLE

• VkPresentTimeGOOGLE

• VkRefreshCycleDurationGOOGLE

• Extending VkPresentInfoKHR:

◦ VkPresentTimesInfoGOOGLE

New Enum Constants

• VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME

• VK_GOOGLE_DISPLAY_TIMING_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE

Examples

Note

The example code for the this extension (like the VK_KHR_surface and
VK_GOOGLE_display_timing extensions) is contained in the cube demo that is shipped
with the official Khronos SDK, and is being kept up-to-date in that location (see:
https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c).

Version History

• Revision 1, 2017-02-14 (Ian Elliott)

◦ Internal revisions

VK_GOOGLE_hlsl_functionality1

Name String

VK_GOOGLE_hlsl_functionality1

Extension Type

Device extension

Registered Extension Number

224

4792

https://github.com/KhronosGroup/Vulkan-Tools/blob/master/cube/cube.c

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_GOOGLE_hlsl_functionality1

Contact

• Hai Nguyen chaoticbob

Other Extension Metadata

Last Modified Date

2018-07-09

IP Status

No known IP claims.

Contributors

• Hai Nguyen, Google

• Neil Henning, AMD

Description

The VK_GOOGLE_hlsl_functionality1 extension allows use of the SPV_GOOGLE_hlsl_functionality1
extension in SPIR-V shader modules.

New Enum Constants

• VK_GOOGLE_HLSL_FUNCTIONALITY1_EXTENSION_NAME

• VK_GOOGLE_HLSL_FUNCTIONALITY1_SPEC_VERSION

• VK_GOOGLE_HLSL_FUNCTIONALITY_1_EXTENSION_NAME

• VK_GOOGLE_HLSL_FUNCTIONALITY_1_SPEC_VERSION

Version History

• Revision 1, 2018-07-09 (Neil Henning)

◦ Initial draft

VK_GOOGLE_surfaceless_query

4793

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/GOOGLE/SPV_GOOGLE_hlsl_functionality1.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_hlsl_functionality1] @chaoticbob%0A*Here describe the issue or question you have about the VK_GOOGLE_hlsl_functionality1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_hlsl_functionality1] @chaoticbob%0A*Here describe the issue or question you have about the VK_GOOGLE_hlsl_functionality1 extension*

Name String

VK_GOOGLE_surfaceless_query

Extension Type

Instance extension

Registered Extension Number

434

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Special Use

• OpenGL / ES support

Contact

• Shahbaz Youssefi syoussefi

Extension Proposal

VK_GOOGLE_surfaceless_query

Other Extension Metadata

Last Modified Date

2022-08-03

IP Status

No known IP claims.

Contributors

• Ian Elliott, Google

• Shahbaz Youssefi, Google

• James Jones, NVIDIA

Description

This extension allows the vkGetPhysicalDeviceSurfaceFormatsKHR and
vkGetPhysicalDeviceSurfacePresentModesKHR functions to accept VK_NULL_HANDLE as their
surface parameter, allowing potential surface formats, color spaces and present modes to be
queried without providing a surface. Identically, vkGetPhysicalDeviceSurfaceFormats2KHR,
vkGetPhysicalDeviceSurfacePresentModes2EXT, and vkGetPhysicalDeviceSurfaceCapabilities2KHR
would accept VK_NULL_HANDLE in VkPhysicalDeviceSurfaceInfo2KHR::surface. This can only be

4794

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_surfaceless_query] @syoussefi%0A*Here describe the issue or question you have about the VK_GOOGLE_surfaceless_query extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_surfaceless_query] @syoussefi%0A*Here describe the issue or question you have about the VK_GOOGLE_surfaceless_query extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_GOOGLE_surfaceless_query.adoc

supported on platforms where the results of these queries are surface-agnostic and a single
presentation engine is the implicit target of all present operations.

New Enum Constants

• VK_GOOGLE_SURFACELESS_QUERY_EXTENSION_NAME

• VK_GOOGLE_SURFACELESS_QUERY_SPEC_VERSION

Version History

• Revision 1, 2021-12-14 (Shahbaz Youssefi)

◦ Internal revisions

• Revision 2, 2022-08-03 (Shahbaz Youssefi)

◦ Precisions to which parts of the query responses are defined when surfaceless

VK_GOOGLE_user_type

Name String

VK_GOOGLE_user_type

Extension Type

Device extension

Registered Extension Number

290

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_GOOGLE_user_type

Contact

• Kaye Mason chaleur

Other Extension Metadata

Last Modified Date

2019-07-09

IP Status

No known IP claims.

4795

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/GOOGLE/SPV_GOOGLE_user_type.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_user_type] @chaleur%0A*Here describe the issue or question you have about the VK_GOOGLE_user_type extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_GOOGLE_user_type] @chaleur%0A*Here describe the issue or question you have about the VK_GOOGLE_user_type extension*

Contributors

• Kaye Mason, Google

• Hai Nguyen, Google

Description

The VK_GOOGLE_user_type extension allows use of the SPV_GOOGLE_user_type extension in SPIR-V
shader modules.

New Enum Constants

• VK_GOOGLE_USER_TYPE_EXTENSION_NAME

• VK_GOOGLE_USER_TYPE_SPEC_VERSION

Version History

• Revision 1, 2019-09-07 (Kaye Mason)

◦ Initial draft

VK_HUAWEI_cluster_culling_shader

Name String

VK_HUAWEI_cluster_culling_shader

Extension Type

Device extension

Registered Extension Number

405

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_HUAWEI_cluster_culling_shader

Contact

• Yuchang Wang richard_Wang2

Extension Proposal

VK_HUAWEI_cluster_culling_shader

4796

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/HUAWEI/SPV_HUAWEI_cluster_culling_shader.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_HUAWEI_cluster_culling_shader] @richard_Wang2%0A*Here describe the issue or question you have about the VK_HUAWEI_cluster_culling_shader extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_HUAWEI_cluster_culling_shader] @richard_Wang2%0A*Here describe the issue or question you have about the VK_HUAWEI_cluster_culling_shader extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_HUAWEI_cluster_culling_shader.adoc

Other Extension Metadata

Last Modified Date

2023-08-16

Interactions and External Dependencies

• This extension provides API support for GL_HUAWEI_cluster_culling_shader.

Contributors

• Yuchang Wang, Huawei

• Juntao Li, Huawei

• Pan Gao, Huawei

• Jie Cao, Huawei

• Yunjin Zhang, Huawei

• Shujie Zhou, Huawei

• Chaojun Wang, Huawei

• Jiajun Hu, Huawei

• Cong Zhang, Huawei

Description

Cluster Culling Shaders (CCS) are similar to the existing compute shaders. Their main purpose is to
provide an execution environment in order to perform coarse-level geometry culling and LOD
selection more efficiently on the GPU.

The traditional 2-pass GPU culling solution using a compute shader sometimes needs a pipeline
barrier between compute and graphics pipeline to optimize performance. An additional
compaction process may also be required. This extension addresses these shortcomings, allowing
compute shaders to directly emit visible clusters to the following graphics pipeline.

A set of new built-in output variables are used to express a visible cluster, including per-cluster
shading rate. In addition, a new built-in function is used to emit these variables from CCS to the IA
stage. The IA stage can use these variables to fetches vertices of a visible cluster and drive vertex
shaders to shading these vertices.

Note that CCS do not work with geometry or tessellation shaders, but both IA and vertex shaders
are preserved. Vertex shaders are still used for vertex position shading, instead of directly
outputting transformed vertices from the compute shader. This makes CCS more suitable for mobile
GPUs.

New Commands

• vkCmdDrawClusterHUAWEI

• vkCmdDrawClusterIndirectHUAWEI

4797

https://github.com/KhronosGroup/GLSL/blob/master/extensions/huawei/GLSL_HUAWEI_cluster_culling_shader.txt

New Structures

• Extending VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI:

◦ VkPhysicalDeviceClusterCullingShaderVrsFeaturesHUAWEI

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceClusterCullingShaderFeaturesHUAWEI

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI

New Enum Constants

• VK_HUAWEI_CLUSTER_CULLING_SHADER_EXTENSION_NAME

• VK_HUAWEI_CLUSTER_CULLING_SHADER_SPEC_VERSION

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_CLUSTER_CULLING_SHADER_BIT_HUAWEI

• Extending VkQueryPipelineStatisticFlagBits:

◦ VK_QUERY_PIPELINE_STATISTIC_CLUSTER_CULLING_SHADER_INVOCATIONS_BIT_HUAWEI

• Extending VkShaderStageFlagBits:

◦ VK_SHADER_STAGE_CLUSTER_CULLING_BIT_HUAWEI

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_FEATURES_HUAWEI

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_PROPERTIES_HUAWEI

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CLUSTER_CULLING_SHADER_VRS_FEATURES_HUAWEI

New Built-In Variables

• IndexCountHUAWEI

• VertexCountHUAWEI

• InstanceCountHUAWEI

• FirstIndexHUAWEI

• FirstVertexHUAWEI

• VertexOffsetHUAWEI

• FirstInstanceHUAWEI

• ClusterIDHUAWEI

• ClusterShadingRateHUAWEI

New SPIR-V Capability

• ClusterCullingShadingHUAWEI

4798

Sample Code

Example of cluster culling in a GLSL shader

#extension GL_HUAWEI_cluster_culling_shader: enable

#define GPU_WARP_SIZE 32
#define GPU_GROUP_SIZE GPU_WARP_SIZE

#define GPU_CLUSTER_PER_INVOCATION 1
#define GPU_CLUSTER_PER_WORKGROUP (GPU_GROUP_SIZE * GPU_CLUSTER_PER_INVOCATION)

// Number of threads per workgroup
// - 1D only
// - warpsize = 32
layout(local_size_x=GPU_GROUP_SIZE, local_size_y=1, local_size_z=1) in;

#define GPU_DRAW_BUFFER_BINDING 0
#define GPU_INSTANCE_DESCRIPTOR_BINDING 1

struct BoundingSphere
{
 vec3 center;
 float radius;
};

struct InstanceData
{
 mat4 mvp_matrix; // mvp matrix.
 vec4 frustum_planes[6]; // six frustum planes
 mat4 model_matrix_transpose_inverse; // inverse transpose of model matrix.
 vec3 view_origin; // view original
};

struct InstanceDescriptor
{
 uint begin;
 uint end;
 uint cluster_count;
 uint debug;
 BoundingSphere sphere;
 InstanceData instance_data;
};

struct DrawElementsCommand{
 uint indexcount;
 uint instanceCount;
 uint firstIndex;
 int vertexoffset;
 uint firstInstance;
 uint cluster_id;

4799

};

// indexed mode
out gl_PerClusterHUAWEI{
 uint gl_IndexCountHUAWEI;
 uint gl_InstanceCountHUAWEI;
 uint gl_FirstIndexHUAWEI;
 int gl_VertexOffsetHUAWEI;
 uint gl_FirstInstanceHUAWEI;
 uint gl_ClusterIDHUAWEI;
 uint gl_ClusterShadingRateHUAWEI;
};

layout(binding = GPU_DRAW_BUFFER_BINDING, std430) buffer draw_indirect_ssbo
{
 DrawElementsCommand draw_commands[];
};

layout(binding = GPU_INSTANCE_DESCRIPTOR_BINDING, std430) buffer
instance_descriptor_ssbo
{
 InstanceDescriptor instance_descriptors[];
};

float Distance(uint instance_id)
{
 vec3 v = normalize(instance_descriptor[instance_id].sphere.center -
 instance_descriptor[instance_id].instance_data.view_origin);
 float dist = sqrt(dot(v,v));

 return dist;
}

bool isSphereOutsideFrustum(vec3 sphere_center, float sphere_radius)
{
 bool isInside = false;

 for(int i = 0; i < 6; i++)
 {
 isInside = isInside ||
 (dot(instance_descriptors[instance_id].instance_data.frustum_planes[i].xyz,
 sphere_center) + instance_descriptors[instance_id].instance_data.frustum_planes
[i].w <
 sphere_radius);
 }
 return isInside;
}

void main()

4800

{
 // get instance description
 instance_id = gl_GlobalInvocationID.x;
 InstanceDescriptor inst_desc = instance_descriptors[instance_id];

 //instance based culling
 bool render = !isSphereOutsideFrustum(inst_desc.sphere.center, inst_desc.sphere
.radius);

 if (render)
 {
 // calculate distance
 float distance = Distance(instance_id);

 // update shading rate built-in variable
 if(distance > 0.7)
 gl_ClusterShadingRateHUAWEI =
 gl_ShadingRateFlag4VerticalPixelsEXT |
gl_ShadingRateFlag4HorizontalPixelsEXT;
 else if(distance > 0.3)
 gl_ClusterShadingRateHUAWEI =
 gl_ShadingRateFlag2VerticalPixelsEXT |
gl_ShadingRateFlag2HorizontalPixelsEXT;
 else
 gl_ClusterShadingRateHUAWEI = 0;

 // this is a visible cluster, update built-in output variable.
 // in case of indexed mode:
 gl_IndexCountHUAWEI = draw_commands[cluster_id].indexcount;
 gl_InstanceCountHUAWEI = draw_commands[cluster_id].instanceCount;
 gl_FirstIndexHUAWEI = draw_commands[cluster_id].firstIndex;
 gl_VertexOffsetHUAWEI = draw_commands[cluster_id].vertexoffset;
 gl_FirstInstanceHUAWEI = draw_commands[cluster_id].firstInstance;
 gl_ClusterIDHUAWEI = draw_commands[cluster_id].cluster_id;

 // emit built-in output variables as a drawing command to subsequent
 // rendering pipeline.
 dispatchClusterHUAWEI();
 }
}

Example of graphics pipeline creation with cluster culling shader

// create a cluster culling shader stage info structure.
VkPipelineShaderStageCreateInfo ccsStageInfo{};
ccsStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ccsStageInfo.stage = VK_SHADER_STAGE_CLUSTER_CULLING_BIT_HUAWEI;
ccsStageInfo.module = clustercullingshaderModule;
ccsStageInfo.pName = "main";

4801

// pipeline shader stage creation
VkPipelineShaderStageCreateInfo shaderStages[] = { ccsStageInfo,
vertexShaderStageInfo, fragmentShaderStageInfo };

// create graphics pipeline
VkGraphicsPipelineCreateInfo pipelineInfo{};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = 3;
pipelineInfo.pStage = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
// ...
VkPipeline graphicsPipeline;
VkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr,
&graphicsPipeline);

Example of launching the execution of cluster culling shader

vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);
vkCmdDrawClusterHUAWEI(commandBuffer, groupCountX, 1, 1);
vkCmdEndRenderPass(commandBuffer);

Version History

• Revision 1, 2022-11-18 (YuChang Wang)

◦ Internal revisions

• Revision 2, 2023-04-02 (Jon Leech)

◦ Grammar edits.

• Revision 3, 2023-08-21 (YuChang Wang)

◦ Add per-cluster shading rate.

VK_HUAWEI_invocation_mask

Name String

VK_HUAWEI_invocation_mask

Extension Type

Device extension

Registered Extension Number

371

Revision

1

Ratification Status

Not ratified

4802

Extension and Version Dependencies

VK_KHR_ray_tracing_pipeline
and
VK_KHR_synchronization2

Contact

• Pan Gao PanGao-h

Extension Proposal

VK_HUAWEI_invocation_mask

Other Extension Metadata

Last Modified Date

2021-05-27

Interactions and External Dependencies

• This extension requires VK_KHR_ray_tracing_pipeline, which allow to bind an invocation
mask image before the ray tracing command

• This extension requires VK_KHR_synchronization2, which allows new pipeline stage for the
invocation mask image

Contributors

• Yunpeng Zhu

• Juntao Li, Huawei

• Liang Chen, Huawei

• Shaozhuang Shi, Huawei

• Hailong Chu, Huawei

Description

The rays to trace may be sparse in some use cases. For example, the scene only have a few regions
to reflect. Providing an invocation mask image to the ray tracing commands could potentially give
the hardware the hint to do certain optimization without invoking an additional pass to compact
the ray buffer.

New Commands

• vkCmdBindInvocationMaskHUAWEI

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceInvocationMaskFeaturesHUAWEI

4803

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_HUAWEI_invocation_mask] @PanGao-h%0A*Here describe the issue or question you have about the VK_HUAWEI_invocation_mask extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_HUAWEI_invocation_mask] @PanGao-h%0A*Here describe the issue or question you have about the VK_HUAWEI_invocation_mask extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_HUAWEI_invocation_mask.adoc

New Enum Constants

• VK_HUAWEI_INVOCATION_MASK_EXTENSION_NAME

• VK_HUAWEI_INVOCATION_MASK_SPEC_VERSION

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_INVOCATION_MASK_READ_BIT_HUAWEI

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_INVOCATION_MASK_BIT_HUAWEI

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_INVOCATION_MASK_BIT_HUAWEI

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INVOCATION_MASK_FEATURES_HUAWEI

Examples

RT mask is updated before each traceRay.

Step 1. Generate InvocationMask.

//the rt mask image bind as color attachment in the fragment shader
Layout(location = 2) out vec4 outRTmask
vec4 mask = vec4(x,x,x,x);
outRTmask = mask;

Step 2. traceRay with InvocationMask

vkCmdBindPipeline(
 commandBuffers[imageIndex],
 VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, m_rtPipeline);
 vkCmdBindDescriptorSets(commandBuffers[imageIndex],
 VK_PIPELINE_BIND_POINT_RAY_TRACING_NV,
 m_rtPipelineLayout, 0, 1, &m_rtDescriptorSet,
 0, nullptr);

vkCmdBindInvocationMaskHUAWEI(
 commandBuffers[imageIndex],
 InvocationMaskimageView,
 InvocationMaskimageLayout);
 vkCmdTraceRaysKHR(commandBuffers[imageIndex],
 pRaygenShaderBindingTable,
 pMissShaderBindingTable,
 swapChainExtent.width,
 swapChainExtent.height, 1);

4804

Version History

• Revision 1, 2021-05-27 (Yunpeng Zhu)

◦ Initial draft.

VK_HUAWEI_subpass_shading

Name String

VK_HUAWEI_subpass_shading

Extension Type

Device extension

Registered Extension Number

370

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_create_renderpass2
and
VK_KHR_synchronization2

SPIR-V Dependencies

• SPV_HUAWEI_subpass_shading

Contact

• Pan Gao PanGao-h

Other Extension Metadata

Last Modified Date

2021-06-01

Interactions and External Dependencies

• This extension provides API support for GL_HUAWEI_subpass_shading.

Contributors

• Hueilong Wang

• Juntao Li, Huawei

• Renmiao Lu, Huawei

• Pan Gao, Huawei

4805

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/HUAWEI/SPV_HUAWEI_subpass_shading.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_HUAWEI_subpass_shading] @PanGao-h%0A*Here describe the issue or question you have about the VK_HUAWEI_subpass_shading extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_HUAWEI_subpass_shading] @PanGao-h%0A*Here describe the issue or question you have about the VK_HUAWEI_subpass_shading extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/huawei/GLSL_HUAWEI_subpass_shading.txt

Description

This extension allows applications to execute a subpass shading pipeline in a subpass of a render
pass in order to save memory bandwidth for algorithms like tile-based deferred rendering and
forward plus. A subpass shading pipeline is a pipeline with the compute pipeline ability, allowed to
read values from input attachments, and only allowed to be dispatched inside a stand-alone
subpass. Its work dimension is defined by the render pass’s render area size. Its workgroup size
(width, height) shall be a power-of-two number in width or height, with minimum value from 8,
and maximum value shall be decided from the render pass attachments and sample counts but
depends on implementation.

The GlobalInvocationId.xy of a subpass shading pipeline is equal to the FragCoord.xy of a graphic
pipeline in the same render pass subtracted the offset of the VkRenderPassBeginInfo::renderArea.
GlobalInvocationId.z is mapped to the Layer if VK_EXT_shader_viewport_index_layer is supported.
The GlobalInvocationId.xy is equal to the index of the local workgroup multiplied by the size of the
local workgroup plus the LocalInvocationId and the offset of the VkRenderPassBeginInfo
::renderArea.

This extension allows a subpass’s pipeline bind point to be
VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI.

New Commands

• vkCmdSubpassShadingHUAWEI

• vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI

New Structures

• Extending VkComputePipelineCreateInfo:

◦ VkSubpassShadingPipelineCreateInfoHUAWEI

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceSubpassShadingFeaturesHUAWEI

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceSubpassShadingPropertiesHUAWEI

New Enum Constants

• VK_HUAWEI_SUBPASS_SHADING_EXTENSION_NAME

• VK_HUAWEI_SUBPASS_SHADING_SPEC_VERSION

• Extending VkPipelineBindPoint:

◦ VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI

◦ VK_PIPELINE_STAGE_2_SUBPASS_SHADING_BIT_HUAWEI

• Extending VkShaderStageFlagBits:

4806

◦ VK_SHADER_STAGE_SUBPASS_SHADING_BIT_HUAWEI

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_SHADING_FEATURES_HUAWEI

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBPASS_SHADING_PROPERTIES_HUAWEI

◦ VK_STRUCTURE_TYPE_SUBPASS_SHADING_PIPELINE_CREATE_INFO_HUAWEI

Sample Code

Example of subpass shading in a GLSL shader

#extension GL_HUAWEI_subpass_shading: enable
#extension GL_KHR_shader_subgroup_arithmetic: enable

layout(constant_id = 0) const uint tileWidth = 8;
layout(constant_id = 1) const uint tileHeight = 8;
layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z = 1) in;
layout(set=0, binding=0, input_attachment_index=0) uniform subpassInput depth;

void main()
{
 float d = subpassLoad(depth).x;
 float minD = subgroupMin(d);
 float maxD = subgroupMax(d);
}

Example of subpass shading dispatching in a subpass

vkCmdNextSubpass(commandBuffer, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI,
subpassShadingPipeline);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI,
subpassShadingPipelineLayout,
 firstSet, descriptorSetCount, pDescriptorSets, dynamicOffsetCount, pDynamicOffsets);
vkCmdSubpassShadingHUAWEI(commandBuffer)
vkCmdEndRenderPass(commandBuffer);

Example of subpass shading render pass creation

VkAttachmentDescription2 attachments[] = {
 {
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2, NULL,
 0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT,
 VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_DONT_CARE,
 VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
 },

4807

 {
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2, NULL,
 0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT,
 VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_DONT_CARE,
 VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
 },
 {
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2, NULL,
 0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT,
 VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_DONT_CARE,
 VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
 },
 {
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2, NULL,
 0, VK_FORMAT_D24_UNORM_S8_UINT, VK_SAMPLE_COUNT_1_BIT,
 VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_DONT_CARE,
 VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
 },
 {
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2, NULL,
 0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT,
 VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_STORE,
 VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
 }
};

VkAttachmentReference2 gBufferAttachmentReferences[] = {
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_COLOR_BIT },
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 1,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_COLOR_BIT },
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 2,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_COLOR_BIT }
};
VkAttachmentReference2 gBufferDepthStencilAttachmentReferences =
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 3,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_DEPTH_BIT
|VK_IMAGE_ASPECT_STENCIL_BIT };
VkAttachmentReference2 depthInputAttachmentReferences[] = {
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 3,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, VK_IMAGE_ASPECT_DEPTH_BIT
|VK_IMAGE_ASPECT_STENCIL_BIT };
};
VkAttachmentReference2 preserveAttachmentReferences[] = {
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_COLOR_BIT },

4808

 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 1,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_COLOR_BIT },
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 2,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_COLOR_BIT },
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 3,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_DEPTH_BIT
|VK_IMAGE_ASPECT_STENCIL_BIT }
}; // G buffer including depth/stencil
VkAttachmentReference2 colorAttachmentReferences[] = {
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 4,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_COLOR_BIT }
};
VkAttachmentReference2 resolveAttachmentReference =
 { VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, NULL, 4,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_COLOR_BIT };

VkSubpassDescription2 subpasses[] = {
 {
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2, NULL, 0, VK_PIPELINE_BIND_POINT_GRAPHICS,
0,
 0, NULL, // input
 sizeof(gBufferAttachmentReferences)/sizeof(gBufferAttachmentReferences[0]),
gBufferAttachmentReferences, // color
 NULL, &gBufferDepthStencilAttachmentReferences, // resolve & DS
 0, NULL
 },
 {
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2, NULL, 0,
VK_PIPELINE_BIND_POINT_SUBPASS_SHADING_HUAWEI , 0,
 sizeof(depthInputAttachmentReferences)/sizeof(depthInputAttachmentReferences[0]),
depthInputAttachmentReferences, // input
 0, NULL, // color
 NULL, NULL, // resolve & DS
 sizeof(preserveAttachmentReferences)/sizeof(preserveAttachmentReferences[0]),
preserveAttachmentReferences,
 },
 {
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2, NULL, 0, VK_PIPELINE_BIND_POINT_GRAPHICS,
0,
 sizeof(gBufferAttachmentReferences)/sizeof(gBufferAttachmentReferences[0]),
gBufferAttachmentReferences, // input
 sizeof(colorAttachmentReferences)/sizeof(colorAttachmentReferences[0]),
colorAttachmentReferences, // color
 &resolveAttachmentReference, &gBufferDepthStencilAttachmentReferences, // resolve
& DS
 0, NULL
 },
};

VkMemoryBarrier2KHR fragmentToSubpassShading = {
 VK_STRUCTURE_TYPE_MEMORY_BARRIER_2_KHR, NULL,

4809

 VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT
|VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
 VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_ACCESS_INPUT_ATTACHMENT_READ_BIT
};

VkMemoryBarrier2KHR subpassShadingToFragment = {
 VK_STRUCTURE_TYPE_MEMORY_BARRIER_2_KHR, NULL,
 VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_ACCESS_SHADER_WRITE_BIT,
 VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR, VK_ACCESS_SHADER_READ_BIT
};

VkSubpassDependency2 dependencies[] = {
 {
 VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2, &fragmentToSubpassShading,
 0, 1,
 0, 0, 0, 0,
 0, 0
 },
 {
 VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2, &subpassShadingToFragment,
 1, 2,
 0, 0, 0, 0,
 0, 0
 },
};

VkRenderPassCreateInfo2 renderPassCreateInfo = {
 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2, NULL, 0,
 sizeof(attachments)/sizeof(attachments[0]), attachments,
 sizeof(subpasses)/sizeof(subpasses[0]), subpasses,
 sizeof(dependencies)/sizeof(dependencies[0]), dependencies,
 0, NULL
};
VKRenderPass renderPass;
vkCreateRenderPass2(device, &renderPassCreateInfo, NULL, &renderPass);

Example of subpass shading pipeline creation

VkExtent2D maxWorkgroupSize;

VkSpecializationMapEntry subpassShadingConstantMapEntries[] = {
 { 0, 0 * sizeof(uint32_t), sizeof(uint32_t) },
 { 1, 1 * sizeof(uint32_t), sizeof(uint32_t) }
};

VkSpecializationInfo subpassShadingConstants = {
 2, subpassShadingConstantMapEntries,
 sizeof(VkExtent2D), &maxWorkgroupSize
};

4810

VkSubpassShadingPipelineCreateInfoHUAWEI subpassShadingPipelineCreateInfo {
 VK_STRUCTURE_TYPE_SUBPASSS_SHADING_PIPELINE_CREATE_INFO_HUAWEI, NULL,
 renderPass, 1
};

VkPipelineShaderStageCreateInfo subpassShadingPipelineStageCreateInfo {
 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, NULL,
 0, VK_SHADER_STAGE_SUBPASS_SHADING_BIT_HUAWEI,
 shaderModule, "main",
 &subpassShadingConstants
};

VkComputePipelineCreateInfo subpassShadingComputePipelineCreateInfo = {
 VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, &subpassShadingPipelineCreateInfo,
 0, &subpassShadingPipelineStageCreateInfo,
 pipelineLayout, basePipelineHandle, basePipelineIndex
};

VKPipeline pipeline;

vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI(device, renderPass, &
maxWorkgroupSize);
vkCreateComputePipelines(device, pipelineCache, 1,
&subpassShadingComputePipelineCreateInfo, NULL, &pipeline);

Version History

• Revision 3, 2023-06-19 (Pan Gao)

◦ Rename VK_PIPELINE_STAGE_2_SUBPASS_SHADING_BIT_HUAWEI to
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI to better aligned with naming of other
pipeline stages

• Revision 2, 2021-06-28 (Hueilong Wang)

◦ Change vkGetSubpassShadingMaxWorkgroupSizeHUAWEI to
vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI to resolve issue pub1564

• Revision 1, 2020-12-15 (Hueilong Wang)

◦ Initial draft.

VK_IMG_filter_cubic

Name String

VK_IMG_filter_cubic

Extension Type

Device extension

Registered Extension Number

16

4811

https://github.com/KhronosGroup/Vulkan-Docs/issues/1564

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2016-02-23

Contributors

• Tobias Hector, Imagination Technologies

Description

VK_IMG_filter_cubic adds an additional, high quality cubic filtering mode to Vulkan, using a
Catmull-Rom bicubic filter. Performing this kind of filtering can be done in a shader by using 16
samples and a number of instructions, but this can be inefficient. The cubic filter mode exposes an
optimized high quality texture sampling using fixed texture sampling functionality.

New Enum Constants

• VK_IMG_FILTER_CUBIC_EXTENSION_NAME

• VK_IMG_FILTER_CUBIC_SPEC_VERSION

• Extending VkFilter:

◦ VK_FILTER_CUBIC_IMG

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG

Example

Creating a sampler with the new filter for both magnification and minification

 VkSamplerCreateInfo createInfo =
 {
 .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
 // Other members set to application-desired values
 };

 createInfo.magFilter = VK_FILTER_CUBIC_IMG;

4812

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_IMG_filter_cubic] @tobski%0A*Here describe the issue or question you have about the VK_IMG_filter_cubic extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_IMG_filter_cubic] @tobski%0A*Here describe the issue or question you have about the VK_IMG_filter_cubic extension*

 createInfo.minFilter = VK_FILTER_CUBIC_IMG;

 VkSampler sampler;
 VkResult result = vkCreateSampler(
 device,
 &createInfo,
 &sampler);

Version History

• Revision 1, 2016-02-23 (Tobias Hector)

◦ Initial version

VK_IMG_relaxed_line_rasterization

Name String

VK_IMG_relaxed_line_rasterization

Extension Type

Device extension

Registered Extension Number

111

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Special Use

• OpenGL / ES support

Contact

• James Fitzpatrick jamesfitzpatrick

Other Extension Metadata

Last Modified Date

2023-10-22

IP Status

No known IP claims.

4813

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_IMG_relaxed_line_rasterization] @jamesfitzpatrick%0A*Here describe the issue or question you have about the VK_IMG_relaxed_line_rasterization extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_IMG_relaxed_line_rasterization] @jamesfitzpatrick%0A*Here describe the issue or question you have about the VK_IMG_relaxed_line_rasterization extension*

Contributors

• James Fitzpatrick, Imagination

• Andrew Garrard, Imagination

• Alex Walters, Imagination

Description

OpenGL specifies that implementations should rasterize lines using the diamond exit rule (a slightly
modified version of Bresenham’s algorithm). To implement OpenGL some implementations have a
device-level compatibility mode to rasterize lines according to the OpenGL specification.

This extension allows OpenGL emulation layers to enable the OpenGL compatible line rasterization
mode of such implementations.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRelaxedLineRasterizationFeaturesIMG

New Enum Constants

• VK_IMG_RELAXED_LINE_RASTERIZATION_EXTENSION_NAME

• VK_IMG_RELAXED_LINE_RASTERIZATION_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RELAXED_LINE_RASTERIZATION_FEATURES_IMG

Issues

None.

Version History

• Revision 1, 2023-10-22 (James Fitzpatrick)

◦ Initial version

VK_INTEL_performance_query

Name String

VK_INTEL_performance_query

Extension Type

Device extension

Registered Extension Number

211

4814

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

None

Special Use

• Developer tools

Contact

• Lionel Landwerlin llandwerlin

Other Extension Metadata

Last Modified Date

2018-05-16

IP Status

No known IP claims.

Contributors

• Lionel Landwerlin, Intel

• Piotr Maciejewski, Intel

Description

This extension allows an application to capture performance data to be interpreted by an external
application or library.

Such a library is available at : https://github.com/intel/metrics-discovery

Performance analysis tools such as Graphics Performance Analyzers make use of this extension
and the metrics-discovery library to present the data in a human readable way.

New Object Types

• VkPerformanceConfigurationINTEL

New Commands

• vkAcquirePerformanceConfigurationINTEL

• vkCmdSetPerformanceMarkerINTEL

• vkCmdSetPerformanceOverrideINTEL

• vkCmdSetPerformanceStreamMarkerINTEL

• vkGetPerformanceParameterINTEL

4815

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_INTEL_performance_query] @llandwerlin%0A*Here describe the issue or question you have about the VK_INTEL_performance_query extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_INTEL_performance_query] @llandwerlin%0A*Here describe the issue or question you have about the VK_INTEL_performance_query extension*
https://github.com/intel/metrics-discovery
https://software.intel.com/content/www/us/en/develop/tools/graphics-performance-analyzers.html

• vkInitializePerformanceApiINTEL

• vkQueueSetPerformanceConfigurationINTEL

• vkReleasePerformanceConfigurationINTEL

• vkUninitializePerformanceApiINTEL

New Structures

• VkInitializePerformanceApiInfoINTEL

• VkPerformanceConfigurationAcquireInfoINTEL

• VkPerformanceMarkerInfoINTEL

• VkPerformanceOverrideInfoINTEL

• VkPerformanceStreamMarkerInfoINTEL

• VkPerformanceValueINTEL

• Extending VkQueryPoolCreateInfo:

◦ VkQueryPoolCreateInfoINTEL

◦ VkQueryPoolPerformanceQueryCreateInfoINTEL

New Unions

• VkPerformanceValueDataINTEL

New Enums

• VkPerformanceConfigurationTypeINTEL

• VkPerformanceOverrideTypeINTEL

• VkPerformanceParameterTypeINTEL

• VkPerformanceValueTypeINTEL

• VkQueryPoolSamplingModeINTEL

New Enum Constants

• VK_INTEL_PERFORMANCE_QUERY_EXTENSION_NAME

• VK_INTEL_PERFORMANCE_QUERY_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_PERFORMANCE_CONFIGURATION_INTEL

• Extending VkQueryType:

◦ VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_INITIALIZE_PERFORMANCE_API_INFO_INTEL

◦ VK_STRUCTURE_TYPE_PERFORMANCE_CONFIGURATION_ACQUIRE_INFO_INTEL

4816

◦ VK_STRUCTURE_TYPE_PERFORMANCE_MARKER_INFO_INTEL

◦ VK_STRUCTURE_TYPE_PERFORMANCE_OVERRIDE_INFO_INTEL

◦ VK_STRUCTURE_TYPE_PERFORMANCE_STREAM_MARKER_INFO_INTEL

◦ VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO_INTEL

◦ VK_STRUCTURE_TYPE_QUERY_POOL_PERFORMANCE_QUERY_CREATE_INFO_INTEL

Example Code

// A previously created device
VkDevice device;

// A queue derived from the device
VkQueue queue;

VkInitializePerformanceApiInfoINTEL performanceApiInfoIntel = {
 VK_STRUCTURE_TYPE_INITIALIZE_PERFORMANCE_API_INFO_INTEL,
 NULL,
 NULL
};

vkInitializePerformanceApiINTEL(
 device,
 &performanceApiInfoIntel);

VkQueryPoolPerformanceQueryCreateInfoINTEL queryPoolIntel = {
 VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO_INTEL,
 NULL,
 VK_QUERY_POOL_SAMPLING_MODE_MANUAL_INTEL,
};

VkQueryPoolCreateInfo queryPoolCreateInfo = {
 VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
 &queryPoolIntel,
 0,
 VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL,
 1,
 0
};

VkQueryPool queryPool;

VkResult result = vkCreateQueryPool(
 device,
 &queryPoolCreateInfo,
 NULL,
 &queryPool);

assert(VK_SUCCESS == result);

4817

// A command buffer we want to record counters on
VkCommandBuffer commandBuffer;

VkCommandBufferBeginInfo commandBufferBeginInfo = {
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
 NULL,
 VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
 NULL
};

result = vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo);

assert(VK_SUCCESS == result);

vkCmdResetQueryPool(
 commandBuffer,
 queryPool,
 0,
 1);

vkCmdBeginQuery(
 commandBuffer,
 queryPool,
 0,
 0);

// Perform the commands you want to get performance information on
// ...

// Perform a barrier to ensure all previous commands were complete before
// ending the query
vkCmdPipelineBarrier(commandBuffer,
 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
 0,
 0,
 NULL,
 0,
 NULL,
 0,
 NULL);

vkCmdEndQuery(
 commandBuffer,
 queryPool,
 0);

result = vkEndCommandBuffer(commandBuffer);

assert(VK_SUCCESS == result);

4818

VkPerformanceConfigurationAcquireInfoINTEL performanceConfigurationAcquireInfo = {
 VK_STRUCTURE_TYPE_PERFORMANCE_CONFIGURATION_ACQUIRE_INFO_INTEL,
 NULL,
 VK_PERFORMANCE_CONFIGURATION_TYPE_COMMAND_QUEUE_METRICS_DISCOVERY_ACTIVATED_INTEL
};

VkPerformanceConfigurationINTEL performanceConfigurationIntel;

result = vkAcquirePerformanceConfigurationINTEL(
 device,
 &performanceConfigurationAcquireInfo,
 &performanceConfigurationIntel);

vkQueueSetPerformanceConfigurationINTEL(queue, performanceConfigurationIntel);

assert(VK_SUCCESS == result);

// Submit the command buffer and wait for its completion
// ...

result = vkReleasePerformanceConfigurationINTEL(
 device,
 performanceConfigurationIntel);

assert(VK_SUCCESS == result);

// Get the report size from metrics-discovery's QueryReportSize

result = vkGetQueryPoolResults(
 device,
 queryPool,
 0, 1, QueryReportSize,
 data, QueryReportSize, 0);

assert(VK_SUCCESS == result);

// The data can then be passed back to metrics-discovery from which
// human readable values can be queried.

Version History

• Revision 2, 2020-03-06 (Lionel Landwerlin)

◦ Rename VkQueryPoolCreateInfoINTEL in VkQueryPoolPerformanceQueryCreateInfoINTEL

• Revision 1, 2018-05-16 (Lionel Landwerlin)

◦ Initial revision

4819

VK_INTEL_shader_integer_functions2

Name String

VK_INTEL_shader_integer_functions2

Extension Type

Device extension

Registered Extension Number

210

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_INTEL_shader_integer_functions2

Contact

• Ian Romanick ianromanick

Other Extension Metadata

Last Modified Date

2019-04-30

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_INTEL_shader_integer_functions2.

Contributors

• Ian Romanick, Intel

• Ben Ashbaugh, Intel

Description

This extension adds support for several new integer instructions in SPIR-V for use in graphics
shaders. Many of these instructions have pre-existing counterparts in the Kernel environment.

The added integer functions are defined by the SPV_INTEL_shader_integer_functions2 SPIR-V
extension and can be used with the GL_INTEL_shader_integer_functions2 GLSL extension.

4820

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/INTEL/SPV_INTEL_shader_integer_functions2.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_INTEL_shader_integer_functions2] @ianromanick%0A*Here describe the issue or question you have about the VK_INTEL_shader_integer_functions2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_INTEL_shader_integer_functions2] @ianromanick%0A*Here describe the issue or question you have about the VK_INTEL_shader_integer_functions2 extension*
https://registry.khronos.org/OpenGL/extensions/INTEL/INTEL_shader_integer_functions2.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/INTEL/SPV_INTEL_shader_integer_functions2.html

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL

New Enum Constants

• VK_INTEL_SHADER_INTEGER_FUNCTIONS_2_EXTENSION_NAME

• VK_INTEL_SHADER_INTEGER_FUNCTIONS_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL

New SPIR-V Capabilities

• IntegerFunctions2INTEL

Version History

• Revision 1, 2019-04-30 (Ian Romanick)

◦ Initial draft

VK_LUNARG_direct_driver_loading

Name String

VK_LUNARG_direct_driver_loading

Extension Type

Instance extension

Registered Extension Number

460

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Charles Giessen charles-lunarg

Extension Proposal

VK_LUNARG_direct_driver_loading

4821

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_LUNARG_direct_driver_loading] @charles-lunarg%0A*Here describe the issue or question you have about the VK_LUNARG_direct_driver_loading extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_LUNARG_direct_driver_loading] @charles-lunarg%0A*Here describe the issue or question you have about the VK_LUNARG_direct_driver_loading extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_LUNARG_direct_driver_loading.adoc

Other Extension Metadata

Last Modified Date

2022-11-29

Contributors

• Charles Giessen, LunarG

Description

This extension provides a mechanism for applications to add drivers to the implementation. This
allows drivers to be included with an application without requiring installation and is capable of
being used in any execution environment, such as a process running with elevated privileges.

New Structures

• VkDirectDriverLoadingInfoLUNARG

• Extending VkInstanceCreateInfo:

◦ VkDirectDriverLoadingListLUNARG

New Function Pointers

• PFN_vkGetInstanceProcAddrLUNARG

New Enums

• VkDirectDriverLoadingModeLUNARG

New Bitmasks

• VkDirectDriverLoadingFlagsLUNARG

New Enum Constants

• VK_LUNARG_DIRECT_DRIVER_LOADING_EXTENSION_NAME

• VK_LUNARG_DIRECT_DRIVER_LOADING_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DIRECT_DRIVER_LOADING_INFO_LUNARG

◦ VK_STRUCTURE_TYPE_DIRECT_DRIVER_LOADING_LIST_LUNARG

Version History

• Revision 1, 2022-11-29 (Charles Giessen)

◦ Initial version

VK_MSFT_layered_driver

4822

Name String

VK_MSFT_layered_driver

Extension Type

Device extension

Registered Extension Number

531

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Jesse Natalie jenatali

Extension Proposal

VK_MSFT_layered_driver

Other Extension Metadata

Last Modified Date

2023-06-21

IP Status

No known IP claims.

Contributors

• Jesse Natalie, Microsoft

Description

This extension adds new physical device properties to allow applications and the Vulkan ICD loader
to understand when a physical device is implemented as a layered driver on top of another
underlying API.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceLayeredDriverPropertiesMSFT

New Enums

• VkLayeredDriverUnderlyingApiMSFT

4823

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_MSFT_layered_driver] @jenatali%0A*Here describe the issue or question you have about the VK_MSFT_layered_driver extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_MSFT_layered_driver] @jenatali%0A*Here describe the issue or question you have about the VK_MSFT_layered_driver extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_MSFT_layered_driver.adoc

New Enum Constants

• VK_MSFT_LAYERED_DRIVER_EXTENSION_NAME

• VK_MSFT_LAYERED_DRIVER_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LAYERED_DRIVER_PROPERTIES_MSFT

Examples

None.

Version History

• Revision 1, 2023-06-21 (Jesse Natalie)

◦ Initial revision

VK_NN_vi_surface

Name String

VK_NN_vi_surface

Extension Type

Instance extension

Registered Extension Number

63

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Contact

• Mathias Heyer mheyer

Other Extension Metadata

Last Modified Date

2016-12-02

IP Status

No known IP claims.

4824

Contributors

• Mathias Heyer, NVIDIA

• Michael Chock, NVIDIA

• Yasuhiro Yoshioka, Nintendo

• Daniel Koch, NVIDIA

Description

The VK_NN_vi_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) associated with an nn::vi::Layer.

New Commands

• vkCreateViSurfaceNN

New Structures

• VkViSurfaceCreateInfoNN

New Bitmasks

• VkViSurfaceCreateFlagsNN

New Enum Constants

• VK_NN_VI_SURFACE_EXTENSION_NAME

• VK_NN_VI_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN

Issues

1) Does VI need a way to query for compatibility between a particular physical device (and queue
family?) and a specific VI display?

RESOLVED: No. It is currently always assumed that the device and display will always be
compatible.

2) VkViSurfaceCreateInfoNN::pWindow is intended to store an nn::vi::NativeWindowHandle, but its
declared type is a bare void* to store the window handle. Why the discrepancy?

RESOLVED: It is for C compatibility. The definition for the VI native window handle type is defined
inside the nn::vi C++ namespace. This prevents its use in C source files. nn::vi::NativeWindowHandle is
always defined to be void*, so this extension uses void* to match.

Version History

• Revision 1, 2016-12-2 (Michael Chock)

4825

◦ Initial draft.

VK_NV_acquire_winrt_display

Name String

VK_NV_acquire_winrt_display

Extension Type

Device extension

Registered Extension Number

346

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_direct_mode_display

Contact

• Jeff Juliano jjuliano

Other Extension Metadata

Last Modified Date

2020-09-29

IP Status

No known IP claims.

Contributors

• Jeff Juliano, NVIDIA

Description

This extension allows an application to take exclusive control of a display on Windows 10 provided
that the display is not already controlled by a compositor. Examples of compositors include the
Windows desktop compositor, other applications using this Vulkan extension, and applications that
“Acquire” a “DisplayTarget” using a “WinRT” command such as
“winrt::Windows::Devices::Display::Core::DisplayManager.TryAcquireTarget()”.

When control is acquired the application has exclusive access to the display until control is released
or the application terminates. An application’s attempt to acquire is denied if a different
application has already acquired the display.

4826

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_acquire_winrt_display] @jjuliano%0A*Here describe the issue or question you have about the VK_NV_acquire_winrt_display extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_acquire_winrt_display] @jjuliano%0A*Here describe the issue or question you have about the VK_NV_acquire_winrt_display extension*
https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displaymanager.tryacquiretarget
https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displaytarget
https://docs.microsoft.com/en-us/uwp/api/
https://docs.microsoft.com/en-us/uwp/api/windows.devices.display.core.displaymanager.tryacquiretarget

New Commands

• vkAcquireWinrtDisplayNV

• vkGetWinrtDisplayNV

New Enum Constants

• VK_NV_ACQUIRE_WINRT_DISPLAY_EXTENSION_NAME

• VK_NV_ACQUIRE_WINRT_DISPLAY_SPEC_VERSION

Issues

1) What should the platform substring be for this extension:

RESOLVED: The platform substring is “Winrt”.

The substring “Winrt” matches the fact that the OS API exposing the acquire and release
functionality is called “WinRT”.

The substring “Win32” is wrong because the related “WinRT” API is explicitly not a “Win32” API.
“WinRT” is a competing API family to the “Win32” API family.

The substring “Windows” is suboptimal because there could be more than one relevant API on the
Windows platform. There is preference to use the more-specific substring “Winrt”.

2) Should vkAcquireWinrtDisplayNV take a winRT DisplayTarget, or a Vulkan display handle as
input?

RESOLVED: A Vulkan display handle. This matches the design of vkAcquireXlibDisplayEXT.

3) Should the acquire command be platform-independent named “vkAcquireDisplayNV”, or
platform-specific named “vkAcquireWinrtDisplayNV”?

RESOLVED: Add a platform-specific command.

The inputs to the Acquire command are all Vulkan types. None are WinRT types. This opens the
possibility of the winrt extension defining a platform-independent acquire command.

The X11 acquire command does need to accept a platform-specific parameter. This could be
handled by adding to a platform-independent acquire command a params struct to which platform-
dependent types can be chained by pNext pointer.

The prevailing opinion is that it would be odd to create a second platform-independent function
that is used on the Windows 10 platform, but that is not used for the X11 platform. Since a Windows
10 platform-specific command is needed anyway for converting between vkDisplayKHR and
platform-native handles, opinion was to create a platform-specific acquire function.

4) Should the vkGetWinrtDisplayNV parameter identifying a display be named “deviceRelativeId”
or “adapterRelativeId”?

RESOLVED: The WinRT name is “AdapterRelativeId”. The name “adapter” is the Windows analog to

4827

a Vulkan “physical device”. Vulkan already has precedent to use the name deviceLUID for the
concept that Windows APIs call “AdapterLuid”. Keeping form with this precedent, the name
“deviceRelativeId” is chosen.

5) Does vkAcquireWinrtDisplayNV cause the Windows desktop compositor to release a display?

RESOLVED: No. vkAcquireWinrtDisplayNV does not itself cause the Windows desktop compositor
to release a display. This action must be performed outside of Vulkan.

Beginning with Windows 10 version 2004 it is possible to cause the Windows desktop compositor to
release a display by using the “Advanced display settings” sub-page of the “Display settings” control
panel. See https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-
monitors

6) Where can one find additional information about custom compositors for Windows 10?

RESOLVED: Relevant references are as follows.

According to Microsoft’s documentation on "building a custom compositor", the ability to write a
custom compositor is not a replacement for a fullscreen desktop window. The feature is for writing
compositor apps that drive specialized hardware.

Only certain editions of Windows 10 support custom compositors, "documented here". The product
type can be queried from Windows 10. See https://docs.microsoft.com/en-us/windows/win32/api/
sysinfoapi/nf-sysinfoapi-getproductinfo

Version History

• Revision 1, 2020-09-29 (Jeff Juliano)

◦ Initial draft

VK_NV_clip_space_w_scaling

Name String

VK_NV_clip_space_w_scaling

Extension Type

Device extension

Registered Extension Number

88

Revision

1

Ratification Status

Not ratified

4828

https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-compositor
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors#windows-10-version-2004
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getproductinfo
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getproductinfo

Extension and Version Dependencies

None

Contact

• Eric Werness ewerness-nv

Other Extension Metadata

Last Modified Date

2017-02-15

Contributors

• Eric Werness, NVIDIA

• Kedarnath Thangudu, NVIDIA

Description

Virtual Reality (VR) applications often involve a post-processing step to apply a “barrel” distortion
to the rendered image to correct the “pincushion” distortion introduced by the optics in a VR
device. The barrel distorted image has lower resolution along the edges compared to the center.
Since the original image is rendered at high resolution, which is uniform across the complete
image, a lot of pixels towards the edges do not make it to the final post-processed image.

This extension provides a mechanism to render VR scenes at a non-uniform resolution, in
particular a resolution that falls linearly from the center towards the edges. This is achieved by
scaling the w coordinate of the vertices in the clip space before perspective divide. The clip space w
coordinate of the vertices can be offset as of a function of x and y coordinates as follows:

w' = w + Ax + By

In the intended use case for viewport position scaling, an application should use a set of four
viewports, one for each of the four quadrants of a Cartesian coordinate system. Each viewport is set
to the dimension of the image, but is scissored to the quadrant it represents. The application should
specify A and B coefficients of the w-scaling equation above, that have the same value, but different
signs, for each of the viewports. The signs of A and B should match the signs of x and y for the
quadrant that they represent such that the value of w' will always be greater than or equal to the
original w value for the entire image. Since the offset to w, (Ax + By), is always positive, and
increases with the absolute values of x and y, the effective resolution will fall off linearly from the
center of the image to its edges.

New Commands

• vkCmdSetViewportWScalingNV

New Structures

• VkViewportWScalingNV

• Extending VkPipelineViewportStateCreateInfo:

4829

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_clip_space_w_scaling] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NV_clip_space_w_scaling extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_clip_space_w_scaling] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NV_clip_space_w_scaling extension*

◦ VkPipelineViewportWScalingStateCreateInfoNV

New Enum Constants

• VK_NV_CLIP_SPACE_W_SCALING_EXTENSION_NAME

• VK_NV_CLIP_SPACE_W_SCALING_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV

Issues

1) Is the pipeline struct name too long?

RESOLVED: It fits with the naming convention.

2) Separate W scaling section or fold into coordinate transformations?

RESOLVED: Leaving it as its own section for now.

Examples

VkViewport viewports[4];
VkRect2D scissors[4];
VkViewportWScalingNV scalings[4];

for (int i = 0; i < 4; i++) {
 int x = (i & 2) ? 0 : currentWindowWidth / 2;
 int y = (i & 1) ? 0 : currentWindowHeight / 2;

 viewports[i].x = 0;
 viewports[i].y = 0;
 viewports[i].width = currentWindowWidth;
 viewports[i].height = currentWindowHeight;
 viewports[i].minDepth = 0.0f;
 viewports[i].maxDepth = 1.0f;

 scissors[i].offset.x = x;
 scissors[i].offset.y = y;
 scissors[i].extent.width = currentWindowWidth/2;
 scissors[i].extent.height = currentWindowHeight/2;

 const float factor = 0.15;
 scalings[i].xcoeff = ((i & 2) ? -1.0 : 1.0) * factor;
 scalings[i].ycoeff = ((i & 1) ? -1.0 : 1.0) * factor;
}

4830

VkPipelineViewportWScalingStateCreateInfoNV vpWScalingStateInfo = {
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV };

vpWScalingStateInfo.viewportWScalingEnable = VK_TRUE;
vpWScalingStateInfo.viewportCount = 4;
vpWScalingStateInfo.pViewportWScalings = &scalings[0];

VkPipelineViewportStateCreateInfo vpStateInfo = {
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO };
vpStateInfo.viewportCount = 4;
vpStateInfo.pViewports = &viewports[0];
vpStateInfo.scissorCount = 4;
vpStateInfo.pScissors = &scissors[0];
vpStateInfo.pNext = &vpWScalingStateInfo;

Example shader to read from a w-scaled texture:

// Vertex Shader
// Draw a triangle that covers the whole screen
const vec4 positions[3] = vec4[3](vec4(-1, -1, 0, 1),
 vec4(3, -1, 0, 1),
 vec4(-1, 3, 0, 1));
out vec2 uv;
void main()
{
 vec4 pos = positions[gl_VertexID];
 gl_Position = pos;
 uv = pos.xy;
}

// Fragment Shader
uniform sampler2D tex;
uniform float xcoeff;
uniform float ycoeff;
out vec4 Color;
in vec2 uv;

void main()
{
 // Handle uv as if upper right quadrant
 vec2 uvabs = abs(uv);

 // unscale: transform w-scaled image into an unscaled image
 // scale: transform unscaled image int a w-scaled image
 float unscale = 1.0 / (1 + xcoeff * uvabs.x + xcoeff * uvabs.y);
 //float scale = 1.0 / (1 - xcoeff * uvabs.x - xcoeff * uvabs.y);

 vec2 P = vec2(unscale * uvabs.x, unscale * uvabs.y);

 // Go back to the right quadrant

4831

 P *= sign(uv);

 Color = texture(tex, P * 0.5 + 0.5);
}

Version History

• Revision 1, 2017-02-15 (Eric Werness)

◦ Internal revisions

VK_NV_compute_shader_derivatives

Name String

VK_NV_compute_shader_derivatives

Extension Type

Device extension

Registered Extension Number

202

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_NV_compute_shader_derivatives

Contact

• Pat Brown nvpbrown

Other Extension Metadata

Last Modified Date

2018-07-19

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_NV_compute_shader_derivatives

4832

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_compute_shader_derivatives.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_compute_shader_derivatives] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_compute_shader_derivatives extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_compute_shader_derivatives] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_compute_shader_derivatives extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_compute_shader_derivatives.txt

Contributors

• Pat Brown, NVIDIA

Description

This extension adds Vulkan support for the SPV_NV_compute_shader_derivatives SPIR-V extension.

The SPIR-V extension provides two new execution modes, both of which allow compute shaders to
use built-ins that evaluate compute derivatives explicitly or implicitly. Derivatives will be computed
via differencing over a 2x2 group of shader invocations. The DerivativeGroupQuadsNV execution
mode assembles shader invocations into 2x2 groups, where each group has x and y coordinates of
the local invocation ID of the form (2m+{0,1}, 2n+{0,1}). The DerivativeGroupLinearNV execution
mode assembles shader invocations into 2x2 groups, where each group has local invocation index
values of the form 4m+{0,1,2,3}.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceComputeShaderDerivativesFeaturesNV

New Enum Constants

• VK_NV_COMPUTE_SHADER_DERIVATIVES_EXTENSION_NAME

• VK_NV_COMPUTE_SHADER_DERIVATIVES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV

New SPIR-V Capability

• ComputeDerivativeGroupQuadsNV

• ComputeDerivativeGroupLinearNV

Issues

(1) Should we specify that the groups of four shader invocations used for derivatives in a compute
shader are the same groups of four invocations that form a “quad” in shader subgroups?

RESOLVED: Yes.

Examples

None.

Version History

• Revision 1, 2018-07-19 (Pat Brown)

◦ Initial draft

4833

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_compute_shader_derivatives.html

VK_NV_cooperative_matrix

Name String

VK_NV_cooperative_matrix

Extension Type

Device extension

Registered Extension Number

250

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_NV_cooperative_matrix

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2019-02-05

Interactions and External Dependencies

• This extension provides API support for GL_NV_cooperative_matrix

Contributors

• Jeff Bolz, NVIDIA

• Markus Tavenrath, NVIDIA

• Daniel Koch, NVIDIA

Description

This extension adds support for using cooperative matrix types in SPIR-V. Cooperative matrix types
are medium-sized matrices that are primarily supported in compute shaders, where the storage for
the matrix is spread across all invocations in some scope (usually a subgroup) and those
invocations cooperate to efficiently perform matrix multiplies.

Cooperative matrix types are defined by the SPV_NV_cooperative_matrix SPIR-V extension and can be
used with the GL_NV_cooperative_matrix GLSL extension.

4834

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_cooperative_matrix.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_cooperative_matrix] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_cooperative_matrix extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_cooperative_matrix] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_cooperative_matrix extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_cooperative_matrix.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_cooperative_matrix.html
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_cooperative_matrix.txt

This extension includes support for enumerating the matrix types and dimensions that are
supported by the implementation.

New Commands

• vkGetPhysicalDeviceCooperativeMatrixPropertiesNV

New Structures

• VkCooperativeMatrixPropertiesNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCooperativeMatrixFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceCooperativeMatrixPropertiesNV

New Enums

• VkComponentTypeNV

• VkScopeNV

New Enum Constants

• VK_NV_COOPERATIVE_MATRIX_EXTENSION_NAME

• VK_NV_COOPERATIVE_MATRIX_SPEC_VERSION

• Extending VkComponentTypeKHR:

◦ VK_COMPONENT_TYPE_FLOAT16_NV

◦ VK_COMPONENT_TYPE_FLOAT32_NV

◦ VK_COMPONENT_TYPE_FLOAT64_NV

◦ VK_COMPONENT_TYPE_SINT16_NV

◦ VK_COMPONENT_TYPE_SINT32_NV

◦ VK_COMPONENT_TYPE_SINT64_NV

◦ VK_COMPONENT_TYPE_SINT8_NV

◦ VK_COMPONENT_TYPE_UINT16_NV

◦ VK_COMPONENT_TYPE_UINT32_NV

◦ VK_COMPONENT_TYPE_UINT64_NV

◦ VK_COMPONENT_TYPE_UINT8_NV

• Extending VkScopeKHR:

◦ VK_SCOPE_DEVICE_NV

◦ VK_SCOPE_QUEUE_FAMILY_NV

◦ VK_SCOPE_SUBGROUP_NV

4835

◦ VK_SCOPE_WORKGROUP_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_PROPERTIES_NV

New SPIR-V Capabilities

• CooperativeMatrixNV

Issues

(1) What matrix properties will be supported in practice?

RESOLVED: In NVIDIA’s initial implementation, we will support:

• AType = BType = fp16 CType = DType = fp16 MxNxK = 16x8x16 scope = Subgroup

• AType = BType = fp16 CType = DType = fp16 MxNxK = 16x8x8 scope = Subgroup

• AType = BType = fp16 CType = DType = fp32 MxNxK = 16x8x16 scope = Subgroup

• AType = BType = fp16 CType = DType = fp32 MxNxK = 16x8x8 scope = Subgroup

Version History

• Revision 1, 2019-02-05 (Jeff Bolz)

◦ Internal revisions

VK_NV_copy_memory_indirect

Name String

VK_NV_copy_memory_indirect

Extension Type

Device extension

Registered Extension Number

427

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and

4836

VK_KHR_buffer_device_address

Contact

• Vikram Kushwaha vkushwaha-nv

Other Extension Metadata

Last Modified Date

2022-10-14

Contributors

• Vikram Kushwaha, NVIDIA

• Jeff Bolz, NVIDIA

• Christoph Kubisch, NVIDIA

• Daniel Koch, NVIDIA

Description

This extension adds support for performing copies between memory and image regions using
indirect parameters that are read by the device from a buffer during execution. This functionality
may be useful for performing copies where the copy parameters are not known during the
command buffer creation time.

New Commands

• vkCmdCopyMemoryIndirectNV

• vkCmdCopyMemoryToImageIndirectNV

New Structures

• VkCopyMemoryIndirectCommandNV

• VkCopyMemoryToImageIndirectCommandNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCopyMemoryIndirectFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceCopyMemoryIndirectPropertiesNV

New Enum Constants

• VK_NV_COPY_MEMORY_INDIRECT_EXTENSION_NAME

• VK_NV_COPY_MEMORY_INDIRECT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COPY_MEMORY_INDIRECT_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COPY_MEMORY_INDIRECT_PROPERTIES_NV

4837

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_copy_memory_indirect] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_NV_copy_memory_indirect extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_copy_memory_indirect] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_NV_copy_memory_indirect extension*

Version History

• Revision 1, 2022-10-14 (Vikram Kushwaha)

◦ Initial draft

VK_NV_corner_sampled_image

Name String

VK_NV_corner_sampled_image

Extension Type

Device extension

Registered Extension Number

51

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2018-08-13

Contributors

• Jeff Bolz, NVIDIA

• Pat Brown, NVIDIA

• Chris Lentini, NVIDIA

Description

This extension adds support for a new image organization, which this extension refers to as
“corner-sampled” images. A corner-sampled image differs from a conventional image in the
following ways:

• Texels are centered on integer coordinates. See Unnormalized Texel Coordinate Operations

• Normalized coordinates are scaled using coord × (dim - 1) rather than coord × dim, where dim is
the size of one dimension of the image. See normalized texel coordinate transform.

4838

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_corner_sampled_image] @dgkoch%0A*Here describe the issue or question you have about the VK_NV_corner_sampled_image extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_corner_sampled_image] @dgkoch%0A*Here describe the issue or question you have about the VK_NV_corner_sampled_image extension*

• Partial derivatives are scaled using coord × (dim - 1) rather than coord × dim. See Scale Factor
Operation.

• Calculation of the next higher LOD size goes according to ⌈dim / 2⌉ rather than ⌊dim / 2⌋. See
Image Mip Level Sizing.

• The minimum level size is 2x2 for 2D images and 2x2x2 for 3D images. See Image Mip Level
Sizing.

This image organization is designed to facilitate a system like Ptex with separate textures for each
face of a subdivision or polygon mesh. Placing sample locations at pixel corners allows applications
to maintain continuity between adjacent patches by duplicating values along shared edges.
Additionally, using the modified mipmapping logic along with texture dimensions of the form 2n+1
allows continuity across shared edges even if the adjacent patches use different LOD values.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCornerSampledImageFeaturesNV

New Enum Constants

• VK_NV_CORNER_SAMPLED_IMAGE_EXTENSION_NAME

• VK_NV_CORNER_SAMPLED_IMAGE_SPEC_VERSION

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CORNER_SAMPLED_IMAGE_FEATURES_NV

Issues

1. What should this extension be named?

DISCUSSION: While naming this extension, we chose the most distinctive aspect of the image
organization and referred to such images as “corner-sampled images”. As a result, we decided
to name the extension NV_corner_sampled_image.

2. Do we need a format feature flag so formats can advertise if they support corner-sampling?

DISCUSSION: Currently NVIDIA supports this for all 2D and 3D formats, but not for cube maps
or depth-stencil formats. A format feature might be useful if other vendors would only support
this on some formats.

3. Do integer texel coordinates have a different range for corner-sampled images?

RESOLVED: No, these are unchanged.

4. Do unnormalized sampler coordinates work with corner-sampled images? Are there any
functional differences?

4839

RESOLVED: Yes. Unnormalized coordinates are treated as already scaled for corner-sample
usage.

5. Should we have a diagram in the “Image Operations” chapter demonstrating different texel
sampling locations?

UNRESOLVED: Probably, but later.

Version History

• Revision 1, 2018-08-14 (Daniel Koch)

◦ Internal revisions

• Revision 2, 2018-08-14 (Daniel Koch)

◦ ???

VK_NV_coverage_reduction_mode

Name String

VK_NV_coverage_reduction_mode

Extension Type

Device extension

Registered Extension Number

251

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_NV_framebuffer_mixed_samples
and
VK_KHR_get_physical_device_properties2

Contact

• Kedarnath Thangudu kthangudu

Other Extension Metadata

Last Modified Date

2019-01-29

Contributors

• Kedarnath Thangudu, NVIDIA

4840

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_coverage_reduction_mode] @kthangudu%0A*Here describe the issue or question you have about the VK_NV_coverage_reduction_mode extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_coverage_reduction_mode] @kthangudu%0A*Here describe the issue or question you have about the VK_NV_coverage_reduction_mode extension*

• Jeff Bolz, NVIDIA

Description

When using a framebuffer with mixed samples, a per-fragment coverage reduction operation is
performed which generates color sample coverage from the pixel coverage. This extension defines
the following modes to control how this reduction is performed.

• Merge: When there are more samples in the pixel coverage than color samples, there is an
implementation-dependent association of each pixel coverage sample to a color sample. In the
merge mode, the color sample coverage is computed such that only if any associated sample in
the pixel coverage is covered, the color sample is covered. This is the default mode.

• Truncate: When there are more raster samples (N) than color samples(M), there is one to one
association of the first M raster samples to the M color samples; other raster samples are
ignored.

When the number of raster samples is equal to the color samples, there is a one to one mapping
between them in either of the above modes.

The new command vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV can
be used to query the various raster, color, depth/stencil sample count and reduction mode
combinations that are supported by the implementation. This extension would allow an
implementation to support the behavior of both VK_NV_framebuffer_mixed_samples and
VK_AMD_mixed_attachment_samples extensions simultaneously.

New Commands

• vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV

New Structures

• VkFramebufferMixedSamplesCombinationNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCoverageReductionModeFeaturesNV

• Extending VkPipelineMultisampleStateCreateInfo:

◦ VkPipelineCoverageReductionStateCreateInfoNV

New Enums

• VkCoverageReductionModeNV

New Bitmasks

• VkPipelineCoverageReductionStateCreateFlagsNV

New Enum Constants

• VK_NV_COVERAGE_REDUCTION_MODE_EXTENSION_NAME

4841

• VK_NV_COVERAGE_REDUCTION_MODE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_FRAMEBUFFER_MIXED_SAMPLES_COMBINATION_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COVERAGE_REDUCTION_MODE_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_REDUCTION_STATE_CREATE_INFO_NV

Version History

• Revision 1, 2019-01-29 (Kedarnath Thangudu)

◦ Internal revisions

VK_NV_dedicated_allocation_image_aliasing

Name String

VK_NV_dedicated_allocation_image_aliasing

Extension Type

Device extension

Registered Extension Number

241

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_dedicated_allocation
and
VK_KHR_get_physical_device_properties2

Contact

• Nuno Subtil nsubtil

Other Extension Metadata

Last Modified Date

2019-01-04

Contributors

• Nuno Subtil, NVIDIA

• Jeff Bolz, NVIDIA

• Eric Werness, NVIDIA

4842

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_dedicated_allocation_image_aliasing] @nsubtil%0A*Here describe the issue or question you have about the VK_NV_dedicated_allocation_image_aliasing extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_dedicated_allocation_image_aliasing] @nsubtil%0A*Here describe the issue or question you have about the VK_NV_dedicated_allocation_image_aliasing extension*

• Axel Gneiting, id Software

Description

This extension allows applications to alias images on dedicated allocations, subject to specific
restrictions: the extent and the number of layers in the image being aliased must be smaller than or
equal to those of the original image for which the allocation was created, and every other image
parameter must match.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV

New Enum Constants

• VK_NV_DEDICATED_ALLOCATION_IMAGE_ALIASING_EXTENSION_NAME

• VK_NV_DEDICATED_ALLOCATION_IMAGE_ALIASING_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEDICATED_ALLOCATION_IMAGE_ALIASING_FEATURES_NV

Version History

• Revision 1, 2019-01-04 (Nuno Subtil)

◦ Internal revisions

VK_NV_descriptor_pool_overallocation

Name String

VK_NV_descriptor_pool_overallocation

Extension Type

Device extension

Registered Extension Number

547

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

Version 1.1

4843

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2023-08-30

Contributors

• Jeff Bolz, NVIDIA

Description

There are scenarios where the application does not know ahead of time how many descriptor sets it
may need to allocate from a descriptor pool, or how many descriptors of any of the descriptor types
it may need to allocate from the descriptor pool.

This extension gives applications the ability to request the implementation allow more sets or
descriptors to be allocated than initially specified at descriptor pool creation time, subject to
available resources.

The VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_SETS_BIT_NV flag lets the application allocate
more than VkDescriptorPoolCreateInfo::maxSets descriptor sets, and the
VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_POOLS_BIT_NV lets the application allocate more
descriptors than initially specified by VkDescriptorPoolSize::descriptorCount for any descriptor
types.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDescriptorPoolOverallocationFeaturesNV

New Enum Constants

• VK_NV_DESCRIPTOR_POOL_OVERALLOCATION_EXTENSION_NAME

• VK_NV_DESCRIPTOR_POOL_OVERALLOCATION_SPEC_VERSION

• Extending VkDescriptorPoolCreateFlagBits:

◦ VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_POOLS_BIT_NV

◦ VK_DESCRIPTOR_POOL_CREATE_ALLOW_OVERALLOCATION_SETS_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_POOL_OVERALLOCATION_FEATURES_NV

Version History

• Revision 1, 2023-08-30 (Piers Daniell)

◦ Internal revisions

4844

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_descriptor_pool_overallocation] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_descriptor_pool_overallocation extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_descriptor_pool_overallocation] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_descriptor_pool_overallocation extension*

VK_NV_device_diagnostic_checkpoints

Name String

VK_NV_device_diagnostic_checkpoints

Extension Type

Device extension

Registered Extension Number

207

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Nuno Subtil nsubtil

Other Extension Metadata

Last Modified Date

2018-07-16

Contributors

• Oleg Kuznetsov, NVIDIA

• Alex Dunn, NVIDIA

• Jeff Bolz, NVIDIA

• Eric Werness, NVIDIA

• Daniel Koch, NVIDIA

Description

This extension allows applications to insert markers in the command stream and associate them
with custom data.

If a device lost error occurs, the application may then query the implementation for the last
markers to cross specific implementation-defined pipeline stages, in order to narrow down which
commands were executing at the time and might have caused the failure.

New Commands

• vkCmdSetCheckpointNV

4845

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_device_diagnostic_checkpoints] @nsubtil%0A*Here describe the issue or question you have about the VK_NV_device_diagnostic_checkpoints extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_device_diagnostic_checkpoints] @nsubtil%0A*Here describe the issue or question you have about the VK_NV_device_diagnostic_checkpoints extension*

• vkGetQueueCheckpointDataNV

New Structures

• VkCheckpointDataNV

• Extending VkQueueFamilyProperties2:

◦ VkQueueFamilyCheckpointPropertiesNV

New Enum Constants

• VK_NV_DEVICE_DIAGNOSTIC_CHECKPOINTS_EXTENSION_NAME

• VK_NV_DEVICE_DIAGNOSTIC_CHECKPOINTS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_CHECKPOINT_DATA_NV

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_CHECKPOINT_PROPERTIES_NV

Version History

• Revision 1, 2018-07-16 (Nuno Subtil)

◦ Internal revisions

• Revision 2, 2018-07-16 (Nuno Subtil)

◦ ???

VK_NV_device_diagnostics_config

Name String

VK_NV_device_diagnostics_config

Extension Type

Device extension

Registered Extension Number

301

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Kedarnath Thangudu kthangudu

4846

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_device_diagnostics_config] @kthangudu%0A*Here describe the issue or question you have about the VK_NV_device_diagnostics_config extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_device_diagnostics_config] @kthangudu%0A*Here describe the issue or question you have about the VK_NV_device_diagnostics_config extension*

Other Extension Metadata

Last Modified Date

2022-04-06

Contributors

• Kedarnath Thangudu, NVIDIA

• Thomas Klein, NVIDIA

Description

Applications using Nvidia Nsight™ Aftermath SDK for Vulkan to integrate device crash dumps into
their error reporting mechanisms, may use this extension to configure options related to device
crash dump creation.

Version 2 of this extension adds
VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_SHADER_ERROR_REPORTING_BIT_NV which when set enables
enhanced reporting of shader execution errors.

New Structures

• Extending VkDeviceCreateInfo:

◦ VkDeviceDiagnosticsConfigCreateInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDiagnosticsConfigFeaturesNV

New Enums

• VkDeviceDiagnosticsConfigFlagBitsNV

New Bitmasks

• VkDeviceDiagnosticsConfigFlagsNV

New Enum Constants

• VK_NV_DEVICE_DIAGNOSTICS_CONFIG_EXTENSION_NAME

• VK_NV_DEVICE_DIAGNOSTICS_CONFIG_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_DIAGNOSTICS_CONFIG_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DIAGNOSTICS_CONFIG_FEATURES_NV

Version History

• Revision 1, 2019-11-21 (Kedarnath Thangudu)

◦ Internal revisions

4847

• Revision 2, 2022-04-06 (Kedarnath Thangudu)

◦ Added a config bit VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_SHADER_ERROR_REPORTING_BIT_NV

VK_NV_device_generated_commands

Name String

VK_NV_device_generated_commands

Extension Type

Device extension

Registered Extension Number

278

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

Version 1.1
and
VK_KHR_buffer_device_address

Contact

• Christoph Kubisch pixeljetstream

Other Extension Metadata

Last Modified Date

2020-02-20

Interactions and External Dependencies

• This extension requires Vulkan 1.1

• This extension requires VK_EXT_buffer_device_address or VK_KHR_buffer_device_address or
Vulkan 1.2 for the ability to bind vertex and index buffers on the device.

• This extension interacts with VK_NV_mesh_shader. If the latter extension is not supported,
remove the command token to initiate mesh tasks drawing in this extension.

Contributors

• Christoph Kubisch, NVIDIA

• Pierre Boudier, NVIDIA

• Jeff Bolz, NVIDIA

• Eric Werness, NVIDIA

• Yuriy O’Donnell, Epic Games

4848

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_device_generated_commands] @pixeljetstream%0A*Here describe the issue or question you have about the VK_NV_device_generated_commands extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_device_generated_commands] @pixeljetstream%0A*Here describe the issue or question you have about the VK_NV_device_generated_commands extension*

• Baldur Karlsson, Valve

• Mathias Schott, NVIDIA

• Tyson Smith, NVIDIA

• Ingo Esser, NVIDIA

Description

This extension allows the device to generate a number of critical graphics commands for command
buffers.

When rendering a large number of objects, the device can be leveraged to implement a number of
critical functions, like updating matrices, or implementing occlusion culling, frustum culling, front
to back sorting, etc. Implementing those on the device does not require any special extension, since
an application is free to define its own data structures, and just process them using shaders.

However, if the application desires to quickly kick off the rendering of the final stream of objects,
then unextended Vulkan forces the application to read back the processed stream and issue
graphics command from the host. For very large scenes, the synchronization overhead and cost to
generate the command buffer can become the bottleneck. This extension allows an application to
generate a device side stream of state changes and commands, and convert it efficiently into a
command buffer without having to read it back to the host.

Furthermore, it allows incremental changes to such command buffers by manipulating only partial
sections of a command stream — for example pipeline bindings. Unextended Vulkan requires re-
creation of entire command buffers in such a scenario, or updates synchronized on the host.

The intended usage for this extension is for the application to:

• create VkBuffer objects and retrieve physical addresses from them via
vkGetBufferDeviceAddressEXT

• create a graphics pipeline using VkGraphicsPipelineShaderGroupsCreateInfoNV for the ability to
change shaders on the device.

• create a VkIndirectCommandsLayoutNV, which lists the VkIndirectCommandsTokenTypeNV it
wants to dynamically execute as an atomic command sequence. This step likely involves some
internal device code compilation, since the intent is for the GPU to generate the command
buffer in the pipeline.

• fill the input stream buffers with the data for each of the inputs it needs. Each input is an array
that will be filled with token-dependent data.

• set up a preprocess VkBuffer that uses memory according to the information retrieved via
vkGetGeneratedCommandsMemoryRequirementsNV.

• optionally preprocess the generated content using vkCmdPreprocessGeneratedCommandsNV,
for example on an asynchronous compute queue, or for the purpose of re-using the data in
multiple executions.

• call vkCmdExecuteGeneratedCommandsNV to create and execute the actual device commands
for all sequences based on the inputs provided.

4849

For each draw in a sequence, the following can be specified:

• a different shader group

• a number of vertex buffer bindings

• a different index buffer, with an optional dynamic offset and index type

• a number of different push constants

• a flag that encodes the primitive winding

While the GPU can be faster than a CPU to generate the commands, it will not happen
asynchronously to the device, therefore the primary use case is generating “less” total work
(occlusion culling, classification to use specialized shaders, etc.).

New Object Types

• VkIndirectCommandsLayoutNV

New Commands

• vkCmdBindPipelineShaderGroupNV

• vkCmdExecuteGeneratedCommandsNV

• vkCmdPreprocessGeneratedCommandsNV

• vkCreateIndirectCommandsLayoutNV

• vkDestroyIndirectCommandsLayoutNV

• vkGetGeneratedCommandsMemoryRequirementsNV

New Structures

• VkBindIndexBufferIndirectCommandNV

• VkBindShaderGroupIndirectCommandNV

• VkBindVertexBufferIndirectCommandNV

• VkGeneratedCommandsInfoNV

• VkGeneratedCommandsMemoryRequirementsInfoNV

• VkGraphicsShaderGroupCreateInfoNV

• VkIndirectCommandsLayoutCreateInfoNV

• VkIndirectCommandsLayoutTokenNV

• VkIndirectCommandsStreamNV

• VkSetStateFlagsIndirectCommandNV

• Extending VkGraphicsPipelineCreateInfo:

◦ VkGraphicsPipelineShaderGroupsCreateInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV

4850

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV

New Enums

• VkIndirectCommandsLayoutUsageFlagBitsNV

• VkIndirectCommandsTokenTypeNV

• VkIndirectStateFlagBitsNV

New Bitmasks

• VkIndirectCommandsLayoutUsageFlagsNV

• VkIndirectStateFlagsNV

New Enum Constants

• VK_NV_DEVICE_GENERATED_COMMANDS_EXTENSION_NAME

• VK_NV_DEVICE_GENERATED_COMMANDS_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_COMMAND_PREPROCESS_READ_BIT_NV

◦ VK_ACCESS_COMMAND_PREPROCESS_WRITE_BIT_NV

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NV

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_INDIRECT_BINDABLE_BIT_NV

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_GENERATED_COMMANDS_INFO_NV

◦ VK_STRUCTURE_TYPE_GENERATED_COMMANDS_MEMORY_REQUIREMENTS_INFO_NV

◦ VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_SHADER_GROUPS_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_GRAPHICS_SHADER_GROUP_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_TOKEN_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_PROPERTIES_NV

Issues

1) How to name this extension ?

4851

VK_NV_device_generated_commands

As usual, one of the hardest issues ;)

Alternatives: VK_gpu_commands, VK_execute_commands, VK_device_commands, VK_device_execute_commands,
VK_device_execute, VK_device_created_commands, VK_device_recorded_commands,
VK_device_generated_commands VK_indirect_generated_commands

2) Should we use a serial stateful token stream or stateless sequence descriptions?

Similarly to VkPipeline, fixed layouts have the most likelihood to be cross-vendor adoptable. They
also benefit from being processable in parallel. This is a different design choice compared to the
serial command stream generated through GL_NV_command_list.

3) How to name a sequence description?

VkIndirectCommandsLayout as in the NVX extension predecessor.

Alternative: VkGeneratedCommandsLayout

4) Do we want to provide indirectCommands inputs with layout or at indirectCommands time?

Separate layout from data as Vulkan does. Provide full flexibility for indirectCommands.

5) Should the input be provided as SoA or AoS?

Both ways are desirable. AoS can provide portability to other APIs and easier to setup, while SoA
allows to update individual inputs in a cache-efficient manner, when others remain static.

6) How do we make developers aware of the memory requirements of implementation-dependent
data used for the generated commands?

Make the API explicit and introduce a preprocess VkBuffer. Developers have to allocate it using
vkGetGeneratedCommandsMemoryRequirementsNV.

In the NVX version the requirements were hidden implicitly as part of the command buffer
reservation process, however as the memory requirements can be substantial, we want to give
developers the ability to budget the memory themselves. By lowering the maxSequencesCount the
memory consumption can be reduced. Furthermore reuse of the memory is possible, for example
for doing explicit preprocessing and execution in a ping-pong fashion.

The actual buffer size is implementation-dependent and may be zero, i.e. not always required.

When making use of Graphics Shader Groups, the programs should behave similar with regards to
vertex inputs, clipping and culling outputs of the geometry stage, as well as sample shading
behavior in fragment shaders, to reduce the amount of the worst-case memory approximation.

7) Should we allow additional per-sequence dynamic state changes?

Yes

Introduced a lightweight indirect state flag VkIndirectStateFlagBitsNV. So far only switching front

4852

face winding state is exposed. Especially in CAD/DCC mirrored transforms that require such
changes are common, and similar flexibility is given in the ray tracing instance description.

The flag could be extended further, for example to switch between primitive-lists or -strips, or
make other state modifications.

Furthermore, as new tokens can be added easily, future extension could add the ability to change
any VkDynamicState.

8) How do we allow re-using already “generated” indirectCommands?

Expose a preprocessBuffer to reuse implementation-dependencyFlags data. Set the isPreprocessed
to true in vkCmdExecuteGeneratedCommandsNV.

9) Under which conditions is vkCmdExecuteGeneratedCommandsNV legal?

It behaves like a regular draw call command.

10) Is vkCmdPreprocessGeneratedCommandsNV copying the input data or referencing it?

There are multiple implementations possible:

• one could have some emulation code that parses the inputs, and generates an output command
buffer, therefore copying the inputs.

• one could just reference the inputs, and have the processing done in pipe at execution time.

If the data is mandated to be copied, then it puts a penalty on implementation that could process
the inputs directly in pipe. If the data is “referenced”, then it allows both types of implementation.

The inputs are “referenced”, and must not be modified after the call to
vkCmdExecuteGeneratedCommandsNV has completed.

11) Which buffer usage flags are required for the buffers referenced by VkGeneratedCommandsInfoNV ?

Reuse existing VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT

• VkGeneratedCommandsInfoNV::preprocessBuffer

• VkGeneratedCommandsInfoNV::sequencesCountBuffer

• VkGeneratedCommandsInfoNV::sequencesIndexBuffer

• VkIndirectCommandsStreamNV::buffer

12) In which pipeline stage does the device generated command expansion happen?

vkCmdPreprocessGeneratedCommandsNV is treated as if it occurs in a separate logical pipeline
from either graphics or compute, and that pipeline only includes
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, a new stage VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV, and
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT. This new stage has two corresponding new access types,
VK_ACCESS_COMMAND_PREPROCESS_READ_BIT_NV and VK_ACCESS_COMMAND_PREPROCESS_WRITE_BIT_NV, used to
synchronize reading the buffer inputs and writing the preprocess memory output.

4853

The generated output written in the preprocess buffer memory by
vkCmdExecuteGeneratedCommandsNV is considered to be consumed by the
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT pipeline stage.

Thus, to synchronize from writing the input buffers to preprocessing via
vkCmdPreprocessGeneratedCommandsNV, use:

• dstStageMask = VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV

• dstAccessMask = VK_ACCESS_COMMAND_PREPROCESS_READ_BIT_NV

To synchronize from vkCmdPreprocessGeneratedCommandsNV to executing the generated
commands by vkCmdExecuteGeneratedCommandsNV, use:

• srcStageMask = VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_NV

• srcAccessMask = VK_ACCESS_COMMAND_PREPROCESS_WRITE_BIT_NV

• dstStageMask = VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

• dstAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT

When vkCmdExecuteGeneratedCommandsNV is used with a isPreprocessed of VK_FALSE, the
generated commands are implicitly preprocessed, therefore one only needs to synchronize the
inputs via:

• dstStageMask = VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

• dstAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT

13) What if most token data is “static”, but we frequently want to render a subsection?

Added “sequencesIndexBuffer”. This allows to easier sort and filter what should actually be
executed.

14) What are the changes compared to the previous NVX extension?

• Compute dispatch support was removed (was never implemented in drivers). There are
different approaches how dispatching from the device should work, hence we defer this to a
future extension.

• The ObjectTableNVX was replaced by using physical buffer addresses and introducing Shader
Groups for the graphics pipeline.

• Less state changes are possible overall, but the important operations are still there (reduces
complexity of implementation).

• The API was redesigned so all inputs must be passed at both preprocessing and execution time
(this was implicit in NVX, now it is explicit)

• The reservation of intermediate command space is now mandatory and explicit through a
preprocess buffer.

• The VkIndirectStateFlagBitsNV were introduced

15) When porting from other APIs, their indirect buffers may use different enums, for example for

4854

index buffer types. How to solve this?

Added “pIndexTypeValues” to map custom uint32_t values to corresponding VkIndexType.

16) Do we need more shader group state overrides?

The NVX version allowed all PSO states to be different, however as the goal is not to replace all state
setup, but focus on highly-frequent state changes for drawing lots of objects, we reduced the
amount of state overrides. Especially VkPipelineLayout as well as VkRenderPass configuration
should be left static, the rest is still open for discussion.

The current focus is just to allow VertexInput changes as well as shaders, while all shader groups
use the same shader stages.

Too much flexibility will increase the test coverage requirement as well. However, further
extensions could allow more dynamic state as well.

17) Do we need more detailed physical device feature queries/enables?

An EXT version would need detailed implementor feedback to come up with a good set of features.
Please contact us if you are interested, we are happy to make more features optional, or add further
restrictions to reduce the minimum feature set of an EXT.

18) Is there an interaction with VK_KHR_pipeline_library planned?

Yes, a future version of this extension will detail the interaction, once VK_KHR_pipeline_library is
no longer provisional.

Example Code

Open-Source samples illustrating the usage of the extension can be found at the following location
(may not yet exist at time of writing):

https://github.com/nvpro-samples/vk_device_generated_cmds

Version History

• Revision 1, 2020-02-20 (Christoph Kubisch)

◦ Initial version

• Revision 2, 2020-03-09 (Christoph Kubisch)

◦ Remove VK_EXT_debug_report interactions

• Revision 3, 2020-03-09 (Christoph Kubisch)

◦ Fix naming VkPhysicalDeviceGenerated to VkPhysicalDeviceDeviceGenerated

VK_NV_device_generated_commands_compute

Name String

VK_NV_device_generated_commands_compute

4855

https://github.com/nvpro-samples/vk_device_generated_cmds

Extension Type

Device extension

Registered Extension Number

429

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_NV_device_generated_commands

Contact

• Vikram Kushwaha vkushwaha-nv

Other Extension Metadata

Last Modified Date

2023-07-21

Contributors

• Vikram Kushwaha, NVIDIA

• Jeff Bolz, NVIDIA

• Christoph Kubisch, NVIDIA

• Piers Daniell, NVIDIA

• Daniel Koch, NVIDIA

• Hans-Kristian Arntzen, Valve

• Mike Blumenkrantz, VALVE

Description

This extension allows the device to generate commands for binding compute pipelines, setting push
constants and launching compute dispatches.

New Commands

• vkCmdUpdatePipelineIndirectBufferNV

• vkGetPipelineIndirectDeviceAddressNV

• vkGetPipelineIndirectMemoryRequirementsNV

New Structures

• VkBindPipelineIndirectCommandNV

4856

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_device_generated_commands_compute] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_NV_device_generated_commands_compute extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_device_generated_commands_compute] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_NV_device_generated_commands_compute extension*

• VkPipelineIndirectDeviceAddressInfoNV

• Extending VkComputePipelineCreateInfo:

◦ VkComputePipelineIndirectBufferInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV

New Enum Constants

• VK_NV_DEVICE_GENERATED_COMMANDS_COMPUTE_EXTENSION_NAME

• VK_NV_DEVICE_GENERATED_COMMANDS_COMPUTE_SPEC_VERSION

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_INDIRECT_BINDABLE_BIT_NV

• Extending VkIndirectCommandsTokenTypeNV:

◦ VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NV

◦ VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_INDIRECT_BUFFER_INFO_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_COMPUTE_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PIPELINE_INDIRECT_DEVICE_ADDRESS_INFO_NV

Version History

• Revision 2, 2023-07-21 (Vikram Kushwaha)

◦ Rename vkCmdUpdatePipelineIndirectBuffer to vkCmdUpdatePipelineIndirectBufferNV

• Revision 1, 2023-06-09 (Vikram Kushwaha)

◦ First Revision

VK_NV_extended_sparse_address_space

Name String

VK_NV_extended_sparse_address_space

Extension Type

Device extension

Registered Extension Number

493

Revision

1

4857

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Russell Chou russellcnv

Other Extension Metadata

Last Modified Date

2023-10-03

Contributors

• Russell Chou, NVIDIA

• Christoph Kubisch, NVIDIA

• Eric Werness, NVIDIA

• Jeff Bolz, NVIDIA

Description

Implementations may be able to support an extended address space for sparse memory resources,
but only for a certain set of usages.

This extension adds a query for the extended limit, and the supported usages that are allowed for
that limit. This limit is an increase to VkPhysicalDeviceLimits::sparseAddressSpaceSize when the
VkImage or VkBuffer uses only usages that are supported.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceExtendedSparseAddressSpaceFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV

New Enum Constants

• VK_NV_EXTENDED_SPARSE_ADDRESS_SPACE_EXTENSION_NAME

• VK_NV_EXTENDED_SPARSE_ADDRESS_SPACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_SPARSE_ADDRESS_SPACE_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_SPARSE_ADDRESS_SPACE_PROPERTIES_NV

4858

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_extended_sparse_address_space] @russellcnv%0A*Here describe the issue or question you have about the VK_NV_extended_sparse_address_space extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_extended_sparse_address_space] @russellcnv%0A*Here describe the issue or question you have about the VK_NV_extended_sparse_address_space extension*

Version History

• Revision 1, 2023-10-03 (Russell Chou)

◦ Initial draft

VK_NV_external_memory_rdma

Name String

VK_NV_external_memory_rdma

Extension Type

Device extension

Registered Extension Number

372

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_external_memory

Contact

• Carsten Rohde crohde

Other Extension Metadata

Last Modified Date

2021-04-19

IP Status

No known IP claims.

Contributors

• Carsten Rohde, NVIDIA

Description

This extension adds support for allocating memory which can be used for remote direct memory
access (RDMA) from other devices.

New Base Types

• VkRemoteAddressNV

4859

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_external_memory_rdma] @crohde%0A*Here describe the issue or question you have about the VK_NV_external_memory_rdma extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_external_memory_rdma] @crohde%0A*Here describe the issue or question you have about the VK_NV_external_memory_rdma extension*

New Commands

• vkGetMemoryRemoteAddressNV

New Structures

• VkMemoryGetRemoteAddressInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceExternalMemoryRDMAFeaturesNV

New Enum Constants

• VK_NV_EXTERNAL_MEMORY_RDMA_EXTENSION_NAME

• VK_NV_EXTERNAL_MEMORY_RDMA_SPEC_VERSION

• Extending VkExternalMemoryHandleTypeFlagBits:

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_RDMA_ADDRESS_BIT_NV

• Extending VkMemoryPropertyFlagBits:

◦ VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MEMORY_GET_REMOTE_ADDRESS_INFO_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_RDMA_FEATURES_NV

Issues

Examples

VkPhysicalDeviceMemoryBudgetPropertiesEXT memoryBudgetProperties = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
VkPhysicalDeviceMemoryProperties2 memoryProperties2 = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2, &memoryBudgetProperties };
vkGetPhysicalDeviceMemoryProperties2(physicalDevice, &memoryProperties2);
uint32_t heapIndex = (uint32_t)-1;
for (uint32_t memoryType = 0; memoryType < memoryProperties2.memoryProperties
.memoryTypeCount; memoryType++) {
 if (memoryProperties2.memoryProperties.memoryTypes[memoryType].propertyFlags &
VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV) {
 heapIndex = memoryProperties2.memoryProperties.memoryTypes[memoryType
].heapIndex;
 break;
 }
}
if ((heapIndex == (uint32_t)-1) ||
 (memoryBudgetProperties.heapBudget[heapIndex] < size)) {
 return;
}

4860

VkPhysicalDeviceExternalBufferInfo externalBufferInfo = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO };
externalBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT;
externalBufferInfo.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_RDMA_ADDRESS_BIT_NV;

VkExternalBufferProperties externalBufferProperties = {
VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES };
vkGetPhysicalDeviceExternalBufferProperties(physicalDevice, &externalBufferInfo,
&externalBufferProperties);

if (!(externalBufferProperties.externalMemoryProperties.externalMemoryFeatures &
VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT)) {
 return;
}

VkExternalMemoryBufferCreateInfo externalMemoryBufferCreateInfo = {
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO };
externalMemoryBufferCreateInfo.handleTypes =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_RDMA_ADDRESS_BIT_NV;

VkBufferCreateInfo bufferCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
&externalMemoryBufferCreateInfo };
bufferCreateInfo.size = size;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT;

VkMemoryRequirements mem_reqs;
vkCreateBuffer(device, &bufferCreateInfo, NULL, &buffer);
vkGetBufferMemoryRequirements(device, buffer, &mem_reqs);

VkExportMemoryAllocateInfo exportMemoryAllocateInfo = {
VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO };
exportMemoryAllocateInfo.handleTypes =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_RDMA_ADDRESS_BIT_NV;

// Find memory type index
uint32_t i = 0;
for (; i < VK_MAX_MEMORY_TYPES; i++) {
 if ((mem_reqs.memoryTypeBits & (1 << i)) &&
 (memoryProperties.memoryTypes[i].propertyFlags &
VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV)) {
 break;
 }
}

VkMemoryAllocateInfo memAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
&exportMemoryAllocateInfo };
memAllocInfo.allocationSize = mem_reqs.size;
memAllocInfo.memoryTypeIndex = i;

4861

vkAllocateMemory(device, &memAllocInfo, NULL, &mem);
vkBindBufferMemory(device, buffer, mem, 0);

VkMemoryGetRemoteAddressInfoNV getMemoryRemoteAddressInfo = {
VK_STRUCTURE_TYPE_MEMORY_GET_REMOTE_ADDRESS_INFO_NV };
getMemoryRemoteAddressInfo.memory = mem;
getMemoryRemoteAddressInfo.handleType =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_RDMA_ADDRESS_BIT_NV;

VkRemoteAddressNV rdmaAddress;
vkGetMemoryRemoteAddressNV(device, &getMemoryRemoteAddressInfo, &rdmaAddress);
// address returned in 'rdmaAddress' can be used by external devices to initiate RDMA
transfers

Version History

• Revision 1, 2020-12-15 (Carsten Rohde)

◦ Internal revisions

VK_NV_fill_rectangle

Name String

VK_NV_fill_rectangle

Extension Type

Device extension

Registered Extension Number

154

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-05-22

4862

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_fill_rectangle] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_fill_rectangle extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_fill_rectangle] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_fill_rectangle extension*

Contributors

• Jeff Bolz, NVIDIA

Description

This extension adds a new VkPolygonMode enum where a triangle is rasterized by computing and
filling its axis-aligned screen-space bounding box, disregarding the actual triangle edges. This can
be useful for drawing a rectangle without being split into two triangles with an internal edge. It is
also useful to minimize the number of primitives that need to be drawn, particularly for a user
interface.

New Enum Constants

• VK_NV_FILL_RECTANGLE_EXTENSION_NAME

• VK_NV_FILL_RECTANGLE_SPEC_VERSION

• Extending VkPolygonMode:

◦ VK_POLYGON_MODE_FILL_RECTANGLE_NV

Version History

• Revision 1, 2017-05-22 (Jeff Bolz)

◦ Internal revisions

VK_NV_fragment_coverage_to_color

Name String

VK_NV_fragment_coverage_to_color

Extension Type

Device extension

Registered Extension Number

150

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Jeff Bolz jeffbolznv

4863

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_fragment_coverage_to_color] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_fragment_coverage_to_color extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_fragment_coverage_to_color] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_fragment_coverage_to_color extension*

Other Extension Metadata

Last Modified Date

2017-05-21

Contributors

• Jeff Bolz, NVIDIA

Description

This extension allows the fragment coverage value, represented as an integer bitmask, to be
substituted for a color output being written to a single-component color attachment with integer
components (e.g. VK_FORMAT_R8_UINT). The functionality provided by this extension is different from
simply writing the SampleMask fragment shader output, in that the coverage value written to the
framebuffer is taken after stencil test and depth test, as well as after fragment operations such as
alpha-to-coverage.

This functionality may be useful for deferred rendering algorithms, where the second pass needs to
know which samples belong to which original fragments.

New Structures

• Extending VkPipelineMultisampleStateCreateInfo:

◦ VkPipelineCoverageToColorStateCreateInfoNV

New Bitmasks

• VkPipelineCoverageToColorStateCreateFlagsNV

New Enum Constants

• VK_NV_FRAGMENT_COVERAGE_TO_COLOR_EXTENSION_NAME

• VK_NV_FRAGMENT_COVERAGE_TO_COLOR_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_TO_COLOR_STATE_CREATE_INFO_NV

Version History

• Revision 1, 2017-05-21 (Jeff Bolz)

◦ Internal revisions

VK_NV_fragment_shading_rate_enums

Name String

VK_NV_fragment_shading_rate_enums

Extension Type

Device extension

4864

Registered Extension Number

327

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_fragment_shading_rate

Contact

• Pat Brown nvpbrown

Other Extension Metadata

Last Modified Date

2020-09-02

Contributors

• Pat Brown, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension builds on the fragment shading rate functionality provided by the
VK_KHR_fragment_shading_rate extension, adding support for “supersample” fragment shading
rates that trigger multiple fragment shader invocations per pixel as well as a “no invocations”
shading rate that discards any portions of a primitive that would use that shading rate.

New Commands

• vkCmdSetFragmentShadingRateEnumNV

New Structures

• Extending VkGraphicsPipelineCreateInfo:

◦ VkPipelineFragmentShadingRateEnumStateCreateInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFragmentShadingRateEnumsFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV

New Enums

• VkFragmentShadingRateNV

4865

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_fragment_shading_rate_enums] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_fragment_shading_rate_enums extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_fragment_shading_rate_enums] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_fragment_shading_rate_enums extension*

• VkFragmentShadingRateTypeNV

New Enum Constants

• VK_NV_FRAGMENT_SHADING_RATE_ENUMS_EXTENSION_NAME

• VK_NV_FRAGMENT_SHADING_RATE_ENUMS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_ENUMS_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_ENUMS_PROPERTIES_NV

◦ VK_STRUCTURE_TYPE_PIPELINE_FRAGMENT_SHADING_RATE_ENUM_STATE_CREATE_INFO_NV

Issues

1. Why was this extension created? How should it be named?

RESOLVED: The primary goal of this extension was to expose support for supersample and “no
invocations” shading rates, which are supported by the VK_NV_shading_rate_image extension
but not by VK_KHR_fragment_shading_rate. Because VK_KHR_fragment_shading_rate specifies
the primitive shading rate using a fragment size in pixels, it lacks a good way to specify
supersample rates. To deal with this, we defined enums covering shading rates supported by the
KHR extension as well as the new shading rates and added structures and APIs accepting
shading rate enums instead of fragment sizes.

Since this extension adds two different types of shading rates, both expressed using enums, we
chose the extension name VK_NV_fragment_shading_rate_enums.

2. Is this a standalone extension?

RESOLVED: No, this extension requires VK_KHR_fragment_shading_rate. In order to use the
features of this extension, applications must enable the relevant features of KHR extension.

3. How are the shading rate enums used, and how were the enum values assigned?

RESOLVED: The shading rates supported by the enums in this extension are accepted as
pipeline, primitive, and attachment shading rates and behave identically. For the shading rates
also supported by the KHR extension, the values assigned to the corresponding enums are
identical to the values already used for the primitive and attachment shading rates in the KHR
extension. For those enums, bits 0 and 1 specify the base two logarithm of the fragment height
and bits 2 and 3 specify the base two logarithm of the fragment width. For the new shading
rates added by this extension, we chose to use 11 through 14 (10 plus the base two logarithm of
the invocation count) for the supersample rates and 15 for the “no invocations” rate. None of
those values are supported as primitive or attachment shading rates by the KHR extension.

4. Between this extension, VK_KHR_fragment_shading_rate, and VK_NV_shading_rate_image, there
are three different ways to specify shading rate state in a pipeline. How should we handle this?

RESOLVED: We do not allow the concurrent use of VK_NV_shading_rate_image and
VK_KHR_fragment_shading_rate; it is an error to enable shading rate features from both

4866

extensions. But we do allow applications to enable this extension together with
VK_KHR_fragment_shading_rate together. While we expect that applications will never attach
pipeline CreateInfo structures for both this extension and the KHR extension concurrently,
Vulkan does not have any precedent forbidding such behavior and instead typically treats a
pipeline created without an extension-specific CreateInfo structure as equivalent to one
containing default values specified by the extension. Rather than adding such a rule considering
the presence or absence of our new CreateInfo structure, we instead included a shadingRateType
member to VkPipelineFragmentShadingRateEnumStateCreateInfoNV that selects between using
state specified by that structure and state specified by
VkPipelineFragmentShadingRateStateCreateInfoKHR.

Version History

• Revision 1, 2020-09-02 (pbrown)

◦ Internal revisions

VK_NV_framebuffer_mixed_samples

Name String

VK_NV_framebuffer_mixed_samples

Extension Type

Device extension

Registered Extension Number

153

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-06-04

Contributors

• Jeff Bolz, NVIDIA

4867

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_framebuffer_mixed_samples] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_framebuffer_mixed_samples extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_framebuffer_mixed_samples] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_framebuffer_mixed_samples extension*

Description

This extension allows multisample rendering with a raster and depth/stencil sample count that is
larger than the color sample count. Rasterization and the results of the depth and stencil tests
together determine the portion of a pixel that is “covered”. It can be useful to evaluate coverage at a
higher frequency than color samples are stored. This coverage is then “reduced” to a collection of
covered color samples, each having an opacity value corresponding to the fraction of the color
sample covered. The opacity can optionally be blended into individual color samples.

Rendering with fewer color samples than depth/stencil samples greatly reduces the amount of
memory and bandwidth consumed by the color buffer. However, converting the coverage values
into opacity introduces artifacts where triangles share edges and may not be suitable for normal
triangle mesh rendering.

One expected use case for this functionality is Stencil-then-Cover path rendering (similar to the
OpenGL GL_NV_path_rendering extension). The stencil step determines the coverage (in the stencil
buffer) for an entire path at the higher sample frequency, and then the cover step draws the path
into the lower frequency color buffer using the coverage information to antialias path edges. With
this two-step process, internal edges are fully covered when antialiasing is applied and there is no
corruption on these edges.

The key features of this extension are:

• It allows render pass and framebuffer objects to be created where the number of samples in the
depth/stencil attachment in a subpass is a multiple of the number of samples in the color
attachments in the subpass.

• A coverage reduction step is added to Fragment Operations which converts a set of covered
raster/depth/stencil samples to a set of color samples that perform blending and color writes.
The coverage reduction step also includes an optional coverage modulation step, multiplying
color values by a fractional opacity corresponding to the number of associated
raster/depth/stencil samples covered.

New Structures

• Extending VkPipelineMultisampleStateCreateInfo:

◦ VkPipelineCoverageModulationStateCreateInfoNV

New Enums

• VkCoverageModulationModeNV

New Bitmasks

• VkPipelineCoverageModulationStateCreateFlagsNV

New Enum Constants

• VK_NV_FRAMEBUFFER_MIXED_SAMPLES_EXTENSION_NAME

• VK_NV_FRAMEBUFFER_MIXED_SAMPLES_SPEC_VERSION

4868

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV

Version History

• Revision 1, 2017-06-04 (Jeff Bolz)

◦ Internal revisions

VK_NV_geometry_shader_passthrough

Name String

VK_NV_geometry_shader_passthrough

Extension Type

Device extension

Registered Extension Number

96

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_NV_geometry_shader_passthrough

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2017-02-15

Interactions and External Dependencies

• This extension provides API support for GL_NV_geometry_shader_passthrough

• This extension requires the geometryShader feature.

Contributors

• Piers Daniell, NVIDIA

• Jeff Bolz, NVIDIA

4869

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_geometry_shader_passthrough.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_geometry_shader_passthrough] @dgkoch%0A*Here describe the issue or question you have about the VK_NV_geometry_shader_passthrough extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_geometry_shader_passthrough] @dgkoch%0A*Here describe the issue or question you have about the VK_NV_geometry_shader_passthrough extension*
https://registry.khronos.org/OpenGL/extensions/NV/NV_geometry_shader_passthrough.txt

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_NV_geometry_shader_passthrough

Geometry shaders provide the ability for applications to process each primitive sent through the
graphics pipeline using a programmable shader. However, one common use case treats them
largely as a “passthrough”. In this use case, the bulk of the geometry shader code simply copies
inputs from each vertex of the input primitive to corresponding outputs in the vertices of the
output primitive. Such shaders might also compute values for additional built-in or user-defined
per-primitive attributes (e.g., Layer) to be assigned to all the vertices of the output primitive.

This extension provides access to the PassthroughNV decoration under the
GeometryShaderPassthroughNV capability. Adding this to a geometry shader input variable specifies
that the values of this input are copied to the corresponding vertex of the output primitive.

When using GLSL source-based shading languages, the passthrough layout qualifier from
GL_NV_geometry_shader_passthrough maps to the PassthroughNV decoration. To use the passthrough
layout, in GLSL the GL_NV_geometry_shader_passthrough extension must be enabled. Behaviour is
described in the GL_NV_geometry_shader_passthrough extension specification.

New Enum Constants

• VK_NV_GEOMETRY_SHADER_PASSTHROUGH_EXTENSION_NAME

• VK_NV_GEOMETRY_SHADER_PASSTHROUGH_SPEC_VERSION

New Variable Decoration

• PassthroughNV in Geometry Shader Passthrough

New SPIR-V Capabilities

• GeometryShaderPassthroughNV

Issues

1) Should we require or allow a passthrough geometry shader to specify the output layout
qualifiers for the output primitive type and maximum vertex count in the SPIR-V?

RESOLVED: Yes they should be required in the SPIR-V. Per GL_NV_geometry_shader_passthrough
they are not permitted in the GLSL source shader, but SPIR-V is lower-level. It is straightforward for
the GLSL compiler to infer them from the input primitive type and to explicitly emit them in the
SPIR-V according to the following table.

Input Layout Implied Output Layout

points layout(points, max_vertices=1)

lines layout(line_strip, max_vertices=2)

triangles layout(triangle_strip, max_vertices=3)

4870

2) How does interface matching work with passthrough geometry shaders?

RESOLVED: This is described in Passthrough Interface Matching. In GL when using passthough
geometry shaders in separable mode, all inputs must also be explicitly assigned location layout
qualifiers. In Vulkan all SPIR-V shader inputs (except built-ins) must also have location decorations
specified. Redeclarations of built-in variables that add the passthrough layout qualifier are
exempted from the rule requiring location assignment because built-in variables do not have
locations and are matched by BuiltIn decoration.

Sample Code

Consider the following simple geometry shader in unextended GLSL:

layout(triangles) in;
layout(triangle_strip) out;
layout(max_vertices=3) out;

in Inputs {
 vec2 texcoord;
 vec4 baseColor;
} v_in[];
out Outputs {
 vec2 texcoord;
 vec4 baseColor;
};

void main()
{
 int layer = compute_layer();
 for (int i = 0; i < 3; i++) {
 gl_Position = gl_in[i].gl_Position;
 texcoord = v_in[i].texcoord;
 baseColor = v_in[i].baseColor;
 gl_Layer = layer;
 EmitVertex();
 }
}

In this shader, the inputs gl_Position, Inputs.texcoord, and Inputs.baseColor are simply copied
from the input vertex to the corresponding output vertex. The only “interesting” work done by the
geometry shader is computing and emitting a gl_Layer value for the primitive.

The following geometry shader, using this extension, is equivalent:

#extension GL_NV_geometry_shader_passthrough : require

layout(triangles) in;
// No output primitive layout qualifiers required.

4871

// Redeclare gl_PerVertex to pass through "gl_Position".
layout(passthrough) in gl_PerVertex {
 vec4 gl_Position;
} gl_in[];

// Declare "Inputs" with "passthrough" to automatically copy members.
layout(passthrough) in Inputs {
 vec2 texcoord;
 vec4 baseColor;
} v_in[];

// No output block declaration required.

void main()
{
 // The shader simply computes and writes gl_Layer. We do not
 // loop over three vertices or call EmitVertex().
 gl_Layer = compute_layer();
}

Version History

• Revision 1, 2017-02-15 (Daniel Koch)

◦ Internal revisions

VK_NV_inherited_viewport_scissor

Name String

VK_NV_inherited_viewport_scissor

Extension Type

Device extension

Registered Extension Number

279

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• David Zhao Akeley akeley98

4872

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_inherited_viewport_scissor] @akeley98%0A*Here describe the issue or question you have about the VK_NV_inherited_viewport_scissor extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_inherited_viewport_scissor] @akeley98%0A*Here describe the issue or question you have about the VK_NV_inherited_viewport_scissor extension*

Other Extension Metadata

Last Modified Date

2021-02-04

Contributors

• David Zhao Akeley, NVIDIA

• Jeff Bolz, NVIDIA

• Piers Daniell, NVIDIA

• Christoph Kubisch, NVIDIA

Description

This extension adds the ability for a secondary command buffer to inherit the dynamic viewport
and scissor state from a primary command buffer, or a previous secondary command buffer
executed within the same vkCmdExecuteCommands call. It addresses a frequent scenario in
applications that deal with window resizing and want to improve utilization of reusable secondary
command buffers. The functionality is provided through
VkCommandBufferInheritanceViewportScissorInfoNV. Viewport inheritance is effectively limited
to the 2D rectangle; secondary command buffers must re-specify the inherited depth range values.

New Structures

• Extending VkCommandBufferInheritanceInfo:

◦ VkCommandBufferInheritanceViewportScissorInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceInheritedViewportScissorFeaturesNV

New Enum Constants

• VK_NV_INHERITED_VIEWPORT_SCISSOR_EXTENSION_NAME

• VK_NV_INHERITED_VIEWPORT_SCISSOR_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_VIEWPORT_SCISSOR_INFO_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INHERITED_VIEWPORT_SCISSOR_FEATURES_NV

Issues

(1) Why are viewport depth values configured in the
VkCommandBufferInheritanceViewportScissorInfoNV struct, rather than by a vkCmd… function?

DISCUSSION:

We considered both adding a new vkCmdSetViewportDepthNV function, and modifying
vkCmdSetViewport to ignore the x, y, width, and height values when called with a secondary
command buffer that activates this extension.

4873

The primary design considerations for this extension are debuggability and easy integration into
existing applications. The main issue with adding a new vkCmdSetViewportDepthNV function is
reducing ease-of-integration. A new function pointer will have to be loaded, but more importantly,
a new function would require changes to be supported in graphics debuggers; this would delay
widespread adoption of the extension.

The proposal to modify vkCmdSetViewport would avoid these issues. However, we expect that the
intent of applications using this extension is to have the viewport values used for drawing exactly
match the inherited values; thus, it would be better for debuggability if no function for modifying
the viewport depth alone is provided. By specifying viewport depth values when starting secondary
command buffer recording, and requiring the specified depth values to match the inherited depth
values, we allow for validation layers that flag depth changes as errors.

This design also better matches the hardware model. In fact, there is no need to re-execute a depth-
setting command. The graphics device retains the viewport depth state; it is the CPU-side state of
VkCommandBuffer that must be re-initialized.

(2) Why are viewport depth values specified as a partial VkViewport struct, rather than a leaner
depth-only struct?

DISCUSSION:

We considered adding a new VkViewportDepthNV struct containing only minDepth and maxDepth.
However, as application developers would need to maintain both a
VK_NV_inherited_viewport_scissor code path and a fallback code path (at least in the short term), we
ultimately chose to continue using the existing VkViewport structure. Doing so would allow
application developers to reuse the same VkViewport array for both code paths, rather than
constructing separate VkViewportDepthNV and VkViewport arrays for each code path.

Version History

• Revision 1, 2020-02-04 (David Zhao Akeley)

◦ Internal revisions

VK_NV_linear_color_attachment

Name String

VK_NV_linear_color_attachment

Extension Type

Device extension

Registered Extension Number

431

Revision

1

4874

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

API Interactions

• Interacts with VK_KHR_format_feature_flags2

Contact

• sourav parmar souravpNV

Other Extension Metadata

Last Modified Date

2021-12-02

Interactions and External Dependencies

• This extension requires VK_KHR_format_feature_flags2

Contributors

• Pat Brown, NVIDIA

• Piers Daniell, NVIDIA

• Sourav Parmar, NVIDIA

Description

This extension expands support for using VK_IMAGE_TILING_LINEAR images as color attachments
when all the color attachments in the render pass instance have VK_IMAGE_TILING_LINEAR tiling. This
extension adds a new flag bit VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV that extends the
existing VkFormatFeatureFlagBits2KHR bits. This flag can be set for renderable color formats in the
VkFormatProperties3KHR::linearTilingFeatures format properties structure member. Formats with
the VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV flag may be used as color attachments as
long as all the color attachments in the render pass instance have VK_IMAGE_TILING_LINEAR tiling, and
the formats their images views are created with have VkFormatProperties3KHR
::linearTilingFeatures which include VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV. This
extension supports both dynamic rendering and traditional render passes.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceLinearColorAttachmentFeaturesNV

New Enum Constants

• VK_NV_LINEAR_COLOR_ATTACHMENT_EXTENSION_NAME

• VK_NV_LINEAR_COLOR_ATTACHMENT_SPEC_VERSION

• Extending VkStructureType:

4875

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_linear_color_attachment] @souravpNV%0A*Here describe the issue or question you have about the VK_NV_linear_color_attachment extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_linear_color_attachment] @souravpNV%0A*Here describe the issue or question you have about the VK_NV_linear_color_attachment extension*

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINEAR_COLOR_ATTACHMENT_FEATURES_NV

If VK_KHR_format_feature_flags2 is supported:

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV

Version History

• Revision 1, 2021-11-29 (sourav parmar)

◦ Initial draft

VK_NV_low_latency

Name String

VK_NV_low_latency

Extension Type

Device extension

Registered Extension Number

311

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Charles Hansen cshansen

Other Extension Metadata

Last Modified Date

2023-02-10

Contributors

• Charles Hansen, NVIDIA

Description

This extension adds the VkQueryLowLatencySupportNV structure, a structure used to query
support for NVIDIA Reflex.

4876

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_low_latency] @cshansen%0A*Here describe the issue or question you have about the VK_NV_low_latency extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_low_latency] @cshansen%0A*Here describe the issue or question you have about the VK_NV_low_latency extension*

New Structures

• Extending VkSemaphoreCreateInfo:

◦ VkQueryLowLatencySupportNV

New Enum Constants

• VK_NV_LOW_LATENCY_EXTENSION_NAME

• VK_NV_LOW_LATENCY_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_QUERY_LOW_LATENCY_SUPPORT_NV

Issues

1) Why does VkQueryLowLatencySupportNV have output parameters in an input chain?

RESOLVED: We are stuck with this for legacy reasons - we are aware this is bad behavior and this
should not be used as a precedent for future extensions.

Version History

• Revision 1, 2023-02-10 (Charles Hansen)

◦ Internal revisions

VK_NV_low_latency2

Name String

VK_NV_low_latency2

Extension Type

Device extension

Registered Extension Number

506

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

Version 1.2
or
VK_KHR_timeline_semaphore

Contact

• Charles Hansen cshansen

4877

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_low_latency2] @cshansen%0A*Here describe the issue or question you have about the VK_NV_low_latency2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_low_latency2] @cshansen%0A*Here describe the issue or question you have about the VK_NV_low_latency2 extension*

Other Extension Metadata

Last Modified Date

2023-09-25

Contributors

• Charles Hansen, NVIDIA

• Liam Middlebrook, NVIDIA

• Lionel Duc, NVIDIA

• James Jones, NVIDIA

• Eric Sullivan, NVIDIA

New Commands

• vkGetLatencyTimingsNV

• vkLatencySleepNV

• vkQueueNotifyOutOfBandNV

• vkSetLatencyMarkerNV

• vkSetLatencySleepModeNV

New Structures

• VkGetLatencyMarkerInfoNV

• VkLatencySleepInfoNV

• VkLatencySleepModeInfoNV

• VkLatencyTimingsFrameReportNV

• VkOutOfBandQueueTypeInfoNV

• VkSetLatencyMarkerInfoNV

• Extending VkSubmitInfo, VkSubmitInfo2:

◦ VkLatencySubmissionPresentIdNV

• Extending VkSurfaceCapabilities2KHR:

◦ VkLatencySurfaceCapabilitiesNV

• Extending VkSwapchainCreateInfoKHR:

◦ VkSwapchainLatencyCreateInfoNV

New Enums

• VkLatencyMarkerNV

• VkOutOfBandQueueTypeNV

4878

New Enum Constants

• VK_NV_LOW_LATENCY_2_EXTENSION_NAME

• VK_NV_LOW_LATENCY_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_GET_LATENCY_MARKER_INFO_NV

◦ VK_STRUCTURE_TYPE_LATENCY_SLEEP_INFO_NV

◦ VK_STRUCTURE_TYPE_LATENCY_SLEEP_MODE_INFO_NV

◦ VK_STRUCTURE_TYPE_LATENCY_SUBMISSION_PRESENT_ID_NV

◦ VK_STRUCTURE_TYPE_LATENCY_SURFACE_CAPABILITIES_NV

◦ VK_STRUCTURE_TYPE_LATENCY_TIMINGS_FRAME_REPORT_NV

◦ VK_STRUCTURE_TYPE_OUT_OF_BAND_QUEUE_TYPE_INFO_NV

◦ VK_STRUCTURE_TYPE_SET_LATENCY_MARKER_INFO_NV

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_LATENCY_CREATE_INFO_NV

Description

This extension gives applications timing suggestions on when to start the recording of new frames
to reduce the latency between input sampling and frame presentation. Applications can accomplish
this through the extension by calling vkSetLatencySleepModeNV to allow the driver to pace a given
swapchain, then calling vkLatencySleepNV before input sampling to delay the start of the CPU side
work. Additional methods and structures are provided to give insight into the latency pipeline of an
application through the latency markers. VK_NV_low_latency provides legacy support for
applications that make use of the NVIDIA Reflex SDK whereas new implementations should use the
VK_NV_low_latency2 extension.

Issues

1) How does Low Latency 2 work with applications that utilize device groups?

Low Latency 2 does not support device groups.

Version History

• Revision 2, 2023-11-15 (Charles Hansen)

◦ Update vkGetLatencyTimingsNV. This is a breaking API change which brings behavior in
line with other array querying commands. More background can be found in
https://github.com/KhronosGroup/Vulkan-Docs/issues/2269

• Revision 1, 2023-09-25 (Charles Hansen)

◦ Internal revisions

VK_NV_memory_decompression

4879

https://github.com/KhronosGroup/Vulkan-Docs/issues/2269

Name String

VK_NV_memory_decompression

Extension Type

Device extension

Registered Extension Number

428

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_buffer_device_address

Contact

• Vikram Kushwaha vkushwaha-nv

Other Extension Metadata

Last Modified Date

2022-01-31

Contributors

• Vikram Kushwaha, NVIDIA

• Jeff Bolz, NVIDIA

• Christoph Kubisch, NVIDIA

• Piers Daniell, NVIDIA

Description

This extension adds support for performing memory to memory decompression.

New Commands

• vkCmdDecompressMemoryIndirectCountNV

• vkCmdDecompressMemoryNV

New Structures

• VkDecompressMemoryRegionNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

4880

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_memory_decompression] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_NV_memory_decompression extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_memory_decompression] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_NV_memory_decompression extension*

◦ VkPhysicalDeviceMemoryDecompressionFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMemoryDecompressionPropertiesNV

New Enums

• VkMemoryDecompressionMethodFlagBitsNV

New Bitmasks

• VkMemoryDecompressionMethodFlagsNV

New Enum Constants

• VK_NV_MEMORY_DECOMPRESSION_EXTENSION_NAME

• VK_NV_MEMORY_DECOMPRESSION_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_DECOMPRESSION_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_DECOMPRESSION_PROPERTIES_NV

Version History

• Revision 1, 2022-01-31 (Vikram Kushwaha)

◦ Initial draft

VK_NV_mesh_shader

Name String

VK_NV_mesh_shader

Extension Type

Device extension

Registered Extension Number

203

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

4881

SPIR-V Dependencies

• SPV_NV_mesh_shader

Contact

• Christoph Kubisch pixeljetstream

Other Extension Metadata

Last Modified Date

2018-07-19

Interactions and External Dependencies

• This extension provides API support for GLSL_NV_mesh_shader

Contributors

• Pat Brown, NVIDIA

• Jeff Bolz, NVIDIA

• Daniel Koch, NVIDIA

• Piers Daniell, NVIDIA

• Pierre Boudier, NVIDIA

Description

This extension provides a new mechanism allowing applications to generate collections of
geometric primitives via programmable mesh shading. It is an alternative to the existing
programmable primitive shading pipeline, which relied on generating input primitives by a fixed
function assembler as well as fixed function vertex fetch.

There are new programmable shader types — the task and mesh shader — to generate these
collections to be processed by fixed-function primitive assembly and rasterization logic. When task
and mesh shaders are dispatched, they replace the core pre-rasterization stages, including vertex
array attribute fetching, vertex shader processing, tessellation, and geometry shader processing.

This extension also adds support for the following SPIR-V extension in Vulkan:

• SPV_NV_mesh_shader

New Commands

• vkCmdDrawMeshTasksIndirectCountNV

• vkCmdDrawMeshTasksIndirectNV

• vkCmdDrawMeshTasksNV

New Structures

• VkDrawMeshTasksIndirectCommandNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

4882

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_mesh_shader.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_mesh_shader] @pixeljetstream%0A*Here describe the issue or question you have about the VK_NV_mesh_shader extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_mesh_shader] @pixeljetstream%0A*Here describe the issue or question you have about the VK_NV_mesh_shader extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_mesh_shader.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_mesh_shader.html

◦ VkPhysicalDeviceMeshShaderFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMeshShaderPropertiesNV

New Enum Constants

• VK_NV_MESH_SHADER_EXTENSION_NAME

• VK_NV_MESH_SHADER_SPEC_VERSION

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_MESH_SHADER_BIT_NV

◦ VK_PIPELINE_STAGE_TASK_SHADER_BIT_NV

• Extending VkShaderStageFlagBits:

◦ VK_SHADER_STAGE_MESH_BIT_NV

◦ VK_SHADER_STAGE_TASK_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV

New or Modified Built-In Variables

• TaskCountNV

• PrimitiveCountNV

• PrimitiveIndicesNV

• ClipDistancePerViewNV

• CullDistancePerViewNV

• LayerPerViewNV

• MeshViewCountNV

• MeshViewIndicesNV

• (modified)Position

• (modified)PointSize

• (modified)ClipDistance

• (modified)CullDistance

• (modified)PrimitiveId

• (modified)Layer

• (modified)ViewportIndex

• (modified)WorkgroupSize

• (modified)WorkgroupId

4883

• (modified)LocalInvocationId

• (modified)GlobalInvocationId

• (modified)LocalInvocationIndex

• (modified)DrawIndex

• (modified)ViewportMaskNV

• (modified)PositionPerViewNV

• (modified)ViewportMaskPerViewNV

New SPIR-V Capability

• MeshShadingNV

Issues

1. How to name this extension?

RESOLVED: VK_NV_mesh_shader

Other options considered:

◦ VK_NV_mesh_shading

◦ VK_NV_programmable_mesh_shading

◦ VK_NV_primitive_group_shading

◦ VK_NV_grouped_drawing

2. Do we need a new VkPrimitiveTopology?

RESOLVED: No. We skip the InputAssembler stage.

3. Should we allow Instancing?

RESOLVED: No. There is no fixed function input, other than the IDs. However, allow offsetting
with a “first” value.

4. Should we use existing vkCmdDraw or introduce new functions?

RESOLVED: Introduce new functions.

New functions make it easier to separate from “programmable primitive shading” chapter, less
“dual use” language about existing functions having alternative behavior. The text around the
existing “draws” is heavily based around emitting vertices.

5. If new functions, how to name?

RESOLVED: CmdDrawMeshTasks*

Other options considered:

4884

◦ CmdDrawMeshed

◦ CmdDrawTasked

◦ CmdDrawGrouped

6. Should VK_SHADER_STAGE_ALL_GRAPHICS be updated to include the new stages?

RESOLVED: No. If an application were to be recompiled with headers that include additional
shader stage bits in VK_SHADER_STAGE_ALL_GRAPHICS, then the previously valid application
would no longer be valid on implementations that do not support mesh or task shaders. This
means the change would not be backwards compatible. It is too bad VkShaderStageFlagBits
does not have a dedicated “all supported graphics stages” bit like
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, which would have avoided this problem.

Version History

• Revision 1, 2018-07-19 (Christoph Kubisch, Daniel Koch)

◦ Internal revisions

VK_NV_optical_flow

Name String

VK_NV_optical_flow

Extension Type

Device extension

Registered Extension Number

465

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_format_feature_flags2
and
VK_KHR_synchronization2

Contact

• Carsten Rohde crohde

Other Extension Metadata

4885

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_optical_flow] @crohde%0A*Here describe the issue or question you have about the VK_NV_optical_flow extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_optical_flow] @crohde%0A*Here describe the issue or question you have about the VK_NV_optical_flow extension*

Last Modified Date

2022-09-26

Contributors

• Carsten Rohde, NVIDIA

• Vipul Parashar, NVIDIA

• Jeff Bolz, NVIDIA

• Eric Werness, NVIDIA

Description

Optical flow are fundamental algorithms in computer vision (CV) area. This extension allows
applications to estimate 2D displacement of pixels between two frames.

Note

This extension is designed to be used with upcoming NVIDIA Optical Flow SDK
Version 5 which will be available on NVIDIA Developer webpage.

New Object Types

• VkOpticalFlowSessionNV

New Commands

• vkBindOpticalFlowSessionImageNV

• vkCmdOpticalFlowExecuteNV

• vkCreateOpticalFlowSessionNV

• vkDestroyOpticalFlowSessionNV

• vkGetPhysicalDeviceOpticalFlowImageFormatsNV

New Structures

• VkOpticalFlowExecuteInfoNV

• VkOpticalFlowImageFormatPropertiesNV

• VkOpticalFlowSessionCreateInfoNV

• Extending VkOpticalFlowSessionCreateInfoNV:

◦ VkOpticalFlowSessionCreatePrivateDataInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceOpticalFlowFeaturesNV

• Extending VkPhysicalDeviceImageFormatInfo2, VkImageCreateInfo:

◦ VkOpticalFlowImageFormatInfoNV

• Extending VkPhysicalDeviceProperties2:

4886

◦ VkPhysicalDeviceOpticalFlowPropertiesNV

New Enums

• VkOpticalFlowExecuteFlagBitsNV

• VkOpticalFlowGridSizeFlagBitsNV

• VkOpticalFlowPerformanceLevelNV

• VkOpticalFlowSessionBindingPointNV

• VkOpticalFlowSessionCreateFlagBitsNV

• VkOpticalFlowUsageFlagBitsNV

New Bitmasks

• VkOpticalFlowExecuteFlagsNV

• VkOpticalFlowGridSizeFlagsNV

• VkOpticalFlowSessionCreateFlagsNV

• VkOpticalFlowUsageFlagsNV

New Enum Constants

• VK_NV_OPTICAL_FLOW_EXTENSION_NAME

• VK_NV_OPTICAL_FLOW_SPEC_VERSION

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV

◦ VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV

• Extending VkFormat:

◦ VK_FORMAT_R16G16_S10_5_NV

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_OPTICAL_FLOW_COST_BIT_NV

◦ VK_FORMAT_FEATURE_2_OPTICAL_FLOW_IMAGE_BIT_NV

◦ VK_FORMAT_FEATURE_2_OPTICAL_FLOW_VECTOR_BIT_NV

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_OPTICAL_FLOW_SESSION_NV

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV

• Extending VkQueueFlagBits:

◦ VK_QUEUE_OPTICAL_FLOW_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_OPTICAL_FLOW_EXECUTE_INFO_NV

4887

◦ VK_STRUCTURE_TYPE_OPTICAL_FLOW_IMAGE_FORMAT_INFO_NV

◦ VK_STRUCTURE_TYPE_OPTICAL_FLOW_IMAGE_FORMAT_PROPERTIES_NV

◦ VK_STRUCTURE_TYPE_OPTICAL_FLOW_SESSION_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_OPTICAL_FLOW_SESSION_CREATE_PRIVATE_DATA_INFO_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPTICAL_FLOW_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_OPTICAL_FLOW_PROPERTIES_NV

Examples

// Example querying available input formats
VkOpticalFlowImageFormatInfoNV ofFormatInfo = {
VK_STRUCTURE_TYPE_OPTICAL_FLOW_IMAGE_FORMAT_INFO_NV };
ofFormatInfo.usage = VK_OPTICAL_FLOW_USAGE_INPUT_BIT_NV;

uint32_t count = 0;
vkGetPhysicalDeviceOpticalFlowImageFormatsNV(physicalDevice, &ofFormatInfo, &count,
NULL);
VkOpticalFlowImageFormatPropertiesNV* fmt = new VkOpticalFlowImageFormatPropertiesNV
[count];
memset(fmt, 0, count * sizeof(VkOpticalFlowImageFormatPropertiesNV));
for (uint32_t i = 0; i < count; i++) {
 fmt[i].sType = VK_STRUCTURE_TYPE_OPTICAL_FLOW_IMAGE_FORMAT_PROPERTIES_NV;
}
vkGetPhysicalDeviceOpticalFlowImageFormatsNV(physicalDevice, &ofFormatInfo, &count,
fmt);

// Pick one of the available formats
VkFormat inputFormat = fmt[0].format;

// Check feature support for optimal tiling
VkFormatProperties3 formatProperties3 = { VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3 };
VkFormatProperties2 formatProperties2 = { VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2,
&formatProperties3 };
vkGetPhysicalDeviceFormatProperties2(physicalDevice, inputFormat, &formatProperties2);
if (!(formatProperties3.optimalTilingFeatures &
VK_FORMAT_FEATURE_2_OPTICAL_FLOW_IMAGE_BIT_NV)) {
 return false;
}

// Check support for image creation parameters
VkPhysicalDeviceImageFormatInfo2 imageFormatInfo2 = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, &ofFormatInfo };
imageFormatInfo2.format = inputFormat;
imageFormatInfo2.type = VK_IMAGE_TYPE_2D;
imageFormatInfo2.tiling = VK_IMAGE_TILING_OPTIMAL;
imageFormatInfo2.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;

VkImageFormatProperties2 imageFormatProperties2 = {

4888

VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2 };
if (vkGetPhysicalDeviceImageFormatProperties2(physicalDevice, &imageFormatInfo2,
&imageFormatProperties2) != VK_SUCCESS) {
 return false;
}

VkImageCreateInfo imageCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
&ofFormatInfo };
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = inputFormat;
imageCreateInfo.extent = { width, height, (uint32_t)1};
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;

vkCreateImage(device, &imageCreateInfo, NULL, &input);
"allocate memory, bind image, create view"

"do the same for reference and output"

// Create optical flow session
VkOpticalFlowSessionCreateInfoNV sessionCreateInfo = {
VK_STRUCTURE_TYPE_OPTICAL_FLOW_SESSION_CREATE_INFO_NV };
sessionCreateInfo.width = width;
sessionCreateInfo.height = height;
sessionCreateInfo.imageFormat = inputFormat;
sessionCreateInfo.flowVectorFormat = outputFormat;
sessionCreateInfo.outputGridSize = VK_OPTICAL_FLOW_GRID_SIZE_4X4_BIT_NV;
sessionCreateInfo.performanceLevel = VK_OPTICAL_FLOW_PERFORMANCE_LEVEL_SLOW_NV;
VkOpticalFlowSessionNV session;
vkCreateOpticalFlowSessionNV(device, &sessionCreateInfo, NULL, &session);

"allocate command buffer"

"transfer images to VK_PIPELINE_STAGE_2_OPTICAL_FLOW_BIT_NV"
"transfer input images to VK_ACCESS_2_OPTICAL_FLOW_READ_BIT_NV and output image to
VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV"

vkBindOpticalFlowSessionImageNV(device, session,
VK_OPTICAL_FLOW_SESSION_BINDING_POINT_INPUT_NV, inputView, VK_IMAGE_LAYOUT_GENERAL);
vkBindOpticalFlowSessionImageNV(device, session,
VK_OPTICAL_FLOW_SESSION_BINDING_POINT_REFERENCE_NV, refView, VK_IMAGE_LAYOUT_GENERAL);
vkBindOpticalFlowSessionImageNV(device, session,
VK_OPTICAL_FLOW_SESSION_BINDING_POINT_FLOW_VECTOR_NV, outputView,
VK_IMAGE_LAYOUT_GENERAL);

VkOpticalFlowExecuteInfoNV opticalFlowExecuteInfo = {
VK_STRUCTURE_TYPE_OPTICAL_FLOW_EXECUTE_INFO_NV };
vkCmdOpticalFlowExecuteNV(cmd, session, &opticalFlowExecuteInfo);

4889

"submit command buffer"

Version History

• Revision 1, 2022-09-26 (Carsten Rohde)

◦ Internal revisions

VK_NV_per_stage_descriptor_set

Name String

VK_NV_per_stage_descriptor_set

Extension Type

Device extension

Registered Extension Number

517

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_maintenance6

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2023-10-16

IP Status

No known IP claims.

Contributors

• Daniel Story, Nintendo

Description

This extension introduces a new descriptor set layout creation flag that allows bindings in a
descriptor set to be scoped to each shader stage. This means that shaders bound at the same time
may use completely different descriptor set layouts without any restrictions on compatibility, and
that the descriptor limits that would otherwise apply to the union of all stages together instead

4890

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_per_stage_descriptor_set] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_per_stage_descriptor_set extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_per_stage_descriptor_set] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_per_stage_descriptor_set extension*

apply to each stage individually. It also means that descriptors shared by multiple stages must be
bound to each stage or set of stages that use a unique descriptor set layout using their specific per
stage descriptor set layout(s).

This extension also allows each of the new descriptor binding functions from
VK_KHR_maintenance6 to have their VkPipelineLayout member be optionally set to
VK_NULL_HANDLE, in which case the pipeline layout information is taken from a
VkPipelineLayoutCreateInfo structure in the pNext chain. This enables descriptors to be directly
bound using descriptor set layouts without applications needing to create and manage
VkPipelineLayout objects at command recording time.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePerStageDescriptorSetFeaturesNV

New Enum Constants

• VK_NV_PER_STAGE_DESCRIPTOR_SET_EXTENSION_NAME

• VK_NV_PER_STAGE_DESCRIPTOR_SET_SPEC_VERSION

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_PER_STAGE_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PER_STAGE_DESCRIPTOR_SET_FEATURES_NV

Issues

None

Version History

• Revision 1, 2023-10-16 (Piers Daniell)

◦ Initial draft

VK_NV_present_barrier

Name String

VK_NV_present_barrier

Extension Type

Device extension

Registered Extension Number

293

Revision

1

4891

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_surface
and
VK_KHR_get_surface_capabilities2
and
VK_KHR_swapchain

Contact

• Liya Li liyli

Other Extension Metadata

Last Modified Date

2022-05-16

Contributors

• Liya Li, Nvidia

• Martin Schwarzer, Nvidia

• Andy Wolf, Nvidia

• Ian Williams, Nvidia

• Ben Morris, Nvidia

• James Jones, Nvidia

• Jeff Juliano, Nvidia

Description

This extension adds support for synchronizing corresponding presentation requests across multiple
swapchains using the present barrier.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePresentBarrierFeaturesNV

• Extending VkSurfaceCapabilities2KHR:

◦ VkSurfaceCapabilitiesPresentBarrierNV

• Extending VkSwapchainCreateInfoKHR:

◦ VkSwapchainPresentBarrierCreateInfoNV

4892

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_present_barrier] @liyli%0A*Here describe the issue or question you have about the VK_NV_present_barrier extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_present_barrier] @liyli%0A*Here describe the issue or question you have about the VK_NV_present_barrier extension*

New Enum Constants

• VK_NV_PRESENT_BARRIER_EXTENSION_NAME

• VK_NV_PRESENT_BARRIER_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENT_BARRIER_FEATURES_NV

◦ VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_PRESENT_BARRIER_NV

◦ VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_BARRIER_CREATE_INFO_NV

Issues

1) Is there a query interface to check if a swapchain is using the present barrier?

RESOLVED. There is no such query interface. When creating a swapchain, an application can
specify to use the present barrier, and if the swapchain is created successfully, this swapchain will
be using the present barrier.

2) Do we need an extra interface to set up the present barrier across distributed systems?

RESOLVED. If the required hardware is presented in the system, and all settings for the physical
synchronization with other systems are set up, an implementation manages the configuration
automatically when creating a swapchain, without any extra calls from the application.

Version History

• Revision 1, 2022-07-20

◦ Initial version

VK_NV_raw_access_chains

Name String

VK_NV_raw_access_chains

Extension Type

Device extension

Registered Extension Number

556

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

4893

SPIR-V Dependencies

• SPV_NV_raw_access_chains

Contact

• Rodrigo Locatti rlocatti

Other Extension Metadata

Last Modified Date

2023-12-04

Interactions and External Dependencies

• This extension requires SPV_NV_raw_access_chains

Contributors

• Hans-Kristian Arntzen, Valve

• Rodrigo Locatti, NVIDIA

Description

This extension allows the use of the SPV_NV_raw_access_chains extension in SPIR-V shader modules.
This enables SPIR-V producers to efficiently implement interfaces similar to Direct3D structured
buffers and byte address buffers, allowing shaders compiled from an HLSL source to generate more
efficient code.

New SPIR-V Capabilities

• RawAccessChainsNV

Version History

• Revision 1, 2023-12-04 (Rodrigo Locatti)

◦ Initial revision

VK_NV_ray_tracing

Name String

VK_NV_ray_tracing

Extension Type

Device extension

Registered Extension Number

166

Revision

3

4894

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_raw_access_chains.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_raw_access_chains] @rlocatti%0A*Here describe the issue or question you have about the VK_NV_raw_access_chains extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_raw_access_chains] @rlocatti%0A*Here describe the issue or question you have about the VK_NV_raw_access_chains extension*
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_raw_access_chains.html

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_get_memory_requirements2

API Interactions

• Interacts with VK_EXT_debug_report

• Interacts with VK_KHR_get_memory_requirements2

SPIR-V Dependencies

• SPV_NV_ray_tracing

Contact

• Eric Werness ewerness-nv

Other Extension Metadata

Last Modified Date

2018-11-20

Interactions and External Dependencies

• This extension provides API support for GL_NV_ray_tracing

Contributors

• Eric Werness, NVIDIA

• Ashwin Lele, NVIDIA

• Robert Stepinski, NVIDIA

• Nuno Subtil, NVIDIA

• Christoph Kubisch, NVIDIA

• Martin Stich, NVIDIA

• Daniel Koch, NVIDIA

• Jeff Bolz, NVIDIA

• Joshua Barczak, Intel

• Tobias Hector, AMD

• Henrik Rydgard, NVIDIA

• Pascal Gautron, NVIDIA

Description

Rasterization has been the dominant method to produce interactive graphics, but increasing
performance of graphics hardware has made ray tracing a viable option for interactive rendering.
Being able to integrate ray tracing with traditional rasterization makes it easier for applications to

4895

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_ray_tracing.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_ray_tracing] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NV_ray_tracing extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_ray_tracing] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NV_ray_tracing extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_ray_tracing.txt

incrementally add ray traced effects to existing applications or to do hybrid approaches with
rasterization for primary visibility and ray tracing for secondary queries.

To enable ray tracing, this extension adds a few different categories of new functionality:

• Acceleration structure objects and build commands

• A new pipeline type with new shader domains

• An indirection table to link shader groups with acceleration structure items

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_NV_ray_tracing

New Object Types

• VkAccelerationStructureNV

New Commands

• vkBindAccelerationStructureMemoryNV

• vkCmdBuildAccelerationStructureNV

• vkCmdCopyAccelerationStructureNV

• vkCmdTraceRaysNV

• vkCmdWriteAccelerationStructuresPropertiesNV

• vkCompileDeferredNV

• vkCreateAccelerationStructureNV

• vkCreateRayTracingPipelinesNV

• vkDestroyAccelerationStructureNV

• vkGetAccelerationStructureHandleNV

• vkGetAccelerationStructureMemoryRequirementsNV

• vkGetRayTracingShaderGroupHandlesNV

New Structures

• VkAabbPositionsNV

• VkAccelerationStructureCreateInfoNV

• VkAccelerationStructureInfoNV

• VkAccelerationStructureInstanceNV

• VkAccelerationStructureMemoryRequirementsInfoNV

• VkBindAccelerationStructureMemoryInfoNV

• VkGeometryAABBNV

• VkGeometryDataNV

4896

• VkGeometryNV

• VkGeometryTrianglesNV

• VkRayTracingPipelineCreateInfoNV

• VkRayTracingShaderGroupCreateInfoNV

• VkTransformMatrixNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceRayTracingPropertiesNV

• Extending VkWriteDescriptorSet:

◦ VkWriteDescriptorSetAccelerationStructureNV

If VK_KHR_get_memory_requirements2 is supported:

• VkMemoryRequirements2KHR

New Enums

• VkAccelerationStructureMemoryRequirementsTypeNV

• VkAccelerationStructureTypeNV

• VkBuildAccelerationStructureFlagBitsNV

• VkCopyAccelerationStructureModeNV

• VkGeometryFlagBitsNV

• VkGeometryInstanceFlagBitsNV

• VkGeometryTypeNV

• VkRayTracingShaderGroupTypeNV

New Bitmasks

• VkBuildAccelerationStructureFlagsNV

• VkGeometryFlagsNV

• VkGeometryInstanceFlagsNV

New Enum Constants

• VK_NV_RAY_TRACING_EXTENSION_NAME

• VK_NV_RAY_TRACING_SPEC_VERSION

• VK_SHADER_UNUSED_NV

• Extending VkAccelerationStructureTypeKHR:

◦ VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV

◦ VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_NV

• Extending VkAccessFlagBits:

4897

◦ VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_NV

◦ VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_NV

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_RAY_TRACING_BIT_NV

• Extending VkBuildAccelerationStructureFlagBitsKHR:

◦ VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_NV

◦ VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_NV

◦ VK_BUILD_ACCELERATION_STRUCTURE_LOW_MEMORY_BIT_NV

◦ VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_NV

◦ VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_NV

• Extending VkCopyAccelerationStructureModeKHR:

◦ VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_NV

◦ VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_NV

• Extending VkDescriptorType:

◦ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV

• Extending VkGeometryFlagBitsKHR:

◦ VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_NV

◦ VK_GEOMETRY_OPAQUE_BIT_NV

• Extending VkGeometryInstanceFlagBitsKHR:

◦ VK_GEOMETRY_INSTANCE_FORCE_NO_OPAQUE_BIT_NV

◦ VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_NV

◦ VK_GEOMETRY_INSTANCE_TRIANGLE_CULL_DISABLE_BIT_NV

◦ VK_GEOMETRY_INSTANCE_TRIANGLE_FRONT_COUNTERCLOCKWISE_BIT_NV

• Extending VkGeometryTypeKHR:

◦ VK_GEOMETRY_TYPE_AABBS_NV

◦ VK_GEOMETRY_TYPE_TRIANGLES_NV

• Extending VkIndexType:

◦ VK_INDEX_TYPE_NONE_NV

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV

• Extending VkPipelineBindPoint:

◦ VK_PIPELINE_BIND_POINT_RAY_TRACING_NV

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_DEFER_COMPILE_BIT_NV

• Extending VkPipelineStageFlagBits:

4898

◦ VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV

◦ VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_NV

• Extending VkQueryType:

◦ VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_NV

• Extending VkRayTracingShaderGroupTypeKHR:

◦ VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV

◦ VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV

◦ VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV

• Extending VkShaderStageFlagBits:

◦ VK_SHADER_STAGE_ANY_HIT_BIT_NV

◦ VK_SHADER_STAGE_CALLABLE_BIT_NV

◦ VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV

◦ VK_SHADER_STAGE_INTERSECTION_BIT_NV

◦ VK_SHADER_STAGE_MISS_BIT_NV

◦ VK_SHADER_STAGE_RAYGEN_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_INFO_NV

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_NV

◦ VK_STRUCTURE_TYPE_BIND_ACCELERATION_STRUCTURE_MEMORY_INFO_NV

◦ VK_STRUCTURE_TYPE_GEOMETRY_AABB_NV

◦ VK_STRUCTURE_TYPE_GEOMETRY_NV

◦ VK_STRUCTURE_TYPE_GEOMETRY_TRIANGLES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PROPERTIES_NV

◦ VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_NV

If VK_EXT_debug_report is supported:

• Extending VkDebugReportObjectTypeEXT:

◦ VK_DEBUG_REPORT_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV_EXT

New or Modified Built-In Variables

• LaunchIdNV

• LaunchSizeNV

4899

• WorldRayOriginNV

• WorldRayDirectionNV

• ObjectRayOriginNV

• ObjectRayDirectionNV

• RayTminNV

• RayTmaxNV

• InstanceCustomIndexNV

• InstanceId

• ObjectToWorldNV

• WorldToObjectNV

• HitTNV

• HitKindNV

• IncomingRayFlagsNV

• (modified)PrimitiveId

New SPIR-V Capabilities

• RayTracingNV

Issues

1) Are there issues?

RESOLVED: Yes.

Sample Code

Example ray generation GLSL shader

#version 450 core
#extension GL_NV_ray_tracing : require
layout(set = 0, binding = 0, rgba8) uniform image2D image;
layout(set = 0, binding = 1) uniform accelerationStructureNV as;
layout(location = 0) rayPayloadNV float payload;

void main()
{
 vec4 col = vec4(0, 0, 0, 1);

 vec3 origin = vec3(float(gl_LaunchIDNV.x)/float(gl_LaunchSizeNV.x), float
(gl_LaunchIDNV.y)/float(gl_LaunchSizeNV.y), 1.0);
 vec3 dir = vec3(0.0, 0.0, -1.0);

 traceNV(as, 0, 0xff, 0, 1, 0, origin, 0.0, dir, 1000.0, 0);

4900

 col.y = payload;

 imageStore(image, ivec2(gl_LaunchIDNV.xy), col);
}

Version History

• Revision 1, 2018-09-11 (Robert Stepinski, Nuno Subtil, Eric Werness)

◦ Internal revisions

• Revision 2, 2018-10-19 (Eric Werness)

◦ rename to VK_NV_ray_tracing, add support for callables.

◦ too many updates to list

• Revision 3, 2018-11-20 (Daniel Koch)

◦ update to use InstanceId instead of InstanceIndex as implemented.

VK_NV_ray_tracing_invocation_reorder

Name String

VK_NV_ray_tracing_invocation_reorder

Extension Type

Device extension

Registered Extension Number

491

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_ray_tracing_pipeline

SPIR-V Dependencies

• SPV_NV_shader_invocation_reorder

Contact

• Eric Werness ewerness-nv

Other Extension Metadata

Last Modified Date

2022-11-02

4901

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shader_invocation_reorder.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_ray_tracing_invocation_reorder] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NV_ray_tracing_invocation_reorder extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_ray_tracing_invocation_reorder] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NV_ray_tracing_invocation_reorder extension*

Interactions and External Dependencies

• This extension provides API support for GL_NV_shader_invocation_reorder

Contributors

• Eric Werness, NVIDIA

• Ashwin Lele, NVIDIA

Description

The ray tracing pipeline API provides some ability to reorder for locality, but it is useful to have
more control over how the reordering happens and what information is included in the reordering.
The shader API provides a hit object to contain result information from the hit which can be used
as part of the explicit sorting plus options that contain an integer for hint bits to use to add more
locality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRayTracingInvocationReorderFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceRayTracingInvocationReorderPropertiesNV

New Enums

• VkRayTracingInvocationReorderModeNV

New Enum Constants

• VK_NV_RAY_TRACING_INVOCATION_REORDER_EXTENSION_NAME

• VK_NV_RAY_TRACING_INVOCATION_REORDER_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_INVOCATION_REORDER_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_INVOCATION_REORDER_PROPERTIES_NV

HLSL Mapping

HLSL does not provide this functionality natively yet.

However, it is possible to use this functionality via SPIR-V Intrinsics.

The codes for shader invocation reorder are obtained from this page:

#define ShaderInvocationReorderNV 5383
#define HitObjectAttributeNV 5385

#define OpHitObjectRecordHitMotionNV 5249
#define OpHitObjectRecordHitWithIndexMotionNV 5250

4902

https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_shader_invocation_reorder.txt
https://github.com/microsoft/DirectXShaderCompiler/wiki/GL_EXT_spirv_intrinsics-for-SPIR-V-code-gen
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shader_invocation_reorder.html

#define OpHitObjectRecordMissMotionNV 5251
#define OpHitObjectGetWorldToObjectNV 5252
#define OpHitObjectGetObjectToWorldNV 5253
#define OpHitObjectGetObjectRayDirectionNV 5254
#define OpHitObjectGetObjectRayOriginNV 5255
#define OpHitObjectTraceRayMotionNV 5256
#define OpHitObjectGetShaderRecordBufferHandleNV 5257
#define OpHitObjectGetShaderBindingTableRecordIndexNV 5258
#define OpHitObjectRecordEmptyNV 5259
#define OpHitObjectTraceRayNV 5260
#define OpHitObjectRecordHitNV 5261
#define OpHitObjectRecordHitWithIndexNV 5262
#define OpHitObjectRecordMissNV 5263
#define OpHitObjectExecuteShaderNV 5264
#define OpHitObjectGetCurrentTimeNV 5265
#define OpHitObjectGetAttributesNV 5266
#define OpHitObjectGetHitKindNV 5267
#define OpHitObjectGetPrimitiveIndexNV 5268
#define OpHitObjectGetGeometryIndexNV 5269
#define OpHitObjectGetInstanceIdNV 5270
#define OpHitObjectGetInstanceCustomIndexNV 5271
#define OpHitObjectGetWorldRayDirectionNV 5272
#define OpHitObjectGetWorldRayOriginNV 5273
#define OpHitObjectGetRayTMaxNV 5274
#define OpHitObjectGetRayTMinNV 5275
#define OpHitObjectIsEmptyNV 5276
#define OpHitObjectIsHitNV 5277
#define OpHitObjectIsMissNV 5278
#define OpReorderThreadWithHitObjectNV 5279
#define OpReorderThreadWithHintNV 5280
#define OpTypeHitObjectNV 5281

The capability and extension need to be added:

[[vk::ext_capability(ShaderInvocationReorderNV)]]
[[vk::ext_extension("SPV_NV_shader_invocation_reorder")]]

The creation of the HitObject type can be done like this:

[[vk::ext_type_def(HitObjectAttributeNV, OpTypeHitObjectNV)]]
void createHitObjectNV();
#define HitObjectNV vk::ext_type<HitObjectAttributeNV>

The payload:

• must be global

• needs the RayPayloadKHR attribute as an extra storage class

4903

struct [raypayload] HitPayload
{
 float hitT : write(closesthit, miss) : read(caller);
 int instanceIndex : write(closesthit) : read(caller);
 float3 pos : write(closesthit) : read(caller);
 float3 nrm : write(closesthit) : read(caller);
};

#define RayPayloadKHR 5338
[[vk::ext_storage_class(RayPayloadKHR)]] static HitPayload payload;

Here is the declaration of a few invocation reordering functions:

[[vk::ext_instruction(OpHitObjectRecordEmptyNV)]]
void hitObjectRecordEmptyNV([[vk::ext_reference]] HitObjectNV hitObject);

[[vk::ext_instruction(OpHitObjectTraceRayNV)]]
void hitObjectTraceRayNV(
 [[vk::ext_reference]] HitObjectNV hitObject,
 RaytracingAccelerationStructure as,
 uint RayFlags,
 uint CullMask,
 uint SBTOffset,
 uint SBTStride,
 uint MissIndex,
 float3 RayOrigin,
 float RayTmin,
 float3 RayDirection,
 float RayTMax,
 [[vk::ext_reference]] [[vk::ext_storage_class(RayPayloadKHR)]] HitPayload payload
);

[[vk::ext_instruction(OpReorderThreadWithHintNV)]]
void reorderThreadWithHintNV(int Hint, int Bits);

[[vk::ext_instruction(OpReorderThreadWithHitObjectNV)]]
void reorderThreadWithHitObjectNV([[vk::ext_reference]] HitObjectNV hitObject);

[[vk::ext_instruction(OpHitObjectExecuteShaderNV)]]
void hitObjectExecuteShaderNV([[vk::ext_reference]] HitObjectNV hitObject, [[vk
::ext_reference]] [[vk::ext_storage_class(RayPayloadKHR)]] HitPayload payload);

[[vk::ext_instruction(OpHitObjectIsHitNV)]]
bool hitObjectIsHitNV([[vk::ext_reference]] HitObjectNV hitObject);

Using the function in the code, can be done like this

 if (USE_SER == 1)

4904

 {
 createHitObjectNV();
 HitObjectNV hObj; // hitObjectNV hObj;
 hitObjectRecordEmptyNV(hObj); //Initialize to an empty hit object
 hitObjectTraceRayNV(hObj, topLevelAS, rayFlags, 0xFF, 0, 0, 0, r.Origin, 0.0, r
.Direction, INFINITE, payload);
 reorderThreadWithHitObjectNV(hObj);
 hitObjectExecuteShaderNV(hObj, payload);
 }

Note:

• createHitObjectNV() needs to be call at least once. This can be also done in the main entry of the
shader.

• Function with a payload parameter, needs to have the payload struct defined before. There are
no templated declaration of the function.

Version History

• Revision 1, 2020-09-12 (Eric Werness, Ashwin Lele)

◦ Initial external release

VK_NV_ray_tracing_motion_blur

Name String

VK_NV_ray_tracing_motion_blur

Extension Type

Device extension

Registered Extension Number

328

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_ray_tracing_pipeline

SPIR-V Dependencies

• SPV_NV_ray_tracing_motion_blur

Contact

• Eric Werness

4905

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_ray_tracing_motion_blur.html

Other Extension Metadata

Last Modified Date

2021-06-16

Interactions and External Dependencies

• This extension provides API support for GL_NV_ray_tracing_motion_blur

Contributors

• Eric Werness, NVIDIA

• Ashwin Lele, NVIDIA

Description

Ray tracing support in the API provides an efficient mechanism to intersect rays against static
geometry, but rendering algorithms often want to support motion, which is more efficiently
supported with motion-specific algorithms. This extension adds a set of mechanisms to support fast
tracing of moving geometry:

• A ray pipeline trace call which takes a time parameter

• Flags to enable motion support in an acceleration structure

• Support for time-varying vertex positions in a geometry

• Motion instances to move existing instances over time

The motion represented here is parameterized across a normalized timestep between 0.0 and 1.0. A
motion trace using OpTraceRayMotionNV provides a time within that normalized range to be used
when intersecting that ray with geometry. The geometry can be provided with motion by a
combination of adding a second vertex position for time of 1.0 using
VkAccelerationStructureGeometryMotionTrianglesDataNV and providing multiple transforms in the
instance using VkAccelerationStructureMotionInstanceNV.

New Structures

• VkAccelerationStructureMatrixMotionInstanceNV

• VkAccelerationStructureMotionInstanceNV

• VkAccelerationStructureSRTMotionInstanceNV

• VkSRTDataNV

• Extending VkAccelerationStructureCreateInfoKHR:

◦ VkAccelerationStructureMotionInfoNV

• Extending VkAccelerationStructureGeometryTrianglesDataKHR:

◦ VkAccelerationStructureGeometryMotionTrianglesDataNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRayTracingMotionBlurFeaturesNV

4906

https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_ray_tracing_motion_blur.txt

New Unions

• VkAccelerationStructureMotionInstanceDataNV

New Enums

• VkAccelerationStructureMotionInstanceTypeNV

New Bitmasks

• VkAccelerationStructureMotionInfoFlagsNV

• VkAccelerationStructureMotionInstanceFlagsNV

New Enum Constants

• VK_NV_RAY_TRACING_MOTION_BLUR_EXTENSION_NAME

• VK_NV_RAY_TRACING_MOTION_BLUR_SPEC_VERSION

• Extending VkAccelerationStructureCreateFlagBitsKHR:

◦ VK_ACCELERATION_STRUCTURE_CREATE_MOTION_BIT_NV

• Extending VkBuildAccelerationStructureFlagBitsKHR:

◦ VK_BUILD_ACCELERATION_STRUCTURE_MOTION_BIT_NV

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_MOTION_TRIANGLES_DATA_NV

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MOTION_INFO_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MOTION_BLUR_FEATURES_NV

Issues

(1) What size is VkAccelerationStructureMotionInstanceNV?

• Added a note on the structure size and made the stride explicit in the language.

(2) Allow arrayOfPointers for motion TLAS?

• Yes, with a packed encoding to minimize the amount of data sent for metadata.

Version History

• Revision 1, 2020-06-16 (Eric Werness, Ashwin Lele)

◦ Initial external release

4907

VK_NV_ray_tracing_validation

Name String

VK_NV_ray_tracing_validation

Extension Type

Device extension

Registered Extension Number

569

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Vikram Kushwaha vkushwaha-nv

Extension Proposal

VK_NV_ray_tracing_validation

Other Extension Metadata

Last Modified Date

2024-03-04

Contributors

• Vikram Kushwaha, NVIDIA

• Eric Werness, NVIDIA

• Piers Daniell, NVIDIA

Description

This extension adds support for performing ray tracing validation at an implementation level.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRayTracingValidationFeaturesNV

New Enum Constants

• VK_NV_RAY_TRACING_VALIDATION_EXTENSION_NAME

4908

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_ray_tracing_validation] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_NV_ray_tracing_validation extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_ray_tracing_validation] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_NV_ray_tracing_validation extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_NV_ray_tracing_validation.adoc

• VK_NV_RAY_TRACING_VALIDATION_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_VALIDATION_FEATURES_NV

Version History

• Revision 1, 2024-03-04 (Vikram Kushwaha)

◦ Initial draft

VK_NV_representative_fragment_test

Name String

VK_NV_representative_fragment_test

Extension Type

Device extension

Registered Extension Number

167

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Kedarnath Thangudu kthangudu

Other Extension Metadata

Last Modified Date

2018-09-13

Contributors

• Kedarnath Thangudu, NVIDIA

• Christoph Kubisch, NVIDIA

• Pierre Boudier, NVIDIA

• Pat Brown, NVIDIA

• Jeff Bolz, NVIDIA

• Eric Werness, NVIDIA

4909

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_representative_fragment_test] @kthangudu%0A*Here describe the issue or question you have about the VK_NV_representative_fragment_test extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_representative_fragment_test] @kthangudu%0A*Here describe the issue or question you have about the VK_NV_representative_fragment_test extension*

Description

This extension provides a new representative fragment test that allows implementations to reduce
the amount of rasterization and fragment processing work performed for each point, line, or
triangle primitive. For any primitive that produces one or more fragments that pass all other early
fragment tests, the implementation is permitted to choose one or more “representative” fragments
for processing and discard all other fragments. For draw calls rendering multiple points, lines, or
triangles arranged in lists, strips, or fans, the representative fragment test is performed
independently for each of those primitives.

This extension is useful for applications that use an early render pass to determine the full set of
primitives that would be visible in the final scene. In this render pass, such applications would set
up a fragment shader that enables early fragment tests and writes to an image or shader storage
buffer to record the ID of the primitive that generated the fragment. Without this extension, the
shader would record the ID separately for each visible fragment of each primitive. With this
extension, fewer stores will be performed, particularly for large primitives.

The representative fragment test has no effect if early fragment tests are not enabled via the
fragment shader. The set of fragments discarded by the representative fragment test is
implementation-dependent and may vary from frame to frame. In some cases, the representative
fragment test may not discard any fragments for a given primitive.

New Structures

• Extending VkGraphicsPipelineCreateInfo:

◦ VkPipelineRepresentativeFragmentTestStateCreateInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRepresentativeFragmentTestFeaturesNV

New Enum Constants

• VK_NV_REPRESENTATIVE_FRAGMENT_TEST_EXTENSION_NAME

• VK_NV_REPRESENTATIVE_FRAGMENT_TEST_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_REPRESENTATIVE_FRAGMENT_TEST_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PIPELINE_REPRESENTATIVE_FRAGMENT_TEST_STATE_CREATE_INFO_NV

Issues

(1) Is the representative fragment test guaranteed to have any effect?

RESOLVED: No. As specified, we only guarantee that each primitive with at least one fragment that
passes prior tests will have one fragment passing the representative fragment tests. We do not
guarantee that any particular fragment will fail the test.

In the initial implementation of this extension, the representative fragment test is treated as an
optimization that may be completely disabled for some pipeline states. This feature was designed

4910

for a use case where the fragment shader records information on individual primitives using
shader storage buffers or storage images, with no writes to color or depth buffers.

(2) Will the set of fragments that pass the representative fragment test be repeatable if you draw
the same scene over and over again?

RESOLVED: No. The set of fragments that pass the representative fragment test is implementation-
dependent and may vary due to the timing of operations performed by the GPU.

(3) What happens if you enable the representative fragment test with writes to color and/or depth
render targets enabled?

RESOLVED: If writes to the color or depth buffer are enabled, they will be performed for any
fragments that survive the relevant tests. Any fragments that fail the representative fragment test
will not update color buffers. For the use cases intended for this feature, we do not expect color or
depth writes to be enabled.

(4) How do derivatives and automatic texture LOD computations work with the representative
fragment test enabled?

RESOLVED: If a fragment shader uses derivative functions or texture lookups using automatic LOD
computation, derivatives will be computed identically whether or not the representative fragment
test is enabled. For the use cases intended for this feature, we do not expect the use of derivatives in
the fragment shader.

Version History

• Revision 2, 2018-09-13 (pbrown)

◦ Add issues.

• Revision 1, 2018-08-22 (Kedarnath Thangudu)

◦ Internal Revisions

VK_NV_sample_mask_override_coverage

Name String

VK_NV_sample_mask_override_coverage

Extension Type

Device extension

Registered Extension Number

95

Revision

1

Ratification Status

Not ratified

4911

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_NV_sample_mask_override_coverage

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2016-12-08

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_NV_sample_mask_override_coverage

Contributors

• Daniel Koch, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_NV_sample_mask_override_coverage

The extension provides access to the OverrideCoverageNV decoration under the
SampleMaskOverrideCoverageNV capability. Adding this decoration to a variable with the SampleMask
builtin decoration allows the shader to modify the coverage mask and affect which samples are
used to process the fragment.

When using GLSL source-based shader languages, the override_coverage layout qualifier from
GL_NV_sample_mask_override_coverage maps to the OverrideCoverageNV decoration. To use the
override_coverage layout qualifier in GLSL the GL_NV_sample_mask_override_coverage extension must
be enabled. Behavior is described in the GL_NV_sample_mask_override_coverage extension spec.

New Enum Constants

• VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_EXTENSION_NAME

• VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_SPEC_VERSION

New Variable Decoration

• OverrideCoverageNV in SampleMask

4912

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_sample_mask_override_coverage.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_sample_mask_override_coverage] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_sample_mask_override_coverage extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_sample_mask_override_coverage] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_sample_mask_override_coverage extension*
https://registry.khronos.org/OpenGL/extensions/NV/NV_sample_mask_override_coverage.txt

New SPIR-V Capabilities

• SampleMaskOverrideCoverageNV

Version History

• Revision 1, 2016-12-08 (Piers Daniell)

◦ Internal revisions

VK_NV_scissor_exclusive

Name String

VK_NV_scissor_exclusive

Extension Type

Device extension

Registered Extension Number

206

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Pat Brown nvpbrown

Other Extension Metadata

Last Modified Date

2023-01-18

IP Status

No known IP claims.

Interactions and External Dependencies

None

Contributors

• Pat Brown, NVIDIA

• Jeff Bolz, NVIDIA

• Piers Daniell, NVIDIA

4913

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_scissor_exclusive] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_scissor_exclusive extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_scissor_exclusive] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_scissor_exclusive extension*

• Daniel Koch, NVIDIA

Description

This extension adds support for an exclusive scissor test to Vulkan. The exclusive scissor test
behaves like the scissor test, except that the exclusive scissor test fails for pixels inside the
corresponding rectangle and passes for pixels outside the rectangle. If the same rectangle is used
for both the scissor and exclusive scissor tests, the exclusive scissor test will pass if and only if the
scissor test fails.

Version 2 of this extension introduces VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV and
vkCmdSetExclusiveScissorEnableNV. Applications that use this dynamic state must ensure the
implementation advertises at least specVersion 2 of this extension.

New Commands

• vkCmdSetExclusiveScissorEnableNV

• vkCmdSetExclusiveScissorNV

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceExclusiveScissorFeaturesNV

• Extending VkPipelineViewportStateCreateInfo:

◦ VkPipelineViewportExclusiveScissorStateCreateInfoNV

New Enum Constants

• VK_NV_SCISSOR_EXCLUSIVE_EXTENSION_NAME

• VK_NV_SCISSOR_EXCLUSIVE_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_ENABLE_NV

◦ VK_DYNAMIC_STATE_EXCLUSIVE_SCISSOR_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXCLUSIVE_SCISSOR_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_EXCLUSIVE_SCISSOR_STATE_CREATE_INFO_NV

Issues

1) For the scissor test, the viewport state must be created with a matching number of scissor and
viewport rectangles. Should we have the same requirement for exclusive scissors?

RESOLVED: For exclusive scissors, we relax this requirement and allow an exclusive scissor
rectangle count that is either zero or equal to the number of viewport rectangles. If you pass in an
exclusive scissor count of zero, the exclusive scissor test is treated as disabled.

4914

Version History

• Revision 2, 2023-01-18 (Piers Daniell)

◦ Add dynamic state for explicit exclusive scissor enables

• Revision 1, 2018-07-31 (Pat Brown)

◦ Internal revisions

VK_NV_shader_atomic_float16_vector

Name String

VK_NV_shader_atomic_float16_vector

Extension Type

Device extension

Registered Extension Number

564

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_NV_shader_atomic_fp16_vector

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2024-02-03

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_NV_shader_atomic_fp16_vector

Contributors

• Jeff Bolz, NVIDIA

4915

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shader_atomic_fp16_vector.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shader_atomic_float16_vector] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_shader_atomic_float16_vector extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shader_atomic_float16_vector] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_shader_atomic_float16_vector extension*
https://registry.khronos.org/OpenGL/extensions/NV/NV_shader_atomic_fp16_vector.txt

Description

This extension allows a shader to perform atomic add, min, max, and exchange operations on 2-
and 4-component vectors of float16. Buffer, workgroup, and image storage classes are all
supported.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderAtomicFloat16VectorFeaturesNV

New Enum Constants

• VK_NV_SHADER_ATOMIC_FLOAT16_VECTOR_EXTENSION_NAME

• VK_NV_SHADER_ATOMIC_FLOAT16_VECTOR_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT16_VECTOR_FEATURES_NV

Issues

None.

New SPIR-V Capabilities

• AtomicFloat16VectorNV

Version History

• Revision 1, 2024-02-03 (Jeff Bolz)

◦ Internal revisions

VK_NV_shader_image_footprint

Name String

VK_NV_shader_image_footprint

Extension Type

Device extension

Registered Extension Number

205

Revision

2

Ratification Status

Not ratified

4916

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_NV_shader_image_footprint

Contact

• Pat Brown nvpbrown

Other Extension Metadata

Last Modified Date

2018-09-13

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_NV_shader_texture_footprint

Contributors

• Pat Brown, NVIDIA

• Chris Lentini, NVIDIA

• Daniel Koch, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension adds Vulkan support for the SPV_NV_shader_image_footprint SPIR-V extension. That
SPIR-V extension provides a new instruction OpImageSampleFootprintNV allowing shaders to
determine the set of texels that would be accessed by an equivalent filtered texture lookup.

Instead of returning a filtered texture value, the instruction returns a structure that can be
interpreted by shader code to determine the footprint of a filtered texture lookup. This structure
includes integer values that identify a small neighborhood of texels in the image being accessed
and a bitfield that indicates which texels in that neighborhood would be used. The structure also
includes a bitfield where each bit identifies whether any texel in a small aligned block of texels
would be fetched by the texture lookup. The size of each block is specified by an access granularity
provided by the shader. The minimum granularity supported by this extension is 2x2 (for 2D
textures) and 2x2x2 (for 3D textures); the maximum granularity is 256x256 (for 2D textures) or
64x32x32 (for 3D textures). Each footprint query returns the footprint from a single texture level.
When using minification filters that combine accesses from multiple mipmap levels, shaders must
perform separate queries for the two levels accessed (“fine” and “coarse”). The footprint query also
returns a flag indicating if the texture lookup would access texels from only one mipmap level or
from two neighboring levels.

This extension should be useful for multi-pass rendering operations that do an initial expensive
rendering pass to produce a first image that is then used as a texture for a second pass. If the

4917

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shader_image_footprint.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shader_image_footprint] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_shader_image_footprint extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shader_image_footprint] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_shader_image_footprint extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_shader_texture_footprint.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shader_image_footprint.html

second pass ends up accessing only portions of the first image (e.g., due to visibility), the work spent
rendering the non-accessed portion of the first image was wasted. With this feature, an application
can limit this waste using an initial pass over the geometry in the second image that performs a
footprint query for each visible pixel to determine the set of pixels that it needs from the first
image. This pass would accumulate an aggregate footprint of all visible pixels into a separate
“footprint image” using shader atomics. Then, when rendering the first image, the application can
kill all shading work for pixels not in this aggregate footprint.

This extension has a number of limitations. The OpImageSampleFootprintNV instruction only supports
for two- and three-dimensional textures. Footprint evaluation only supports the CLAMP_TO_EDGE
wrap mode; results are undefined for all other wrap modes. Only a limited set of granularity values
and that set does not support separate coverage information for each texel in the original image.

When using SPIR-V generated from the OpenGL Shading Language, the new instruction will be
generated from code using the new textureFootprint*NV built-in functions from the
GL_NV_shader_texture_footprint shading language extension.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderImageFootprintFeaturesNV

New Enum Constants

• VK_NV_SHADER_IMAGE_FOOTPRINT_EXTENSION_NAME

• VK_NV_SHADER_IMAGE_FOOTPRINT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_FOOTPRINT_FEATURES_NV

New SPIR-V Capability

• ImageFootprintNV

Issues

(1) The footprint returned by the SPIR-V instruction is a structure that includes an anchor, an offset,
and a mask that represents a 8x8 or 4x4x4 neighborhood of texel groups. But the bits of the mask
are not stored in simple pitch order. Why is the footprint built this way?

RESOLVED: We expect that applications using this feature will want to use a fixed granularity and
accumulate coverage information from the returned footprints into an aggregate “footprint image”
that tracks the portions of an image that would be needed by regular texture filtering. If an
application is using a two-dimensional image with 4x4 pixel granularity, we expect that the
footprint image will use 64-bit texels where each bit in an 8x8 array of bits corresponds to coverage
for a 4x4 block in the original image. Texel (0,0) in the footprint image would correspond to texels
(0,0) through (31,31) in the original image.

In the usual case, the footprint for a single access will fully contained in a 32x32 aligned region of

4918

the original texture, which corresponds to a single 64-bit texel in the footprint image. In that case,
the implementation will return an anchor coordinate pointing at the single footprint image texel,
an offset vector of (0,0), and a mask whose bits are aligned with the bits in the footprint texel. For
this case, the shader can simply atomically OR the mask bits into the contents of the footprint texel
to accumulate footprint coverage.

In the worst case, the footprint for a single access spans multiple 32x32 aligned regions and may
require updates to four separate footprint image texels. In this case, the implementation will return
an anchor coordinate pointing at the lower right footprint image texel and an offset will identify
how many “columns” and “rows” of the returned 8x8 mask correspond to footprint texels to the left
and above the anchor texel. If the anchor is (2,3), the 64 bits of the returned mask are arranged
spatially as follows, where each 4x4 block is assigned a bit number that matches its bit number in
the footprint image texels:

 +-------------------------+-------------------------+
-- -- -- -- -- -- -- --	-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- --	-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- --	-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- --	-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- --	-- -- -- -- -- -- -- --
-- -- -- -- -- -- 46 47	40 41 42 43 44 45 -- --
-- -- -- -- -- -- 54 55	48 49 50 51 52 53 -- --
-- -- -- -- -- -- 62 63	56 57 58 59 60 61 -- --
+-------------------------+-------------------------+	
-- -- -- -- -- -- 06 07	00 01 02 03 04 05 -- --
-- -- -- -- -- -- 14 15	08 09 10 11 12 13 -- --
-- -- -- -- -- -- 22 23	16 17 18 19 20 21 -- --
-- -- -- -- -- -- 30 31	24 25 26 27 28 29 -- --
-- -- -- -- -- -- 38 39	32 33 34 35 36 37 -- --
-- -- -- -- -- -- -- --	-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- --	-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- --	-- -- -- -- -- -- -- --
 +-------------------------+-------------------------+

To accumulate coverage for each of the four footprint image texels, a shader can AND the returned
mask with simple masks derived from the x and y offset values and then atomically OR the updated
mask bits into the contents of the corresponding footprint texel.

 uint64_t returnedMask = (uint64_t(footprint.mask.x) | (uint64_t(footprint.mask.y)
<< 32));
 uint64_t rightMask = ((0xFF >> footprint.offset.x) * 0x0101010101010101UL);
 uint64_t bottomMask = 0xFFFFFFFFFFFFFFFFUL >> (8 * footprint.offset.y);
 uint64_t bottomRight = returnedMask & bottomMask & rightMask;
 uint64_t bottomLeft = returnedMask & bottomMask & (~rightMask);
 uint64_t topRight = returnedMask & (~bottomMask) & rightMask;
 uint64_t topLeft = returnedMask & (~bottomMask) & (~rightMask);

(2) What should an application do to ensure maximum performance when accumulating footprints

4919

into an aggregate footprint image?

RESOLVED: We expect that the most common usage of this feature will be to accumulate aggregate
footprint coverage, as described in the previous issue. Even if you ignore the anisotropic filtering
case where the implementation may return a granularity larger than that requested by the caller,
each shader invocation will need to use atomic functions to update up to four footprint image
texels for each LOD accessed. Having each active shader invocation perform multiple atomic
operations can be expensive, particularly when neighboring invocations will want to update the
same footprint image texels.

Techniques can be used to reduce the number of atomic operations performed when accumulating
coverage include:

• Have logic that detects returned footprints where all components of the returned offset vector
are zero. In that case, the mask returned by the footprint function is guaranteed to be aligned
with the footprint image texels and affects only a single footprint image texel.

• Have fragment shaders communicate using built-in functions from the
VK_NV_shader_subgroup_partitioned extension or other shader subgroup extensions. If you have
multiple invocations in a subgroup that need to update the same texel (x,y) in the footprint
image, compute an aggregate footprint mask across all invocations in the subgroup updating
that texel and have a single invocation perform an atomic operation using that aggregate mask.

• When the returned footprint spans multiple texels in the footprint image, each invocation need
to perform four atomic operations. In the previous issue, we had an example that computed
separate masks for “topLeft”, “topRight”, “bottomLeft”, and “bottomRight”. When the
invocations in a subgroup have good locality, it might be the case the “top left” for some
invocations might refer to footprint image texel (10,10), while neighbors might have their “top
left” texels at (11,10), (10,11), and (11,11). If you compute separate masks for even/odd x and y
values instead of left/right or top/bottom, the “odd/odd” mask for all invocations in the
subgroup hold coverage for footprint image texel (11,11), which can be updated by a single
atomic operation for the entire subgroup.

Examples

TBD

Version History

• Revision 2, 2018-09-13 (Pat Brown)

◦ Add issue (2) with performance tips.

• Revision 1, 2018-08-12 (Pat Brown)

◦ Initial draft

VK_NV_shader_sm_builtins

Name String

VK_NV_shader_sm_builtins

4920

Extension Type

Device extension

Registered Extension Number

155

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

Version 1.1

SPIR-V Dependencies

• SPV_NV_shader_sm_builtins

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2019-05-28

Interactions and External Dependencies

• This extension provides API support for GL_NV_shader_sm_builtins

Contributors

• Jeff Bolz, NVIDIA

• Eric Werness, NVIDIA

Description

This extension provides the ability to determine device-specific properties on NVIDIA GPUs. It
provides the number of streaming multiprocessors (SMs), the maximum number of warps
(subgroups) that can run on an SM, and shader builtins to enable invocations to identify which SM
and warp a shader invocation is executing on.

This extension enables support for the SPIR-V ShaderSMBuiltinsNV capability.

These properties and built-ins should typically only be used for debugging purposes.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderSMBuiltinsFeaturesNV

• Extending VkPhysicalDeviceProperties2:

4921

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shader_sm_builtins.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shader_sm_builtins] @dgkoch%0A*Here describe the issue or question you have about the VK_NV_shader_sm_builtins extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shader_sm_builtins] @dgkoch%0A*Here describe the issue or question you have about the VK_NV_shader_sm_builtins extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_shader_sm_builtins.txt

◦ VkPhysicalDeviceShaderSMBuiltinsPropertiesNV

New Enum Constants

• VK_NV_SHADER_SM_BUILTINS_EXTENSION_NAME

• VK_NV_SHADER_SM_BUILTINS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SM_BUILTINS_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SM_BUILTINS_PROPERTIES_NV

New or Modified Built-In Variables

• WarpsPerSMNV

• SMCountNV

• WarpIDNV

• SMIDNV

New SPIR-V Capabilities

• ShaderSMBuiltinsNV

Issues

1. What should we call this extension?

RESOLVED: NV_shader_sm_builtins. Other options considered included:

◦ NV_shader_smid - but SMID is really easy to typo/confuse as SIMD.

◦ NV_shader_sm_info - but Info is typically reserved for input structures

Version History

• Revision 1, 2019-05-28 (Daniel Koch)

◦ Internal revisions

VK_NV_shader_subgroup_partitioned

Name String

VK_NV_shader_subgroup_partitioned

Extension Type

Device extension

Registered Extension Number

199

4922

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

Version 1.1

SPIR-V Dependencies

• SPV_NV_shader_subgroup_partitioned

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2018-03-17

Interactions and External Dependencies

• This extension provides API support for GL_NV_shader_subgroup_partitioned

Contributors

• Jeff Bolz, NVIDIA

Description

This extension enables support for a new class of group operations on subgroups via the
GL_NV_shader_subgroup_partitioned GLSL extension and SPV_NV_shader_subgroup_partitioned SPIR-V
extension. Support for these new operations is advertised via the
VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV bit.

This extension requires Vulkan 1.1, for general subgroup support.

New Enum Constants

• VK_NV_SHADER_SUBGROUP_PARTITIONED_EXTENSION_NAME

• VK_NV_SHADER_SUBGROUP_PARTITIONED_SPEC_VERSION

• Extending VkSubgroupFeatureFlagBits:

◦ VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV

Version History

• Revision 1, 2018-03-17 (Jeff Bolz)

◦ Internal revisions

4923

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shader_subgroup_partitioned.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shader_subgroup_partitioned] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_shader_subgroup_partitioned extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shader_subgroup_partitioned] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_shader_subgroup_partitioned extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GL_NV_shader_subgroup_partitioned.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GL_NV_shader_subgroup_partitioned.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shader_subgroup_partitioned.html

VK_NV_shading_rate_image

Name String

VK_NV_shading_rate_image

Extension Type

Device extension

Registered Extension Number

165

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_NV_shading_rate

Contact

• Pat Brown nvpbrown

Other Extension Metadata

Last Modified Date

2019-07-18

Interactions and External Dependencies

• This extension provides API support for GL_NV_shading_rate_image

Contributors

• Pat Brown, NVIDIA

• Carsten Rohde, NVIDIA

• Jeff Bolz, NVIDIA

• Daniel Koch, NVIDIA

• Mathias Schott, NVIDIA

• Matthew Netsch, Qualcomm Technologies, Inc.

Description

This extension allows applications to use a variable shading rate when processing fragments of
rasterized primitives. By default, Vulkan will spawn one fragment shader for each pixel covered by
a primitive. In this extension, applications can bind a shading rate image that can be used to vary

4924

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shading_rate.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shading_rate_image] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_shading_rate_image extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_shading_rate_image] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_shading_rate_image extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_shading_rate_image.txt

the number of fragment shader invocations across the framebuffer. Some portions of the screen
may be configured to spawn up to 16 fragment shaders for each pixel, while other portions may use
a single fragment shader invocation for a 4x4 block of pixels. This can be useful for use cases like
eye tracking, where the portion of the framebuffer that the user is looking at directly can be
processed at high frequency, while distant corners of the image can be processed at lower
frequency. Each texel in the shading rate image represents a fixed-size rectangle in the framebuffer,
covering 16x16 pixels in the initial implementation of this extension. When rasterizing a primitive
covering one of these rectangles, the Vulkan implementation reads a texel in the bound shading
rate image and looks up the fetched value in a palette to determine a base shading rate.

In addition to the API support controlling rasterization, this extension also adds Vulkan support for
the SPV_NV_shading_rate extension to SPIR-V. That extension provides two fragment shader variable
decorations that allow fragment shaders to determine the shading rate used for processing the
fragment:

• FragmentSizeNV, which indicates the width and height of the set of pixels processed by the
fragment shader.

• InvocationsPerPixel, which indicates the maximum number of fragment shader invocations
that could be spawned for the pixel(s) covered by the fragment.

When using SPIR-V in conjunction with the OpenGL Shading Language (GLSL), the fragment shader
capabilities are provided by the GL_NV_shading_rate_image language extension and correspond to
the built-in variables gl_FragmentSizeNV and gl_InvocationsPerPixelNV, respectively.

New Commands

• vkCmdBindShadingRateImageNV

• vkCmdSetCoarseSampleOrderNV

• vkCmdSetViewportShadingRatePaletteNV

New Structures

• VkCoarseSampleLocationNV

• VkCoarseSampleOrderCustomNV

• VkShadingRatePaletteNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShadingRateImageFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShadingRateImagePropertiesNV

• Extending VkPipelineViewportStateCreateInfo:

◦ VkPipelineViewportCoarseSampleOrderStateCreateInfoNV

◦ VkPipelineViewportShadingRateImageStateCreateInfoNV

4925

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_shading_rate.html

New Enums

• VkCoarseSampleOrderTypeNV

• VkShadingRatePaletteEntryNV

New Enum Constants

• VK_NV_SHADING_RATE_IMAGE_EXTENSION_NAME

• VK_NV_SHADING_RATE_IMAGE_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_SHADING_RATE_IMAGE_READ_BIT_NV

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_VIEWPORT_COARSE_SAMPLE_ORDER_NV

◦ VK_DYNAMIC_STATE_VIEWPORT_SHADING_RATE_PALETTE_NV

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_SHADING_RATE_IMAGE_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_PROPERTIES_NV

◦ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_COARSE_SAMPLE_ORDER_STATE_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SHADING_RATE_IMAGE_STATE_CREATE_INFO_NV

Issues

(1) When using shading rates specifying “coarse” fragments covering multiple pixels, we will
generate a combined coverage mask that combines the coverage masks of all pixels covered by the
fragment. By default, these masks are combined in an implementation-dependent order. Should we
provide a mechanism allowing applications to query or specify an exact order?

RESOLVED: Yes, this feature is useful for cases where most of the fragment shader can be
evaluated once for an entire coarse fragment, but where some per-pixel computations are also
required. For example, a per-pixel alpha test may want to kill all the samples for some pixels in a
coarse fragment. This sort of test can be implemented using an output sample mask, but such a
shader would need to know which bit in the mask corresponds to each sample in the coarse
fragment. We are including a mechanism to allow applications to specify the orders of coverage
samples for each shading rate and sample count, either as static pipeline state or dynamically via a
command buffer. This portion of the extension has its own feature bit.

4926

We will not be providing a query to determine the implementation-dependent default ordering. The
thinking here is that if an application cares enough about the coarse fragment sample ordering to
perform such a query, it could instead just set its own order, also using custom per-pixel sample
locations if required.

(2) For the pipeline stage VK_PIPELINE_STAGE_SHADING_RATE_IMAGE_BIT_NV, should we specify a precise
location in the pipeline the shading rate image is accessed (after geometry shading, but before the
early fragment tests) or leave it under-specified in case there are other implementations that access
the image in a different pipeline location?

RESOLVED We are specifying the pipeline stage to be between the final pre-rasterization shader
stage (VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT) and before the first stage used for fragment
processing (VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT), which seems to be the natural place to
access the shading rate image.

(3) How do centroid-sampled variables work with fragments larger than one pixel?

RESOLVED For single-pixel fragments, fragment shader inputs decorated with Centroid are
sampled at an implementation-dependent location in the intersection of the area of the primitive
being rasterized and the area of the pixel that corresponds to the fragment. With multi-pixel
fragments, we follow a similar pattern, using the intersection of the primitive and the set of pixels
corresponding to the fragment.

One important thing to keep in mind when using such “coarse” shading rates is that fragment
attributes are sampled at the center of the fragment by default, regardless of the set of
pixels/samples covered by the fragment. For fragments with a size of 4x4 pixels, this center location
will be more than two pixels (1.5 * sqrt(2)) away from the center of the pixels at the corners of the
fragment. When rendering a primitive that covers only a small part of a coarse fragment, sampling
a color outside the primitive can produce overly bright or dark color values if the color values have
a large gradient. To deal with this, an application can use centroid sampling on attributes where
“extrapolation” artifacts can lead to overly bright or dark pixels. Note that this same problem also
exists for multisampling with single-pixel fragments, but is less severe because it only affects
certain samples of a pixel and such bright/dark samples may be averaged with other samples that
do not have a similar problem.

Version History

• Revision 3, 2019-07-18 (Mathias Schott)

◦ Fully list extension interfaces in this appendix.

• Revision 2, 2018-09-13 (Pat Brown)

◦ Miscellaneous edits preparing the specification for publication.

• Revision 1, 2018-08-08 (Pat Brown)

◦ Internal revisions

VK_NV_viewport_array2

4927

Name String

VK_NV_viewport_array2

Extension Type

Device extension

Registered Extension Number

97

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_NV_viewport_array2

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2017-02-15

Interactions and External Dependencies

• This extension provides API support for GL_NV_viewport_array2

• This extension requires the geometryShader and multiViewport features.

• This extension interacts with the tessellationShader feature.

Contributors

• Piers Daniell, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_NV_viewport_array2

which allows a single primitive to be broadcast to multiple viewports and/or multiple layers. A new
shader built-in output ViewportMaskNV is provided, which allows a single primitive to be output to
multiple viewports simultaneously. Also, a new SPIR-V decoration is added to control whether the
effective viewport index is added into the variable decorated with the Layer built-in decoration.

4928

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_viewport_array2.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_viewport_array2] @dgkoch%0A*Here describe the issue or question you have about the VK_NV_viewport_array2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_viewport_array2] @dgkoch%0A*Here describe the issue or question you have about the VK_NV_viewport_array2 extension*
https://registry.khronos.org/OpenGL/extensions/NV/NV_viewport_array2.txt

These capabilities allow a single primitive to be output to multiple layers simultaneously.

This extension allows variables decorated with the Layer and ViewportIndex built-ins to be exported
from vertex or tessellation shaders, using the ShaderViewportIndexLayerNV capability.

This extension adds a new ViewportMaskNV built-in decoration that is available for output variables
in vertex, tessellation evaluation, and geometry shaders, and a new ViewportRelativeNV decoration
that can be added on variables decorated with Layer when using the ShaderViewportMaskNV
capability.

When using GLSL source-based shading languages, the gl_ViewportMask[] built-in output variable
and viewport_relative layout qualifier from GL_NV_viewport_array2 map to the ViewportMaskNV and
ViewportRelativeNV decorations, respectively. Behaviour is described in the GL_NV_viewport_array2
extension specification.

Note

The ShaderViewportIndexLayerNV capability is equivalent to the
ShaderViewportIndexLayerEXT capability added by
VK_EXT_shader_viewport_index_layer.

New Enum Constants

• VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME

• VK_NV_VIEWPORT_ARRAY2_SPEC_VERSION

• VK_NV_VIEWPORT_ARRAY_2_EXTENSION_NAME

• VK_NV_VIEWPORT_ARRAY_2_SPEC_VERSION

New or Modified Built-In Variables

• (modified) Layer

• (modified) ViewportIndex

• ViewportMaskNV

New Variable Decoration

• ViewportRelativeNV in Layer

New SPIR-V Capabilities

• ShaderViewportIndexLayerNV

• ShaderViewportMaskNV

Version History

• Revision 1, 2017-02-15 (Daniel Koch)

◦ Internal revisions

4929

VK_NV_viewport_swizzle

Name String

VK_NV_viewport_swizzle

Extension Type

Device extension

Registered Extension Number

99

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2016-12-22

Interactions and External Dependencies

• This extension requires multiViewport and geometryShader features to be useful.

Contributors

• Daniel Koch, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension provides a new per-viewport swizzle that can modify the position of primitives sent
to each viewport. New viewport swizzle state is added for each viewport, and a new position vector
is computed for each vertex by selecting from and optionally negating any of the four components
of the original position vector.

This new viewport swizzle is useful for a number of algorithms, including single-pass cube map
rendering (broadcasting a primitive to multiple faces and reorienting the vertex position for each
face) and voxel rasterization. The per-viewport component remapping and negation provided by
the swizzle allows application code to re-orient three-dimensional geometry with a view along any
of the X, Y, or Z axes. If a perspective projection and depth buffering is required, 1/W buffering
should be used, as described in the single-pass cube map rendering example in the “Issues” section
below.

4930

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_viewport_swizzle] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_viewport_swizzle extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_viewport_swizzle] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_viewport_swizzle extension*

New Structures

• VkViewportSwizzleNV

• Extending VkPipelineViewportStateCreateInfo:

◦ VkPipelineViewportSwizzleStateCreateInfoNV

New Enums

• VkViewportCoordinateSwizzleNV

New Bitmasks

• VkPipelineViewportSwizzleStateCreateFlagsNV

New Enum Constants

• VK_NV_VIEWPORT_SWIZZLE_EXTENSION_NAME

• VK_NV_VIEWPORT_SWIZZLE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV

Issues

1) Where does viewport swizzling occur in the pipeline?

RESOLVED: Despite being associated with the viewport, viewport swizzling must happen prior to
the viewport transform. In particular, it needs to be performed before clipping and perspective
division.

The viewport mask expansion (VK_NV_viewport_array2) and the viewport swizzle could potentially
be performed before or after transform feedback, but feeding back several viewports worth of
primitives with different swizzles does not seem particularly useful. This specification applies the
viewport mask and swizzle after transform feedback, and makes primitive queries only count each
primitive once.

2) Any interesting examples of how this extension, VK_NV_viewport_array2, and
VK_NV_geometry_shader_passthrough can be used together in practice?

RESOLVED: One interesting use case for this extension is for single-pass rendering to a cube map.
In this example, the application would attach a cube map texture to a layered FBO where the six
cube faces are treated as layers. Vertices are sent through the vertex shader without applying a
projection matrix, where the gl_Position output is (x,y,z,1) and the center of the cube map is at
(0,0,0). With unextended Vulkan, one could have a conventional instanced geometry shader that
looks something like the following:

layout(invocations = 6) in; // separate invocation per face
layout(triangles) in;
layout(triangle_strip) out;

4931

layout(max_vertices = 3) out;

in Inputs {
vec2 texcoord;
vec3 normal;
vec4 baseColor;
} v[];

 out Outputs {
 vec2 texcoord;
 vec3 normal;
 vec4 baseColor;
 };

 void main()
 {
 int face = gl_InvocationID; // which face am I?

 // Project gl_Position for each vertex onto the cube map face.
 vec4 positions[3];
 for (int i = 0; i < 3; i++) {
 positions[i] = rotate(gl_in[i].gl_Position, face);
 }

 // If the primitive does not project onto this face, we are done.
 if (shouldCull(positions)) {
 return;
 }

 // Otherwise, emit a copy of the input primitive to the
 // appropriate face (using gl_Layer).
 for (int i = 0; i < 3; i++) {
 gl_Layer = face;
 gl_Position = positions[i];
 texcoord = v[i].texcoord;
 normal = v[i].normal;
 baseColor = v[i].baseColor;
 EmitVertex();
 }
}

With passthrough geometry shaders, this can be done using a much simpler shader:

layout(triangles) in;
layout(passthrough) in Inputs {
 vec2 texcoord;
 vec3 normal;
 vec4 baseColor;
}
layout(passthrough) in gl_PerVertex {

4932

 vec4 gl_Position;
} gl_in[];
layout(viewport_relative) out int gl_Layer;

void main()
{
 // Figure out which faces the primitive projects onto and
 // generate a corresponding viewport mask.
 uint mask = 0;
 for (int i = 0; i < 6; i++) {
 if (!shouldCull(face)) {
 mask |= 1U << i;
 }
 }
 gl_ViewportMask = mask;
 gl_Layer = 0;
}

The application code is set up so that each of the six cube faces has a separate viewport (numbered
0 to 5). Each face also has a separate swizzle, programmed via the
VkPipelineViewportSwizzleStateCreateInfoNV pipeline state. The viewport swizzle feature
performs the coordinate transformation handled by the rotate() function in the original shader.
The viewport_relative layout qualifier says that the viewport number (0 to 5) is added to the base
gl_Layer value of 0 to determine which layer (cube face) the primitive should be sent to.

Note that the use of the passed through input normal in this example suggests that the fragment
shader in this example would perform an operation like per-fragment lighting. The viewport
swizzle would transform the position to be face-relative, but normal would remain in the original
coordinate system. It seems likely that the fragment shader in either version of the example would
want to perform lighting in the original coordinate system. It would likely do this by reconstructing
the position of the fragment in the original coordinate system using gl_FragCoord, a constant or
uniform holding the size of the cube face, and the input gl_ViewportIndex (or gl_Layer), which
identifies the cube face. Since the value of normal is in the original coordinate system, it would not
need to be modified as part of this coordinate transformation.

Note that while the rotate() operation in the regular geometry shader above could include an
arbitrary post-rotation projection matrix, the viewport swizzle does not support arbitrary math. To
get proper projection, 1/W buffering should be used. To do this:

1. Program the viewport swizzles to move the pre-projection W eye coordinate (typically 1.0) into
the Z coordinate of the swizzle output and the eye coordinate component used for depth into
the W coordinate. For example, the viewport corresponding to the +Z face might use a swizzle of
(+X, -Y, +W, +Z). The Z normalized device coordinate computed after swizzling would then be
z'/w' = 1/Zeye.

2. On NVIDIA implementations supporting floating-point depth buffers with values outside [0,1],
prevent unwanted near plane clipping by enabling depthClampEnable. Ensure that the depth
clamp does not mess up depth testing by programming the depth range to very large values,
such as minDepthBounds=-z, maxDepthBounds=+z, where z = 2127. It should be possible to use IEEE
infinity encodings also (0xFF800000 for -INF, 0x7F800000 for +INF). Even when near/far clipping is

4933

disabled, primitives extending behind the eye will still be clipped because one or more vertices
will have a negative W coordinate and fail X/Y clipping tests.

On other implementations, scale X, Y, and Z eye coordinates so that vertices on the near plane
have a post-swizzle W coordinate of 1.0. For example, if the near plane is at Zeye = 1/256, scale X,
Y, and Z by 256.

3. Adjust depth testing to reflect the fact that 1/W values are large near the eye and small away
from the eye. Clear the depth buffer to zero (infinitely far away) and use a depth test of
VK_COMPARE_OP_GREATER instead of VK_COMPARE_OP_LESS.

Version History

• Revision 1, 2016-12-22 (Piers Daniell)

◦ Internal revisions

VK_NVX_binary_import

Name String

VK_NVX_binary_import

Extension Type

Device extension

Registered Extension Number

30

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

API Interactions

• Interacts with VK_EXT_debug_report

Contact

• Eric Werness ewerness-nv

• Liam Middlebrook liam-middlebrook

Other Extension Metadata

Last Modified Date

2021-04-09

4934

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NVX_binary_import] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NVX_binary_import extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NVX_binary_import] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NVX_binary_import extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NVX_binary_import] @liam-middlebrook%0A*Here describe the issue or question you have about the VK_NVX_binary_import extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NVX_binary_import] @liam-middlebrook%0A*Here describe the issue or question you have about the VK_NVX_binary_import extension*

Contributors

• Eric Werness, NVIDIA

• Liam Middlebrook, NVIDIA

Description

This extension allows applications to import CuBIN binaries and execute them.

Note

There is currently no specification language written for this extension. The links to
APIs defined by the extension are to stubs that only include generated content
such as API declarations and implicit valid usage statements.

New Object Types

• VkCuFunctionNVX

• VkCuModuleNVX

New Commands

• vkCmdCuLaunchKernelNVX

• vkCreateCuFunctionNVX

• vkCreateCuModuleNVX

• vkDestroyCuFunctionNVX

• vkDestroyCuModuleNVX

New Structures

• VkCuFunctionCreateInfoNVX

• VkCuLaunchInfoNVX

• VkCuModuleCreateInfoNVX

New Enum Constants

• VK_NVX_BINARY_IMPORT_EXTENSION_NAME

• VK_NVX_BINARY_IMPORT_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_CU_FUNCTION_NVX

◦ VK_OBJECT_TYPE_CU_MODULE_NVX

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_CU_FUNCTION_CREATE_INFO_NVX

◦ VK_STRUCTURE_TYPE_CU_LAUNCH_INFO_NVX

◦ VK_STRUCTURE_TYPE_CU_MODULE_CREATE_INFO_NVX

4935

If VK_EXT_debug_report is supported:

• Extending VkDebugReportObjectTypeEXT:

◦ VK_DEBUG_REPORT_OBJECT_TYPE_CU_FUNCTION_NVX_EXT

◦ VK_DEBUG_REPORT_OBJECT_TYPE_CU_MODULE_NVX_EXT

Stub API References

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCuFunctionNVX)

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCuModuleNVX)

There is currently no specification language written for this command. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import
VkResult vkCreateCuFunctionNVX(
 VkDevice device,
 const VkCuFunctionCreateInfoNVX* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkCuFunctionNVX* pFunction);

Valid Usage (Implicit)

• VUID-vkCreateCuFunctionNVX-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateCuFunctionNVX-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkCuFunctionCreateInfoNVX structure

• VUID-vkCreateCuFunctionNVX-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateCuFunctionNVX-pFunction-parameter
pFunction must be a valid pointer to a VkCuFunctionNVX handle

4936

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import
typedef struct VkCuFunctionCreateInfoNVX {
 VkStructureType sType;
 const void* pNext;
 VkCuModuleNVX module;
 const char* pName;
} VkCuFunctionCreateInfoNVX;

Valid Usage (Implicit)

• VUID-VkCuFunctionCreateInfoNVX-sType-sType
sType must be VK_STRUCTURE_TYPE_CU_FUNCTION_CREATE_INFO_NVX

• VUID-VkCuFunctionCreateInfoNVX-pNext-pNext
pNext must be NULL

• VUID-VkCuFunctionCreateInfoNVX-module-parameter
module must be a valid VkCuModuleNVX handle

• VUID-VkCuFunctionCreateInfoNVX-pName-parameter
pName must be a null-terminated UTF-8 string

There is currently no specification language written for this command. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import
void vkDestroyCuFunctionNVX(
 VkDevice device,
 VkCuFunctionNVX function,
 const VkAllocationCallbacks* pAllocator);

Valid Usage (Implicit)

• VUID-vkDestroyCuFunctionNVX-device-parameter

4937

device must be a valid VkDevice handle

• VUID-vkDestroyCuFunctionNVX-function-parameter
function must be a valid VkCuFunctionNVX handle

• VUID-vkDestroyCuFunctionNVX-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyCuFunctionNVX-function-parent
function must have been created, allocated, or retrieved from device

There is currently no specification language written for this command. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import
VkResult vkCreateCuModuleNVX(
 VkDevice device,
 const VkCuModuleCreateInfoNVX* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkCuModuleNVX* pModule);

Valid Usage (Implicit)

• VUID-vkCreateCuModuleNVX-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateCuModuleNVX-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkCuModuleCreateInfoNVX structure

• VUID-vkCreateCuModuleNVX-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateCuModuleNVX-pModule-parameter
pModule must be a valid pointer to a VkCuModuleNVX handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

4938

// Provided by VK_NVX_binary_import
typedef struct VkCuModuleCreateInfoNVX {
 VkStructureType sType;
 const void* pNext;
 size_t dataSize;
 const void* pData;
} VkCuModuleCreateInfoNVX;

Valid Usage (Implicit)

• VUID-VkCuModuleCreateInfoNVX-sType-sType
sType must be VK_STRUCTURE_TYPE_CU_MODULE_CREATE_INFO_NVX

• VUID-VkCuModuleCreateInfoNVX-pNext-pNext
pNext must be NULL

• VUID-VkCuModuleCreateInfoNVX-pData-parameter
If dataSize is not 0, pData must be a valid pointer to an array of dataSize bytes

There is currently no specification language written for this command. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import
void vkDestroyCuModuleNVX(
 VkDevice device,
 VkCuModuleNVX module,
 const VkAllocationCallbacks* pAllocator);

Valid Usage (Implicit)

• VUID-vkDestroyCuModuleNVX-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyCuModuleNVX-module-parameter
module must be a valid VkCuModuleNVX handle

• VUID-vkDestroyCuModuleNVX-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyCuModuleNVX-module-parent
module must have been created, allocated, or retrieved from device

There is currently no specification language written for this command. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import

4939

void vkCmdCuLaunchKernelNVX(
 VkCommandBuffer commandBuffer,
 const VkCuLaunchInfoNVX* pLaunchInfo);

Valid Usage (Implicit)

• VUID-vkCmdCuLaunchKernelNVX-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCuLaunchKernelNVX-pLaunchInfo-parameter
pLaunchInfo must be a valid pointer to a valid VkCuLaunchInfoNVX structure

• VUID-vkCmdCuLaunchKernelNVX-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCuLaunchKernelNVX-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdCuLaunchKernelNVX-videocoding
This command must only be called outside of a video coding scope

Host Synchronization

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command
Buffer Levels

Render Pass
Scope

Video Coding
Scope

Supported
Queue Types

Command Type

Primary
Secondary

Both Outside Graphics
Compute

Action

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_NVX_binary_import
typedef struct VkCuLaunchInfoNVX {
 VkStructureType sType;
 const void* pNext;
 VkCuFunctionNVX function;
 uint32_t gridDimX;
 uint32_t gridDimY;
 uint32_t gridDimZ;
 uint32_t blockDimX;

4940

 uint32_t blockDimY;
 uint32_t blockDimZ;
 uint32_t sharedMemBytes;
 size_t paramCount;
 const void* const * pParams;
 size_t extraCount;
 const void* const * pExtras;
} VkCuLaunchInfoNVX;

Valid Usage (Implicit)

• VUID-VkCuLaunchInfoNVX-sType-sType
sType must be VK_STRUCTURE_TYPE_CU_LAUNCH_INFO_NVX

• VUID-VkCuLaunchInfoNVX-pNext-pNext
pNext must be NULL

• VUID-VkCuLaunchInfoNVX-function-parameter
function must be a valid VkCuFunctionNVX handle

• VUID-VkCuLaunchInfoNVX-pParams-parameter
If paramCount is not 0, pParams must be a valid pointer to an array of paramCount bytes

• VUID-VkCuLaunchInfoNVX-pExtras-parameter
If extraCount is not 0, pExtras must be a valid pointer to an array of extraCount bytes

Version History

• Revision 1, 2021-04-09 (Eric Werness)

◦ Internal revisions

VK_NVX_image_view_handle

Name String

VK_NVX_image_view_handle

Extension Type

Device extension

Registered Extension Number

31

Revision

2

Ratification Status

Not ratified

4941

Extension and Version Dependencies

None

Contact

• Eric Werness ewerness-nv

Other Extension Metadata

Last Modified Date

2020-04-03

Contributors

• Eric Werness, NVIDIA

• Jeff Bolz, NVIDIA

• Daniel Koch, NVIDIA

Description

This extension allows applications to query an opaque handle from an image view for use as a
sampled image or storage image. This provides no direct functionality itself.

New Commands

• vkGetImageViewAddressNVX

• vkGetImageViewHandleNVX

New Structures

• VkImageViewAddressPropertiesNVX

• VkImageViewHandleInfoNVX

New Enum Constants

• VK_NVX_IMAGE_VIEW_HANDLE_EXTENSION_NAME

• VK_NVX_IMAGE_VIEW_HANDLE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_ADDRESS_PROPERTIES_NVX

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_HANDLE_INFO_NVX

Version History

• Revision 2, 2020-04-03 (Piers Daniell)

◦ Add vkGetImageViewAddressNVX

• Revision 1, 2018-12-07 (Eric Werness)

◦ Internal revisions

4942

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NVX_image_view_handle] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NVX_image_view_handle extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NVX_image_view_handle] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NVX_image_view_handle extension*

VK_NVX_multiview_per_view_attributes

Name String

VK_NVX_multiview_per_view_attributes

Extension Type

Device extension

Registered Extension Number

98

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_multiview

SPIR-V Dependencies

• SPV_NVX_multiview_per_view_attributes

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-01-13

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_NVX_multiview_per_view_attributes

• This extension interacts with VK_NV_viewport_array2.

Contributors

• Jeff Bolz, NVIDIA

• Daniel Koch, NVIDIA

Description

This extension adds a new way to write shaders to be used with multiview subpasses, where the
attributes for all views are written out by a single invocation of the pre-rasterization shader stages.
Related SPIR-V and GLSL extensions SPV_NVX_multiview_per_view_attributes and
GL_NVX_multiview_per_view_attributes introduce per-view position and viewport mask attributes
arrays, and this extension defines how those per-view attribute arrays are interpreted by Vulkan.

4943

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NVX/SPV_NVX_multiview_per_view_attributes.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NVX_multiview_per_view_attributes] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NVX_multiview_per_view_attributes extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NVX_multiview_per_view_attributes] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NVX_multiview_per_view_attributes extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nvx/GL_NVX_multiview_per_view_attributes.txt

Pipelines using per-view attributes may only execute the pre-rasterization shader stages once for
all views rather than once per-view, which reduces redundant shading work.

A subpass creation flag controls whether the subpass uses this extension. A subpass must either
exclusively use this extension or not use it at all.

Some Vulkan implementations only support the position attribute varying between views in the X
component. A subpass can declare via a second creation flag whether all pipelines compiled for this
subpass will obey this restriction.

Shaders that use the new per-view outputs (e.g. gl_PositionPerViewNV) must also write the non-per-
view output (gl_Position), and the values written must be such that gl_Position =
gl_PositionPerViewNV[gl_ViewIndex] for all views in the subpass. Implementations are free to either
use the per-view outputs or the non-per-view outputs, whichever would be more efficient.

If VK_NV_viewport_array2 is not also supported and enabled, the per-view viewport mask must not
be used.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX

New Enum Constants

• VK_NVX_MULTIVIEW_PER_VIEW_ATTRIBUTES_EXTENSION_NAME

• VK_NVX_MULTIVIEW_PER_VIEW_ATTRIBUTES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX

• Extending VkSubpassDescriptionFlagBits:

◦ VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX

◦ VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX

New Built-In Variables

• PositionPerViewNV

• ViewportMaskPerViewNV

New SPIR-V Capabilities

• PerViewAttributesNV

Examples

#version 450 core

#extension GL_KHX_multiview : enable

4944

#extension GL_NVX_multiview_per_view_attributes : enable

layout(location = 0) in vec4 position;
layout(set = 0, binding = 0) uniform Block { mat4 mvpPerView[2]; } buf;

void main()
{
 // Output both per-view positions and gl_Position as a function
 // of gl_ViewIndex
 gl_PositionPerViewNV[0] = buf.mvpPerView[0] * position;
 gl_PositionPerViewNV[1] = buf.mvpPerView[1] * position;
 gl_Position = buf.mvpPerView[gl_ViewIndex] * position;
}

Version History

• Revision 1, 2017-01-13 (Jeff Bolz)

◦ Internal revisions

VK_QCOM_filter_cubic_clamp

Name String

VK_QCOM_filter_cubic_clamp

Extension Type

Device extension

Registered Extension Number

522

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_filter_cubic
and
 Version 1.2
 or
 VK_EXT_sampler_filter_minmax

Contact

• Matthew Netsch mnetsch

4945

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_filter_cubic_clamp] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_filter_cubic_clamp extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_filter_cubic_clamp] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_filter_cubic_clamp extension*

Other Extension Metadata

Last Modified Date

2023-08-02

Contributors

• Jeff Leger, Qualcomm Technologies, Inc.

Description

This extension extends cubic filtering by adding the ability to enable an anti-ringing clamp. Cubic
filtering samples from a 4x4 region of texels and computes a cubic weighted average of the region.
In some cases, the resulting value is outside the range of any of the texels in the 4x4 region. This is
sometimes referred to as “filter overshoot” or “filter ringing” and can occur when there is a sharp
discontinuity in the 4x4 region being filtered. For some use cases this “ringing” can produces
unacceptable artifacts.

The solution to the ringing problem is to clamp the post-cubic-filtered value to be within the max
and min of texel values in the 4x4 region. While such “range clamping” can be performed in shader
code, the additional texture fetches and clamping ALU operations can be costly.

Certain Adreno GPUs are able to perform the range clamp in the texture unit during cubic filtering
at significant performance/power savings versus a shader-based clamping approach. This extension
exposes such hardware functionality.

This extension extends VkSamplerReductionMode, adding
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM which enables the range clamp
operation.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCubicClampFeaturesQCOM

New Enum Constants

• VK_QCOM_FILTER_CUBIC_CLAMP_EXTENSION_NAME

• VK_QCOM_FILTER_CUBIC_CLAMP_SPEC_VERSION

• Extending VkSamplerReductionMode:

◦ VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUBIC_CLAMP_FEATURES_QCOM

Version History

• Revision 1, 2023-08-02 (jleger)

◦ Initial version

4946

VK_QCOM_filter_cubic_weights

Name String

VK_QCOM_filter_cubic_weights

Extension Type

Device extension

Registered Extension Number

520

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_filter_cubic

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2023-06-23

Contributors

• Jeff Leger, Qualcomm Technologies, Inc.

• Jonathan Wicks, Qualcomm Technologies, Inc.

Description

This extension extends cubic filtering by adding the ability to select a set of weights. Without this
extension, the weights used in cubic filtering are limited to those corresponding to a Catmull-Rom
spline. This extension adds support for 3 additional spline weights.

This extension adds a new structure that can be added to the pNext chain of VkSamplerCreateInfo
that can be used to specify which set of cubic weights are used in cubic filtering. A similar structure
can be added to the pNext chain of VkBlitImageInfo2 to specify cubic weights used in a blit
operation.

With this extension weights corresponding to the following additional splines can be selected for
cubic filtered sampling and blits:

• Zero Tangent Cardinal

• B-Spline

4947

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_filter_cubic_weights] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_filter_cubic_weights extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_filter_cubic_weights] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_filter_cubic_weights extension*

• Mitchell-Netravali

New Structures

• Extending VkBlitImageInfo2:

◦ VkBlitImageCubicWeightsInfoQCOM

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCubicWeightsFeaturesQCOM

• Extending VkSamplerCreateInfo:

◦ VkSamplerCubicWeightsCreateInfoQCOM

New Enums

• VkCubicFilterWeightsQCOM

New Enum Constants

• VK_QCOM_FILTER_CUBIC_WEIGHTS_EXTENSION_NAME

• VK_QCOM_FILTER_CUBIC_WEIGHTS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BLIT_IMAGE_CUBIC_WEIGHTS_INFO_QCOM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUBIC_WEIGHTS_FEATURES_QCOM

◦ VK_STRUCTURE_TYPE_SAMPLER_CUBIC_WEIGHTS_CREATE_INFO_QCOM

Version History

• Revision 1, 2023-06-23 (jleger)

◦ Initial version

VK_QCOM_fragment_density_map_offset

Name String

VK_QCOM_fragment_density_map_offset

Extension Type

Device extension

Registered Extension Number

426

Revision

1

Ratification Status

Not ratified

4948

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_EXT_fragment_density_map

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2021-09-03

Contributors

• Matthew Netsch, Qualcomm Technologies, Inc.

• Jonathan Wicks, Qualcomm Technologies, Inc.

• Jonathan Tinkham, Qualcomm Technologies, Inc.

• Jeff Leger, Qualcomm Technologies, Inc.

Description

This extension allows an application to specify offsets to a fragment density map attachment,
changing the framebuffer location where density values are applied to without having to
regenerate the fragment density map.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceFragmentDensityMapOffsetPropertiesQCOM

• Extending VkSubpassEndInfo:

◦ VkSubpassFragmentDensityMapOffsetEndInfoQCOM

New Enum Constants

• VK_QCOM_FRAGMENT_DENSITY_MAP_OFFSET_EXTENSION_NAME

• VK_QCOM_FRAGMENT_DENSITY_MAP_OFFSET_SPEC_VERSION

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_QCOM

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_OFFSET_FEATURES_QCOM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_DENSITY_MAP_OFFSET_PROPERTIES_QCOM

4949

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_fragment_density_map_offset] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_fragment_density_map_offset extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_fragment_density_map_offset] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_fragment_density_map_offset extension*

◦ VK_STRUCTURE_TYPE_SUBPASS_FRAGMENT_DENSITY_MAP_OFFSET_END_INFO_QCOM

Version History

• Revision 1, 2021-09-03 (Matthew Netsch)

◦ Initial version

VK_QCOM_image_processing

Name String

VK_QCOM_image_processing

Extension Type

Device extension

Registered Extension Number

441

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_format_feature_flags2

API Interactions

• Interacts with VK_KHR_format_feature_flags2

SPIR-V Dependencies

• SPV_QCOM_image_processing

Contact

• Matthew Netsch mnetsch

Extension Proposal

VK_QCOM_image_processing

Other Extension Metadata

Last Modified Date

2022-07-08

Interactions and External Dependencies

• This extension provides API support for GL_QCOM_image_processing

Contributors

• Jeff Leger, Qualcomm Technologies, Inc.

4950

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/QCOM/SPV_QCOM_image_processing.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_image_processing] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_image_processing extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_image_processing] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_image_processing extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_QCOM_image_processing.adoc
https://github.com/KhronosGroup/GLSL/blob/master/extensions/qcom/GLSL_QCOM_image_processing.txt

• Ruihao Zhang, Qualcomm Technologies, Inc.

Description

GPUs are commonly used to process images for various applications from 3D graphics to UI and
from composition to compute applications. Simple scaling and filtering can be done with bilinear
filtering, which comes for free during texture sampling. However, as screen sizes get larger and
more use cases rely on GPU such as camera and video post-processing needs, there is increasing
demand for GPU to support higher order filtering and other advanced image processing.

This extension introduces a new set of SPIR-V built-in functions for image processing. It exposes the
following new imaging operations

• The OpImageSampleWeightedQCOM instruction takes 3 operands: sampled image, weight image, and
texture coordinates. The instruction computes a weighted average of an MxN region of texels in
the sampled image, using a set of MxN weights in the weight image.

• The OpImageBoxFilterQCOM instruction takes 3 operands: sampled image, box size, and texture
coordinates. Note that box size specifies a floating point width and height in texels. The
instruction computes a weighted average of all texels in the sampled image that are covered
(either partially or fully) by a box with the specified size and centered at the specified texture
coordinates.

• The OpImageBlockMatchSADQCOM and OpImageBlockMatchSSDQCOM instructions each takes 5 operands:
target image, target coordinates, reference image, reference coordinates, and block size. Each
instruction computes an error metric, that describes whether a block of texels in the target
image matches a corresponding block of texels in the reference image. The error metric is
computed per-component. OpImageBlockMatchSADQCOM computes "Sum Of Absolute Difference"
and OpImageBlockMatchSSDQCOM computes "Sum of Squared Difference".

Each of the image processing instructions operate only on 2D images. The instructions do not-
support sampling of mipmap, multi-plane, multi-layer, multi-sampled, or depth/stencil images. The
instructions can be used in any shader stage.

Implementations of this this extension should support these operations natively at the HW
instruction level, offering potential performance gains as well as ease of development.

New Structures

• Extending VkImageViewCreateInfo:

◦ VkImageViewSampleWeightCreateInfoQCOM

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceImageProcessingFeaturesQCOM

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceImageProcessingPropertiesQCOM

New Enum Constants

• VK_QCOM_IMAGE_PROCESSING_EXTENSION_NAME

4951

• VK_QCOM_IMAGE_PROCESSING_SPEC_VERSION

• Extending VkDescriptorType:

◦ VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM

◦ VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM

• Extending VkImageUsageFlagBits:

◦ VK_IMAGE_USAGE_SAMPLE_BLOCK_MATCH_BIT_QCOM

◦ VK_IMAGE_USAGE_SAMPLE_WEIGHT_BIT_QCOM

• Extending VkSamplerCreateFlagBits:

◦ VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_SAMPLE_WEIGHT_CREATE_INFO_QCOM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_FEATURES_QCOM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_PROPERTIES_QCOM

If VK_KHR_format_feature_flags2 is supported:

• Extending VkFormatFeatureFlagBits2:

◦ VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

◦ VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

◦ VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

◦ VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

Version History

• Revision 1, 2022-07-08 (Jeff Leger)

VK_QCOM_image_processing2

Name String

VK_QCOM_image_processing2

Extension Type

Device extension

Registered Extension Number

519

Revision

1

Ratification Status

Not ratified

4952

Extension and Version Dependencies

VK_QCOM_image_processing

SPIR-V Dependencies

• SPV_QCOM_image_processing2

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2023-03-10

Interactions and External Dependencies

• This extension provides API support for GL_QCOM_image_processing2

Contributors

• Jeff Leger, Qualcomm Technologies, Inc.

Description

This extension enables support for the SPIR-V TextureBlockMatch2QCOM capability. It builds on the
functionality of QCOM_image_processing with the addition of 4 new image processing operations.

• The opImageBlockMatchWindowSADQCOM` SPIR-V instruction builds upon the functionality of
opImageBlockMatchSADQCOM` by repeatedly performing block match operations across a 2D
window. The “2D windowExtent” and “compareMode” are are specified by
VkSamplerBlockMatchWindowCreateInfoQCOM in the sampler used to create the target image.
Like OpImageBlockMatchSADQCOM, opImageBlockMatchWindowSADQCOM computes an error metric, that
describes whether a block of texels in the target image matches a corresponding block of texels
in the reference image. Unlike OpImageBlockMatchSADQCOM, this instruction computes an error
metric at each (X,Y) location within the 2D window and returns either the minimum or
maximum error. The instruction only supports single-component formats. Refer to the
pseudocode below for details.

• The opImageBlockMatchWindowSSDQCOM follows the same pattern, computing the SSD error metric
at each location within the 2D window.

• The opImageBlockMatchGatherSADQCOM builds upon OpImageBlockMatchSADQCOM. This instruction
computes an error metric, that describes whether a block of texels in the target image matches a
corresponding block of texels in the reference image. The instruction computes the SAD error
metric at 4 texel offsets and returns the error metric for each offset in the X,Y,Z,and W
components. The instruction only supports single-component texture formats. Refer to the
pseudocode below for details.

• The opImageBlockMatchGatherSSDQCOM follows the same pattern, computing the SSD error metric
for 4 offsets.

Each of the above 4 image processing instructions are limited to single-component formats.

4953

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/QCOM/SPV_QCOM_image_processing2.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_image_processing2] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_image_processing2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_image_processing2] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_image_processing2 extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/qcom/GLSL_QCOM_image_processing2.txt

Below is the pseudocode for GLSL built-in function textureWindowBlockMatchSADQCOM. The
pseudocode for textureWindowBlockMatchSSD is identical other than replacing all instances of "SAD"
with "SSD".

vec4 textureBlockMatchWindowSAD(sampler2D target,
 uvec2 targetCoord,
 samler2D reference,
 uvec2 refCoord,
 uvec2 blocksize) {
 // compareMode (MIN or MAX) comes from the vkSampler associated with `target`
 // uvec2 window comes from the vkSampler associated with `target`
 minSAD = INF;
 maxSAD = -INF;
 uvec2 minCoord;
 uvec2 maxCoord;

 for (uint x=0, x < window.width; x++) {
 for (uint y=0; y < window.height; y++) {
 float SAD = textureBlockMatchSAD(target,
 targetCoord + uvec2(x, y),
 reference,
 refCoord,
 blocksize).x;
 // Note: the below comparison operator will produce undefined results
 // if SAD is a denorm value.
 if (SAD < minSAD) {
 minSAD = SAD;
 minCoord = uvec2(x,y);
 }
 if (SAD > maxSAD) {
 maxSAD = SAD;
 maxCoord = uvec2(x,y);
 }
 }
 }
 if (compareMode=MIN) {
 return vec4(minSAD, minCoord.x, minCoord.y, 0.0);
 } else {
 return vec4(maxSAD, maxCoord.x, maxCoord.y, 0.0);
 }
}

Below is the pseudocode for textureBlockMatchGatherSADQCOM. The pseudocode for
textureBlockMatchGatherSSD follows an identical pattern.

vec4 textureBlockMatchGatherSAD(sampler2D target,
 uvec2 targetCoord,
 samler2D reference,
 uvec2 refCoord,

4954

 uvec2 blocksize) {
 vec4 out;
 for (uint x=0, x<4; x++) {
 float SAD = textureBlockMatchSAD(target,
 targetCoord + uvec2(x, 0),
 reference,
 refCoord,
 blocksize).x;
 out[x] = SAD;
 }
 return out;
}

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceImageProcessing2FeaturesQCOM

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceImageProcessing2PropertiesQCOM

• Extending VkSamplerCreateInfo:

◦ VkSamplerBlockMatchWindowCreateInfoQCOM

New Enums

• VkBlockMatchWindowCompareModeQCOM

New Enum Constants

• VK_QCOM_IMAGE_PROCESSING_2_EXTENSION_NAME

• VK_QCOM_IMAGE_PROCESSING_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_2_FEATURES_QCOM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_PROCESSING_2_PROPERTIES_QCOM

◦ VK_STRUCTURE_TYPE_SAMPLER_BLOCK_MATCH_WINDOW_CREATE_INFO_QCOM

Issues

1) What is the precision of the min/max comparison checks?

RESOLVED: Intermediate computations for the new operations are performed at 16-bit floating
point precision. If the value of "float SAD" in the above code sample is a 16-bit denorm value, then
behavior of the MIN/MAX comparison is undefined.

Version History

• Revision 1, 2023-03-10 (Jeff Leger)

4955

VK_QCOM_multiview_per_view_render_areas

Name String

VK_QCOM_multiview_per_view_render_areas

Extension Type

Device extension

Registered Extension Number

511

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2023-01-10

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension interacts with VK_KHR_dynamic_rendering

• This extension interacts with VK_QCOM_render_pass_transform

Contributors

• Jeff Leger, Qualcomm

• Jonathan Tinkham, Qualcomm

• Jonathan Wicks, Qualcomm

Description

Certain use cases (e.g., side-by-side VR rendering) use multiview and render to distinct regions of
the framebuffer for each view. On some implementations, there may be a performance benefit for
providing per-view render areas to the implementation. Such per-view render areas can be used by
the implementation to reduce the pixels that are affected by attachment load, store, and
multisample resolve operations.

4956

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_multiview_per_view_render_areas] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_multiview_per_view_render_areas extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_multiview_per_view_render_areas] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_multiview_per_view_render_areas extension*

The extension enables a multiview render pass instance to define per-view render areas. For each
view of a multiview render pass instance, only those pixels in the per-view render area are affected
by load, store and resolve operations.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMultiviewPerViewRenderAreasFeaturesQCOM

• Extending VkRenderPassBeginInfo, VkRenderingInfo:

◦ VkMultiviewPerViewRenderAreasRenderPassBeginInfoQCOM

New Enum Constants

• VK_QCOM_MULTIVIEW_PER_VIEW_RENDER_AREAS_EXTENSION_NAME

• VK_QCOM_MULTIVIEW_PER_VIEW_RENDER_AREAS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MULTIVIEW_PER_VIEW_RENDER_AREAS_RENDER_PASS_BEGIN_INFO_QCOM

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_RENDER_AREAS_FEATURES_QCOM

Issues

1) Do the per-view renderAreas interact with vkGetRenderAreaGranularity ?

RESOLVED: There is no change. The granularity returned by vkGetRenderAreaGranularity also
applies to the per-view renderAreas.

2) How does this extension interact with VK_QCOM_render_pass_transform?

RESOLVED: When VK_QCOM_render_pass_transform is enabled, the application provides render area
in non-rotated coordinates which is rotated by the implementation to the rotated coordinate
system. When this extension is used in combination with VK_QCOM_render_pass_transform, then the
renderArea provided in VkRenderingInfo::renderArea, VkRenderPassBeginInfo::renderArea, or
VkCommandBufferInheritanceRenderPassTransformInfoQCOM::renderArea is rotated by the
implementation. The per-view render areas are not rotated.

3) How does this extension interact with VK_QCOM_multiview_per_view_viewports

RESOLVED: There is no direct interaction. The per-view viewports and the per-view renderAreas
are orthogonal features.

4) When a per-view renderArea is specified, must multiview rendering for each view of a multiview
render pass be contained within the per-view renderArea?

RESOLVED: Yes, and the VK_QCOM_multiview_per_view_viewports may help here since it provides per-
view scissors.

5) When per-view render areas are specified, what purpose if any do VkRenderPassBeginInfo
::renderArea and VkRenderingInfo::renderArea serve?

4957

RESOLVED: The per-view renderArea effectively overrides the per-renderpass renderArea. The per-
view renderArea defines the regions of the attachments that are effected by load, store, and
multisample resolve operations. A valid implementation could ignore the per-renderpass
renderArea. However, as an aid to the implementation, the application must set the per-renderpass
renderArea to an area that is at least as large as the union of all the per-view render areas. Pixels
that are within the per-renderpass renderArea but not within any per-view render area must not be
affected by load, store, or multisample resolve operations.

Version History

• Revision 1, 2023-01-10 (Jeff Leger)

VK_QCOM_multiview_per_view_viewports

Name String

VK_QCOM_multiview_per_view_viewports

Extension Type

Device extension

Registered Extension Number

489

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2022-11-22

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension interacts with VK_KHR_dynamic_rendering

• This extension interacts with VK_EXT_extended_dynamic_state

4958

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_multiview_per_view_viewports] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_multiview_per_view_viewports extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_multiview_per_view_viewports] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_multiview_per_view_viewports extension*

Contributors

• Jeff Leger, Qualcomm

• Jonathan Tinkham, Qualcomm

• Jonathan Wicks, Qualcomm

Description

Certain use cases for multiview have a need for specifying a separate viewport and scissor for each
view, without using shader-based viewport indexing as introduced with
VK_EXT_shader_viewport_index_layer.

This extension adds a new way to control ViewportIndex with multiview. When the
multiviewPerViewViewports feature is enabled and if the last pre-rasterization shader entry point’s
interface does not use the ViewportIndex built-in decoration, then each view of a multiview render
pass instance will use a viewport and scissor index equal to the ViewIndex.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM

New Enum Constants

• VK_QCOM_MULTIVIEW_PER_VIEW_VIEWPORTS_EXTENSION_NAME

• VK_QCOM_MULTIVIEW_PER_VIEW_VIEWPORTS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_VIEWPORTS_FEATURES_QCOM

Issues

1) Is is possible to enable/disable the multiviewPerViewViewports feature for individual render pass
instances?

RESOLVED: No, when the multiviewPerViewViewports feature is enabled during vkCreateDevice,
then all created render pass instances (including dynamic render passes from
VK_KHR_dynamic_rendering) and all created VkPipelines will have the feature enabled. This approach
was chosen because it simplifies application code and there is no known use case enable/disable
the feature for individual render passes or pipelines.

2) When this extension is used, is the value of ViewportIndex implicitly written by the last pre-
rasterization shader stage and can the value of ViewportIndex be read in the fragment shader?

RESOLVED: No, use of the extension extension does not add an implicit write to ViewportIndex in
any shader stage, and additionally, the value of ViewportIndex in the fragment shader is undefined.

Version History

• Revision 1, 2022-11-22 (Jeff Leger)

4959

VK_QCOM_render_pass_shader_resolve

Name String

VK_QCOM_render_pass_shader_resolve

Extension Type

Device extension

Registered Extension Number

172

Revision

4

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2019-11-07

IP Status

No known IP claims.

Interactions and External Dependencies

None.

Contributors

• Srihari Babu Alla, Qualcomm

• Bill Licea-Kane, Qualcomm

• Jeff Leger, Qualcomm

Description

This extension allows a shader resolve to replace fixed-function resolve.

Fixed-function resolve is limited in function to simple filters of multisample buffers to a single
sample buffer.

Fixed-function resolve is more performance efficient and/or power efficient than shader resolve for
such simple filters.

4960

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_render_pass_shader_resolve] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_render_pass_shader_resolve extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_render_pass_shader_resolve] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_render_pass_shader_resolve extension*

Shader resolve allows a shader writer to create complex, non-linear filtering of a multisample
buffer in the last subpass of a subpass dependency chain.

This extension also provides a bit which can be used to enlarge a sample region dependency to a
fragment region dependency, so that a framebuffer-region dependency can replace a framebuffer-
global dependency in some cases.

New Enum Constants

• VK_QCOM_RENDER_PASS_SHADER_RESOLVE_EXTENSION_NAME

• VK_QCOM_RENDER_PASS_SHADER_RESOLVE_SPEC_VERSION

• Extending VkSubpassDescriptionFlagBits:

◦ VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM

◦ VK_SUBPASS_DESCRIPTION_SHADER_RESOLVE_BIT_QCOM

Issues

1) Should this extension be named render_pass_shader_resolve?

RESOLVED Yes.

This is part of suite of small extensions to render pass.

Following the style guide, instead of following VK_KHR_create_renderpass2.

2) Should the VK_SAMPLE_COUNT_1_BIT be required for each pColorAttachment and the
DepthStencilAttachent?

RESOLVED No.

While this may not be a common use case, and while most fixed-function resolve hardware has this
limitation, there is little reason to require a shader resolve to resolve to a single sample buffer.

3) Should a shader resolve subpass be the last subpass in a render pass?

RESOLVED Yes.

To be more specific, it should be the last subpass in a subpass dependency chain.

4) Do we need the VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM bit?

RESOLVED Yes.

This applies when an input attachment’s sample count is equal to rasterizationSamples. Further, if
sampleShading is enabled (explicitly or implicitly) then minSampleShading must equal 0.0.

However, this bit may be set on any subpass, it is not restricted to a shader resolve subpass.

4961

Version History

• Revision 1, 2019-06-28 (wwlk)

◦ Initial draft

• Revision 2, 2019-11-06 (wwlk)

◦ General clean-up/spec updates

◦ Added issues

• Revision 3, 2019-11-07 (wwlk)

◦ Typos

◦ Additional issues

◦ Clarified that a shader resolve subpass is the last subpass in a subpass dependency chain

• Revision 4, 2020-01-06 (wwlk)

◦ Change resolution of Issue 1 (render_pass, not renderpass)

VK_QCOM_render_pass_store_ops

Name String

VK_QCOM_render_pass_store_ops

Extension Type

Device extension

Registered Extension Number

302

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2020-03-25

Contributors

• Bill Licea-Kane, Qualcomm Technologies, Inc.

4962

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_render_pass_store_ops] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_render_pass_store_ops extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_render_pass_store_ops] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_render_pass_store_ops extension*

Description

Render pass attachments can be read-only for the duration of a render pass.

Examples include input attachments and depth attachments where depth tests are enabled but
depth writes are not enabled.

In such cases, there can be no contents generated for an attachment within the render area.

This extension adds a new VkAttachmentStoreOp VK_ATTACHMENT_STORE_OP_NONE_QCOM specifying that
the contents within the render area may not be written to memory, but that the prior contents of
the attachment in memory are preserved. However, if any contents were generated within the
render area during rendering, the contents of the attachment will be undefined inside the render
area.

Note

The VkAttachmentStoreOp VK_ATTACHMENT_STORE_OP_STORE may force an
implementation to assume that the attachment was written and force an
implementation to flush data to memory or to a higher level cache. The
VkAttachmentStoreOp VK_ATTACHMENT_STORE_OP_NONE_QCOM may allow an
implementation to assume that the attachment was not written and allow an
implementation to avoid such a flush.

New Enum Constants

• VK_QCOM_RENDER_PASS_STORE_OPS_EXTENSION_NAME

• VK_QCOM_RENDER_PASS_STORE_OPS_SPEC_VERSION

• Extending VkAttachmentStoreOp:

◦ VK_ATTACHMENT_STORE_OP_NONE_QCOM

Version History

• Revision 1, 2019-12-20 (wwlk)

◦ Initial version

• Revision 2, 2020-03-25 (wwlk)

◦ Minor renaming

VK_QCOM_render_pass_transform

Name String

VK_QCOM_render_pass_transform

Extension Type

Device extension

Registered Extension Number

283

4963

Revision

4

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2023-12-13

Interactions and External Dependencies

• This extension interacts with VK_KHR_swapchain

• This extension interacts with VK_KHR_surface

• This extension interacts with VK_EXT_fragment_density_map

• This extension interacts with VK_KHR_fragment_shading_rate

• This extension interacts with VK_QCOM_tile_properties

Contributors

• Jeff Leger, Qualcomm Technologies, Inc.

• Brandon Light, Qualcomm Technologies, Inc.

• Matthew Netsch, Qualcomm Technologies, Inc.

• Arpit Agarwal, Qualcomm Technologies, Inc.

Description

This extension provides a mechanism for applications to enable driver support for render pass
transform.

Mobile devices can be rotated and mobile applications need to render properly when a device is
held in a landscape or portrait orientation. When the current orientation differs from the device’s
native orientation, a rotation is required so that the “up” direction of the rendered scene matches
the current orientation.

If the Display Processing Unit (DPU) does not natively support rotation, the Vulkan presentation
engine can handle this rotation in a separate composition pass. Alternatively, the application can
render frames “pre-rotated” to avoid this extra pass. The latter is preferred to reduce power
consumption and achieve the best performance because it avoids tasking the GPU with extra work
to perform the copy/rotate operation.

Unlike OpenGL ES, the burden of pre-rotation in Vulkan falls on the application. To implement pre-

4964

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_render_pass_transform] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_render_pass_transform extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_render_pass_transform] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_render_pass_transform extension*

rotation, applications render into swapchain images matching the device native aspect ratio of the
display and “pre-rotate” the rendering content to match the device’s current orientation. The
burden is more than adjusting the Model View Projection (MVP) matrix in the vertex shader to
account for rotation and aspect ratio. The coordinate systems of scissors, viewports, derivatives and
several shader built-ins may need to be adapted to produce the correct result.

It is difficult for some game engines to manage this burden; many chose to simply accept the
performance/power overhead of performing rotation in the presentation engine.

This extension allows applications to achieve the performance benefits of pre-rotated rendering by
moving much of the above-mentioned burden to the graphics driver. The following is unchanged
with this extension:

• Applications create a swapchain matching the native orientation of the display. Applications
must also set the VkSwapchainCreateInfoKHR::preTransform equal to the currentTransform as
returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR.

The following is changed with this extension:

• At vkCmdBeginRenderPass, the application provides extension struct
VkRenderPassTransformBeginInfoQCOM specifying the render pass transform parameters.

• At vkBeginCommandBuffer for secondary command buffers, the application provides extension
struct VkCommandBufferInheritanceRenderPassTransformInfoQCOM specifying the render
pass transform parameters.

• The renderArea, viewports, scissors, and fragmentSize are all provided in the current (non-
rotated) coordinate system. The implementation will transform those into the native (rotated)
coordinate system.

• The implementation is responsible for transforming shader built-ins (FragCoord, PointCoord,
SamplePosition, PrimitiveShadingRateKHR, interpolateAt(), dFdx, dFdy, fWidth) into the rotated
coordinate system.

• The implementation is responsible for transforming position to the rotated coordinate system.

• If this extension is used with VK_QCOM_tile_properties, then
vkGetFramebufferTilePropertiesQCOM and vkGetDynamicRenderingTilePropertiesQCOM
return tile properties in the rotated coordinate space.

New Structures

• Extending VkCommandBufferInheritanceInfo:

◦ VkCommandBufferInheritanceRenderPassTransformInfoQCOM

• Extending VkRenderPassBeginInfo:

◦ VkRenderPassTransformBeginInfoQCOM

New Enum Constants

• VK_QCOM_RENDER_PASS_TRANSFORM_EXTENSION_NAME

• VK_QCOM_RENDER_PASS_TRANSFORM_SPEC_VERSION

4965

• Extending VkRenderPassCreateFlagBits:

◦ VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDER_PASS_TRANSFORM_INFO_QCOM

◦ VK_STRUCTURE_TYPE_RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM

Issues

1) Some early Adreno drivers (October 2019 through March 2020) advertised support for this
extension but expected VK_STRUCTURE_TYPE values different from those in the vukan headers. To
cover all Adreno devices on the market, applications need to detect the driver version and use the
appropriate VK_STRUCTURE_TYPE values from the table below.

The driver version reported in VkPhysicalDeviceProperties.driverVersion is a uint32_t type. You
can decode the uint32_t value into a major.minor.patch version as shown below:

uint32_t major = ((driverVersion) >> 22);
uint32_t minor = ((driverVersion) >> 12) & 0x3ff);
uint32_t patch = ((driverVersion) & 0xfff);

If the Adreno major.minor.patch version is greater than or equal to to 512.469.0, then simply use
the VK_STRUCTURE_TYPE values as defined in vulkan_core.h. If the version is less than or equal to
to 512.468.0, then use the alternate values for the two VK_STRUCTURE_TYPEs in the table below.

Table 106. Adreno Driver Requirements

Adreno Driver Version

512.468.0 and earlier 512.469.0 and later

VK_STRUCTURE_TYPE_
RENDER_PASS_TRANSFO
RM_BEGIN_INFO_QCOM

1000282000 1000282001

VK_STRUCTURE_TYPE_
COMMAND_BUFFER_INH
ERITANCE_RENDER_PAS
S_TRANSFORM_INFO_QC
OM

1000282001 1000282000

2) Should the extension support only rotations (e.g. 90, 180, 270-degrees), or also mirror transforms
(e.g. vertical flips)? Mobile use cases only require rotation. Other display systems such as projectors
might require a flipped transform.

RESOLVED: In this version of the extension, the functionality is restricted to 90, 180, and 270-
degree rotations to address mobile use cases.

3) How does this extension interact with VK_EXT_fragment_density_map?

4966

RESOLVED Some implementations may not be able to support a render pass that enables both
render pass transform and fragment density maps. For simplicity, this extension disallows enabling
both features within a single render pass.

4) What should this extension be named?

We considered names such as “rotated_rendering”, “pre_rotation” and others. Since the
functionality is limited to a render pass, it seemed the name should include “render_pass”. While
the current extension is limited to rotations, it could be extended to other transforms (like mirror)
in the future.

RESOLVED The name “render_pass_transform” seems like the most accurate description of the
introduced functionality.

5) How does this extension interact with VK_KHR_fragment_shading_rate?

RESOLVED: For the same reasons as issue 3, this extension disallows enabling both
pFragmentShadingRateAttachment and render pass transform within a single render pass.

However, pipeline shading rate and primitive shading rate are supported, and their respective
fragmentSize and PrimitiveShadingRateKHR are provided in the current (non-rotated) coordinate
system. The implementation is responsible for transforming them to the rotated coordinate system.

The set of supported shading rates may be different per transform. Supported rates queried from
vkGetPhysicalDeviceFragmentShadingRatesKHR are in the native (rotated) coordinate system. This
means that the application must swap the x/y of the reported rates to get the set of rates supported
for 90 and 270 degree rotation.

Version History

• Revision 1, 2020-02-05 (Jeff Leger)

• Revision 2, 2021-03-09 (Matthew Netsch)

◦ Adds interactions with VK_KHR_fragment_shading_rate

• Revision 3, 2022-07-11 (Arpit Agarwal)

◦ Adds interactions with VK_QCOM_tile_properties

• Revision 4, 2023-12-13 (Matthew Netsch)

◦ Relax dependencies on VK_KHR_surface and VK_KHR_swapchain

VK_QCOM_rotated_copy_commands

Name String

VK_QCOM_rotated_copy_commands

Extension Type

Device extension

4967

Registered Extension Number

334

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_copy_commands2

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2023-12-13

Interactions and External Dependencies

• This extension interacts with VK_KHR_swapchain

• This extension interacts with VK_KHR_surface

Contributors

• Jeff Leger, Qualcomm Technologies, Inc.

• Matthew Netsch, Qualcomm Technologies, Inc.

Description

This extension extends adds an optional rotation transform to copy commands
vkCmdBlitImage2KHR, vkCmdCopyImageToBuffer2KHR and vkCmdCopyBufferToImage2KHR.
When copying between two resources, where one resource contains rotated content and the other
does not, a rotated copy may be desired. This extension may be used in combination with
VK_QCOM_render_pass_transform which adds rotated render passes.

This extension adds an extension structure to the following commands: vkCmdBlitImage2KHR,
vkCmdCopyImageToBuffer2KHR and vkCmdCopyBufferToImage2KHR

Issues

1) What is an appropriate name for the added extension structure? The style guide says “Structures
which extend other structures through the pNext chain should reflect the name of the base
structure they extend.”, but in this case a single extension structure is used to extend three base
structures (vkCmdBlitImage2KHR, vkCmdCopyImageToBuffer2KHR and
vkCmdCopyBufferToImage2KHR). Creating three identical structures with unique names seemed
undesirable.

RESOLVED: Deviate from the style guide for extension structure naming.

4968

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_rotated_copy_commands] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_rotated_copy_commands extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_rotated_copy_commands] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_rotated_copy_commands extension*

2) Should this extension add a rotation capability to vkCmdCopyImage2KHR?

RESOLVED: No. Use of rotated vkCmdBlitImage2KHR can fully address this use case.

3) Should this extension add a rotation capability to vkCmdResolveImage2KHR?

RESOLVED No. Use of vkCmdResolveImage2KHR is very slow and extremely bandwidth intensive
on Qualcomm’s GPU architecture and use of pResolveAttachments in vkRenderPass is the strongly
preferred approach. Therefore, we choose not to introduce a rotation capability to
vkCmdResolveImage2KHR.

New Structures

• Extending VkBufferImageCopy2, VkImageBlit2:

◦ VkCopyCommandTransformInfoQCOM

New Enum Constants

• VK_QCOM_ROTATED_COPY_COMMANDS_EXTENSION_NAME

• VK_QCOM_ROTATED_COPY_COMMANDS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COPY_COMMAND_TRANSFORM_INFO_QCOM

Version History

• Revision 1, 2020-09-19 (Jeff Leger)

• Revision 2, 2023-12-13 (Matthew Netsch)

◦ Relax dependency on VK_KHR_swapchain

VK_QCOM_tile_properties

Name String

VK_QCOM_tile_properties

Extension Type

Device extension

Registered Extension Number

485

Revision

1

Ratification Status

Not ratified

4969

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

API Interactions

• Interacts with VK_KHR_dynamic_rendering

Contact

• Matthew Netsch mnetsch

Extension Proposal

VK_QCOM_tile_properties

Other Extension Metadata

Last Modified Date

2022-07-11

Interactions and External Dependencies

• This extension interacts with VK_EXT_subpass_merge_feedback

Contributors

• Jonathan Wicks, Qualcomm Technologies, Inc.

• Jonathan Tinkham, Qualcomm Technologies, Inc.

• Arpit Agarwal, Qualcomm Technologies, Inc.

• Jeff Leger, Qualcomm Technologies, Inc.

Description

This extension allows an application to query the tile properties. This extension supports both
renderpasses and dynamic rendering.

New Commands

• vkGetDynamicRenderingTilePropertiesQCOM

• vkGetFramebufferTilePropertiesQCOM

New Structures

• VkTilePropertiesQCOM

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceTilePropertiesFeaturesQCOM

If VK_KHR_dynamic_rendering is supported:

• VkRenderingInfoKHR

4970

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_tile_properties] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_tile_properties extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_tile_properties] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_tile_properties extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_QCOM_tile_properties.adoc

New Enum Constants

• VK_QCOM_TILE_PROPERTIES_EXTENSION_NAME

• VK_QCOM_TILE_PROPERTIES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TILE_PROPERTIES_FEATURES_QCOM

◦ VK_STRUCTURE_TYPE_TILE_PROPERTIES_QCOM

Version History

• Revision 1, 2022-07-11 (Arpit Agarwal)

◦ Initial version

VK_QCOM_ycbcr_degamma

Name String

VK_QCOM_ycbcr_degamma

Extension Type

Device extension

Registered Extension Number

521

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

• Matthew Netsch mnetsch

Other Extension Metadata

Last Modified Date

2023-07-31

IP Status

No known IP claims.

Interactions and External Dependencies

None

4971

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_ycbcr_degamma] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_ycbcr_degamma extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QCOM_ycbcr_degamma] @mnetsch%0A*Here describe the issue or question you have about the VK_QCOM_ycbcr_degamma extension*

Contributors

• Jeff Leger, Qualcomm

• Jonathan Wicks, Qualcomm

Description

This extension allows implementations to expose support for “sRGB EOTF” also known as “sRGB
degamma”, used in combination with images using 8-bit Y′CBCR formats. In addition, the degamma
can be selectively applied to the Y (luma) or CrCb (chroma).

VK_KHR_sampler_ycbcr_conversion adds support for Y′CBCR conversion, but allows texture sampling in
a non-linear space which can cause artifacts. This extension allows implementations to expose
sRGB degamma for Y′CBCR formats, which is performed during texture filtering, allowing texture
filtering to operate in a linear space.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceYcbcrDegammaFeaturesQCOM

• Extending VkSamplerYcbcrConversionCreateInfo:

◦ VkSamplerYcbcrConversionYcbcrDegammaCreateInfoQCOM

New Enum Constants

• VK_QCOM_YCBCR_DEGAMMA_EXTENSION_NAME

• VK_QCOM_YCBCR_DEGAMMA_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_DEGAMMA_FEATURES_QCOM

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_YCBCR_DEGAMMA_CREATE_INFO_QCOM

Issues

1) Which Y′CBCR formats support the degamma feature?

RESOLVED: For implementations that support the extension, each format that contains 8-bit R, G,
and B components and supports either VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT or
VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT must support degamma.

Since non-compressed Vulkan sRGB formats are already limited to 8-bit components, and since
Adreno supports degamma for all 8bit Y′CBCR formats, this extension does not introduce a new
VK_FORMAT_FEATURE* bit for the degamma feature.

2) On which Y′CBCR components is the degamma applied?

RESOLVED: While degamma is expected to be applied to only the Y (luma) component, the
extension provides the ability to selectively enable degamma for both the Y (luma) and/or CbCr
(chroma) components.

4972

3) Should degamma be enabled for the sampler object or for the image view object?

RESOLVED: Both. This extension extends VkSamplerYcbcrConversionCreateInfo and the
specification already requires that both sampler and view objects must be created with an identical
VkSamplerYcbcrConversionCreateInfo in their pNext chains.

4) Why apply the “sRGB” transfer function directly to Y′CBCR data when it would be more correct to
use the “ITU transfer function”, and do so only after the values have been converted into non-linear
R’G’B'?

RESOLVED: Y′CBCR is frequently stored according to standards (e.g. BT.601 and BT.709) that specify
that the conversion between linear and non-linear should use the ITU Transfer function. The ITU
transfer function is mathematically different from the sRGB transfer function and while sRGB and
ITU define similar curves, the difference is significant. Performing the “sRGB degamma” prior to
range expansion can introduce artifacts if the content uses VK_SAMPLER_YCBCR_RANGE_ITU_NARROW
encoding. Nevertheless, using sRGB can make sense for certain use-cases where camera YCbCr
images are known to be encoded with sRGB (or a pure gamma 2.2) transfer function and are known
to use full-range encoding.

For those use-cases, this extension leverages the GPU ability to enable sRGB degamma at little cost,
and can improve quality because texture filtering is able to occur in linear space.

Version History

• Revision 1, 2023-07-31 (Jeff Leger)

VK_QNX_external_memory_screen_buffer

Name String

VK_QNX_external_memory_screen_buffer

Extension Type

Device extension

Registered Extension Number

530

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

 VK_KHR_sampler_ycbcr_conversion
 and
 VK_KHR_external_memory
 and
 VK_KHR_dedicated_allocation

4973

 or
 Version 1.1
and
VK_EXT_queue_family_foreign

Contact

• Mike Gorchak mgorchak-blackberry

• Aaron Ruby aruby-blackberry

Other Extension Metadata

Last Modified Date

2023-05-17

IP Status

No known IP claims.

Contributors

• Mike Gorchak, QNX / Blackberry Limited

• Aaron Ruby, QNX / Blackberry Limited

Description

This extension enables an application to import QNX Screen _screen_buffer objects created outside
of the Vulkan device into Vulkan memory objects, where they can be bound to images and buffers.

Some _screen_buffer images have implementation-defined external formats that may not
correspond to Vulkan formats. Sampler Y′CBCR conversion can be used to sample from these images
and convert them to a known color space.

_screen_buffer is strongly typed, so naming the handle type is redundant. The internal layout and
therefore size of a _screen_buffer image may depend on native usage flags that do not have
corresponding Vulkan counterparts.

New Commands

• vkGetScreenBufferPropertiesQNX

New Structures

• VkScreenBufferPropertiesQNX

• Extending VkImageCreateInfo, VkSamplerYcbcrConversionCreateInfo:

◦ VkExternalFormatQNX

• Extending VkMemoryAllocateInfo:

◦ VkImportScreenBufferInfoQNX

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

4974

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QNX_external_memory_screen_buffer] @mgorchak-blackberry%0A*Here describe the issue or question you have about the VK_QNX_external_memory_screen_buffer extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QNX_external_memory_screen_buffer] @mgorchak-blackberry%0A*Here describe the issue or question you have about the VK_QNX_external_memory_screen_buffer extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QNX_external_memory_screen_buffer] @aruby-blackberry%0A*Here describe the issue or question you have about the VK_QNX_external_memory_screen_buffer extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QNX_external_memory_screen_buffer] @aruby-blackberry%0A*Here describe the issue or question you have about the VK_QNX_external_memory_screen_buffer extension*

◦ VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX

• Extending VkScreenBufferPropertiesQNX:

◦ VkScreenBufferFormatPropertiesQNX

New Enum Constants

• VK_QNX_EXTERNAL_MEMORY_SCREEN_BUFFER_EXTENSION_NAME

• VK_QNX_EXTERNAL_MEMORY_SCREEN_BUFFER_SPEC_VERSION

• Extending VkExternalMemoryHandleTypeFlagBits:

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_SCREEN_BUFFER_BIT_QNX

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_QNX

◦ VK_STRUCTURE_TYPE_IMPORT_SCREEN_BUFFER_INFO_QNX

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_SCREEN_BUFFER_FEATURES_QNX

◦ VK_STRUCTURE_TYPE_SCREEN_BUFFER_FORMAT_PROPERTIES_QNX

◦ VK_STRUCTURE_TYPE_SCREEN_BUFFER_PROPERTIES_QNX

Issues

Version History

• Revision 1, 2023-05-17 (Mike Gorchak)

◦ Initial version

VK_QNX_screen_surface

Name String

VK_QNX_screen_surface

Extension Type

Instance extension

Registered Extension Number

379

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

4975

Contact

• Mike Gorchak mgorchak-blackberry

Other Extension Metadata

Last Modified Date

2021-01-11

IP Status

No known IP claims.

Contributors

• Mike Gorchak, BlackBerry Limited

Description

The VK_QNX_screen_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) that refers to a QNX Screen window,
as well as a query to determine support for rendering to a QNX Screen compositor.

New Commands

• vkCreateScreenSurfaceQNX

• vkGetPhysicalDeviceScreenPresentationSupportQNX

New Structures

• VkScreenSurfaceCreateInfoQNX

New Bitmasks

• VkScreenSurfaceCreateFlagsQNX

New Enum Constants

• VK_QNX_SCREEN_SURFACE_EXTENSION_NAME

• VK_QNX_SCREEN_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_SCREEN_SURFACE_CREATE_INFO_QNX

Version History

• Revision 1, 2021-01-11 (Mike Gorchak)

◦ Initial draft.

VK_SEC_amigo_profiling

4976

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QNX_screen_surface] @mgorchak-blackberry%0A*Here describe the issue or question you have about the VK_QNX_screen_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_QNX_screen_surface] @mgorchak-blackberry%0A*Here describe the issue or question you have about the VK_QNX_screen_surface extension*

Name String

VK_SEC_amigo_profiling

Extension Type

Device extension

Registered Extension Number

486

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Contact

• Ralph Potter r_potter

Other Extension Metadata

Last Modified Date

2022-07-29

IP Status

No known IP claims.

Contributors

• Ralph Potter, Samsung

• Sangrak Oh, Samsung

• Jinku Kang, Samsung

Description

This extension is intended to communicate information from layered API implementations such as
ANGLE to internal proprietary system schedulers. It has no behavioural implications beyond
enabling more intelligent behaviour from the system scheduler.

Application developers should avoid using this extension. It is documented solely for the benefit of
tools and layer developers, who may need to manipulate pNext chains that include these structures.

Note

There is currently no specification language written for this extension. The links to
APIs defined by the extension are to stubs that only include generated content
such as API declarations and implicit valid usage statements.

4977

Note

This extension is only intended for use in specific embedded environments with
known implementation details, and is therefore undocumented.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceAmigoProfilingFeaturesSEC

• Extending VkSubmitInfo:

◦ VkAmigoProfilingSubmitInfoSEC

New Enum Constants

• VK_SEC_AMIGO_PROFILING_EXTENSION_NAME

• VK_SEC_AMIGO_PROFILING_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_AMIGO_PROFILING_SUBMIT_INFO_SEC

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_AMIGO_PROFILING_FEATURES_SEC

Stub API References

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_SEC_amigo_profiling
typedef struct VkPhysicalDeviceAmigoProfilingFeaturesSEC {
 VkStructureType sType;
 void* pNext;
 VkBool32 amigoProfiling;
} VkPhysicalDeviceAmigoProfilingFeaturesSEC;

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceAmigoProfilingFeaturesSEC-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_AMIGO_PROFILING_FEATURES_SEC

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_SEC_amigo_profiling
typedef struct VkAmigoProfilingSubmitInfoSEC {
 VkStructureType sType;
 const void* pNext;
 uint64_t firstDrawTimestamp;

4978

 uint64_t swapBufferTimestamp;
} VkAmigoProfilingSubmitInfoSEC;

Valid Usage (Implicit)

• VUID-VkAmigoProfilingSubmitInfoSEC-sType-sType
sType must be VK_STRUCTURE_TYPE_AMIGO_PROFILING_SUBMIT_INFO_SEC

Version History

• Revision 1, 2022-07-29 (Ralph Potter)

◦ Initial specification

VK_VALVE_descriptor_set_host_mapping

Name String

VK_VALVE_descriptor_set_host_mapping

Extension Type

Device extension

Registered Extension Number

421

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Special Use

• D3D support

Contact

• Hans-Kristian Arntzen HansKristian-Work

Other Extension Metadata

Last Modified Date

2022-02-22

IP Status

No known IP claims.

4979

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_VALVE_descriptor_set_host_mapping] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_VALVE_descriptor_set_host_mapping extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_VALVE_descriptor_set_host_mapping] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_VALVE_descriptor_set_host_mapping extension*

Contributors

• Hans-Kristian Arntzen, Valve

Description

This extension allows applications to directly query a host pointer for a VkDescriptorSet which can
be used to copy descriptors between descriptor sets without the use of an API command. Memory
offsets and sizes for descriptors can be queried from a VkDescriptorSetLayout as well.

Note

There is currently no specification language written for this extension. The links to
APIs defined by the extension are to stubs that only include generated content
such as API declarations and implicit valid usage statements.

Note

This extension is only intended for use in specific embedded environments with
known implementation details, and is therefore undocumented.

New Commands

• vkGetDescriptorSetHostMappingVALVE

• vkGetDescriptorSetLayoutHostMappingInfoVALVE

New Structures

• VkDescriptorSetBindingReferenceVALVE

• VkDescriptorSetLayoutHostMappingInfoVALVE

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE

New Enum Constants

• VK_VALVE_DESCRIPTOR_SET_HOST_MAPPING_EXTENSION_NAME

• VK_VALVE_DESCRIPTOR_SET_HOST_MAPPING_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_BINDING_REFERENCE_VALVE

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_HOST_MAPPING_INFO_VALVE

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_SET_HOST_MAPPING_FEATURES_VALVE

Stub API References

There is currently no specification language written for this command. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

4980

// Provided by VK_VALVE_descriptor_set_host_mapping
void vkGetDescriptorSetLayoutHostMappingInfoVALVE(
 VkDevice device,
 const VkDescriptorSetBindingReferenceVALVE* pBindingReference,
 VkDescriptorSetLayoutHostMappingInfoVALVE* pHostMapping);

Valid Usage (Implicit)

• VUID-vkGetDescriptorSetLayoutHostMappingInfoVALVE-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDescriptorSetLayoutHostMappingInfoVALVE-pBindingReference-parameter
pBindingReference must be a valid pointer to a valid
VkDescriptorSetBindingReferenceVALVE structure

• VUID-vkGetDescriptorSetLayoutHostMappingInfoVALVE-pHostMapping-parameter
pHostMapping must be a valid pointer to a VkDescriptorSetLayoutHostMappingInfoVALVE
structure

There is currently no specification language written for this command. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_VALVE_descriptor_set_host_mapping
void vkGetDescriptorSetHostMappingVALVE(
 VkDevice device,
 VkDescriptorSet descriptorSet,
 void** ppData);

Valid Usage (Implicit)

• VUID-vkGetDescriptorSetHostMappingVALVE-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDescriptorSetHostMappingVALVE-descriptorSet-parameter
descriptorSet must be a valid VkDescriptorSet handle

• VUID-vkGetDescriptorSetHostMappingVALVE-ppData-parameter
ppData must be a valid pointer to a pointer value

• VUID-vkGetDescriptorSetHostMappingVALVE-descriptorSet-parent
descriptorSet must have been created, allocated, or retrieved from device

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_VALVE_descriptor_set_host_mapping
typedef struct VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE {

4981

 VkStructureType sType;
 void* pNext;
 VkBool32 descriptorSetHostMapping;
} VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE;

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_SET_HOST_MAPPING_FEATURES_VALVE

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_VALVE_descriptor_set_host_mapping
typedef struct VkDescriptorSetBindingReferenceVALVE {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSetLayout descriptorSetLayout;
 uint32_t binding;
} VkDescriptorSetBindingReferenceVALVE;

Valid Usage (Implicit)

• VUID-VkDescriptorSetBindingReferenceVALVE-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_BINDING_REFERENCE_VALVE

• VUID-VkDescriptorSetBindingReferenceVALVE-pNext-pNext
pNext must be NULL

• VUID-VkDescriptorSetBindingReferenceVALVE-descriptorSetLayout-parameter
descriptorSetLayout must be a valid VkDescriptorSetLayout handle

There is currently no specification language written for this type. This section acts only as
placeholder and to avoid dead links in the specification and reference pages.

// Provided by VK_VALVE_descriptor_set_host_mapping
typedef struct VkDescriptorSetLayoutHostMappingInfoVALVE {
 VkStructureType sType;
 void* pNext;
 size_t descriptorOffset;
 uint32_t descriptorSize;
} VkDescriptorSetLayoutHostMappingInfoVALVE;

4982

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutHostMappingInfoVALVE-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_HOST_MAPPING_INFO_VALVE

• VUID-VkDescriptorSetLayoutHostMappingInfoVALVE-pNext-pNext
pNext must be NULL

Version History

• Revision 1, 2022-02-22 (Hans-Kristian Arntzen)

◦ Initial specification

List of Provisional Extensions
• VK_KHR_portability_subset

• VK_AMDX_shader_enqueue

• VK_NV_cuda_kernel_launch

• VK_NV_displacement_micromap

4983

VK_KHR_portability_subset

Name String

VK_KHR_portability_subset

Extension Type

Device extension

Registered Extension Number

164

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

Contact

• Bill Hollings billhollings

Other Extension Metadata

Last Modified Date

2020-07-21

IP Status

No known IP claims.

Contributors

• Bill Hollings, The Brenwill Workshop Ltd.

• Daniel Koch, NVIDIA

• Dzmitry Malyshau, Mozilla

• Chip Davis, CodeWeavers

• Dan Ginsburg, Valve

• Mike Weiblen, LunarG

• Neil Trevett, NVIDIA

• Alexey Knyazev, Independent

4984

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_portability_subset] @billhollings%0A*Here describe the issue or question you have about the VK_KHR_portability_subset extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_portability_subset] @billhollings%0A*Here describe the issue or question you have about the VK_KHR_portability_subset extension*

Description

The VK_KHR_portability_subset extension allows a non-conformant Vulkan implementation to be
built on top of another non-Vulkan graphics API, and identifies differences between that
implementation and a fully-conformant native Vulkan implementation.

This extension provides Vulkan implementations with the ability to mark otherwise-required
capabilities as unsupported, or to establish additional properties and limits that the application
should adhere to in order to guarantee portable behaviour and operation across platforms,
including platforms where Vulkan is not natively supported.

The goal of this specification is to document, and make queryable, capabilities which are required
to be supported by a fully-conformant Vulkan 1.0 implementation, but may be optional for an
implementation of the Vulkan 1.0 Portability Subset.

The intent is that this extension will be advertised only on implementations of the Vulkan 1.0
Portability Subset, and not on conformant implementations of Vulkan 1.0. Fully-conformant Vulkan
implementations provide all the required capabilities, and so will not provide this extension.
Therefore, the existence of this extension can be used to determine that an implementation is likely
not fully conformant with the Vulkan spec.

If this extension is supported by the Vulkan implementation, the application must enable this
extension.

This extension defines several new structures that can be chained to the existing structures used by
certain standard Vulkan calls, in order to query for non-conformant portable behavior.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePortabilitySubsetFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDevicePortabilitySubsetPropertiesKHR

New Enum Constants

• VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME

• VK_KHR_PORTABILITY_SUBSET_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PORTABILITY_SUBSET_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PORTABILITY_SUBSET_PROPERTIES_KHR

Issues

None.

4985

Version History

• Revision 1, 2020-07-21 (Bill Hollings)

◦ Initial draft.

VK_AMDX_shader_enqueue

Name String

VK_AMDX_shader_enqueue

Extension Type

Device extension

Registered Extension Number

135

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_synchronization2
and
VK_KHR_pipeline_library
and
VK_KHR_spirv_1_4

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

API Interactions

• Interacts with VK_KHR_maintenance5

SPIR-V Dependencies

• SPV_AMDX_shader_enqueue

Contact

• Tobias Hector tobski

Extension Proposal

VK_AMDX_shader_enqueue

Other Extension Metadata

Last Modified Date

2021-07-22

4986

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMDX/SPV_AMDX_shader_enqueue.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMDX_shader_enqueue] @tobski%0A*Here describe the issue or question you have about the VK_AMDX_shader_enqueue extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMDX_shader_enqueue] @tobski%0A*Here describe the issue or question you have about the VK_AMDX_shader_enqueue extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_AMDX_shader_enqueue.adoc

Provisional

This extension is provisional and should not be used in production applications. The
functionality may change in ways that break backwards compatibility between revisions,
and before final release.

Contributors

• Tobias Hector, AMD

• Matthaeus Chajdas, AMD

• Maciej Jesionowski, AMD

• Robert Martin, AMD

• Qun Lin, AMD

• Rex Xu, AMD

• Dominik Witczak, AMD

• Karthik Srinivasan, AMD

• Nicolai Haehnle, AMD

• Stuart Smith, AMD

Description

This extension adds the ability for developers to enqueue compute shader workgroups from other
compute shaders.

New Commands

• vkCmdDispatchGraphAMDX

• vkCmdDispatchGraphIndirectAMDX

• vkCmdDispatchGraphIndirectCountAMDX

• vkCmdInitializeGraphScratchMemoryAMDX

• vkCreateExecutionGraphPipelinesAMDX

• vkGetExecutionGraphPipelineNodeIndexAMDX

• vkGetExecutionGraphPipelineScratchSizeAMDX

New Structures

• VkDispatchGraphCountInfoAMDX

• VkDispatchGraphInfoAMDX

• VkExecutionGraphPipelineCreateInfoAMDX

• VkExecutionGraphPipelineScratchSizeAMDX

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderEnqueueFeaturesAMDX

4987

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderEnqueuePropertiesAMDX

• Extending VkPipelineShaderStageCreateInfo:

◦ VkPipelineShaderStageNodeCreateInfoAMDX

New Unions

• VkDeviceOrHostAddressConstAMDX

New Enum Constants

• VK_AMDX_SHADER_ENQUEUE_EXTENSION_NAME

• VK_AMDX_SHADER_ENQUEUE_SPEC_VERSION

• VK_SHADER_INDEX_UNUSED_AMDX

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_EXECUTION_GRAPH_SCRATCH_BIT_AMDX

• Extending VkPipelineBindPoint:

◦ VK_PIPELINE_BIND_POINT_EXECUTION_GRAPH_AMDX

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXECUTION_GRAPH_PIPELINE_CREATE_INFO_AMDX

◦ VK_STRUCTURE_TYPE_EXECUTION_GRAPH_PIPELINE_SCRATCH_SIZE_AMDX

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ENQUEUE_FEATURES_AMDX

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ENQUEUE_PROPERTIES_AMDX

◦ VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_NODE_CREATE_INFO_AMDX

If VK_KHR_maintenance5 is supported:

• Extending VkBufferUsageFlagBits2KHR:

◦ VK_BUFFER_USAGE_2_EXECUTION_GRAPH_SCRATCH_BIT_AMDX

Version History

• Revision 1, 2021-07-22 (Tobias Hector)

◦ Initial revision

VK_NV_cuda_kernel_launch

Name String

VK_NV_cuda_kernel_launch

Extension Type

Device extension

4988

Registered Extension Number

308

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

None

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

API Interactions

• Interacts with VK_EXT_debug_report

Contact

• Tristan Lorach tlorach

Other Extension Metadata

Last Modified Date

2020-09-30

Contributors

• Eric Werness, NVIDIA

Description

Interoperability between APIs can sometimes create additional overhead depending on the
platform used. This extension targets deployment of existing CUDA kernels via Vulkan, with a way
to directly upload PTX kernels and dispatch the kernels from Vulkan’s command buffer without the
need to use interoperability between the Vulkan and CUDA contexts. However, we do encourage
actual development using the native CUDA runtime for the purpose of debugging and profiling.

The application will first have to create a CUDA module using vkCreateCudaModuleNV then create
the CUDA function entry point with vkCreateCudaFunctionNV.

Then in order to dispatch this function, the application will create a command buffer where it will
launch the kernel with vkCmdCudaLaunchKernelNV.

When done, the application will then destroy the function handle, as well as the CUDA module
handle with vkDestroyCudaFunctionNV and vkDestroyCudaModuleNV.

To reduce the impact of compilation time, this extension offers the capability to return a binary
cache from the PTX that was provided. For this, a first query for the required cache size is made
with vkGetCudaModuleCacheNV with a NULL pointer to a buffer and with a valid pointer receiving
the size; then another call of the same function with a valid pointer to a buffer to retrieve the data.

4989

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_cuda_kernel_launch] @tlorach%0A*Here describe the issue or question you have about the VK_NV_cuda_kernel_launch extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_cuda_kernel_launch] @tlorach%0A*Here describe the issue or question you have about the VK_NV_cuda_kernel_launch extension*

The resulting cache could then be user later for further runs of this application by sending this
cache instead of the PTX code (using the same vkCreateCudaModuleNV), thus significantly speeding
up the initialization of the CUDA module.

As with VkPipelineCache, the binary cache depends on the hardware architecture. The application
must assume the cache might fail, and need to handle falling back to the original PTX code as
necessary. Most often, the cache will succeed if the same GPU driver and architecture is used
between the cache generation from PTX and the use of this cache. In the event of a new driver
version, or if using a different GPU architecture, the cache is likely to become invalid.

New Object Types

• VkCudaFunctionNV

• VkCudaModuleNV

New Commands

• vkCmdCudaLaunchKernelNV

• vkCreateCudaFunctionNV

• vkCreateCudaModuleNV

• vkDestroyCudaFunctionNV

• vkDestroyCudaModuleNV

• vkGetCudaModuleCacheNV

New Structures

• VkCudaFunctionCreateInfoNV

• VkCudaLaunchInfoNV

• VkCudaModuleCreateInfoNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceCudaKernelLaunchFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceCudaKernelLaunchPropertiesNV

New Enum Constants

• VK_NV_CUDA_KERNEL_LAUNCH_EXTENSION_NAME

• VK_NV_CUDA_KERNEL_LAUNCH_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_CUDA_FUNCTION_NV

◦ VK_OBJECT_TYPE_CUDA_MODULE_NV

• Extending VkStructureType:

4990

◦ VK_STRUCTURE_TYPE_CUDA_FUNCTION_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_CUDA_LAUNCH_INFO_NV

◦ VK_STRUCTURE_TYPE_CUDA_MODULE_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUDA_KERNEL_LAUNCH_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUDA_KERNEL_LAUNCH_PROPERTIES_NV

If VK_EXT_debug_report is supported:

• Extending VkDebugReportObjectTypeEXT:

◦ VK_DEBUG_REPORT_OBJECT_TYPE_CUDA_FUNCTION_NV_EXT

◦ VK_DEBUG_REPORT_OBJECT_TYPE_CUDA_MODULE_NV_EXT

Issues

None.

Version History

• Revision 1, 2020-03-01 (Tristan Lorach)

• Revision 2, 2020-09-30 (Tristan Lorach)

VK_NV_displacement_micromap

Name String

VK_NV_displacement_micromap

Extension Type

Device extension

Registered Extension Number

398

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_opacity_micromap

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

Contact

• Christoph Kubisch pixeljetstream

• Eric Werness ewerness-nv

4991

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_displacement_micromap] @pixeljetstream%0A*Here describe the issue or question you have about the VK_NV_displacement_micromap extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_displacement_micromap] @pixeljetstream%0A*Here describe the issue or question you have about the VK_NV_displacement_micromap extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_displacement_micromap] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NV_displacement_micromap extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_displacement_micromap] @ewerness-nv%0A*Here describe the issue or question you have about the VK_NV_displacement_micromap extension*

Other Extension Metadata

Last Modified Date

2023-03-17

Interactions and External Dependencies

TBD

Contributors

• Christoph Kubisch, NVIDIA

• Eric Werness, NVIDIA

Description

Ray tracing can very efficiently render from geometry which has very fine detail, but when using
only a basic triangle representation, memory consumption can be an issue. This extension adds the
ability to add a displacement map to add more detail to triangles in an acceleration structure with
an efficient in-memory format. The format is externally visible to allow the application to compress
its internal geometry representations into the compressed format ahead of time. This format adds
displacements along a defined vector to subtriangle vertices which are subdivided from the main
triangles.

This extension provides:

• a new VkMicromapTypeEXT format for the displacement micromap,

• a structure to extend VkAccelerationStructureGeometryTrianglesDataKHR to attach a
displacement micromap to the geometry of the acceleration structure,

• enums extending VkBuildAccelerationStructureFlagBitsKHR to allow for updates.

New Structures

• Extending VkAccelerationStructureGeometryTrianglesDataKHR:

◦ VkAccelerationStructureTrianglesDisplacementMicromapNV

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDisplacementMicromapFeaturesNV

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDisplacementMicromapPropertiesNV

New Enums

• VkDisplacementMicromapFormatNV

New Enum Constants

• VK_NV_DISPLACEMENT_MICROMAP_EXTENSION_NAME

• VK_NV_DISPLACEMENT_MICROMAP_SPEC_VERSION

4992

• Extending VkBuildAccelerationStructureFlagBitsKHR:

◦ VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISPLACEMENT_MICROMAP_UPDATE_NV

• Extending VkMicromapTypeEXT:

◦ VK_MICROMAP_TYPE_DISPLACEMENT_MICROMAP_NV

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_RAY_TRACING_DISPLACEMENT_MICROMAP_BIT_NV

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_TRIANGLES_DISPLACEMENT_MICROMAP_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISPLACEMENT_MICROMAP_FEATURES_NV

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISPLACEMENT_MICROMAP_PROPERTIES_NV

Issues

(1) What is the status of this extension?

• Provisional and expected to change. The broad structure and encoding format are stable, but
there will likely be changes to the structures, enumerant values, and shader interface.

Version History

• Revision 1, 2023-03-17 (Eric Werness)

◦ Initial public revision

• Revision 2, 2023-07-07 (Eric Werness)

◦ Add shader support for decode intrinsics

List of Deprecated Extensions
• VK_KHR_16bit_storage

• VK_KHR_8bit_storage

• VK_KHR_bind_memory2

• VK_KHR_buffer_device_address

• VK_KHR_copy_commands2

• VK_KHR_create_renderpass2

• VK_KHR_dedicated_allocation

• VK_KHR_depth_stencil_resolve

• VK_KHR_descriptor_update_template

• VK_KHR_device_group

• VK_KHR_device_group_creation

• VK_KHR_draw_indirect_count

4993

• VK_KHR_driver_properties

• VK_KHR_dynamic_rendering

• VK_KHR_external_fence

• VK_KHR_external_fence_capabilities

• VK_KHR_external_memory

• VK_KHR_external_memory_capabilities

• VK_KHR_external_semaphore

• VK_KHR_external_semaphore_capabilities

• VK_KHR_format_feature_flags2

• VK_KHR_get_memory_requirements2

• VK_KHR_get_physical_device_properties2

• VK_KHR_image_format_list

• VK_KHR_imageless_framebuffer

• VK_KHR_maintenance1

• VK_KHR_maintenance2

• VK_KHR_maintenance3

• VK_KHR_maintenance4

• VK_KHR_multiview

• VK_KHR_relaxed_block_layout

• VK_KHR_sampler_mirror_clamp_to_edge

• VK_KHR_sampler_ycbcr_conversion

• VK_KHR_separate_depth_stencil_layouts

• VK_KHR_shader_atomic_int64

• VK_KHR_shader_draw_parameters

• VK_KHR_shader_float16_int8

• VK_KHR_shader_float_controls

• VK_KHR_shader_integer_dot_product

• VK_KHR_shader_non_semantic_info

• VK_KHR_shader_subgroup_extended_types

• VK_KHR_shader_terminate_invocation

• VK_KHR_spirv_1_4

• VK_KHR_storage_buffer_storage_class

• VK_KHR_synchronization2

• VK_KHR_timeline_semaphore

• VK_KHR_uniform_buffer_standard_layout

4994

• VK_KHR_variable_pointers

• VK_KHR_vulkan_memory_model

• VK_KHR_zero_initialize_workgroup_memory

• VK_EXT_4444_formats

• VK_EXT_buffer_device_address

• VK_EXT_calibrated_timestamps

• VK_EXT_debug_marker

• VK_EXT_debug_report

• VK_EXT_descriptor_indexing

• VK_EXT_extended_dynamic_state

• VK_EXT_extended_dynamic_state2

• VK_EXT_global_priority

• VK_EXT_global_priority_query

• VK_EXT_host_query_reset

• VK_EXT_image_robustness

• VK_EXT_index_type_uint8

• VK_EXT_inline_uniform_block

• VK_EXT_line_rasterization

• VK_EXT_load_store_op_none

• VK_EXT_pipeline_creation_cache_control

• VK_EXT_pipeline_creation_feedback

• VK_EXT_private_data

• VK_EXT_sampler_filter_minmax

• VK_EXT_scalar_block_layout

• VK_EXT_separate_stencil_usage

• VK_EXT_shader_demote_to_helper_invocation

• VK_EXT_shader_subgroup_ballot

• VK_EXT_shader_subgroup_vote

• VK_EXT_shader_viewport_index_layer

• VK_EXT_subgroup_size_control

• VK_EXT_texel_buffer_alignment

• VK_EXT_texture_compression_astc_hdr

• VK_EXT_tooling_info

• VK_EXT_validation_features

• VK_EXT_validation_flags

4995

• VK_EXT_vertex_attribute_divisor

• VK_EXT_ycbcr_2plane_444_formats

• VK_AMD_draw_indirect_count

• VK_AMD_gpu_shader_half_float

• VK_AMD_gpu_shader_int16

• VK_AMD_negative_viewport_height

• VK_ARM_rasterization_order_attachment_access

• VK_IMG_format_pvrtc

• VK_MVK_ios_surface

• VK_MVK_macos_surface

• VK_NV_dedicated_allocation

• VK_NV_external_memory

• VK_NV_external_memory_capabilities

• VK_NV_external_memory_win32

• VK_NV_fragment_shader_barycentric

• VK_NV_glsl_shader

• VK_NV_win32_keyed_mutex

• VK_VALVE_mutable_descriptor_type

4996

VK_KHR_16bit_storage

Name String

VK_KHR_16bit_storage

Extension Type

Device extension

Registered Extension Number

84

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_storage_buffer_storage_class

SPIR-V Dependencies

• SPV_KHR_16bit_storage

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Other Extension Metadata

Last Modified Date

2017-09-05

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_EXT_shader_16bit_storage

Contributors

• Alexander Galazin, ARM

• Jan-Harald Fredriksen, ARM

• Joerg Wagner, ARM

• Neil Henning, Codeplay

• Jeff Bolz, Nvidia

4997

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_16bit_storage.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_16bit_storage] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_KHR_16bit_storage extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_16bit_storage] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_KHR_16bit_storage extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_shader_16bit_storage.txt

• Daniel Koch, Nvidia

• David Neto, Google

• John Kessenich, Google

Description

The VK_KHR_16bit_storage extension allows use of 16-bit types in shader input and output interfaces,
and push constant blocks. This extension introduces several new optional features which map to
SPIR-V capabilities and allow access to 16-bit data in Block-decorated objects in the Uniform and the
StorageBuffer storage classes, and objects in the PushConstant storage class. This extension allows
16-bit variables to be declared and used as user-defined shader inputs and outputs but does not
change location assignment and component assignment rules.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted.
However, if Vulkan 1.1 is supported and this extension is not, the storageBuffer16BitAccess
capability is optional. The original type, enum and command names are still available as aliases of
the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevice16BitStorageFeaturesKHR

New Enum Constants

• VK_KHR_16BIT_STORAGE_EXTENSION_NAME

• VK_KHR_16BIT_STORAGE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR

New SPIR-V Capabilities

• StorageBuffer16BitAccess

• UniformAndStorageBuffer16BitAccess

• StoragePushConstant16

• StorageInputOutput16

Version History

• Revision 1, 2017-03-23 (Alexander Galazin)

◦ Initial draft

4998

VK_KHR_8bit_storage

Name String

VK_KHR_8bit_storage

Extension Type

Device extension

Registered Extension Number

178

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_storage_buffer_storage_class

SPIR-V Dependencies

• SPV_KHR_8bit_storage

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Alexander Galazin alegal-arm

Other Extension Metadata

Last Modified Date

2018-02-05

Interactions and External Dependencies

• This extension provides API support for GL_EXT_shader_16bit_storage

IP Status

No known IP claims.

Contributors

• Alexander Galazin, Arm

Description

The VK_KHR_8bit_storage extension allows use of 8-bit types in uniform and storage buffers, and
push constant blocks. This extension introduces several new optional features which map to SPIR-V
capabilities and allow access to 8-bit data in Block-decorated objects in the Uniform and the

4999

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_8bit_storage.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_8bit_storage] @alegal-arm%0A*Here describe the issue or question you have about the VK_KHR_8bit_storage extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_8bit_storage] @alegal-arm%0A*Here describe the issue or question you have about the VK_KHR_8bit_storage extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_shader_16bit_storage.txt

StorageBuffer storage classes, and objects in the PushConstant storage class.

The StorageBuffer8BitAccess capability must be supported by all implementations of this extension.
The other capabilities are optional.

Promotion to Vulkan 1.2

Functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted.
However, if Vulkan 1.2 is supported and this extension is not, the StorageBuffer8BitAccess
capability is optional. The original type, enum and command names are still available as aliases of
the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevice8BitStorageFeaturesKHR

New Enum Constants

• VK_KHR_8BIT_STORAGE_EXTENSION_NAME

• VK_KHR_8BIT_STORAGE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR

New SPIR-V Capabilities

• StorageBuffer8BitAccess

• UniformAndStorageBuffer8BitAccess

• StoragePushConstant8

Version History

• Revision 1, 2018-02-05 (Alexander Galazin)

◦ Initial draft

VK_KHR_bind_memory2

Name String

VK_KHR_bind_memory2

Extension Type

Device extension

Registered Extension Number

158

5000

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2017-09-05

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Tobias Hector, Imagination Technologies

Description

This extension provides versions of vkBindBufferMemory and vkBindImageMemory that allow
multiple bindings to be performed at once, and are extensible.

This extension also introduces VK_IMAGE_CREATE_ALIAS_BIT_KHR, which allows “identical” images that
alias the same memory to interpret the contents consistently, even across image layout changes.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkBindBufferMemory2KHR

• vkBindImageMemory2KHR

New Structures

• VkBindBufferMemoryInfoKHR

• VkBindImageMemoryInfoKHR

5001

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_bind_memory2] @tobski%0A*Here describe the issue or question you have about the VK_KHR_bind_memory2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_bind_memory2] @tobski%0A*Here describe the issue or question you have about the VK_KHR_bind_memory2 extension*

New Enum Constants

• VK_KHR_BIND_MEMORY_2_EXTENSION_NAME

• VK_KHR_BIND_MEMORY_2_SPEC_VERSION

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_ALIAS_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR

Version History

• Revision 1, 2017-05-19 (Tobias Hector)

◦ Pulled bind memory functions into their own extension

VK_KHR_buffer_device_address

Name String

VK_KHR_buffer_device_address

Extension Type

Device extension

Registered Extension Number

258

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

 VK_KHR_get_physical_device_properties2
 and
 VK_KHR_device_group
or
Version 1.1

SPIR-V Dependencies

• SPV_KHR_physical_storage_buffer

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Jeff Bolz jeffbolznv

5002

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_physical_storage_buffer.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_buffer_device_address] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_buffer_device_address extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_buffer_device_address] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_buffer_device_address extension*

Other Extension Metadata

Last Modified Date

2019-06-24

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_EXT_buffer_reference and
GL_EXT_buffer_reference2 and GL_EXT_buffer_reference_uvec2

Contributors

• Jeff Bolz, NVIDIA

• Neil Henning, AMD

• Tobias Hector, AMD

• Faith Ekstrand, Intel

• Baldur Karlsson, Valve

• Jan-Harald Fredriksen, Arm

Description

This extension allows the application to query a 64-bit buffer device address value for a buffer,
which can be used to access the buffer memory via the PhysicalStorageBuffer storage class in the
GL_EXT_buffer_reference GLSL extension and SPV_KHR_physical_storage_buffer SPIR-V extension.

Another way to describe this extension is that it adds “pointers to buffer memory in shaders”. By
calling vkGetBufferDeviceAddress with a VkBuffer, it will return a VkDeviceAddress value which
represents the address of the start of the buffer.

vkGetBufferOpaqueCaptureAddress and vkGetDeviceMemoryOpaqueCaptureAddress allow opaque
addresses for buffers and memory objects to be queried for the current process. A trace capture
and replay tool can then supply these addresses to be used at replay time to match the addresses
used when the trace was captured. To enable tools to insert these queries, new memory allocation
flags must be specified for memory objects that will be bound to buffers accessed via the
PhysicalStorageBuffer storage class. Note that this mechanism is intended only to support
capture/replay tools, and is not recommended for use in other applications.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted.
However, if Vulkan 1.2 is supported and this extension is not, the bufferDeviceAddress feature is
optional. The original type, enum and command names are still available as aliases of the core
functionality.

Promotion to Vulkan 1.3

Support for the bufferDeviceAddress feature is mandatory in Vulkan 1.3, regardless of whether this

5003

https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_buffer_reference.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_buffer_reference2.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_buffer_reference_uvec2.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_buffer_reference.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_physical_storage_buffer.html

extension is supported.

New Commands

• vkGetBufferDeviceAddressKHR

• vkGetBufferOpaqueCaptureAddressKHR

• vkGetDeviceMemoryOpaqueCaptureAddressKHR

New Structures

• VkBufferDeviceAddressInfoKHR

• VkDeviceMemoryOpaqueCaptureAddressInfoKHR

• Extending VkBufferCreateInfo:

◦ VkBufferOpaqueCaptureAddressCreateInfoKHR

• Extending VkMemoryAllocateInfo:

◦ VkMemoryOpaqueCaptureAddressAllocateInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceBufferDeviceAddressFeaturesKHR

New Enum Constants

• VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME

• VK_KHR_BUFFER_DEVICE_ADDRESS_SPEC_VERSION

• Extending VkBufferCreateFlagBits:

◦ VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_KHR

• Extending VkMemoryAllocateFlagBits:

◦ VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR

◦ VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR

• Extending VkResult:

◦ VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_KHR

◦ VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR

5004

New SPIR-V Capabilities

• PhysicalStorageBufferAddresses

Version History

• Revision 1, 2019-06-24 (Jan-Harald Fredriksen)

◦ Internal revisions based on VK_EXT_buffer_device_address

VK_KHR_copy_commands2

Name String

VK_KHR_copy_commands2

Extension Type

Device extension

Registered Extension Number

338

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Jeff Leger jackohound

Other Extension Metadata

Last Modified Date

2020-07-06

Contributors

• Jeff Leger, Qualcomm

• Tobias Hector, AMD

• Jan-Harald Fredriksen, ARM

• Tom Olson, ARM

5005

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_copy_commands2] @jackohound%0A*Here describe the issue or question you have about the VK_KHR_copy_commands2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_copy_commands2] @jackohound%0A*Here describe the issue or question you have about the VK_KHR_copy_commands2 extension*

Description

This extension provides extensible versions of the Vulkan buffer and image copy commands. The
new commands are functionally identical to the core commands, except that their copy parameters
are specified using extensible structures that can be used to pass extension-specific information.

The following extensible copy commands are introduced with this extension:
vkCmdCopyBuffer2KHR, vkCmdCopyImage2KHR, vkCmdCopyBufferToImage2KHR,
vkCmdCopyImageToBuffer2KHR, vkCmdBlitImage2KHR, and vkCmdResolveImage2KHR. Each
command contains an *Info2KHR structure parameter that includes sType/pNext members. Lower
level structures describing each region to be copied are also extended with sType/pNext members.

New Commands

• vkCmdBlitImage2KHR

• vkCmdCopyBuffer2KHR

• vkCmdCopyBufferToImage2KHR

• vkCmdCopyImage2KHR

• vkCmdCopyImageToBuffer2KHR

• vkCmdResolveImage2KHR

New Structures

• VkBlitImageInfo2KHR

• VkBufferCopy2KHR

• VkBufferImageCopy2KHR

• VkCopyBufferInfo2KHR

• VkCopyBufferToImageInfo2KHR

• VkCopyImageInfo2KHR

• VkCopyImageToBufferInfo2KHR

• VkImageBlit2KHR

• VkImageCopy2KHR

• VkImageResolve2KHR

• VkResolveImageInfo2KHR

New Enum Constants

• VK_KHR_COPY_COMMANDS_2_EXTENSION_NAME

• VK_KHR_COPY_COMMANDS_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_BUFFER_COPY_2_KHR

5006

◦ VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2_KHR

◦ VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_BLIT_2_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_COPY_2_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2_KHR

◦ VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2_KHR

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2020-07-06 (Jeff Leger)

◦ Internal revisions

VK_KHR_create_renderpass2

Name String

VK_KHR_create_renderpass2

Extension Type

Device extension

Registered Extension Number

110

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_multiview
and
VK_KHR_maintenance2

Deprecation State

• Promoted to Vulkan 1.2

5007

Contact

• Tobias Hector tobias

Other Extension Metadata

Last Modified Date

2018-02-07

Contributors

• Tobias Hector

• Jeff Bolz

Description

This extension provides a new entry point to create render passes in a way that can be easily
extended by other extensions through the substructures of render pass creation. The Vulkan 1.0
render pass creation sub-structures do not include sType/pNext members. Additionally, the render
pass begin/next/end commands have been augmented with new extensible structures for passing
additional subpass information.

The VkRenderPassMultiviewCreateInfo and VkInputAttachmentAspectReference structures that
extended the original VkRenderPassCreateInfo are not accepted into the new creation functions,
and instead their parameters are folded into this extension as follows:

• Elements of VkRenderPassMultiviewCreateInfo::pViewMasks are now specified in
VkSubpassDescription2KHR::viewMask.

• Elements of VkRenderPassMultiviewCreateInfo::pViewOffsets are now specified in
VkSubpassDependency2KHR::viewOffset.

• VkRenderPassMultiviewCreateInfo::correlationMaskCount and
VkRenderPassMultiviewCreateInfo::pCorrelationMasks are directly specified in
VkRenderPassCreateInfo2KHR.

• VkInputAttachmentAspectReference::aspectMask is now specified in the relevant input
attachment reference in VkAttachmentReference2KHR::aspectMask

The details of these mappings are explained fully in the new structures.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkCmdBeginRenderPass2KHR

• vkCmdEndRenderPass2KHR

• vkCmdNextSubpass2KHR

• vkCreateRenderPass2KHR

5008

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_create_renderpass2] @tobias%0A*Here describe the issue or question you have about the VK_KHR_create_renderpass2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_create_renderpass2] @tobias%0A*Here describe the issue or question you have about the VK_KHR_create_renderpass2 extension*

New Structures

• VkAttachmentDescription2KHR

• VkAttachmentReference2KHR

• VkRenderPassCreateInfo2KHR

• VkSubpassBeginInfoKHR

• VkSubpassDependency2KHR

• VkSubpassDescription2KHR

• VkSubpassEndInfoKHR

New Enum Constants

• VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME

• VK_KHR_CREATE_RENDERPASS_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR

◦ VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR

◦ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO_KHR

◦ VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2_KHR

◦ VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR

◦ VK_STRUCTURE_TYPE_SUBPASS_END_INFO_KHR

Version History

• Revision 1, 2018-02-07 (Tobias Hector)

◦ Internal revisions

VK_KHR_dedicated_allocation

Name String

VK_KHR_dedicated_allocation

Extension Type

Device extension

Registered Extension Number

128

Revision

3

5009

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_memory_requirements2

Deprecation State

• Promoted to Vulkan 1.1

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2017-09-05

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Faith Ekstrand, Intel

Description

This extension enables resources to be bound to a dedicated allocation, rather than suballocated.
For any particular resource, applications can query whether a dedicated allocation is
recommended, in which case using a dedicated allocation may improve the performance of access
to that resource. Normal device memory allocations must support multiple resources per
allocation, memory aliasing and sparse binding, which could interfere with some optimizations.
Applications should query the implementation for when a dedicated allocation may be beneficial
by adding a VkMemoryDedicatedRequirementsKHR structure to the pNext chain of the
VkMemoryRequirements2 structure passed as the pMemoryRequirements parameter of a call to
vkGetBufferMemoryRequirements2 or vkGetImageMemoryRequirements2. Certain external handle types
and external images or buffers may also depend on dedicated allocations on implementations that
associate image or buffer metadata with OS-level memory objects.

This extension adds a two small structures to memory requirements querying and memory
allocation: a new structure that flags whether an image/buffer should have a dedicated allocation,
and a structure indicating the image or buffer that an allocation will be bound to.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

5010

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_dedicated_allocation] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_dedicated_allocation extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_dedicated_allocation] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_dedicated_allocation extension*

New Structures

• Extending VkMemoryAllocateInfo:

◦ VkMemoryDedicatedAllocateInfoKHR

• Extending VkMemoryRequirements2:

◦ VkMemoryDedicatedRequirementsKHR

New Enum Constants

• VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME

• VK_KHR_DEDICATED_ALLOCATION_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR

Examples

 // Create an image with a dedicated allocation based on the
 // implementation's preference

 VkImageCreateInfo imageCreateInfo =
 {
 // Image creation parameters
 };

 VkImage image;
 VkResult result = vkCreateImage(
 device,
 &imageCreateInfo,
 NULL, // pAllocator
 &image);

 VkMemoryDedicatedRequirementsKHR dedicatedRequirements =
 {
 .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR,
 .pNext = NULL,
 };

 VkMemoryRequirements2 memoryRequirements =
 {
 .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
 .pNext = &dedicatedRequirements,
 };

 const VkImageMemoryRequirementsInfo2 imageRequirementsInfo =
 {
 .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,

5011

 .pNext = NULL,
 .image = image
 };

 vkGetImageMemoryRequirements2(
 device,
 &imageRequirementsInfo,
 &memoryRequirements);

 if (dedicatedRequirements.prefersDedicatedAllocation) {
 // Allocate memory with VkMemoryDedicatedAllocateInfoKHR::image
 // pointing to the image we are allocating the memory for

 VkMemoryDedicatedAllocateInfoKHR dedicatedInfo =
 {
 .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR,
 .pNext = NULL,
 .image = image,
 .buffer = VK_NULL_HANDLE,
 };

 VkMemoryAllocateInfo memoryAllocateInfo =
 {
 .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
 .pNext = &dedicatedInfo,
 .allocationSize = memoryRequirements.size,
 .memoryTypeIndex = FindMemoryTypeIndex(memoryRequirements.memoryTypeBits),
 };

 VkDeviceMemory memory;
 vkAllocateMemory(
 device,
 &memoryAllocateInfo,
 NULL, // pAllocator
 &memory);

 // Bind the image to the memory

 vkBindImageMemory(
 device,
 image,
 memory,
 0);
 } else {
 // Take the normal memory sub-allocation path
 }

Version History

• Revision 1, 2017-02-27 (James Jones)

5012

◦ Copy content from VK_NV_dedicated_allocation

◦ Add some references to external object interactions to the overview.

• Revision 2, 2017-03-27 (Faith Ekstrand)

◦ Rework the extension to be query-based

• Revision 3, 2017-07-31 (Faith Ekstrand)

◦ Clarify that memory objects allocated with VkMemoryDedicatedAllocateInfoKHR can only
have the specified resource bound and no others.

VK_KHR_depth_stencil_resolve

Name String

VK_KHR_depth_stencil_resolve

Extension Type

Device extension

Registered Extension Number

200

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_create_renderpass2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Jan-Harald Fredriksen janharald

Other Extension Metadata

Last Modified Date

2018-04-09

Contributors

• Jan-Harald Fredriksen, Arm

• Andrew Garrard, Samsung Electronics

• Soowan Park, Samsung Electronics

• Jeff Bolz, NVIDIA

• Daniel Rakos, AMD

5013

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_depth_stencil_resolve] @janharald%0A*Here describe the issue or question you have about the VK_KHR_depth_stencil_resolve extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_depth_stencil_resolve] @janharald%0A*Here describe the issue or question you have about the VK_KHR_depth_stencil_resolve extension*

Description

This extension adds support for automatically resolving multisampled depth/stencil attachments in
a subpass in a similar manner as for color attachments.

Multisampled color attachments can be resolved at the end of a subpass by specifying
pResolveAttachments entries corresponding to the pColorAttachments array entries. This does not
allow for a way to map the resolve attachments to the depth/stencil attachment. The
vkCmdResolveImage command does not allow for depth/stencil images. While there are other ways
to resolve the depth/stencil attachment, they can give sub-optimal performance. Extending the
VkSubpassDescription2 in this extension allows an application to add a
pDepthStencilResolveAttachment, that is similar to the color pResolveAttachments, that the
pDepthStencilAttachment can be resolved into.

Depth and stencil samples are resolved to a single value based on the resolve mode. The set of
possible resolve modes is defined in the VkResolveModeFlagBits enum. The
VK_RESOLVE_MODE_SAMPLE_ZERO_BIT mode is the only mode that is required of all implementations
(that support the extension or support Vulkan 1.2 or higher). Some implementations may also
support averaging (the same as color sample resolve) or taking the minimum or maximum sample,
which may be more suitable for depth/stencil resolve.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDepthStencilResolvePropertiesKHR

• Extending VkSubpassDescription2:

◦ VkSubpassDescriptionDepthStencilResolveKHR

New Enums

• VkResolveModeFlagBitsKHR

New Bitmasks

• VkResolveModeFlagsKHR

New Enum Constants

• VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME

• VK_KHR_DEPTH_STENCIL_RESOLVE_SPEC_VERSION

• Extending VkResolveModeFlagBits:

◦ VK_RESOLVE_MODE_AVERAGE_BIT_KHR

◦ VK_RESOLVE_MODE_MAX_BIT_KHR

5014

◦ VK_RESOLVE_MODE_MIN_BIT_KHR

◦ VK_RESOLVE_MODE_NONE_KHR

◦ VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE_KHR

Version History

• Revision 1, 2018-04-09 (Jan-Harald Fredriksen)

◦ Initial revision

VK_KHR_descriptor_update_template

Name String

VK_KHR_descriptor_update_template

Extension Type

Device extension

Registered Extension Number

86

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

API Interactions

• Interacts with VK_EXT_debug_report

• Interacts with VK_KHR_push_descriptor

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Markus Tavenrath mtavenrath

Other Extension Metadata

Last Modified Date

2017-09-05

5015

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_descriptor_update_template] @mtavenrath%0A*Here describe the issue or question you have about the VK_KHR_descriptor_update_template extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_descriptor_update_template] @mtavenrath%0A*Here describe the issue or question you have about the VK_KHR_descriptor_update_template extension*

IP Status

No known IP claims.

Interactions and External Dependencies

• Interacts with VK_KHR_push_descriptor

Contributors

• Jeff Bolz, NVIDIA

• Michael Worcester, Imagination Technologies

Description

Applications may wish to update a fixed set of descriptors in a large number of descriptor sets very
frequently, i.e. during initialization phase or if it is required to rebuild descriptor sets for each
frame. For those cases it is also not unlikely that all information required to update a single
descriptor set is stored in a single struct. This extension provides a way to update a fixed set of
descriptors in a single VkDescriptorSet with a pointer to a user defined data structure describing
the new descriptors.

Promotion to Vulkan 1.1

vkCmdPushDescriptorSetWithTemplateKHR is included as an interaction with
VK_KHR_push_descriptor. If Vulkan 1.1 and VK_KHR_push_descriptor are supported, this is included by
VK_KHR_push_descriptor.

The base functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted.
The original type, enum and command names are still available as aliases of the core functionality.

New Object Types

• VkDescriptorUpdateTemplateKHR

New Commands

• vkCreateDescriptorUpdateTemplateKHR

• vkDestroyDescriptorUpdateTemplateKHR

• vkUpdateDescriptorSetWithTemplateKHR

If VK_KHR_push_descriptor is supported:

• vkCmdPushDescriptorSetWithTemplateKHR

New Structures

• VkDescriptorUpdateTemplateCreateInfoKHR

• VkDescriptorUpdateTemplateEntryKHR

5016

New Enums

• VkDescriptorUpdateTemplateTypeKHR

New Bitmasks

• VkDescriptorUpdateTemplateCreateFlagsKHR

New Enum Constants

• VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME

• VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_SPEC_VERSION

• Extending VkDescriptorUpdateTemplateType:

◦ VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO_KHR

If VK_EXT_debug_report is supported:

• Extending VkDebugReportObjectTypeEXT:

◦ VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR_EXT

If VK_KHR_push_descriptor is supported:

• Extending VkDescriptorUpdateTemplateType:

◦ VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR

Version History

• Revision 1, 2016-01-11 (Markus Tavenrath)

◦ Initial draft

VK_KHR_device_group

Name String

VK_KHR_device_group

Extension Type

Device extension

Registered Extension Number

61

5017

Revision

4

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_device_group_creation

API Interactions

• Interacts with VK_KHR_bind_memory2

• Interacts with VK_KHR_surface

• Interacts with VK_KHR_swapchain

SPIR-V Dependencies

• SPV_KHR_device_group

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-10-10

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Tobias Hector, Imagination Technologies

Description

This extension provides functionality to use a logical device that consists of multiple physical
devices, as created with the VK_KHR_device_group_creation extension. A device group can allocate
memory across the subdevices, bind memory from one subdevice to a resource on another
subdevice, record command buffers where some work executes on an arbitrary subset of the
subdevices, and potentially present a swapchain image from one or more subdevices.

Promotion to Vulkan 1.1

The following enums, types and commands are included as interactions with VK_KHR_swapchain:

• VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR

5018

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_device_group.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_device_group] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_device_group extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_device_group] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_device_group extension*

• VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR

• VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR

• VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR

• VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR

• VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR

• VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR

• VkDeviceGroupPresentModeFlagBitsKHR

• VkDeviceGroupPresentCapabilitiesKHR

• VkImageSwapchainCreateInfoKHR

• VkBindImageMemorySwapchainInfoKHR

• VkAcquireNextImageInfoKHR

• VkDeviceGroupPresentInfoKHR

• VkDeviceGroupSwapchainCreateInfoKHR

• vkGetDeviceGroupPresentCapabilitiesKHR

• vkGetDeviceGroupSurfacePresentModesKHR

• vkGetPhysicalDevicePresentRectanglesKHR

• vkAcquireNextImage2KHR

If Vulkan 1.1 and VK_KHR_swapchain are supported, these are included by VK_KHR_swapchain.

The base functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted.
The original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkCmdDispatchBaseKHR

• vkCmdSetDeviceMaskKHR

• vkGetDeviceGroupPeerMemoryFeaturesKHR

If VK_KHR_surface is supported:

• vkGetDeviceGroupPresentCapabilitiesKHR

• vkGetDeviceGroupSurfacePresentModesKHR

• vkGetPhysicalDevicePresentRectanglesKHR

If VK_KHR_swapchain is supported:

• vkAcquireNextImage2KHR

New Structures

• Extending VkBindSparseInfo:

5019

◦ VkDeviceGroupBindSparseInfoKHR

• Extending VkCommandBufferBeginInfo:

◦ VkDeviceGroupCommandBufferBeginInfoKHR

• Extending VkMemoryAllocateInfo:

◦ VkMemoryAllocateFlagsInfoKHR

• Extending VkRenderPassBeginInfo, VkRenderingInfo:

◦ VkDeviceGroupRenderPassBeginInfoKHR

• Extending VkSubmitInfo:

◦ VkDeviceGroupSubmitInfoKHR

If VK_KHR_bind_memory2 is supported:

• Extending VkBindBufferMemoryInfo:

◦ VkBindBufferMemoryDeviceGroupInfoKHR

• Extending VkBindImageMemoryInfo:

◦ VkBindImageMemoryDeviceGroupInfoKHR

If VK_KHR_surface is supported:

• VkDeviceGroupPresentCapabilitiesKHR

If VK_KHR_swapchain is supported:

• VkAcquireNextImageInfoKHR

• Extending VkBindImageMemoryInfo:

◦ VkBindImageMemorySwapchainInfoKHR

• Extending VkImageCreateInfo:

◦ VkImageSwapchainCreateInfoKHR

• Extending VkPresentInfoKHR:

◦ VkDeviceGroupPresentInfoKHR

• Extending VkSwapchainCreateInfoKHR:

◦ VkDeviceGroupSwapchainCreateInfoKHR

New Enums

• VkMemoryAllocateFlagBitsKHR

• VkPeerMemoryFeatureFlagBitsKHR

If VK_KHR_surface is supported:

• VkDeviceGroupPresentModeFlagBitsKHR

5020

New Bitmasks

• VkMemoryAllocateFlagsKHR

• VkPeerMemoryFeatureFlagsKHR

If VK_KHR_surface is supported:

• VkDeviceGroupPresentModeFlagsKHR

New Enum Constants

• VK_KHR_DEVICE_GROUP_EXTENSION_NAME

• VK_KHR_DEVICE_GROUP_SPEC_VERSION

• Extending VkDependencyFlagBits:

◦ VK_DEPENDENCY_DEVICE_GROUP_BIT_KHR

• Extending VkMemoryAllocateFlagBits:

◦ VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT_KHR

• Extending VkPeerMemoryFeatureFlagBits:

◦ VK_PEER_MEMORY_FEATURE_COPY_DST_BIT_KHR

◦ VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT_KHR

◦ VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT_KHR

◦ VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT_KHR

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_DISPATCH_BASE_KHR

◦ VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR

If VK_KHR_bind_memory2 is supported:

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO_KHR

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO_KHR

5021

If VK_KHR_surface is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR

If VK_KHR_swapchain is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR

• Extending VkSwapchainCreateFlagBitsKHR:

◦ VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR

New Built-in Variables

• DeviceIndex

New SPIR-V Capabilities

• DeviceGroup

Version History

• Revision 1, 2016-10-19 (Jeff Bolz)

◦ Internal revisions

• Revision 2, 2017-05-19 (Tobias Hector)

◦ Removed extended memory bind functions to VK_KHR_bind_memory2, added dependency
on that extension, and device-group-specific structs for those functions.

• Revision 3, 2017-10-06 (Ian Elliott)

◦ Corrected Vulkan 1.1 interactions with the WSI extensions. All Vulkan 1.1 WSI interactions
are with the VK_KHR_swapchain extension.

• Revision 4, 2017-10-10 (Jeff Bolz)

◦ Rename “SFR” bits and structure members to use the phrase “split instance bind regions”.

VK_KHR_device_group_creation

Name String

VK_KHR_device_group_creation

Extension Type

Instance extension

5022

Registered Extension Number

71

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2016-10-19

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

Description

This extension provides instance-level commands to enumerate groups of physical devices, and to
create a logical device from a subset of one of those groups. Such a logical device can then be used
with new features in the VK_KHR_device_group extension.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkEnumeratePhysicalDeviceGroupsKHR

New Structures

• VkPhysicalDeviceGroupPropertiesKHR

• Extending VkDeviceCreateInfo:

◦ VkDeviceGroupDeviceCreateInfoKHR

5023

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_device_group_creation] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_device_group_creation extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_device_group_creation] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_device_group_creation extension*

New Enum Constants

• VK_KHR_DEVICE_GROUP_CREATION_EXTENSION_NAME

• VK_KHR_DEVICE_GROUP_CREATION_SPEC_VERSION

• VK_MAX_DEVICE_GROUP_SIZE_KHR

• Extending VkMemoryHeapFlagBits:

◦ VK_MEMORY_HEAP_MULTI_INSTANCE_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHR

Examples

 VkDeviceCreateInfo devCreateInfo = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO };
 // (not shown) fill out devCreateInfo as usual.
 uint32_t deviceGroupCount = 0;
 VkPhysicalDeviceGroupPropertiesKHR *props = NULL;

 // Query the number of device groups
 vkEnumeratePhysicalDeviceGroupsKHR(g_vkInstance, &deviceGroupCount, NULL);

 // Allocate and initialize structures to query the device groups
 props = (VkPhysicalDeviceGroupPropertiesKHR *)malloc(deviceGroupCount*sizeof
(VkPhysicalDeviceGroupPropertiesKHR));
 for (i = 0; i < deviceGroupCount; ++i) {
 props[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHR;
 props[i].pNext = NULL;
 }
 vkEnumeratePhysicalDeviceGroupsKHR(g_vkInstance, &deviceGroupCount, props);

 // If the first device group has more than one physical device. create
 // a logical device using all of the physical devices.
 VkDeviceGroupDeviceCreateInfoKHR deviceGroupInfo = {
VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO_KHR };
 if (props[0].physicalDeviceCount > 1) {
 deviceGroupInfo.physicalDeviceCount = props[0].physicalDeviceCount;
 deviceGroupInfo.pPhysicalDevices = props[0].physicalDevices;
 devCreateInfo.pNext = &deviceGroupInfo;
 }

 vkCreateDevice(props[0].physicalDevices[0], &devCreateInfo, NULL, &g_vkDevice);
 free(props);

Version History

• Revision 1, 2016-10-19 (Jeff Bolz)

5024

◦ Internal revisions

VK_KHR_draw_indirect_count

Name String

VK_KHR_draw_indirect_count

Extension Type

Device extension

Registered Extension Number

170

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2017-08-25

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Derrick Owens, AMD

• Graham Sellers, AMD

• Daniel Rakos, AMD

• Dominik Witczak, AMD

• Piers Daniell, NVIDIA

Description

This extension is based on the VK_AMD_draw_indirect_count extension. This extension allows an

5025

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_draw_indirect_count] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_draw_indirect_count extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_draw_indirect_count] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_draw_indirect_count extension*

application to source the number of draws for indirect drawing calls from a buffer.

Applications might want to do culling on the GPU via a compute shader prior to drawing. This
enables the application to generate an arbitrary number of drawing commands and execute them
without host intervention.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted.
However, if Vulkan 1.2 is supported and this extension is not, the entry points
vkCmdDrawIndirectCount and vkCmdDrawIndexedIndirectCount are optional. The original type,
enum and command names are still available as aliases of the core functionality.

New Commands

• vkCmdDrawIndexedIndirectCountKHR

• vkCmdDrawIndirectCountKHR

New Enum Constants

• VK_KHR_DRAW_INDIRECT_COUNT_EXTENSION_NAME

• VK_KHR_DRAW_INDIRECT_COUNT_SPEC_VERSION

Version History

• Revision 1, 2017-08-25 (Piers Daniell)

◦ Initial draft based on VK_AMD_draw_indirect_count

VK_KHR_driver_properties

Name String

VK_KHR_driver_properties

Extension Type

Device extension

Registered Extension Number

197

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

5026

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Daniel Rakos drakos-amd

Other Extension Metadata

Last Modified Date

2018-04-11

IP Status

No known IP claims.

Contributors

• Baldur Karlsson

• Matthaeus G. Chajdas, AMD

• Piers Daniell, NVIDIA

• Alexander Galazin, Arm

• Jesse Hall, Google

• Daniel Rakos, AMD

Description

This extension provides a new physical device query which allows retrieving information about the
driver implementation, allowing applications to determine which physical device corresponds to
which particular vendor’s driver, and which conformance test suite version the driver
implementation is compliant with.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• VkConformanceVersionKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDriverPropertiesKHR

New Enums

• VkDriverIdKHR

New Enum Constants

• VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME

5027

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_driver_properties] @drakos-amd%0A*Here describe the issue or question you have about the VK_KHR_driver_properties extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_driver_properties] @drakos-amd%0A*Here describe the issue or question you have about the VK_KHR_driver_properties extension*

• VK_KHR_DRIVER_PROPERTIES_SPEC_VERSION

• VK_MAX_DRIVER_INFO_SIZE_KHR

• VK_MAX_DRIVER_NAME_SIZE_KHR

• Extending VkDriverId:

◦ VK_DRIVER_ID_AMD_OPEN_SOURCE_KHR

◦ VK_DRIVER_ID_AMD_PROPRIETARY_KHR

◦ VK_DRIVER_ID_ARM_PROPRIETARY_KHR

◦ VK_DRIVER_ID_BROADCOM_PROPRIETARY_KHR

◦ VK_DRIVER_ID_GGP_PROPRIETARY_KHR

◦ VK_DRIVER_ID_GOOGLE_SWIFTSHADER_KHR

◦ VK_DRIVER_ID_IMAGINATION_PROPRIETARY_KHR

◦ VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR

◦ VK_DRIVER_ID_INTEL_PROPRIETARY_WINDOWS_KHR

◦ VK_DRIVER_ID_MESA_RADV_KHR

◦ VK_DRIVER_ID_NVIDIA_PROPRIETARY_KHR

◦ VK_DRIVER_ID_QUALCOMM_PROPRIETARY_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR

Version History

• Revision 1, 2018-04-11 (Daniel Rakos)

◦ Internal revisions

VK_KHR_dynamic_rendering

Name String

VK_KHR_dynamic_rendering

Extension Type

Device extension

Registered Extension Number

45

Revision

1

Ratification Status

Ratified

5028

Extension and Version Dependencies

VK_KHR_depth_stencil_resolve
and
VK_KHR_get_physical_device_properties2

API Interactions

• Interacts with VK_AMD_mixed_attachment_samples

• Interacts with VK_EXT_fragment_density_map

• Interacts with VK_KHR_fragment_shading_rate

• Interacts with VK_NVX_multiview_per_view_attributes

• Interacts with VK_NV_framebuffer_mixed_samples

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Tobias Hector tobski

Extension Proposal

VK_KHR_dynamic_rendering

Other Extension Metadata

Last Modified Date

2021-10-06

Contributors

• Tobias Hector, AMD

• Arseny Kapoulkine, Roblox

• François Duranleau, Gameloft

• Stuart Smith, AMD

• Hai Nguyen, Google

• Jean-François Roy, Google

• Jeff Leger, Qualcomm

• Jan-Harald Fredriksen, Arm

• Piers Daniell, Nvidia

• James Fitzpatrick, Imagination

• Piotr Byszewski, Mobica

• Jesse Hall, Google

• Mike Blumenkrantz, Valve

5029

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_dynamic_rendering] @tobski%0A*Here describe the issue or question you have about the VK_KHR_dynamic_rendering extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_dynamic_rendering] @tobski%0A*Here describe the issue or question you have about the VK_KHR_dynamic_rendering extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_dynamic_rendering.adoc

Description

This extension allows applications to create single-pass render pass instances without needing to
create render pass objects or framebuffers. Dynamic render passes can also span across multiple
primary command buffers, rather than relying on secondary command buffers.

This extension also incorporates VK_ATTACHMENT_STORE_OP_NONE_KHR from
VK_QCOM_render_pass_store_ops, enabling applications to avoid unnecessary synchronization when
an attachment is not written during a render pass.

New Commands

• vkCmdBeginRenderingKHR

• vkCmdEndRenderingKHR

New Structures

• VkRenderingAttachmentInfoKHR

• VkRenderingInfoKHR

• Extending VkCommandBufferInheritanceInfo:

◦ VkCommandBufferInheritanceRenderingInfoKHR

• Extending VkGraphicsPipelineCreateInfo:

◦ VkPipelineRenderingCreateInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDynamicRenderingFeaturesKHR

If VK_AMD_mixed_attachment_samples is supported:

• Extending VkCommandBufferInheritanceInfo, VkGraphicsPipelineCreateInfo:

◦ VkAttachmentSampleCountInfoAMD

If VK_EXT_fragment_density_map is supported:

• Extending VkRenderingInfo:

◦ VkRenderingFragmentDensityMapAttachmentInfoEXT

If VK_KHR_fragment_shading_rate is supported:

• Extending VkRenderingInfo:

◦ VkRenderingFragmentShadingRateAttachmentInfoKHR

If VK_NV_framebuffer_mixed_samples is supported:

• Extending VkCommandBufferInheritanceInfo, VkGraphicsPipelineCreateInfo:

◦ VkAttachmentSampleCountInfoNV

5030

If VK_NVX_multiview_per_view_attributes is supported:

• Extending VkCommandBufferInheritanceInfo, VkGraphicsPipelineCreateInfo, VkRenderingInfo:

◦ VkMultiviewPerViewAttributesInfoNVX

New Enums

• VkRenderingFlagBitsKHR

New Bitmasks

• VkRenderingFlagsKHR

New Enum Constants

• VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME

• VK_KHR_DYNAMIC_RENDERING_SPEC_VERSION

• Extending VkAttachmentStoreOp:

◦ VK_ATTACHMENT_STORE_OP_NONE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR

◦ VK_STRUCTURE_TYPE_RENDERING_INFO_KHR

If VK_AMD_mixed_attachment_samples is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ATTACHMENT_SAMPLE_COUNT_INFO_AMD

If VK_EXT_fragment_density_map is supported:

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

◦ VK_PIPELINE_RASTERIZATION_STATE_CREATE_FRAGMENT_DENSITY_MAP_ATTACHMENT_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT

If VK_KHR_fragment_shading_rate is supported:

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

◦ VK_PIPELINE_RASTERIZATION_STATE_CREATE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

5031

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR

If VK_NV_framebuffer_mixed_samples is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ATTACHMENT_SAMPLE_COUNT_INFO_NV

If VK_NVX_multiview_per_view_attributes is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MULTIVIEW_PER_VIEW_ATTRIBUTES_INFO_NVX

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2021-10-06 (Tobias Hector)

◦ Initial revision

VK_KHR_external_fence

Name String

VK_KHR_external_fence

Extension Type

Device extension

Registered Extension Number

114

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_fence_capabilities

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jesse Hall critsec

5032

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_fence] @critsec%0A*Here describe the issue or question you have about the VK_KHR_external_fence extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_fence] @critsec%0A*Here describe the issue or question you have about the VK_KHR_external_fence extension*

Other Extension Metadata

Last Modified Date

2017-05-08

IP Status

No known IP claims.

Contributors

• Jesse Hall, Google

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Cass Everitt, Oculus

• Contributors to VK_KHR_external_semaphore

Description

An application using external memory may wish to synchronize access to that memory using
fences. This extension enables an application to create fences from which non-Vulkan handles that
reference the underlying synchronization primitive can be exported.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkFenceCreateInfo:

◦ VkExportFenceCreateInfoKHR

New Enums

• VkFenceImportFlagBitsKHR

New Bitmasks

• VkFenceImportFlagsKHR

New Enum Constants

• VK_KHR_EXTERNAL_FENCE_EXTENSION_NAME

• VK_KHR_EXTERNAL_FENCE_SPEC_VERSION

• Extending VkFenceImportFlagBits:

◦ VK_FENCE_IMPORT_TEMPORARY_BIT_KHR

• Extending VkStructureType:

5033

◦ VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO_KHR

Issues

This extension borrows concepts, semantics, and language from VK_KHR_external_semaphore. That
extension’s issues apply equally to this extension.

Version History

• Revision 1, 2017-05-08 (Jesse Hall)

◦ Initial revision

VK_KHR_external_fence_capabilities

Name String

VK_KHR_external_fence_capabilities

Extension Type

Instance extension

Registered Extension Number

113

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jesse Hall critsec

Other Extension Metadata

Last Modified Date

2017-05-08

IP Status

No known IP claims.

Contributors

• Jesse Hall, Google

5034

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_fence_capabilities] @critsec%0A*Here describe the issue or question you have about the VK_KHR_external_fence_capabilities extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_fence_capabilities] @critsec%0A*Here describe the issue or question you have about the VK_KHR_external_fence_capabilities extension*

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Cass Everitt, Oculus

• Contributors to VK_KHR_external_semaphore_capabilities

Description

An application may wish to reference device fences in multiple Vulkan logical devices or instances,
in multiple processes, and/or in multiple APIs. This extension provides a set of capability queries
and handle definitions that allow an application to determine what types of “external” fence
handles an implementation supports for a given set of use cases.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkGetPhysicalDeviceExternalFencePropertiesKHR

New Structures

• VkExternalFencePropertiesKHR

• VkPhysicalDeviceExternalFenceInfoKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceIDPropertiesKHR

New Enums

• VkExternalFenceFeatureFlagBitsKHR

• VkExternalFenceHandleTypeFlagBitsKHR

New Bitmasks

• VkExternalFenceFeatureFlagsKHR

• VkExternalFenceHandleTypeFlagsKHR

New Enum Constants

• VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME

• VK_KHR_EXTERNAL_FENCE_CAPABILITIES_SPEC_VERSION

• VK_LUID_SIZE_KHR

• Extending VkExternalFenceFeatureFlagBits:

◦ VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT_KHR

5035

◦ VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT_KHR

• Extending VkExternalFenceHandleTypeFlagBits:

◦ VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR

◦ VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR

◦ VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR

◦ VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR

Version History

• Revision 1, 2017-05-08 (Jesse Hall)

◦ Initial version

VK_KHR_external_memory

Name String

VK_KHR_external_memory

Extension Type

Device extension

Registered Extension Number

73

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_memory_capabilities

Deprecation State

• Promoted to Vulkan 1.1

Contact

• James Jones cubanismo

Other Extension Metadata

5036

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_memory] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_memory extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_memory] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_memory extension*

Last Modified Date

2016-10-20

IP Status

No known IP claims.

Interactions and External Dependencies

• Interacts with VK_KHR_dedicated_allocation.

• Interacts with VK_NV_dedicated_allocation.

Contributors

• Faith Ekstrand, Intel

• Ian Elliott, Google

• Jesse Hall, Google

• Tobias Hector, Imagination Technologies

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Matthew Netsch, Qualcomm Technologies, Inc.

• Daniel Rakos, AMD

• Carsten Rohde, NVIDIA

• Ray Smith, ARM

• Lina Versace, Google

Description

An application may wish to reference device memory in multiple Vulkan logical devices or
instances, in multiple processes, and/or in multiple APIs. This extension enables an application to
export non-Vulkan handles from Vulkan memory objects such that the underlying resources can be
referenced outside the scope of the Vulkan logical device that created them.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkBufferCreateInfo:

◦ VkExternalMemoryBufferCreateInfoKHR

• Extending VkImageCreateInfo:

◦ VkExternalMemoryImageCreateInfoKHR

• Extending VkMemoryAllocateInfo:

◦ VkExportMemoryAllocateInfoKHR

5037

New Enum Constants

• VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME

• VK_KHR_EXTERNAL_MEMORY_SPEC_VERSION

• VK_QUEUE_FAMILY_EXTERNAL_KHR

• Extending VkResult:

◦ VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR

Issues

1) How do applications correlate two physical devices across process or Vulkan instance
boundaries?

RESOLVED: New device ID fields have been introduced by VK_KHR_external_memory_capabilities.
These fields, combined with the existing VkPhysicalDeviceProperties::driverVersion field can be
used to identify compatible devices across processes, drivers, and APIs.
VkPhysicalDeviceProperties::pipelineCacheUUID is not sufficient for this purpose because despite its
description in the specification, it need only identify a unique pipeline cache format in practice.
Multiple devices may be able to use the same pipeline cache data, and hence it would be desirable
for all of them to have the same pipeline cache UUID. However, only the same concrete physical
device can be used when sharing memory, so an actual unique device ID was introduced. Further,
the pipeline cache UUID was specific to Vulkan, but correlation with other, non-extensible APIs is
required to enable interoperation with those APIs.

2) If memory objects are shared between processes and APIs, is this considered aliasing according
to the rules outlined in the Memory Aliasing section?

RESOLVED: Yes. Applications must take care to obey all restrictions imposed on aliased resources
when using memory across multiple Vulkan instances or other APIs.

3) Are new image layouts or metadata required to specify image layouts and layout transitions
compatible with non-Vulkan APIs, or with other instances of the same Vulkan driver?

RESOLVED: Separate instances of the same Vulkan driver running on the same GPU should have
identical internal layout semantics, so applications have the tools they need to ensure views of
images are consistent between the two instances. Other APIs will fall into two categories: Those that
are Vulkan- compatible, and those that are Vulkan-incompatible. Vulkan-incompatible APIs will
require the image to be in the GENERAL layout whenever they are accessing them.

Note this does not attempt to address cross-device transitions, nor transitions to engines on the
same device which are not visible within the Vulkan API. Both of these are beyond the scope of this
extension.

5038

4) Is a new barrier flag or operation of some type needed to prepare external memory for handoff
to another Vulkan instance or API and/or receive it from another instance or API?

RESOLVED: Yes. Some implementations need to perform additional cache management when
transitioning memory between address spaces and other APIs, instances, or processes which may
operate in a separate address space. Options for defining this transition include:

• A new structure that can be added to the pNext list in VkMemoryBarrier,
VkBufferMemoryBarrier, and VkImageMemoryBarrier.

• A new bit in VkAccessFlags that can be set to indicate an “external” access.

• A new bit in VkDependencyFlags

• A new special queue family that represents an “external” queue.

A new structure has the advantage that the type of external transition can be described in as much
detail as necessary. However, there is not currently a known need for anything beyond
differentiating between external and internal accesses, so this is likely an over-engineered solution.
The access flag bit has the advantage that it can be applied at buffer, image, or global granularity,
and semantically it maps pretty well to the operation being described. Additionally, the API already
includes VK_ACCESS_MEMORY_READ_BIT and VK_ACCESS_MEMORY_WRITE_BIT which appear to be intended
for this purpose. However, there is no obvious pipeline stage that would correspond to an external
access, and therefore no clear way to use VK_ACCESS_MEMORY_READ_BIT or VK_ACCESS_MEMORY_WRITE_BIT.
VkDependencyFlags and VkPipelineStageFlags operate at command granularity rather than image
or buffer granularity, which would make an entire pipeline barrier an internal→external or
external→internal barrier. This may not be a problem in practice, but seems like the wrong scope.
Another downside of VkDependencyFlags is that it lacks inherent directionality: there are no src
and dst variants of it in the barrier or dependency description semantics, so two bits might need to
be added to describe both internal→external and external→internal transitions. Transitioning a
resource to a special queue family corresponds well with the operation of transitioning to a
separate Vulkan instance, in that both operations ideally include scheduling a barrier on both sides
of the transition: Both the releasing and the acquiring queue or process. Using a special queue
family requires adding an additional reserved queue family index. Re-using
VK_QUEUE_FAMILY_IGNORED would have left it unclear how to transition a concurrent usage resource
from one process to another, since the semantics would have likely been equivalent to the
currently-ignored transition of VK_QUEUE_FAMILY_IGNORED → VK_QUEUE_FAMILY_IGNORED. Fortunately,
creating a new reserved queue family index is not invasive.

Based on the above analysis, the approach of transitioning to a special “external” queue family was
chosen.

5) Do internal driver memory arrangements and/or other internal driver image properties need to
be exported and imported when sharing images across processes or APIs.

RESOLVED: Some vendors claim this is necessary on their implementations, but it was determined
that the security risks of allowing opaque metadata to be passed from applications to the driver
were too high. Therefore, implementations which require metadata will need to associate it with
the objects represented by the external handles, and rely on the dedicated allocation mechanism to
associate the exported and imported memory objects with a single image or buffer.

5039

6) Most prior interoperation and cross-process sharing APIs have been based on image-level
sharing. Should Vulkan sharing be based on memory-object sharing or image sharing?

RESOLVED: These extensions have assumed memory-level sharing is the correct granularity.
Vulkan is a lower-level API than most prior APIs, and as such attempts to closely align with to the
underlying primitives of the hardware and system-level drivers it abstracts. In general, the
resource that holds the backing store for both images and buffers of various types is memory.
Images and buffers are merely metadata containing brief descriptions of the layout of bits within
that memory.

Because memory object-based sharing is aligned with the overall Vulkan API design, it enables the
full range of Vulkan capabilities with external objects. External memory can be used as backing for
sparse images, for example, whereas such usage would be awkward at best with a sharing
mechanism based on higher-level primitives such as images. Further, aligning the mechanism with
the API in this way provides some hope of trivial compatibility with future API enhancements. If
new objects backed by memory objects are added to the API, they too can be used across processes
with minimal additions to the base external memory APIs.

Earlier APIs implemented interop at a higher level, and this necessitated entirely separate sharing
APIs for images and buffers. To co-exist and interoperate with those APIs, the Vulkan external
sharing mechanism must accommodate their model. However, if it can be agreed that memory-
based sharing is the more desirable and forward-looking design, legacy interoperation constraints
can be considered another reason to favor memory-based sharing: while native and legacy driver
primitives that may be used to implement sharing may not be as low-level as the API here suggests,
raw memory is still the least common denominator among the types. Image-based sharing can be
cleanly derived from a set of base memory- object sharing APIs with minimal effort, whereas
image-based sharing does not generalize well to buffer or raw-memory sharing. Therefore,
following the general Vulkan design principle of minimalism, it is better to expose interopability
with image-based native and external primitives via the memory sharing API, and place sufficient
limits on their usage to ensure they can be used only as backing for equivalent Vulkan images. This
provides a consistent API for applications regardless of which platform or external API they are
targeting, which makes development of multi-API and multi-platform applications simpler.

7) Should Vulkan define a common external handle type and provide Vulkan functions to facilitate
cross-process sharing of such handles rather than relying on native handles to define the external
objects?

RESOLVED: No. Cross-process sharing of resources is best left to native platforms. There are
myriad security and extensibility issues with such a mechanism, and attempting to re-solve all
those issues within Vulkan does not align with Vulkan’s purpose as a graphics API. If desired, such a
mechanism could be built as a layer or helper library on top of the opaque native handle defined in
this family of extensions.

8) Must implementations provide additional guarantees about state implicitly included in memory
objects for those memory objects that may be exported?

RESOLVED: Implementations must ensure that sharing memory objects does not transfer any
information between the exporting and importing instances and APIs other than that required to
share the data contained in the memory objects explicitly shared. As specific examples, data from

5040

previously freed memory objects that used the same underlying physical memory, and data from
memory objects using adjacent physical memory must not be visible to applications importing an
exported memory object.

9) Must implementations validate external handles the application provides as inputs to memory
import operations?

RESOLVED: Implementations must return an error to the application if the provided memory
handle cannot be used to complete the requested import operation. However, implementations
need not validate handles are of the exact type specified by the application.

Version History

• Revision 1, 2016-10-20 (James Jones)

◦ Initial version

VK_KHR_external_memory_capabilities

Name String

VK_KHR_external_memory_capabilities

Extension Type

Instance extension

Registered Extension Number

72

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.1

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-10-17

IP Status

No known IP claims.

5041

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_memory_capabilities] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_memory_capabilities extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_memory_capabilities] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_memory_capabilities extension*

Interactions and External Dependencies

• Interacts with VK_KHR_dedicated_allocation.

• Interacts with VK_NV_dedicated_allocation.

Contributors

• Ian Elliott, Google

• Jesse Hall, Google

• James Jones, NVIDIA

Description

An application may wish to reference device memory in multiple Vulkan logical devices or
instances, in multiple processes, and/or in multiple APIs. This extension provides a set of capability
queries and handle definitions that allow an application to determine what types of “external”
memory handles an implementation supports for a given set of use cases.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkGetPhysicalDeviceExternalBufferPropertiesKHR

New Structures

• VkExternalBufferPropertiesKHR

• VkExternalMemoryPropertiesKHR

• VkPhysicalDeviceExternalBufferInfoKHR

• Extending VkImageFormatProperties2:

◦ VkExternalImageFormatPropertiesKHR

• Extending VkPhysicalDeviceImageFormatInfo2:

◦ VkPhysicalDeviceExternalImageFormatInfoKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceIDPropertiesKHR

New Enums

• VkExternalMemoryFeatureFlagBitsKHR

• VkExternalMemoryHandleTypeFlagBitsKHR

New Bitmasks

• VkExternalMemoryFeatureFlagsKHR

5042

• VkExternalMemoryHandleTypeFlagsKHR

New Enum Constants

• VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME

• VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_SPEC_VERSION

• VK_LUID_SIZE_KHR

• Extending VkExternalMemoryFeatureFlagBits:

◦ VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_KHR

◦ VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_KHR

◦ VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_KHR

• Extending VkExternalMemoryHandleTypeFlagBits:

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT_KHR

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT_KHR

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT_KHR

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT_KHR

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR

◦ VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR

Issues

1) Why do so many external memory capabilities need to be queried on a per-memory-handle-type
basis?

PROPOSED RESOLUTION: This is because some handle types are based on OS-native objects that
have far more limited capabilities than the very generic Vulkan memory objects. Not all memory
handle types can name memory objects that support 3D images, for example. Some handle types
cannot even support the deferred image and memory binding behavior of Vulkan and require
specifying the image when allocating or importing the memory object.

2) Do the VkExternalImageFormatPropertiesKHR and VkExternalBufferPropertiesKHR structs need
to include a list of memory type bits that support the given handle type?

PROPOSED RESOLUTION: No. The memory types that do not support the handle types will simply

5043

be filtered out of the results returned by vkGetImageMemoryRequirements and
vkGetBufferMemoryRequirements when a set of handle types was specified at image or buffer
creation time.

3) Should the non-opaque handle types be moved to their own extension?

PROPOSED RESOLUTION: Perhaps. However, defining the handle type bits does very little and
does not require any platform-specific types on its own, and it is easier to maintain the bitfield
values in a single extension for now. Presumably more handle types could be added by separate
extensions though, and it would be midly weird to have some platform-specific ones defined in the
core spec and some in extensions

4) Do we need a D3D11_TILEPOOL type?

PROPOSED RESOLUTION: No. This is technically possible, but the synchronization is awkward.
D3D11 surfaces must be synchronized using shared mutexes, and these synchronization primitives
are shared by the entire memory object, so D3D11 shared allocations divided among multiple
buffer and image bindings may be difficult to synchronize.

5) Should the Windows 7-compatible handle types be named “KMT” handles or “GLOBAL_SHARE”
handles?

PROPOSED RESOLUTION: KMT, simply because it is more concise.

6) How do applications identify compatible devices and drivers across instance, process, and API
boundaries when sharing memory?

PROPOSED RESOLUTION: New device properties are exposed that allow applications to correctly
correlate devices and drivers. A device and driver UUID that must both match to ensure sharing
compatibility between two Vulkan instances, or a Vulkan instance and an extensible external API
are added. To allow correlating with Direct3D devices, a device LUID is added that corresponds to a
DXGI adapter LUID. A driver ID is not needed for Direct3D because mismatched driver component
versions are not currently supported on the Windows OS. Should support for such configurations
be introduced at the OS level, further Vulkan extensions would be needed to correlate userspace
component builds.

Version History

• Revision 1, 2016-10-17 (James Jones)

◦ Initial version

VK_KHR_external_semaphore

Name String

VK_KHR_external_semaphore

Extension Type

Device extension

5044

Registered Extension Number

78

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_external_semaphore_capabilities

Deprecation State

• Promoted to Vulkan 1.1

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-10-21

IP Status

No known IP claims.

Contributors

• Faith Ekstrand, Intel

• Jesse Hall, Google

• Tobias Hector, Imagination Technologies

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Matthew Netsch, Qualcomm Technologies, Inc.

• Ray Smith, ARM

• Lina Versace, Google

Description

An application using external memory may wish to synchronize access to that memory using
semaphores. This extension enables an application to create semaphores from which non-Vulkan
handles that reference the underlying synchronization primitive can be exported.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

5045

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_semaphore] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_semaphore extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_semaphore] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_semaphore extension*

New Structures

• Extending VkSemaphoreCreateInfo:

◦ VkExportSemaphoreCreateInfoKHR

New Enums

• VkSemaphoreImportFlagBitsKHR

New Bitmasks

• VkSemaphoreImportFlagsKHR

New Enum Constants

• VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME

• VK_KHR_EXTERNAL_SEMAPHORE_SPEC_VERSION

• Extending VkSemaphoreImportFlagBits:

◦ VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO_KHR

Issues

1) Should there be restrictions on what side effects can occur when waiting on imported
semaphores that are in an invalid state?

RESOLVED: Yes. Normally, validating such state would be the responsibility of the application, and
the implementation would be free to enter an undefined state if valid usage rules were violated.
However, this could cause security concerns when using imported semaphores, as it would require
the importing application to trust the exporting application to ensure the state is valid. Requiring
this level of trust is undesirable for many potential use cases.

2) Must implementations validate external handles the application provides as input to semaphore
state import operations?

RESOLVED: Implementations must return an error to the application if the provided semaphore
state handle cannot be used to complete the requested import operation. However,
implementations need not validate handles are of the exact type specified by the application.

Version History

• Revision 1, 2016-10-21 (James Jones)

◦ Initial revision

VK_KHR_external_semaphore_capabilities

5046

Name String

VK_KHR_external_semaphore_capabilities

Extension Type

Instance extension

Registered Extension Number

77

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.1

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-10-20

IP Status

No known IP claims.

Contributors

• Jesse Hall, Google

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

Description

An application may wish to reference device semaphores in multiple Vulkan logical devices or
instances, in multiple processes, and/or in multiple APIs. This extension provides a set of capability
queries and handle definitions that allow an application to determine what types of “external”
semaphore handles an implementation supports for a given set of use cases.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

5047

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_semaphore_capabilities] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_semaphore_capabilities extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_external_semaphore_capabilities] @cubanismo%0A*Here describe the issue or question you have about the VK_KHR_external_semaphore_capabilities extension*

New Commands

• vkGetPhysicalDeviceExternalSemaphorePropertiesKHR

New Structures

• VkExternalSemaphorePropertiesKHR

• VkPhysicalDeviceExternalSemaphoreInfoKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceIDPropertiesKHR

New Enums

• VkExternalSemaphoreFeatureFlagBitsKHR

• VkExternalSemaphoreHandleTypeFlagBitsKHR

New Bitmasks

• VkExternalSemaphoreFeatureFlagsKHR

• VkExternalSemaphoreHandleTypeFlagsKHR

New Enum Constants

• VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME

• VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_SPEC_VERSION

• VK_LUID_SIZE_KHR

• Extending VkExternalSemaphoreFeatureFlagBits:

◦ VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR

◦ VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR

• Extending VkExternalSemaphoreHandleTypeFlagBits:

◦ VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT_KHR

◦ VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR

◦ VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR

◦ VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR

◦ VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR

5048

Version History

• Revision 1, 2016-10-20 (James Jones)

◦ Initial revision

VK_KHR_format_feature_flags2

Name String

VK_KHR_format_feature_flags2

Extension Type

Device extension

Registered Extension Number

361

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Lionel Landwerlin llandwerlin

Other Extension Metadata

Last Modified Date

2021-07-01

IP Status

No known IP claims.

Contributors

• Lionel Landwerlin, Intel

• Faith Ekstrand, Intel

• Tobias Hector, AMD

• Spencer Fricke, Samsung Electronics

• Graeme Leese, Broadcom

• Jan-Harald Fredriksen, ARM

5049

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_format_feature_flags2] @llandwerlin%0A*Here describe the issue or question you have about the VK_KHR_format_feature_flags2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_format_feature_flags2] @llandwerlin%0A*Here describe the issue or question you have about the VK_KHR_format_feature_flags2 extension*

Description

This extension adds a new VkFormatFeatureFlagBits2KHR 64bits format feature flag type to extend
the existing VkFormatFeatureFlagBits which is limited to 31 flags. At the time of this writing 29 bits
of VkFormatFeatureFlagBits are already used.

Because VkFormatProperties2 is already defined to extend the Vulkan 1.0
vkGetPhysicalDeviceFormatProperties entry point, this extension defines a new
VkFormatProperties3KHR to extend the VkFormatProperties.

On top of replicating all the bits from VkFormatFeatureFlagBits, VkFormatFeatureFlagBits2KHR
adds the following bits :

• VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT_KHR and
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT_KHR indicate that an implementation
supports respectively reading and writing a given VkFormat through storage operations without
specifying the format in the shader.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT_KHR indicates that an implementation
supports depth comparison performed by OpImage*Dref* instructions on a given VkFormat.
Previously the result of executing a OpImage*Dref* instruction on an image view, where the
format was not one of the depth/stencil formats with a depth component, was undefined. This
bit clarifies on which formats such instructions can be used.

Prior to version 2 of this extension, implementations exposing the
shaderStorageImageReadWithoutFormat and shaderStorageImageWriteWithoutFormat features may not
report VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT_KHR and
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT_KHR in VkFormatProperties3KHR
::bufferFeatures. Despite this, buffer reads/writes are supported as intended by the original
features.

New Structures

• Extending VkFormatProperties2:

◦ VkFormatProperties3KHR

New Enums

• VkFormatFeatureFlagBits2KHR

New Bitmasks

• VkFormatFeatureFlags2KHR

New Enum Constants

• VK_KHR_FORMAT_FEATURE_FLAGS_2_EXTENSION_NAME

• VK_KHR_FORMAT_FEATURE_FLAGS_2_SPEC_VERSION

• Extending VkStructureType:

5050

◦ VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3_KHR

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 2, 2022-07-20 (Lionel Landwerlin)

◦ Clarify that VK_FORMAT_FEATURE_2_STORAGE_(READ|WRITE)_WITHOUT_FORMAT_BIT
also apply to buffer views.

• Revision 1, 2020-07-21 (Lionel Landwerlin)

◦ Initial draft

VK_KHR_get_memory_requirements2

Name String

VK_KHR_get_memory_requirements2

Extension Type

Device extension

Registered Extension Number

147

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Faith Ekstrand gfxstrand

Other Extension Metadata

Last Modified Date

2017-09-05

IP Status

No known IP claims.

5051

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_get_memory_requirements2] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_get_memory_requirements2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_get_memory_requirements2] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_get_memory_requirements2 extension*

Contributors

• Faith Ekstrand, Intel

• Jeff Bolz, NVIDIA

• Jesse Hall, Google

Description

This extension provides new queries for memory requirements of images and buffers that can be
easily extended by other extensions, without introducing any further entry points. The Vulkan 1.0
VkMemoryRequirements and VkSparseImageMemoryRequirements structures do not include sType
and pNext members. This extension wraps them in new structures with these members, so an
application can query a chain of memory requirements structures by constructing the chain and
letting the implementation fill them in. A new command is added for each vkGet*MemoryRequrements
command in core Vulkan 1.0.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkGetBufferMemoryRequirements2KHR

• vkGetImageMemoryRequirements2KHR

• vkGetImageSparseMemoryRequirements2KHR

New Structures

• VkBufferMemoryRequirementsInfo2KHR

• VkImageMemoryRequirementsInfo2KHR

• VkImageSparseMemoryRequirementsInfo2KHR

• VkMemoryRequirements2KHR

• VkSparseImageMemoryRequirements2KHR

New Enum Constants

• VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME

• VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR

5052

◦ VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2_KHR

Version History

• Revision 1, 2017-03-23 (Faith Ekstrand)

◦ Internal revisions

VK_KHR_get_physical_device_properties2

Name String

VK_KHR_get_physical_device_properties2

Extension Type

Instance extension

Registered Extension Number

60

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-09-05

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Ian Elliott, Google

Description

This extension provides new queries for device features, device properties, and format properties

5053

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_get_physical_device_properties2] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_get_physical_device_properties2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_get_physical_device_properties2] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_get_physical_device_properties2 extension*

that can be easily extended by other extensions, without introducing any further queries. The
Vulkan 1.0 feature/limit/formatproperty structures do not include sType/pNext members. This
extension wraps them in new structures with sType/pNext members, so an application can query a
chain of feature/limit/formatproperty structures by constructing the chain and letting the
implementation fill them in. A new command is added for each vkGetPhysicalDevice* command in
core Vulkan 1.0. The new feature structure (and a pNext chain of extending structures) can also be
passed in to device creation to enable features.

This extension also allows applications to use the physical-device components of device extensions
before vkCreateDevice is called.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkGetPhysicalDeviceFeatures2KHR

• vkGetPhysicalDeviceFormatProperties2KHR

• vkGetPhysicalDeviceImageFormatProperties2KHR

• vkGetPhysicalDeviceMemoryProperties2KHR

• vkGetPhysicalDeviceProperties2KHR

• vkGetPhysicalDeviceQueueFamilyProperties2KHR

• vkGetPhysicalDeviceSparseImageFormatProperties2KHR

New Structures

• VkFormatProperties2KHR

• VkImageFormatProperties2KHR

• VkPhysicalDeviceImageFormatInfo2KHR

• VkPhysicalDeviceMemoryProperties2KHR

• VkPhysicalDeviceProperties2KHR

• VkPhysicalDeviceSparseImageFormatInfo2KHR

• VkQueueFamilyProperties2KHR

• VkSparseImageFormatProperties2KHR

• Extending VkDeviceCreateInfo:

◦ VkPhysicalDeviceFeatures2KHR

New Enum Constants

• VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME

• VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION

5054

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2_KHR

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR

◦ VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR

Examples

 // Get features with a hypothetical future extension.
 VkHypotheticalExtensionFeaturesKHR hypotheticalFeatures =
 {
 .sType = VK_STRUCTURE_TYPE_HYPOTHETICAL_FEATURES_KHR,
 .pNext = NULL,
 };

 VkPhysicalDeviceFeatures2KHR features =
 {
 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR,
 .pNext = &hypotheticalFeatures,
 };

 // After this call, features and hypotheticalFeatures have been filled out.
 vkGetPhysicalDeviceFeatures2KHR(physicalDevice, &features);

 // Properties/limits can be chained and queried similarly.

 // Enable some features:
 VkHypotheticalExtensionFeaturesKHR enabledHypotheticalFeatures =
 {
 .sType = VK_STRUCTURE_TYPE_HYPOTHETICAL_FEATURES_KHR,
 .pNext = NULL,
 };

 VkPhysicalDeviceFeatures2KHR enabledFeatures =
 {
 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR,
 .pNext = &enabledHypotheticalFeatures,
 };

 enabledFeatures.features.xyz = VK_TRUE;
 enabledHypotheticalFeatures.abc = VK_TRUE;

5055

 VkDeviceCreateInfo deviceCreateInfo =
 {
 .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
 .pNext = &enabledFeatures,
 ...
 .pEnabledFeatures = NULL,
 };

 VkDevice device;
 vkCreateDevice(physicalDevice, &deviceCreateInfo, NULL, &device);

Version History

• Revision 1, 2016-09-12 (Jeff Bolz)

◦ Internal revisions

• Revision 2, 2016-11-02 (Ian Elliott)

◦ Added ability for applications to use the physical-device components of device extensions
before vkCreateDevice is called.

VK_KHR_image_format_list

Name String

VK_KHR_image_format_list

Extension Type

Device extension

Registered Extension Number

148

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Faith Ekstrand gfxstrand

5056

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_image_format_list] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_image_format_list extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_image_format_list] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_image_format_list extension*

Other Extension Metadata

Last Modified Date

2017-03-20

IP Status

No known IP claims.

Contributors

• Faith Ekstrand, Intel

• Jan-Harald Fredriksen, ARM

• Jeff Bolz, NVIDIA

• Jeff Leger, Qualcomm

• Neil Henning, Codeplay

Description

On some implementations, setting the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT on image creation can
cause access to that image to perform worse than an equivalent image created without
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT because the implementation does not know what view formats
will be paired with the image.

This extension allows an application to provide the list of all formats that can be used with an
image when it is created. The implementation may then be able to create a more efficient image
that supports the subset of formats required by the application without having to support all
formats in the format compatibility class of the image format.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkImageCreateInfo, VkSwapchainCreateInfoKHR,
VkPhysicalDeviceImageFormatInfo2:

◦ VkImageFormatListCreateInfoKHR

New Enum Constants

• VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME

• VK_KHR_IMAGE_FORMAT_LIST_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR

5057

Version History

• Revision 1, 2017-03-20 (Faith Ekstrand)

◦ Initial revision

VK_KHR_imageless_framebuffer

Name String

VK_KHR_imageless_framebuffer

Extension Type

Device extension

Registered Extension Number

109

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_maintenance2
and
VK_KHR_image_format_list
and
VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Tobias Hector tobias

Other Extension Metadata

Last Modified Date

2018-12-14

Contributors

• Tobias Hector

• Graham Wihlidal

Description

This extension allows framebuffers to be created without the need for creating images first,
allowing more flexibility in how they are used, and avoiding the need for many of the confusing

5058

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_imageless_framebuffer] @tobias%0A*Here describe the issue or question you have about the VK_KHR_imageless_framebuffer extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_imageless_framebuffer] @tobias%0A*Here describe the issue or question you have about the VK_KHR_imageless_framebuffer extension*

compatibility rules.

Framebuffers are now created with a small amount of additional metadata about the image views
that will be used in VkFramebufferAttachmentsCreateInfoKHR, and the actual image views are
provided at render pass begin time via VkRenderPassAttachmentBeginInfoKHR.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• VkFramebufferAttachmentImageInfoKHR

• Extending VkFramebufferCreateInfo:

◦ VkFramebufferAttachmentsCreateInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceImagelessFramebufferFeaturesKHR

• Extending VkRenderPassBeginInfo:

◦ VkRenderPassAttachmentBeginInfoKHR

New Enum Constants

• VK_KHR_IMAGELESS_FRAMEBUFFER_EXTENSION_NAME

• VK_KHR_IMAGELESS_FRAMEBUFFER_SPEC_VERSION

• Extending VkFramebufferCreateFlagBits:

◦ VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR

Version History

• Revision 1, 2018-12-14 (Tobias Hector)

◦ Internal revisions

VK_KHR_maintenance1

Name String

VK_KHR_maintenance1

5059

Extension Type

Device extension

Registered Extension Number

70

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2018-03-13

Contributors

• Dan Ginsburg, Valve

• Daniel Koch, NVIDIA

• Daniel Rakos, AMD

• Jan-Harald Fredriksen, ARM

• Faith Ekstrand, Intel

• Jeff Bolz, NVIDIA

• Jesse Hall, Google

• John Kessenich, Google

• Michael Worcester, Imagination Technologies

• Neil Henning, Codeplay Software Ltd.

• Piers Daniell, NVIDIA

• Slawomir Grajewski, Intel

• Tobias Hector, Imagination Technologies

• Tom Olson, ARM

5060

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance1] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_maintenance1 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance1] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_maintenance1 extension*

Description

VK_KHR_maintenance1 adds a collection of minor features that were intentionally left out or
overlooked from the original Vulkan 1.0 release.

The new features are as follows:

• Allow 2D and 2D array image views to be created from 3D images, which can then be used as
color framebuffer attachments. This allows applications to render to slices of a 3D image.

• Support vkCmdCopyImage between 2D array layers and 3D slices. This extension allows copying
from layers of a 2D array image to slices of a 3D image and vice versa.

• Allow negative height to be specified in the VkViewport::height field to perform y-inversion of
the clip-space to framebuffer-space transform. This allows apps to avoid having to use
gl_Position.y = -gl_Position.y in shaders also targeting other APIs.

• Allow implementations to express support for doing just transfers and clears of image formats
that they otherwise support no other format features for. This is done by adding new format
feature flags VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR and
VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR.

• Support vkCmdFillBuffer on transfer-only queues. Previously vkCmdFillBuffer was defined to
only work on command buffers allocated from command pools which support graphics or
compute queues. It is now allowed on queues that just support transfer operations.

• Fix the inconsistency of how error conditions are returned between the
vkCreateGraphicsPipelines and vkCreateComputePipelines functions and the
vkAllocateDescriptorSets and vkAllocateCommandBuffers functions.

• Add new VK_ERROR_OUT_OF_POOL_MEMORY_KHR error so implementations can give a more precise
reason for vkAllocateDescriptorSets failures.

• Add a new command vkTrimCommandPoolKHR which gives the implementation an
opportunity to release any unused command pool memory back to the system.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkTrimCommandPoolKHR

New Bitmasks

• VkCommandPoolTrimFlagsKHR

New Enum Constants

• VK_KHR_MAINTENANCE1_EXTENSION_NAME

• VK_KHR_MAINTENANCE1_SPEC_VERSION

5061

• VK_KHR_MAINTENANCE_1_EXTENSION_NAME

• VK_KHR_MAINTENANCE_1_SPEC_VERSION

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR

◦ VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR

• Extending VkResult:

◦ VK_ERROR_OUT_OF_POOL_MEMORY_KHR

Issues

1. Are viewports with zero height allowed?

RESOLVED: Yes, although they have low utility.

Version History

• Revision 1, 2016-10-26 (Piers Daniell)

◦ Internal revisions

• Revision 2, 2018-03-13 (Jon Leech)

◦ Add issue for zero-height viewports

VK_KHR_maintenance2

Name String

VK_KHR_maintenance2

Extension Type

Device extension

Registered Extension Number

118

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

5062

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Michael Worcester michaelworcester

Other Extension Metadata

Last Modified Date

2017-09-05

Contributors

• Michael Worcester, Imagination Technologies

• Stuart Smith, Imagination Technologies

• Jeff Bolz, NVIDIA

• Daniel Koch, NVIDIA

• Jan-Harald Fredriksen, ARM

• Daniel Rakos, AMD

• Neil Henning, Codeplay

• Piers Daniell, NVIDIA

Description

VK_KHR_maintenance2 adds a collection of minor features that were intentionally left out or
overlooked from the original Vulkan 1.0 release.

The new features are as follows:

• Allow the application to specify which aspect of an input attachment might be read for a given
subpass.

• Allow implementations to express the clipping behavior of points.

• Allow creating images with usage flags that may not be supported for the base image’s format,
but are supported for image views of the image that have a different but compatible format.

• Allow creating uncompressed image views of compressed images.

• Allow the application to select between an upper-left and lower-left origin for the tessellation
domain space.

• Adds two new image layouts for depth stencil images to allow either the depth or stencil aspect
to be read-only while the other aspect is writable.

Input Attachment Specification

Input attachment specification allows an application to specify which aspect of a multi-aspect
image (e.g. a depth/stencil format) will be accessed via a subpassLoad operation.

On some implementations there may be a performance penalty if the implementation does not

5063

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance2] @michaelworcester%0A*Here describe the issue or question you have about the VK_KHR_maintenance2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance2] @michaelworcester%0A*Here describe the issue or question you have about the VK_KHR_maintenance2 extension*

know (at vkCreateRenderPass time) which aspect(s) of multi-aspect images can be accessed as input
attachments.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• VkInputAttachmentAspectReferenceKHR

• Extending VkImageViewCreateInfo:

◦ VkImageViewUsageCreateInfoKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDevicePointClippingPropertiesKHR

• Extending VkPipelineTessellationStateCreateInfo:

◦ VkPipelineTessellationDomainOriginStateCreateInfoKHR

• Extending VkRenderPassCreateInfo:

◦ VkRenderPassInputAttachmentAspectCreateInfoKHR

New Enums

• VkPointClippingBehaviorKHR

• VkTessellationDomainOriginKHR

New Enum Constants

• VK_KHR_MAINTENANCE2_EXTENSION_NAME

• VK_KHR_MAINTENANCE2_SPEC_VERSION

• VK_KHR_MAINTENANCE_2_EXTENSION_NAME

• VK_KHR_MAINTENANCE_2_SPEC_VERSION

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR

◦ VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR

◦ VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR

• Extending VkPointClippingBehavior:

◦ VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR

◦ VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY_KHR

• Extending VkStructureType:

5064

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO_KHR

• Extending VkTessellationDomainOrigin:

◦ VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR

◦ VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR

Input Attachment Specification Example

Consider the case where a render pass has two subpasses and two attachments.

Attachment 0 has the format VK_FORMAT_D24_UNORM_S8_UINT, attachment 1 has some color format.

Subpass 0 writes to attachment 0, subpass 1 reads only the depth information from attachment 0
(using inputAttachmentRead) and writes to attachment 1.

 VkInputAttachmentAspectReferenceKHR references[] = {
 {
 .subpass = 1,
 .inputAttachmentIndex = 0,
 .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT
 }
 };

 VkRenderPassInputAttachmentAspectCreateInfoKHR specifyAspects = {
 .sType =
VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO_KHR,
 .pNext = NULL,
 .aspectReferenceCount = 1,
 .pAspectReferences = references
 };

 VkRenderPassCreateInfo createInfo = {
 ...
 .pNext = &specifyAspects,
 ...
 };

 vkCreateRenderPass(...);

Issues

1) What is the default tessellation domain origin?

RESOLVED: Vulkan 1.0 originally inadvertently documented a lower-left origin, but the

5065

conformance tests and all implementations implemented an upper-left origin. This extension adds
a control to select between lower-left (for compatibility with OpenGL) and upper-left, and we
retroactively fix unextended Vulkan to have a default of an upper-left origin.

Version History

• Revision 1, 2017-04-28

VK_KHR_maintenance3

Name String

VK_KHR_maintenance3

Extension Type

Device extension

Registered Extension Number

169

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-09-05

Contributors

• Jeff Bolz, NVIDIA

Description

VK_KHR_maintenance3 adds a collection of minor features that were intentionally left out or
overlooked from the original Vulkan 1.0 release.

The new features are as follows:

• A limit on the maximum number of descriptors that are supported in a single descriptor set

5066

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance3] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_maintenance3 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance3] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_maintenance3 extension*

layout. Some implementations have a limit on the total size of descriptors in a set, which cannot
be expressed in terms of the limits in Vulkan 1.0.

• A limit on the maximum size of a single memory allocation. Some platforms have kernel
interfaces that limit the maximum size of an allocation.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkGetDescriptorSetLayoutSupportKHR

New Structures

• VkDescriptorSetLayoutSupportKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMaintenance3PropertiesKHR

New Enum Constants

• VK_KHR_MAINTENANCE3_EXTENSION_NAME

• VK_KHR_MAINTENANCE3_SPEC_VERSION

• VK_KHR_MAINTENANCE_3_EXTENSION_NAME

• VK_KHR_MAINTENANCE_3_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES_KHR

Version History

• Revision 1, 2017-08-22

VK_KHR_maintenance4

Name String

VK_KHR_maintenance4

Extension Type

Device extension

Registered Extension Number

414

5067

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2021-10-25

Interactions and External Dependencies

• Requires SPIR-V 1.2 for LocalSizeId

Contributors

• Lionel Duc, NVIDIA

• Faith Ekstrand, Intel

• Spencer Fricke, Samsung

• Tobias Hector, AMD

• Lionel Landwerlin, Intel

• Graeme Leese, Broadcom

• Tom Olson, Arm

• Stu Smith, AMD

• Yiwei Zhang, Google

Description

VK_KHR_maintenance4 adds a collection of minor features, none of which would warrant an entire
extension of their own.

The new features are as follows:

• Allow the application to destroy their VkPipelineLayout object immediately after it was used to
create another object. It is no longer necessary to keep its handle valid while the created object
is in use.

• Add a new maxBufferSize implementation-defined limit for the maximum size VkBuffer that can
be created.

5068

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance4] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_maintenance4 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_maintenance4] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_maintenance4 extension*

• Add support for the SPIR-V 1.2 LocalSizeId execution mode, which can be used as an alternative
to LocalSize to specify the local workgroup size with specialization constants.

• Add a guarantee that images created with identical creation parameters will always have the
same alignment requirements.

• Add new vkGetDeviceBufferMemoryRequirementsKHR,
vkGetDeviceImageMemoryRequirementsKHR, and
vkGetDeviceImageSparseMemoryRequirementsKHR to allow the application to query the image
memory requirements without having to create an image object and query it.

• Relax the requirement that push constants must be initialized before they are dynamically
accessed.

• Relax the interface matching rules to allow a larger output vector to match with a smaller input
vector, with additional values being discarded.

• Add a guarantee for buffer memory requirement that the size memory requirement is never
greater than the result of aligning create size with the alignment memory requirement.

New Commands

• vkGetDeviceBufferMemoryRequirementsKHR

• vkGetDeviceImageMemoryRequirementsKHR

• vkGetDeviceImageSparseMemoryRequirementsKHR

New Structures

• VkDeviceBufferMemoryRequirementsKHR

• VkDeviceImageMemoryRequirementsKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMaintenance4FeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMaintenance4PropertiesKHR

New Enum Constants

• VK_KHR_MAINTENANCE_4_EXTENSION_NAME

• VK_KHR_MAINTENANCE_4_SPEC_VERSION

• Extending VkImageAspectFlagBits:

◦ VK_IMAGE_ASPECT_NONE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS_KHR

◦ VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES_KHR

5069

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Issues

None.

Version History

• Revision 1, 2021-08-18 (Piers Daniell)

◦ Internal revisions

• Revision 2, 2021-10-25 (Yiwei Zhang)

◦ More guarantees on buffer memory requirements

VK_KHR_multiview

Name String

VK_KHR_multiview

Extension Type

Device extension

Registered Extension Number

54

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_KHR_multiview

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2016-10-28

5070

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_multiview.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_multiview] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_multiview extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_multiview] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_multiview extension*

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_EXT_multiview

Contributors

• Jeff Bolz, NVIDIA

Description

This extension has the same goal as the OpenGL ES GL_OVR_multiview extension. Multiview is a
rendering technique originally designed for VR where it is more efficient to record a single set of
commands to be executed with slightly different behavior for each “view”.

It includes a concise way to declare a render pass with multiple views, and gives implementations
freedom to render the views in the most efficient way possible. This is done with a multiview
configuration specified during render pass creation with the VkRenderPassMultiviewCreateInfo
passed into VkRenderPassCreateInfo::pNext.

This extension enables the use of the SPV_KHR_multiview shader extension, which adds a new
ViewIndex built-in type that allows shaders to control what to do for each view. If using GLSL there
is also the GL_EXT_multiview extension that introduces a highp int gl_ViewIndex; built-in variable
for vertex, tessellation, geometry, and fragment shaders.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMultiviewFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceMultiviewPropertiesKHR

• Extending VkRenderPassCreateInfo:

◦ VkRenderPassMultiviewCreateInfoKHR

New Enum Constants

• VK_KHR_MULTIVIEW_EXTENSION_NAME

• VK_KHR_MULTIVIEW_SPEC_VERSION

• Extending VkDependencyFlagBits:

◦ VK_DEPENDENCY_VIEW_LOCAL_BIT_KHR

• Extending VkStructureType:

5071

https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_multiview.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_multiview.html
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_multiview.txt

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO_KHR

New Built-In Variables

• ViewIndex

New SPIR-V Capabilities

• MultiView

Version History

• Revision 1, 2016-10-28 (Jeff Bolz)

◦ Internal revisions

VK_KHR_relaxed_block_layout

Name String

VK_KHR_relaxed_block_layout

Extension Type

Device extension

Registered Extension Number

145

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.1

Contact

• John Kessenich johnkslang

Other Extension Metadata

Last Modified Date

2017-03-26

5072

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_relaxed_block_layout] @johnkslang%0A*Here describe the issue or question you have about the VK_KHR_relaxed_block_layout extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_relaxed_block_layout] @johnkslang%0A*Here describe the issue or question you have about the VK_KHR_relaxed_block_layout extension*

IP Status

No known IP claims.

Contributors

• John Kessenich, Google

Description

The VK_KHR_relaxed_block_layout extension allows implementations to indicate they can support
more variation in block Offset decorations. For example, placing a vector of three floats at an offset
of 16×N + 4.

See Offset and Stride Assignment for details.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Enum Constants

• VK_KHR_RELAXED_BLOCK_LAYOUT_EXTENSION_NAME

• VK_KHR_RELAXED_BLOCK_LAYOUT_SPEC_VERSION

Version History

• Revision 1, 2017-03-26 (JohnK)

VK_KHR_sampler_mirror_clamp_to_edge

Name String

VK_KHR_sampler_mirror_clamp_to_edge

Extension Type

Device extension

Registered Extension Number

15

Revision

3

Ratification Status

Ratified

Extension and Version Dependencies

None

5073

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2019-08-17

Contributors

• Tobias Hector, Imagination Technologies

• Jon Leech, Khronos

Description

VK_KHR_sampler_mirror_clamp_to_edge extends the set of sampler address modes to include an
additional mode (VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE) that effectively uses a texture map
twice as large as the original image in which the additional half of the new image is a mirror image
of the original image.

This new mode relaxes the need to generate images whose opposite edges match by using the
original image to generate a matching “mirror image”. This mode allows the texture to be mirrored
only once in the negative s, t, and r directions.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2. However, if Vulkan 1.2 is
supported and this extension is not, the VkSamplerAddressMode
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE is optional. Since the original extension did not use
an author suffix on the enum VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE, it is used by both core
and extension implementations.

New Enum Constants

• VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME

• VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_SPEC_VERSION

• Extending VkSamplerAddressMode:

◦ VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE

◦ VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE_KHR

Example

Creating a sampler with the new address mode in each dimension

 VkSamplerCreateInfo createInfo =

5074

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_sampler_mirror_clamp_to_edge] @tobski%0A*Here describe the issue or question you have about the VK_KHR_sampler_mirror_clamp_to_edge extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_sampler_mirror_clamp_to_edge] @tobski%0A*Here describe the issue or question you have about the VK_KHR_sampler_mirror_clamp_to_edge extension*

 {
 .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
 // Other members set to application-desired values
 };

 createInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
 createInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
 createInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;

 VkSampler sampler;
 VkResult result = vkCreateSampler(
 device,
 &createInfo,
 &sampler);

Issues

1) Why are both KHR and core versions of the VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE token
present?

RESOLVED: This functionality was intended to be required in Vulkan 1.0. We realized shortly
before public release that not all implementations could support it, and moved the functionality
into an optional extension, but did not apply the KHR extension suffix. Adding a KHR-suffixed alias
of the non-suffixed enum has been done to comply with our own naming rules.

In a related change, before spec revision 1.1.121 this extension was hardwiring into the spec
Makefile so it was always included with the Specification, even in the core-only versions. This has
now been reverted, and it is treated as any other extension.

Version History

• Revision 1, 2016-02-16 (Tobias Hector)

◦ Initial draft

• Revision 2, 2019-08-14 (Jon Leech)

◦ Add KHR-suffixed alias of non-suffixed enum.

• Revision 3, 2019-08-17 (Jon Leech)

◦ Add an issue explaining the reason for the extension API not being suffixed with KHR.

VK_KHR_sampler_ycbcr_conversion

Name String

VK_KHR_sampler_ycbcr_conversion

Extension Type

Device extension

5075

Registered Extension Number

157

Revision

14

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_maintenance1
and
VK_KHR_bind_memory2
and
VK_KHR_get_memory_requirements2
and
VK_KHR_get_physical_device_properties2

API Interactions

• Interacts with VK_EXT_debug_report

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Andrew Garrard fluppeteer

Other Extension Metadata

Last Modified Date

2017-08-11

IP Status

No known IP claims.

Contributors

• Andrew Garrard, Samsung Electronics

• Tobias Hector, Imagination Technologies

• James Jones, NVIDIA

• Daniel Koch, NVIDIA

• Daniel Rakos, AMD

• Romain Guy, Google

• Jesse Hall, Google

• Tom Cooksey, ARM Ltd

• Jeff Leger, Qualcomm Technologies, Inc

5076

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_sampler_ycbcr_conversion] @fluppeteer%0A*Here describe the issue or question you have about the VK_KHR_sampler_ycbcr_conversion extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_sampler_ycbcr_conversion] @fluppeteer%0A*Here describe the issue or question you have about the VK_KHR_sampler_ycbcr_conversion extension*

• Jan-Harald Fredriksen, ARM Ltd

• Jan Outters, Samsung Electronics

• Alon Or-bach, Samsung Electronics

• Michael Worcester, Imagination Technologies

• Jeff Bolz, NVIDIA

• Tony Zlatinski, NVIDIA

• Matthew Netsch, Qualcomm Technologies, Inc

Description

The use of Y′CBCR sampler conversion is an area in 3D graphics not used by most Vulkan developers.
It is mainly used for processing inputs from video decoders and cameras. The use of the extension
assumes basic knowledge of Y′CBCR concepts.

This extension provides the ability to perform specified color space conversions during texture
sampling operations for the Y′CBCR color space natively. It also adds a selection of multi-planar
formats, image aspect plane, and the ability to bind memory to the planes of an image collectively
or separately.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted.
However, if Vulkan 1.1 is supported and this extension is not, the samplerYcbcrConversion capability
is optional. The original type, enum and command names are still available as aliases of the core
functionality.

New Object Types

• VkSamplerYcbcrConversionKHR

New Commands

• vkCreateSamplerYcbcrConversionKHR

• vkDestroySamplerYcbcrConversionKHR

New Structures

• VkSamplerYcbcrConversionCreateInfoKHR

• Extending VkBindImageMemoryInfo:

◦ VkBindImagePlaneMemoryInfoKHR

• Extending VkImageFormatProperties2:

◦ VkSamplerYcbcrConversionImageFormatPropertiesKHR

• Extending VkImageMemoryRequirementsInfo2:

◦ VkImagePlaneMemoryRequirementsInfoKHR

5077

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR

• Extending VkSamplerCreateInfo, VkImageViewCreateInfo:

◦ VkSamplerYcbcrConversionInfoKHR

New Enums

• VkChromaLocationKHR

• VkSamplerYcbcrModelConversionKHR

• VkSamplerYcbcrRangeKHR

New Enum Constants

• VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME

• VK_KHR_SAMPLER_YCBCR_CONVERSION_SPEC_VERSION

• Extending VkChromaLocation:

◦ VK_CHROMA_LOCATION_COSITED_EVEN_KHR

◦ VK_CHROMA_LOCATION_MIDPOINT_KHR

• Extending VkFormat:

◦ VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16_KHR

◦ VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16_KHR

◦ VK_FORMAT_B16G16R16G16_422_UNORM_KHR

◦ VK_FORMAT_B8G8R8G8_422_UNORM_KHR

◦ VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16_KHR

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16_KHR

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16_KHR

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16_KHR

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16_KHR

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16_KHR

◦ VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16_KHR

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16_KHR

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16_KHR

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16_KHR

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16_KHR

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16_KHR

◦ VK_FORMAT_G16B16G16R16_422_UNORM_KHR

◦ VK_FORMAT_G16_B16R16_2PLANE_420_UNORM_KHR

5078

◦ VK_FORMAT_G16_B16R16_2PLANE_422_UNORM_KHR

◦ VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM_KHR

◦ VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM_KHR

◦ VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM_KHR

◦ VK_FORMAT_G8B8G8R8_422_UNORM_KHR

◦ VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR

◦ VK_FORMAT_G8_B8R8_2PLANE_422_UNORM_KHR

◦ VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR

◦ VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM_KHR

◦ VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM_KHR

◦ VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16_KHR

◦ VK_FORMAT_R10X6G10X6_UNORM_2PACK16_KHR

◦ VK_FORMAT_R10X6_UNORM_PACK16_KHR

◦ VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16_KHR

◦ VK_FORMAT_R12X4G12X4_UNORM_2PACK16_KHR

◦ VK_FORMAT_R12X4_UNORM_PACK16_KHR

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR

◦ VK_FORMAT_FEATURE_DISJOINT_BIT_KHR

◦ VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT_KHR

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABL
E_BIT_KHR

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KHR

• Extending VkImageAspectFlagBits:

◦ VK_IMAGE_ASPECT_PLANE_0_BIT_KHR

◦ VK_IMAGE_ASPECT_PLANE_1_BIT_KHR

◦ VK_IMAGE_ASPECT_PLANE_2_BIT_KHR

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_DISJOINT_BIT_KHR

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR

• Extending VkSamplerYcbcrModelConversion:

◦ VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY_KHR

5079

◦ VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020_KHR

◦ VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601_KHR

◦ VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709_KHR

◦ VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY_KHR

• Extending VkSamplerYcbcrRange:

◦ VK_SAMPLER_YCBCR_RANGE_ITU_FULL_KHR

◦ VK_SAMPLER_YCBCR_RANGE_ITU_NARROW_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO_KHR

If VK_EXT_debug_report is supported:

• Extending VkDebugReportObjectTypeEXT:

◦ VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_EXT

◦ VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR_EXT

Version History

• Revision 1, 2017-01-24 (Andrew Garrard)

◦ Initial draft

• Revision 2, 2017-01-25 (Andrew Garrard)

◦ After initial feedback

• Revision 3, 2017-01-27 (Andrew Garrard)

◦ Higher bit depth formats, renaming, swizzle

• Revision 4, 2017-02-22 (Andrew Garrard)

◦ Added query function, formats as RGB, clarifications

• Revision 5, 2017-04-?? (Andrew Garrard)

◦ Simplified query and removed output conversions

• Revision 6, 2017-04-24 (Andrew Garrard)

◦ Tidying, incorporated new image query, restored transfer functions

• Revision 7, 2017-04-25 (Andrew Garrard)

◦ Added cosited option/midpoint requirement for formats, “bypassConversion”

5080

• Revision 8, 2017-04-25 (Andrew Garrard)

◦ Simplified further

• Revision 9, 2017-04-27 (Andrew Garrard)

◦ Disjoint no more

• Revision 10, 2017-04-28 (Andrew Garrard)

◦ Restored disjoint

• Revision 11, 2017-04-29 (Andrew Garrard)

◦ Now Ycbcr conversion, and KHR

• Revision 12, 2017-06-06 (Andrew Garrard)

◦ Added conversion to image view creation

• Revision 13, 2017-07-13 (Andrew Garrard)

◦ Allowed cosited-only chroma samples for formats

• Revision 14, 2017-08-11 (Andrew Garrard)

◦ Reflected quantization changes in BT.2100-1

VK_KHR_separate_depth_stencil_layouts

Name String

VK_KHR_separate_depth_stencil_layouts

Extension Type

Device extension

Registered Extension Number

242

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_create_renderpass2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Piers Daniell pdaniell-nv

5081

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_separate_depth_stencil_layouts] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_separate_depth_stencil_layouts extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_separate_depth_stencil_layouts] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_KHR_separate_depth_stencil_layouts extension*

Other Extension Metadata

Last Modified Date

2019-06-25

Contributors

• Daniel Koch, NVIDIA

• Jeff Bolz, NVIDIA

• Jesse Barker, Unity

• Tobias Hector, AMD

Description

This extension allows image memory barriers for depth/stencil images to have just one of the
VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT aspect bits set, rather than require both.
This allows their layouts to be set independently. To support depth/stencil images with different
layouts for the depth and stencil aspects, the depth/stencil attachment interface has been updated
to support a separate layout for stencil.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkAttachmentDescription2:

◦ VkAttachmentDescriptionStencilLayoutKHR

• Extending VkAttachmentReference2:

◦ VkAttachmentReferenceStencilLayoutKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR

New Enum Constants

• VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME

• VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_SPEC_VERSION

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR

◦ VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR

◦ VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR

◦ VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR

• Extending VkStructureType:

5082

◦ VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT_KHR

◦ VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR

Version History

• Revision 1, 2019-06-25 (Piers Daniell)

◦ Internal revisions

VK_KHR_shader_atomic_int64

Name String

VK_KHR_shader_atomic_int64

Extension Type

Device extension

Registered Extension Number

181

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Aaron Hagan ahagan

Other Extension Metadata

Last Modified Date

2018-07-05

Interactions and External Dependencies

• This extension provides API support for GL_ARB_gpu_shader_int64 and
GL_EXT_shader_atomic_int64

Contributors

• Aaron Hagan, AMD

• Daniel Rakos, AMD

5083

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_atomic_int64] @ahagan%0A*Here describe the issue or question you have about the VK_KHR_shader_atomic_int64 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_atomic_int64] @ahagan%0A*Here describe the issue or question you have about the VK_KHR_shader_atomic_int64 extension*
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_gpu_shader_int64.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_shader_atomic_int64.txt

• Jeff Bolz, NVIDIA

• Neil Henning, Codeplay

Description

This extension advertises the SPIR-V Int64Atomics capability for Vulkan, which allows a shader to
contain 64-bit atomic operations on signed and unsigned integers. The supported operations
include OpAtomicMin, OpAtomicMax, OpAtomicAnd, OpAtomicOr, OpAtomicXor, OpAtomicAdd,
OpAtomicExchange, and OpAtomicCompareExchange.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted.
However, if Vulkan 1.2 is supported and this extension is not, the shaderBufferInt64Atomics
capability is optional. The original type, enum and command names are still available as aliases of
the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderAtomicInt64FeaturesKHR

New Enum Constants

• VK_KHR_SHADER_ATOMIC_INT64_EXTENSION_NAME

• VK_KHR_SHADER_ATOMIC_INT64_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR

New SPIR-V Capabilities

• Int64Atomics

Version History

• Revision 1, 2018-07-05 (Aaron Hagan)

◦ Internal revisions

VK_KHR_shader_draw_parameters

Name String

VK_KHR_shader_draw_parameters

Extension Type

Device extension

5084

Registered Extension Number

64

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_KHR_shader_draw_parameters

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2017-09-05

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_ARB_shader_draw_parameters

Contributors

• Daniel Koch, NVIDIA Corporation

• Jeff Bolz, NVIDIA

• Daniel Rakos, AMD

• Jan-Harald Fredriksen, ARM

• John Kessenich, Google

• Stuart Smith, IMG

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_KHR_shader_draw_parameters

The extension provides access to three additional built-in shader variables in Vulkan:

5085

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_shader_draw_parameters.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_draw_parameters] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_shader_draw_parameters extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_draw_parameters] @dgkoch%0A*Here describe the issue or question you have about the VK_KHR_shader_draw_parameters extension*
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_shader_draw_parameters.txt

• BaseInstance, containing the firstInstance parameter passed to drawing commands,

• BaseVertex, containing the firstVertex or vertexOffset parameter passed to drawing commands,
and

• DrawIndex, containing the index of the draw call currently being processed from an indirect
drawing call.

When using GLSL source-based shader languages, the following variables from
GL_ARB_shader_draw_parameters can map to these SPIR-V built-in decorations:

• in int gl_BaseInstanceARB; → BaseInstance,

• in int gl_BaseVertexARB; → BaseVertex, and

• in int gl_DrawIDARB; → DrawIndex.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1. However, the shaderDrawParameters
feature bit was added to distinguish whether it is actually available or not.

New Enum Constants

• VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME

• VK_KHR_SHADER_DRAW_PARAMETERS_SPEC_VERSION

New Built-In Variables

• BaseInstance

• BaseVertex

• DrawIndex

New SPIR-V Capabilities

• DrawParameters

Issues

1) Is this the same functionality as GL_ARB_shader_draw_parameters?

RESOLVED: It is actually a superset, as it also adds in support for arrayed drawing commands.

In GL for GL_ARB_shader_draw_parameters, gl_BaseVertexARB holds the integer value passed to the
parameter to the command that resulted in the current shader invocation. In the case where the
command has no baseVertex parameter, the value of gl_BaseVertexARB is zero. This means that
gl_BaseVertexARB = baseVertex (for glDrawElements commands with baseVertex) or 0. In particular
there are no glDrawArrays commands that take a baseVertex parameter.

Now in Vulkan, we have BaseVertex = vertexOffset (for indexed drawing commands) or firstVertex
(for arrayed drawing commands), and so Vulkan’s version is really a superset of GL functionality.

5086

Version History

• Revision 1, 2016-10-05 (Daniel Koch)

◦ Internal revisions

VK_KHR_shader_float16_int8

Name String

VK_KHR_shader_float16_int8

Extension Type

Device extension

Registered Extension Number

83

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Alexander Galazin alegal-arm

Other Extension Metadata

Last Modified Date

2018-03-07

Interactions and External Dependencies

• This extension interacts with VK_KHR_8bit_storage

• This extension interacts with VK_KHR_16bit_storage

• This extension interacts with VK_KHR_shader_float_controls

• This extension provides API support for GL_EXT_shader_explicit_arithmetic_types

IP Status

No known IP claims.

Contributors

• Alexander Galazin, Arm

5087

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_float16_int8] @alegal-arm%0A*Here describe the issue or question you have about the VK_KHR_shader_float16_int8 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_float16_int8] @alegal-arm%0A*Here describe the issue or question you have about the VK_KHR_shader_float16_int8 extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_shader_explicit_arithmetic_types.txt

• Jan-Harald Fredriksen, Arm

• Jeff Bolz, NVIDIA

• Graeme Leese, Broadcom

• Daniel Rakos, AMD

Description

The VK_KHR_shader_float16_int8 extension allows use of 16-bit floating-point types and 8-bit integer
types in shaders for arithmetic operations.

It introduces two new optional features shaderFloat16 and shaderInt8 which directly map to the
Float16 and the Int8 SPIR-V capabilities. The VK_KHR_shader_float16_int8 extension also specifies
precision requirements for half-precision floating-point SPIR-V operations. This extension does not
enable use of 8-bit integer types or 16-bit floating-point types in any shader input and output
interfaces and therefore does not supersede the VK_KHR_8bit_storage or VK_KHR_16bit_storage
extensions.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted.
However, if Vulkan 1.2 is supported and this extension is not, both the shaderFloat16 and shaderInt8
capabilities are optional. The original type, enum and command names are still available as aliases
of the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFloat16Int8FeaturesKHR

◦ VkPhysicalDeviceShaderFloat16Int8FeaturesKHR

New Enum Constants

• VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME

• VK_KHR_SHADER_FLOAT16_INT8_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR

Version History

• Revision 1, 2018-03-07 (Alexander Galazin)

◦ Initial draft

VK_KHR_shader_float_controls

5088

Name String

VK_KHR_shader_float_controls

Extension Type

Device extension

Registered Extension Number

198

Revision

4

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_KHR_float_controls

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Alexander Galazin alegal-arm

Other Extension Metadata

Last Modified Date

2018-09-11

IP Status

No known IP claims.

Contributors

• Alexander Galazin, Arm

• Jan-Harald Fredriksen, Arm

• Jeff Bolz, NVIDIA

• Graeme Leese, Broadcom

• Daniel Rakos, AMD

Description

The VK_KHR_shader_float_controls extension enables efficient use of floating-point computations
through the ability to query and override the implementation’s default behavior for rounding
modes, denormals, signed zero, and infinity.

5089

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_float_controls.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_float_controls] @alegal-arm%0A*Here describe the issue or question you have about the VK_KHR_shader_float_controls extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_float_controls] @alegal-arm%0A*Here describe the issue or question you have about the VK_KHR_shader_float_controls extension*

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceFloatControlsPropertiesKHR

New Enums

• VkShaderFloatControlsIndependenceKHR

New Enum Constants

• VK_KHR_SHADER_FLOAT_CONTROLS_EXTENSION_NAME

• VK_KHR_SHADER_FLOAT_CONTROLS_SPEC_VERSION

• Extending VkShaderFloatControlsIndependence:

◦ VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR

◦ VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR

◦ VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR

New SPIR-V Capabilities

• DenormPreserve

• DenormFlushToZero

• SignedZeroInfNanPreserve

• RoundingModeRTE

• RoundingModeRTZ

Issues

1) Which instructions must flush denorms?

RESOLVED: Only floating-point conversion, floating-point arithmetic, floating-point relational
(except OpIsNaN, OpIsInf), and floating-point GLSL.std.450 extended instructions must flush
denormals.

2) What is the denorm behavior for intermediate results?

RESOLVED: When a SPIR-V instruction is implemented as a sequence of other instructions:

• in the DenormFlushToZero execution mode, the intermediate instructions may flush denormals,

5090

the final result of the sequence must not be denormal.

• in the DenormPreserve execution mode, denormals must be preserved throughout the whole
sequence.

3) Do denorm and rounding mode controls apply to OpSpecConstantOp?

RESOLVED: Yes, except when the opcode is OpQuantizeToF16.

4) The SPIR-V specification says that OpConvertFToU and OpConvertFToS unconditionally round
towards zero. Do the rounding mode controls specified through the execution modes apply to
them?

RESOLVED: No, these instructions unconditionally round towards zero.

5) Do any of the “Pack” GLSL.std.450 instructions count as conversion instructions and have the
rounding mode applied?

RESOLVED: No, only instructions listed in “section 3.32.11. Conversion Instructions” of the SPIR-V
specification count as conversion instructions.

6) When using inf/nan-ignore mode, what is expected of OpIsNan and OpIsInf?

RESOLVED: These instructions must always accurately detect inf/nan if it is passed to them.

Version 4 API Incompatibility

The original versions of VK_KHR_shader_float_controls shipped with booleans named
“separateDenormSettings” and “separateRoundingModeSettings”, which at first glance could have
indicated “they can all be set independently, or not”. However the spec language as written
indicated that the 32-bit value could always be set independently, and only the 16- and 64-bit
controls needed to be the same if these values were VK_FALSE.

As a result of this slight disparity, and lack of test coverage for this facet of the extension, we ended
up with two different behaviors in the wild, where some implementations worked as written, and
others worked based on the naming. As these are hard limits in hardware with reasons for
exposure as written, it was not possible to standardise on a single way to make this work within the
existing API.

No known users of this part of the extension exist in the wild, and as such the Vulkan WG took the
unusual step of retroactively changing the once boolean value into a tri-state enum, breaking
source compatibility. This was however done in such a way as to retain ABI compatibility, in case
any code using this did exist; with the numerical values 0 and 1 retaining their original specified
meaning, and a new value signifying the additional “all need to be set together” state. If any
applications exist today, compiled binaries will continue to work as written in most cases, but will
need changes before the code can be recompiled.

Version History

• Revision 4, 2019-06-18 (Tobias Hector)

◦ Modified settings restrictions, see Version 4 API incompatibility

5091

• Revision 3, 2018-09-11 (Alexander Galazin)

◦ Minor restructuring

• Revision 2, 2018-04-17 (Alexander Galazin)

◦ Added issues and resolutions

• Revision 1, 2018-04-11 (Alexander Galazin)

◦ Initial draft

VK_KHR_shader_integer_dot_product

Name String

VK_KHR_shader_integer_dot_product

Extension Type

Device extension

Registered Extension Number

281

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_KHR_integer_dot_product

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Kevin Petit kpet

Extension Proposal

VK_KHR_shader_integer_dot_product

Other Extension Metadata

Last Modified Date

2021-06-16

Interactions and External Dependencies

• This extension interacts with VK_KHR_shader_float16_int8.

5092

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_integer_dot_product.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_integer_dot_product] @kpet%0A*Here describe the issue or question you have about the VK_KHR_shader_integer_dot_product extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_integer_dot_product] @kpet%0A*Here describe the issue or question you have about the VK_KHR_shader_integer_dot_product extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_KHR_shader_integer_dot_product.adoc

IP Status

No known IP claims.

Contributors

• Kévin Petit, Arm Ltd.

• Jeff Bolz, NVidia

• Spencer Fricke, Samsung

• Jesse Hall, Google

• John Kessenich, Google

• Graeme Leese, Broadcom

• Einar Hov, Arm Ltd.

• Stuart Brady, Arm Ltd.

• Pablo Cascon, Arm Ltd.

• Tobias Hector, AMD

• Jeff Leger, Qualcomm

• Ruihao Zhang, Qualcomm

• Pierre Boudier, NVidia

• Jon Leech, The Khronos Group

• Tom Olson, Arm Ltd.

Description

This extension adds support for the integer dot product SPIR-V instructions defined in
SPV_KHR_integer_dot_product. These instructions are particularly useful for neural network
inference and training but find uses in other general-purpose compute applications as well.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceShaderIntegerDotProductPropertiesKHR

New Enum Constants

• VK_KHR_SHADER_INTEGER_DOT_PRODUCT_EXTENSION_NAME

• VK_KHR_SHADER_INTEGER_DOT_PRODUCT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES_KHR

5093

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New SPIR-V Capabilities

• DotProductInputAllKHR

• DotProductInput4x8BitKHR

• DotProductInput4x8BitPackedKHR

• DotProductKHR

Version History

• Revision 1, 2021-06-16 (Kévin Petit)

◦ Initial revision

VK_KHR_shader_non_semantic_info

Name String

VK_KHR_shader_non_semantic_info

Extension Type

Device extension

Registered Extension Number

294

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_KHR_non_semantic_info

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Baldur Karlsson baldurk

5094

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_non_semantic_info.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_non_semantic_info] @baldurk%0A*Here describe the issue or question you have about the VK_KHR_shader_non_semantic_info extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_non_semantic_info] @baldurk%0A*Here describe the issue or question you have about the VK_KHR_shader_non_semantic_info extension*

Other Extension Metadata

Last Modified Date

2019-10-16

IP Status

No known IP claims.

Contributors

• Baldur Karlsson, Valve

Description

This extension allows the use of the SPV_KHR_non_semantic_info extension in SPIR-V shader modules.

New Enum Constants

• VK_KHR_SHADER_NON_SEMANTIC_INFO_EXTENSION_NAME

• VK_KHR_SHADER_NON_SEMANTIC_INFO_SPEC_VERSION

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3 Because the extension has no API
controlling its functionality, this results only in a change to the SPIR-V Extensions table.

Version History

• Revision 1, 2019-10-16 (Baldur Karlsson)

◦ Initial revision

VK_KHR_shader_subgroup_extended_types

Name String

VK_KHR_shader_subgroup_extended_types

Extension Type

Device extension

Registered Extension Number

176

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1

5095

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Neil Henning sheredom

Other Extension Metadata

Last Modified Date

2019-01-08

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_shader_subgroup_extended_types

Contributors

• Jeff Bolz, NVIDIA

• Jan-Harald Fredriksen, Arm

• Neil Henning, AMD

• Daniel Koch, NVIDIA

• Jeff Leger, Qualcomm

• Graeme Leese, Broadcom

• David Neto, Google

• Daniel Rakos, AMD

Description

This extension enables the Non Uniform Group Operations in SPIR-V to support 8-bit integer, 16-bit
integer, 64-bit integer, 16-bit floating-point, and vectors of these types.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR

New Enum Constants

• VK_KHR_SHADER_SUBGROUP_EXTENDED_TYPES_EXTENSION_NAME

• VK_KHR_SHADER_SUBGROUP_EXTENDED_TYPES_SPEC_VERSION

5096

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_subgroup_extended_types] @sheredom%0A*Here describe the issue or question you have about the VK_KHR_shader_subgroup_extended_types extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_subgroup_extended_types] @sheredom%0A*Here describe the issue or question you have about the VK_KHR_shader_subgroup_extended_types extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_shader_subgroup_extended_types.txt

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR

Version History

• Revision 1, 2019-01-08 (Neil Henning)

◦ Initial draft

VK_KHR_shader_terminate_invocation

Name String

VK_KHR_shader_terminate_invocation

Extension Type

Device extension

Registered Extension Number

216

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

SPIR-V Dependencies

• SPV_KHR_terminate_invocation

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Jesse Hall critsec

Other Extension Metadata

Last Modified Date

2020-08-11

IP Status

No known IP claims.

5097

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_terminate_invocation.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_terminate_invocation] @critsec%0A*Here describe the issue or question you have about the VK_KHR_shader_terminate_invocation extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_shader_terminate_invocation] @critsec%0A*Here describe the issue or question you have about the VK_KHR_shader_terminate_invocation extension*

Contributors

• Alan Baker, Google

• Jeff Bolz, NVIDIA

• Jesse Hall, Google

• Ralph Potter, Samsung

• Tom Olson, Arm

Description

This extension adds Vulkan support for the SPV_KHR_terminate_invocation SPIR-V extension. That
SPIR-V extension provides a new instruction, OpTerminateInvocation, which causes a shader
invocation to immediately terminate and sets the coverage of shaded samples to 0; only previously
executed instructions will have observable effects. The OpTerminateInvocation instruction, along
with the OpDemoteToHelperInvocation instruction from the
VK_EXT_shader_demote_to_helper_invocation extension, together replace the OpKill instruction,
which could behave like either of these instructions. OpTerminateInvocation provides the behavior
required by the GLSL discard statement, and should be used when available by GLSL compilers and
applications that need the GLSL discard behavior.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderTerminateInvocationFeaturesKHR

New Enum Constants

• VK_KHR_SHADER_TERMINATE_INVOCATION_EXTENSION_NAME

• VK_KHR_SHADER_TERMINATE_INVOCATION_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES_KHR

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2020-08-11 (Jesse Hall)

VK_KHR_spirv_1_4

Name String

VK_KHR_spirv_1_4

5098

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_terminate_invocation.html

Extension Type

Device extension

Registered Extension Number

237

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

Version 1.1
and
VK_KHR_shader_float_controls

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Jesse Hall critsec

Other Extension Metadata

Last Modified Date

2019-04-01

IP Status

No known IP claims.

Interactions and External Dependencies

• Requires SPIR-V 1.4.

Contributors

• Alexander Galazin, Arm

• David Neto, Google

• Jesse Hall, Google

• John Kessenich, Google

• Neil Henning, AMD

• Tom Olson, Arm

Description

This extension allows the use of SPIR-V 1.4 shader modules. SPIR-V 1.4’s new features primarily
make it an easier target for compilers from high-level languages, rather than exposing new
hardware functionality.

5099

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_spirv_1_4] @critsec%0A*Here describe the issue or question you have about the VK_KHR_spirv_1_4 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_spirv_1_4] @critsec%0A*Here describe the issue or question you have about the VK_KHR_spirv_1_4 extension*

SPIR-V 1.4 incorporates features that are also available separately as extensions. SPIR-V 1.4 shader
modules do not need to enable those extensions with the OpExtension opcode, since they are integral
parts of SPIR-V 1.4.

SPIR-V 1.4 introduces new floating point execution mode capabilities, also available via
SPV_KHR_float_controls. Implementations are not required to support all of these new capabilities;
support can be queried using VkPhysicalDeviceFloatControlsPropertiesKHR from the
VK_KHR_shader_float_controls extension.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Enum Constants

• VK_KHR_SPIRV_1_4_EXTENSION_NAME

• VK_KHR_SPIRV_1_4_SPEC_VERSION

Issues

1. Should we have an extension specific to this SPIR-V version, or add a version-generic query for
SPIR-V version? SPIR-V 1.4 does not need any other API changes.

RESOLVED: Just expose SPIR-V 1.4.

Most new SPIR-V versions introduce optionally-required capabilities or have implementation-
defined limits, and would need more API and specification changes specific to that version to make
them available in Vulkan. For example, to support the subgroup capabilities added in SPIR-V 1.3
required introducing VkPhysicalDeviceSubgroupProperties to allow querying the supported group
operation categories, maximum supported subgroup size, etc. While we could expose the parts of a
new SPIR-V version that do not need accompanying changes generically, we will still end up writing
extensions specific to each version for the remaining parts. Thus the generic mechanism will not
reduce future spec-writing effort. In addition, making it clear which parts of a future version are
supported by the generic mechanism and which cannot be used without specific support would be
difficult to get right ahead of time.

2. Can different stages of the same pipeline use shaders with different SPIR-V versions?

RESOLVED: Yes.

Mixing SPIR-V versions 1.0-1.3 in the same pipeline has not been disallowed, so it would be
inconsistent to disallow mixing 1.4 with previous versions. SPIR-V 1.4 does not introduce anything
that should cause new difficulties here.

3. Must Vulkan extensions corresponding to SPIR-V extensions that were promoted to core in 1.4 be
enabled in order to use that functionality in a SPIR-V 1.4 module?

RESOLVED: No, with caveats.

5100

The SPIR-V 1.4 module does not need to declare the SPIR-V extensions, since the functionality is
now part of core, so there is no need to enable the Vulkan extension that allows SPIR-V modules to
declare the SPIR-V extension. However, when the functionality that is now core in SPIR-V 1.4 is
optionally supported, the query for support is provided by a Vulkan extension, and that query can
only be used if the extension is enabled.

This applies to any SPIR-V version; specifically for SPIR-V 1.4 this only applies to the functionality
from SPV_KHR_float_controls, which was made available in Vulkan by
VK_KHR_shader_float_controls. Even though the extension was promoted in SPIR-V 1.4, the
capabilities are still optional in implementations that support VK_KHR_spirv_1_4.

A SPIR-V 1.4 module does not need to enable SPV_KHR_float_controls in order to use the capabilities,
so if the application has a priori knowledge that the implementation supports the capabilities, it
does not need to enable VK_KHR_shader_float_controls. However, if it does not have this knowledge
and has to query for support at runtime, it must enable VK_KHR_shader_float_controls in order to
use VkPhysicalDeviceFloatControlsPropertiesKHR.

Version History

• Revision 1, 2019-04-01 (Jesse Hall)

◦ Internal draft versions

VK_KHR_storage_buffer_storage_class

Name String

VK_KHR_storage_buffer_storage_class

Extension Type

Device extension

Registered Extension Number

132

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_KHR_storage_buffer_storage_class

Deprecation State

• Promoted to Vulkan 1.1

5101

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_storage_buffer_storage_class.html

Contact

• Alexander Galazin alegal-arm

Other Extension Metadata

Last Modified Date

2017-09-05

IP Status

No known IP claims.

Contributors

• Alexander Galazin, ARM

• David Neto, Google

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_KHR_storage_buffer_storage_class

This extension provides a new SPIR-V StorageBuffer storage class. A Block-decorated object in this
class is equivalent to a BufferBlock-decorated object in the Uniform storage class.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1.

New Enum Constants

• VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME

• VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_SPEC_VERSION

Version History

• Revision 1, 2017-03-23 (Alexander Galazin)

◦ Initial draft

VK_KHR_synchronization2

Name String

VK_KHR_synchronization2

Extension Type

Device extension

Registered Extension Number

315

5102

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_storage_buffer_storage_class] @alegal-arm%0A*Here describe the issue or question you have about the VK_KHR_storage_buffer_storage_class extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_storage_buffer_storage_class] @alegal-arm%0A*Here describe the issue or question you have about the VK_KHR_storage_buffer_storage_class extension*

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

API Interactions

• Interacts with VK_AMD_buffer_marker

• Interacts with VK_EXT_blend_operation_advanced

• Interacts with VK_EXT_conditional_rendering

• Interacts with VK_EXT_fragment_density_map

• Interacts with VK_EXT_mesh_shader

• Interacts with VK_EXT_transform_feedback

• Interacts with VK_KHR_acceleration_structure

• Interacts with VK_KHR_fragment_shading_rate

• Interacts with VK_KHR_ray_tracing_pipeline

• Interacts with VK_NV_device_diagnostic_checkpoints

• Interacts with VK_NV_device_generated_commands

• Interacts with VK_NV_mesh_shader

• Interacts with VK_NV_ray_tracing

• Interacts with VK_NV_shading_rate_image

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2020-12-03

Interactions and External Dependencies

• Interacts with VK_KHR_create_renderpass2

Contributors

• Tobias Hector

5103

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_synchronization2] @tobski%0A*Here describe the issue or question you have about the VK_KHR_synchronization2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_synchronization2] @tobski%0A*Here describe the issue or question you have about the VK_KHR_synchronization2 extension*

Description

This extension modifies the original core synchronization APIs to simplify the interface and
improve usability of these APIs. It also adds new pipeline stage and access flag types that extend
into the 64-bit range, as we have run out within the 32-bit range. The new flags are identical to the
old values within the 32-bit range, with new stages and bits beyond that.

Pipeline stages and access flags are now specified together in memory barrier structures, making
the connection between the two more obvious. Additionally, scoping the pipeline stages into the
barrier structs allows the use of the MEMORY_READ and MEMORY_WRITE flags without sacrificing
precision. The per-stage access flags should be used to disambiguate specific accesses in a given
stage or set of stages - for instance, between uniform reads and sampling operations.

Layout transitions have been simplified as well; rather than requiring a different set of layouts for
depth/stencil/color attachments, there are generic VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR and
VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR layouts which are contextually applied based on the image
format. For example, for a depth format image, VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR is
equivalent to VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR. VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR
also functionally replaces VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL.

Events are now more efficient, because they include memory dependency information when you
set them on the device. Previously, this information was only known when waiting on an event, so
the dependencies could not be satisfied until the wait occurred. That sometimes meant stalling the
pipeline when the wait occurred. The new API provides enough information for implementations
to satisfy these dependencies in parallel with other tasks.

Queue submission has been changed to wrap command buffers and semaphores in extensible
structures, which incorporate changes from Vulkan 1.1, VK_KHR_device_group, and
VK_KHR_timeline_semaphore. This also adds a pipeline stage to the semaphore signal operation,
mirroring the existing pipeline stage specification for wait operations.

Other miscellaneous changes include:

• Events can now be specified as interacting only with the device, allowing more efficient access
to the underlying object.

• Image memory barriers that do not perform an image layout transition can be specified by
setting oldLayout equal to newLayout.

◦ E.g. the old and new layout can both be set to VK_IMAGE_LAYOUT_UNDEFINED, without discarding
data in the image.

• Queue family ownership transfer parameters are simplified in some cases.

• Where two synchronization commands need to be matched up (queue transfer operations,
events), the dependency information specified in each place must now match completely for
consistency.

• Extensions with commands or functions with a VkPipelineStageFlags or VkPipelineStageFlagBits
parameter have had those APIs replaced with equivalents using VkPipelineStageFlags2KHR.

• The new event and barrier interfaces are now more extensible for future changes.

• Relevant pipeline stage masks can now be specified as empty with the new

5104

VK_PIPELINE_STAGE_NONE_KHR and VK_PIPELINE_STAGE_2_NONE_KHR values.

• VkMemoryBarrier2KHR can be chained to VkSubpassDependency2, overriding the original 32-
bit stage and access masks.

New Base Types

• VkFlags64

New Commands

• vkCmdPipelineBarrier2KHR

• vkCmdResetEvent2KHR

• vkCmdSetEvent2KHR

• vkCmdWaitEvents2KHR

• vkCmdWriteTimestamp2KHR

• vkQueueSubmit2KHR

If VK_AMD_buffer_marker is supported:

• vkCmdWriteBufferMarker2AMD

If VK_NV_device_diagnostic_checkpoints is supported:

• vkGetQueueCheckpointData2NV

New Structures

• VkBufferMemoryBarrier2KHR

• VkCommandBufferSubmitInfoKHR

• VkDependencyInfoKHR

• VkImageMemoryBarrier2KHR

• VkSemaphoreSubmitInfoKHR

• VkSubmitInfo2KHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceSynchronization2FeaturesKHR

• Extending VkSubpassDependency2:

◦ VkMemoryBarrier2KHR

If VK_NV_device_diagnostic_checkpoints is supported:

• VkCheckpointData2NV

• Extending VkQueueFamilyProperties2:

◦ VkQueueFamilyCheckpointProperties2NV

5105

New Enums

• VkAccessFlagBits2KHR

• VkPipelineStageFlagBits2KHR

• VkSubmitFlagBitsKHR

New Bitmasks

• VkAccessFlags2KHR

• VkPipelineStageFlags2KHR

• VkSubmitFlagsKHR

New Enum Constants

• VK_KHR_SYNCHRONIZATION_2_EXTENSION_NAME

• VK_KHR_SYNCHRONIZATION_2_SPEC_VERSION

• Extending VkAccessFlagBits:

◦ VK_ACCESS_NONE_KHR

• Extending VkEventCreateFlagBits:

◦ VK_EVENT_CREATE_DEVICE_ONLY_BIT_KHR

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR

◦ VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_NONE_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2_KHR

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO_KHR

◦ VK_STRUCTURE_TYPE_DEPENDENCY_INFO_KHR

◦ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2_KHR

◦ VK_STRUCTURE_TYPE_MEMORY_BARRIER_2_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR

◦ VK_STRUCTURE_TYPE_SUBMIT_INFO_2_KHR

If VK_EXT_blend_operation_advanced is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT

5106

If VK_EXT_conditional_rendering is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT

If VK_EXT_fragment_density_map is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_FRAGMENT_DENSITY_MAP_READ_BIT_EXT

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT

If VK_EXT_mesh_shader is supported:

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT

◦ VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT

If VK_EXT_transform_feedback is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT

◦ VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT

◦ VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT

If VK_KHR_acceleration_structure is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR

◦ VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR

If VK_KHR_fragment_shading_rate is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR

5107

If VK_KHR_ray_tracing_pipeline is supported:

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR

If VK_NV_device_diagnostic_checkpoints is supported:

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_CHECKPOINT_DATA_2_NV

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_CHECKPOINT_PROPERTIES_2_NV

If VK_NV_device_generated_commands is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_NV

◦ VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV

If VK_NV_mesh_shader is supported:

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_NV

◦ VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_NV

If VK_NV_ray_tracing is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_NV

◦ VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_NV

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_NV

◦ VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_NV

If VK_NV_shading_rate_image is supported:

• Extending VkAccessFlagBits2:

◦ VK_ACCESS_2_SHADING_RATE_IMAGE_READ_BIT_NV

• Extending VkPipelineStageFlagBits2:

◦ VK_PIPELINE_STAGE_2_SHADING_RATE_IMAGE_BIT_NV

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the KHR suffix omitted. The

5108

original type, enum and command names are still available as aliases of the core functionality.

Examples

See https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples

Version History

• Revision 1, 2020-12-03 (Tobias Hector)

◦ Internal revisions

VK_KHR_timeline_semaphore

Name String

VK_KHR_timeline_semaphore

Extension Type

Device extension

Registered Extension Number

208

Revision

2

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Faith Ekstrand gfxstrand

Other Extension Metadata

Last Modified Date

2019-06-12

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension interacts with VK_KHR_external_semaphore_capabilities

• This extension interacts with VK_KHR_external_semaphore

5109

https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_timeline_semaphore] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_timeline_semaphore extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_timeline_semaphore] @gfxstrand%0A*Here describe the issue or question you have about the VK_KHR_timeline_semaphore extension*

• This extension interacts with VK_KHR_external_semaphore_win32

Contributors

• Jeff Bolz, NVIDIA

• Yuriy O’Donnell, Epic Games

• Faith Ekstrand, Intel

• Jesse Hall, Google

• James Jones, NVIDIA

• Jeff Juliano, NVIDIA

• Daniel Rakos, AMD

• Ray Smith, Arm

Description

This extension introduces a new type of semaphore that has an integer payload identifying a point
in a timeline. Such timeline semaphores support the following operations:

• Host query - A host operation that allows querying the payload of the timeline semaphore.

• Host wait - A host operation that allows a blocking wait for a timeline semaphore to reach a
specified value.

• Host signal - A host operation that allows advancing the timeline semaphore to a specified
value.

• Device wait - A device operation that allows waiting for a timeline semaphore to reach a
specified value.

• Device signal - A device operation that allows advancing the timeline semaphore to a specified
value.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkGetSemaphoreCounterValueKHR

• vkSignalSemaphoreKHR

• vkWaitSemaphoresKHR

New Structures

• VkSemaphoreSignalInfoKHR

• VkSemaphoreWaitInfoKHR

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceTimelineSemaphoreFeaturesKHR

5110

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceTimelineSemaphorePropertiesKHR

• Extending VkSemaphoreCreateInfo, VkPhysicalDeviceExternalSemaphoreInfo:

◦ VkSemaphoreTypeCreateInfoKHR

• Extending VkSubmitInfo, VkBindSparseInfo:

◦ VkTimelineSemaphoreSubmitInfoKHR

New Enums

• VkSemaphoreTypeKHR

• VkSemaphoreWaitFlagBitsKHR

New Bitmasks

• VkSemaphoreWaitFlagsKHR

New Enum Constants

• VK_KHR_TIMELINE_SEMAPHORE_EXTENSION_NAME

• VK_KHR_TIMELINE_SEMAPHORE_SPEC_VERSION

• Extending VkSemaphoreType:

◦ VK_SEMAPHORE_TYPE_BINARY_KHR

◦ VK_SEMAPHORE_TYPE_TIMELINE_KHR

• Extending VkSemaphoreWaitFlagBits:

◦ VK_SEMAPHORE_WAIT_ANY_BIT_KHR

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR

◦ VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO_KHR

◦ VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO_KHR

◦ VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO_KHR

◦ VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR

Issues

1) Do we need a new object type for this?

RESOLVED: No, we just introduce a new type of semaphore object, as
VK_KHR_external_semaphore_win32 already uses semaphores as the destination for importing D3D12
fence objects, which are semantically close/identical to the proposed synchronization primitive.

2) What type of payload the new synchronization primitive has?

5111

RESOLVED: A 64-bit unsigned integer that can only be set to strictly increasing values by signal
operations and is not changed by wait operations.

3) Does the new synchronization primitive have the same signal-before-wait requirement as the
existing semaphores do?

RESOLVED: No. Timeline semaphores support signaling and waiting entirely asynchronously. It is
the responsibility of the client to avoid deadlock.

4) Does the new synchronization primitive allow resetting its payload?

RESOLVED: No, allowing the payload value to “go backwards” is problematic. Applications looking
for reset behavior should create a new instance of the synchronization primitive instead.

5) How do we enable host waits on the synchronization primitive?

RESOLVED: Both a non-blocking query of the current payload value of the synchronization
primitive, and a blocking wait operation are provided.

6) How do we enable device waits and signals on the synchronization primitive?

RESOLVED: Similar to VK_KHR_external_semaphore_win32, this extension introduces a new structure
that can be chained to VkSubmitInfo to specify the values signaled semaphores should be set to,
and the values waited semaphores need to reach.

7) Can the new synchronization primitive be used to synchronize presentation and swapchain
image acquisition operations?

RESOLVED: Some implementations may have problems with supporting that directly, thus it is not
allowed in this extension.

8) Do we want to support external sharing of the new synchronization primitive type?

RESOLVED: Yes. Timeline semaphore specific external sharing capabilities can be queried using
vkGetPhysicalDeviceExternalSemaphoreProperties by chaining the new
VkSemaphoreTypeCreateInfoKHR structure to its pExternalSemaphoreInfo structure. This allows
having a different set of external semaphore handle types supported for timeline semaphores vs.
binary semaphores.

9) Do we need to add a host signal operation for the new synchronization primitive type?

RESOLVED: Yes. This helps in situations where one host thread submits a workload but another
host thread has the information on when the workload is ready to be executed.

10) How should the new synchronization primitive interact with the ordering requirements of the
original VkSemaphore?

RESOLVED: Prior to calling any command which may cause a wait operation on a binary
semaphore, the client must ensure that the semaphore signal operation that has been submitted for
execution and any semaphore signal operations on which it depends (if any) must have also been
submitted for execution.

5112

11) Should we have separate feature bits for different sub-features of timeline semaphores?

RESOLVED: No. The only feature which cannot be supported universally is timeline semaphore
import/export. For import/export, the client is already required to query available external handle
types via vkGetPhysicalDeviceExternalSemaphoreProperties and provide the semaphore type by
adding a VkSemaphoreTypeCreateInfoKHR structure to the pNext chain of
VkPhysicalDeviceExternalSemaphoreInfo so no new feature bit is required.

Version History

• Revision 1, 2018-05-10 (Faith Ekstrand)

◦ Initial version

• Revision 2, 2019-06-12 (Faith Ekstrand)

◦ Added an initialValue parameter to timeline semaphore creation

VK_KHR_uniform_buffer_standard_layout

Name String

VK_KHR_uniform_buffer_standard_layout

Extension Type

Device extension

Registered Extension Number

254

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Graeme Leese gnl21

Other Extension Metadata

Last Modified Date

2019-01-25

Contributors

• Graeme Leese, Broadcom

5113

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_uniform_buffer_standard_layout] @gnl21%0A*Here describe the issue or question you have about the VK_KHR_uniform_buffer_standard_layout extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_uniform_buffer_standard_layout] @gnl21%0A*Here describe the issue or question you have about the VK_KHR_uniform_buffer_standard_layout extension*

• Jeff Bolz, NVIDIA

• Tobias Hector, AMD

• Faith Ekstrand, Intel

• Neil Henning, AMD

Description

This extension enables tighter array and struct packing to be used with uniform buffers.

It modifies the alignment rules for uniform buffers, allowing for tighter packing of arrays and
structures. This allows, for example, the std430 layout, as defined in GLSL to be supported in
uniform buffers.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR

New Enum Constants

• VK_KHR_UNIFORM_BUFFER_STANDARD_LAYOUT_EXTENSION_NAME

• VK_KHR_UNIFORM_BUFFER_STANDARD_LAYOUT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR

Version History

• Revision 1, 2019-01-25 (Graeme Leese)

◦ Initial draft

VK_KHR_variable_pointers

Name String

VK_KHR_variable_pointers

Extension Type

Device extension

Registered Extension Number

121

5114

https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_storage_buffer_storage_class

SPIR-V Dependencies

• SPV_KHR_variable_pointers

Deprecation State

• Promoted to Vulkan 1.1

Contact

• Jesse Hall critsec

Other Extension Metadata

Last Modified Date

2017-09-05

IP Status

No known IP claims.

Contributors

• John Kessenich, Google

• Neil Henning, Codeplay

• David Neto, Google

• Daniel Koch, Nvidia

• Graeme Leese, Broadcom

• Weifeng Zhang, Qualcomm

• Stephen Clarke, Imagination Technologies

• Faith Ekstrand, Intel

• Jesse Hall, Google

Description

The VK_KHR_variable_pointers extension allows implementations to indicate their level of support
for the SPV_KHR_variable_pointers SPIR-V extension. The SPIR-V extension allows shader modules to
use invocation-private pointers into uniform and/or storage buffers, where the pointer values can
be dynamic and non-uniform.

5115

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_variable_pointers.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_variable_pointers] @critsec%0A*Here describe the issue or question you have about the VK_KHR_variable_pointers extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_variable_pointers] @critsec%0A*Here describe the issue or question you have about the VK_KHR_variable_pointers extension*

The SPV_KHR_variable_pointers extension introduces two capabilities. The first,
VariablePointersStorageBuffer, must be supported by all implementations of this extension. The
second, VariablePointers, is optional.

Promotion to Vulkan 1.1

All functionality in this extension is included in core Vulkan 1.1, with the KHR suffix omitted,
however support for the variablePointersStorageBuffer feature is made optional. The original type,
enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceVariablePointerFeaturesKHR

◦ VkPhysicalDeviceVariablePointersFeaturesKHR

New Enum Constants

• VK_KHR_VARIABLE_POINTERS_EXTENSION_NAME

• VK_KHR_VARIABLE_POINTERS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES_KHR

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR

New SPIR-V Capabilities

• VariablePointers

• VariablePointersStorageBuffer

Issues

1) Do we need an optional property for the SPIR-V VariablePointersStorageBuffer capability or
should it be mandatory when this extension is advertised?

RESOLVED: Add it as a distinct feature, but make support mandatory. Adding it as a feature makes
the extension easier to include in a future core API version. In the extension, the feature is
mandatory, so that presence of the extension guarantees some functionality. When included in a
core API version, the feature would be optional.

2) Can support for these capabilities vary between shader stages?

RESOLVED: No, if the capability is supported in any stage it must be supported in all stages.

3) Should the capabilities be features or limits?

RESOLVED: Features, primarily for consistency with other similar extensions.

5116

Version History

• Revision 1, 2017-03-14 (Jesse Hall and John Kessenich)

◦ Internal revisions

VK_KHR_vulkan_memory_model

Name String

VK_KHR_vulkan_memory_model

Extension Type

Device extension

Registered Extension Number

212

Revision

3

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_KHR_vulkan_memory_model

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2018-12-10

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Alan Baker, Google

• Tobias Hector, AMD

• David Neto, Google

5117

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_vulkan_memory_model] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_vulkan_memory_model extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_vulkan_memory_model] @jeffbolznv%0A*Here describe the issue or question you have about the VK_KHR_vulkan_memory_model extension*

• Robert Simpson, Qualcomm Technologies, Inc.

• Brian Sumner, AMD

Description

The VK_KHR_vulkan_memory_model extension allows use of the features guarded by the
VulkanMemoryModel, VulkanMemoryModelDeviceScope, and
VulkanMemoryModelAvailabilityVisibilityChains capabilities in shader modules. The Vulkan
Memory Model formally defines how to synchronize memory accesses to the same memory
locations performed by multiple shader invocations.

Note

Version 3 of the spec added a member
(vulkanMemoryModelAvailabilityVisibilityChains) to
VkPhysicalDeviceVulkanMemoryModelFeaturesKHR, which is an incompatible
change from version 2.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the KHR suffix omitted.
However, if Vulkan 1.2 is supported and this extension is not, the vulkanMemoryModel capability is
optional. The original type, enum and command names are still available as aliases of the core
functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceVulkanMemoryModelFeaturesKHR

New Enum Constants

• VK_KHR_VULKAN_MEMORY_MODEL_EXTENSION_NAME

• VK_KHR_VULKAN_MEMORY_MODEL_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR

New SPIR-V Capabilities

• VulkanMemoryModelKHR

Version History

• Revision 1, 2018-06-24 (Jeff Bolz)

◦ Initial draft

• Revision 3, 2018-12-10 (Jeff Bolz)

◦ Add vulkanMemoryModelAvailabilityVisibilityChains member to the

5118

VkPhysicalDeviceVulkanMemoryModelFeaturesKHR structure.

VK_KHR_zero_initialize_workgroup_memory

Name String

VK_KHR_zero_initialize_workgroup_memory

Extension Type

Device extension

Registered Extension Number

326

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Alan Baker alan-baker

Other Extension Metadata

Last Modified Date

2020-11-18

IP Status

No known IP claims.

Contributors

• Alan Baker, Google

• Jeff Bolz, Nvidia

• Faith Ekstrand, Intel

Description

This extension allows the use of a null constant initializer on shader Workgroup memory variables,
allowing implementations to expose any special hardware or instructions they may have. Zero
initialization is commonly used by applications running untrusted content (e.g. web browsers) as
way of defeating memory-scraping attacks.

5119

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_zero_initialize_workgroup_memory] @alan-baker%0A*Here describe the issue or question you have about the VK_KHR_zero_initialize_workgroup_memory extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_KHR_zero_initialize_workgroup_memory] @alan-baker%0A*Here describe the issue or question you have about the VK_KHR_zero_initialize_workgroup_memory extension*

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeaturesKHR

New Enum Constants

• VK_KHR_ZERO_INITIALIZE_WORKGROUP_MEMORY_EXTENSION_NAME

• VK_KHR_ZERO_INITIALIZE_WORKGROUP_MEMORY_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES_KHR

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the KHR suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2020-11-18 (Alan Baker)

◦ Internal draft version

VK_EXT_4444_formats

Name String

VK_EXT_4444_formats

Extension Type

Device extension

Registered Extension Number

341

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

5120

Contact

• Joshua Ashton Joshua-Ashton

Other Extension Metadata

Last Modified Date

2020-07-28

IP Status

No known IP claims.

Contributors

• Joshua Ashton, Valve

• Faith Ekstrand, Intel

Description

This extension defines the VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT and
VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT formats which are defined in other current graphics APIs.

This extension may be useful for building translation layers for those APIs or for porting
applications that use these formats without having to resort to swizzles.

When VK_EXT_custom_border_color is used, these formats are not subject to the same restrictions
for border color without format as with VK_FORMAT_B4G4R4A4_UNORM_PACK16.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevice4444FormatsFeaturesEXT

New Enum Constants

• VK_EXT_4444_FORMATS_EXTENSION_NAME

• VK_EXT_4444_FORMATS_SPEC_VERSION

• Extending VkFormat:

◦ VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT

◦ VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT

Promotion to Vulkan 1.3

This extension has been partially promoted. The format enumerants introduced by the extension
are included in core Vulkan 1.3, with the EXT suffix omitted. However, runtime support for these
formats is optional in core Vulkan 1.3, while if this extension is supported, runtime support is

5121

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_4444_formats] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_4444_formats extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_4444_formats] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_EXT_4444_formats extension*

mandatory. The feature structure is not promoted. The original enum names are still available as
aliases of the core functionality.

Version History

• Revision 1, 2020-07-04 (Joshua Ashton)

◦ Initial draft

VK_EXT_buffer_device_address

Name String

VK_EXT_buffer_device_address

Extension Type

Device extension

Registered Extension Number

245

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_EXT_physical_storage_buffer

Deprecation State

• Deprecated by VK_KHR_buffer_device_address extension

◦ Which in turn was promoted to Vulkan 1.2

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2019-01-06

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GLSL_EXT_buffer_reference and

5122

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_physical_storage_buffer.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_buffer_device_address] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_buffer_device_address extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_buffer_device_address] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_buffer_device_address extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_buffer_reference.txt

GLSL_EXT_buffer_reference_uvec2

Contributors

• Jeff Bolz, NVIDIA

• Neil Henning, AMD

• Tobias Hector, AMD

• Faith Ekstrand, Intel

• Baldur Karlsson, Valve

Description

This extension allows the application to query a 64-bit buffer device address value for a buffer,
which can be used to access the buffer memory via the PhysicalStorageBufferEXT storage class in
the GL_EXT_buffer_reference GLSL extension and SPV_EXT_physical_storage_buffer SPIR-V extension.

It also allows buffer device addresses to be provided by a trace replay tool, so that it matches the
address used when the trace was captured.

New Commands

• vkGetBufferDeviceAddressEXT

New Structures

• VkBufferDeviceAddressInfoEXT

• Extending VkBufferCreateInfo:

◦ VkBufferDeviceAddressCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceBufferAddressFeaturesEXT

◦ VkPhysicalDeviceBufferDeviceAddressFeaturesEXT

New Enum Constants

• VK_EXT_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME

• VK_EXT_BUFFER_DEVICE_ADDRESS_SPEC_VERSION

• Extending VkBufferCreateFlagBits:

◦ VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_EXT

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT

• Extending VkResult:

◦ VK_ERROR_INVALID_DEVICE_ADDRESS_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_CREATE_INFO_EXT

5123

https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_buffer_reference_uvec2.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_buffer_reference.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_physical_storage_buffer.html

◦ VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_ADDRESS_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT

New SPIR-V Capabilities

• PhysicalStorageBufferAddressesEXT

Issues

1) Where is VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_ADDRESS_FEATURES_EXT and
VkPhysicalDeviceBufferAddressFeaturesEXT?

RESOLVED: They were renamed as
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT and
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT accordingly for consistency. Even though, the
old names can still be found in the generated header files for compatibility.

Version History

• Revision 1, 2018-11-01 (Jeff Bolz)

◦ Internal revisions

• Revision 2, 2019-01-06 (Jon Leech)

◦ Minor updates to appendix for publication

VK_EXT_calibrated_timestamps

Name String

VK_EXT_calibrated_timestamps

Extension Type

Device extension

Registered Extension Number

185

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

5124

Deprecation State

• Promoted to VK_KHR_calibrated_timestamps extension

Contact

• Daniel Rakos drakos-amd

Extension Proposal

VK_EXT_calibrated_timestamps

Other Extension Metadata

Last Modified Date

2018-10-04

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Alan Harrison, AMD

• Derrick Owens, AMD

• Daniel Rakos, AMD

• Faith Ekstrand, Intel

• Keith Packard, Valve

Description

This extension provides an interface to query calibrated timestamps obtained quasi simultaneously
from two time domains.

Promotion to VK_KHR_calibrated_timestamps

All functionality in this extension is included in VK_KHR_calibrated_timestamps, with the suffix
changed to KHR. The original enum names are still available as aliases of the KHR functionality.

New Commands

• vkGetCalibratedTimestampsEXT

• vkGetPhysicalDeviceCalibrateableTimeDomainsEXT

New Structures

• VkCalibratedTimestampInfoEXT

New Enums

• VkTimeDomainEXT

5125

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_calibrated_timestamps] @drakos-amd%0A*Here describe the issue or question you have about the VK_EXT_calibrated_timestamps extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_calibrated_timestamps] @drakos-amd%0A*Here describe the issue or question you have about the VK_EXT_calibrated_timestamps extension*
https://github.com/KhronosGroup/Vulkan-Docs/tree/main/proposals/VK_EXT_calibrated_timestamps.adoc

New Enum Constants

• VK_EXT_CALIBRATED_TIMESTAMPS_EXTENSION_NAME

• VK_EXT_CALIBRATED_TIMESTAMPS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_EXT

• Extending VkTimeDomainKHR:

◦ VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT

◦ VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT

◦ VK_TIME_DOMAIN_DEVICE_EXT

◦ VK_TIME_DOMAIN_QUERY_PERFORMANCE_COUNTER_EXT

Version History

• Revision 2, 2021-03-16 (Lionel Landwerlin)

◦ Specify requirement on device timestamps

• Revision 1, 2018-10-04 (Daniel Rakos)

◦ Internal revisions.

VK_EXT_debug_marker

Name String

VK_EXT_debug_marker

Extension Type

Device extension

Registered Extension Number

23

Revision

4

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_debug_report

Deprecation State

• Promoted to VK_EXT_debug_utils extension

Special Use

• Debugging tools

5126

Contact

• Baldur Karlsson baldurk

Other Extension Metadata

Last Modified Date

2017-01-31

IP Status

No known IP claims.

Contributors

• Baldur Karlsson

• Dan Ginsburg, Valve

• Jon Ashburn, LunarG

• Kyle Spagnoli, NVIDIA

Description

The VK_EXT_debug_marker extension is a device extension. It introduces concepts of object naming
and tagging, for better tracking of Vulkan objects, as well as additional commands for recording
annotations of named sections of a workload to aid organization and offline analysis in external
tools.

New Commands

• vkCmdDebugMarkerBeginEXT

• vkCmdDebugMarkerEndEXT

• vkCmdDebugMarkerInsertEXT

• vkDebugMarkerSetObjectNameEXT

• vkDebugMarkerSetObjectTagEXT

New Structures

• VkDebugMarkerMarkerInfoEXT

• VkDebugMarkerObjectNameInfoEXT

• VkDebugMarkerObjectTagInfoEXT

New Enums

• VkDebugReportObjectTypeEXT

New Enum Constants

• VK_EXT_DEBUG_MARKER_EXTENSION_NAME

• VK_EXT_DEBUG_MARKER_SPEC_VERSION

5127

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_debug_marker] @baldurk%0A*Here describe the issue or question you have about the VK_EXT_debug_marker extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_debug_marker] @baldurk%0A*Here describe the issue or question you have about the VK_EXT_debug_marker extension*

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT

◦ VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT

◦ VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT

Examples

Example 1

Associate a name with an image, for easier debugging in external tools or with validation layers
that can print a friendly name when referring to objects in error messages.

 extern VkDevice device;
 extern VkImage image;

 // Must call extension functions through a function pointer:
 PFN_vkDebugMarkerSetObjectNameEXT pfnDebugMarkerSetObjectNameEXT =
(PFN_vkDebugMarkerSetObjectNameEXT)vkGetDeviceProcAddr(device,
"vkDebugMarkerSetObjectNameEXT");

 // Set a name on the image
 const VkDebugMarkerObjectNameInfoEXT imageNameInfo =
 {
 .sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT,
 .pNext = NULL,
 .objectType = VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
 .object = (uint64_t)image,
 .pObjectName = "Brick Diffuse Texture",
 };

 pfnDebugMarkerSetObjectNameEXT(device, &imageNameInfo);

 // A subsequent error might print:
 // Image 'Brick Diffuse Texture' (0xc0dec0dedeadbeef) is used in a
 // command buffer with no memory bound to it.

Example 2

Annotating regions of a workload with naming information so that offline analysis tools can display
a more usable visualisation of the commands submitted.

 extern VkDevice device;
 extern VkCommandBuffer commandBuffer;

 // Must call extension functions through a function pointer:
 PFN_vkCmdDebugMarkerBeginEXT pfnCmdDebugMarkerBeginEXT =
(PFN_vkCmdDebugMarkerBeginEXT)vkGetDeviceProcAddr(device, "vkCmdDebugMarkerBeginEXT");
 PFN_vkCmdDebugMarkerEndEXT pfnCmdDebugMarkerEndEXT = (PFN_vkCmdDebugMarkerEndEXT

5128

)vkGetDeviceProcAddr(device, "vkCmdDebugMarkerEndEXT");
 PFN_vkCmdDebugMarkerInsertEXT pfnCmdDebugMarkerInsertEXT =
(PFN_vkCmdDebugMarkerInsertEXT)vkGetDeviceProcAddr(device,
"vkCmdDebugMarkerInsertEXT");

 // Describe the area being rendered
 const VkDebugMarkerMarkerInfoEXT houseMarker =
 {
 .sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT,
 .pNext = NULL,
 .pMarkerName = "Brick House",
 .color = { 1.0f, 0.0f, 0.0f, 1.0f },
 };

 // Start an annotated group of calls under the 'Brick House' name
 pfnCmdDebugMarkerBeginEXT(commandBuffer, &houseMarker);
 {
 // A mutable structure for each part being rendered
 VkDebugMarkerMarkerInfoEXT housePartMarker =
 {
 .sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT,
 .pNext = NULL,
 .pMarkerName = NULL,
 .color = { 0.0f, 0.0f, 0.0f, 0.0f },
 };

 // Set the name and insert the marker
 housePartMarker.pMarkerName = "Walls";
 pfnCmdDebugMarkerInsertEXT(commandBuffer, &housePartMarker);

 // Insert the drawcall for the walls
 vkCmdDrawIndexed(commandBuffer, 1000, 1, 0, 0, 0);

 // Insert a recursive region for two sets of windows
 housePartMarker.pMarkerName = "Windows";
 pfnCmdDebugMarkerBeginEXT(commandBuffer, &housePartMarker);
 {
 vkCmdDrawIndexed(commandBuffer, 75, 6, 1000, 0, 0);
 vkCmdDrawIndexed(commandBuffer, 100, 2, 1450, 0, 0);
 }
 pfnCmdDebugMarkerEndEXT(commandBuffer);

 housePartMarker.pMarkerName = "Front Door";
 pfnCmdDebugMarkerInsertEXT(commandBuffer, &housePartMarker);

 vkCmdDrawIndexed(commandBuffer, 350, 1, 1650, 0, 0);

 housePartMarker.pMarkerName = "Roof";
 pfnCmdDebugMarkerInsertEXT(commandBuffer, &housePartMarker);

 vkCmdDrawIndexed(commandBuffer, 500, 1, 2000, 0, 0);

5129

 }
 // End the house annotation started above
 pfnCmdDebugMarkerEndEXT(commandBuffer);

Issues

1) Should the tag or name for an object be specified using the pNext parameter in the object’s
Vk*CreateInfo structure?

RESOLVED: No. While this fits with other Vulkan patterns and would allow more type safety and
future proofing against future objects, it has notable downsides. In particular passing the name at
Vk*CreateInfo time does not allow renaming, prevents late binding of naming information, and
does not allow naming of implicitly created objects such as queues and swapchain images.

2) Should the command annotation functions vkCmdDebugMarkerBeginEXT and
vkCmdDebugMarkerEndEXT support the ability to specify a color?

RESOLVED: Yes. The functions have been expanded to take an optional color which can be used at
will by implementations consuming the command buffer annotations in their visualisation.

3) Should the functions added in this extension accept an extensible structure as their parameter
for a more flexible API, as opposed to direct function parameters? If so, which functions?

RESOLVED: Yes. All functions have been modified to take a structure type with extensible pNext
pointer, to allow future extensions to add additional annotation information in the same
commands.

Version History

• Revision 1, 2016-02-24 (Baldur Karlsson)

◦ Initial draft, based on LunarG marker spec

• Revision 2, 2016-02-26 (Baldur Karlsson)

◦ Renamed Dbg to DebugMarker in function names

◦ Allow markers in secondary command buffers under certain circumstances

◦ Minor language tweaks and edits

• Revision 3, 2016-04-23 (Baldur Karlsson)

◦ Reorganise spec layout to closer match desired organisation

◦ Added optional color to markers (both regions and inserted labels)

◦ Changed functions to take extensible structs instead of direct function parameters

• Revision 4, 2017-01-31 (Baldur Karlsson)

◦ Added explicit dependency on VK_EXT_debug_report

◦ Moved definition of VkDebugReportObjectTypeEXT to debug report chapter.

◦ Fixed typo in dates in revision history

5130

VK_EXT_debug_report

Name String

VK_EXT_debug_report

Extension Type

Instance extension

Registered Extension Number

12

Revision

10

Ratification Status

Not ratified

Extension and Version Dependencies

None

API Interactions

• Interacts with VK_VERSION_1_1

Deprecation State

• Deprecated by VK_EXT_debug_utils extension

Special Use

• Debugging tools

Contact

• Courtney Goeltzenleuchter courtney-g

Other Extension Metadata

Last Modified Date

2020-12-14

IP Status

No known IP claims.

Contributors

• Courtney Goeltzenleuchter, LunarG

• Dan Ginsburg, Valve

• Jon Ashburn, LunarG

• Mark Lobodzinski, LunarG

5131

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_debug_report] @courtney-g%0A*Here describe the issue or question you have about the VK_EXT_debug_report extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_debug_report] @courtney-g%0A*Here describe the issue or question you have about the VK_EXT_debug_report extension*

Description

Due to the nature of the Vulkan interface, there is very little error information available to the
developer and application. By enabling optional validation layers and using the
VK_EXT_debug_report extension, developers can obtain much more detailed feedback on the
application’s use of Vulkan. This extension defines a way for layers and the implementation to call
back to the application for events of interest to the application.

New Object Types

• VkDebugReportCallbackEXT

New Commands

• vkCreateDebugReportCallbackEXT

• vkDebugReportMessageEXT

• vkDestroyDebugReportCallbackEXT

New Structures

• Extending VkInstanceCreateInfo:

◦ VkDebugReportCallbackCreateInfoEXT

New Function Pointers

• PFN_vkDebugReportCallbackEXT

New Enums

• VkDebugReportFlagBitsEXT

• VkDebugReportObjectTypeEXT

New Bitmasks

• VkDebugReportFlagsEXT

New Enum Constants

• VK_EXT_DEBUG_REPORT_EXTENSION_NAME

• VK_EXT_DEBUG_REPORT_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT

• Extending VkResult:

◦ VK_ERROR_VALIDATION_FAILED_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT

5132

◦ VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT

If Version 1.1 is supported:

• Extending VkDebugReportObjectTypeEXT:

◦ VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_EXT

◦ VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_EXT

Examples

VK_EXT_debug_report allows an application to register multiple callbacks with the validation layers.
Some callbacks may log the information to a file, others may cause a debug break point or other
application defined behavior. An application can register callbacks even when no validation layers
are enabled, but they will only be called for loader and, if implemented, driver events.

To capture events that occur while creating or destroying an instance an application can link a
VkDebugReportCallbackCreateInfoEXT structure to the pNext element of the VkInstanceCreateInfo
structure given to vkCreateInstance.

Example uses: Create three callback objects. One will log errors and warnings to the debug console
using Windows OutputDebugString. The second will cause the debugger to break at that callback
when an error happens and the third will log warnings to stdout.

 VkResult res;
 VkDebugReportCallbackEXT cb1, cb2, cb3;

 VkDebugReportCallbackCreateInfoEXT callback1 = {
 .sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = VK_DEBUG_REPORT_ERROR_BIT_EXT |
 VK_DEBUG_REPORT_WARNING_BIT_EXT,
 .pfnCallback = myOutputDebugString,
 .pUserData = NULL
 };
 res = vkCreateDebugReportCallbackEXT(instance, &callback1, &cb1);
 if (res != VK_SUCCESS)
 /* Do error handling for VK_ERROR_OUT_OF_MEMORY */

 callback.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT;
 callback.pfnCallback = myDebugBreak;
 callback.pUserData = NULL;
 res = vkCreateDebugReportCallbackEXT(instance, &callback, &cb2);
 if (res != VK_SUCCESS)
 /* Do error handling for VK_ERROR_OUT_OF_MEMORY */

 VkDebugReportCallbackCreateInfoEXT callback3 = {
 .sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT,
 .pNext = NULL,
 .flags = VK_DEBUG_REPORT_WARNING_BIT_EXT,

5133

 .pfnCallback = mystdOutLogger,
 .pUserData = NULL
 };
 res = vkCreateDebugReportCallbackEXT(instance, &callback3, &cb3);
 if (res != VK_SUCCESS)
 /* Do error handling for VK_ERROR_OUT_OF_MEMORY */

 ...

 /* remove callbacks when cleaning up */
 vkDestroyDebugReportCallbackEXT(instance, cb1);
 vkDestroyDebugReportCallbackEXT(instance, cb2);
 vkDestroyDebugReportCallbackEXT(instance, cb3);

Note

In the initial release of the VK_EXT_debug_report extension, the token
VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT was used. Starting in version 2 of
the extension branch, VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT is
used instead for consistency with Vulkan naming rules. The older enum is still
available for backwards compatibility.

Note

In the initial release of the VK_EXT_debug_report extension, the token
VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_EXT was used. Starting in version 8 of
the extension branch, VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT
is used instead for consistency with Vulkan naming rules. The older enum is still
available for backwards compatibility.

Issues

1) What is the hierarchy / seriousness of the message flags? E.g. ERROR > WARN > PERF_WARN …

RESOLVED: There is no specific hierarchy. Each bit is independent and should be checked via
bitwise AND. For example:

 if (localFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
 process error message
 }
 if (localFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) {
 process debug message
 }

The validation layers do use them in a hierarchical way (ERROR > WARN > PERF, WARN > DEBUG > INFO) and
they (at least at the time of this writing) only set one bit at a time. But it is not a requirement of this
extension.

It is possible that a layer may intercept and change, or augment the flags with extension values the

5134

application’s debug report handler may not be familiar with, so it is important to treat each flag
independently.

2) Should there be a VU requiring VkDebugReportCallbackCreateInfoEXT::flags to be non-zero?

RESOLVED: It may not be very useful, but we do not need VU statement requiring the
VkDebugReportCallbackCreateInfoEXT::msgFlags at create-time to be non-zero. One can imagine that
apps may prefer it as it allows them to set the mask as desired - including nothing - at runtime
without having to check.

3) What is the difference between VK_DEBUG_REPORT_DEBUG_BIT_EXT and
VK_DEBUG_REPORT_INFORMATION_BIT_EXT?

RESOLVED: VK_DEBUG_REPORT_DEBUG_BIT_EXT specifies information that could be useful debugging
the Vulkan implementation itself.

4) How do you compare handles returned by the debug_report callback to the application’s
handles?

RESOLVED: Due to the different nature of dispatchable and nondispatchable handles there is no
generic way (that we know of) that works for common compilers with 32bit, 64bit, C and C++. We
recommend applications use the same cast that the validation layers use:

+

reinterpret_cast<uint64_t &>(dispatchableHandle)
(uint64_t)(nondispatchableHandle)

+ This does require that the app treat dispatchable and nondispatchable handles differently.

Version History

• Revision 1, 2015-05-20 (Courtney Goetzenleuchter)

◦ Initial draft, based on LunarG KHR spec, other KHR specs

• Revision 2, 2016-02-16 (Courtney Goetzenleuchter)

◦ Update usage, documentation

• Revision 3, 2016-06-14 (Courtney Goetzenleuchter)

◦ Update VK_EXT_DEBUG_REPORT_SPEC_VERSION to indicate added support for
vkCreateInstance and vkDestroyInstance

• Revision 4, 2016-12-08 (Mark Lobodzinski)

◦ Added Display_KHR, DisplayModeKHR extension objects

◦ Added ObjectTable_NVX, IndirectCommandsLayout_NVX extension objects

◦ Bumped spec revision

◦ Retroactively added version history

• Revision 5, 2017-01-31 (Baldur Karlsson)

5135

◦ Moved definition of VkDebugReportObjectTypeEXT from debug marker chapter

• Revision 6, 2017-01-31 (Baldur Karlsson)

◦ Added VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR_EXT

• Revision 7, 2017-04-20 (Courtney Goeltzenleuchter)

◦ Clarify wording and address questions from developers.

• Revision 8, 2017-04-21 (Courtney Goeltzenleuchter)

◦ Remove unused enum VkDebugReportErrorEXT

• Revision 9, 2017-09-12 (Tobias Hector)

◦ Added interactions with Vulkan 1.1

• Revision 10, 2020-12-14 (Courtney Goetzenleuchter)

◦ Add issue 4 discussing matching handles returned by the extension, based on suggestion in
public issue 368.

VK_EXT_descriptor_indexing

Name String

VK_EXT_descriptor_indexing

Extension Type

Device extension

Registered Extension Number

162

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_maintenance3

SPIR-V Dependencies

• SPV_EXT_descriptor_indexing

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Jeff Bolz jeffbolznv

5136

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_descriptor_indexing] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_descriptor_indexing extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_descriptor_indexing] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_descriptor_indexing extension*

Other Extension Metadata

Last Modified Date

2017-10-02

Interactions and External Dependencies

• This extension provides API support for GL_EXT_nonuniform_qualifier

Contributors

• Jeff Bolz, NVIDIA

• Daniel Rakos, AMD

• Slawomir Grajewski, Intel

• Tobias Hector, Imagination Technologies

Description

This extension adds several small features which together enable applications to create large
descriptor sets containing substantially all of their resources, and selecting amongst those
resources with dynamic (non-uniform) indexes in the shader. There are feature enables and SPIR-V
capabilities for non-uniform descriptor indexing in the shader, and non-uniform indexing in the
shader requires use of a new NonUniformEXT decoration defined in the SPV_EXT_descriptor_indexing
SPIR-V extension. There are descriptor set layout binding creation flags enabling several features:

• Descriptors can be updated after they are bound to a command buffer, such that the execution
of the command buffer reflects the most recent update to the descriptors.

• Descriptors that are not used by any pending command buffers can be updated, which enables
writing new descriptors for frame N+1 while frame N is executing.

• Relax the requirement that all descriptors in a binding that is “statically used” must be valid,
such that descriptors that are not accessed by a submission need not be valid and can be
updated while that submission is executing.

• The final binding in a descriptor set layout can have a variable size (and unsized arrays of
resources are allowed in the GL_EXT_nonuniform_qualifier and SPV_EXT_descriptor_indexing
extensions).

Note that it is valid for multiple descriptor arrays in a shader to use the same set and binding
number, as long as they are all compatible with the descriptor type in the pipeline layout. This
means a single array binding in the descriptor set can serve multiple texture dimensionalities, or
an array of buffer descriptors can be used with multiple different block layouts.

There are new descriptor set layout and descriptor pool creation flags that are required to opt in to
the update-after-bind functionality, and there are separate maxPerStage* and maxDescriptorSet*
limits that apply to these descriptor set layouts which may be much higher than the pre-existing
limits. The old limits only count descriptors in non-updateAfterBind descriptor set layouts, and the
new limits count descriptors in all descriptor set layouts in the pipeline layout.

5137

https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GL_EXT_nonuniform_qualifier.txt

New Structures

• Extending VkDescriptorSetAllocateInfo:

◦ VkDescriptorSetVariableDescriptorCountAllocateInfoEXT

• Extending VkDescriptorSetLayoutCreateInfo:

◦ VkDescriptorSetLayoutBindingFlagsCreateInfoEXT

• Extending VkDescriptorSetLayoutSupport:

◦ VkDescriptorSetVariableDescriptorCountLayoutSupportEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDescriptorIndexingFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDescriptorIndexingPropertiesEXT

New Enums

• VkDescriptorBindingFlagBitsEXT

New Bitmasks

• VkDescriptorBindingFlagsEXT

New Enum Constants

• VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME

• VK_EXT_DESCRIPTOR_INDEXING_SPEC_VERSION

• Extending VkDescriptorBindingFlagBits:

◦ VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT

◦ VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT

◦ VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT

◦ VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT

• Extending VkDescriptorPoolCreateFlagBits:

◦ VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT

• Extending VkResult:

◦ VK_ERROR_FRAGMENTATION_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT

5138

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT

Promotion to Vulkan 1.2

Functionality in this extension is included in core Vulkan 1.2, with the EXT suffix omitted. However,
if Vulkan 1.2 is supported and this extension is not, the descriptorIndexing capability is optional.
The original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2017-07-26 (Jeff Bolz)

◦ Internal revisions

• Revision 2, 2017-10-02 (Jeff Bolz)

◦ ???

VK_EXT_extended_dynamic_state

Name String

VK_EXT_extended_dynamic_state

Extension Type

Device extension

Registered Extension Number

268

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2019-12-09

5139

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_extended_dynamic_state] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_extended_dynamic_state extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_extended_dynamic_state] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_extended_dynamic_state extension*

IP Status

No known IP claims.

Contributors

• Dan Ginsburg, Valve Corporation

• Graeme Leese, Broadcom

• Hans-Kristian Arntzen, Valve Corporation

• Jan-Harald Fredriksen, Arm Limited

• Faith Ekstrand, Intel

• Jeff Bolz, NVIDIA

• Jesse Hall, Google

• Philip Rebohle, Valve Corporation

• Stuart Smith, Imagination Technologies

• Tobias Hector, AMD

Description

This extension adds some more dynamic state to support applications that need to reduce the
number of pipeline state objects they compile and bind.

New Commands

• vkCmdBindVertexBuffers2EXT

• vkCmdSetCullModeEXT

• vkCmdSetDepthBoundsTestEnableEXT

• vkCmdSetDepthCompareOpEXT

• vkCmdSetDepthTestEnableEXT

• vkCmdSetDepthWriteEnableEXT

• vkCmdSetFrontFaceEXT

• vkCmdSetPrimitiveTopologyEXT

• vkCmdSetScissorWithCountEXT

• vkCmdSetStencilOpEXT

• vkCmdSetStencilTestEnableEXT

• vkCmdSetViewportWithCountEXT

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceExtendedDynamicStateFeaturesEXT

5140

New Enum Constants

• VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME

• VK_EXT_EXTENDED_DYNAMIC_STATE_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_CULL_MODE_EXT

◦ VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT

◦ VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT

◦ VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT

◦ VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT

◦ VK_DYNAMIC_STATE_FRONT_FACE_EXT

◦ VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT

◦ VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT

◦ VK_DYNAMIC_STATE_STENCIL_OP_EXT

◦ VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT

◦ VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT

◦ VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT

Promotion to Vulkan 1.3

This extension has been partially promoted. All dynamic state enumerants and entry points in this
extension are included in core Vulkan 1.3, with the EXT suffix omitted. The feature structure is not
promoted. Extension interfaces that were promoted remain available as aliases of the core
functionality.

Issues

1) Why are the values of pStrides in vkCmdBindVertexBuffers2 limited to be between 0 and the
maximum extent of the binding, when this restriction is not present for the same static state?

Implementing these edge cases adds overhead to some implementations that would require
significant cost when calling this function, and the intention is that this state should be more or less
free to change.

VK_EXT_vertex_input_dynamic_state allows the stride to be changed freely when supported via
vkCmdSetVertexInputEXT.

Version History

• Revision 1, 2019-12-09 (Piers Daniell)

◦ Internal revisions

5141

VK_EXT_extended_dynamic_state2

Name String

VK_EXT_extended_dynamic_state2

Extension Type

Device extension

Registered Extension Number

378

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Vikram Kushwaha vkushwaha-nv

Other Extension Metadata

Last Modified Date

2021-04-12

IP Status

No known IP claims.

Contributors

• Vikram Kushwaha, NVIDIA

• Piers Daniell, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension adds some more dynamic state to support applications that need to reduce the
number of pipeline state objects they compile and bind.

5142

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_extended_dynamic_state2] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_EXT_extended_dynamic_state2 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_extended_dynamic_state2] @vkushwaha-nv%0A*Here describe the issue or question you have about the VK_EXT_extended_dynamic_state2 extension*

New Commands

• vkCmdSetDepthBiasEnableEXT

• vkCmdSetLogicOpEXT

• vkCmdSetPatchControlPointsEXT

• vkCmdSetPrimitiveRestartEnableEXT

• vkCmdSetRasterizerDiscardEnableEXT

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceExtendedDynamicState2FeaturesEXT

New Enum Constants

• VK_EXT_EXTENDED_DYNAMIC_STATE_2_EXTENSION_NAME

• VK_EXT_EXTENDED_DYNAMIC_STATE_2_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE_EXT

◦ VK_DYNAMIC_STATE_LOGIC_OP_EXT

◦ VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT

◦ VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE_EXT

◦ VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT

Promotion to Vulkan 1.3

This extension has been partially promoted. The dynamic state enumerants
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE_EXT, VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE_EXT, and
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE_EXT; and the corresponding entry points in this
extension are included in core Vulkan 1.3, with the EXT suffix omitted. The enumerants and entry
points for dynamic logic operation and patch control points are not promoted, nor is the feature
structure. Extension interfaces that were promoted remain available as aliases of the core
functionality.

Version History

• Revision 1, 2021-04-12 (Vikram Kushwaha)

◦ Internal revisions

VK_EXT_global_priority

5143

Name String

VK_EXT_global_priority

Extension Type

Device extension

Registered Extension Number

175

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to VK_KHR_global_priority extension

Contact

• Andres Rodriguez lostgoat

Other Extension Metadata

Last Modified Date

2017-10-06

IP Status

No known IP claims.

Contributors

• Andres Rodriguez, Valve

• Pierre-Loup Griffais, Valve

• Dan Ginsburg, Valve

• Mitch Singer, AMD

Description

In Vulkan, users can specify device-scope queue priorities. In some cases it may be useful to extend
this concept to a system-wide scope. This extension provides a mechanism for callers to set their
system-wide priority. The default queue priority is VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT.

The driver implementation will attempt to skew hardware resource allocation in favour of the
higher-priority task. Therefore, higher-priority work may retain similar latency and throughput
characteristics even if the system is congested with lower priority work.

5144

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_global_priority] @lostgoat%0A*Here describe the issue or question you have about the VK_EXT_global_priority extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_global_priority] @lostgoat%0A*Here describe the issue or question you have about the VK_EXT_global_priority extension*

The global priority level of a queue shall take precedence over the per-process queue priority
(VkDeviceQueueCreateInfo::pQueuePriorities).

Abuse of this feature may result in starving the rest of the system from hardware resources.
Therefore, the driver implementation may deny requests to acquire a priority above the default
priority (VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) if the caller does not have sufficient privileges. In
this scenario VK_ERROR_NOT_PERMITTED_EXT is returned.

The driver implementation may fail the queue allocation request if resources required to complete
the operation have been exhausted (either by the same process or a different process). In this
scenario VK_ERROR_INITIALIZATION_FAILED is returned.

New Structures

• Extending VkDeviceQueueCreateInfo:

◦ VkDeviceQueueGlobalPriorityCreateInfoEXT

New Enums

• VkQueueGlobalPriorityEXT

New Enum Constants

• VK_EXT_GLOBAL_PRIORITY_EXTENSION_NAME

• VK_EXT_GLOBAL_PRIORITY_SPEC_VERSION

• Extending VkResult:

◦ VK_ERROR_NOT_PERMITTED_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT

Version History

• Revision 2, 2017-11-03 (Andres Rodriguez)

◦ Fixed VkQueueGlobalPriorityEXT missing _EXT suffix

• Revision 1, 2017-10-06 (Andres Rodriguez)

◦ First version.

VK_EXT_global_priority_query

Name String

VK_EXT_global_priority_query

Extension Type

Device extension

5145

Registered Extension Number

389

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_EXT_global_priority
and
VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to VK_KHR_global_priority extension

Contact

• Yiwei Zhang zhangyiwei

Other Extension Metadata

Last Modified Date

2021-03-29

IP Status

No known IP claims.

Contributors

• Yiwei Zhang, Google

Description

This device extension allows applications to query the global queue priorities supported by a queue
family. It allows implementations to report which global priority levels are treated differently by
the implementation, instead of silently mapping multiple requested global priority levels to the
same internal priority, or using device creation failure to signal that a requested priority is not
supported. It is intended primarily for use by system integration along with certain platform-
specific priority enforcement rules.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceGlobalPriorityQueryFeaturesEXT

• Extending VkQueueFamilyProperties2:

◦ VkQueueFamilyGlobalPriorityPropertiesEXT

5146

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_global_priority_query] @zhangyiwei%0A*Here describe the issue or question you have about the VK_EXT_global_priority_query extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_global_priority_query] @zhangyiwei%0A*Here describe the issue or question you have about the VK_EXT_global_priority_query extension*

New Enum Constants

• VK_EXT_GLOBAL_PRIORITY_QUERY_EXTENSION_NAME

• VK_EXT_GLOBAL_PRIORITY_QUERY_SPEC_VERSION

• VK_MAX_GLOBAL_PRIORITY_SIZE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_EXT

Issues

1) Can we additionally query whether a caller is permitted to acquire a specific global queue
priority in this extension?

RESOLVED: No. Whether a caller has enough privilege goes with the OS, and the Vulkan driver
cannot really guarantee that the privilege will not change in between this query and the actual
queue creation call.

2) If more than 1 queue using global priority is requested, is there a good way to know which queue
is failing the device creation?

RESOLVED: No. There is not a good way at this moment, and it is also not quite actionable for the
applications to know that because the information may not be accurate. Queue creation can fail
because of runtime constraints like insufficient privilege or lack of resource, and the failure is not
necessarily tied to that particular queue configuration requested.

Version History

• Revision 1, 2021-03-29 (Yiwei Zhang)

VK_EXT_host_query_reset

Name String

VK_EXT_host_query_reset

Extension Type

Device extension

Registered Extension Number

262

Revision

1

Ratification Status

Not ratified

5147

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Bas Nieuwenhuizen BNieuwenhuizen

Other Extension Metadata

Last Modified Date

2019-03-06

IP Status

No known IP claims.

Contributors

• Bas Nieuwenhuizen, Google

• Faith Ekstrand, Intel

• Jeff Bolz, NVIDIA

• Piers Daniell, NVIDIA

Description

This extension adds a new function to reset queries from the host.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Commands

• vkResetQueryPoolEXT

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceHostQueryResetFeaturesEXT

New Enum Constants

• VK_EXT_HOST_QUERY_RESET_EXTENSION_NAME

• VK_EXT_HOST_QUERY_RESET_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT

5148

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_host_query_reset] @BNieuwenhuizen%0A*Here describe the issue or question you have about the VK_EXT_host_query_reset extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_host_query_reset] @BNieuwenhuizen%0A*Here describe the issue or question you have about the VK_EXT_host_query_reset extension*

Version History

• Revision 1, 2019-03-12 (Bas Nieuwenhuizen)

◦ Initial draft

VK_EXT_image_robustness

Name String

VK_EXT_image_robustness

Extension Type

Device extension

Registered Extension Number

336

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Graeme Leese gnl21

Other Extension Metadata

Last Modified Date

2020-04-27

IP Status

No known IP claims.

Contributors

• Graeme Leese, Broadcom

• Jan-Harald Fredriksen, ARM

• Jeff Bolz, NVIDIA

• Spencer Fricke, Samsung

• Courtney Goeltzenleuchter, Google

5149

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_robustness] @gnl21%0A*Here describe the issue or question you have about the VK_EXT_image_robustness extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_image_robustness] @gnl21%0A*Here describe the issue or question you have about the VK_EXT_image_robustness extension*

• Slawomir Cygan, Intel

Description

This extension adds stricter requirements for how out of bounds reads from images are handled.
Rather than returning undefined values, most out of bounds reads return R, G, and B values of zero
and alpha values of either zero or one. Components not present in the image format may be set to
zero or to values based on the format as described in Conversion to RGBA.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceImageRobustnessFeaturesEXT

New Enum Constants

• VK_EXT_IMAGE_ROBUSTNESS_EXTENSION_NAME

• VK_EXT_IMAGE_ROBUSTNESS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Issues

1. How does this extension differ from VK_EXT_robustness2?

The guarantees provided by this extension are a subset of those provided by the
robustImageAccess2 feature of VK_EXT_robustness2. Where this extension allows return values of
(0, 0, 0, 0) or (0, 0, 0, 1), robustImageAccess2 requires that a particular value dependent on the
image format be returned. This extension provides no guarantees about the values returned for an
access to an invalid Lod.

Examples

None.

Version History

• Revision 1, 2020-04-27 (Graeme Leese)

• Initial draft

VK_EXT_index_type_uint8

5150

Name String

VK_EXT_index_type_uint8

Extension Type

Device extension

Registered Extension Number

266

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to VK_KHR_index_type_uint8 extension

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2019-05-02

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

Description

This extension allows uint8_t indices to be used with vkCmdBindIndexBuffer.

Promotion to VK_KHR_index_type_uint8

All functionality in this extension is included in VK_KHR_index_type_uint8, with the suffix changed to
KHR. The original enum names are still available as aliases of the KHR functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

5151

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_index_type_uint8] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_index_type_uint8 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_index_type_uint8] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_EXT_index_type_uint8 extension*

◦ VkPhysicalDeviceIndexTypeUint8FeaturesEXT

New Enum Constants

• VK_EXT_INDEX_TYPE_UINT8_EXTENSION_NAME

• VK_EXT_INDEX_TYPE_UINT8_SPEC_VERSION

• Extending VkIndexType:

◦ VK_INDEX_TYPE_UINT8_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT

Version History

• Revision 1, 2019-05-02 (Piers Daniell)

◦ Internal revisions

VK_EXT_inline_uniform_block

Name String

VK_EXT_inline_uniform_block

Extension Type

Device extension

Registered Extension Number

139

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
and
VK_KHR_maintenance1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Daniel Rakos aqnuep

Other Extension Metadata

5152

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_inline_uniform_block] @aqnuep%0A*Here describe the issue or question you have about the VK_EXT_inline_uniform_block extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_inline_uniform_block] @aqnuep%0A*Here describe the issue or question you have about the VK_EXT_inline_uniform_block extension*

Last Modified Date

2018-08-01

IP Status

No known IP claims.

Contributors

• Daniel Rakos, AMD

• Jeff Bolz, NVIDIA

• Slawomir Grajewski, Intel

• Neil Henning, Codeplay

Description

This extension introduces the ability to back uniform blocks directly with descriptor sets by storing
inline uniform data within descriptor pool storage. Compared to push constants this new construct
allows uniform data to be reused across multiple disjoint sets of drawing or dispatching commands
and may enable uniform data to be accessed with fewer indirections compared to uniforms backed
by buffer memory.

New Structures

• Extending VkDescriptorPoolCreateInfo:

◦ VkDescriptorPoolInlineUniformBlockCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceInlineUniformBlockFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceInlineUniformBlockPropertiesEXT

• Extending VkWriteDescriptorSet:

◦ VkWriteDescriptorSetInlineUniformBlockEXT

New Enum Constants

• VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME

• VK_EXT_INLINE_UNIFORM_BLOCK_SPEC_VERSION

• Extending VkDescriptorType:

◦ VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT

5153

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Vulkan 1.3 adds additional functionality related to this extension in the form of the
maxInlineUniformTotalSize limit.

Issues

1) Do we need a new storage class for inline uniform blocks vs. uniform blocks?

RESOLVED: No. The Uniform storage class is used to allow the same syntax used for both uniform
buffers and inline uniform blocks.

2) Is the descriptor array index and array size expressed in terms of bytes or dwords for inline
uniform block descriptors?

RESOLVED: In bytes, but both must be a multiple of 4, similar to how push constant ranges are
specified. The descriptorCount of VkDescriptorSetLayoutBinding thus provides the total number of
bytes a particular binding with an inline uniform block descriptor type can hold, while the
srcArrayElement, dstArrayElement, and descriptorCount members of VkWriteDescriptorSet,
VkCopyDescriptorSet, and VkDescriptorUpdateTemplateEntry (where applicable) specify the byte offset
and number of bytes to write/copy to the binding’s backing store. Additionally, the stride member
of VkDescriptorUpdateTemplateEntry is ignored for inline uniform blocks and a default value of one
is used, meaning that the data to update inline uniform block bindings with must be contiguous in
memory.

3) What layout rules apply for uniform blocks corresponding to inline constants?

RESOLVED: They use the same layout rules as uniform buffers.

4) Do we need to add non-uniform indexing features/properties as introduced by
VK_EXT_descriptor_indexing for inline uniform blocks?

RESOLVED: No, because inline uniform blocks are not allowed to be “arrayed”. A single binding
with an inline uniform block descriptor type corresponds to a single uniform block instance and
the array indices inside that binding refer to individual offsets within the uniform block (see issue
#2). However, this extension does introduce new features/properties about the level of support for
update-after-bind inline uniform blocks.

5) Is the descriptorBindingVariableDescriptorCount feature introduced by
VK_EXT_descriptor_indexing supported for inline uniform blocks?

RESOLVED: Yes, as long as other inline uniform block specific limits are respected.

6) Do the robustness guarantees of robustBufferAccess apply to inline uniform block accesses?

RESOLVED: No, similarly to push constants, as they are not backed by buffer memory like uniform
buffers.

5154

Version History

• Revision 1, 2018-08-01 (Daniel Rakos)

◦ Internal revisions

VK_EXT_line_rasterization

Name String

VK_EXT_line_rasterization

Extension Type

Device extension

Registered Extension Number

260

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to VK_KHR_line_rasterization extension

Special Use

• CAD support

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2019-05-09

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Allen Jensen, NVIDIA

• Faith Ekstrand, Intel

5155

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_line_rasterization] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_line_rasterization extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_line_rasterization] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_line_rasterization extension*

Description

This extension adds some line rasterization features that are commonly used in CAD applications
and supported in other APIs like OpenGL. Bresenham-style line rasterization is supported, smooth
rectangular lines (coverage to alpha) are supported, and stippled lines are supported for all three
line rasterization modes.

Promotion to VK_KHR_line_rasterization

All functionality in this extension is included in VK_KHR_line_rasterization, with the suffix changed
to KHR. The original enum names are still available as aliases of the KHR functionality.

New Commands

• vkCmdSetLineStippleEXT

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceLineRasterizationFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceLineRasterizationPropertiesEXT

• Extending VkPipelineRasterizationStateCreateInfo:

◦ VkPipelineRasterizationLineStateCreateInfoEXT

New Enums

• VkLineRasterizationModeEXT

New Enum Constants

• VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME

• VK_EXT_LINE_RASTERIZATION_SPEC_VERSION

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_LINE_STIPPLE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT

Issues

1) Do we need to support Bresenham-style and smooth lines with more than one rasterization
sample? i.e. the equivalent of glDisable(GL_MULTISAMPLE) in OpenGL when the framebuffer has
more than one sample?

5156

RESOLVED: Yes. For simplicity, Bresenham line rasterization carries forward a few restrictions
from OpenGL, such as not supporting per-sample shading, alpha to coverage, or alpha to one.

Version History

• Revision 1, 2019-05-09 (Jeff Bolz)

◦ Initial draft

VK_EXT_load_store_op_none

Name String

VK_EXT_load_store_op_none

Extension Type

Device extension

Registered Extension Number

401

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to VK_KHR_load_store_op_none extension

Contact

• Shahbaz Youssefi syoussefi

Other Extension Metadata

Last Modified Date

2021-06-06

Contributors

• Shahbaz Youssefi, Google

• Bill Licea-Kane, Qualcomm Technologies, Inc.

• Tobias Hector, AMD

Description

This extension incorporates VK_ATTACHMENT_STORE_OP_NONE_EXT from VK_QCOM_render_pass_store_ops,
enabling applications to avoid unnecessary synchronization when an attachment is not written

5157

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_load_store_op_none] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_load_store_op_none extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_load_store_op_none] @syoussefi%0A*Here describe the issue or question you have about the VK_EXT_load_store_op_none extension*

during a render pass.

Additionally, VK_ATTACHMENT_LOAD_OP_NONE_EXT is introduced to avoid unnecessary synchronization
when an attachment is not used during a render pass at all. In combination with
VK_ATTACHMENT_STORE_OP_NONE_EXT, this is useful as an alternative to preserve attachments in
applications that cannot decide if an attachment will be used in a render pass until after the
necessary pipelines have been created.

Promotion to VK_KHR_load_store_op_none

All functionality in this extension is included in VK_KHR_load_store_op_none, with the suffix changed
to KHR. The original enum names are still available as aliases of the KHR functionality.

New Enum Constants

• VK_EXT_LOAD_STORE_OP_NONE_EXTENSION_NAME

• VK_EXT_LOAD_STORE_OP_NONE_SPEC_VERSION

• Extending VkAttachmentLoadOp:

◦ VK_ATTACHMENT_LOAD_OP_NONE_EXT

• Extending VkAttachmentStoreOp:

◦ VK_ATTACHMENT_STORE_OP_NONE_EXT

Version History

• Revision 1, 2021-06-06 (Shahbaz Youssefi)

◦ Initial revision, based on VK_QCOM_render_pass_store_ops.

◦ Added VK_ATTACHMENT_LOAD_OP_NONE_EXT.

VK_EXT_pipeline_creation_cache_control

Name String

VK_EXT_pipeline_creation_cache_control

Extension Type

Device extension

Registered Extension Number

298

Revision

3

Ratification Status

Not ratified

5158

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Gregory Grebe grgrebe_amd

Other Extension Metadata

Last Modified Date

2020-03-23

IP Status

No known IP claims.

Contributors

• Gregory Grebe, AMD

• Tobias Hector, AMD

• Matthaeus Chajdas, AMD

• Mitch Singer, AMD

• Spencer Fricke, Samsung Electronics

• Stuart Smith, Imagination Technologies

• Jeff Bolz, NVIDIA Corporation

• Daniel Koch, NVIDIA Corporation

• Dan Ginsburg, Valve Corporation

• Jeff Leger, QUALCOMM

• Michal Pietrasiuk, Intel

• Jan-Harald Fredriksen, Arm Limited

Description

This extension adds flags to Vk*PipelineCreateInfo and VkPipelineCacheCreateInfo structures with
the aim of improving the predictability of pipeline creation cost. The goal is to provide information
about potentially expensive hazards within the client driver during pipeline creation to the
application before carrying them out rather than after.

Background

Pipeline creation is a costly operation, and the explicit nature of the Vulkan design means that cost
is not hidden from the developer. Applications are also expected to schedule, prioritize, and load
balance all calls for pipeline creation. It is strongly advised that applications create pipelines
sufficiently ahead of their usage. Failure to do so will result in an unresponsive application,
intermittent stuttering, or other poor user experiences. Proper usage of pipeline caches and/or

5159

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_creation_cache_control] @grgrebe_amd%0A*Here describe the issue or question you have about the VK_EXT_pipeline_creation_cache_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_creation_cache_control] @grgrebe_amd%0A*Here describe the issue or question you have about the VK_EXT_pipeline_creation_cache_control extension*

derivative pipelines help mitigate this but is not assured to eliminate disruption in all cases. In the
event that an ahead-of-time creation is not possible, considerations should be taken to ensure that
the current execution context is suitable for the workload of pipeline creation including possible
shader compilation.

Applications making API calls to create a pipeline must be prepared for any of the following to
occur:

• OS/kernel calls to be made by the ICD

• Internal memory allocation not tracked by the pAllocator passed to vkCreate*Pipelines

• Internal thread synchronization or yielding of the current thread’s core

• Extremely long (multi-millisecond+), blocking, compilation times

• Arbitrary call stacks depths and stack memory usage

The job or task based game engines that are being developed to take advantage of explicit graphics
APIs like Vulkan may behave exceptionally poorly if any of the above scenarios occur. However,
most game engines are already built to “stream” in assets dynamically as the user plays the game.
By adding control by way of VkPipelineCreateFlags, we can require an ICD to report back a failure
in critical execution paths rather than forcing an unexpected wait.

Applications can prevent unexpected compilation by setting
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT on Vk*PipelineCreateInfo::flags.
When set, an ICD must not attempt pipeline or shader compilation to create the pipeline object. In
such a case, if the implementation fails to create a pipeline without compilation, the
implementation must return the result VK_PIPELINE_COMPILE_REQUIRED_EXT and return
VK_NULL_HANDLE for the pipeline.

By default vkCreate*Pipelines calls must attempt to create all pipelines before returning. Setting
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT on Vk*PipelineCreateInfo::flags can be used as
an escape hatch for batched pipeline creates.

Hidden locks also add to the unpredictability of the cost of pipeline creation. The most common
case of locks inside the vkCreate*Pipelines is internal synchronization of the VkPipelineCache
object. VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT_EXT can be set when calling
vkCreatePipelineCache to state the cache is externally synchronized.

The hope is that armed with this information application and engine developers can leverage
existing asset streaming systems to recover from "just-in-time" pipeline creation stalls.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT

New Enums

• VkPipelineCacheCreateFlagBits

5160

New Enum Constants

• VK_EXT_PIPELINE_CREATION_CACHE_CONTROL_EXTENSION_NAME

• VK_EXT_PIPELINE_CREATION_CACHE_CONTROL_SPEC_VERSION

• Extending VkPipelineCacheCreateFlagBits:

◦ VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT_EXT

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT

◦ VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT

• Extending VkResult:

◦ VK_ERROR_PIPELINE_COMPILE_REQUIRED_EXT

◦ VK_PIPELINE_COMPILE_REQUIRED_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2019-11-01 (Gregory Grebe)

◦ Initial revision

• Revision 2, 2020-02-24 (Gregory Grebe)

◦ Initial public revision

• Revision 3, 2020-03-23 (Tobias Hector)

◦ Changed VK_PIPELINE_COMPILE_REQUIRED_EXT to a success code, adding an alias for the original
VK_ERROR_PIPELINE_COMPILE_REQUIRED_EXT. Also updated the xml to include these codes as
return values.

VK_EXT_pipeline_creation_feedback

Name String

VK_EXT_pipeline_creation_feedback

Extension Type

Device extension

Registered Extension Number

193

5161

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.3

Special Use

• Developer tools

Contact

• Jean-Francois Roy jfroy

Other Extension Metadata

Last Modified Date

2019-03-12

IP Status

No known IP claims.

Contributors

• Jean-Francois Roy, Google

• Hai Nguyen, Google

• Andrew Ellem, Google

• Bob Fraser, Google

• Sujeevan Rajayogam, Google

• Jan-Harald Fredriksen, ARM

• Jeff Leger, Qualcomm Technologies, Inc.

• Jeff Bolz, NVIDIA

• Daniel Koch, NVIDIA

• Neil Henning, AMD

Description

This extension adds a mechanism to provide feedback to an application about pipeline creation,
with the specific goal of allowing a feedback loop between build systems and in-the-field
application executions to ensure effective pipeline caches are shipped to customers.

5162

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_creation_feedback] @jfroy%0A*Here describe the issue or question you have about the VK_EXT_pipeline_creation_feedback extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_pipeline_creation_feedback] @jfroy%0A*Here describe the issue or question you have about the VK_EXT_pipeline_creation_feedback extension*

New Structures

• VkPipelineCreationFeedbackEXT

• Extending VkGraphicsPipelineCreateInfo, VkComputePipelineCreateInfo,
VkRayTracingPipelineCreateInfoNV, VkRayTracingPipelineCreateInfoKHR,
VkExecutionGraphPipelineCreateInfoAMDX:

◦ VkPipelineCreationFeedbackCreateInfoEXT

New Enums

• VkPipelineCreationFeedbackFlagBitsEXT

New Bitmasks

• VkPipelineCreationFeedbackFlagsEXT

New Enum Constants

• VK_EXT_PIPELINE_CREATION_FEEDBACK_EXTENSION_NAME

• VK_EXT_PIPELINE_CREATION_FEEDBACK_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2019-03-12 (Jean-Francois Roy)

◦ Initial revision

VK_EXT_private_data

Name String

VK_EXT_private_data

Extension Type

Device extension

Registered Extension Number

296

Revision

1

5163

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Matthew Rusch mattruschnv

Other Extension Metadata

Last Modified Date

2020-03-25

IP Status

No known IP claims.

Contributors

• Matthew Rusch, NVIDIA

• Nuno Subtil, NVIDIA

• Piers Daniell, NVIDIA

• Jeff Bolz, NVIDIA

Description

This extension is a device extension which enables attaching arbitrary payloads to Vulkan objects.
It introduces the idea of private data slots as a means of storing a 64-bit unsigned integer of
application defined data. Private data slots can be created or destroyed any time an associated
device is available. Private data slots can be reserved at device creation time, and limiting use to
the amount reserved will allow the extension to exhibit better performance characteristics.

New Object Types

• VkPrivateDataSlotEXT

New Commands

• vkCreatePrivateDataSlotEXT

• vkDestroyPrivateDataSlotEXT

• vkGetPrivateDataEXT

• vkSetPrivateDataEXT

5164

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_private_data] @mattruschnv%0A*Here describe the issue or question you have about the VK_EXT_private_data extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_private_data] @mattruschnv%0A*Here describe the issue or question you have about the VK_EXT_private_data extension*

New Structures

• VkPrivateDataSlotCreateInfoEXT

• Extending VkDeviceCreateInfo:

◦ VkDevicePrivateDataCreateInfoEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevicePrivateDataFeaturesEXT

New Bitmasks

• VkPrivateDataSlotCreateFlagsEXT

New Enum Constants

• VK_EXT_PRIVATE_DATA_EXTENSION_NAME

• VK_EXT_PRIVATE_DATA_SPEC_VERSION

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_PRIVATE_DATA_SLOT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO_EXT

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Examples

• In progress

Issues

(1) If I have to create a VkPrivateDataSlot to store and retrieve data on an object, how does this
extension help me? Will I not need to store the VkPrivateDataSlot mapping with each object, and if I
am doing that, I might as well just store the original data!

RESOLVED: The VkPrivateDataSlot can be thought of as an opaque index into storage that is
reserved in each object. That is, you can use the same VkPrivateDataSlot with each object for a
specific piece of information. For example, if a layer wishes to track per-object information, the
layer only needs to allocate one VkPrivateDataSlot per device and it can use that private data slot
for all of the device’s child objects. This allows multiple layers to store private data without
conflicting with each other’s and/or the application’s private data.

(2) What if I need to store more than 64-bits of information per object?

5165

RESOLVED: The data that you store per object could be a pointer to another object or structure of
your own allocation.

Version History

• Revision 1, 2020-01-15 (Matthew Rusch)

◦ Initial draft

VK_EXT_sampler_filter_minmax

Name String

VK_EXT_sampler_filter_minmax

Extension Type

Device extension

Registered Extension Number

131

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2017-05-19

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

• Piers Daniell, NVIDIA

5166

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_sampler_filter_minmax] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_sampler_filter_minmax extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_sampler_filter_minmax] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_sampler_filter_minmax extension*

Description

In unextended Vulkan, minification and magnification filters such as LINEAR allow sampled image
lookups to return a filtered texel value produced by computing a weighted average of a collection
of texels in the neighborhood of the texture coordinate provided.

This extension provides a new sampler parameter which allows applications to produce a filtered
texel value by computing a component-wise minimum (MIN) or maximum (MAX) of the texels that
would normally be averaged. The reduction mode is orthogonal to the minification and
magnification filter parameters. The filter parameters are used to identify the set of texels used to
produce a final filtered value; the reduction mode identifies how these texels are combined.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT

• Extending VkSamplerCreateInfo:

◦ VkSamplerReductionModeCreateInfoEXT

New Enums

• VkSamplerReductionModeEXT

New Enum Constants

• VK_EXT_SAMPLER_FILTER_MINMAX_EXTENSION_NAME

• VK_EXT_SAMPLER_FILTER_MINMAX_SPEC_VERSION

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT

• Extending VkSamplerReductionMode:

◦ VK_SAMPLER_REDUCTION_MODE_MAX_EXT

◦ VK_SAMPLER_REDUCTION_MODE_MIN_EXT

◦ VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT

Version History

• Revision 2, 2017-05-19 (Piers Daniell)

5167

◦ Renamed to EXT

• Revision 1, 2017-03-25 (Jeff Bolz)

◦ Internal revisions

VK_EXT_scalar_block_layout

Name String

VK_EXT_scalar_block_layout

Extension Type

Device extension

Registered Extension Number

222

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2018-11-14

Contributors

• Jeff Bolz

• Jan-Harald Fredriksen

• Graeme Leese

• Faith Ekstrand

• John Kessenich

Description

This extension enables C-like structure layout for SPIR-V blocks. It modifies the alignment rules for
uniform buffers, storage buffers and push constants, allowing non-scalar types to be aligned solely

5168

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_scalar_block_layout] @tobski%0A*Here describe the issue or question you have about the VK_EXT_scalar_block_layout extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_scalar_block_layout] @tobski%0A*Here describe the issue or question you have about the VK_EXT_scalar_block_layout extension*

based on the size of their components, without additional requirements.

Promotion to Vulkan 1.2

Functionality in this extension is included in core Vulkan 1.2, with the EXT suffix omitted. However,
if Vulkan 1.2 is supported and this extension is not, the scalarBlockLayout capability is optional. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceScalarBlockLayoutFeaturesEXT

New Enum Constants

• VK_EXT_SCALAR_BLOCK_LAYOUT_EXTENSION_NAME

• VK_EXT_SCALAR_BLOCK_LAYOUT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT

Version History

• Revision 1, 2018-11-14 (Tobias Hector)

◦ Initial draft

VK_EXT_separate_stencil_usage

Name String

VK_EXT_separate_stencil_usage

Extension Type

Device extension

Registered Extension Number

247

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to Vulkan 1.2

5169

Contact

• Daniel Rakos drakos-amd

Other Extension Metadata

Last Modified Date

2018-11-08

IP Status

No known IP claims.

Contributors

• Daniel Rakos, AMD

• Jordan Logan, AMD

Description

This extension allows specifying separate usage flags for the stencil aspect of images with a depth-
stencil format at image creation time.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

New Structures

• Extending VkImageCreateInfo, VkPhysicalDeviceImageFormatInfo2:

◦ VkImageStencilUsageCreateInfoEXT

New Enum Constants

• VK_EXT_SEPARATE_STENCIL_USAGE_EXTENSION_NAME

• VK_EXT_SEPARATE_STENCIL_USAGE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO_EXT

Version History

• Revision 1, 2018-11-08 (Daniel Rakos)

◦ Internal revisions.

VK_EXT_shader_demote_to_helper_invocation

Name String

VK_EXT_shader_demote_to_helper_invocation

5170

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_separate_stencil_usage] @drakos-amd%0A*Here describe the issue or question you have about the VK_EXT_separate_stencil_usage extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_separate_stencil_usage] @drakos-amd%0A*Here describe the issue or question you have about the VK_EXT_separate_stencil_usage extension*

Extension Type

Device extension

Registered Extension Number

277

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

SPIR-V Dependencies

• SPV_EXT_demote_to_helper_invocation

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2019-06-01

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_EXT_demote_to_helper_invocation

Contributors

• Jeff Bolz, NVIDIA

Description

This extension adds Vulkan support for the SPV_EXT_demote_to_helper_invocation SPIR-V extension.
That SPIR-V extension provides a new instruction OpDemoteToHelperInvocationEXT allowing shaders
to “demote” a fragment shader invocation to behave like a helper invocation for its duration. The
demoted invocation will have no further side effects and will not output to the framebuffer, but
remains active and can participate in computing derivatives and in group operations. This is a
better match for the “discard” instruction in HLSL.

5171

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_demote_to_helper_invocation.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_demote_to_helper_invocation] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_shader_demote_to_helper_invocation extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_demote_to_helper_invocation] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_shader_demote_to_helper_invocation extension*
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_demote_to_helper_invocation.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_demote_to_helper_invocation.html

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT

New Enum Constants

• VK_EXT_SHADER_DEMOTE_TO_HELPER_INVOCATION_EXTENSION_NAME

• VK_EXT_SHADER_DEMOTE_TO_HELPER_INVOCATION_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT

New SPIR-V Capability

• DemoteToHelperInvocationEXT

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2019-06-01 (Jeff Bolz)

◦ Initial draft

VK_EXT_shader_subgroup_ballot

Name String

VK_EXT_shader_subgroup_ballot

Extension Type

Device extension

Registered Extension Number

65

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_KHR_shader_ballot

5172

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_shader_ballot.html

Deprecation State

• Deprecated by Vulkan 1.2

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2016-11-28

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_ARB_shader_ballot

Contributors

• Jeff Bolz, NVIDIA

• Neil Henning, Codeplay

• Daniel Koch, NVIDIA Corporation

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_KHR_shader_ballot

This extension provides the ability for a group of invocations, which execute in parallel, to do
limited forms of cross-invocation communication via a group broadcast of an invocation value, or
broadcast of a bit array representing a predicate value from each invocation in the group.

This extension provides access to a number of additional built-in shader variables in Vulkan:

• SubgroupEqMaskKHR, containing the subgroup mask of the current subgroup invocation,

• SubgroupGeMaskKHR, containing the subgroup mask of the invocations greater than or equal to the
current invocation,

• SubgroupGtMaskKHR, containing the subgroup mask of the invocations greater than the current
invocation,

• SubgroupLeMaskKHR, containing the subgroup mask of the invocations less than or equal to the
current invocation,

• SubgroupLtMaskKHR, containing the subgroup mask of the invocations less than the current
invocation,

• SubgroupLocalInvocationId, containing the index of an invocation within a subgroup, and

• SubgroupSize, containing the maximum number of invocations in a subgroup.

Additionally, this extension provides access to the new SPIR-V instructions:

5173

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_subgroup_ballot] @dgkoch%0A*Here describe the issue or question you have about the VK_EXT_shader_subgroup_ballot extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_subgroup_ballot] @dgkoch%0A*Here describe the issue or question you have about the VK_EXT_shader_subgroup_ballot extension*
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_shader_ballot.txt

• OpSubgroupBallotKHR,

• OpSubgroupFirstInvocationKHR, and

• OpSubgroupReadInvocationKHR,

When using GLSL source-based shader languages, the following variables and shader functions
from GL_ARB_shader_ballot can map to these SPIR-V built-in decorations and instructions:

• in uint64_t gl_SubGroupEqMaskARB; → SubgroupEqMaskKHR,

• in uint64_t gl_SubGroupGeMaskARB; → SubgroupGeMaskKHR,

• in uint64_t gl_SubGroupGtMaskARB; → SubgroupGtMaskKHR,

• in uint64_t gl_SubGroupLeMaskARB; → SubgroupLeMaskKHR,

• in uint64_t gl_SubGroupLtMaskARB; → SubgroupLtMaskKHR,

• in uint gl_SubGroupInvocationARB; → SubgroupLocalInvocationId,

• uniform uint gl_SubGroupSizeARB; → SubgroupSize,

• ballotARB() → OpSubgroupBallotKHR,

• readFirstInvocationARB() → OpSubgroupFirstInvocationKHR, and

• readInvocationARB() → OpSubgroupReadInvocationKHR.

Deprecated by Vulkan 1.2

Most of the functionality in this extension is superseded by the core Vulkan 1.1 subgroup
operations. However, Vulkan 1.1 required the OpGroupNonUniformBroadcast “Id” to be constant. This
restriction was removed in Vulkan 1.2 with the addition of the subgroupBroadcastDynamicId feature.

New Enum Constants

• VK_EXT_SHADER_SUBGROUP_BALLOT_EXTENSION_NAME

• VK_EXT_SHADER_SUBGROUP_BALLOT_SPEC_VERSION

New Built-In Variables

• SubgroupEqMaskKHR

• SubgroupGeMaskKHR

• SubgroupGtMaskKHR

• SubgroupLeMaskKHR

• SubgroupLtMaskKHR

• SubgroupLocalInvocationId

• SubgroupSize

New SPIR-V Capabilities

• SubgroupBallotKHR

5174

Version History

• Revision 1, 2016-11-28 (Daniel Koch)

◦ Initial draft

VK_EXT_shader_subgroup_vote

Name String

VK_EXT_shader_subgroup_vote

Extension Type

Device extension

Registered Extension Number

66

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_KHR_subgroup_vote

Deprecation State

• Deprecated by Vulkan 1.1

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2016-11-28

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_ARB_shader_group_vote

Contributors

• Neil Henning, Codeplay

• Daniel Koch, NVIDIA Corporation

5175

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_subgroup_vote.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_subgroup_vote] @dgkoch%0A*Here describe the issue or question you have about the VK_EXT_shader_subgroup_vote extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_subgroup_vote] @dgkoch%0A*Here describe the issue or question you have about the VK_EXT_shader_subgroup_vote extension*
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_shader_group_vote.txt

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_KHR_subgroup_vote

This extension provides new SPIR-V instructions:

• OpSubgroupAllKHR,

• OpSubgroupAnyKHR, and

• OpSubgroupAllEqualKHR.

to compute the composite of a set of boolean conditions across a group of shader invocations that
are running concurrently (a subgroup). These composite results may be used to execute shaders
more efficiently on a VkPhysicalDevice.

When using GLSL source-based shader languages, the following shader functions from
GL_ARB_shader_group_vote can map to these SPIR-V instructions:

• anyInvocationARB() → OpSubgroupAnyKHR,

• allInvocationsARB() → OpSubgroupAllKHR, and

• allInvocationsEqualARB() → OpSubgroupAllEqualKHR.

The subgroup across which the boolean conditions are evaluated is implementation-dependent,
and this extension provides no guarantee over how individual shader invocations are assigned to
subgroups. In particular, a subgroup has no necessary relationship with the compute shader local
workgroup — any pair of shader invocations in a compute local workgroup may execute in
different subgroups as used by these instructions.

Compute shaders operate on an explicitly specified group of threads (a local workgroup), but many
implementations will also group non-compute shader invocations and execute them concurrently.
When executing code like

if (condition) {
 result = do_fast_path();
} else {
 result = do_general_path();
}

where condition diverges between invocations, an implementation might first execute
do_fast_path() for the invocations where condition is true and leave the other invocations dormant.
Once do_fast_path() returns, it might call do_general_path() for invocations where condition is false
and leave the other invocations dormant. In this case, the shader executes both the fast and the
general path and might be better off just using the general path for all invocations.

This extension provides the ability to avoid divergent execution by evaluating a condition across an
entire subgroup using code like:

5176

if (allInvocationsARB(condition)) {
 result = do_fast_path();
} else {
 result = do_general_path();
}

The built-in function allInvocationsARB() will return the same value for all invocations in the group,
so the group will either execute do_fast_path() or do_general_path(), but never both. For example,
shader code might want to evaluate a complex function iteratively by starting with an
approximation of the result and then refining the approximation. Some input values may require a
small number of iterations to generate an accurate result (do_fast_path) while others require a
larger number (do_general_path). In another example, shader code might want to evaluate a
complex function (do_general_path) that can be greatly simplified when assuming a specific value
for one of its inputs (do_fast_path).

Deprecated by Vulkan 1.1

All functionality in this extension is superseded by the core Vulkan 1.1 subgroup operations.

New Enum Constants

• VK_EXT_SHADER_SUBGROUP_VOTE_EXTENSION_NAME

• VK_EXT_SHADER_SUBGROUP_VOTE_SPEC_VERSION

New SPIR-V Capabilities

• SubgroupVoteKHR

Version History

• Revision 1, 2016-11-28 (Daniel Koch)

◦ Initial draft

VK_EXT_shader_viewport_index_layer

Name String

VK_EXT_shader_viewport_index_layer

Extension Type

Device extension

Registered Extension Number

163

Revision

1

5177

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_EXT_shader_viewport_index_layer

Deprecation State

• Promoted to Vulkan 1.2

Contact

• Daniel Koch dgkoch

Other Extension Metadata

Last Modified Date

2017-08-08

Interactions and External Dependencies

• This extension provides API support for GL_ARB_shader_viewport_layer_array,
GL_AMD_vertex_shader_layer, GL_AMD_vertex_shader_viewport_index, and GL_NV_viewport_array2

• This extension requires the multiViewport feature.

• This extension interacts with the tessellationShader feature.

Contributors

• Piers Daniell, NVIDIA

• Jeff Bolz, NVIDIA

• Jan-Harald Fredriksen, ARM

• Daniel Rakos, AMD

• Slawomir Grajeswki, Intel

Description

This extension adds support for the ShaderViewportIndexLayerEXT capability from the
SPV_EXT_shader_viewport_index_layer extension in Vulkan.

This extension allows variables decorated with the Layer and ViewportIndex built-ins to be exported
from vertex or tessellation shaders, using the ShaderViewportIndexLayerEXT capability.

When using GLSL source-based shading languages, the gl_ViewportIndex and gl_Layer built-in
variables map to the SPIR-V ViewportIndex and Layer built-in decorations, respectively. Behaviour of
these variables is extended as described in the GL_ARB_shader_viewport_layer_array (or the
precursor GL_AMD_vertex_shader_layer, GL_AMD_vertex_shader_viewport_index, and
GL_NV_viewport_array2 extensions).

 Note

5178

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/EXT/SPV_EXT_shader_viewport_index_layer.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_viewport_index_layer] @dgkoch%0A*Here describe the issue or question you have about the VK_EXT_shader_viewport_index_layer extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_shader_viewport_index_layer] @dgkoch%0A*Here describe the issue or question you have about the VK_EXT_shader_viewport_index_layer extension*
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_shader_viewport_layer_array.txt
https://registry.khronos.org/OpenGL/extensions/AMD/AMD_vertex_shader_layer.txt
https://registry.khronos.org/OpenGL/extensions/AMD/AMD_vertex_shader_viewport_index.txt
https://registry.khronos.org/OpenGL/extensions/NV/NV_viewport_array2.txt

The ShaderViewportIndexLayerEXT capability is equivalent to the
ShaderViewportIndexLayerNV capability added by VK_NV_viewport_array2.

Promotion to Vulkan 1.2

All functionality in this extension is included in core Vulkan 1.2.

The single ShaderViewportIndexLayerEXT capability from the SPV_EXT_shader_viewport_index_layer
extension is replaced by the ShaderViewportIndex and ShaderLayer capabilities from SPIR-V 1.5 which
are enabled by the shaderOutputViewportIndex and shaderOutputLayer features, respectively.
Additionally, if Vulkan 1.2 is supported but this extension is not, these capabilities are optional.

Enabling both features is equivalent to enabling the VK_EXT_shader_viewport_index_layer extension.

New Enum Constants

• VK_EXT_SHADER_VIEWPORT_INDEX_LAYER_EXTENSION_NAME

• VK_EXT_SHADER_VIEWPORT_INDEX_LAYER_SPEC_VERSION

New or Modified Built-In Variables

• (modified) Layer

• (modified) ViewportIndex

New SPIR-V Capabilities

• ShaderViewportIndexLayerEXT

Version History

• Revision 1, 2017-08-08 (Daniel Koch)

◦ Internal drafts

VK_EXT_subgroup_size_control

Name String

VK_EXT_subgroup_size_control

Extension Type

Device extension

Registered Extension Number

226

Revision

2

5179

Ratification Status

Not ratified

Extension and Version Dependencies

Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Neil Henning sheredom

Other Extension Metadata

Last Modified Date

2019-03-05

Contributors

• Jeff Bolz, NVIDIA

• Faith Ekstrand, Intel

• Sławek Grajewski, Intel

• Jesse Hall, Google

• Neil Henning, AMD

• Daniel Koch, NVIDIA

• Jeff Leger, Qualcomm

• Graeme Leese, Broadcom

• Allan MacKinnon, Google

• Mariusz Merecki, Intel

• Graham Wihlidal, Electronic Arts

Description

This extension enables an implementation to control the subgroup size by allowing a varying
subgroup size and also specifying a required subgroup size.

It extends the subgroup support in Vulkan 1.1 to allow an implementation to expose a varying
subgroup size. Previously Vulkan exposed a single subgroup size per physical device, with the
expectation that implementations will behave as if all subgroups have the same size. Some
implementations may dispatch shaders with a varying subgroup size for different subgroups. As a
result they could implicitly split a large subgroup into smaller subgroups or represent a small
subgroup as a larger subgroup, some of whose invocations were inactive on launch.

To aid developers in understanding the performance characteristics of their programs, this
extension exposes a minimum and maximum subgroup size that a physical device supports and a
pipeline create flag to enable that pipeline to vary its subgroup size. If enabled, any SubgroupSize

5180

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_subgroup_size_control] @sheredom%0A*Here describe the issue or question you have about the VK_EXT_subgroup_size_control extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_subgroup_size_control] @sheredom%0A*Here describe the issue or question you have about the VK_EXT_subgroup_size_control extension*

decorated variables in the SPIR-V shader modules provided to pipeline creation may vary between
the minimum and maximum subgroup sizes.

An implementation is also optionally allowed to support specifying a required subgroup size for a
given pipeline stage. Implementations advertise which stages support a required subgroup size,
and any pipeline of a supported stage can be passed a
VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT structure to set the subgroup size for
that shader stage of the pipeline. For compute shaders, this requires the developer to query the
maxComputeWorkgroupSubgroups and ensure that:

Developers can also specify a new pipeline shader stage create flag that requires the
implementation to have fully populated subgroups within local workgroups. This requires the
workgroup size in the X dimension to be a multiple of the subgroup size.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceSubgroupSizeControlFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceSubgroupSizeControlPropertiesEXT

• Extending VkPipelineShaderStageCreateInfo, VkShaderCreateInfoEXT:

◦ VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT

New Enum Constants

• VK_EXT_SUBGROUP_SIZE_CONTROL_EXTENSION_NAME

• VK_EXT_SUBGROUP_SIZE_CONTROL_SPEC_VERSION

• Extending VkPipelineShaderStageCreateFlagBits:

◦ VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT

◦ VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Version History

• Revision 1, 2019-03-05 (Neil Henning)

5181

◦ Initial draft

• Revision 2, 2019-07-26 (Faith Ekstrand)

◦ Add the missing VkPhysicalDeviceSubgroupSizeControlFeaturesEXT for querying subgroup
size control features.

VK_EXT_texel_buffer_alignment

Name String

VK_EXT_texel_buffer_alignment

Extension Type

Device extension

Registered Extension Number

282

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Jeff Bolz jeffbolznv

Other Extension Metadata

Last Modified Date

2019-06-06

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

Description

This extension adds more expressive alignment requirements for uniform and storage texel
buffers. Some implementations have single texel alignment requirements that cannot be expressed

5182

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_texel_buffer_alignment] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_texel_buffer_alignment extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_texel_buffer_alignment] @jeffbolznv%0A*Here describe the issue or question you have about the VK_EXT_texel_buffer_alignment extension*

via VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT

New Enum Constants

• VK_EXT_TEXEL_BUFFER_ALIGNMENT_EXTENSION_NAME

• VK_EXT_TEXEL_BUFFER_ALIGNMENT_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. However,
only the properties structure is promoted. The feature structure is not promoted and
texelBufferAlignment is enabled if using a Vulkan 1.3 instance. The original type name is still
available as an alias of the core functionality.

Version History

• Revision 1, 2019-06-06 (Jeff Bolz)

◦ Initial draft

VK_EXT_texture_compression_astc_hdr

Name String

VK_EXT_texture_compression_astc_hdr

Extension Type

Device extension

Registered Extension Number

67

Revision

1

Ratification Status

Not ratified

5183

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Other Extension Metadata

Last Modified Date

2019-05-28

IP Status

No known issues.

Contributors

• Jan-Harald Fredriksen, Arm

Description

This extension adds support for textures compressed using the Adaptive Scalable Texture
Compression (ASTC) High Dynamic Range (HDR) profile.

When this extension is enabled, the HDR profile is supported for all ASTC formats listed in ASTC
Compressed Image Formats.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceTextureCompressionASTCHDRFeaturesEXT

New Enum Constants

• VK_EXT_TEXTURE_COMPRESSION_ASTC_HDR_EXTENSION_NAME

• VK_EXT_TEXTURE_COMPRESSION_ASTC_HDR_SPEC_VERSION

• Extending VkFormat:

◦ VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK_EXT

5184

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_texture_compression_astc_hdr] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_texture_compression_astc_hdr extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_texture_compression_astc_hdr] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_EXT_texture_compression_astc_hdr extension*

◦ VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK_EXT

◦ VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES_EXT

Promotion to Vulkan 1.3

This extension has been partially promoted. Functionality in this extension is included in core
Vulkan 1.3, with the EXT suffix omitted. However, the feature is made optional in Vulkan 1.3. The
original type, enum and command names are still available as aliases of the core functionality.

Issues

1) Should we add a feature or limit for this functionality?

Yes. It is consistent with the ASTC LDR support to add a feature like textureCompressionASTC_HDR.

The feature is strictly speaking redundant as long as this is just an extension; it would be sufficient
to just enable the extension. But adding the feature is more forward-looking if wanted to make this
an optional core feature in the future.

2) Should we introduce new format enums for HDR?

Yes. Vulkan 1.0 describes the ASTC format enums as UNORM, e.g. VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
so it is confusing to make these contain HDR data. Note that the OpenGL (ES) extensions did not
make this distinction because a single ASTC HDR texture may contain both unorm and float blocks.
Implementations may not be able to distinguish between LDR and HDR ASTC textures internally
and just treat them as the same format, i.e. if this extension is supported then sampling from a
VK_FORMAT_ASTC_4x4_UNORM_BLOCK image format may return HDR results. Applications can get
predictable results by using the appropriate image format.

Version History

• Revision 1, 2019-05-28 (Jan-Harald Fredriksen)

◦ Initial version

VK_EXT_tooling_info

Name String

VK_EXT_tooling_info

5185

Extension Type

Device extension

Registered Extension Number

246

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

API Interactions

• Interacts with VK_EXT_debug_marker

• Interacts with VK_EXT_debug_report

• Interacts with VK_EXT_debug_utils

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Tobias Hector tobski

Other Extension Metadata

Last Modified Date

2018-11-05

Contributors

• Rolando Caloca

• Matthaeus Chajdas

• Baldur Karlsson

• Daniel Rakos

Description

When an error occurs during application development, a common question is "What tools are
actually running right now?" This extension adds the ability to query that information directly
from the Vulkan implementation.

Outdated versions of one tool might not play nicely with another, or perhaps a tool is not actually
running when it should have been. Trying to figure that out can cause headaches as it is necessary
to consult each known tool to figure out what is going on — in some cases the tool might not even
be known.

5186

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_tooling_info] @tobski%0A*Here describe the issue or question you have about the VK_EXT_tooling_info extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_tooling_info] @tobski%0A*Here describe the issue or question you have about the VK_EXT_tooling_info extension*

Typically, the expectation is that developers will simply print out this information for visual
inspection when an issue occurs, however a small amount of semantic information about what the
tool is doing is provided to help identify it programmatically. For example, if the advertised limits
or features of an implementation are unexpected, is there a tool active which modifies these limits?
Or if an application is providing debug markers, but the implementation is not actually doing
anything with that information, this can quickly point that out.

New Commands

• vkGetPhysicalDeviceToolPropertiesEXT

New Structures

• VkPhysicalDeviceToolPropertiesEXT

New Enums

• VkToolPurposeFlagBitsEXT

New Bitmasks

• VkToolPurposeFlagsEXT

New Enum Constants

• VK_EXT_TOOLING_INFO_EXTENSION_NAME

• VK_EXT_TOOLING_INFO_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES_EXT

If VK_EXT_debug_marker is supported:

• Extending VkToolPurposeFlagBits:

◦ VK_TOOL_PURPOSE_DEBUG_MARKERS_BIT_EXT

If VK_EXT_debug_report is supported:

• Extending VkToolPurposeFlagBits:

◦ VK_TOOL_PURPOSE_DEBUG_REPORTING_BIT_EXT

If VK_EXT_debug_utils is supported:

• Extending VkToolPurposeFlagBits:

◦ VK_TOOL_PURPOSE_DEBUG_MARKERS_BIT_EXT

◦ VK_TOOL_PURPOSE_DEBUG_REPORTING_BIT_EXT

5187

Promotion to Vulkan 1.3

Functionality in this extension is included in core Vulkan 1.3, with the EXT suffix omitted. The
original type, enum and command names are still available as aliases of the core functionality.

Examples

Printing Tool Information

uint32_t num_tools;
VkPhysicalDeviceToolPropertiesEXT *pToolProperties;
vkGetPhysicalDeviceToolPropertiesEXT(physicalDevice, &num_tools, NULL);

pToolProperties =
(VkPhysicalDeviceToolPropertiesEXT*)malloc(sizeof(VkPhysicalDeviceToolPropertiesEXT) *
num_tools);

vkGetPhysicalDeviceToolPropertiesEXT(physicalDevice, &num_tools, pToolProperties);

for (int i = 0; i < num_tools; ++i) {
 printf("%s:\n", pToolProperties[i].name);
 printf("Version:\n");
 printf("%s:\n", pToolProperties[i].version);
 printf("Description:\n");
 printf("\t%s\n", pToolProperties[i].description);
 printf("Purposes:\n");
 printf("\t%s\n", VkToolPurposeFlagBitsEXT_to_string(pToolProperties[i].purposes));
 if (strnlen_s(pToolProperties[i].layer,VK_MAX_EXTENSION_NAME_SIZE) > 0) {
 printf("Corresponding Layer:\n");
 printf("\t%s\n", pToolProperties[i].layer);
 }
}

Issues

1) Why is this information separate from the layer mechanism?

Some tooling may be built into a driver, or be part of the Vulkan loader etc. Tying this information
directly to layers would have been awkward at best.

Version History

• Revision 1, 2018-11-05 (Tobias Hector)

◦ Initial draft

VK_EXT_validation_features

Name String

VK_EXT_validation_features

5188

Extension Type

Instance extension

Registered Extension Number

248

Revision

6

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Deprecated by VK_EXT_layer_settings extension

Special Use

• Debugging tools

Contact

• Karl Schultz karl-lunarg

Other Extension Metadata

Last Modified Date

2018-11-14

IP Status

No known IP claims.

Contributors

• Karl Schultz, LunarG

• Dave Houlton, LunarG

• Mark Lobodzinski, LunarG

• Camden Stocker, LunarG

• Tony Barbour, LunarG

• John Zulauf, LunarG

Description

This extension provides the VkValidationFeaturesEXT struct that can be included in the pNext chain
of the VkInstanceCreateInfo structure passed as the pCreateInfo parameter of vkCreateInstance.
The structure contains an array of VkValidationFeatureEnableEXT enum values that enable specific
validation features that are disabled by default. The structure also contains an array of
VkValidationFeatureDisableEXT enum values that disable specific validation layer features that are

5189

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_validation_features] @karl-lunarg%0A*Here describe the issue or question you have about the VK_EXT_validation_features extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_validation_features] @karl-lunarg%0A*Here describe the issue or question you have about the VK_EXT_validation_features extension*

enabled by default.

Deprecation by VK_EXT_layer_settings

Functionality in this extension is subsumed into the VK_EXT_layer_settings extension.

New Structures

• Extending VkInstanceCreateInfo:

◦ VkValidationFeaturesEXT

New Enums

• VkValidationFeatureDisableEXT

• VkValidationFeatureEnableEXT

New Enum Constants

• VK_EXT_VALIDATION_FEATURES_EXTENSION_NAME

• VK_EXT_VALIDATION_FEATURES_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT

Version History

• Revision 1, 2018-11-14 (Karl Schultz)

◦ Initial revision

• Revision 2, 2019-08-06 (Mark Lobodzinski)

◦ Add Best Practices enable

• Revision 3, 2020-03-04 (Tony Barbour)

◦ Add Debug Printf enable

• Revision 4, 2020-07-29 (John Zulauf)

◦ Add Synchronization Validation enable

• Revision 5, 2021-05-18 (Tony Barbour)

◦ Add Shader Validation Cache disable

• Revision 6, 2023-09-25 (Christophe Riccio)

◦ Marked as deprecated by VK_EXT_layer_settings

VK_EXT_validation_flags

Name String

VK_EXT_validation_flags

5190

Extension Type

Instance extension

Registered Extension Number

62

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Deprecated by VK_EXT_layer_settings extension

Special Use

• Debugging tools

Contact

• Tobin Ehlis tobine

Other Extension Metadata

Last Modified Date

2019-08-19

IP Status

No known IP claims.

Contributors

• Tobin Ehlis, Google

• Courtney Goeltzenleuchter, Google

Description

This extension provides the VkValidationFlagsEXT struct that can be included in the pNext chain of
the VkInstanceCreateInfo structure passed as the pCreateInfo parameter of vkCreateInstance. The
structure contains an array of VkValidationCheckEXT values that will be disabled by the validation
layers.

Deprecation by VK_EXT_layer_settings

Functionality in this extension is subsumed into the VK_EXT_layer_settings extension.

5191

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_validation_flags] @tobine%0A*Here describe the issue or question you have about the VK_EXT_validation_flags extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_validation_flags] @tobine%0A*Here describe the issue or question you have about the VK_EXT_validation_flags extension*

New Structures

• Extending VkInstanceCreateInfo:

◦ VkValidationFlagsEXT

New Enums

• VkValidationCheckEXT

New Enum Constants

• VK_EXT_VALIDATION_FLAGS_EXTENSION_NAME

• VK_EXT_VALIDATION_FLAGS_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT

Version History

• Revision 3, 2023-09-25 (Christophe Riccio)

◦ Marked as deprecated by VK_EXT_layer_settings

• Revision 2, 2019-08-19 (Mark Lobodzinski)

◦ Marked as deprecated by VK_EXT_validation_features

• Revision 1, 2016-08-26 (Courtney Goeltzenleuchter)

◦ Initial draft

VK_EXT_vertex_attribute_divisor

Name String

VK_EXT_vertex_attribute_divisor

Extension Type

Device extension

Registered Extension Number

191

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2
or
Version 1.1

5192

Deprecation State

• Promoted to VK_KHR_vertex_attribute_divisor extension

Contact

• Vikram Kushwaha vkushwaha

Other Extension Metadata

Last Modified Date

2018-08-03

IP Status

No known IP claims.

Contributors

• Vikram Kushwaha, NVIDIA

• Faith Ekstrand, Intel

Description

This extension allows instance-rate vertex attributes to be repeated for certain number of instances
instead of advancing for every instance when instanced rendering is enabled.

New Structures

• VkVertexInputBindingDivisorDescriptionEXT

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT

• Extending VkPipelineVertexInputStateCreateInfo:

◦ VkPipelineVertexInputDivisorStateCreateInfoEXT

New Enum Constants

• VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME

• VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT

◦ VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT

Issues

1) What is the effect of a non-zero value for firstInstance?

5193

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_vertex_attribute_divisor] @vkushwaha%0A*Here describe the issue or question you have about the VK_EXT_vertex_attribute_divisor extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_vertex_attribute_divisor] @vkushwaha%0A*Here describe the issue or question you have about the VK_EXT_vertex_attribute_divisor extension*

RESOLVED: The Vulkan API should follow the OpenGL convention and offset attribute fetching by
firstInstance while computing vertex attribute offsets.

2) Should zero be an allowed divisor?

RESOLVED: Yes. A zero divisor means the vertex attribute is repeated for all instances.

Examples

To create a vertex binding such that the first binding uses instanced rendering and the same
attribute is used for every 4 draw instances, an application could use the following set of structures:

 const VkVertexInputBindingDivisorDescriptionEXT divisorDesc =
 {
 .binding = 0,
 .divisor = 4
 };

 const VkPipelineVertexInputDivisorStateCreateInfoEXT divisorInfo =
 {
 .sType =
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT,
 .pNext = NULL,
 .vertexBindingDivisorCount = 1,
 .pVertexBindingDivisors = &divisorDesc
 }

 const VkVertexInputBindingDescription binding =
 {
 .binding = 0,
 .stride = sizeof(Vertex),
 .inputRate = VK_VERTEX_INPUT_RATE_INSTANCE
 };

 const VkPipelineVertexInputStateCreateInfo viInfo =
 {
 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO,
 .pNext = &divisorInfo,
 ...
 };
 //...

Version History

• Revision 1, 2017-12-04 (Vikram Kushwaha)

◦ First Version

• Revision 2, 2018-07-16 (Faith Ekstrand)

◦ Adjust the interaction between divisor and firstInstance to match the OpenGL convention.

5194

◦ Disallow divisors of zero.

• Revision 3, 2018-08-03 (Vikram Kushwaha)

◦ Allow a zero divisor.

◦ Add a physical device features structure to query/enable this feature.

VK_EXT_ycbcr_2plane_444_formats

Name String

VK_EXT_ycbcr_2plane_444_formats

Extension Type

Device extension

Registered Extension Number

331

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_sampler_ycbcr_conversion
or
Version 1.1

Deprecation State

• Promoted to Vulkan 1.3

Contact

• Tony Zlatinski tzlatinski

Other Extension Metadata

Last Modified Date

2020-07-28

IP Status

No known IP claims.

Contributors

• Piers Daniell, NVIDIA

• Ping Liu, Intel

5195

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_ycbcr_2plane_444_formats] @tzlatinski%0A*Here describe the issue or question you have about the VK_EXT_ycbcr_2plane_444_formats extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_EXT_ycbcr_2plane_444_formats] @tzlatinski%0A*Here describe the issue or question you have about the VK_EXT_ycbcr_2plane_444_formats extension*

Description

This extension adds some Y′CBCR formats that are in common use for video encode and decode, but
were not part of the VK_KHR_sampler_ycbcr_conversion extension.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT

New Enum Constants

• VK_EXT_YCBCR_2PLANE_444_FORMATS_EXTENSION_NAME

• VK_EXT_YCBCR_2PLANE_444_FORMATS_SPEC_VERSION

• Extending VkFormat:

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16_EXT

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16_EXT

◦ VK_FORMAT_G16_B16R16_2PLANE_444_UNORM_EXT

◦ VK_FORMAT_G8_B8R8_2PLANE_444_UNORM_EXT

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_2_PLANE_444_FORMATS_FEATURES_EXT

Promotion to Vulkan 1.3

This extension has been partially promoted. The format enumerants introduced by the extension
are included in core Vulkan 1.3, with the EXT suffix omitted. However, runtime support for these
formats is optional in core Vulkan 1.3, while if this extension is supported, runtime support is
mandatory. The feature structure is not promoted. The original enum names are still available as
aliases of the core functionality.

Version History

• Revision 1, 2020-03-08 (Piers Daniell)

◦ Initial draft

VK_AMD_draw_indirect_count

Name String

VK_AMD_draw_indirect_count

Extension Type

Device extension

Registered Extension Number

34

5196

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to VK_KHR_draw_indirect_count extension

◦ Which in turn was promoted to Vulkan 1.2

Contact

• Daniel Rakos drakos-amd

Other Extension Metadata

Last Modified Date

2016-08-23

IP Status

No known IP claims.

Contributors

• Matthaeus G. Chajdas, AMD

• Derrick Owens, AMD

• Graham Sellers, AMD

• Daniel Rakos, AMD

• Dominik Witczak, AMD

Description

This extension allows an application to source the number of draws for indirect drawing
commands from a buffer. This enables applications to generate an arbitrary number of drawing
commands and execute them without host intervention.

Promotion to VK_KHR_draw_indirect_count

All functionality in this extension is included in VK_KHR_draw_indirect_count, with the suffix changed
to KHR. The original type, enum and command names are still available as aliases of the core
functionality.

New Commands

• vkCmdDrawIndexedIndirectCountAMD

• vkCmdDrawIndirectCountAMD

5197

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_draw_indirect_count] @drakos-amd%0A*Here describe the issue or question you have about the VK_AMD_draw_indirect_count extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_draw_indirect_count] @drakos-amd%0A*Here describe the issue or question you have about the VK_AMD_draw_indirect_count extension*

New Enum Constants

• VK_AMD_DRAW_INDIRECT_COUNT_EXTENSION_NAME

• VK_AMD_DRAW_INDIRECT_COUNT_SPEC_VERSION

Version History

• Revision 2, 2016-08-23 (Dominik Witczak)

◦ Minor fixes

• Revision 1, 2016-07-21 (Matthaeus Chajdas)

◦ Initial draft

VK_AMD_gpu_shader_half_float

Name String

VK_AMD_gpu_shader_half_float

Extension Type

Device extension

Registered Extension Number

37

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_AMD_gpu_shader_half_float

Deprecation State

• Deprecated by VK_KHR_shader_float16_int8 extension

◦ Which in turn was promoted to Vulkan 1.2

Contact

• Dominik Witczak dominikwitczakamd

Other Extension Metadata

Last Modified Date

2019-04-11

5198

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_gpu_shader_half_float.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_gpu_shader_half_float] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_AMD_gpu_shader_half_float extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_gpu_shader_half_float] @dominikwitczakamd%0A*Here describe the issue or question you have about the VK_AMD_gpu_shader_half_float extension*

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_AMD_gpu_shader_half_float

Contributors

• Daniel Rakos, AMD

• Dominik Witczak, AMD

• Donglin Wei, AMD

• Graham Sellers, AMD

• Qun Lin, AMD

• Rex Xu, AMD

Description

This extension adds support for using half float variables in shaders.

Deprecation by VK_KHR_shader_float16_int8

Functionality in this extension was included in VK_KHR_shader_float16_int8 extension, when
VkPhysicalDeviceShaderFloat16Int8FeaturesKHR::shaderFloat16 is enabled.

New Enum Constants

• VK_AMD_GPU_SHADER_HALF_FLOAT_EXTENSION_NAME

• VK_AMD_GPU_SHADER_HALF_FLOAT_SPEC_VERSION

Version History

• Revision 2, 2019-04-11 (Tobias Hector)

◦ Marked as deprecated

• Revision 1, 2016-09-21 (Dominik Witczak)

◦ Initial draft

VK_AMD_gpu_shader_int16

Name String

VK_AMD_gpu_shader_int16

Extension Type

Device extension

Registered Extension Number

133

5199

https://registry.khronos.org/OpenGL/extensions/AMD/AMD_gpu_shader_half_float.txt

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

None

SPIR-V Dependencies

• SPV_AMD_gpu_shader_int16

Deprecation State

• Deprecated by VK_KHR_shader_float16_int8 extension

◦ Which in turn was promoted to Vulkan 1.2

Contact

• Qun Lin linqun

Other Extension Metadata

Last Modified Date

2019-04-11

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_AMD_gpu_shader_int16

Contributors

• Daniel Rakos, AMD

• Dominik Witczak, AMD

• Matthaeus G. Chajdas, AMD

• Rex Xu, AMD

• Timothy Lottes, AMD

• Zhi Cai, AMD

Description

This extension adds support for using 16-bit integer variables in shaders.

Deprecation by VK_KHR_shader_float16_int8

Functionality in this extension was included in VK_KHR_shader_float16_int8 extension, when
VkPhysicalDeviceFeatures::shaderInt16 and VkPhysicalDeviceShaderFloat16Int8FeaturesKHR
::shaderFloat16 are enabled.

5200

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/AMD/SPV_AMD_gpu_shader_int16.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_gpu_shader_int16] @linqun%0A*Here describe the issue or question you have about the VK_AMD_gpu_shader_int16 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_gpu_shader_int16] @linqun%0A*Here describe the issue or question you have about the VK_AMD_gpu_shader_int16 extension*
https://registry.khronos.org/OpenGL/extensions/AMD/AMD_gpu_shader_int16.txt

New Enum Constants

• VK_AMD_GPU_SHADER_INT16_EXTENSION_NAME

• VK_AMD_GPU_SHADER_INT16_SPEC_VERSION

Version History

• Revision 2, 2019-04-11 (Tobias Hector)

◦ Marked as deprecated

• Revision 1, 2017-06-18 (Dominik Witczak)

◦ First version

VK_AMD_negative_viewport_height

Name String

VK_AMD_negative_viewport_height

Extension Type

Device extension

Registered Extension Number

36

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Obsoleted by VK_KHR_maintenance1 extension

◦ Which in turn was promoted to Vulkan 1.1

Contact

• Matthaeus G. Chajdas anteru

Other Extension Metadata

Last Modified Date

2016-09-02

IP Status

No known IP claims.

5201

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_negative_viewport_height] @anteru%0A*Here describe the issue or question you have about the VK_AMD_negative_viewport_height extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_AMD_negative_viewport_height] @anteru%0A*Here describe the issue or question you have about the VK_AMD_negative_viewport_height extension*

Contributors

• Matthaeus G. Chajdas, AMD

• Graham Sellers, AMD

• Baldur Karlsson

Description

This extension allows an application to specify a negative viewport height. The result is that the
viewport transformation will flip along the y-axis.

• Allow negative height to be specified in the VkViewport::height field to perform y-inversion of
the clip-space to framebuffer-space transform. This allows apps to avoid having to use
gl_Position.y = -gl_Position.y in shaders also targeting other APIs.

Obsoletion by VK_KHR_maintenance1 and Vulkan 1.1

Functionality in this extension is included in VK_KHR_maintenance1 and subsequently Vulkan 1.1. Due
to some slight behavioral differences, this extension must not be enabled alongside
VK_KHR_maintenance1, or in an instance created with version 1.1 or later requested in
VkApplicationInfo::apiVersion.

New Enum Constants

• VK_AMD_NEGATIVE_VIEWPORT_HEIGHT_EXTENSION_NAME

• VK_AMD_NEGATIVE_VIEWPORT_HEIGHT_SPEC_VERSION

Version History

• Revision 1, 2016-09-02 (Matthaeus Chajdas)

◦ Initial draft

VK_ARM_rasterization_order_attachment_access

Name String

VK_ARM_rasterization_order_attachment_access

Extension Type

Device extension

Registered Extension Number

343

Revision

1

Ratification Status

Not ratified

5202

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

Deprecation State

• Promoted to VK_EXT_rasterization_order_attachment_access extension

Contact

• Jan-Harald Fredriksen janharaldfredriksen-arm

Other Extension Metadata

Last Modified Date

2021-11-12

IP Status

No known IP claims.

Contributors

• Tobias Hector, AMD

• Jan-Harald Fredriksen, Arm

Description

Render passes, and specifically subpass dependencies, enable much of the same functionality as the
framebuffer fetch and pixel local storage extensions did for OpenGL ES. But certain techniques
such as programmable blending are awkward or impractical to implement with these alone, in part
because a self-dependency is required every time a fragment will read a value at a given sample
coordinate.

This extension extends the mechanism of input attachments to allow access to framebuffer
attachments when used as both input and color, or depth/stencil, attachments from one fragment to
the next, in rasterization order, without explicit synchronization.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesARM

New Enum Constants

• VK_ARM_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME

• VK_ARM_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_SPEC_VERSION

• Extending VkPipelineColorBlendStateCreateFlagBits:

◦ VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_ARM

• Extending VkPipelineDepthStencilStateCreateFlagBits:

◦ VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_A
RM

5203

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_rasterization_order_attachment_access] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_ARM_rasterization_order_attachment_access extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_ARM_rasterization_order_attachment_access] @janharaldfredriksen-arm%0A*Here describe the issue or question you have about the VK_ARM_rasterization_order_attachment_access extension*

◦ VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT
_ARM

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_ARM

• Extending VkSubpassDescriptionFlagBits:

◦ VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_ARM

◦ VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_ARM

◦ VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_ARM

Issues

1) Is there any interaction with the VK_KHR_dynamic_rendering extension?

No. This extension only affects reads from input attachments. Render pass instances begun with
vkCmdBeginRenderingKHR do not have input attachments and a different mechanism will be
needed to provide similar functionality in this case.

Examples

None.

Version History

• Revision 1, 2021-11-12 (Jan-Harald Fredriksen)

◦ Initial draft

VK_IMG_format_pvrtc

Name String

VK_IMG_format_pvrtc

Extension Type

Device extension

Registered Extension Number

55

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

5204

Deprecation State

• Deprecated without replacement

Contact

• Stuart Smith

Other Extension Metadata

Last Modified Date

2019-09-02

IP Status

Imagination Technologies Proprietary

Contributors

• Stuart Smith, Imagination Technologies

Description

VK_IMG_format_pvrtc provides additional texture compression functionality specific to Imagination
Technologies PowerVR Texture compression format (called PVRTC).

Note

As also noted in the Khronos Data Format Specification, PVRTC1 images must have
dimensions that are a power of two.

Deprecation

Both PVRTC1 and PVRTC2 are slower than standard image formats on PowerVR GPUs, and support
will be removed from future hardware.

New Enum Constants

• VK_IMG_FORMAT_PVRTC_EXTENSION_NAME

• VK_IMG_FORMAT_PVRTC_SPEC_VERSION

• Extending VkFormat:

◦ VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG

◦ VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG

◦ VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG

◦ VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG

◦ VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG

◦ VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG

◦ VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG

◦ VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG

5205

Version History

• Revision 1, 2019-09-02 (Stuart Smith)

◦ Initial version

VK_MVK_ios_surface

Name String

VK_MVK_ios_surface

Extension Type

Instance extension

Registered Extension Number

123

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Deprecation State

• Deprecated by VK_EXT_metal_surface extension

Contact

• Bill Hollings billhollings

Other Extension Metadata

Last Modified Date

2020-07-31

IP Status

No known IP claims.

Contributors

• Bill Hollings, The Brenwill Workshop Ltd.

Description

The VK_MVK_ios_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) based on a UIView, the native
surface type of iOS, which is underpinned by a CAMetalLayer, to support rendering to the surface
using Apple’s Metal framework.

5206

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_MVK_ios_surface] @billhollings%0A*Here describe the issue or question you have about the VK_MVK_ios_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_MVK_ios_surface] @billhollings%0A*Here describe the issue or question you have about the VK_MVK_ios_surface extension*

Deprecation by VK_EXT_metal_surface

The VK_MVK_ios_surface extension is considered deprecated and has been superseded by the
VK_EXT_metal_surface extension.

New Commands

• vkCreateIOSSurfaceMVK

New Structures

• VkIOSSurfaceCreateInfoMVK

New Bitmasks

• VkIOSSurfaceCreateFlagsMVK

New Enum Constants

• VK_MVK_IOS_SURFACE_EXTENSION_NAME

• VK_MVK_IOS_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK

Version History

• Revision 1, 2017-02-15 (Bill Hollings)

◦ Initial draft.

• Revision 2, 2017-02-24 (Bill Hollings)

◦ Minor syntax fix to emphasize firm requirement for UIView to be backed by a CAMetalLayer.

• Revision 3, 2020-07-31 (Bill Hollings)

◦ Update documentation on requirements for UIView.

◦ Mark as deprecated by VK_EXT_metal_surface.

VK_MVK_macos_surface

Name String

VK_MVK_macos_surface

Extension Type

Instance extension

Registered Extension Number

124

5207

Revision

3

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_surface

Deprecation State

• Deprecated by VK_EXT_metal_surface extension

Contact

• Bill Hollings billhollings

Other Extension Metadata

Last Modified Date

2020-07-31

IP Status

No known IP claims.

Contributors

• Bill Hollings, The Brenwill Workshop Ltd.

Description

The VK_MVK_macos_surface extension is an instance extension. It provides a mechanism to create a
VkSurfaceKHR object (defined by the VK_KHR_surface extension) based on an NSView, the native
surface type of macOS, which is underpinned by a CAMetalLayer, to support rendering to the
surface using Apple’s Metal framework.

Deprecation by VK_EXT_metal_surface

The VK_MVK_macos_surface extension is considered deprecated and has been superseded by the
VK_EXT_metal_surface extension.

New Commands

• vkCreateMacOSSurfaceMVK

New Structures

• VkMacOSSurfaceCreateInfoMVK

New Bitmasks

• VkMacOSSurfaceCreateFlagsMVK

5208

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_MVK_macos_surface] @billhollings%0A*Here describe the issue or question you have about the VK_MVK_macos_surface extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_MVK_macos_surface] @billhollings%0A*Here describe the issue or question you have about the VK_MVK_macos_surface extension*

New Enum Constants

• VK_MVK_MACOS_SURFACE_EXTENSION_NAME

• VK_MVK_MACOS_SURFACE_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK

Version History

• Revision 1, 2017-02-15 (Bill Hollings)

◦ Initial draft.

• Revision 2, 2017-02-24 (Bill Hollings)

◦ Minor syntax fix to emphasize firm requirement for NSView to be backed by a CAMetalLayer.

• Revision 3, 2020-07-31 (Bill Hollings)

◦ Update documentation on requirements for NSView.

◦ Mark as deprecated by VK_EXT_metal_surface.

VK_NV_dedicated_allocation

Name String

VK_NV_dedicated_allocation

Extension Type

Device extension

Registered Extension Number

27

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Deprecated by VK_KHR_dedicated_allocation extension

◦ Which in turn was promoted to Vulkan 1.1

Contact

• Jeff Bolz jeffbolznv

5209

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_dedicated_allocation] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_dedicated_allocation extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_dedicated_allocation] @jeffbolznv%0A*Here describe the issue or question you have about the VK_NV_dedicated_allocation extension*

Other Extension Metadata

Last Modified Date

2016-05-31

IP Status

No known IP claims.

Contributors

• Jeff Bolz, NVIDIA

Description

This extension allows device memory to be allocated for a particular buffer or image resource,
which on some devices can significantly improve the performance of that resource. Normal device
memory allocations must support memory aliasing and sparse binding, which could interfere with
optimizations like framebuffer compression or efficient page table usage. This is important for
render targets and very large resources, but need not (and probably should not) be used for smaller
resources that can benefit from suballocation.

This extension adds a few small structures to resource creation and memory allocation: a new
structure that flags whether am image/buffer will have a dedicated allocation, and a structure
indicating the image or buffer that an allocation will be bound to.

New Structures

• Extending VkBufferCreateInfo:

◦ VkDedicatedAllocationBufferCreateInfoNV

• Extending VkImageCreateInfo:

◦ VkDedicatedAllocationImageCreateInfoNV

• Extending VkMemoryAllocateInfo:

◦ VkDedicatedAllocationMemoryAllocateInfoNV

New Enum Constants

• VK_NV_DEDICATED_ALLOCATION_EXTENSION_NAME

• VK_NV_DEDICATED_ALLOCATION_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV

◦ VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV

Examples

 // Create an image with

5210

 // VkDedicatedAllocationImageCreateInfoNV::dedicatedAllocation
 // set to VK_TRUE

 VkDedicatedAllocationImageCreateInfoNV dedicatedImageInfo =
 {
 .sType = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV,
 .pNext = NULL,
 .dedicatedAllocation = VK_TRUE,
 };

 VkImageCreateInfo imageCreateInfo =
 {
 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
 .pNext = &dedicatedImageInfo
 // Other members set as usual
 };

 VkImage image;
 VkResult result = vkCreateImage(
 device,
 &imageCreateInfo,
 NULL, // pAllocator
 &image);

 VkMemoryRequirements memoryRequirements;
 vkGetImageMemoryRequirements(
 device,
 image,
 &memoryRequirements);

 // Allocate memory with VkDedicatedAllocationMemoryAllocateInfoNV::image
 // pointing to the image we are allocating the memory for

 VkDedicatedAllocationMemoryAllocateInfoNV dedicatedInfo =
 {
 .sType = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV,
 .pNext = NULL,
 .image = image,
 .buffer = VK_NULL_HANDLE,
 };

 VkMemoryAllocateInfo memoryAllocateInfo =
 {
 .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
 .pNext = &dedicatedInfo,
 .allocationSize = memoryRequirements.size,
 .memoryTypeIndex = FindMemoryTypeIndex(memoryRequirements.memoryTypeBits),
 };

 VkDeviceMemory memory;
 vkAllocateMemory(

5211

 device,
 &memoryAllocateInfo,
 NULL, // pAllocator
 &memory);

 // Bind the image to the memory

 vkBindImageMemory(
 device,
 image,
 memory,
 0);

Version History

• Revision 1, 2016-05-31 (Jeff Bolz)

◦ Internal revisions

VK_NV_external_memory

Name String

VK_NV_external_memory

Extension Type

Device extension

Registered Extension Number

57

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_NV_external_memory_capabilities

Deprecation State

• Deprecated by VK_KHR_external_memory extension

◦ Which in turn was promoted to Vulkan 1.1

Contact

• James Jones cubanismo

Other Extension Metadata

5212

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_external_memory] @cubanismo%0A*Here describe the issue or question you have about the VK_NV_external_memory extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_external_memory] @cubanismo%0A*Here describe the issue or question you have about the VK_NV_external_memory extension*

Last Modified Date

2016-08-19

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Carsten Rohde, NVIDIA

Description

Applications may wish to export memory to other Vulkan instances or other APIs, or import
memory from other Vulkan instances or other APIs to enable Vulkan workloads to be split up
across application module, process, or API boundaries. This extension enables applications to
create exportable Vulkan memory objects such that the underlying resources can be referenced
outside the Vulkan instance that created them.

New Structures

• Extending VkImageCreateInfo:

◦ VkExternalMemoryImageCreateInfoNV

• Extending VkMemoryAllocateInfo:

◦ VkExportMemoryAllocateInfoNV

New Enum Constants

• VK_NV_EXTERNAL_MEMORY_EXTENSION_NAME

• VK_NV_EXTERNAL_MEMORY_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV

◦ VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV

Issues

1) If memory objects are shared between processes and APIs, is this considered aliasing according
to the rules outlined in the Memory Aliasing section?

RESOLVED: Yes, but strict exceptions to the rules are added to allow some forms of aliasing in these
cases. Further, other extensions may build upon these new aliasing rules to define specific support
usage within Vulkan for imported native memory objects, or memory objects from other APIs.

2) Are new image layouts or metadata required to specify image layouts and layout transitions
compatible with non-Vulkan APIs, or with other instances of the same Vulkan driver?

RESOLVED: No. Separate instances of the same Vulkan driver running on the same GPU should
have identical internal layout semantics, so applications have the tools they need to ensure views of

5213

images are consistent between the two instances. Other APIs will fall into two categories: Those that
are Vulkan compatible (a term to be defined by subsequent interopability extensions), or Vulkan
incompatible. When sharing images with Vulkan incompatible APIs, the Vulkan image must be
transitioned to the VK_IMAGE_LAYOUT_GENERAL layout before handing it off to the external API.

Note this does not attempt to address cross-device transitions, nor transitions to engines on the
same device which are not visible within the Vulkan API. Both of these are beyond the scope of this
extension.

Examples

 // TODO: Write some sample code here.

Version History

• Revision 1, 2016-08-19 (James Jones)

◦ Initial draft

VK_NV_external_memory_capabilities

Name String

VK_NV_external_memory_capabilities

Extension Type

Instance extension

Registered Extension Number

56

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Deprecated by VK_KHR_external_memory_capabilities extension

◦ Which in turn was promoted to Vulkan 1.1

Contact

• James Jones cubanismo

5214

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_external_memory_capabilities] @cubanismo%0A*Here describe the issue or question you have about the VK_NV_external_memory_capabilities extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_external_memory_capabilities] @cubanismo%0A*Here describe the issue or question you have about the VK_NV_external_memory_capabilities extension*

Other Extension Metadata

Last Modified Date

2016-08-19

IP Status

No known IP claims.

Interactions and External Dependencies

• Interacts with Vulkan 1.1.

• Interacts with VK_KHR_dedicated_allocation.

• Interacts with VK_NV_dedicated_allocation.

Contributors

• James Jones, NVIDIA

Description

Applications may wish to import memory from the Direct 3D API, or export memory to other
Vulkan instances. This extension provides a set of capability queries that allow applications
determine what types of win32 memory handles an implementation supports for a given set of use
cases.

New Commands

• vkGetPhysicalDeviceExternalImageFormatPropertiesNV

New Structures

• VkExternalImageFormatPropertiesNV

New Enums

• VkExternalMemoryFeatureFlagBitsNV

• VkExternalMemoryHandleTypeFlagBitsNV

New Bitmasks

• VkExternalMemoryFeatureFlagsNV

• VkExternalMemoryHandleTypeFlagsNV

New Enum Constants

• VK_NV_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME

• VK_NV_EXTERNAL_MEMORY_CAPABILITIES_SPEC_VERSION

Issues

1) Why do so many external memory capabilities need to be queried on a per-memory-handle-type

5215

basis?

RESOLVED: This is because some handle types are based on OS-native objects that have far more
limited capabilities than the very generic Vulkan memory objects. Not all memory handle types can
name memory objects that support 3D images, for example. Some handle types cannot even
support the deferred image and memory binding behavior of Vulkan and require specifying the
image when allocating or importing the memory object.

2) Does the VkExternalImageFormatPropertiesNV struct need to include a list of memory type bits
that support the given handle type?

RESOLVED: No. The memory types that do not support the handle types will simply be filtered out
of the results returned by vkGetImageMemoryRequirements when a set of handle types was
specified at image creation time.

3) Should the non-opaque handle types be moved to their own extension?

RESOLVED: Perhaps. However, defining the handle type bits does very little and does not require
any platform-specific types on its own, and it is easier to maintain the bitmask values in a single
extension for now. Presumably more handle types could be added by separate extensions though,
and it would be midly weird to have some platform-specific ones defined in the core spec and some
in extensions

Version History

• Revision 1, 2016-08-19 (James Jones)

◦ Initial version

VK_NV_external_memory_win32

Name String

VK_NV_external_memory_win32

Extension Type

Device extension

Registered Extension Number

58

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_NV_external_memory

5216

Deprecation State

• Deprecated by VK_KHR_external_memory_win32 extension

Contact

• James Jones cubanismo

Other Extension Metadata

Last Modified Date

2016-08-19

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Carsten Rohde, NVIDIA

Description

Applications may wish to export memory to other Vulkan instances or other APIs, or import
memory from other Vulkan instances or other APIs to enable Vulkan workloads to be split up
across application module, process, or API boundaries. This extension enables win32 applications
to export win32 handles from Vulkan memory objects such that the underlying resources can be
referenced outside the Vulkan instance that created them, and import win32 handles created in the
Direct3D API to Vulkan memory objects.

New Commands

• vkGetMemoryWin32HandleNV

New Structures

• Extending VkMemoryAllocateInfo:

◦ VkExportMemoryWin32HandleInfoNV

◦ VkImportMemoryWin32HandleInfoNV

New Enum Constants

• VK_NV_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME

• VK_NV_EXTERNAL_MEMORY_WIN32_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV

◦ VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV

5217

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_external_memory_win32] @cubanismo%0A*Here describe the issue or question you have about the VK_NV_external_memory_win32 extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_external_memory_win32] @cubanismo%0A*Here describe the issue or question you have about the VK_NV_external_memory_win32 extension*

Issues

1) If memory objects are shared between processes and APIs, is this considered aliasing according
to the rules outlined in the Memory Aliasing section?

RESOLVED: Yes, but strict exceptions to the rules are added to allow some forms of aliasing in these
cases. Further, other extensions may build upon these new aliasing rules to define specific support
usage within Vulkan for imported native memory objects, or memory objects from other APIs.

2) Are new image layouts or metadata required to specify image layouts and layout transitions
compatible with non-Vulkan APIs, or with other instances of the same Vulkan driver?

RESOLVED: No. Separate instances of the same Vulkan driver running on the same GPU should
have identical internal layout semantics, so applications have the tools they need to ensure views of
images are consistent between the two instances. Other APIs will fall into two categories: Those that
are Vulkan compatible (a term to be defined by subsequent interopability extensions), or Vulkan
incompatible. When sharing images with Vulkan incompatible APIs, the Vulkan image must be
transitioned to the VK_IMAGE_LAYOUT_GENERAL layout before handing it off to the external API.

Note this does not attempt to address cross-device transitions, nor transitions to engines on the
same device which are not visible within the Vulkan API. Both of these are beyond the scope of this
extension.

3) Do applications need to call CloseHandle() on the values returned from
vkGetMemoryWin32HandleNV when handleType is
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV?

RESOLVED: Yes, unless it is passed back in to another driver instance to import the object. A
successful get call transfers ownership of the handle to the application, while an import transfers
ownership to the associated driver. Destroying the memory object will not destroy the handle or the
handle’s reference to the underlying memory resource.

Examples

 //
 // Create an exportable memory object and export an external
 // handle from it.
 //

 // Pick an external format and handle type.
 static const VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
 static const VkExternalMemoryHandleTypeFlagsNV handleType =
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV;

 extern VkPhysicalDevice physicalDevice;
 extern VkDevice device;

 VkPhysicalDeviceMemoryProperties memoryProperties;
 VkExternalImageFormatPropertiesNV properties;
 VkExternalMemoryImageCreateInfoNV externalMemoryImageCreateInfo;

5218

 VkDedicatedAllocationImageCreateInfoNV dedicatedImageCreateInfo;
 VkImageCreateInfo imageCreateInfo;
 VkImage image;
 VkMemoryRequirements imageMemoryRequirements;
 uint32_t numMemoryTypes;
 uint32_t memoryType;
 VkExportMemoryAllocateInfoNV exportMemoryAllocateInfo;
 VkDedicatedAllocationMemoryAllocateInfoNV dedicatedAllocationInfo;
 VkMemoryAllocateInfo memoryAllocateInfo;
 VkDeviceMemory memory;
 VkResult result;
 HANDLE memoryHnd;

 // Figure out how many memory types the device supports
 vkGetPhysicalDeviceMemoryProperties(physicalDevice,
 &memoryProperties);
 numMemoryTypes = memoryProperties.memoryTypeCount;

 // Check the external handle type capabilities for the chosen format
 // Exportable 2D image support with at least 1 mip level, 1 array
 // layer, and VK_SAMPLE_COUNT_1_BIT using optimal tiling and supporting
 // texturing and color rendering is required.
 result = vkGetPhysicalDeviceExternalImageFormatPropertiesNV(
 physicalDevice,
 format,
 VK_IMAGE_TYPE_2D,
 VK_IMAGE_TILING_OPTIMAL,
 VK_IMAGE_USAGE_SAMPLED_BIT |
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
 0,
 handleType,
 &properties);

 if ((result != VK_SUCCESS) ||
 !(properties.externalMemoryFeatures &
 VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV)) {
 abort();
 }

 // Set up the external memory image creation info
 memset(&externalMemoryImageCreateInfo,
 0, sizeof(externalMemoryImageCreateInfo));
 externalMemoryImageCreateInfo.sType =
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV;
 externalMemoryImageCreateInfo.handleTypes = handleType;
 if (properties.externalMemoryFeatures &
 VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV) {
 memset(&dedicatedImageCreateInfo, 0, sizeof(dedicatedImageCreateInfo));
 dedicatedImageCreateInfo.sType =
 VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV;
 dedicatedImageCreateInfo.dedicatedAllocation = VK_TRUE;

5219

 externalMemoryImageCreateInfo.pNext = &dedicatedImageCreateInfo;
 }
 // Set up the core image creation info
 memset(&imageCreateInfo, 0, sizeof(imageCreateInfo));
 imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
 imageCreateInfo.pNext = &externalMemoryImageCreateInfo;
 imageCreateInfo.format = format;
 imageCreateInfo.extent.width = 64;
 imageCreateInfo.extent.height = 64;
 imageCreateInfo.extent.depth = 1;
 imageCreateInfo.mipLevels = 1;
 imageCreateInfo.arrayLayers = 1;
 imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT |
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
 imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
 imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;

 vkCreateImage(device, &imageCreateInfo, NULL, &image);

 vkGetImageMemoryRequirements(device,
 image,
 &imageMemoryRequirements);

 // For simplicity, just pick the first compatible memory type.
 for (memoryType = 0; memoryType < numMemoryTypes; memoryType++) {
 if ((1 << memoryType) & imageMemoryRequirements.memoryTypeBits) {
 break;
 }
 }

 // At least one memory type must be supported given the prior external
 // handle capability check.
 assert(memoryType < numMemoryTypes);

 // Allocate the external memory object.
 memset(&exportMemoryAllocateInfo, 0, sizeof(exportMemoryAllocateInfo));
 exportMemoryAllocateInfo.sType =
 VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV;
 exportMemoryAllocateInfo.handleTypes = handleType;
 if (properties.externalMemoryFeatures &
 VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV) {
 memset(&dedicatedAllocationInfo, 0, sizeof(dedicatedAllocationInfo));
 dedicatedAllocationInfo.sType =
 VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV;
 dedicatedAllocationInfo.image = image;
 exportMemoryAllocateInfo.pNext = &dedicatedAllocationInfo;
 }
 memset(&memoryAllocateInfo, 0, sizeof(memoryAllocateInfo));
 memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

5220

 memoryAllocateInfo.pNext = &exportMemoryAllocateInfo;
 memoryAllocateInfo.allocationSize = imageMemoryRequirements.size;
 memoryAllocateInfo.memoryTypeIndex = memoryType;

 vkAllocateMemory(device, &memoryAllocateInfo, NULL, &memory);

 if (!(properties.externalMemoryFeatures &
 VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV)) {
 vkBindImageMemory(device, image, memory, 0);
 }

 // Get the external memory opaque FD handle
 vkGetMemoryWin32HandleNV(device, memory, &memoryHnd);

Version History

• Revision 1, 2016-08-11 (James Jones)

◦ Initial draft

VK_NV_fragment_shader_barycentric

Name String

VK_NV_fragment_shader_barycentric

Extension Type

Device extension

Registered Extension Number

204

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_get_physical_device_properties2

SPIR-V Dependencies

• SPV_NV_fragment_shader_barycentric

Deprecation State

• Promoted to VK_KHR_fragment_shader_barycentric extension

Contact

• Pat Brown nvpbrown

5221

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_fragment_shader_barycentric.html
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_fragment_shader_barycentric] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_fragment_shader_barycentric extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_fragment_shader_barycentric] @nvpbrown%0A*Here describe the issue or question you have about the VK_NV_fragment_shader_barycentric extension*

Other Extension Metadata

Last Modified Date

2018-08-03

IP Status

No known IP claims.

Interactions and External Dependencies

• This extension provides API support for GL_NV_fragment_shader_barycentric

Contributors

• Pat Brown, NVIDIA

• Daniel Koch, NVIDIA

Description

This extension adds support for the following SPIR-V extension in Vulkan:

• SPV_NV_fragment_shader_barycentric

The extension provides access to three additional fragment shader variable decorations in SPIR-V:

• PerVertexNV, which indicates that a fragment shader input will not have interpolated values, but
instead must be accessed with an extra array index that identifies one of the vertices of the
primitive producing the fragment

• BaryCoordNV, which indicates that the variable is a three-component floating-point vector
holding barycentric weights for the fragment produced using perspective interpolation

• BaryCoordNoPerspNV, which indicates that the variable is a three-component floating-point vector
holding barycentric weights for the fragment produced using linear interpolation

When using GLSL source-based shader languages, the following variables from
GL_NV_fragment_shader_barycentric maps to these SPIR-V built-in decorations:

• in vec3 gl_BaryCoordNV; → BaryCoordNV

• in vec3 gl_BaryCoordNoPerspNV; → BaryCoordNoPerspNV

GLSL variables declared using the __pervertexNV GLSL qualifier are expected to be decorated with
PerVertexNV in SPIR-V.

Promotion to VK_KHR_fragment_shader_barycentric

All functionality in this extension is included in VK_KHR_fragment_shader_barycentric, with the suffix
changed to KHR.

New Structures

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceFragmentShaderBarycentricFeaturesNV

5222

https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_fragment_shader_barycentric.txt
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/NV/SPV_NV_fragment_shader_barycentric.html

New Enum Constants

• VK_NV_FRAGMENT_SHADER_BARYCENTRIC_EXTENSION_NAME

• VK_NV_FRAGMENT_SHADER_BARYCENTRIC_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_FEATURES_NV

New Built-In Variables

• BaryCoordNV

• BaryCoordNoPerspNV

New SPIR-V Decorations

• PerVertexNV

New SPIR-V Capabilities

• FragmentBarycentricNV

Issues

(1) The AMD_shader_explicit_vertex_parameter extension provides similar functionality. Why write
a new extension, and how is this extension different?

RESOLVED: For the purposes of Vulkan/SPIR-V, we chose to implement a separate extension due to
several functional differences.

First, the hardware supporting this extension can provide a three-component barycentric weight
vector for variables decorated with BaryCoordNV, while variables decorated with BaryCoordSmoothAMD
provide only two components. In some cases, it may be more efficient to explicitly interpolate an
attribute via:

float value = (baryCoordNV.x * v[0].attrib +
 baryCoordNV.y * v[1].attrib +
 baryCoordNV.z * v[2].attrib);

instead of

float value = (baryCoordSmoothAMD.x * (v[0].attrib - v[2].attrib) +
 baryCoordSmoothAMD.y * (v[1].attrib - v[2].attrib) +
 v[2].attrib);

Additionally, the semantics of the decoration BaryCoordPullModelAMD do not appear to map to
anything supported by the initial hardware implementation of this extension.

This extension provides a smaller number of decorations than the AMD extension, as we expect

5223

that shaders could derive variables decorated with things like BaryCoordNoPerspCentroidAMD with
explicit attribute interpolation instructions. One other relevant difference is that explicit per-vertex
attribute access using this extension does not require a constant vertex number.

(2) Why do the built-in SPIR-V decorations for this extension include two separate built-ins
BaryCoordNV and BaryCoordNoPerspNV when a “no perspective” variable could be decorated with
BaryCoordNV and NoPerspective?

RESOLVED: The SPIR-V extension for this feature chose to mirror the behavior of the GLSL
extension, which provides two built-in variables. Additionally, it is not clear that its a good idea (or
even legal) to have two variables using the “same attribute”, but with different interpolation
modifiers.

Version History

• Revision 1, 2018-08-03 (Pat Brown)

◦ Internal revisions

VK_NV_glsl_shader

Name String

VK_NV_glsl_shader

Extension Type

Device extension

Registered Extension Number

13

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Deprecation State

• Deprecated without replacement

Contact

• Piers Daniell pdaniell-nv

Other Extension Metadata

Last Modified Date

2016-02-14

5224

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_glsl_shader] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_glsl_shader extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_glsl_shader] @pdaniell-nv%0A*Here describe the issue or question you have about the VK_NV_glsl_shader extension*

IP Status

No known IP claims.

Contributors

• Piers Daniell, NVIDIA

Description

This extension allows GLSL shaders written to the GL_KHR_vulkan_glsl extension specification to be
used instead of SPIR-V. The implementation will automatically detect whether the shader is SPIR-V
or GLSL, and compile it appropriately.

Deprecation

Functionality in this extension is outside of the scope of Vulkan and is better served by a compiler
library such as glslang. No new implementations will support this extension, so applications should
not use it.

New Enum Constants

• VK_NV_GLSL_SHADER_EXTENSION_NAME

• VK_NV_GLSL_SHADER_SPEC_VERSION

• Extending VkResult:

◦ VK_ERROR_INVALID_SHADER_NV

Examples

Example 1

Passing in GLSL code

 char const vss[] =
 "#version 450 core\n"
 "layout(location = 0) in vec2 aVertex;\n"
 "layout(location = 1) in vec4 aColor;\n"
 "out vec4 vColor;\n"
 "void main()\n"
 "{\n"
 " vColor = aColor;\n"
 " gl_Position = vec4(aVertex, 0, 1);\n"
 "}\n"
 ;
 VkShaderModuleCreateInfo vertexShaderInfo = {
VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO };
 vertexShaderInfo.codeSize = sizeof vss;
 vertexShaderInfo.pCode = vss;
 VkShaderModule vertexShader;
 vkCreateShaderModule(device, &vertexShaderInfo, 0, &vertexShader);

5225

https://github.com/KhronosGroup/glslang

Version History

• Revision 1, 2016-02-14 (Piers Daniell)

◦ Initial draft

VK_NV_win32_keyed_mutex

Name String

VK_NV_win32_keyed_mutex

Extension Type

Device extension

Registered Extension Number

59

Revision

2

Ratification Status

Not ratified

Extension and Version Dependencies

VK_NV_external_memory_win32

Deprecation State

• Promoted to VK_KHR_win32_keyed_mutex extension

Contact

• Carsten Rohde crohde

Other Extension Metadata

Last Modified Date

2016-08-19

IP Status

No known IP claims.

Contributors

• James Jones, NVIDIA

• Carsten Rohde, NVIDIA

Description

Applications that wish to import Direct3D 11 memory objects into the Vulkan API may wish to use
the native keyed mutex mechanism to synchronize access to the memory between Vulkan and
Direct3D. This extension provides a way for an application to access the keyed mutex associated

5226

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_win32_keyed_mutex] @crohde%0A*Here describe the issue or question you have about the VK_NV_win32_keyed_mutex extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_NV_win32_keyed_mutex] @crohde%0A*Here describe the issue or question you have about the VK_NV_win32_keyed_mutex extension*

with an imported Vulkan memory object when submitting command buffers to a queue.

New Structures

• Extending VkSubmitInfo, VkSubmitInfo2:

◦ VkWin32KeyedMutexAcquireReleaseInfoNV

New Enum Constants

• VK_NV_WIN32_KEYED_MUTEX_EXTENSION_NAME

• VK_NV_WIN32_KEYED_MUTEX_SPEC_VERSION

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV

Examples

 //
 // Import a memory object from Direct3D 11, and synchronize
 // access to it in Vulkan using keyed mutex objects.
 //

 extern VkPhysicalDevice physicalDevice;
 extern VkDevice device;
 extern HANDLE sharedNtHandle;

 static const VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
 static const VkExternalMemoryHandleTypeFlagsNV handleType =
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV;

 VkPhysicalDeviceMemoryProperties memoryProperties;
 VkExternalImageFormatPropertiesNV properties;
 VkExternalMemoryImageCreateInfoNV externalMemoryImageCreateInfo;
 VkImageCreateInfo imageCreateInfo;
 VkImage image;
 VkMemoryRequirements imageMemoryRequirements;
 uint32_t numMemoryTypes;
 uint32_t memoryType;
 VkImportMemoryWin32HandleInfoNV importMemoryInfo;
 VkMemoryAllocateInfo memoryAllocateInfo;
 VkDeviceMemory mem;
 VkResult result;

 // Figure out how many memory types the device supports
 vkGetPhysicalDeviceMemoryProperties(physicalDevice,
 &memoryProperties);
 numMemoryTypes = memoryProperties.memoryTypeCount;

 // Check the external handle type capabilities for the chosen format
 // Importable 2D image support with at least 1 mip level, 1 array

5227

 // layer, and VK_SAMPLE_COUNT_1_BIT using optimal tiling and supporting
 // texturing and color rendering is required.
 result = vkGetPhysicalDeviceExternalImageFormatPropertiesNV(
 physicalDevice,
 format,
 VK_IMAGE_TYPE_2D,
 VK_IMAGE_TILING_OPTIMAL,
 VK_IMAGE_USAGE_SAMPLED_BIT |
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
 0,
 handleType,
 &properties);

 if ((result != VK_SUCCESS) ||
 !(properties.externalMemoryFeatures &
 VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV)) {
 abort();
 }

 // Set up the external memory image creation info
 memset(&externalMemoryImageCreateInfo,
 0, sizeof(externalMemoryImageCreateInfo));
 externalMemoryImageCreateInfo.sType =
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV;
 externalMemoryImageCreateInfo.handleTypes = handleType;
 // Set up the core image creation info
 memset(&imageCreateInfo, 0, sizeof(imageCreateInfo));
 imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
 imageCreateInfo.pNext = &externalMemoryImageCreateInfo;
 imageCreateInfo.format = format;
 imageCreateInfo.extent.width = 64;
 imageCreateInfo.extent.height = 64;
 imageCreateInfo.extent.depth = 1;
 imageCreateInfo.mipLevels = 1;
 imageCreateInfo.arrayLayers = 1;
 imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT |
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
 imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
 imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;

 vkCreateImage(device, &imageCreateInfo, NULL, &image);
 vkGetImageMemoryRequirements(device,
 image,
 &imageMemoryRequirements);

 // For simplicity, just pick the first compatible memory type.
 for (memoryType = 0; memoryType < numMemoryTypes; memoryType++) {
 if ((1 << memoryType) & imageMemoryRequirements.memoryTypeBits) {
 break;

5228

 }
 }

 // At least one memory type must be supported given the prior external
 // handle capability check.
 assert(memoryType < numMemoryTypes);

 // Allocate the external memory object.
 memset(&exportMemoryAllocateInfo, 0, sizeof(exportMemoryAllocateInfo));
 exportMemoryAllocateInfo.sType =
 VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV;
 importMemoryInfo.handleTypes = handleType;
 importMemoryInfo.handle = sharedNtHandle;

 memset(&memoryAllocateInfo, 0, sizeof(memoryAllocateInfo));
 memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
 memoryAllocateInfo.pNext = &exportMemoryAllocateInfo;
 memoryAllocateInfo.allocationSize = imageMemoryRequirements.size;
 memoryAllocateInfo.memoryTypeIndex = memoryType;

 vkAllocateMemory(device, &memoryAllocateInfo, NULL, &mem);

 vkBindImageMemory(device, image, mem, 0);

 ...

 const uint64_t acquireKey = 1;
 const uint32_t timeout = INFINITE;
 const uint64_t releaseKey = 2;

 VkWin32KeyedMutexAcquireReleaseInfoNV keyedMutex =
 { VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV };
 keyedMutex.acquireCount = 1;
 keyedMutex.pAcquireSyncs = &mem;
 keyedMutex.pAcquireKeys = &acquireKey;
 keyedMutex.pAcquireTimeoutMilliseconds = &timeout;
 keyedMutex.releaseCount = 1;
 keyedMutex.pReleaseSyncs = &mem;
 keyedMutex.pReleaseKeys = &releaseKey;

 VkSubmitInfo submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO, &keyedMutex };
 submit_info.commandBufferCount = 1;
 submit_info.pCommandBuffers = &cmd_buf;
 vkQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);

Version History

• Revision 2, 2016-08-11 (James Jones)

◦ Updated sample code based on the NV external memory extensions.

5229

◦ Renamed from NVX to NV extension.

◦ Added Overview and Description sections.

◦ Updated sample code to use the NV external memory extensions.

• Revision 1, 2016-06-14 (Carsten Rohde)

◦ Initial draft.

VK_VALVE_mutable_descriptor_type

Name String

VK_VALVE_mutable_descriptor_type

Extension Type

Device extension

Registered Extension Number

352

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

VK_KHR_maintenance3

Deprecation State

• Promoted to VK_EXT_mutable_descriptor_type extension

Special Use

• D3D support

Contact

• Joshua Ashton Joshua-Ashton

• Hans-Kristian Arntzen HansKristian-Work

Other Extension Metadata

Last Modified Date

2020-12-02

IP Status

No known IP claims.

Contributors

• Joshua Ashton, Valve

• Hans-Kristian Arntzen, Valve

5230

https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_VALVE_mutable_descriptor_type] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_VALVE_mutable_descriptor_type extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_VALVE_mutable_descriptor_type] @Joshua-Ashton%0A*Here describe the issue or question you have about the VK_VALVE_mutable_descriptor_type extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_VALVE_mutable_descriptor_type] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_VALVE_mutable_descriptor_type extension*
https://github.com/KhronosGroup/Vulkan-Docs/issues/new?body=[VK_VALVE_mutable_descriptor_type] @HansKristian-Work%0A*Here describe the issue or question you have about the VK_VALVE_mutable_descriptor_type extension*

Description

This extension allows applications to reduce descriptor memory footprint by allowing a descriptor
to be able to mutate to a given list of descriptor types depending on which descriptor types are
written into, or copied into a descriptor set.

The main use case this extension intends to address is descriptor indexing with
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT where the descriptor types are completely
generic, as this means applications can allocate one large descriptor set, rather than having one
large descriptor set per descriptor type, which significantly bloats descriptor memory usage and
causes performance issues.

This extension also adds a mechanism to declare that a descriptor pool, and therefore the
descriptor sets that are allocated from it, reside only in host memory; as such these descriptors can
only be updated/copied, but not bound.

These features together allow much more efficient emulation of the raw D3D12 binding model. This
extension is primarily intended to be useful for API layering efforts.

New Structures

• VkMutableDescriptorTypeListVALVE

• Extending VkDescriptorSetLayoutCreateInfo, VkDescriptorPoolCreateInfo:

◦ VkMutableDescriptorTypeCreateInfoVALVE

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE

New Enum Constants

• VK_VALVE_MUTABLE_DESCRIPTOR_TYPE_EXTENSION_NAME

• VK_VALVE_MUTABLE_DESCRIPTOR_TYPE_SPEC_VERSION

• Extending VkDescriptorPoolCreateFlagBits:

◦ VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_VALVE

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_HOST_ONLY_POOL_BIT_VALVE

• Extending VkDescriptorType:

◦ VK_DESCRIPTOR_TYPE_MUTABLE_VALVE

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_VALVE

Version History

• Revision 1, 2020-12-01 (Joshua Ashton, Hans-Kristian Arntzen)

5231

◦ Initial specification, squashed from public draft.

5232

Appendix F: Vulkan Roadmap Milestones
Roadmap milestones are intended to be supported by mid-to-high-end smartphones, tablets,
laptops, consoles, and desktop devices.

Each milestone indicates support for a set of extensions, features, limits, and formats across these
devices, and should be supported by all such new hardware shipping by the end of the target year
or shortly thereafter.

Roadmap 2022
The Roadmap 2022 milestone is intended to be supported by newer mid-to-high-end devices
shipping in 2022 or shortly thereafter across mainstream smartphone, tablet, laptops, console and
desktop devices.

Required API Versions

This profile requires Vulkan 1.3.

Required Features

The following core optional features are required to be supported:

• Vulkan 1.0 Optional Features

◦ fullDrawIndexUint32

◦ imageCubeArray

◦ independentBlend

◦ sampleRateShading

◦ drawIndirectFirstInstance

◦ depthClamp

◦ depthBiasClamp

◦ samplerAnisotropy

◦ occlusionQueryPrecise

◦ fragmentStoresAndAtomics

◦ shaderStorageImageExtendedFormats

◦ shaderUniformBufferArrayDynamicIndexing

◦ shaderSampledImageArrayDynamicIndexing

◦ shaderStorageBufferArrayDynamicIndexing

◦ shaderStorageImageArrayDynamicIndexing

• Vulkan 1.1 Optional Features

◦ samplerYcbcrConversion

5233

• Vulkan 1.2 Optional Features

◦ samplerMirrorClampToEdge

◦ descriptorIndexing

◦ shaderUniformTexelBufferArrayDynamicIndexing

◦ shaderStorageTexelBufferArrayDynamicIndexing

◦ shaderUniformBufferArrayNonUniformIndexing

◦ shaderSampledImageArrayNonUniformIndexing

◦ shaderStorageBufferArrayNonUniformIndexing

◦ shaderStorageImageArrayNonUniformIndexing

◦ shaderUniformTexelBufferArrayNonUniformIndexing

◦ shaderStorageTexelBufferArrayNonUniformIndexing

◦ descriptorBindingSampledImageUpdateAfterBind

◦ descriptorBindingStorageImageUpdateAfterBind

◦ descriptorBindingStorageBufferUpdateAfterBind

◦ descriptorBindingUniformTexelBufferUpdateAfterBind

◦ descriptorBindingStorageTexelBufferUpdateAfterBind

◦ descriptorBindingUpdateUnusedWhilePending

◦ descriptorBindingPartiallyBound

◦ descriptorBindingVariableDescriptorCount

◦ runtimeDescriptorArray

◦ scalarBlockLayout

Required Limits

The following core increased limits are required

Table 107. Vulkan 1.0 Limits

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

maxImageDimension1D - 4096 8192 min

maxImageDimension2D - 4096 8192 min

maxImageDimensionCube - 4096 8192 min

maxImageArrayLayers - 256 2048 min

maxUniformBufferRange - 16384 65536 min

bufferImageGranularity - 131072 4096 max

maxPerStageDescriptorSamplers - 16 64 min

5234

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

maxPerStageDescriptorUniformBuffers - 12 15 min

maxPerStageDescriptorStorageBuffers - 4 30 min

maxPerStageDescriptorSampledImages - 16 200 min

maxPerStageDescriptorStorageImages - 4 16 min

maxPerStageResources - 128 200 min

maxDescriptorSetSamplers - 96 576 min, n ×
PerStage

maxDescriptorSetUniformBuffers - 72 90 min, n ×
PerStage

maxDescriptorSetStorageBuffers - 24 96 min, n ×
PerStage

maxDescriptorSetSampledImages - 96 1800 min, n ×
PerStage

maxDescriptorSetStorageImages - 24 144 min, n ×
PerStage

maxFragmentCombinedOutputResources - 4 16 min

maxComputeWorkGroupInvocations - 128 256 min

maxComputeWorkGroupSize - (128,128,64) (256,256,64) min

subTexelPrecisionBits - 4 8 min

mipmapPrecisionBits - 4 6 min

maxSamplerLodBias - 2 14 min

pointSizeGranularity 0.0 1.0 0.125 max, fixed
point
increment

lineWidthGranularity 0.0 1.0 0.5 max, fixed
point
increment

standardSampleLocations - - VK_TRUE implementa
tion-
dependent

maxColorAttachments - 4 7 min

Table 108. Vulkan 1.1 Limits

5235

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

subgroupSize - 1/4 4 implementa
tion-
dependent

subgroupSupportedStages - VK_SHADER_STAGE
_COMPUTE_BIT

VK_SHADER_STAGE
_COMPUTE_BIT
VK_SHADER_STAGE
_FRAGMENT_BIT

implementa
tion-
dependent

subgroupSupportedOperations - VK_SUBGROUP_FEA
TURE_BASIC_BIT

VK_SUBGROUP_FEA
TURE_BASIC_BIT
VK_SUBGROUP_FEA
TURE_VOTE_BIT
VK_SUBGROUP_FEA
TURE_ARITHMETIC
_BIT
VK_SUBGROUP_FEA
TURE_BALLOT_BIT
VK_SUBGROUP_FEA
TURE_SHUFFLE_BI
T
VK_SUBGROUP_FEA
TURE_SHUFFLE_RE
LATIVE_BIT
VK_SUBGROUP_FEA
TURE_QUAD_BIT

implementa
tion-
dependent

Table 109. Vulkan 1.2 Limits

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

shaderSignedZeroInfNanPreserveFloat16 - - VK_TRUE implementa
tion-
dependent

shaderSignedZeroInfNanPreserveFloat32 - - VK_TRUE implementa
tion-
dependent

maxPerStageDescriptorUpdateAfterBindInp
utAttachments

0 4 7 min

Table 110. Vulkan 1.3 Limits

5236

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

maxSubgroupSize - - 4 min

Required Extensions

The following extensions are required

VK_KHR_global_priority

Roadmap 2024
The Roadmap 2024 milestone is intended to be supported by newer mid-to-high-end devices
shipping in 2024 or shortly thereafter across mainstream smartphone, tablet, laptops, console and
desktop devices.

Two of the core aims of this roadmap profile are to enable developers to rely on a number of
important rasterization and shader features have been available for a long time, but until now
have not enjoyed wide support.

Shader features required include smaller types (8/16-bit integers and 16-bit floats), reconvergence
guarantees for subgroup ops (VK_KHR_shader_maximal_reconvergence and
VK_KHR_shader_quad_control), and more consistent floating point handling
(VK_KHR_shader_float_controls2 and round-to-nearest-even for 32-/16-bit floats). Rasterization
features include requiring support for multi-draw indirect, shader draw parameters, 8-bit indices,
better line rasterization definitions, and local reads when using dynamic rendering. A few other
features have been added opportunistically, in lieu of shipping a Vulkan 1.4 in the same time frame,
such as push descriptors and the various minor improvements included in VK_KHR_maintenance5.

Required Profiles

This profile requires the Roadmap 2022 profile.

Required Features

The following core optional features are required to be supported:

• Vulkan 1.0 Optional Features

◦ multiDrawIndirect

◦ shaderImageGatherExtended

◦ shaderInt16

• Vulkan 1.1 Optional Features

◦ shaderDrawParameters

◦ storageBuffer16BitAccess

5237

• Vulkan 1.2 Optional Features

◦ shaderInt8

◦ shaderFloat16

◦ storageBuffer8BitAccess

Required Limits

The following core increased limits are required

Table 111. Vulkan 1.0 Limits

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

maxBoundDescriptorSets - 4 7 min

maxColorAttachments - 4 8 min

timestampComputeAndGraphics - FALSE TRUE Boolean

Table 112. Vulkan 1.2 Limits

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

shaderRoundingModeRTEFloat16 - FALSE TRUE Boolean

shaderRoundingModeRTEFloat32 - FALSE TRUE Boolean

Required extensions

The following extensions are required

• VK_KHR_dynamic_rendering_local_read

• VK_KHR_load_store_op_none

• VK_KHR_shader_quad_control

• VK_KHR_shader_maximal_reconvergence

• VK_KHR_shader_subgroup_uniform_control_flow

• VK_KHR_shader_subgroup_rotate

• VK_KHR_shader_float_controls2

• VK_KHR_shader_expect_assume

• VK_KHR_line_rasterization

• VK_KHR_vertex_attribute_divisor

• VK_KHR_index_type_uint8

• VK_KHR_map_memory2

5238

• VK_KHR_maintenance5

• VK_KHR_push_descriptor

5239

Appendix G: API Boilerplate
This appendix defines Vulkan API features that are infrastructure required for a complete
functional description of Vulkan, but do not logically belong elsewhere in the Specification.

Vulkan Header Files
Vulkan is defined as an API in the C99 language. Khronos provides a corresponding set of header
files for applications using the API, which may be used in either C or C++ code. The interface
descriptions in the specification are the same as the interfaces defined in these header files, and
both are derived from the vk.xml XML API Registry, which is the canonical machine-readable
description of the Vulkan API. The Registry, scripts used for processing it into various forms, and
documentation of the registry schema are available as described at https://registry.khronos.org/
vulkan/#apiregistry .

Language bindings for other languages can be defined using the information in the Specification
and the Registry. Khronos does not provide any such bindings, but third-party developers have
created some additional bindings.

Vulkan Combined API Header vulkan.h (Informative)

Applications normally will include the header vulkan.h. In turn, vulkan.h always includes the
following headers:

• vk_platform.h, defining platform-specific macros and headers.

• vulkan_core.h, defining APIs for the Vulkan core and all registered extensions other than
window system-specific and provisional extensions, which are included in separate header files.

In addition, specific preprocessor macros defined at the time vulkan.h is included cause header files
for the corresponding window system-specific and provisional interfaces to be included, as
described below.

Vulkan Platform-Specific Header vk_platform.h (Informative)

Platform-specific macros and interfaces are defined in vk_platform.h. These macros are used to
control platform-dependent behavior, and their exact definitions are under the control of specific
platforms and Vulkan implementations.

Platform-Specific Calling Conventions

On many platforms the following macros are empty strings, causing platform- and compiler-
specific default calling conventions to be used.

VKAPI_ATTR is a macro placed before the return type in Vulkan API function declarations. This macro
controls calling conventions for C++11 and GCC/Clang-style compilers.

VKAPI_CALL is a macro placed after the return type in Vulkan API function declarations. This macro
controls calling conventions for MSVC-style compilers.

5240

https://registry.khronos.org/vulkan/#apiregistry
https://registry.khronos.org/vulkan/#apiregistry

VKAPI_PTR is a macro placed between the '(' and '*' in Vulkan API function pointer declarations. This
macro also controls calling conventions, and typically has the same definition as VKAPI_ATTR or
VKAPI_CALL, depending on the compiler.

With these macros, a Vulkan function declaration takes the form of:

VKAPI_ATTR <return_type> VKAPI_CALL <command_name>(<command_parameters>);

Additionally, a Vulkan function pointer type declaration takes the form of:

typedef <return_type> (VKAPI_PTR *PFN_<command_name>)(<command_parameters>);

Platform-Specific Header Control

If the VK_NO_STDINT_H macro is defined by the application at compile time, extended integer types
used by the Vulkan API, such as uint8_t, must also be defined by the application. Otherwise, the
Vulkan headers will not compile. If VK_NO_STDINT_H is not defined, the system <stdint.h> is used to
define these types. There is a fallback path when Microsoft Visual Studio version 2008 and earlier
versions are detected at compile time.

If the VK_NO_STDDEF_H macro is defined by the application at compile time, size_t, must also be
defined by the application. Otherwise, the Vulkan headers will not compile. If VK_NO_STDDEF_H is not
defined, the system <stddef.h> is used to define this type.

Vulkan Core API Header vulkan_core.h

Applications that do not make use of window system-specific extensions may simply include
vulkan_core.h instead of vulkan.h, although there is usually no reason to do so. In addition to the
Vulkan API, vulkan_core.h also defines a small number of C preprocessor macros that are described
below.

Vulkan Header File Version Number

VK_HEADER_VERSION is the version number of the vulkan_core.h header. This value is kept
synchronized with the patch version of the released Specification.

// Provided by VK_VERSION_1_0
// Version of this file
#define VK_HEADER_VERSION 280

VK_HEADER_VERSION_COMPLETE is the complete version number of the vulkan_core.h header,
comprising the major, minor, and patch versions. The major/minor values are kept synchronized
with the complete version of the released Specification. This value is intended for use by automated
tools to identify exactly which version of the header was used during their generation.

Applications should not use this value as their VkApplicationInfo::apiVersion. Instead applications

5241

should explicitly select a specific fixed major/minor API version using, for example, one of the
VK_API_VERSION_*_* values.

// Provided by VK_VERSION_1_0
// Complete version of this file
#define VK_HEADER_VERSION_COMPLETE VK_MAKE_API_VERSION(0, 1, 3, VK_HEADER_VERSION)

VK_API_VERSION is now commented out of vulkan_core.h and cannot be used.

// Provided by VK_VERSION_1_0
// DEPRECATED: This define has been removed. Specific version defines (e.g.
VK_API_VERSION_1_0), or the VK_MAKE_VERSION macro, should be used instead.
//#define VK_API_VERSION VK_MAKE_API_VERSION(0, 1, 0, 0) // Patch version should
always be set to 0

Vulkan Handle Macros

VK_DEFINE_HANDLE defines a dispatchable handle type.

// Provided by VK_VERSION_1_0

#define VK_DEFINE_HANDLE(object) typedef struct object##_T* object;

• object is the name of the resulting C type.

The only dispatchable handle types are those related to device and instance management, such as
VkDevice.

VK_DEFINE_NON_DISPATCHABLE_HANDLE defines a non-dispatchable handle type.

// Provided by VK_VERSION_1_0

#ifndef VK_DEFINE_NON_DISPATCHABLE_HANDLE
 #if (VK_USE_64_BIT_PTR_DEFINES==1)
 #define VK_DEFINE_NON_DISPATCHABLE_HANDLE(object) typedef struct object##_T
*object;
 #else
 #define VK_DEFINE_NON_DISPATCHABLE_HANDLE(object) typedef uint64_t object;
 #endif
#endif

• object is the name of the resulting C type.

Most Vulkan handle types, such as VkBuffer, are non-dispatchable.

 Note

5242

The vulkan_core.h header allows the VK_DEFINE_NON_DISPATCHABLE_HANDLE
and VK_NULL_HANDLE definitions to be overridden by the application. If
VK_DEFINE_NON_DISPATCHABLE_HANDLE is already defined when vulkan_core.h
is compiled, the default definitions for VK_DEFINE_NON_DISPATCHABLE_HANDLE
and VK_NULL_HANDLE are skipped. This allows the application to define a binary-
compatible custom handle which may provide more type-safety or other features
needed by the application. Applications must not define handles in a way that is
not binary compatible - where binary compatibility is platform dependent.

VK_NULL_HANDLE is a reserved value representing a non-valid object handle. It may be passed to and
returned from Vulkan commands only when specifically allowed.

// Provided by VK_VERSION_1_0

#ifndef VK_DEFINE_NON_DISPATCHABLE_HANDLE
 #if (VK_USE_64_BIT_PTR_DEFINES==1)
 #if (defined(__cplusplus) && (__cplusplus >= 201103L)) || (defined(_MSVC_LANG)
&& (_MSVC_LANG >= 201103L))
 #define VK_NULL_HANDLE nullptr
 #else
 #define VK_NULL_HANDLE ((void*)0)
 #endif
 #else
 #define VK_NULL_HANDLE 0ULL
 #endif
#endif
#ifndef VK_NULL_HANDLE
 #define VK_NULL_HANDLE 0
#endif

VK_USE_64_BIT_PTR_DEFINES defines whether the default non-dispatchable handles are declared using
either a 64-bit pointer type or a 64-bit unsigned integer type.

VK_USE_64_BIT_PTR_DEFINES is set to '1' to use a 64-bit pointer type or any other value to use a 64-bit
unsigned integer type.

// Provided by VK_VERSION_1_0

#ifndef VK_USE_64_BIT_PTR_DEFINES
 #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) &&
!defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) ||
defined(__aarch64__) || defined(__powerpc64__) || (defined(__riscv) && __riscv_xlen ==
64)
 #define VK_USE_64_BIT_PTR_DEFINES 1
 #else
 #define VK_USE_64_BIT_PTR_DEFINES 0
 #endif
#endif

5243

Note

The vulkan_core.h header allows the VK_USE_64_BIT_PTR_DEFINES definition to be
overridden by the application. This allows the application to select either a 64-bit
pointer type or a 64-bit unsigned integer type for non-dispatchable handles in the
case where the predefined preprocessor check does not identify the desired
configuration.

Note

This macro was introduced starting with the Vulkan 1.2.174 headers, and its
availability can be checked at compile time by requiring VK_HEADER_VERSION >= 174.

It is not available if you are using older headers, such as may be shipped with an
older Vulkan SDK. Developers requiring this functionality may wish to include a
copy of the current Vulkan headers with their project in this case.

Window System-Specific Header Control (Informative)
To use a Vulkan extension supporting a platform-specific window system, header files for that
window system must be included at compile time, or platform-specific types must be forward-
declared. The Vulkan header files are unable to determine whether or not an external header is
available at compile time, so platform-specific extensions are provided in separate headers from
the core API and platform-independent extensions, allowing applications to decide which ones they
need to be defined and how the external headers are included.

Extensions dependent on particular sets of platform headers, or that forward-declare platform-
specific types, are declared in a header named for that platform. Before including these platform-
specific Vulkan headers, applications must include both vulkan_core.h and any external native
headers the platform extensions depend on.

As a convenience for applications that do not need the flexibility of separate platform-specific
Vulkan headers, vulkan.h includes vulkan_core.h, and then conditionally includes platform-specific
Vulkan headers and the external headers they depend on. Applications control which platform-
specific headers are included by #defining macros before including vulkan.h.

The correspondence between platform-specific extensions, external headers they require, the
platform-specific header which declares them, and the preprocessor macros which enable
inclusion by vulkan.h are shown in the following table.

Table 113. Window System Extensions and Headers

Extension Name Window System
Name

Platform-specific
Header

Required
External Headers

Controlling
vulkan.h Macro

VK_KHR_android_sur
face

Android vulkan_android.h None VK_USE_PLATFORM_AN
DROID_KHR

VK_KHR_wayland_sur
face

Wayland vulkan_wayland.h <wayland-client.h> VK_USE_PLATFORM_WA
YLAND_KHR

5244

Extension Name Window System
Name

Platform-specific
Header

Required
External Headers

Controlling
vulkan.h Macro

VK_KHR_win32_surfa
ce,
VK_KHR_external_me
mory_win32,
VK_KHR_win32_keyed
_mutex,
VK_KHR_external_se
maphore_win32,
VK_KHR_external_fe
nce_win32,
VK_NV_external_mem
ory_win32,
VK_NV_win32_keyed_
mutex

Microsoft
Windows

vulkan_win32.h <windows.h> VK_USE_PLATFORM_WI
N32_KHR

VK_KHR_xcb_surface X11 Xcb vulkan_xcb.h <xcb/xcb.h> VK_USE_PLATFORM_XC
B_KHR

VK_KHR_xlib_surfac
e

X11 Xlib vulkan_xlib.h <X11/Xlib.h> VK_USE_PLATFORM_XL
IB_KHR

VK_EXT_directfb_su
rface

DirectFB vulkan_directfb.h <directfb/directfb
.h>

VK_USE_PLATFORM_DI
RECTFB_EXT

VK_EXT_acquire_xli
b_display

X11 XRAndR vulkan_xlib_xrandr
.h

<X11/Xlib.h>,
<X11/extensions/Xr
andr.h>

VK_USE_PLATFORM_XL
IB_XRANDR_EXT

VK_GGP_stream_desc
riptor_surface,
VK_GGP_frame_token

Google Games
Platform

vulkan_ggp.h <ggp_c/vulkan_typ
es.h>

VK_USE_PLATFORM_GG
P

VK_MVK_ios_surface iOS vulkan_ios.h None VK_USE_PLATFORM_IO
S_MVK

VK_MVK_macos_surfa
ce

macOS vulkan_macos.h None VK_USE_PLATFORM_MA
COS_MVK

VK_NN_vi_surface VI vulkan_vi.h None VK_USE_PLATFORM_VI
_NN

VK_FUCHSIA_imagepi
pe_surface

Fuchsia vulkan_fuchsia.h <zircon/types.h> VK_USE_PLATFORM_FU
CHSIA

VK_EXT_metal_surfa
ce

Metal on
CoreAnimation

vulkan_metal.h None VK_USE_PLATFORM_ME
TAL_EXT

VK_QNX_screen_surf
ace

QNX Screen vulkan_screen.h <screen/screen.h> VK_USE_PLATFORM_SC
REEN_QNX

Note

This section describes the purpose of the headers independently of the specific
underlying functionality of the window system extensions themselves. Each
extension name will only link to a description of that extension when viewing a
specification built with that extension included.

5245

Provisional Extension Header Control (Informative)
Provisional extensions should not be used in production applications. The functionality defined by
such extensions may change in ways that break backwards compatibility between revisions, and
before final release of a non-provisional version of that extension.

Provisional extensions are defined in a separate provisional header, vulkan_beta.h, allowing
applications to decide whether or not to include them. The mechanism is similar to window system-
specific headers: before including vulkan_beta.h, applications must include vulkan_core.h.

Note

Sometimes a provisional extension will include a subset of its interfaces in
vulkan_core.h. This may occur if the provisional extension is promoted from an
existing vendor or EXT extension and some of the existing interfaces are defined
as aliases of the provisional extension interfaces. All other interfaces of that
provisional extension which are not aliased will be included in vulkan_beta.h.

As a convenience for applications, vulkan.h conditionally includes vulkan_beta.h. Applications can
control inclusion of vulkan_beta.h by #defining the macro VK_ENABLE_BETA_EXTENSIONS before
including vulkan.h.

Note

Starting in version 1.2.171 of the Specification, all provisional enumerants are
protected by the macro VK_ENABLE_BETA_EXTENSIONS. Applications needing to use
provisional extensions must always define this macro, even if they are explicitly
including vulkan_beta.h. This is a minor change to behavior, affecting only
provisional extensions.

Note

This section describes the purpose of the provisional header independently of the
specific provisional extensions which are contained in that header at any given
time. The extension appendices for provisional extensions note their provisional
status, and link back to this section for more information. Provisional extensions
are intended to provide early access for bleeding-edge developers, with the
understanding that extension interfaces may change in response to developer
feedback. Provisional extensions are very likely to eventually be updated and
released as non-provisional extensions, but there is no guarantee this will happen,
or how long it will take if it does happen.

Video Std Headers
Performing video coding operations usually involves the application having to provide various
parameters, data structures, or other syntax elements specific to the particular video compression
standard used, and the associated semantics are covered by the specification of those.

The interface descriptions of these are available in the header files derived from the video.xml XML

5246

file, which is the canonical machine-readable description of data structures and enumerations that
are associated with the externally-provided video compression standards.

Table 114. Video Std Headers

Video Std Header
Name

Description Header File Related Extensions

vulkan_video_codecs_co
mmon

Codec-independent
common definitions

<vk_video/vulkan_video
_codecs_common.h>

-

vulkan_video_codec_h26
4std

ITU-T H.264 common
definitions

<vk_video/vulkan_video
_codec_h264std.h>

VK_KHR_video_decode_
h264,
VK_KHR_video_encode_
h264

vulkan_video_codec_h26
4std_decode

ITU-T H.264 decode-
specific definitions

<vk_video/vulkan_video
_codec_h264std_decode.
h>

VK_KHR_video_decode_
h264

vulkan_video_codec_h26
4std_encode

ITU-T H.264 encode-
specific definitions

<vk_video/vulkan_video
_codec_h264std_encode.
h>

VK_KHR_video_encode_
h264

vulkan_video_codec_h26
5std

ITU-T H.265 common
definitions

<vk_video/vulkan_video
_codec_h265std.h>

VK_KHR_video_decode_
h265,
VK_KHR_video_encode_
h265

vulkan_video_codec_h26
5std_decode

ITU-T H.265 decode-
specific definitions

<vk_video/vulkan_video
_codec_h265std_decode.
h>

VK_KHR_video_decode_
h265

vulkan_video_codec_h26
5std_encode

ITU-T H.265 encode-
specific definitions

<vk_video/vulkan_video
_codec_h265std_encode.
h>

VK_KHR_video_encode_
h265

vulkan_video_codec_av1
std

AV1 common
definitions

<vk_video/vulkan_video
_codec_av1std.h>

VK_KHR_video_decode_
av1

vulkan_video_codec_av1
std_decode

AV1 decode-specific
definitions

<vk_video/vulkan_video
_codec_av1std_decode.h
>

VK_KHR_video_decode_
av1

5247

Appendix H: Invariance
The Vulkan specification is not pixel exact. It therefore does not guarantee an exact match between
images produced by different Vulkan implementations. However, the specification does specify
exact matches, in some cases, for images produced by the same implementation. The purpose of
this appendix is to identify and provide justification for those cases that require exact matches.

Repeatability
The obvious and most fundamental case is repeated issuance of a series of Vulkan commands. For
any given Vulkan and framebuffer state vector, and for any Vulkan command, the resulting Vulkan
and framebuffer state must be identical whenever the command is executed on that initial Vulkan
and framebuffer state. This repeatability requirement does not apply when using shaders
containing side effects (image and buffer variable stores and atomic operations), because these
memory operations are not guaranteed to be processed in a defined order.

The repeatability requirement does not apply for rendering done using a graphics pipeline that
uses VK_RASTERIZATION_ORDER_RELAXED_AMD.

One purpose of repeatability is avoidance of visual artifacts when a double-buffered scene is
redrawn. If rendering is not repeatable, swapping between two buffers rendered with the same
command sequence may result in visible changes in the image. Such false motion is distracting to
the viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeatability as a requirement,
two scenes rendered with one (small) polygon changed in position might differ at every pixel. Such
a difference, while within the law of repeatability, is certainly not within its spirit. Additional
invariance rules are desirable to ensure useful operation.

Multi-pass Algorithms
Invariance is necessary for a whole set of useful multi-pass algorithms. Such algorithms render
multiple times, each time with a different Vulkan mode vector, to eventually produce a result in the
framebuffer. Examples of these algorithms include:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a different color or using
the XOR logical operation.

• Using stencil operations to compute capping planes.

Invariance Rules
For a given Vulkan device:

Rule 1 For any given Vulkan and framebuffer state vector, and for any given Vulkan command, the
resulting Vulkan and framebuffer state must be identical each time the command is executed on that
initial Vulkan and framebuffer state.

5248

Rule 2 Changes to the following state values have no side effects (the use of any other state value is
not affected by the change):

Required:

• Color and depth/stencil attachment contents

• Scissor parameters (other than enable)

• Write masks (color, depth, stencil)

• Clear values (color, depth, stencil)

Strongly suggested:

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

Corollary 1 Fragment generation is invariant with respect to the state values listed in Rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with respect to parameters
that directly control it.

Corollary 2 Images rendered into different color attachments of the same framebuffer, either
simultaneously or separately using the same command sequence, are pixel identical.

Rule 4 Identical pipelines will produce the same result when run multiple times with the same input.
The wording “Identical pipelines” means VkPipeline objects that have been created with identical
SPIR-V binaries and identical state, which are then used by commands executed using the same
Vulkan state vector. Invariance is relaxed for shaders with side effects, such as performing stores or
atomics.

Rule 5 All fragment shaders that either conditionally or unconditionally assign FragCoord.z to
FragDepth are depth-invariant with respect to each other, for those fragments where the assignment to
FragDepth actually is done.

If a sequence of Vulkan commands specifies primitives to be rendered with shaders containing side
effects (image and buffer variable stores and atomic operations), invariance rules are relaxed. In
particular, rule 1, corollary 2, and rule 4 do not apply in the presence of shader side effects.

The following weaker versions of rules 1 and 4 apply to Vulkan commands involving shader side
effects:

Rule 6 For any given Vulkan and framebuffer state vector, and for any given Vulkan command, the
contents of any framebuffer state not directly or indirectly affected by results of shader image or
buffer variable stores or atomic operations must be identical each time the command is executed on
that initial Vulkan and framebuffer state.

Rule 7 Identical pipelines will produce the same result when run multiple times with the same input

5249

as long as:

• shader invocations do not use image atomic operations;

• no framebuffer memory is written to more than once by image stores, unless all such stores write
the same value; and

• no shader invocation, or other operation performed to process the sequence of commands, reads
memory written to by an image store.

Note

The OpenGL specification has the following invariance rule: Consider a primitive
p' obtained by translating a primitive p through an offset (x, y) in window
coordinates, where x and y are integers. As long as neither p' nor p is clipped, it
must be the case that each fragment f' produced from p' is identical to a
corresponding fragment f from p except that the center of f' is offset by (x, y) from
the center of f.

This rule does not apply to Vulkan and is an intentional difference from OpenGL.

When any sequence of Vulkan commands triggers shader invocations that perform image stores or
atomic operations, and subsequent Vulkan commands read the memory written by those shader
invocations, these operations must be explicitly synchronized.

Tessellation Invariance
When using a pipeline containing tessellation evaluation shaders, the fixed-function tessellation
primitive generator consumes the input patch specified by an application and emits a new set of
primitives. The following invariance rules are intended to provide repeatability guarantees.
Additionally, they are intended to allow an application with a carefully crafted tessellation
evaluation shader to ensure that the sets of triangles generated for two adjacent patches have
identical vertices along shared patch edges, avoiding “cracks” caused by minor differences in the
positions of vertices along shared edges.

Rule 1 When processing two patches with identical outer and inner tessellation levels, the tessellation
primitive generator will emit an identical set of point, line, or triangle primitives as long as the
pipeline used to process the patch primitives has tessellation evaluation shaders specifying the same
tessellation mode, spacing, vertex order, and point mode decorations. Two sets of primitives are
considered identical if and only if they contain the same number and type of primitives and the
generated tessellation coordinates for the vertex numbered m of the primitive numbered n are
identical for all values of m and n.

Rule 2 The set of vertices generated along the outer edge of the subdivided primitive in triangle and
quad tessellation, and the tessellation coordinates of each, depend only on the corresponding outer
tessellation level and the spacing decorations in the tessellation shaders of the pipeline.

Rule 3 The set of vertices generated when subdividing any outer primitive edge is always symmetric.
For triangle tessellation, if the subdivision generates a vertex with tessellation coordinates of the form
(0, x, 1-x), (x, 0, 1-x), or (x, 1-x, 0), it will also generate a vertex with coordinates of exactly (0, 1-x, x),

5250

(1-x, 0, x), or (1-x, x, 0), respectively. For quad tessellation, if the subdivision generates a vertex with
coordinates of (x, 0) or (0, x), it will also generate a vertex with coordinates of exactly (1-x, 0) or (0, 1-
x), respectively. For isoline tessellation, if it generates vertices at (0, x) and (1, x) where x is not zero, it
will also generate vertices at exactly (0, 1-x) and (1, 1-x), respectively.

Rule 4 The set of vertices generated when subdividing outer edges in triangular and quad tessellation
must be independent of the specific edge subdivided, given identical outer tessellation levels and
spacing. For example, if vertices at (x, 1 - x, 0) and (1-x, x, 0) are generated when subdividing the w = 0
edge in triangular tessellation, vertices must be generated at (x, 0, 1-x) and (1-x, 0, x) when
subdividing an otherwise identical v = 0 edge. For quad tessellation, if vertices at (x, 0) and (1-x, 0) are
generated when subdividing the v = 0 edge, vertices must be generated at (0, x) and (0, 1-x) when
subdividing an otherwise identical u = 0 edge.

Rule 5 When processing two patches that are identical in all respects enumerated in rule 1 except for
vertex order, the set of triangles generated for triangle and quad tessellation must be identical except
for vertex and triangle order. For each triangle n1 produced by processing the first patch, there must
be a triangle n2 produced when processing the second patch each of whose vertices has the same
tessellation coordinates as one of the vertices in n1.

Rule 6 When processing two patches that are identical in all respects enumerated in rule 1 other than
matching outer tessellation levels and/or vertex order, the set of interior triangles generated for
triangle and quad tessellation must be identical in all respects except for vertex and triangle order.
For each interior triangle n1 produced by processing the first patch, there must be a triangle n2
produced when processing the second patch each of whose vertices has the same tessellation
coordinates as one of the vertices in n1. A triangle produced by the tessellator is considered an
interior triangle if none of its vertices lie on an outer edge of the subdivided primitive.

Rule 7 For quad and triangle tessellation, the set of triangles connecting an inner and outer edge
depends only on the inner and outer tessellation levels corresponding to that edge and the spacing
decorations.

Rule 8 The value of all defined components of TessCoord will be in the range [0, 1]. Additionally, for
any defined component x of TessCoord, the results of computing 1.0-x in a tessellation evaluation
shader will be exact. If any floating-point values in the range [0, 1] fail to satisfy this property, such
values must not be used as tessellation coordinate components.

5251

Appendix I: Lexicon
This appendix defines terms, abbreviations, and API prefixes used in the Specification.

Glossary
The terms defined in this section are used consistently throughout the Specification and may be
used with or without capitalization.

Accessible (Descriptor Binding)

A descriptor binding is accessible to a shader stage if that stage is included in the stageFlags of
the descriptor binding. Descriptors using that binding can only be used by stages in which they
are accessible.

Acquire Operation (Resource)

An operation that acquires ownership of an image subresource or buffer range.

Active (Descriptor Type)

When a descriptor with mutable type is updated with vkUpdateDescriptorSets, the active
descriptor type changes. When the descriptor is consumed by shaders, it is the active descriptor
type which determines validity, i.e. VkDescriptorSetLayoutBinding::descriptorType is replaced
with the active descriptor type. A mismatch in active descriptor type and consumption by shader
is considered an undefined descriptor.

Active (Transform Feedback)

Transform feedback is made active after vkCmdBeginTransformFeedbackEXT executes and
remains active until vkCmdEndTransformFeedbackEXT executes. While transform feedback is
active, data written to variables in the output interface of the last pre-rasterization shader stage
of the graphics pipeline are captured to the bound transform feedback buffers if those variables
are decorated for transform feedback.

Adjacent Vertex

A vertex in an adjacency primitive topology that is not part of a given primitive, but is accessible
in geometry shaders.

Active Object (Ray Tracing)

A primitive or instance in a ray tracing acceleration structure which has a corresponding ID, and
is not inactive (meaning that it is visible to rays).

Advanced Blend Operation

Blending performed using one of the blend operation enums introduced by the
VK_EXT_blend_operation_advanced extension. See Advanced Blending Operations.

Alias (API type/command)

An identical definition of another API type/command with the same behavior but a different
name.

5252

Aliased Range (Memory)

A range of a device memory allocation that is bound to multiple resources simultaneously.

Allocation Scope

An association of a host memory allocation to a parent object or command, where the
allocation’s lifetime ends before or at the same time as the parent object is freed or destroyed, or
during the parent command.

Aspect (Image)

Some image types contain multiple kinds (called “aspects”) of data for each pixel, where each
aspect is used in a particular way by the pipeline and may be stored differently or separately
from other aspects. For example, the color components of an image format make up the color
aspect of the image, and can be used as a framebuffer color attachment. Some operations, like
depth testing, operate only on specific aspects of an image.

Attachment (Render Pass)

A zero-based integer index name used in render pass creation to refer to a framebuffer
attachment that is accessed by one or more subpasses. The index also refers to an attachment
description which includes information about the properties of the image view that will later be
attached.

Availability Operation

An operation that causes the values generated by specified memory write accesses to become
available for future access.

Available

A state of values written to memory that allows them to be made visible.

Axis-aligned Bounding Box

A box bounding a region in space defined by extents along each axis and thus representing a box
where each edge is aligned to one of the major axes.

Back-Facing

See Facingness.

Batch

A single structure submitted to a queue as part of a queue submission command, describing a
set of queue operations to execute.

Backwards Compatibility

A given version of the API is backwards compatible with an earlier version if an application,
relying only on valid behavior and functionality defined by the earlier specification, is able to
correctly run against each version without any modification. This assumes no active attempt by
that application to not run when it detects a different version.

Binary Semaphore

A semaphore with a boolean payload indicating whether the semaphore is signaled or
unsignaled. Represented by a VkSemaphore object created with a semaphore type of

5253

VK_SEMAPHORE_TYPE_BINARY .

Binding (Memory)

An association established between a range of a resource object and a range of a memory object.
These associations determine the memory locations affected by operations performed on
elements of a resource object. Memory bindings are established using the vkBindBufferMemory
command for non-sparse buffer objects, using the vkBindImageMemory command for non-
sparse image objects , and using the vkQueueBindSparse command for sparse resources .

Blend Constant

Four floating point (RGBA) values used as an input to blending.

Blending

Arithmetic operations between a fragment color value and a value in a color attachment that
produce a final color value to be written to the attachment.

Buffer

A resource that represents a linear array of data in device memory. Represented by a VkBuffer
object.

Buffer Device Address

A 64-bit value used in a shader to access buffer memory through the PhysicalStorageBuffer
storage class.

Buffer View

An object that represents a range of a specific buffer, and state controlling how the contents are
interpreted. Represented by a VkBufferView object.

Built-In Variable

A variable decorated in a shader, where the decoration makes the variable take values provided
by the execution environment or values that are generated by fixed-function pipeline stages.

Built-In Interface Block

A block defined in a shader containing only variables decorated with built-in decorations, and is
used to match against other shader stages.

Clip Coordinates

The homogeneous coordinate space in which vertex positions (Position decoration) are written
by pre-rasterization shader stages.

Clip Distance

A built-in output from pre-rasterization shader stages defining a clip half-space against which
the primitive is clipped.

Clip Volume

The intersection of the view volume with all clip half-spaces.

5254

Color Attachment

A subpass attachment point, or image view, that is the target of fragment color outputs and
blending.

Color Fragment

A unique color value within a pixel of a multisampled color image. The fragment mask will
contain indices to the color fragment.

Color Renderable Format

A VkFormat where VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT is set in one of the following,
depending on the image’s tiling:

• VkFormatProperties::linearTilingFeatures

• VkFormatProperties::optimalTilingFeatures or a VkFormat where
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV is set in VkFormatProperties
::linearTilingFeatures

• VkDrmFormatModifierPropertiesEXT::drmFormatModifierTilingFeatures

Combined Image Sampler

A descriptor type that includes both a sampled image and a sampler.

Command Buffer

An object that records commands to be submitted to a queue. Represented by a
VkCommandBuffer object.

Command Buffer Nesting Level

The Command Buffer Nesting Level of a secondary command buffer is equal to the maximum
nesting level of all secondary command buffers executed by that command buffer plus one,
where a secondary command buffer that executes no other secondary command buffers has a
nesting level of zero.

Command Pool

An object that command buffer memory is allocated from, and that owns that memory.
Command pools aid multithreaded performance by enabling different threads to use different
allocators, without internal synchronization on each use. Represented by a VkCommandPool
object.

Compatible Allocator

When allocators are compatible, allocations from each allocator can be freed by the other
allocator.

Compatible Image Formats

When formats are compatible, images created with one of the formats can have image views
created from it using any of the compatible formats. Also see Size-Compatible Image Formats.

Compatible Queues

Queues within a queue family. Compatible queues have identical properties.

5255

Complete Mipmap Chain

The entire set of mip levels that can be provided for an image, from the largest application
specified mip level size down to the minimum mip level size. See Image Mip Level Sizing.

Completed Operation

A deferred operation whose corresponding command has been executed to completion. See
Deferred Host Operations

Component (Format)

A distinct part of a format. Color components are represented with R, G, B, and A. Depth and
stencil components are represented with D and S. Formats can have multiple instances of the
same component. Some formats have other notations such as E or X which are not considered a
component of the format.

Compressed Texel Block

An element of an image having a block-compressed format, comprising a rectangular block of
texel values that are encoded as a single value in memory. Compressed texel blocks of a
particular block-compressed format have a corresponding width, height, and depth defining the
dimensions of these elements in units of texels, and a size in bytes of the encoding in memory.

Constant Integral Expressions

A SPIR-V constant instruction whose type is OpTypeInt. See Constant Instruction in section 2.2.1
“Instructions” of the Khronos SPIR-V Specification.

Cooperative Matrix

A SPIR-V type where the storage for and computations performed on the matrix are spread
across a set of invocations such as a subgroup.

Corner-Sampled Image

A VkImage where unnormalized texel coordinates are centered on integer values instead of half-
integer values. Specified by setting the VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV bit on
VkImageCreateInfo::flags at image creation.

Coverage Index

The index of a sample in the coverage mask.

Coverage Mask

A bitfield associated with a fragment representing the samples that were determined to be
covered based on the result of rasterization, and then subsequently modified by fragment
operations or the fragment shader.

Cull Distance

A built-in output from pre-rasterization shader stages defining a cull half-space where the
primitive is rejected if all vertices have a negative value for the same cull distance.

Cull Volume

The intersection of the view volume with all cull half-spaces.

5256

Decode Output Picture

A video picture resource used to store the result of a video decode operation.

Decoded Picture Buffer

An indexed set of reference pictures used by a video session. Abbreviated as DPB.

Decoded Picture Buffer Slot

An entry within a DPB that can be associated with a particular reference picture.

Decoded Picture Buffer Slot Index

The index of a DPB slot within its encompassing DPB.

Decoration (SPIR-V)

Auxiliary information such as built-in variables, stream numbers, invariance, interpolation type,
relaxed precision, etc., added to variables or structure-type members through decorations.

Deferrable Command

A command which allows deferred execution of host-side work. See Deferred Host Operations.

Deferrable Operation

A single logical item of host-side work which can be deferred. Represented by the
VkDeferredOperationKHR object. See Deferred Host Operations.

Deprecated (feature)

A feature is deprecated if it is no longer recommended as the correct or best way to achieve its
intended purpose.

Depth/Stencil Attachment

A subpass attachment point, or image view, that is the target of depth and/or stencil test
operations and writes.

Depth/Stencil Format

A VkFormat that includes depth and/or stencil components.

Depth/Stencil Image (or ImageView)

A VkImage (or VkImageView) with a depth/stencil format.

Depth/Stencil Resolve Attachment

A subpass attachment point, or image view, that is the target of a multisample resolve operation
from the corresponding depth/stencil attachment at the end of the subpass.

Derivative Group

A set of fragment or compute shader invocations that cooperate to compute derivatives,
including implicit derivatives for sampled image operations.

Descriptor

Information about a resource or resource view written into a descriptor set that is used to access
the resource or view from a shader.

5257

Descriptor Binding

An entry in a descriptor set layout corresponding to zero or more descriptors of a single
descriptor type in a set. Defined by a VkDescriptorSetLayoutBinding structure.

Descriptor Pool

An object that descriptor sets are allocated from, and that owns the storage of those descriptor
sets. Descriptor pools aid multithreaded performance by enabling different threads to use
different allocators, without internal synchronization on each use. Represented by a
VkDescriptorPool object.

Descriptor Set

An object that resource descriptors are written into via the API, and that can be bound to a
command buffer such that the descriptors contained within it can be accessed from shaders.
Represented by a VkDescriptorSet object.

Descriptor Set Layout

An object defining the set of resources (types and counts) and their relative arrangement (in the
binding namespace) within a descriptor set. Used when allocating descriptor sets and when
creating pipeline layouts. Represented by a VkDescriptorSetLayout object.

Device

The processor(s) and execution environment that perform tasks requested by the application via
the Vulkan API.

Device Group

A set of physical devices that support accessing each other’s memory and recording a single
command buffer that can be executed on all the physical devices.

Device Index

A zero-based integer that identifies one physical device from a logical device. A device index is
valid if it is less than the number of physical devices in the logical device.

Device Mask

A bitmask where each bit represents one device index. A device mask value is valid if every bit
that is set in the mask is at a bit position that is less than the number of physical devices in the
logical device.

Device Memory

Memory accessible to the device. Represented by a VkDeviceMemory object.

Device-Level Command

Any command that is dispatched from a logical device, or from a child object of a logical device.

Device-Level Functionality

All device-level commands and objects, and their structures, enumerated types, and enumerants.
Additionally, physical-device-level functionality defined by a device extension is also considered
device-level functionality.

5258

Device-Level Object

Logical device objects and their child objects. For example, VkDevice, VkQueue, and
VkCommandBuffer objects are device-level objects.

Device-Local Memory

Memory that is connected to the device, and may be more performant for device access than
host-local memory.

Direct Drawing Commands

Drawing commands that take all their parameters as direct arguments to the command (and not
sourced via structures in buffer memory as the indirect drawing commands). Includes
vkCmdDrawMultiIndexedEXT, vkCmdDrawMultiEXT, vkCmdDrawMeshTasksNV,
vkCmdDrawMeshTasksEXT, vkCmdDraw, and vkCmdDrawIndexed.

Disjoint

Disjoint planes are image planes to which memory is bound independently.
A disjoint image consists of multiple disjoint planes, and is created with the
VK_IMAGE_CREATE_DISJOINT_BIT bit set.

Dispatchable Command

A non-global command. The first argument to each dispatchable command is a dispatchable
handle type.

Dispatchable Handle

A handle of a pointer handle type which may be used by layers as part of intercepting API
commands.

Dispatching Commands

Commands that provoke work using a compute pipeline. Includes vkCmdDispatch and
vkCmdDispatchIndirect.

Drawing Commands

Commands that provoke work using a graphics pipeline. Includes vkCmdDraw,
vkCmdDrawIndexed, vkCmdDrawIndirectCount, vkCmdDrawIndexedIndirectCount,
vkCmdDrawIndirectCountKHR, vkCmdDrawIndexedIndirectCountKHR,
vkCmdDrawIndirectCountAMD, vkCmdDrawIndexedIndirectCountAMD,
vkCmdDrawMultiIndexedEXT, vkCmdDrawMultiEXT, vkCmdDrawMeshTasksNV,
vkCmdDrawMeshTasksIndirectNV, vkCmdDrawMeshTasksIndirectCountNV,
vkCmdDrawMeshTasksEXT, vkCmdDrawMeshTasksIndirectEXT,
vkCmdDrawMeshTasksIndirectCountEXT, vkCmdDrawIndirect, and
vkCmdDrawIndexedIndirect.

Duration (Command)

The duration of a Vulkan command refers to the interval between calling the command and its
return to the caller.

Dynamic Storage Buffer

A storage buffer whose offset is specified each time the storage buffer is bound to a command

5259

buffer via a descriptor set.

Dynamic Uniform Buffer

A uniform buffer whose offset is specified each time the uniform buffer is bound to a command
buffer via a descriptor set.

Dynamically Uniform

See Dynamically Uniform in section 2.2 “Terms” of the Khronos SPIR-V Specification.

Encode Input Picture

A video picture resource used as the input of a video encode operation.

Element

Arrays are composed of multiple elements, where each element exists at a unique index within
that array. Used primarily to describe data passed to or returned from the Vulkan API.

Explicitly-Enabled Layer

A layer enabled by the application by adding it to the enabled layer list in vkCreateInstance or
vkCreateDevice.

Event

A synchronization primitive that is signaled when execution of previous commands completes
through a specified set of pipeline stages. Events can be waited on by the device and polled by
the host. Represented by a VkEvent object.

Executable State (Command Buffer)

A command buffer that has ended recording commands and can be executed. See also Initial
State and Recording State.

Execution Dependency

A dependency that guarantees that certain pipeline stages’ work for a first set of commands has
completed execution before certain pipeline stages’ work for a second set of commands begins
execution. This is accomplished via pipeline barriers, subpass dependencies, events, or implicit
ordering operations.

Execution Dependency Chain

A sequence of execution dependencies that transitively act as a single execution dependency.

Explicit chroma reconstruction

An implementation of sampler Y′CBCR conversion which reconstructs reduced-resolution chroma
samples to luma resolution and then separately performs texture sample interpolation. This is
distinct from an implicit implementation, which incorporates chroma sample reconstruction
into texture sample interpolation.

Extension Scope

The set of objects and commands that can be affected by an extension. Extensions are either
device scope or instance scope.

5260

Extending Structure

A structure type which may appear in the pNext chain of another structure, extending the
functionality of the other structure. Extending structures may be defined by either core API
versions or extensions.

External Handle

A resource handle which has meaning outside of a specific Vulkan device or its parent instance.
External handles may be used to share resources between multiple Vulkan devices in different
instances, or between Vulkan and other APIs. Some external handle types correspond to
platform-defined handles, in which case the resource may outlive any particular Vulkan device
or instance and may be transferred between processes, or otherwise manipulated via
functionality defined by the platform for that handle type.

External synchronization

A type of synchronization required of the application, where parameters defined to be
externally synchronized must not be used simultaneously in multiple threads.

Facingness (Polygon)

A classification of a polygon as either front-facing or back-facing, depending on the orientation
(winding order) of its vertices.

Facingness (Fragment)

A fragment is either front-facing or back-facing, depending on the primitive it was generated
from. If the primitive was a polygon (regardless of polygon mode), the fragment inherits the
facingness of the polygon. All other fragments are front-facing.

Fence

A synchronization primitive that is signaled when a set of batches or sparse binding operations
complete execution on a queue. Fences can be waited on by the host. Represented by a VkFence
object.

Flat Shading

A property of a vertex attribute that causes the value from a single vertex (the provoking vertex)
to be used for all vertices in a primitive, and for interpolation of that attribute to return that
single value unaltered.

Format Features

A set of features from VkFormatFeatureFlagBits that a VkFormat is capable of using for various
commands. The list is determined by factors such as VkImageTiling.

Fragment

A rectangular framebuffer region with associated data produced by rasterization and processed
by fragment operations including the fragment shader.

Fragment Area

The width and height, in pixels, of a fragment.

5261

Fragment Density

The ratio of fragments per framebuffer area in the x and y direction.

Fragment Density Texel Size

The (w,h) framebuffer region in pixels that each texel in a fragment density map applies to.

Fragment Input Attachment Interface

Variables with UniformConstant storage class and a decoration of InputAttachmentIndex that are
statically used by a fragment shader’s entry point, which receive values from input attachments.

Fragment Mask

A lookup table that associates color samples with color fragment values.

Fragment Output Interface

A fragment shader entry point’s variables with Output storage class, which output to color and/or
depth/stencil attachments.

Frame (Video)

A multi-dimensional array of luma samples and an optional multi-dimensional array of chroma
samples.

Fragment Tile Image Interface

A fragment shader entry point’s variables with TileImageEXT storage class and a decoration of
Location, which are used to read values from color attachments.

Framebuffer

A collection of image views and a set of dimensions that, in conjunction with a render pass,
define the inputs and outputs used by drawing commands. Represented by a VkFramebuffer
object.

Framebuffer Attachment

One of the image views used in a framebuffer.

Framebuffer Coordinates

A coordinate system in which adjacent pixels’ coordinates differ by 1 in x and/or y, with (0,0) in
the upper left corner and pixel centers at half-integers.

Framebuffer-Space

Operating with respect to framebuffer coordinates.

Framebuffer-Local

A framebuffer-local dependency guarantees that only for a single framebuffer region, the first
set of operations happens-before the second set of operations.

Framebuffer-Global

A framebuffer-global dependency guarantees that for all framebuffer regions, the first set of
operations happens-before the second set of operations.

5262

Framebuffer Region

A framebuffer region is a set of sample (x, y, layer, sample) coordinates that is a subset of the
entire framebuffer.

Front-Facing

See Facingness.

Full Compatibility

A given version of the API is fully compatible with another version if an application, relying only
on valid behavior and functionality defined by either of those specifications, is able to correctly
run against each version without any modification. This assumes no active attempt by that
application to not run when it detects a different version.

Global Command

A Vulkan command for which the first argument is not a dispatchable handle type.

Global Workgroup

A collection of local workgroups dispatched by a single dispatching or single mesh task drawing
command.

Handle

An opaque integer or pointer value used to refer to a Vulkan object. Each object type has a
unique handle type.

Happen-after, happens-after

A transitive, irreflexive and antisymmetric ordering relation between operations. An execution
dependency with a source of A and a destination of B enforces that B happens-after A. The
inverse relation of happens-before.

Happen-before, happens-before

A transitive, irreflexive and antisymmetric ordering relation between operations. An execution
dependency with a source of A and a destination of B enforces that A happens-before B. The
inverse relation of happens-after.

Helper Invocation

A fragment shader invocation that is created solely for the purposes of evaluating derivatives for
use in non-helper fragment shader invocations, and which does not have side effects.

Host

The processor(s) and execution environment that the application runs on, and that the Vulkan
API is exposed on.

Host Mapped Device Memory

Device memory that is mapped for host access using vkMapMemory.

Host Mapped Foreign Memory

Memory owned by a foreign device that is mapped for host access.

5263

Host Memory

Memory not accessible to the device, used to store implementation data structures.

Host-Accessible Subresource

A buffer, or a linear image subresource in either the VK_IMAGE_LAYOUT_PREINITIALIZED or
VK_IMAGE_LAYOUT_GENERAL layout. Host-accessible subresources have a well-defined addressing
scheme which can be used by the host.

Host-Local Memory

Memory that is not local to the device, and may be less performant for device access than
device-local memory.

Host-Visible Memory

Device memory that can be mapped on the host and can be read and written by the host.

ICD

Installable Client Driver. An ICD is represented as a VkPhysicalDevice.

Identically Defined Objects

Objects of the same type where all arguments to their creation or allocation functions, with the
exception of pAllocator, are

1. Vulkan handles which refer to the same object or

2. identical scalar or enumeration values or

3. Host pointers which point to an array of values or structures which also satisfy these three
constraints.

Image

A resource that represents a multi-dimensional formatted interpretation of device memory.
Represented by a VkImage object.

Image Subresource

A specific mipmap level, layer, and set of aspects of an image.

Image Subresource Range

A set of image subresources that are contiguous mipmap levels and layers.

Image View

An object that represents an image subresource range of a specific image, and state controlling
how the contents are interpreted. Represented by a VkImageView object.

Immutable Sampler

A sampler descriptor provided at descriptor set layout creation time for a specific binding. This
sampler is then used for that binding in all descriptor sets allocated with the layout, and it
cannot be changed.

Implicit chroma reconstruction

An implementation of sampler Y′CBCR conversion which reconstructs the reduced-resolution

5264

chroma samples directly at the sample point, as part of the normal texture sampling operation.
This is distinct from an explicit chroma reconstruction implementation, which reconstructs the
reduced-resolution chroma samples to the resolution of the luma samples, then filters the result
as part of texture sample interpolation.

Implicitly-Enabled Layer

A layer enabled by a loader-defined mechanism outside the Vulkan API, rather than explicitly by
the application during instance or device creation.

Inactive Object (Ray Tracing)

A primitive or instance in a ray tracing acceleration structure which has a corresponding ID, but
which will never report an intersection with any ray.

Index Buffer

A buffer bound via vkCmdBindIndexBuffer which is the source of index values used to fetch
vertex attributes for a vkCmdDrawIndexed or vkCmdDrawIndexedIndirect command.

Indexed Drawing Commands

Drawing commands which use an index buffer as the source of index values used to fetch vertex
attributes for a drawing command. Includes vkCmdDrawIndexed,
vkCmdDrawIndexedIndirectCount, vkCmdDrawIndexedIndirectCountKHR,
vkCmdDrawIndexedIndirectCountAMD, vkCmdDrawMultiIndexedEXT, and
vkCmdDrawIndexedIndirect.

Indirect Commands

Drawing or dispatching commands that source some of their parameters from structures in
buffer memory. Includes vkCmdDrawIndirect, vkCmdDrawIndexedIndirect,
vkCmdDrawIndirectCount, vkCmdDrawIndexedIndirectCount, vkCmdDrawIndirectCountKHR,
vkCmdDrawIndexedIndirectCountKHR, vkCmdDrawIndirectCountAMD,
vkCmdDrawIndexedIndirectCountAMD, vkCmdDrawMeshTasksIndirectNV,
vkCmdDrawMeshTasksIndirectCountNV, vkCmdDrawMeshTasksIndirectEXT,
vkCmdDrawMeshTasksIndirectCountEXT, and vkCmdDispatchIndirect.

Indirect Commands Layout

A definition of a sequence of commands, that are generated on the device via
vkCmdPreprocessGeneratedCommandsNV and vkCmdExecuteGeneratedCommandsNV. Each
sequence is comprised of multiple VkIndirectCommandsTokenTypeNV, which represent a subset
of traditional command buffer commands. Represented as VkIndirectCommandsLayoutNV.

Indirect Drawing Commands

Drawing commands that source some of their parameters from structures in buffer memory.
Includes vkCmdDrawIndirect, vkCmdDrawIndirectCount, vkCmdDrawIndexedIndirectCount,
vkCmdDrawIndirectCountKHR, vkCmdDrawIndexedIndirectCountKHR,
vkCmdDrawIndirectCountAMD, vkCmdDrawIndexedIndirectCountAMD,
vkCmdDrawMeshTasksIndirectNV, vkCmdDrawMeshTasksIndirectCountNV,
vkCmdDrawMeshTasksIndirectEXT, vkCmdDrawMeshTasksIndirectCountEXT, and
vkCmdDrawIndexedIndirect.

5265

Initial State (Command Buffer)

A command buffer that has not begun recording commands. See also Recording State and
Executable State.

Inline Uniform Block

A descriptor type that represents uniform data stored directly in descriptor sets, and supports
read-only access in a shader.

Input Attachment

A descriptor type that represents an image view, and supports unfiltered read-only access in a
shader, only at the fragment’s location in the view.

Instance

The top-level Vulkan object, which represents the application’s connection to the
implementation. Represented by a VkInstance object.

Instance-Level Command

Any command that is dispatched from an instance, or from a child object of an instance, except
for physical devices and their children.

Instance-Level Functionality

All instance-level commands and objects, and their structures, enumerated types, and
enumerants.

Instance-Level Object

High-level Vulkan objects, which are not physical devices, nor children of physical devices. For
example, VkInstance is an instance-level object.

Instance (Memory)

In a logical device representing more than one physical device, some device memory allocations
have the requested amount of memory allocated multiple times, once for each physical device in
a device mask. Each such replicated allocation is an instance of the device memory.

Instance (Resource)

In a logical device representing more than one physical device, buffer and image resources exist
on all physical devices but can be bound to memory differently on each. Each such replicated
resource is an instance of the resource.

Internal Synchronization

A type of synchronization required of the implementation, where parameters not defined to be
externally synchronized may require internal mutexing to avoid multithreaded race conditions.

Invocation (Shader)

A single execution of an entry point in a SPIR-V module. For example, a single vertex’s execution
of a vertex shader or a single fragment’s execution of a fragment shader.

Invocation Group

A set of shader invocations that are executed in parallel and that must execute the same control

5266

flow path in order for control flow to be considered dynamically uniform.

Invocation Repack Instruction

A ray tracing instruction where the implementation may change the set of invocations that are
executing.

Join (Deferred Host Operations)

The act of instructing a thread to participate in the execution of a deferred operation. See
Deferred Host Operations.

Linear Color Attachment

A color attachment with linear tiling

Linear Resource

A resource is linear if it is one of the following:

• a VkBuffer

• a VkImage created with VK_IMAGE_TILING_LINEAR

• a VkImage created with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT and whose Linux DRM
format modifier is DRM_FORMAT_MOD_LINEAR

• a VkAccelerationStructureNV

Because a VkAccelerationStructureKHR resource does not have memory bound to it directly, it is
considered neither linear nor non-linear. However, the VkBuffer on which a
VkAccelerationStructureKHR resource is placed is a linear resource.

A resource is non-linear if it is one of the following:

• a VkImage created with VK_IMAGE_TILING_OPTIMAL

• a VkImage created with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT and whose Linux DRM
format modifier is not DRM_FORMAT_MOD_LINEAR

Linux DRM Format Modifier

A 64-bit, vendor-prefixed, semi-opaque unsigned integer describing vendor-specific details of an
image’s memory layout. In Linux graphics APIs, modifiers are commonly used to specify the
memory layout of externally shared images. An image has a modifier if and only if it is created
with tiling equal to VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT. For more details, refer to the
appendix for extension VK_EXT_image_drm_format_modifier.

Local Workgroup

A collection of compute shader invocations invoked by a single dispatching command, which
share data via WorkgroupLocal variables and can synchronize with each other.

Logical Device

An object that represents the application’s interface to the physical device. The logical device is
the parent of most Vulkan objects. Represented by a VkDevice object.

5267

Logical Operation

Bitwise operations between a fragment color value and a value in a color attachment, that
produce a final color value to be written to the attachment.

Lost Device

A state that a logical device may be in as a result of unrecoverable implementation errors, or
other exceptional conditions.

Mappable

See Host-Visible Memory.

Memory Dependency

A memory dependency is an execution dependency which includes availability and visibility
operations such that:

• The first set of operations happens-before the availability operation

• The availability operation happens-before the visibility operation

• The visibility operation happens-before the second set of operations

Memory Domain

A memory domain is an abstract place to which memory writes are made available by
availability operations and memory domain operations. The memory domains correspond to the
set of agents that the write can then be made visible to. The memory domains are host, device,
shader, workgroup instance (for workgroup instance there is a unique domain for each compute
workgroup) and subgroup instance (for subgroup instance there is a unique domain for each
subgroup).

Memory Domain Operation

An operation that makes the writes that are available to one memory domain available to
another memory domain.

Memory Heap

A region of memory from which device memory allocations can be made.

Memory Type

An index used to select a set of memory properties (e.g. mappable, cached) for a device memory
allocation.

Mesh Shading Pipeline

A graphics pipeline where the primitives are assembled explicitly in the shader stages. In
contrast to the primitive shading pipeline where input primitives are assembled by fixed
function processing.

Mesh Tasks Drawing Commands

Drawing commands which create shader invocations organized in workgroups for drawing
mesh tasks. Includes vkCmdDrawMeshTasksNV, vkCmdDrawMeshTasksIndirectNV, and
vkCmdDrawMeshTasksIndirectCountNV, vkCmdDrawMeshTasksEXT,
vkCmdDrawMeshTasksIndirectEXT, and vkCmdDrawMeshTasksIndirectCountEXT .

5268

Minimum Mip Level Size

The smallest size that is permitted for a mip level. For conventional images this is 1x1x1. For
corner-sampled images, this is 2x2x2. See Image Mip Level Sizing.

Mip Tail Region

The set of mipmap levels of a sparse residency texture that are too small to fill a sparse block,
and that must all be bound to memory collectively and opaquely.

Multi-planar

A multi-planar format (or “planar format”) is an image format consisting of more than one plane,
identifiable with a _2PLANE or _3PLANE component to the format name and listed in Formats
requiring sampler Y′CBCR conversion for VK_IMAGE_ASPECT_COLOR_BIT image views. A multi-planar
image (or “planar image”) is an image of a multi-planar format.

Nested Command Buffers

A nested command buffer is a secondary command buffer that is executed by another secondary
command buffer, which may itself execute other secondary command buffers.

Non-Dispatchable Handle

A handle of an integer handle type. Handle values may not be unique, even for two objects of
the same type.

Non-Indexed Drawing Commands

Drawing commands for which the vertex attributes are sourced in linear order from the vertex
input attributes for a drawing command (i.e. they do not use an index buffer). Includes
vkCmdDraw, vkCmdDrawIndirectCount, vkCmdDrawIndirectCountKHR,
vkCmdDrawIndirectCountAMD, vkCmdDrawMultiEXT, and vkCmdDrawIndirect.

Normalized

A value that is interpreted as being in the range [0,1] as a result of being implicitly divided by
some other value.

Normalized Device Coordinates

A coordinate space after perspective division is applied to clip coordinates, and before the
viewport transformation converts them to framebuffer coordinates.

Obsoleted (feature)

A feature is obsolete if it can no longer be used.

Opaque Capture Address

A 64-bit value representing the device address of a buffer or memory object that is expected to
be used by trace capture/replay tools in combination with the bufferDeviceAddress feature.

Overlapped Range (Aliased Range)

The aliased range of a device memory allocation that intersects a given image subresource of an
image or range of a buffer.

5269

Ownership (Resource)

If an entity (e.g. a queue family) has ownership of a resource, access to that resource is well-
defined for access by that entity.

Packed Format

A format whose components are stored as a single texel block in memory, with their relative
locations defined within that element.

Passthrough Geometry Shader

A geometry shader which uses the PassthroughNV decoration on a variable in its input interface.
Output primitives in a passthrough geometry shader always have the same topology as the input
primitive and are not produced by emitting vertices.

Payload

Importable or exportable reference to the internal data of an object in Vulkan.

Per-View

A variable that has an array of values which are output, one for each view that is being
generated. A mesh shader which uses the PerViewNV decoration on a variable in its output
interface.

Peer Memory

An instance of memory corresponding to a different physical device than the physical device
performing the memory access, in a logical device that represents multiple physical devices.

Physical Device

An object that represents a single device in the system. Represented by a VkPhysicalDevice
object.

Physical-Device-Level Command

Any command that is dispatched from a physical device.

Physical-Device-Level Functionality

All physical-device-level commands and objects, and their structures, enumerated types, and
enumerants.

Physical-Device-Level Object

Physical device objects. For example, VkPhysicalDevice is a physical-device-level object.

Pipeline

An object controlling how graphics or compute work is executed on the device. A pipeline
includes one or more shaders, as well as state controlling any non-programmable stages of the
pipeline. Represented by a VkPipeline object.

Pipeline Barrier

An execution and/or memory dependency recorded as an explicit command in a command
buffer, that forms a dependency between the previous and subsequent commands.

5270

Pipeline Cache

An object that can be used to collect and retrieve information from pipelines as they are created,
and can be populated with previously retrieved information in order to accelerate pipeline
creation. Represented by a VkPipelineCache object.

Pipeline Layout

An object defining the set of resources (via a collection of descriptor set layouts) and push
constants used by pipelines that are created using the layout. Used when creating a pipeline and
when binding descriptor sets and setting push constant values. Represented by a
VkPipelineLayout object.

Pipeline Library

A pipeline that cannot be directly used, instead defining a set of shaders and shader groups
which will be linked into other pipelines.

Pipeline Stage

A logically independent execution unit that performs some of the operations defined by an
action command.

Pipeline Trace Ray Instruction

A ray tracing instruction which traces a ray into an acceleration structure when using ray
tracing pipelines. One of:

• OpTraceNV

• OpTraceRayKHR

• OpTraceRayMotionNV

• OpTraceMotionNV

• OpHitObjectTraceRayNV

• OpHitObjectTraceRayMotionNV

pNext Chain

A set of structures chained together through their pNext members.

Planar

See multi-planar.

Plane

An image plane is part of the representation of an image, containing a subset of the color
components necessary to represent the texels in the image and with a contiguous mapping of
coordinates to bound memory. Most images consist only of a single plane, but some formats
spread the components across multiple image planes. The host-accessible properties of each
image plane are accessible for a linear layout using vkGetImageSubresourceLayout. If a multi-
planar image is created with the VK_IMAGE_CREATE_DISJOINT_BIT bit set, the image is described as
disjoint, and its planes are therefore bound to memory independently.

5271

Point Sampling (Rasterization)

A rule that determines whether a fragment sample location is covered by a polygon primitive by
testing whether the sample location is in the interior of the polygon in framebuffer-space, or on
the boundary of the polygon according to the tie-breaking rules.

Potential Format Features

The union of all VkFormatFeatureFlagBits that the implementation supports for a specified
VkFormat, over all supported image tilings. For Android external formats the
VkFormatFeatureFlagBits is provided by the implementation. For QNX Screen external formats
the VkFormatFeatureFlagBits is provided by the implementation.

Pre-rasterization

Operations that execute before rasterization, and any state associated with those operations.

Presentable image

A VkImage object obtained from a VkSwapchainKHR used to present to a VkSurfaceKHR object.

Preserve Attachment

One of a list of attachments in a subpass description that is not read or written by the subpass,
but that is read or written on earlier and later subpasses and whose contents must be preserved
through this subpass.

Primary Command Buffer

A command buffer that can execute secondary command buffers, and can be submitted directly
to a queue.

Primitive Shading Pipeline

A graphics pipeline where input primitives are assembled by fixed function processing. It is the
counterpart to mesh shading.

Primitive Topology

State controlling how vertices are assembled into primitives, e.g. as lists of triangles, strips of
lines, etc.

Promoted (feature)

A feature from an older extension is considered promoted if it is made available as part of a new
core version or newer extension with wider support.

Protected Buffer

A buffer to which protected device memory can be bound.

Protected-capable Device Queue

A device queue to which protected command buffers can be submitted.

Protected Command Buffer

A command buffer which can be submitted to a protected-capable device queue.

5272

Protected Device Memory

Device memory which can be visible to the device but must not be visible to the host.

Protected Image

An image to which protected device memory can be bound.

Provisional

A feature is released provisionally in order to get wider feedback on the functionality before it is
finalized. Provisional features may change in ways that break backwards compatibility, and thus
are not recommended for use in production applications.

Provoking Vertex

The vertex in a primitive from which flat shaded attribute values are taken. This is generally the
“first” vertex in the primitive, and depends on the primitive topology.

Push Constants

A small bank of values writable via the API and accessible in shaders. Push constants allow the
application to set values used in shaders without creating buffers or modifying and binding
descriptor sets for each update.

Push Constant Interface

The set of variables with PushConstant storage class that are statically used by a shader entry
point, and which receive values from push constant commands.

Push Descriptors

Descriptors that are written directly into a command buffer rather than into a descriptor set.
Push descriptors allow the application to set descriptors used in shaders without allocating or
modifying descriptor sets for each update.

Descriptor Update Template

An object specifying a mapping from descriptor update information in host memory to elements
in a descriptor set, which helps enable more efficient descriptor set updates.

Query Pool

An object containing a number of query entries and their associated state and results.
Represented by a VkQueryPool object.

Queue

An object that executes command buffers and sparse binding operations on a device.
Represented by a VkQueue object.

Queue Family

A set of queues that have common properties and support the same functionality, as advertised
in VkQueueFamilyProperties.

Queue Operation

A unit of work to be executed by a specific queue on a device, submitted via a queue submission
command. Each queue submission command details the specific queue operations that occur as

5273

a result of calling that command. Queue operations typically include work that is specific to each
command, and synchronization tasks.

Queue Submission

Zero or more batches and an optional fence to be signaled, passed to a command for execution
on a queue. See the Devices and Queues chapter for more information.

Ray Tracing Command

Commands that provoke work using a ray tracing pipeline. Includes vkCmdTraceRaysNV,
vkCmdTraceRaysKHR, and vkCmdTraceRaysIndirectKHR .

Reconstructed Picture

A video picture resource reconstructed from a compressed bitstream using video decode or
encode operations that can be used as a reference picture by future video decode or encode
operations with the same video session.

Recording State (Command Buffer)

A command buffer that is ready to record commands. See also Initial State and Executable State.

Reference Picture

A video picture resource used by video decode and encode operations to provide predictions of
the values of samples in the subsequently decoded or encoded pictures.

Reference Picture Metadata

Opaque state associated with a DPB slot, maintained by a video session.

Release Operation (Resource)

An operation that releases ownership of an image subresource or buffer range.

Render Pass

An object that represents a set of framebuffer attachments and phases of rendering using those
attachments. Represented by a VkRenderPass object.

Render Pass Instance

A use of a render pass in a command buffer.

Required Extensions

Extensions that must be enabled alongside extensions dependent on them (see Extension
Dependencies).

Reset (Command Buffer)

Resetting a command buffer discards any previously recorded commands and puts a command
buffer in the initial state.

Residency Code

An integer value returned by sparse image instructions, indicating whether any sparse unbound
texels were accessed.

5274

Resolve Attachment

A subpass attachment point, or image view, that is the target of a multisample resolve operation
from the corresponding color attachment at the end of the subpass.

Retired Swapchain

A swapchain that has been used as the oldSwapchain parameter to vkCreateSwapchainKHR.
Images cannot be acquired from a retired swapchain, however images that were acquired (but
not presented) before the swapchain was retired can be presented.

Sample Index

The index of a sample within a single set of samples.

Sample Shading

Invoking the fragment shader multiple times per fragment, with the covered samples
partitioned among the invocations.

Sampled Image

A descriptor type that represents an image view, and supports filtered (sampled) and unfiltered
read-only access in a shader.

Sampler

An object containing state controlling how sampled image data is sampled (or filtered) when
accessed in a shader. Also a descriptor type describing the object. Represented by a VkSampler
object.

Secondary Command Buffer

A command buffer that can be executed by a primary command buffer, and must not be
submitted directly to a queue.

Self-Dependency

A subpass dependency from a subpass to itself, i.e. with srcSubpass equal to dstSubpass. A self-
dependency is not automatically performed during a render pass instance, rather a subset of it
can be performed via vkCmdPipelineBarrier during the subpass.

Semaphore

A synchronization primitive that supports signal and wait operations, and can be used to
synchronize operations within a queue or across queues. Represented by a VkSemaphore object.

Shader

Instructions selected (via an entry point) from a shader module, which are executed in a shader
stage.

Shader Call

An instruction which may cause execution to continue in a different shader stage.

Shader Code

A stream of instructions used to describe the operation of a shader.

5275

Shader Group

A set of Shader Stages that are part of a VkPipeline containing multiple of such sets. This allows
the device to make use of all the shader groups from the bound pipeline independently.

Shader Module

A collection of shader code, potentially including several functions and entry points, that is used
to create shaders in pipelines. Represented by a VkShaderModule object.

Shader Stage

A stage of the graphics or compute pipeline that executes shader code.

Shading Rate

The ratio of the number of fragment shader invocations generated in a fully covered
framebuffer region to the size (in pixels) of that region.

Shading Rate Image

An image used to establish the shading rate for a framebuffer region, where each pixel controls
the shading rate for a corresponding framebuffer region.

Shared presentable image

A presentable image created from a swapchain with VkPresentModeKHR set to either
VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR or VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR.

Side Effect

A store to memory or atomic operation on memory from a shader invocation.

Single-plane format

A format that is not multi-planar.

Size-Compatible Image Formats

When a compressed image format and an uncompressed image format are size-compatible, it
means that the texel block size of the uncompressed format must equal the texel block size of
the compressed format.

Sparse Block

An element of a sparse resource that can be independently bound to memory. Sparse blocks of a
particular sparse resource have a corresponding size in bytes that they use in the bound
memory.

Sparse Image Block

A sparse block in a sparse partially-resident image. In addition to the sparse block size in bytes,
sparse image blocks have a corresponding width, height, and depth defining the dimensions of
these elements in units of texels or compressed texel blocks, the latter being used in case of
sparse images having a block-compressed format.

Sparse Unbound Texel

A texel read from a region of a sparse texture that does not have memory bound to it.

5276

SRT

A decomposition of a spatial transform separating out scale, rotation, and translation which has
better linear interpolation properties for representing motion.

Static Use

An object in a shader is statically used by a shader entry point if any function in the entry point’s
call tree contains an instruction using the object. A reference in the entry point’s interface list
does not constitute a static use. Static use is used to constrain the set of descriptors used by a
shader entry point.

Storage Buffer

A descriptor type that represents a buffer, and supports reads, writes, and atomics in a shader.

Storage Image

A descriptor type that represents an image view, and supports unfiltered loads, stores, and
atomics in a shader.

Storage Texel Buffer

A descriptor type that represents a buffer view, and supports unfiltered, formatted reads, writes,
and atomics in a shader.

Subgroup

A set of shader invocations that can synchronize and share data with each other efficiently. In
compute shaders, the local workgroup is a superset of the subgroup.

Subgroup Mask

A bitmask for all invocations in the current subgroup with one bit per invocation, starting with
the least significant bit in the first vector component, continuing to the last bit (less than
SubgroupSize) in the last required vector component.

Subpass

A phase of rendering within a render pass, that reads and writes a subset of the attachments.

Subpass Dependency

An execution and/or memory dependency between two subpasses described as part of render
pass creation, and automatically performed between subpasses in a render pass instance. A
subpass dependency limits the overlap of execution of the pair of subpasses, and can provide
guarantees of memory coherence between accesses in the subpasses.

Subpass Description

Lists of attachment indices for input attachments, color attachments, depth/stencil attachment,
resolve attachments, depth/stencil resolve, and preserve attachments used by the subpass in a
render pass.

Subset (Self-Dependency)

A subset of a self-dependency is a pipeline barrier performed during the subpass of the self-
dependency, and whose stage masks and access masks each contain a subset of the bits set in the
identically named mask in the self-dependency.

5277

Texel Block

A single addressable element of an image with an uncompressed VkFormat, or a single
compressed block of an image with a compressed VkFormat.

Texel Block Size

The size (in bytes) used to store a texel block of a compressed or uncompressed image.

Texel Coordinate System

One of three coordinate systems (normalized, unnormalized, integer) defining how texel
coordinates are interpreted in an image or a specific mipmap level of an image.

Tile Image

A per-tile view of a framebuffer attachment. If the VK_EXT_shader_tile_image extension is
enabled, the framebuffer is considered to be divided into tiles.

Timeline Semaphore

A semaphore with a strictly increasing 64-bit unsigned integer payload indicating whether the
semaphore is signaled with respect to a particular reference value. Represented by a
VkSemaphore object created with a semaphore type of VK_SEMAPHORE_TYPE_TIMELINE.

Uniform Texel Buffer

A descriptor type that represents a buffer view, and supports unfiltered, formatted, read-only
access in a shader.

Uniform Buffer

A descriptor type that represents a buffer, and supports read-only access in a shader.

Units in the Last Place (ULP)

A measure of floating-point error loosely defined as the smallest representable step in a floating-
point format near a given value. For the precise definition see Precision and Operation of SPIR-V
instructions or Jean-Michel Muller, “On the definition of ulp(x)”, RR-5504, INRIA. Other sources
may also use the term “unit of least precision”.

Unnormalized

A value that is interpreted according to its conventional interpretation, and is not normalized.

Unprotected Buffer

A buffer to which unprotected device memory can be bound.

Unprotected Command Buffer

A command buffer which can be submitted to an unprotected device queue or a protected-
capable device queue.

Unprotected Device Memory

Device memory which can be visible to the device and can be visible to the host.

Unprotected Image

An image to which unprotected device memory can be bound.

5278

User-Defined Variable Interface

A shader entry point’s variables with Input or Output storage class that are not built-in variables.

Vertex Input Attribute

A graphics pipeline resource that produces input values for the vertex shader by reading data
from a vertex input binding and converting it to the attribute’s format.

Vertex Stream

A vertex stream is where the last pre-rasterization shader stages outputs vertex data, which then
goes to the rasterizer, is captured to a transform feedback buffer, or both. Geometry shaders can
emit primitives to multiple independent vertex streams. Each vertex emitted by the geometry
shader is directed at one of the vertex streams.

Validation Cache

An object that can be used to collect and retrieve validation results from the validation layers,
and can be populated with previously retrieved results in order to accelerate the validation
process. Represented by a VkValidationCacheEXT object.

Variable-Sized Descriptor Binding

A descriptor binding whose size will be specified when a descriptor set is allocated using this
layout.

Vertex Input Binding

A graphics pipeline resource that is bound to a buffer and includes state that affects addressing
calculations within that buffer.

Vertex Input Interface

A vertex shader entry point’s variables with Input storage class, which receive values from
vertex input attributes.

Video Bitstream Buffer

A resource that represents a linear array of data in device memory storing encoded video data.
Represented by a VkBuffer object.

Video Coding Scope

A series of subsequent commands recorded into a command buffer starting with a
vkCmdBeginVideoCodingKHR command and ending with a vkCmdEndVideoCodingKHR
command that encompasses a set of video decode or encode operations.

Video Coding Operations

Any operations recorded into a command buffer within a video coding scope, including video
decode and encode operations.

Video Decode Operation

An operation consuming data from a video bitstream buffer and zero or more reference
pictures, and producing data to a decode output picture and an optional reconstructed picture.

5279

Video Encode Operation

An operation consuming data from an encode input picture and zero or more reference
pictures, and producing data to a video bitstream buffer and an optional reconstructed picture.

Video Picture Resource

A resource that represents a multi-dimensional formatted interpretation of device memory to be
used with a video session as a decode output picture, encode input picture, reconstructed
picture, and/or reference picture. It may contain metadata associated with a particular video
session it is used with. Represented by a VkImage object and referred to using VkImageView
objects created from it.

Video Session

A resource that represents and maintains the state needed to perform video decode or encode
operations. Represented by a VkVideoSessionKHR object.

Video Session Parameters

A resource that stores preprocessed codec-specific parameters used with a compatible video
session in video codec operations. Represented by a VkVideoSessionParametersKHR object.

Video Transcoding

The process of using the outputs of video decoding operations as inputs in video encoding
operations.

View Mask

When multiview is enabled, a view mask is a property of a subpass controlling which views the
rendering commands are broadcast to.

View Volume

A subspace in homogeneous coordinates, corresponding to post-projection x and y values
between -1 and +1, and z values between 0 and +1.

Viewport Transformation

A transformation from normalized device coordinates to framebuffer coordinates, based on a
viewport rectangle and depth range.

Visibility Operation

An operation that causes available values to become visible to specified memory accesses.

Visible

A state of values written to memory that allows them to be accessed by a set of operations.

Common Abbreviations
The abbreviations and acronyms defined in this section are sometimes used in the Specification
and the API where they are considered clear and commonplace.

Src

Source

5280

Dst

Destination

Min

Minimum

Max

Maximum

Rect

Rectangle

Info

Information

LOD

Level of Detail

Log

Logarithm

ID

Identifier

UUID

Universally Unique Identifier

Op

Operation

R

Red color component

G

Green color component

B

Blue color component

A

Alpha color component

RTZ

Round towards zero

RTE

Round to nearest even

5281

Video-Specific Abbreviations
The following abbreviations and acronyms are used in the context of video decode and encode
operations to refer to commonly used video compression terms in their usual abbreviated form:

AVC

Advanced Video Coding

Bipred

Bidirectional Prediction

CABAC

Context-Adaptive Binary Arithmetic Coding

CAVLC

Context-Adaptive Variable-Length Coding

CBR

Constant Bit Rate

CTB

Coding Tree Block

Diff

Difference

DPB

Decoded Picture Buffer

GOP

Group Of Pictures

HDR

High Dynamic Range

HEVC

High Efficiency Video Coding

HRD

Hypothetical Reference Decoder

IDC

Indicator

IDR

Instantaneous Decoder Refresh

5282

MB

Macroblock

MV

Motion Vector

NALU

Network Abstraction Layer Unit

OBU

Open Bitstream Unit

PCM

Pulse-Code Modulation

Pic

Picture

Pred

Prediction

PPS

Picture Parameter Set

QP

Quantization Parameter

RC

Rate Control

SPS

Sequence Parameter Set

Std

Standard

VBR

Variable Bit Rate

VCL

Video Coding Layer

VPS

Video Parameter Set

Prefixes
Prefixes are used in the API to denote specific semantic meaning of Vulkan names, or as a label to

5283

avoid name clashes, and are explained here:

VK/Vk/vk

Vulkan namespace
All types, commands, enumerants and defines in this specification are prefixed with these two
characters.

PFN/pfn

Function Pointer
Denotes that a type is a function pointer, or that a variable is of a pointer type.

p

Pointer
Variable is a pointer.

vkCmd

Commands that record commands in command buffers
These API commands do not result in immediate processing on the device. Instead, they record
the requested action in a command buffer for execution when the command buffer is submitted
to a queue.

s

Structure
Used to denote the VK_STRUCTURE_TYPE* member of each structure in sType

5284

Appendix J: Credits (Informative)
Vulkan 1.3 is the result of contributions from many people and companies participating in the
Khronos Vulkan Working Group, as well as input from the Vulkan Advisory Panel.

Members of the Working Group, including the company that they represented at the time of their
most recent contribution, are listed in the following section. Some specific contributions made by
individuals are listed together with their name.

Working Group Contributors to Vulkan
• Aaron Greig, Codeplay Software Ltd. (version 1.1)

• Aaron Hagan, AMD (version 1.1)

• Adam Jackson, Red Hat (versions 1.0, 1.1)

• Adam Śmigielski, Mobica (version 1.0)

• Aditi Verma, Qualcomm (version 1.3)

• Ahmed Abdelkhalek, AMD (version 1.3)

• Aidan Fabius, Core Avionics & Industrial Inc. (version 1.2)

• Alan Baker, Google (versions 1.1, 1.2, 1.3)

• Alan Ward, Google (versions 1.1, 1.2)

• Alejandro Piñeiro, Igalia (version 1.1)

• Alex Bourd, Qualcomm Technologies, Inc. (versions 1.0, 1.1)

• Alex Crabb, Caster Communications (versions 1.2, 1.3)

• Alex Walters, Imagination Technologies (versions 1.2, 1.3)

• Alexander Galazin, Arm (versions 1.0, 1.1, 1.2, 1.3)

• Alexey Sachkov, Intel (version 1.3)

• Allan MacKinnon, Google (version 1.3)

• Allen Hux, Intel (version 1.0)

• Alon Or-bach, Google (versions 1.0, 1.1, 1.2, 1.3) (WSI technical sub-group chair)

• Anastasia Stulova, Arm (versions 1.2, 1.3)

• Andreas Vasilakis, Think Silicon (version 1.2)

• Andres Gomez, Igalia (version 1.1)

• Andrew Cox, Samsung Electronics (version 1.0)

• Andrew Ellem, Google (version 1.3)

• Andrew Garrard, Imagination Technologies (versions 1.0, 1.1, 1.2, 1.3) (format wrangler)

• Andrew Poole, Samsung Electronics (version 1.0)

• Andrew Rafter, Samsung Electronics (version 1.0)

5285

• Andrew Richards, Codeplay Software Ltd. (version 1.0)

• Andrew Woloszyn, Google (versions 1.0, 1.1)

• Ann Thorsnes, Khronos (versions 1.2, 1.3)

• Antoine Labour, Google (versions 1.0, 1.1)

• Aras Pranckevičius, Unity Technologies (version 1.0)

• Arseny Kapoulkine, Roblox (version 1.3)

• Ashwin Kolhe, NVIDIA (version 1.0)

• Baldur Karlsson, Valve Software (versions 1.1, 1.2, 1.3)

• Barthold Lichtenbelt, NVIDIA (version 1.1)

• Bas Nieuwenhuizen, Google (versions 1.1, 1.2)

• Ben Bowman, Imagination Technologies (version 1.0)

• Benj Lipchak, Unknown (version 1.0)

• Bill Hollings, Brenwill (versions 1.0, 1.1, 1.2, 1.3)

• Bill Licea-Kane, Qualcomm Technologies, Inc. (versions 1.0, 1.1)

• Blaine Kohl, Khronos (versions 1.2, 1.3)

• Bob Fraser, Google (version 1.3)

• Boris Zanin, Mobica (versions 1.2, 1.3)

• Brent E. Insko, Intel (version 1.0)

• Brian Ellis, Qualcomm Technologies, Inc. (version 1.0)

• Brian Paul, VMware (versions 1.2, 1.3)

• Caio Marcelo de Oliveira Filho, Intel (versions 1.2, 1.3)

• Cass Everitt, Oculus VR (versions 1.0, 1.1)

• Cemil Azizoglu, Canonical (version 1.0)

• Lina Versace, Google (versions 1.0, 1.1, 1.2)

• Chang-Hyo Yu, Samsung Electronics (version 1.0)

• Charles Giessen, LunarG (version 1.3)

• Chia-I Wu, LunarG (version 1.0)

• Chris Frascati, Qualcomm Technologies, Inc. (version 1.0)

• Chris Glover, Google (version 1.3)

• Christian Forfang, Arm (version 1.3)

• Christoph Kubisch, NVIDIA (version 1.3)

• Christophe Riccio, Unity Technologies (versions 1.0, 1.1)

• Cody Northrop, LunarG (version 1.0)

• Colin Riley, AMD (version 1.1)

• Cort Stratton, Google (versions 1.1, 1.2)

5286

• Courtney Goeltzenleuchter, Google (versions 1.0, 1.1, 1.3)

• Craig Davies, Huawei (version 1.2)

• Dae Kim, Imagination Technologies (version 1.1)

• Damien Leone, NVIDIA (version 1.0)

• Dan Baker, Oxide Games (versions 1.0, 1.1)

• Dan Ginsburg, Valve Software (versions 1.0, 1.1, 1.2, 1.3)

• Daniel Johnston, Intel (versions 1.0, 1.1)

• Daniel Koch, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Daniel Rakos, AMD (versions 1.0, 1.1, 1.2, 1.3)

• Daniel Stone, Collabora (versions 1.1, 1.2)

• Daniel Vetter, Intel (version 1.2)

• David Airlie, Red Hat (versions 1.0, 1.1, 1.2, 1.3)

• David Mao, AMD (versions 1.0, 1.2)

• David Miller, Miller & Mattson (versions 1.0, 1.1) (Vulkan reference card)

• David Neto, Google (versions 1.0, 1.1, 1.2, 1.3)

• David Pankratz, Huawei (version 1.3)

• David Wilkinson, AMD (version 1.2)

• David Yu, Pixar (version 1.0)

• Dejan Mircevski, Google (version 1.1)

• Diego Novillo, Google (version 1.3)

• Dimitris Georgakakis, Think Silicon (version 1.3)

• Dominik Witczak, AMD (versions 1.0, 1.1, 1.3)

• Donald Scorgie, Imagination Technologies (version 1.2)

• Dzmitry Malyshau, Mozilla (versions 1.1, 1.2, 1.3)

• Ed Hutchins, Oculus (version 1.2)

• Emily Stearns, Khronos (versions 1.2, 1.3)

• François Duranleau, Gameloft (version 1.3)

• Frank (LingJun) Chen, Qualcomm Technologies, Inc. (version 1.0)

• Fred Liao, Mediatek (version 1.0)

• Gabe Dagani, Freescale (version 1.0)

• Gabor Sines, AMD (version 1.2)

• Graeme Leese, Broadcom (versions 1.0, 1.1, 1.2, 1.3)

• Graham Connor, Imagination Technologies (version 1.0)

• Graham Sellers, AMD (versions 1.0, 1.1)

• Graham Wihlidal, Electronic Arts (version 1.3)

5287

• Greg Fischer, LunarG (version 1.1)

• Gregory Grebe, AMD (version 1.3)

• Hai Nguyen, Google (versions 1.2, 1.3)

• Hans-Kristian Arntzen, Valve Software (versions 1.1, 1.2, 1.3)

• Henri Verbeet, Codeweavers (version 1.2)

• Wyvern Wang, Huawei (version 1.3)

• Hwanyong Lee, Kyungpook National University (version 1.0)

• Iago Toral, Igalia (versions 1.1, 1.2)

• Ian Elliott, Google (versions 1.0, 1.1, 1.2)

• Ian Romanick, Intel (versions 1.0, 1.1, 1.3)

• Ivan Briano, Intel (version 1.3)

• James Fitzpatrick, Imagination (version 1.3)

• James Hughes, Oculus VR (version 1.0)

• James Jones, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• James Riordon, Khronos (versions 1.2, 1.3)

• Jamie Madill, Google (version 1.3)

• Jan Hermes, Continental Corporation (versions 1.0, 1.1)

• Jan-Harald Fredriksen, Arm (versions 1.0, 1.1, 1.2, 1.3)

• Faith Ekstrand, Intel (versions 1.0, 1.1, 1.2, 1.3)

• Jean-François Roy, Google (versions 1.1, 1.2, 1.3)

• Jeff Bolz, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Jeff Juliano, NVIDIA (versions 1.0, 1.1, 1.2)

• Jeff Leger, Qualcomm Technologies, Inc. (versions 1.1, 1.3)

• Jeff Phillips, Khronos (version 1.3)

• Jeff Vigil, Samsung Electronics (versions 1.0, 1.1, 1.2, 1.3)

• Jens Owen, Google (versions 1.0, 1.1)

• Jeremy Hayes, LunarG (version 1.0)

• Jesse Barker, Unity Technologies (versions 1.0, 1.1, 1.2, 1.3)

• Jesse Hall, Google (versions 1.0, 1.1, 1.2, 1.3)

• Joe Davis, Samsung Electronics (version 1.1)

• Johannes van Waveren, Oculus VR (versions 1.0, 1.1)

• John Anthony, Arm (version 1.2, 1.3)

• John Kessenich, Google (versions 1.0, 1.1, 1.2, 1.3) (SPIR-V and GLSL for Vulkan spec author)

• John McDonald, Valve Software (versions 1.0, 1.1, 1.2, 1.3)

• John Zulauf, LunarG (versions 1.1, 1.2, 1.3)

5288

• Jon Ashburn, LunarG (version 1.0)

• Jon Leech, Independent (versions 1.0, 1.1, 1.2, 1.3) (XML toolchain, normative language, release
wrangler)

• Jonas Gustavsson, Samsung Electronics (versions 1.0, 1.1)

• Jonas Meyer, Epic Games (versions 1.2, 1.3)

• Jonathan Hamilton, Imagination Technologies (version 1.0)

• Jordan Justen, Intel (version 1.1)

• Joshua Ashton, Valve Software (version 1.3)

• Jungwoo Kim, Samsung Electronics (versions 1.0, 1.1)

• Jörg Wagner, Arm (version 1.1)

• Kalle Raita, Google (version 1.1)

• Karen Ghavam, LunarG (versions 1.1, 1.2, 1.3)

• Karl Schultz, LunarG (versions 1.1, 1.2)

• Kathleen Mattson, Khronos (versions 1.0, 1.1, 1.2)

• Kaye Mason, Google (version 1.2)

• Keith Packard, Valve (version 1.2)

• Kenneth Benzie, Codeplay Software Ltd. (versions 1.0, 1.1)

• Kenneth Russell, Google (version 1.1)

• Kerch Holt, NVIDIA (versions 1.0, 1.1)

• Kevin O’Neil, AMD (version 1.1)

• Kevin Petit, Arm (version 1.3)

• Kris Rose, Khronos (versions 1.2, 1.3)

• Kristian Kristensen, Intel (versions 1.0, 1.1)

• Krzysztof Iwanicki, Samsung Electronics (version 1.0)

• Larry Seiler, Intel (version 1.0)

• Laura Shubel, Caster Communications (version 1.3)

• Lauri Ilola, Nokia (version 1.1)

• Lei Zhang, Google (version 1.2)

• Lenny Komow, LunarG (versions 1.1, 1.2)

• Liam Middlebrook, NVIDIA (version 1.3)

• Lionel Landwerlin, Intel (versions 1.1, 1.2)

• Lisie Aartsen, Khronos (version 1.3)

• Liz Maitral, Khronos (version 1.2)

• Lou Kramer, AMD (version 1.3)

• Lutz Latta, Lucasfilm (version 1.0)

5289

• Maciej Jesionowski, AMD (version 1.1)

• Mais Alnasser, AMD (version 1.1)

• Marcin Kantoch, AMD (version 1.3)

• Marcin Rogucki, Mobica (version 1.1)

• Maria Rovatsou, Codeplay Software Ltd. (version 1.0)

• Mariusz Merecki, Intel (version 1.3)

• Mark Bellamy, Arm (version 1.2, 1.3)

• Mark Callow, Independent (versions 1.0, 1.1, 1.2, 1.3)

• Mark Kilgard, NVIDIA (versions 1.1, 1.2)

• Mark Lobodzinski, LunarG (versions 1.0, 1.1, 1.2)

• Mark Young, LunarG (versions 1.1, 1.3)

• Markus Tavenrath, NVIDIA (version 1.1)

• Marty Johnson, Khronos (version 1.3)

• Mateusz Przybylski, Intel (version 1.0)

• Mathias Heyer, NVIDIA (versions 1.0, 1.1)

• Mathias Schott, NVIDIA (versions 1.0, 1.1)

• Mathieu Robart, Arm (version 1.2)

• Matt Netsch, Qualcomm Technologies, Inc. (version 1.1)

• Matthew Rusch, NVIDIA (version 1.3)

• Matthäus Chajdas, AMD (versions 1.1, 1.2, 1.3)

• Maurice Ribble, Qualcomm Technologies, Inc. (versions 1.0, 1.1)

• Maxim Lukyanov, Samsung Electronics (version 1.0)

• Michael Blumenkrantz, Self (version 1.3)

• Michael Lentine, Google (version 1.0)

• Michael O’Hara, AMD (version 1.1)

• Michael Phillip, Samsung Electronics (version 1.2)

• Michael Wong, Codeplay Software Ltd. (version 1.1)

• Michael Worcester, Imagination Technologies (versions 1.0, 1.1)

• Michal Pietrasiuk, Intel (versions 1.0, 1.3)

• Mika Isojarvi, Google (versions 1.0, 1.1)

• Mike Schuchardt, LunarG (versions 1.1, 1.2)

• Mike Stroyan, LunarG (version 1.0)

• Mike Weiblen, LunarG (versions 1.1, 1.2, 1.3)

• Minyoung Son, Samsung Electronics (version 1.0)

• Mitch Singer, AMD (versions 1.0, 1.1, 1.2, 1.3)

5290

• Mythri Venugopal, Samsung Electronics (version 1.0)

• Naveen Leekha, Google (version 1.0)

• Neil Henning, AMD (versions 1.0, 1.1, 1.2, 1.3)

• Neil Hickey, Arm (version 1.2)

• Neil Trevett, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Nick Penwarden, Epic Games (version 1.0)

• Nicolai Hähnle, AMD (version 1.1)

• Niklas Smedberg, Unity Technologies (version 1.0)

• Norbert Nopper, Independent (versions 1.0, 1.1)

• Nuno Subtil, NVIDIA (versions 1.1, 1.2, 1.3)

• Pat Brown, NVIDIA (version 1.0)

• Patrick Cozzi, Independent (version 1.1)

• Patrick Doane, Blizzard Entertainment (version 1.0)

• Peter Lohrmann, AMD (versions 1.0, 1.2)

• Petros Bantolas, Imagination Technologies (version 1.1)

• Philip Rebohle, Valve Software (version 1.3)

• Pierre Boudier, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Pierre-Loup Griffais, Valve Software (versions 1.0, 1.1, 1.2, 1.3)

• Piers Daniell, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Ping Liu, Intel (version 1.3)

• Piotr Bialecki, Intel (version 1.0)

• Piotr Byszewski, Mobica (version 1.3)

• Prabindh Sundareson, Samsung Electronics (version 1.0)

• Pyry Haulos, Google (versions 1.0, 1.1) (Vulkan conformance test subcommittee chair)

• Rachel Bradshaw, Caster Communications (version 1.3)

• Rajeev Rao, Qualcomm (version 1.2)

• Ralph Potter, Samsung Electronics (versions 1.1, 1.2, 1.3)

• Raun Krisch, Samsung Electronics (version 1.3)

• Ray Smith, Arm (versions 1.0, 1.1, 1.2)

• Ricardo Garcia, Igalia (version 1.3)

• Richard Huddy, Samsung Electronics (versions 1.2, 1.3)

• Rob Barris, NVIDIA (version 1.1)

• Rob Stepinski, Transgaming (version 1.0)

• Robert Simpson, Qualcomm Technologies, Inc. (versions 1.0, 1.1, 1.3)

• Rolando Caloca Olivares, Epic Games (versions 1.0, 1.1, 1.2, 1.3)

5291

• Ronan Keryell, Xilinx (version 1.3)

• Roy Ju, Mediatek (version 1.0)

• Rufus Hamade, Imagination Technologies (version 1.0)

• Ruihao Zhang, Qualcomm Technologies, Inc. (versions 1.1, 1.2, 1.3)

• Samuel (Sheng-Wen) Huang, Mediatek (version 1.3)

• Samuel Iglesias Gonsalvez, Igalia (version 1.3)

• Sascha Willems, Self (version 1.3)

• Sean Ellis, Arm (version 1.0)

• Sean Harmer, KDAB Group (versions 1.0, 1.1)

• Shannon Woods, Google (versions 1.0, 1.1, 1.2, 1.3)

• Slawomir Cygan, Intel (versions 1.0, 1.1, 1.3)

• Slawomir Grajewski, Intel (versions 1.0, 1.1, 1.3)

• Sorel Bosan, AMD (version 1.1)

• Spencer Fricke, Samsung Electronics (versions 1.2, 1.3)

• Stefanus Du Toit, Google (version 1.0)

• Stephen Huang, Mediatek (version 1.1)

• Steve Hill, Broadcom (versions 1.0, 1.2)

• Steve Viggers, Core Avionics & Industrial Inc. (versions 1.0, 1.2)

• Steve Winston, Holochip (version 1.3)

• Stuart Smith, AMD (versions 1.0, 1.1, 1.2, 1.3)

• Sujeevan Rajayogam, Google (version 1.3)

• Tilmann Scheller, Samsung Electronics (version 1.1)

• Tim Foley, Intel (version 1.0)

• Tim Lewis, Khronos (version 1.3)

• Timo Suoranta, AMD (version 1.0)

• Timothy Lottes, AMD (versions 1.0, 1.1)

• Tobias Hector, AMD (versions 1.0, 1.1, 1.2, 1.3) (validity language and toolchain)

• Tobin Ehlis, LunarG (version 1.0)

• Tom Olson, Arm (versions 1.0, 1.1, 1.2, 1.3) (Working Group chair)

• Tomasz Bednarz, Independent (version 1.1)

• Tomasz Kubale, Intel (version 1.0)

• Tony Barbour, LunarG (versions 1.0, 1.1, 1.2)

• Tony Zlatinski, NVIDIA (version 1.3)

• Victor Eruhimov, Unknown (version 1.1)

• Vikram Kushwaha, NVIDIA (version 1.3)

5292

• Vincent Hindriksen, Stream HPC (versions 1.2, 1.3)

• Wasim Abbas, Arm (version 1.3)

• Wayne Lister, Imagination Technologies (version 1.0)

• Wolfgang Engel, Unknown (version 1.1)

• Yanjun Zhang, VeriSilicon (versions 1.0, 1.1, 1.2, 1.3)

• Yunxing Zhu, Huawei (version 1.3)

Other Credits
The Vulkan Advisory Panel members provided important real-world usage information and advice
that helped guide design decisions.

The wider Vulkan community have provided useful feedback, questions and specification changes
that have helped improve the quality of the Specification via GitHub.

Administrative support to the Working Group for Vulkan 1.1, 1.2, and 1.3 was provided by Khronos
staff including Ann Thorsnes, Blaine Kohl, Dominic Agoro-Ombaka, Emily Stearns, Jeff Phillips,
Lisie Aartsen, Liz Maitral, Marty Johnson, Tim Lewis, and Xiao-Yu CHENG; and by Alex Crabb,
Laura Shubel, and Rachel Bradshaw of Caster Communications.

Administrative support for Vulkan 1.0 was provided by Andrew Riegel, Elizabeth Riegel, Glenn
Fredericks, Kathleen Mattson and Michelle Clark of Gold Standard Group.

Technical support was provided by James Riordon, site administration of Khronos.org and
OpenGL.org.

5293

https://github.com/KhronosGroup/Vulkan-Docs/graphs/contributors

	Vulkan® 1.3.280 - A Specification (with all registered extensions)
	Table of Contents
	Chapter 1. Preamble
	Chapter 2. Introduction
	2.1. Document Conventions

	Chapter 3. Fundamentals
	3.1. Host and Device Environment
	3.2. Execution Model
	3.3. Object Model
	3.4. Application Binary Interface
	3.5. Command Syntax and Duration
	3.6. Threading Behavior
	3.7. Valid Usage
	3.8. VkResult Return Codes
	3.9. Numeric Representation and Computation
	3.10. Fixed-Point Data Conversions
	3.11. Common Object Types
	3.12. API Name Aliases

	Chapter 4. Initialization
	4.1. Command Function Pointers
	4.2. Instances

	Chapter 5. Devices and Queues
	5.1. Physical Devices
	5.2. Devices
	5.3. Queues

	Chapter 6. Command Buffers
	6.1. Command Buffer Lifecycle
	6.2. Command Pools
	6.3. Command Buffer Allocation and Management
	6.4. Command Buffer Recording
	6.5. Command Buffer Submission
	6.6. Queue Forward Progress
	6.7. Secondary Command Buffer Execution
	6.8. Nested Command Buffers
	6.9. Command Buffer Device Mask

	Chapter 7. Synchronization and Cache Control
	7.1. Execution and Memory Dependencies
	7.2. Implicit Synchronization Guarantees
	7.3. Fences
	7.4. Semaphores
	7.5. Events
	7.6. Pipeline Barriers
	7.7. Memory Barriers
	7.8. Wait Idle Operations
	7.9. Host Write Ordering Guarantees
	7.10. Synchronization and Multiple Physical Devices
	7.11. Calibrated Timestamps

	Chapter 8. Render Pass
	8.1. Render Pass Objects
	8.2. Render Pass Creation
	8.3. Render Pass Compatibility
	8.4. Framebuffers
	8.5. Render Pass Load Operations
	8.6. Render Pass Store Operations
	8.7. Render Pass Multisample Resolve Operations
	8.8. Render Pass Commands
	8.9. Render Pass Creation Feedback
	8.10. Common Render Pass Data Races (Informative)

	Chapter 9. Shaders
	9.1. Shader Objects
	9.2. Shader Modules
	9.3. Shader Module Identifiers
	9.4. Binding Shaders
	9.5. Shader Execution
	9.6. Shader Memory Access Ordering
	9.7. Shader Inputs and Outputs
	9.8. Task Shaders
	9.9. Mesh Shaders
	9.10. Cluster Culling Shaders
	9.11. Vertex Shaders
	9.12. Tessellation Control Shaders
	9.13. Tessellation Evaluation Shaders
	9.14. Geometry Shaders
	9.15. Fragment Shaders
	9.16. Compute Shaders
	9.17. Ray Generation Shaders
	9.18. Intersection Shaders
	9.19. Any-Hit Shaders
	9.20. Closest Hit Shaders
	9.21. Miss Shaders
	9.22. Callable Shaders
	9.23. Interpolation Decorations
	9.24. Static Use
	9.25. Scope
	9.26. Group Operations
	9.27. Quad Group Operations
	9.28. Derivative Operations
	9.29. Helper Invocations
	9.30. Cooperative Matrices
	9.31. Validation Cache
	9.32. CUDA Modules

	Chapter 10. Pipelines
	10.1. Multiple Pipeline Creation
	10.2. Compute Pipelines
	10.3. Graphics Pipelines
	10.4. Ray Tracing Pipelines
	10.5. Pipeline Destruction
	10.6. Pipeline Derivatives
	10.7. Pipeline Cache
	10.8. Specialization Constants
	10.9. Pipeline Libraries
	10.10. Pipeline Binding
	10.11. Dynamic State
	10.12. Pipeline Properties and Shader Information
	10.13. Pipeline Compiler Control
	10.14. Pipeline Creation Feedback

	Chapter 11. Memory Allocation
	11.1. Host Memory
	11.2. Device Memory

	Chapter 12. Resource Creation
	12.1. Buffers
	12.2. Buffer Views
	12.3. Images
	12.4. Image Layouts
	12.5. Image Views
	12.6. Acceleration Structures
	12.7. Micromaps
	12.8. Resource Memory Association
	12.9. Resource Sharing Mode
	12.10. Memory Aliasing
	12.11. Buffer Collections

	Chapter 13. Samplers
	13.1. Sampler Y′CBCR Conversion

	Chapter 14. Resource Descriptors
	14.1. Descriptor Types
	14.2. Descriptor Sets
	14.3. Physical Storage Buffer Access
	14.4. Descriptor Buffers

	Chapter 15. Shader Interfaces
	15.1. Shader Input and Output Interfaces
	15.2. Vertex Input Interface
	15.3. Fragment Output Interface
	15.4. Legacy Dithering
	15.5. Fragment Tile Image Interface
	15.6. Fragment Input Attachment Interface
	15.7. Ray Tracing Pipeline Interface
	15.8. Shader Resource Interface
	15.9. Built-In Variables

	Chapter 16. Image Operations
	16.1. Image Operations Overview
	16.2. Conversion Formulas
	16.3. Texel Input Operations
	16.4. Texel Output Operations
	16.5. Normalized Texel Coordinate Operations
	16.6. Unnormalized Texel Coordinate Operations
	16.7. Integer Texel Coordinate Operations
	16.8. Image Sample Operations
	16.9. Texel Footprint Evaluation
	16.10. Weight Image Sampling
	16.11. Block Matching
	16.12. Box Filter Sampling
	16.13. Image Operation Steps
	16.14. Image Query Instructions

	Chapter 17. Fragment Density Map Operations
	17.1. Fragment Density Map Operations Overview
	17.2. Fetch Density Value
	17.3. Fragment Area Conversion

	Chapter 18. Queries
	18.1. Query Pools
	18.2. Query Operation
	18.3. Occlusion Queries
	18.4. Pipeline Statistics Queries
	18.5. Timestamp Queries
	18.6. Performance Queries
	18.7. Transform Feedback Queries
	18.8. Primitives Generated Queries
	18.9. Mesh Shader Queries
	18.10. Intel Performance Queries
	18.11. Result Status Queries
	18.12. Video Encode Feedback Queries

	Chapter 19. Clear Commands
	19.1. Clearing Images Outside a Render Pass Instance
	19.2. Clearing Images Inside a Render Pass Instance
	19.3. Clear Values
	19.4. Filling Buffers
	19.5. Updating Buffers

	Chapter 20. Copy Commands
	20.1. Copying Data Between Buffers
	20.2. Copying Data Between Images
	20.3. Copying Data Between Buffers and Images
	20.4. Indirect Copies
	20.5. Image Copies With Scaling
	20.6. Resolving Multisample Images
	20.7. Buffer Markers

	Chapter 21. Drawing Commands
	21.1. Primitive Topologies
	21.2. Primitive Order
	21.3. Programmable Primitive Shading
	21.4. Conditional Rendering
	21.5. Programmable Mesh Shading
	21.6. Programmable Cluster Culling Shading

	Chapter 22. Fixed-Function Vertex Processing
	22.1. Vertex Attributes
	22.2. Vertex Input Description
	22.3. Vertex Attribute Divisor in Instanced Rendering
	22.4. Vertex Input Address Calculation

	Chapter 23. Tessellation
	23.1. Tessellator
	23.2. Tessellator Patch Discard
	23.3. Tessellator Spacing
	23.4. Tessellation Primitive Ordering
	23.5. Tessellator Vertex Winding Order
	23.6. Triangle Tessellation
	23.7. Quad Tessellation
	23.8. Isoline Tessellation
	23.9. Tessellation Point Mode
	23.10. Tessellation Pipeline State

	Chapter 24. Geometry Shading
	24.1. Geometry Shader Input Primitives
	24.2. Geometry Shader Output Primitives
	24.3. Multiple Invocations of Geometry Shaders
	24.4. Geometry Shader Primitive Ordering
	24.5. Geometry Shader Passthrough

	Chapter 25. Mesh Shading
	25.1. Task Shader Input
	25.2. Task Shader Output
	25.3. Mesh Generation
	25.4. Mesh Shader Input
	25.5. Mesh Shader Output
	25.6. Mesh Shader Per-View Outputs
	25.7. Mesh Shader Primitive Ordering

	Chapter 26. Cluster Culling Shading
	26.1. Cluster Culling Shader Input
	26.2. Cluster Culling Shader Output
	26.3. Cluster Culling Shader Cluster Ordering
	26.4. Cluster Culling Shader Primitive Ordering

	Chapter 27. Fixed-Function Vertex Post-Processing
	27.1. Transform Feedback
	27.2. Viewport Swizzle
	27.3. Flat Shading
	27.4. Primitive Clipping
	27.5. Clipping Shader Outputs
	27.6. Controlling Viewport W Scaling
	27.7. Coordinate Transformations
	27.8. Render Pass Transform
	27.9. Controlling the Viewport

	Chapter 28. Rasterization
	28.1. Discarding Primitives Before Rasterization
	28.2. Controlling the Vertex Stream Used for Rasterization
	28.3. Rasterization Order
	28.4. Multisampling
	28.5. Custom Sample Locations
	28.6. Fragment Shading Rates
	28.7. Shading Rate Image
	28.8. Sample Shading
	28.9. Barycentric Interpolation
	28.10. Points
	28.11. Line Segments
	28.12. Polygons

	Chapter 29. Fragment Operations
	29.1. Discard Rectangles Test
	29.2. Scissor Test
	29.3. Exclusive Scissor Test
	29.4. Sample Mask Test
	29.5. Fragment Shading
	29.6. Multisample Coverage
	29.7. Depth and Stencil Operations
	29.8. Depth Bounds Test
	29.9. Stencil Test
	29.10. Depth Test
	29.11. Representative Fragment Test
	29.12. Sample Counting
	29.13. Fragment Coverage to Color
	29.14. Coverage Reduction

	Chapter 30. The Framebuffer
	30.1. Blending
	30.2. Logical Operations
	30.3. Color Write Mask
	30.4. Color Write Enable
	30.5. Framebuffer Query Instructions

	Chapter 31. Dispatching Commands
	31.1. Dispatch Command for CUDA PTX Kernels

	Chapter 32. Device-Generated Commands
	32.1. Indirect Commands Layout
	32.2. Indirect Commands Generation and Execution

	Chapter 33. Sparse Resources
	33.1. Sparse Resource Features
	33.2. Sparse Buffers and Fully-Resident Images
	33.3. Sparse Partially-Resident Buffers
	33.4. Sparse Partially-Resident Images
	33.5. Sparse Memory Aliasing
	33.6. Sparse Resource Implementation Guidelines (Informative)
	33.7. Sparse Resource API

	Chapter 34. Window System Integration (WSI)
	34.1. WSI Platform
	34.2. WSI Surface
	34.3. Presenting Directly to Display Devices
	34.4. Querying for WSI Support
	34.5. Surface Queries
	34.6. Full Screen Exclusive Control
	34.7. Device Group Queries
	34.8. Display Timing Queries
	34.9. Present Wait
	34.10. WSI Swapchain
	34.11. Hdr Metadata
	34.12. Present Barrier

	Chapter 35. Deferred Host Operations
	35.1. Requesting Deferral
	35.2. Deferred Host Operations API

	Chapter 36. Private Data
	Chapter 37. Acceleration Structures
	37.1. Acceleration Structures
	37.2. Host Acceleration Structure Operations

	Chapter 38. Micromap
	38.1. Micromaps
	38.2. Host Micromap Operations

	Chapter 39. Ray Traversal
	39.1. Ray Intersection Candidate Determination
	39.2. Ray Intersection Culling
	39.3. Ray Intersection Confirmation
	39.4. Ray Closest Hit Determination
	39.5. Ray Result Determination

	Chapter 40. Ray Tracing
	40.1. Shader Call Instructions
	40.2. Ray Tracing Commands
	40.3. Shader Binding Table
	40.4. Ray Tracing Pipeline Stack
	40.5. Ray Tracing Capture Replay
	40.6. Ray Tracing Validation

	Chapter 41. Memory Decompression
	Chapter 42. Video Coding
	42.1. Video Picture Resources
	42.2. Decoded Picture Buffer
	42.3. Video Profiles
	42.4. Video Capabilities
	42.5. Video Sessions
	42.6. Video Profile Compatibility
	42.7. Video Session Parameters
	42.8. Video Coding Scope
	42.9. Video Coding Control
	42.10. Inline Queries
	42.11. Video Decode Operations
	42.12. H.264 Decode Operations
	42.13. H.265 Decode Operations
	42.14. AV1 Decode Operations
	42.15. Video Encode Operations
	42.16. Video Encode Rate Control
	42.17. H.264 Encode Operations
	42.18. H.265 Encode Operations

	Chapter 43. Optical Flow
	43.1. Optical Flow Queues
	43.2. Optical Flow Image Formats
	43.3. Optical Flow Session

	Chapter 44. Execution Graphs
	44.1. Pipeline Creation
	44.2. Initializing Scratch Memory
	44.3. Dispatching a Graph
	44.4. Shader Enqueue

	Chapter 45. Low Latency 2
	45.1. Latency Reduction

	Chapter 46. Extending Vulkan
	46.1. Instance and Device Functionality
	46.2. Core Versions
	46.3. Layers
	46.4. Extensions
	46.5. Extension Dependencies
	46.6. Compatibility Guarantees (Informative)

	Chapter 47. Features
	47.1. Feature Requirements
	47.2. Profile Features

	Chapter 48. Limits
	48.1. Limit Requirements
	48.2. Additional Multisampling Capabilities
	48.3. Profile Limits

	Chapter 49. Formats
	49.1. Format Definition
	49.2. Format Properties
	49.3. Required Format Support

	Chapter 50. Additional Capabilities
	50.1. Additional Image Capabilities
	50.2. Additional Buffer Capabilities
	50.3. Optional Semaphore Capabilities
	50.4. Optional Fence Capabilities
	50.5. Timestamp Calibration Capabilities

	Chapter 51. Debugging
	51.1. Debug Utilities
	51.2. Debug Markers
	51.3. Debug Report Callbacks
	51.4. Device Loss Debugging
	51.5. Active Tooling Information
	51.6. Frame Boundary

	Appendix A: Vulkan Environment for SPIR-V
	Versions and Formats
	Capabilities
	Validation Rules Within a Module
	Precision and Operation of SPIR-V Instructions
	Signedness of SPIR-V Image Accesses
	Image Format and Type Matching
	Compatibility Between SPIR-V Image Formats and Vulkan Formats
	Ray Query Precision and Operation

	Appendix B: Memory Model
	Agent
	Memory Location
	Allocation
	Memory Operation
	Reference
	Program-Order
	Shader Call Related
	Shader Call Order
	Scope
	Atomic Operation
	Scoped Modification Order
	Memory Semantics
	Release Sequence
	Synchronizes-With
	System-Synchronizes-With
	Private vs. Non-Private
	Inter-Thread-Happens-Before
	Happens-Before
	Availability and Visibility
	Availability, Visibility, and Domain Operations
	Availability and Visibility Semantics
	Per-Instruction Availability and Visibility Semantics
	Location-Ordered
	Data Race
	Visible-To
	Acyclicity
	Shader I/O
	Deallocation
	Descriptions (Informative)
	Tessellation Output Ordering
	Cooperative Matrix Memory Access

	Appendix C: Compressed Image Formats
	Block-Compressed Image Formats
	ETC Compressed Image Formats
	ASTC Compressed Image Formats
	PVRTC Compressed Image Formats

	Appendix D: Core Revisions (Informative)
	Version 1.3
	Version 1.2
	Version 1.1
	Version 1.0

	Appendix E: Layers & Extensions (Informative)
	Extension Dependencies
	Extension Interactions
	List of Current Extensions
	List of Provisional Extensions
	List of Deprecated Extensions

	Appendix F: Vulkan Roadmap Milestones
	Roadmap 2022
	Roadmap 2024

	Appendix G: API Boilerplate
	Vulkan Header Files
	Window System-Specific Header Control (Informative)
	Provisional Extension Header Control (Informative)
	Video Std Headers

	Appendix H: Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	Tessellation Invariance

	Appendix I: Lexicon
	Glossary
	Common Abbreviations
	Video-Specific Abbreviations
	Prefixes

	Appendix J: Credits (Informative)
	Working Group Contributors to Vulkan
	Other Credits

